
OCCLUSION EVALUATION IN HIERARCHICAL RADIOSITY

Yann Dupuy, Mathias Paulin and René Caubet

I.R.I.T.1
118, route de Narbonne
31062 Toulouse cedex 4

France

{ydupuy|paulin|caubet}@irit.fr http://www.irit.fr/SYNTHIM

ABSTRACT

In any hierarchical radiosity method, the most expensive part is the evaluation of the visibility. Many methods
use sampling and ray casting to determine this term. Space partitioning considerably speeds up the computation
process. Partitioning with shafts, leads to a quite precise subdivision of 3D space, as far as interactions between
pair of objects are concerned.
The use of bounding boxes allows to speed-up many computations, such as collision or intersection detection.
Those intersections can profitably be used to determine visibility between objects. Axis aligned bounding boxes
allow very fast evaluation of intersection, but are not that precise, whereas oriented bounding boxes, much closer
to the 3D object achieve more accurate visibility evaluation.
We present here a method that allow to quickly and accurately determine the relative position of an object and a
shaft (inside, outside, occluding), and how to implement it in a hierarchical radiosity algorithm, in order to limit
the hierarchy construction where not necessary.

Keywords: Radiosity, shaft, visibility, occlusion, bounding boxes.

1 Institut de Recherche en Informatique de Toulouse, Computer Science Research Institute, Toulouse

1. INTRODUCTION

Visibility is probably the most expensive task in any
image synthesis method. Determining whether a light
is visible from a given point in ray tracing, or giving
the part of an emitter patch, seen from a receiver
point or patch in radiosity model is really CPU-time
consuming.
In the hierarchical radiosity method [Hanra91] (in
wavelet radiosity [Gortl93] as well), it is possible,
given a few hypotheses, to distinguish the form
factor computation from the visibility term in the
double integral. One of those restrictions is the
consideration of an average visibility factor between
to patches. To compute that term, there are many
possibilities, such as, for instance, ray casting or
using the hardware of workstation (SGI pbuffer)
[Alons99]. Whatever the chosen solution is, we need
to use the other objects of the scene, and the fewer
they are, the faster it is. The commonly used
acceleration methods are space partitioning

[Glass84][Haine91][Shen89], to reduce the number
of objects to be considered.
We chose a partition of space using shafts, which has
already been successfully used [Drett97][Shaw97]
[Stamm97], as it is probably one of the most cost-
effective partition methods. We will briefly explain
that partitioning method, and present its
implementation in a hierarchical radiosity algorithm.
Then, we will discuss about the efficiency of adding
full occlusion testing.

2. A POWERFUL TOOL: THE SHAFT

DEFINITION AND CONSTRUCTION

The shaft, introduced by E. Haines [Haine91], allows
an important time saving, as far as visibility culling
is concerned. It represents the portion of space
concerned by any interaction between two objects, as
presented on Figure 1. They initially intended to
accelerate ray tracing, but they can really be used at

any visibility purpose. The shaft is a set of planes
bounding the interaction volume. Those planes are
based on the axis aligned bounding boxes of the
objects, leading to a maximum of fourteen planes.
The planes are built following the objects respective
position in every of the three axes. The construction
process is detailed in Haines's paper.

a) 2D shaft b) 3D shaft

Figure 1. Shaft based on two objects.

In order to perform some of the particular
computations we will need later, we must add
something to the explained construction. We want to
get the planes ordered in a cyclic way. Instead of
sorting the planes, thanks to their normal for
instance, we preferred to exhaustively determine
every possible case, each determined by the objects
respective positions. Note that the order is senseless
for some positions, as for example one object
crossing the other. In such case, any visibility
consideration is also senseless, so that the shaft will
not be used as is (we will split it, building a
hierarchy, as explained a bit later).

