
XML BASED MOBILE SERVICES

Outi Marttila and Petri Vuorimaa

Telecommunication Software and Multimedia Laboratory,
Helsinki University of Technology,

P.O Box 5400, FI-02015 HUT, Finland.
omarttil@tcm.hut.fi and Petri.Vuorimaa@hut.fi

ABSTRACT

The most remarkable trends in communication have been the huge popularity of Internet and the growth
of digital cellular telephony usage. There is a strong demand to combine these two in the form of mobile
Internet access. This paper discusses the service implementation issues for the wireless environment. The
requirements placed on the services and service development by the mobility are presented, and the usage
of the next generation, XML based modeling languages in the wireless services is analyzed. The results
are based on the experiments gained from the implementation of three demonstration services.

Keywords: XML, XSL, SMIL, DOM, ECMAScript, mobile multimedia.

1. INTRODUCTION

The GO-project - which is part of the MediaPoli
concept at Helsinki University of Technology - is
focusing on the issues of mobile Internet access and
establishing a wireless service architecture. The
“Wireless multimedia services” subproject in
Laboratory of Telecommunications Software and
Multimedia aims at studying the implementation
issues of the mobile multimedia software architecture.
The main reasons for the need of a new kind of
software architecture are

• continuous wide band media,

• new communication protocols,

• abstract service modeling, and

• memory, processing speed, power consumption,
and physical space constraints.

This paper concentrates on the service modeling by
studying the usage of the next generation modeling
languages - XML, XSL, DOM, ECMAScript, and
SMIL - in the development of mobile services. Three
demo services were implemented with the objective
to find out how these languages can be utilized, and
what kind of advantages, or on the other hand
disadvantages, their use brings compared to the
former techniques. The evaluation was done mainly

from the viewpoint of the service developer. With a
powerful modeling language the developer is able to
describe all the information and functionality needed
in the service. Also, an efficient language allows the
reuse of documents and flexible control over the
rendition of information. Besides, multimedia
applications require that the modeling language is
able to define both synchronization and interactivity.

Mobility brings new possibilities to the services, but
places at the same time additional requirements on
the service development. Because of the fundamental
limitations on power, available spectrum, and
mobility, wireless networks have less bandwidth,
more latency, less connection stability, and less
predictable availability [WAPForum99]. The wireless
devices usually have restricted power consumption,
less powerful CPUs, less memory, smaller and lower
quality displays, and different input devices.

In consequence of the mobility, the following factors
have to be taken into account when designing the
services to the wireless environment:

• size, resolution, and colors of the screens
The size, resolution, and colors of the user
interface are limited by the features of the
display.

• data input and navigation

Input is done with a stylus and/or small amount
of buttons instead of a mouse and a keyboard.

• size of the document files
The size of the documents cannot increase,
largely because of the constrained network and
the limited memory and CPU capacity of the
device.

• limited processing on the client device
The memory and CPU place restrictions on how
much of the processing of the document can be
done on the client device.

The features of the display and user input facilities
affect mostly the designing of the user interface. The
size and resolution restrict the amount and size of
elements that can be placed in one screen.
Consequently, the placing of the components of the
user interface has to be planned carefully. The
formatting language should support this by allowing a
flexible method for determining regions with size and
position where the components can be placed. If the
navigation is done with buttons, the environment for
the service development must, by means of scripts or
the application software, support it by handling key
strokes and providing a way to show the location of
the cursor.

Two other factors, the size of the documents and their
processing, have to be considered besides the
developer from the view of the whole architecture;
how the actual information and styling related to it is
described and handled. Besides the design decisions
made by the developer - to avoid the size of the
documents increasing too large - a technology used to
describe the information should be able to do it
flexibly and compactly.

2. TECHNICAL BACKGROUND

2.1 XML

To meet the new requirements of web publishing,
W3C has developed the Extensible Markup Language
(XML). XML was designed to deliver structured,
possibly complex content over the web while still
being easy to implement [Bosak97]. The goal was to
develop a language that has the flexibility of SGML
and the simplicity of HTML.

