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ABSTRACT

The footwear industry’s need for an automatic containment algorithm is becoming increasingly
important within the manufacturing process. Irregular containers, such as hides, have many different
quality regions and holes that must be taken into account when containment is done because they
represent an important cost. Automatic containment processes should be aware of these factors and
still perform in practical time. We present an iterative containment algorithm that uses Minkowski
operators and can be applicable to such containment problems. Although the iterative solution is not
the optimal one, it can reach a solution in practical running times and it can get results that
approximate the human made containment process.
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INTRODUCTION

Solutions for containment problems can be viewed as
an automatic way of placing a set of shapes into
another shape, called the container. The aim is to find
good solutions, in the sense that they have to be
competitive with the human made process and still
spend approximately the same time as humans do. The
quality - in terms of efficiency - of a solution can be
measured in multiple ways: we can find the minimal
container into which a given collection of shapes fit, or
find the maximal collection of shapes which fit into a
given container. We will address only one subset of
the containment problem universe – the two dimension
rotational containment problems.
In this paper, containment processes will be solved
through an iterative method, that is, we will select only
one shape from the set of all shapes to place, add it to
the container and proceed to the next shape until the

set of shapes is empty. Additional difficulties are
found when we need to use multiple containers at the
same time and/or when the containers have holes and
quality layer differentiation. In our previous work, we
have defined the use of optimal A* search trees to
solve single layer, translational 2D containment
problems. We will now formally define translational
and rotational configurations, single and multiple layer
configurations, single and multiple container
configurations, and solve containment problems using
only one framework for all types of configurations.

The first section will give formal description of 2D
translational and rotational containment problems,
using one or multiple containers and when shapes
and/or containers have multiple layer quality regions.
Then we will describe how positions are found and
evaluated within the container, through the use of
containment strategies and evaluators. A specific



strategy that selects only valid contact positions within
the container’s boundary is formally defined and we
will prove its correctness. We will also present an
evaluator that can be computed recursively, which is
based on the Minkowski difference operator.  The
algorithm will then be presented, separating the pre-
processing step from the iteration steps. Finally some
examples are shown, conclusions are drawn and we
give an overview of our future research and
development.

RELATED WORK

Related research about containment algorithms found
in literature [Milenkovic97a] can be subdivided into
four main groups:

• The Physics approach, which applies classical
physics theory by adding potential energy to the
shapes to place, that can be viewed as physical
elements. However, solving these large equations
takes a large amount of time, what makes it
useless in containment applications for the
footwear industry;

• The Computational Geometry approach, which
latest development in multi-polygon rotational
case [Cavalier96a]  can place convex m-gon P into
convex n-gon container Q by solving O(m4n4)
linear programs;

• The Operational Research approach, which can
lead to practical results, but tend to become more
complex when rotations are part of the equation;

• The Meta-Heuristic approach, which can obtain
interesting results if the selected heuristic is
appropriate, but fail to be applicable when the
input space increases substantially.

Heuristic search methods are independent from the
geometric description of each set so present a
significant advantage when we need to have tight
running times bounds. Geometric algorithms tend to be
more independent and capable of understanding
specific problem irregularities. We will try to solve
containment problems for irregular containers using an
iterative algorithm, which simulate human made
containment methods. This approach can lead us to
results that stand below 6-8%, comparing with the
efficiency of a human made process and that can reach
running times that are acceptable for the footwear
industry.

TRANSLATIONAL CONTAINMENT PROBLEM

The main goal of a translational containment algorithm
is to find points 2

1 ,..., ℜ∈nvv  that translates each

shape nPP ,...,1  into the container C.  Let 
2

2ℜ⊆Ω n

be the finite set of size n containing all shapes to be
placed. A  translational configuration )( nΩζ  is a
(n+1) tuple

),(),...,,()( 00 nnn PvPv=Ωζ            (1)

where

1. nnPP Ω∈,...,1 ,

2. 2
1 ,..., ℜ∈nvv ,

3. CP =0   , )0,0(0 =v .

A translational configuration is valid if and only if the
following condition is satisfied:

)( jiij PPvv −⊕∈−                                                  (2)

where 2, ℜ∈ji vv  are translations of iP  and jP
[Daniels95a]. The previous condition just says that for
each valid configuration we have n points

2
1 ,..., ℜ∈nvv so that nn vPvP ++ ,...,11  fits into the

container C.

ROTATING SETS

By adding a new degree of freedom we have to extend
the previous concepts. Let 2ℜ⊆A and [ [πα 2..0∈ .