OBJECTS SORTING

The main idea of shaft is a fast determination of
objects that are implied in the interaction of the two
objects. As far as visibility is concerned, an object
intersecting the shaft might partly occlude, and
sometimes completely hide one of the base objects
from the other. We can define these objects as the set
of potential occluders. Determining whether an axis
aligned bounding box intersects the shaft or not, is a
quite easy thing and a cheap computation.
Afterwards, when determining the energy transfer
between the objects (essentially the visibility value),
we just have to deal with the set of potential
occluders, the other objects being simply culled out.
The shaft is thus also an easy way to sort objects for
further computations needs, particularly the creation
of a hierarchy.

SHAFT HIERARCHY

Let us consider a single room, with a light near the
roof and a few more furniture in it. The lighting of
the floor comes from the top light. The energy
transfer between the light and the floor are all
contained in the shaft built with these objects. Any

piece of furniture, lying on the floor, creates umbra
on the floor. As a matter of fact, the bounding box of
that piece of furniture intersects the shaft volume.

a) Raw shaft b) More shafts

c) Straightforward hierarchy

Figure 2. Shafts and accuracy: more shafts give
better visibility approximation. Going down the
hierarchy refines the visibility approximations

We could therefore conclude there is only partial
visibility from the light to the floor Figure 2a. As it is
by far inaccurate, we can refine the result: instead of
considering the whole floor, we could divide it into
parts and build the shafts from the light to each part
of the floor. Thus only a few of them would be
concerned by the piece of furniture, as we can see on
Figure 2b. We have to notice that the bounding box
of a given object obviously contains any part of the
object, and as far as axis aligned bounding boxes are
concerned, the bounding box of each part as well.
The shafts built from parts of the floor are all
included in the shaft built using the floor as a single
object. We can thus subdivide a shaft if it gives
unsatisfying results. We have to notice that the set of
potential occluders for a “sub-shaft» is a sub-set of
the potential occluders of the whole shaft. We can
then straightforward create a hierarchy of shafts by
iterating the subdivision process (Figure 2c) on the
objects.

3. USING SHAFTS WITHIN HIERARCHICAL
RADIOSITY

Hierarchical radiosity, as introduced by P. Hanrahan
[Hanra91], is a link-based algorithm. A shaft can be
considered as the materialization of a link, and then

it seemed natural to use a hierarchical algorithm to
implement our method. In order to get the best
performances as possible, we must use a “good”
subdivision oracle, which is an oracle fast enough,
while accurate.

SUBDIVISION ORACLE

There are different oracles to decide whether to
refine the links or not. They mostly depend on the
needed accuracy and the implementation of the
hierarchical algorithm. Human eye is sensitive to
contrast, rather than light intensity. This is why a
non-sense umbra is very confusing, whereas an
artificial light source might not be a problem (see the
flash for photography). But light intensity is much
easier to quantify, as far as we want to control the
error on the solution.
Given the hypothesis of constant radiosity among a
whole patch, it is possible to take the visibility value
out of the energy transfer integral, compute it
separately and use it as a scalar coefficient applied to
the form factor. We chose to separate the
computations of visibility and energy transfer,
because it's easier to control and use in our method.
The visibility is evaluated using some of the shaft
properties, as we will see in paragraph. The possible
values are either 0, 0.5 or 1.
In order to control the accuracy of the solution, we
compute the form factor gradient among the receiver
patch: if there is too much variation, we will
subdivide and go deeper in the hierarchy.
If the visibility is not full (visibility strictly inferior
to 1), the visibility factor modifies a bit that oracle. If
we detect a full occlusion, we will not subdivide, as
there is in fact no energy transfer between the
objects. If the visibility is somehow partial, we
subdivide unless the energy transfer is inferior to a
certain threshold. We then provide a complete
control on the solution accuracy, which was a need.
Here is, in pseudo-code, the algorithm we use:

compute the shaft between the objects
for each object in the parent shaft

look for an intersector.
is it an occluder?