XML is primarily a meta-language for describing
other markup languages. It neither specifies a fixed
tag set nor the semantics of the tags, but allows users
to define their own set of tags and the structural
relationships between the tags. A document type
definition (DTD) may be associated with the
document, but it is not required. XML as such does

not contain any functionality, but is used as a data
description, interchange, and storage format.

Two basic properties of XML documents are well-
formedness and validity [Bray98]. The well-
formedness constraints control the proper syntax and
structure of the document. Moreover, an XML
document is valid if it is well-formed and it complies
with the constraints expressed in an associated
document type declaration.

XML linking consists of two markup languages,
XLink and Xpointer. XLink is an XML language,
which uses Uniform Resource Identifiers (URIs) to
describe links between different files. XPointer
complements XLink with the ability to address
specific parts of elements or data in an XML
document. Together, they allow multidirectional
links, links to multiple resources, link databases, links
that point specific places inside the documents, and
links to and from read-only documents [Tauber99].

2.2 XSL

The Extensible Stylesheet Language (XSL) is the
style language of XML. Since XML tags have no
predefined semantics, XSL is used to describe how
the elements are presented. XSL specification is
divided in two separate parts [Deach99]. The actual
XSL specification defines a vocabulary of formatting
objects (XSL-FOs) that have the necessary base
semantics. XSL Transformations (XSLT)
specification defines a language for transforming the
original XML document to the document that is
composed of the elements having formatting
semantics.

The conversion of XML to the presentation structure
is done by XML/XSL processor. It takes an XML
document, and constructs the source tree from the
document. Using the XSL stylesheet, it constructs a
separate tree, the result tree, which is composed of
formatting elements. The result tree does not have to
be composed of formatting objects introduced in XSL
specification, but it can consist of any XML elements.
However, the document resulting from the
transformation must always be a well-formed XML
document.

The basic building block of XSL transformations is
the template rule, specified with xsl:template

element describing how the original XML element
node is converted into the element node that can be
formatted, styled, and displayed [Clark99]. It consists
of two parts, a matching part and a formatting part.
The matching part identifies the XML node in the
source document to be formatted, and the formatting
part produces part of the result tree by applying
formatting to the nodes.

An XSL formatting object represents a particular
kind of formatting information, which is applied to
the content of the formatting object. The formatting
vocabulary is built on the basis of Cascading Style
Sheets (CSS) and Document Style Semantics and
Specification Language (DSSSL). Over 90 percent of
the XSL formatting properties are defined in CSS.
However, XSL extends CSS, e.g., to allow pagination
and frame based structure. The extensions are done
by adding new values to CSS properties, by splitting
CSS properties into several new properties, or by
creating completely new properties.

2.3 DOM and ECMAScript

Document Object Model (DOM) is a platform- and
language-neutral interface that enables programs and
scripts to dynamically access and update documents
[Apparao98]. DOM Level 1 recommendation
determines the objects for representing HTML and
XML documents, and a basic interface for their
manipulation. DOM Level 2, which under
construction, builds on the DOM1 adding, e.g.,
interfaces for stylesheets, an event model, a query
interface, and a DTD interface [Apparao99].

ECMAScript is a scripting language designed by
standardizing organization ECMA on the basis of
JavaScript. The goal of the language is to provide a
standardized, unified definition of the languages,
which are modeled after Netscape JavaScript
[ECMA98].

2.4 SMIL

Synchronized Multimedia Integration Language
(SMIL) is an XML based language that allows
integrating a set of independent multimedia objects
into a synchronized multimedia presentation
[Hoschka98]. SMIL is able to describe the temporal
behavior of the presentation, the layout of the
presentation on a screen, as well as hyperlinks
between media objects.

In a SMIL presentation, the media elements (e.g.,
images, audio clips, video clips, animations, and
formatted text) are referenced from the SMIL
document with Uniform Resource Locator (URLs)
and are determined to be played in parallel or in
sequence. The design goal of the language has been
simplicity: it should be easy to create and edit
presentations using a standard text editor.

The basic structure of a SMIL document is very
similar to HTML document. A SMIL document is
represented by a smil element which can contain
head element describing the appearance and layout of
a presentation and body element describing the timing
and content information.