The rotation of a point 2ℜ∈v  by α, φαv , is

))cos()sin(),sin()cos(( ααααφα yxyx vvvvv +−=
                                                                                   (3)
The rotation of a set A by α , φαA , is

{ }AvvA ∈= :φαφα                                                   (4)

The following properties are valid for the rotation of
sets,

)()()( φαφαπαφ AAA −=−=+                                (5)

φαφββαφ AA =− )(                                                 (6)



)()()( φαφαφα BABA ⊕=⊕                                    (7)

Let’s also introduce the circular set,

[ [{ } +ℜ∈∈= rrrrB ,2,0:))sin(),cos(()( πβββ       (8)

so that

φα)()( rBrB =                                                           (9)

and by using Eq. (7) and Eq. (9)

φαφα ))(()()( rBArBA ⊕=⊕                                 (10)

ROTATIONAL CONTAINMENT PROBLEM

We can now use rotated sets and extend the definition
of translational containment. Let [ [π2,02∈Γ .  A
rotational configuration )( nΩζ  is a (n+1) tuple

),()...,,()( 00 nnn PtPt=Ωζ                                  (11)

where

1. )0,0,0(0 =t ,

2. )(,..., 2
1 Γ×ℜ∈ntt ,

3. for all Γ∈ℜ∈= iiiii vvt αα ,),,( ,

),(),...,,()( 000 nnnn PvPv φαφαζ =Ω  is a
translational configuration.

From the previous definition, a rotational configuration
is valid if and only if the following condition is
satisfied:

))(( jjiiij PPvv φαφα −⊕∈−                                 (12)

or, using Eq. (5)

))(( παφφα +⊕∈− jjiiij PPvv                             (13)

where 2, ℜ∈ji vv  are translations for iiPφα  and

jjP φα .

USING MULTIPLE CONTAINERS

Automatic containment using multiple containers can
be achieved by applying the previous definitions.

If we aim to place n shapes nPP ,...,1  into m containers

mCC ,...,1 , we can apply the definition of translational
or rotational configuration by building a composed
container. Therefore we claim that the container and
the shapes to be placed become

U
mj

jCC
..1=

=′ and niPP ii ..1, =∀=′                          (14)

VISIBILITY DECOMPOSITION

When we need to take into account holes within the
container and when we have to assign quality
differentiation and equivalence between shapes to
place and containers, visibility decomposition must be
performed on shapes and containers [Bernardo95a].
A n-layer set A is a finite union of n sets

U
n

i

iAA
1=

=

where for i,j=1..n

1. 2ℜ⊆iA ,

2. AAi ⊆  ,

3. jiAA ji ≠∅=∩ ,                                           (15)

If a set A is n-layer then we say that )(nLA∈ . The
container and the shapes to be placed iP  can be
written as L(q) sets

U
q

l

l
ii PP

1=
=                                                               (16)

where 2ℜ⊆l
iP  is the subset of iP visible at quality

layer l, l=1..q. We will say that the quality of the layer
is better as its index increases.

MULTIPLE LAYER CONFIGURATION

In this scenario, a configuration must be aware of
inclusion or equivalence of quality layers of shapes to
place and containers. For example, an L(2)-shape may
be enclosed into an L(≥2)-container. Therefore a
multiple layer configuration is a (n+1) tuple

),(),...,,()( 00 nnn PvPv=Ωζ                                (17)



which is valid if and only if the following conditions
are always true:
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In practical terms, the former condition expresses the
rules for visibility decomposition of multiple layer
configurations.

DEFINING A STATE

Up to now we have formally defined how to
understand the containment process using two degrees
of freedom (2D translation) or three degrees of
freedom (2D translation plus rotation) for the shapes,
using single or multiple layer configurations.
Lets proceed by defining intermediate steps for the
containment process. We shall call these steps states.
A state is

kdkdState ΦΩ=ΦΩ ),(),( ζ                                (20)

where )( dΩζ  is a valid configuration of size d and

kΦ is a collection of k shapes to be placed.  The initial
state

nnState ΦΩ=ΦΩ ),(),( 00 ζ                                (21)

where }{0 C=Ω  and },...,{ 1 nn PP=Φ  just sets the
initial configuration, where only the container is part
of it. When using A. I. methods [Marques98a] the state
will be part of the tree node and should be expanded
by using a set of operators. Using an iterative method,
the node expansion remains as a valid concept. The
main difference is that now we choose only one node
and keep expanding without backtracking.