if the shaft is occluded
energy transfer is inexistent
quit

else
if there is an intersector

the minimum form factor is set to zero
compute the error on the form factor (max-min)
if the error is greater than a threshold

set the visibility to 0.5
subdivide current shaft

else
compute “real” visibility
quit

VISIBILITY EVALUATION

In order to determine the visibility between the
objects, there are several ways. We could cast some
rays and compute the ratio of them intersected by
any objects between the source and the receiver. But
this could turn inaccurate for big objects unless we
use a huge amount of rays. In order to save
computing time, we intensively use the shaft
hierarchy. Most of the time we can tell whether the
shaft is fully, partially or not occluded at all. We just
need to compute more precisely the visibility factor
(with ray casting) when we stop subdividing a link.
We previously said that using axis aligned bounding
boxes was fast and easy. But it might also be very
interesting to determine if an object totally occludes
the shaft: this could avoid a lot of vain subdivisions
though there is no energy transfer. The problem is
not to be too optimistic in deciding whether a shaft is
occluded or not, as it could result in counterfeit dark
region. All the more than "missing" a total occluder
would most of the time result in excess computation
(excess ray casting for instance), but the visibility
computation would still be correct. When
considering a hierarchy of shafts, marking a shaft as
being completely occluded avoid any more
subdivision of that shaft, and consequently any more
energy transfer computation. That is why the very
attractive "occlusion" criterion must be wisely used.

Axis Aligned Bounding Boxes
The existence of the intersection of a shaft and an
AABB is straightforward and very fast. But we must
admit that an AABB is a very bad approximation of
a convex object (we only deal with convex objects as
most of complex concave objects can be divided into
many convex ones). So we can decide that an object
is a potential occluder, though it is not. The problem
is even worse with occlusion: an AABB might
completely occlude a shaft, whereas the object
hardly intersects it. Figure 3 is a trivial 2D example
that points out this problem.

Figure 3. False intersection or occlusion with the
AABB, whereas the OBB is more accurate.

It seems then really absurd to trust any occlusion
consideration with AABB. And even though the ray
casting will perfectly work to determine the final

visibility, we will create unnecessary hierarchy parts.
And the ray casting will also be a bit too much time
consuming as we will try rays against objects that are
not really in the set of potential occluders.

Oriented Bounding Boxes
We define the oriented box of an object, as the
smallest box containing the object. It is always much
more accurate than an AABB (see Figure 3), though
it can hardly represent some objects (a sphere, a
pyramid). It would be ideal to work with the convex
hulls of convex objects only, but the bounding
volume might happen to be as complex as the object
itself. So let us consider that the oriented bounding
box is close enough to the objects. Thus, an oriented
bounding box fully occluding a shaft means that the
object is actually obstructing the visibility between
the considered objects.
First of all, an object that occludes a shaft, is
obviously intersecting it, and therefore in the set of
potential occluders. The occlusion test will not be
performed on every object, but only on those
intersecting the shaft. Doing the contrary would be a
waste of time.
Then we can say that a box occludes a shaft if it
contains a full slice of it. We just have to care about
“side planes” of the shaft: these are the planes
relying on both objects. When dealing with AABB,
this is equivalent to find a point outside each plane.

Figure 4. The AABB of the object includes a full
slice of the shaft and thus occludes it. The OBB
gives a different result, despite there is a vertex

outside each plane.

But with oriented boxes, this is obviously wrong (see
Figure 4). If we consider two planes, finding a vertex
outside each plane does not necessarily implies that
the edge is also outside the shaft. It might cross it as
well. We must test the box against two planes at a
time, not a single one. Figure 5 shows the different
possible space configurations, and consequently, the
different cases we have to handle.

N1

N2

outside

1P

2P

SHAFT

Pi

a) Point outside the planes

N1

N2

outside

1P

2P

maxP2

maxP1

P

SHAFT

b) Edge outside the planes

N1

N2

outside

1P

2P

maxP2

maxP1

SHAFT

P

c) Edge inside the planes

Figure 5. Close up of what happens considering a
pair of planes. The point P, intersection of the

out-most edge and the plane P1, might either be
inside or outside plane P2.