3. IMPLEMENTATION

3.1 Architecture

The stack in Fig. 1 represents the levels of the
software platform of the wireless multimedia services
from hardware at the bottom to the services on top.
The most important application is the browser, which
functions as a platform for the services. The services
are modeled using XML or XML based languages
like SMIL.

Fig. 1.

Three demos of mob
architecture represented
first two demos are excl
of XML; the third one is

Internet Explorer 5, sup
as well as client-side s
client software for prot
the browser is able to
elements styled with C
transformed into DH
interaction was achiev
scripts using ECMA-co
as a scripting language.

3.2 Movie Demo

The first demo introdu
that movie theaters c
customers. The service p

• the list of the fil
showing at the theat

• the schedule inform
is on,

• booking system for

• additional material

• descriptions of the t

Micro-ker

s
Service
Applications (browser)
Java APIs
Java Virtual Machine
nel – Real-time OS
Hardware
Architecture.

ile services based on the
 above were designed. The
usively implemented in terms
 modeled using SMIL.

porting both XML and XSL
cripts was chosen to be the
otyping XML services. Since
 render HTML elements or
SS, XML documents were
TML with XSLT. User
ed besides hyperlinks with
mpliant JScript by Microsoft

ces a scenario of the service
ould offer to the mobile
rovides

ms that are at the moment
ers,

ing when and where the film

tickets,

related to the films, and

heaters.

Navigation can be done with a stylus or arrow keys,
and a link can be followed by pressing the “ok” key.
The screen shots in Fig. 2-4 illustrate the main menu,
the information of the movie, and the screen for
buying the tickets.

Fig. 2. The main menu of the movie demo.

Fig. 3. The screen presenting the information
and showtimes of the film.

Fig. 4. The form for buying the tickets.

The data in this case is changeable and should be
easily updatable and retrievable. XML provides a
way to organize the pieces of information, so that the
processing of information can be automated. XML is
used to store the information, while XSL allows
searching and selecting the fragments of information
needed and presenting them in different ways. Data is
stored structurally taking advantage of XML's ability
to assign semantics to the information, and the
desired information is picked from the document
using XSL as a sort of query language. Using XSL
and client-side scripts, it is possible to display the
data in various forms without having to repeatedly
request the server to send new pages.

The information content of the service consists of the
movies and their schedules, theatre descriptions, and
the booking situation of the shows. The movie data
and theatre data are presented in separate XML
documents. Fig. 5 presents the sample XML
document describing the movie information. The
information is contained in the movies element,
which may contain zero or more movie elements,
each of which represents a single movie and contains
elements, which in turn include information related to
the movie. Media elements like pictures and video
clips are associated with the movie with the URL as
in SMIL.

<movies>
<movie name="Pulp Fiction">

<trailer file="video1.asx"/>
<showtimes>
 <theater name="Cinema 1">

<day date="21.2.">
<time>18.00</time>
<time>20.30</time>

</day>
<day date="22.2.">

<time>18.30</time>
<time>20.30</time>

</day>
</theater>
<theater name="Cinema 9">

<day date="27.2.">
<time>16.00</time>

</day>
</theater>

</showtimes>
<information>
 Tarantino's award-winning film….
</information>
<picture file="pulp.jpg"/>

</movie>
<!-- more movie items -->

</movies>

Fig. 5. XML example: the movie data.

Fig. 6 shows the basic structure of the stylesheet for
the movie data. It is divided into five template rules.
When the XML file is loaded for the first time, the
template rule for the root element is processed. The
rule constructs the HTML document with the head
and body element. From the document body, it
separates an area whose content changes as a result of

user's actions. Inside the elem
changing area, the xsl:apply-te
rule chooses the movies element

<xsl:stylesheet
xmlns:xsl="http://www.w3.org
 <xsl:template match="/">

<html>
 <head>

<!--scripts and styles
here-->

 </head>
 <body>

<div id="content">
 <!--area for the chang
 <xsl:apply-templates s
</div>

 </body>
</html>

 </xsl:template>
 <xsl:template match="movies

<!--goes through the movie
loop and forms the front pag
 </xsl:template>
 <xsl:template match="movie"

<!--forms the page represe
information-->
 </xsl:template>
 <xsl:template match="traile

<!--forms the page contain
->
 </xsl:template>
 <xsl:template match="showti

<!--forms the page for the
->
 </xsl:template>
</xsl:stylesheet>

Fig. 6. Structure of the stylesheet

Template rule for the movies elem
the first page, which includes th
by selecting all movie elements
element. Template rule for th
processed only when the docum
rules are carried out as a res
transformNode method in sc
applying to XML node object tak
XML node, which represents an
returns the transformed result n
Fig. 7. The screen for attending the lecture.
ent determining the
mplates processing

for processing.