Given a shape, a state and nesting strategy, the nesting
operator returns a new state. Formally the nesting
operator is

),(),),,(( 11 −+ ΦΩ=ΦΩ knkn StatetQStatePlace

where

1. kQ Φ∈ ,
2. { }Qnn ∪Ω=Ω + 1 ,
3. { }Qkk \1 Φ=Φ − .                                              (22)

The new state is

1111 ),(),( −+−+ ΦΩ=ΦΩ knknState ζ

where
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                                  (23)

for )),(( QStrgt nΩ∈ ζ , where Strg is any nesting
strategy.

The updated container is the result of placing all
shapes of a configuration into the container. For

),()...,,()( 00 nnn PtPt=Ωζ  we have
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=

+=                                                   (24)

Lets take a closer look on how to select strategies and
evaluate the quality (in terms of containment) of the
intermediate solution.

STRATEGIES

A containment strategy is an operator that selects valid
positions for a given state and a shape to be placed.
Let )( nΩζ  be a configuration and 2ℜ⊆Q . A
containment strategy is

TQStrg n =Ω )),((ζ                                                 (25)

where )()( QCT n −Θ⊆ . For example, if we want to
select the point that is the most to the left of the
container for each state, we would have

{ }vQstStrgLeftMo n =Ω )),((ζ

where Tv∈ and

Tv ∈′¬ ∃ : xx vv <′ .                                                 (26)



It is important to note that any strategy selects only
positions that lead to valid configurations because, by
using the fundamental property of Θ  [Marques98b]

∅=∩+⇒−Θ∈⇒∈ )()( )()( nn CtQQCtTt         (27)

meaning that if we translate Q by t we don’t intersect
the updated container of the configuration.

EVALUATORS

The evaluator should measure the associated cost of
placing a shape into the container. Therefore, a
containment evaluator is

xtQEval n =Ω ),),((ζ                                              (28)

where ℜ∈x  can take any value. Lets say that the
lower the evaluation is, the seemingly better the
containment is. For example, if we want to estimate
the useful free area of the container for the shapes yet
to be placed, we use the Opening evaluator
[Marques98b]

∑
=

+Ω=Ω
N

di
dd tQtQgEvalOpenin ))),(((),),(( ζδζ

                                                                                 (29)

where )( dΩζ  belongs to ),( kdState ΦΩ and kQ Φ∈ .
The δ function gives us information about the
possibility of placing each of the remaining shapes. If
such nesting is possible, a weighted shape’s area is
returned. The cost rises if the amount of inaccessible
regions increases. If not a maximum cost is returned.
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where )(),(),...,,( 00 ddd PtPt Ω∈ ζ .                       (30)

PRE-PROCESSING INFORMATION

We aim to apply an algorithm that can select the
seemingly best position and rotation of one of the
shapes to place, put it inside the container, and proceed
to the next iteration until it can no longer place any
more shapes or when the set of shapes to place

becomes empty. Please note that the following
considerations will work on single or multiple layer
configurations. The first step of the containment
algorithm is to assemble information about the shapes
and get the initial evaluation for all of them. Lets build
the collection of all valid positions for all of the rotated
sets of shapes to place, that is, if

1. 2ℜ⊆Q ,

2. [ [π2,02∈Γ  ,
3. Γ∈α ,
4. ))((),),(( )( παφαζ +Θ=Ω QCQK n

n

then

ℑ∈Ω ),),(( αζ QK n                                                 (31)

ℑ  contain all the information on the valid positions for
all shapes to be placed into the container at the
beginning. We can make a first restriction by selecting
only the points that belong to the boundary. Once we
have gathered all the information we will generate the
initial evaluation for all of the points. Let’s build our
containment strategy for a given ),( kdState ΦΩ  using
the previous result.

)),),((()),(( αζφαζ QKfrQStrgMk nn Ω=Ω         (32)

where kQ Φ∈ , Γ∈α  and fr(A) denotes the
topological border of the set A. The right choice of the
evaluator will, obviously, determine the quality and
efficiency of the final solution. One good evaluator
could be the EvalOpening, which is known to be
optimal [Marques98a]. However its computational
costs are very high when we need to place several
different shapes (>100) in practical time. Therefore we
will try to approximate the EvalOpening by using a
circle to substitute the Opening operator. We have

))())(((),),(( )( rBtQCtQEvalCircle n
n Θ+∩∆=Ωζ

                                                                                 (33)

where B(r) is the circle of radius r.