4. CONCRETE IMPLEMENTATIONS

Before going any further in the algorithms, here a
few useful properties.
We represent a shaft by a set of plane, each defined
by its normal vector ()cbaN ,,

�

, and its distance to
origin d. A plane splits 3D space into two regions:
we chose the normal to aim at the exterior. We can
tell whether a point ()zyxP ,,

�

 is inside or outside a

plane by computing dPN +⋅
��

. A positive result
indicates that the point is outside the plane, whereas
a negative one implies P

�

 is inside the plane.

An AABB is represented thanks to three intervals,
one for each world coordinate. An OBB is defined
thanks to one of its vertices, the origin, and the three
edges of the box containing that vertex, the axes.
An object is outside of a volume defined by a set of
planes, if one of the planes satisfies all the vertex of
the object are outside of that plane. In other words,
an object might intersect a set of planes if there is at
least one vertex inside each plane (one vertex per
plane, not a common vertex for all planes). This is
just a necessary condition as we can see Figure 6.

INTERSECTION

To avoid testing all eight vertices of a box against
each plane, we use arithmetic for intervals
[Snyde92]. If we consider the plane analytical
expression, the low bound of the function interval
must be negative. So we just need to compute that
minimum value. The plane expression is linear in
every three dimensions, so to compute the minimum
value for an AABB, we must take either the
minimum or maximum value of an axis, depending
on the sign of the normal vector coordinate.
The way to obtain the minimum for OBB is slightly
different. The minimum is reached for one of the
vertices. We can obtain that minimum by computing
the value for the origin of the box, and adding the
difference value (axisN ⋅

�

) for each axis of the box
(if negative, of course). We then just have to verify
that the minimum is negative.
We must notice that this algorithm is optimistic, as it
might find some intersections where there are not.
This is not a real problem concerning intersection. In
case of partial visibility we use ray casting as final
evaluation so that the result will still be correct.

OCCLUSION

As we previously mentioned, we must be very
careful with occlusion. This means that we must
absolutely not decide that there is an occlusion if
there are any doubts. So the necessary condition we
mentioned at the beginning of this section must be
wisely used.

Source

Receiver

In
te

rs
ec

to
r

P

Figure 6. Incorrect occlusion consideration

Figure 6 perfectly explains this. There is a point
outside each plane (each pair for 3D space), but
there is no occlusion.
2D case is quite easy to explain, considering one
case at a time. If an object includes both the source
and the receiver of a shaft, then this object should
not be considered as an occluder as it does not
interfere in the visibility between the objects. Else, if
an object includes only one of the objects, there is no
visibility among the shaft. And if an object partially
intersects another one, we must split the object,
creating a shaft hierarchy. We can thus consider we
have only none overlapping objects. In such
conditions, if one point is outside the planes (Figure
6, left), there can be no occlusion. 2D case is simple
as there are only two planes.
We could not find any theoretical method for 3D
(Figure 6, right), so we tried and guess a little trick
to cope with that annoying case. We can consider the
three orthogonal projections of the shaft following
the three reference axes. With each of these
projections, we can define up to four pairs of
opposite side planes. Back to 3D, we experimentally
determined that if there were N pairs of opposite
planes, there could not be an occlusion if we could
find one point outside both planes of a pair, for N-1
pairs.
We have already seen that we had to test the box
against a pair of planes at a time. There are three
possibilities, shown on Figure 5:
• There is a point outside both planes
• There is no vertex outside both planes, but an

edge crosses it
• There is neither a vertex nor an edge outside the

planes
Given a pair of planes, if we can find a point
satisfying the first case, we do not need to compute
any further for that pair. On the contrary, if we fail to
find a point outside both planes, we need to
determine whether the "most external" edge crosses
the common exterior or not. To do so, we can
determine the intersection point of one of the plane
and the candidate edge, and apply the obtained point
to the other plane's equation in order to know if this
point is outside or inside the plane.
We note ()PiP