/TR/WD-xsl">

are included

ing content-->
elect="movies" />

">
 elements in a
e-->

>
nting movie

r">
ing the trailer-

mes">
 ticket booking-

 for the movie data.

ent actually renders
e list of the movies,
 with xsl:for-each
e root element is
ent is loaded. Other
ult of the calls for
ripts. This method
es as a parameter an
XSL stylesheet, and
odes. In the scripts,

the desired XML node is selected, and during the
transformation resulting from the call for the
transformNode method, the corresponding template
rule is applied to the selected node.

3.3 Distance Education Demo

In distance education, students are not physically
constrained to the same location as the instructor to
receive instruction, but rather the instructional
delivery is done by using audio, video, and computer
technologies. The demo implemented here presents a
distance education service, which provides lecture
slides, video of the lecture, and a chat allowing
communication between the students and the
instructor. In teaching event, the instructor gives a
lecture, which is filmed using a video camera.
Together with the video there are slides of the lecture
that can be read and scanned on the screen during the
lecture. Chat enables students to interact in real-time.
The screen for attending the lecture is presented in
Fig. 7. By clicking the alternative views from the
menu on the right side of the screen, it is possible to
place only one of the elements (video, slides, or chat)
on the screen.

The role of XML in the implementation is to describe
the information in propriety document format so that
it can be easily styled, accessed and processed.
Though the number of documents may be rather
large, a single stylesheet is used to display all the
documents of the certain type. Most of the
complexity - when coded in every document
separately would result in considerable amount of
redundant information - is included in the stylesheets.

The information of the service includes the courses
that are available and lectures each course has. The
information for each lecture includes slides and data
related to the video and chat. To avoid the size of the
documents growing too large, the information is split

into document containing the
documents containing the list of
course, and documents contain
single lecture. The code sample
structure of the document conta
the course.

<lectures>
<lecture>
 <subject>Opening of the
 <date>6.1.1999</date>
 <url>lecture1.xml</url>
</lecture>
<!-- more lecture items

</lectures>

Fig. 8. XML description of the l

The structure of the stylesheets f
lecture list is simple. With the xs
all the course elements, or in th
lecture elements, are picked
constructed using the content of

The screen for attending the lec
two frames, the menu frame
where the actual teaching mater
frames are static HTML docum
stylesheet forms the HTML d
these frames. Source of the m
scripts responding to the events.
script opens the desired XML
the lecture data on the main fra
XML document to be loaded is p
to the script using a specific e
document. For video, chat, a
separate stylesheets. The scr
document load the necessary s
wants to change the view.
Fig. 9. Screen of the multimedia presentation.
list of the courses,
 the lectures for each
ing the data for a

in Fig. 8 presents the
ining the lectures of

 course</subject>

-->

ectures of the course.

or the course list and
l:for-each element
e case of lecture list
and the link list is

the url elements.

ture is composed of
and the main frame
ial is. Sources of the
ents and a specific
ocument containing
enu frame contains

 When it is loaded, a
document containing
me. The URL of the
assed as a parameter

lement in the course
nd slides there are
ipts in the menu
tylesheet when user

3.4 Multimedia Presentation Demo

The demo introduces an example of multimedia
presentation with pictures, audio, and video. The
theme of the presentation is tennis, aiming at
introducing the game by giving the user information
about the tournaments, players as well as the history
and basics of tennis. GriNS player, which complies
for the most part with SMIL specification and
supports also various media formats, was used to test
the presentation. Fig. 9 shows one of the screens of
the demo.

The content is composed of still images, AVI and
QuickTime videos, and WAV sounds. Media
elements are joined together with SMIL taking
advantage of its synchronization and linking
capabilities. Code sample in Fig. 10 illustrates the
SMIL implementation of one of the screens, which
presents the history of tennis by showing texts with
video. The implementation of other screens is
basically very much alike, the complexity of the
presentation depending mostly on whether
complicated synchronization is needed.