Therefore will build the containment evaluator for a
given state ),( kdState ΦΩ  by applying the circle
evaluator

)),,),(((),),(( tQtQEvalMk nn αζξφαζ Ω∆=Ω     (34)

where  kQ Φ∈ , Γ∈α  , )),(( φαζ QStrgMkt nΩ∈
and



)())((),,),(( )( rBtQCtQ n
n Θ+∩=Ω φααζξ         (35)

using the invariance of translation over the Minkowski
difference and the distributive property of the
Minkowski difference [Marques98b], we have

)))()((())((),,),(( )( trBQrBCtQ n
n +⊕∩Θ=Ω φααζξ

                                                                                 (36)

and using Eq.(10),

))))((())((),,),(( )( trBQrBCtQ n
n +⊕∩Θ=Ω φααζξ

                                                                                 (37)

This means that we only have to do the computation
for the first operand once, because it is independent
from the variables Q, α and t. Note that the second
operand can be pre-processed because it depends only
on the shapes to be placed.

ITERATING

Having collected the initial information of the
containment, we just have to select a shape and a
position, add it into the container and proceed.
Selecting a shape and a position is trivial. All we have
to do is to find

1. kS Φ∈

2. Γ∈β for [ [π2,02∈Γ

3. )),(( φβζ SStrgMks nΩ∈

such that for all shapes to place kQ Φ∈ , angles Γ∈α
and positions )),(( φαζ QStrgMkt nΩ∈

),,),((),,),(( tQEvalMksSEvalMk nn αζβζ Ω≤Ω
                                                                                 (38)

Now that we have selected one shape, we should place
it inside the container and update the information for
the K’s and ξ ’s. Updating the state is just a matter of
applying the Place operator - see Eq.(22). The new
state is

),),,((),( 11 sSStatePlaceState knkn φβΦΩ←ΦΩ −+
                                                                                 (39)

In the case of the K’s, by using  (Eq.37), we have

))((),),(( )1(
1 παφαζ +Θ=Ω +

+ QCQK n
n .              (40)

By expanding the container we have

))(())((),),(( )(
1 παφφβαζ +Θ+∩=Ω + QsSCQK n

n

                                                                                 (41)

and by distributing intersection over the Minkowski
difference [Marques98b] and rearranging the operands,
we have

)))(()((

))(((),),(( )(
1

sQS

QCQK n
n

++⊕
∩+Θ=Ω +

παφφβ
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        (42)

which can be rewritten as
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We can do the same when computing the new maps
for evaluation. Knowing that
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then
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               (45)

that, using Eq.(10) can be written as

)))(((
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REACHING THE END

Until now we have seen how to compute initial
information and how to choose shapes iteratively. The
final step is to know when to stop. This happens when
one of the following conditions are enabled:

1. There are no more shapes to be placed;

2. There is no free space left inside the container to
place any remaining shape.



The first condition just means that the set of shapes to
place is empty, that is,

∅=Φ∃
> k

k 0
                                                             (47)

The second condition means that there are no valid
positions to evaluate, that is,

∅=Ω∀∀∃
Γ∈Φ∈>

)),((
0

φαζ
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QStrgMk n
Qn k

                  (48)

RESULTS

Tests were performed using a PentiumII processor
running at 350Mhz. Figures 1 and 2 show examples
taken from footwear industry. In both cases, the
container is a hide of 3m by 1.5m approximately. The
goal is to minimise the waste on the container by
selecting appropriate rotations and positioning for each
of the parts to be cut.

Figure 1: Leather nesting using the algorithm. Total
waste is 19.6%

In the first example, calculations took about 20
minutes for a waste of 19.6% of the container using 24
rotations (15º step) for each shape.

Figure 2: Leather nesting using the algorithm. Total
waste is 21.0%

The second example is also from the footwear industry
and took 17 minutes to get 21.0% waste using 24
rotations for each shape. In general, the difference
between manual containment (done by skilled persons)
and the automatic one is 5% to 7%.

CONCLUSIONS

While researching for an optimal solution for 2D
rotational containment problems is still being done,
tight time requirements present an additional difficulty
in implementing such a solution. The algorithm
discussed in this article is intended to approximate
with manual results, while maintaining practical
execution times. At this time of development, practical
results are very promising, and can be upgraded
incorporating other automatic containment
technologies, such as partial A.I. search.

FUTURE WORK

In the near future, we aim to optimise multiple layer
containment, so it can compete with manual
containment and apply partial A.I. search methods so
that it can make “smarter” decisions. Time constraints
are very restricting when we’re dealing with
implementation issues. Future development on the
geometric operators is already in place, which will
allow a speed up of the calculations while maintaining
approximation errors controlled.
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