�

 the value of the function of plane Pi

applied to the point P
�

. To find the most external
edge, we must find the two vertices 1maxP and

2maxP satisfying for 2,1=i and ij −= 2 :

() () () ()
() ��

�
�
�

��

�
�
�

≥

+
=+

0
maxmaxPmaxP ii

PPwith

PPPP
PP

i

ji

P
ji �

��

�

Let P1 and P2 be the two studied planes, as shown on
Figure 5. Both of them are defined with their normal

iN and their distance to origin id . Let 1maxP and

2maxP be the obtained vertices of the out-most edge.

The intersection point P
�

, between the edge and the
plane P1, satisfies 121 maxPmaxPmaxP +×= tP

�

 (as

it is a point of the edge) and 011 =+⋅ dPN
��

 (as it
must be on the plane P1). This implies

()
211

11

maxPmaxP

maxP

⋅
−=

N

P
t .

We wonder about the position of the point P
�

respectively to the plane P2. Keeping the same
implicit functions considerations, we want to
determine the sign of the function plane P2 applied to
the point P

�

, ()PP
�

2 . Introducing the previous

expression of t within P
�

, results in the equivalent
formulation:

() () ()11
211

212
122 maxP

maxPmaxP

maxPmaxP
maxP P

N

N
PPP

⋅

⋅
−=

�

If the evaluation of the function results negative, the
edge is inside the planes, and there is no occlusion.
Otherwise, we must iterate the process with the next
two planes.
Note that every plane might be treated once as P1
and another time as P2. To avoid computing twice
the same things, specifically the values of ()PiP

�

, we
can use a cache to store the results once computed.
That way we ensure a worst case of n dot products
computation if n is the number of vertices of the
bounding box. This algorithm also applies if we deal
with the vertices of the object itself (considered
convex) or of any other of its convex bounding
polyhedron, and not just its OBB. So we can use it
even if the OBB turns to be a bad approximation of
objects, we will just need to define a better convex
bounding volume.

5. BENCHMARKING AND RESULTS

To compare the use of AABB and OBB, we worked
on different scenes (Figure 8 and Figure 9 on the last
page). Some of them are taken from Smits and
Jensen report [Smits00], as they aim at being a wide
spread reference.
Most of these are not “real world” scenes, but intend
to test specific problems of the algorithms. The
duplex scene is a bit more complex, and maybe also
more realistic.
The AABB algorithm does not use the occlusion
testing, and therefore should create more links (and
shafts). On the contrary, the OBB method computes
the occlusions: it should result in fewer links, but
longer to compute.
All the following numbers are the results we
obtained on some of the test scenes, running our test
application on a 600 MHz Intel Pentium III. The

value called “time” represents the CPU time in
seconds, and “mem” is the memory usage, in
megabytes. The workstation has enough memory to
prevent swap, and we started the application from
fresh between each test, to avoid any undesirable
cache acceleration.

AABB OBB
VRML scene time mem time mem

Cornell Box 8.89 21.7 8.97 20.9
Duplex 61.13 44.5 52.15 36.9
Geometry 12.36 23.1 11.39 21.1
Shadow 9.18 22.4 9.87 21.3