4. CONLUSIONS

The implementation of the demo services showed that
designing basic XML documents is very simple.
However, when the information is more complex and
supposed to be processed automatically, more
attention should be paid to how the information is
structured.

<smil>
 <head>
 <layout>

 <root-layout background-color="#000000"
width="650" height="500"/>

 <region id="text" width="407"
height="249" top="10" left="10"/>

 <region id="v1" width="136" height="196"
top="30" left="470"/>

 <region id="link" width="72" height="72"
top="420" left="575"/>
 </layout>
 </head>
 <body>
 <par>

 <img src=
"main.gif" dur="indefinite"
region="link"/>

 <audio src="history_sound.wav"/>
 <par>
 <seq>

<img dur="4s" src="text1.gif"
region="text"/>

<img dur="8s" src="text2.gif"
region="text"/>

<img dur="8s" src="text3.gif"
region="text"/>

 </seq>
 <video src="history.avi" region="v1"/>
 </par>

 </par>
 </body>
</smil>

Fig. 10. Sample SMIL document.

4.1 XML Analysis

In the movie demo, all the information is in a single
XML document and the screens of the service are
generated only by varying the presentation of the
information. For example, a HTML implementation,
which requires that each of the screens is presented as
a separate document, would have several documents.
One problem with the XML implementation is that
the file size can become too large, in which case the
information should be split at the server, and serve
the client only with a fraction of the document.

In the distance education demo, the main advantage
of using XML is the reusability: the same document
format is applied to number of documents. Moreover,
the style information can be declared in a single
stylesheet that is suitable for all documents. In this
demo, the user is also able to modify the view by
changing a stylesheet.

The most significant advantages of XML can be
summarized in the following three elements:

• flexibility
XML can be used for many different purposes in
various services, systems, and platforms
providing also an interchange format between
applications.

• reusability
Document format can remain unchanged among
number of documents, while the content is
changing.

• “intelligence” (the semantics of information)
The processing of the information can be
automated.

XML is, first of all, a device and platform
independent method for describing information. For
the wireless services that are accessed from the
devices with varying features this is very important:
the information coded in XML is always the same,
but the presentation can be chosen according to the
facilities of the device.

4.2 XSL Analysis

Though the functionality of XSLT can be achieved
using DOM and scripts, the transformation language
provides more simple and straightforward method to
modify the structure of the document for presentation

As far as the support for interactivity and
functionality is concerned, XSLT provides the
xsl:functions element that allows declaring the
functions that are interpreted during the
transformation. For the scripts providing functionality
after the transformation (e.g., to handle events) the
formatting language must have the appropriate
element where the scripts can be included. Especially,
the interactivity would be increased with the ability to
invoke XSL transformations programmatically.

XSL-FOs and CSS have very similar features and
there is a lot of overlapping features among them. For
example, both are able to determine the layout of
document and the positions of separate components,
which was found important for the mobile services.
Since the implementation of both XSL-FOs and CSS
in a browser would lead to rather heavy software, it is
probably reasonable to implement only one of these
in a lightweight browser.

The key questions from the view of wireless services
are whether the formatting model of XSL is too
complicated, and whether all the formatting objects
introduced in the specification are needed. In
addition, the basic structure of the style declarations
of XSL-FOs and CSS is slightly different. XSL-FOs
are elements that have predefined semantics and
property attributes. CSS does not add new elements,
but declarations are attached to the original elements
by means of attributes. Because of this difference,
XSL-FOs are probably more straightforward to use
with XSLT whereas CSS is more useful for attaching
style declarations directly to the original elements
when transformation is not needed and the original
document can be remained unchanged. When the
document is not transformed, CSS is more simple to
use, because use of XSLT results in large amount of
extra code. Considering the restrictions of the
wireless devices, the use of XSLT increases the size

of the style document and part of the processing of
the document is transferred to the client device.
However, the extra demands on the processing power
cannot be considered very remarkable.