These results confirmed are first guess as far as
memory is concerned. But looking at the different
CPU times, things are not so clear. In fact, for simple
scenes, using AABB is sometimes faster than OBB.
This is easy to explain: there are very few objects,
and consequently, the time needed for ray casting is
quite negligible. When the scene becomes a bit more
complex (like in the Duplex for instance) the method
performs better. Mainly for two reasons: on the one
hand there are more objects to deal with when
casting rays, and on the other hand there more
occlusions in the scenes. Of course both reasons are
strongly linked. But there are also many occlusions
because the objects are from various size and shape.
The Cornell Box is probably one of the worst scene
as far as occlusion is concerned. A very small
amount of little surface elements are really occluded.
The occlusion method would probably outperform
the raw AABB intersection - ray-casting algorithm,
in architectural scenes, such as the infamous Soda
Hall, which provides a huge number of walls, and
then a huge number of occlusion. But this is
obviously unfair and it would be more interesting to
compare our method against well-proven BSP trees
or portals. We will come back on that a bit later on.
Anyway there is a very annoying point we must
absolutely not skip. We noticed on some pictures
some abnormally dark elements (See the close up of
the stairs in the Duplex scene computed with rather
strict parameters: pretty small minimum area and
reduced transfer accuracy margin Figure 7).

Figure 7. Occlusion error

We mention that the intersection determination was
not fully correct: the algorithm might find false
intersections. As we said, this really not a problem
for intersection, and most of the time (partial
visibility) there are no artifact on the pictures. But
this turns much more dangerous when this incorrect
intersection lead to completely wrong occlusion, as it
is the case on the stairs. In fact, as we only consider
the side planes to test for an occlusion, we can find
an occlusion “behind” one of the objects. In the
Duplex, the beam occludes the stair, though the stair
is nearer the light than the beam. We can see mainly
two ways to avoid such problems: compute correct
intersection or assure that the occlusion is in between
the two objects. As these cases seem rather not
frequent, we think that it will not affect a lot the
results we obtained with our implementation.

6. CONCLUSION AND FUTURE WORK

We show in this paper an efficient way to improve
(mainly in terms of memory, slightly for CPU time)
the radiosity rendering process. The gain in time is
more satisfying as the scene becomes more complex.
In the very near future, we must compute real
intersections, to avoid the problems we encountered.
And we must verify that it does not change the
results a lot.
One can think that an oriented bounding box is not
accurate enough. Regarding our algorithm, this is not
a real problem. It works for any convex polyhedral
bounding volume, and consequently we can use
better volume estimation for more complex objects.
All the more than it is possible to reduce the
possibilities of erroneous occlusion consideration: by
setting a threshold, we can ensure the bounding
volume is more or less occluding the shaft. Instead of
saying a vertex V is outside a plane P by comparing
P(V) and 0, we can compare P(V) to the threshold.
For instance, the threshold could be computed for
each object so that we try to determine whether the
object occludes a shaft 5% “wider” than the real one.
The threshold can also take into account the ratio of
the object volume and its bounding polyhedron
volume. It is then possible to reduce the risk of
incorrect occlusion, which is really important for
good shadow quality.
Of course, the occlusion only works for convex
objects. It would be really interesting to apply these
algorithms to maximal convex parts of non-convex
objects. But determining such parts seems hardly
possible without heavy computation [Szilv86].
Another interesting idea to explore is the fusion of
occluders, in order to increase the number of
possible occlusions. We can merge the different
intersectors into a bigger equivalent one, in order to
determine occlusions due to many objects and not a
single one, a bit like in [Schau00].

We mentioned portals and BSP trees to manage big
set of objects, specifically huge architectural
buildings. It would be interesting to compare our
algorithms (with clustering [Silli94][Smits94], to
handle huge amount of objects), to these wide spread
methods. We also think to the shaft as a tool to
efficiently build portals. Last but not least, will be to
try our method with dynamic environments, and see
if it can be interesting in implementations similar to
Drettakis Line-Space Hierarchy [Drett97], which
also uses shafts. We are rather optimist, as we
showed no negligible gain in memory. We could thus
store a bit more information and compute the
modifications in interactive time.

REFERENCES

[Alons99] Laurent Alonso and Nicolas Holzschuch:
Using graphics hardware to speed-up your
visibility queries. Accepted in Journal of
Graphics Tools, 1999.

[Drett97] George Drettakis and François X. Sillion:
Interactive update of global illumination
using a line-space hierarchy. In SIGGRAPH
’97 Conference Proceedings, Annual
Conference Series, pages 57-64.

[Glass84] Andrew S. Glassner: Space subdivision for
fast ray tracing. IEEE Computer Graphics
and Applications, 4(10):15-22, October 1984.

[Gortl93] Steven J. Gortler, Peter Schroder, Michael
F. Cohen and Pat Hanrahan: Wavelet
radiosity. In Computer Graphics Proceedings,
Annual Conference Series, 1993, pages 221-
230, 1993.

[Haine91] Eric A. Haines and John R. Wallace:
Shaft culling for efficient ray-cast radiosity.
In Photorealistic Rendering in Computer
Graphics, Eurographics, pages 122-138.
Springer-Verlag Berlin Heidelberg New
York, 1991.

[Hanra91] Pat Hanrahan, David Salzman and Larry
Aupperle: A rapid hierarchical radiosity
algorithm. Computer Graphics (SIGGRAPH’91
Proceedings), 25(4):197-206, July 1991.

[Schau00] Gernot Schauffler, Julie Dorsey, Xavier
Decoret and François X. Sillion: Conservative
volumetric visibility with occluder fusion. In
SIGGRAPH’00 Conference Proceedings
(New Orleans, LO, July 23-28, 2000).

[Shaw97] Erin Shaw: Hierarchical radiosity for
dynamic environments. Computer Graphics
Forum, 16(2):107-118, 1997. ISSN 0167-7055.

[Shen89] L. S. Shen, E. Deprettere and P. Dewilde:
A new space partition technique to support a
highly pipelined parallel architecture for the
radiosity method. In Fifth Eurographics
Workshop on Graphics Hardware, 1989.

[Silli94] François X. Sillion: Clustering and Volume
Scattering for Hierarchical Radiosity
Calculations. In Fifth Eurographics
Workshop on Rendering, pages 105-117,
Darmstadt, Germany, June 1994.

[Smits00] Brian Smits and Henrik Wann Jensen:
Global illumination test scenes. Technical
Report UUCS-00-013, Computer Science
Department, University of Utah, June 2000.
http://www2.cs.utah.edu/~bes/papers/scenes.

[Smits94] Brian Smits, James Arvo and Donald P.
Greenberg: A clustering algorithm for
radiosity in complex environments. In

Proceedings of SIGGRAPH’94 (Orlando,
Florida, July 24-29, 1994), Computer
Graphics Proceedings, Annual Conference
Series, pages 435-442.

[Snyde92] John M. Snyder: Interval analysis for
computer graphics. Computer Graphics
(SIGGRAPH’92 Proceedings), 26(2):121-130,
July 1992.

[Stamm98] M. Stamminger, Ph. Slusallek and H.-P.
Seidel: Three point clustering for radiance
computations. In Rendering Techniques’98
(Proc. Eurographics Workshop on Rendering
’98), pages 211-222, Springer, 1998.

[Szilv86] M. Szilvasi-Nagy: Two algorithms for
decomposing a polyhedron into convex parts.
Computer Graphics Forum, 5(3):197-201,
September 1986.

Downstairs view Reverse view
Figure 8. Duplex test scene

Geometry scene Shadow scene (smooth, no t-vertex removing)
Figure 9. Specific visibility test scenes [Smits00]

 (Available at http://www.cs.utah.edu/~bes/graphics/scenes/)

http://www2.cs.utah.edu/~bes/papers/scenes

	INTRODUCTION
	A POWERFUL TOOL: THE SHAFT
	DEFINITION AND CONSTRUCTION
	OBJECTS SORTING
	SHAFT HIERARCHY

	USING SHAFTS WITHIN HIERARCHICAL RADIOSITY
	SUBDIVISION ORACLE
	VISIBILITY EVALUATION

	CONCRETE IMPLEMENTATIONS
	INTERSECTION
	OCCLUSION

	BENCHMARKING AND RESULTS
	CONCLUSION AND FUTURE WORK