4.3 DOM and ECMAScript Analysis

Perhaps the most severe incompatibility problems at
the moment on the web are resulting from the
different JavaScript and document object model
implementations. DOM and ECMAScript are the first
efforts to standardize the scripting environment.

Especially DOM is vital for the service development
determining how the structure of the documents is
described and how the parts of the document are
accessed. DOM1 specification provides a good basis
for the basic manipulation of the documents, but the
present DOM1 does not contain all the needed
features until DOM2 with, e.g., event model and
support for stylesheets is completed.

4.4 SMIL Analysis

Since its approval, SMIL has been adopted widely -
considering the number of implementations which
have been made by both non-commercial groups and
commercial companies. Though it is possible to
achieve SMIL's functionality with scripts that control
the displaying and moving of the objects in a
presentation, SMIL enables a wider group of
developers without specific programming skills to
make presentations by providing a very simple
technique for describing how different elements relate
over time.

The disadvantage of SMIL is that it is a separate
multimedia document format and its features cannot
be utilized in connection with other XML based
languages. Moreover, the same functionality, but with
more sophistication, can be achieved with other
techniques. SMIL does not offer any new features or
more powerful technology, but its strength is that it is
a standard and independent of a specific vendor or
software. Also, specific software is not required for
developing SMIL presentations, but rather a text
editor is adequate. However, with the present SMIL
browsers the software-neutrality is not fully realized,
because browsers support very varying set of features
and a presentation designed with one browser seldom
plays predictably with some other browser. Another
disadvantage is that the flexibility of the SMIL
presentations is actually very limited. All the
interactivity is achieved with the simple hyperlinks
and there is no opportunity to add scripts or
constructs like frames that would allow updating only
a part of the screen.

The developers of SMIL are aware of the weaknesses
and working on it to improve the standard. The
working draft of the next version of SMIL code-name
"Boston" [Ayars99] has been recently announced. It
improves the SMIL 1.0 by allowing the integration of
timing into other XML based languages and
including animation functionality, DOM for SMIL,
and an event model.

REFERENCES

[Apparao98] Apparao V. et al., Document Object
Model (DOM) Level 1 Specification, <URL:
http://www.w3.org/TR/REC-DOM-Level-
1/cover.html>, 1998.

[Apparao99] Apparao V. et al., Document Object
Model (DOM) Level 2 Specification, <URL:
http://www.w3.org/TR/WD-DOM-Level-2/>,
1999.

[Ayars99] Ayars J. et al., Synchronized Multimedia
Integration Language (SMIL) Boston
Specification, <URL:
http://www.w3.org/1999/08/WD-smil-boston-
19990803>, 1999.

[Bosak97] Bosak J., XML, Java, and the Future of
the Web, World Wide Web Journal, Vol 2,
No. 4, 1997.

[Bray98] Bray T. et al., Extensible Markup Language
(XML) 1.0, <URL:
http://www.w3.org/TR/1998/REC-xml-
19980210>, 1998.

[Clark99] Clark J., XSL Transformations (XSLT)
Specification Version 1.0, <URL:
http://www.w3.org/TR/1999/WD-xslt-
19990421>, 1999.

[Deach99] Deach S., Extensible Stylesheet Language
(XSL), <URL: http://www.w3.org/TR/WD-
xsl>, 1999.

[ECMA98] ECMA, ECMAScript Language
Specification, <URL: ftp://ftp.ecma.ch/ecma-
st/e262-pdf.pdf>, 1998.

[Hoschka98] Hoschka P., Synchronized Multimedia
Integration Language (SMIL) 1.0
Specification, <URL:
http://www.w3.org/TR/REC-smil/>, 1998.

[Tauber99] Tauber J., XML after 1.0: You Ain’t Seen
Nothin’ Yet, IEEE Internet Computing, Vol. 3,
No. 3, May-June 1999.

[WAPForum99] WAP Forum, The Wireless
Application Protocol,
<URL:http://www.uplanet.com/pub/feb99WA
PWP.pdf>, 1999.

	XML BASED MOBILE SERVICES
	1
	1. INTRODUCTION
	2. TECHNICAL BACKGROUND
	3. IMPLEMENTATION
	4. CONLUSIONS
	
	
	
	
	
	4.1 XML Analysis

	REFERENCES

