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ABSTRACT 
 

The representation, matching and analysis of objects of interest are of prime importance in shape-based 
retrieval systems. Considering that these systems involve analysis of various complex shapes, an accurate 
representation of free form shape is required. A simple and accurate shape representation procedure 
would ensure meaningful results from the shape-based retrieval systems. Motivated by this factor, this 
paper presents a free form shape representation technique using Non-Uniform Rational B-Spline 
(NURBS) modelling. The free form shapes are modelled using control points and weights. NURBS 
posses attractive properties such as spatial uniqueness, bounded and continuous, local shape 
controllability and shape invariance under transformation. Furthermore, NURBS based shape descriptor 
allows accurate reconstruction of the shape boundary from the NURBS features used to describe it. This 
paper presents the details of deriving a set of NURBS features using the boundary of the object. The 
accuracy and data reduction properties using NURBS are examined by carrying out an experiment on two 
sets of images: geometric and free form. Accuracy of the representation is evaluated by using centroid-
radii error function, which computes the cumulative distance between the intersection points by radii 
lines on the boundary of the original image and the reconstructed image. The data reduction property is 
shown by the ratio computation between the number of control points and the boundary points. The 
overall experiment results show that NURBS is an accurate shape descriptor and a potential candidate for 
use in shape-based image retrieval systems. 
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1. INTRODUCTION 
 
With the advances in digital imagery, large 
accessible data storage, internet repositories, and 
image applications, information conveyed through 
images is gaining in importance. A large database of 
images will be shared among different group of 
peoples, such as journalists, engineers, historians, 
designers, teachers, artists and advertising agencies. 
However, all the information in the image databases 
will be useless, if we cannot efficiently index in 
order to ease the task of searching and browsing 
through these collections. Due to the emergence of 
large scale of image databases, traditional methods 
of indexing images through text annotation is 
becoming outdated. An effective retrieval approach 
is needed, to retrieve images from a database that are 
relevant to a query. 
 

To overcome these difficulties, content-based image 
retrieval was proposed [Vngud 95]. Content-based 
image retrieval relies on the characterization of 
primitive perceptual features such as colour, shape 
and texture that can be automatically extracted from 
the images themselves. Retrieval by shape is 
considered one of the most difficult and challenging 
aspects of content-based search [Rkamp00]. Many 
techniques in this research direction have been 
developed and many shape retrieval systems, both 
research and commercial, have been built. 
Perceiving a shape is to capture prominent elements 
of an object. Humans have the capability to 
determine only a few selected signs, which enable 
them to determine the impression of a complete and 
real representation of the object. On the other hand, 
this is not that simple a case for the computer vision 
research. For the purposes of retrieval by shape 
similarity, representations are preferred such that the 
salient perceptual aspects of a shape are captured 
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and are able to imitate the human perception on 
perceiving shapes. Therefore, several of 
representation schemes have been introduced to 
suite these criteria [Slonc98].  
 
To retrieve images according to perceptual 
properties, the basic retrieval paradigm requires that, 
for each image, a set of distinguishing features are 
pre-computed. In the QBIC system [Wnibl93], a set 
of global features such as area, circularity, 
eccentricity and major-axis orientation have been 
used to represent the query shape. Such simple 
descriptors only allow discrimination between 
shapes of very different forms because a small 
change in the shape may sometimes cause a 
significant change in these descriptors. In the latter 
approach, algebraic moment invariants have also 
been introduced as additional shape descriptors 
[Makhu62]. However, it is difficult to correlate high 
order moments with shape features. An alternative 
transform approach is the 2-D Fourier transform of 
the shape [Yorui96]. The disadvantage of this 
method is that it is impossible to detect local shape 
features and it is also computationally intensive. To 
overcome this problem, Mallat[Smalt89] introduced 
a multi resolution signal decomposition to represent 
shape using discrete wavelet transform. However, 
most of the methods proposed to address these 
problems solve only one problem while creating 
new difficulties. For example, in wavelet 
representation method, the accuracy of 
representation is dependent on the filtering method. 
 
In order to have a shape descriptor, which can be 
defined in mathematical form and have high 
accuracy, spline approximations for curves have 
been used. Ikebe[Yikeb82] presented an overview of 
spline applications for shape design, representation 
and restoration. Spline approximates a given 
function with a curve having the minimum average 
curvature. This makes them perfect candidates for 
the “natural” representation of curves. Spline has an 
initial problem because local function value 
modification changes the complete spline 
representation. In this case, Cohen [Fscoh95] 
proposed a technique for curve representation and 
matching using B-spline. B-spline is constructed so 
that the local function value change does not spread 
to the rest of the intervals. 
 
In our approach, we propose Non-Uniform Rational 
B-spline (NURBS) model to represent query shape 
in the shape based retrieval system. The difference 
between NURBS and B-spline is that the non-
uniform knot vector and additional parameter, which 
is the weight, have been used. These NURBS 
properties give more freedom and flexibility to 
represent complex and free form shapes compared to 
the B-spline.  

This paper is organised as follows. In Section 2, an 
overview of the NURBS definition and the NURBS 
characteristic are presented. Section 3 introduces the 
method used to determine the control points and the 
weights. Section 4 presents the experiments to 
evaluate the proposed NURBS representation for 
use in shape-based image retrieval and reports the 
results. Section 5 concludes the approach presented 
in this paper and discusses the future directions of 
our research. 
 
2. NURBS CURVE THEORY AND 

PROPERTIES 
 
2.1 NURBS Curve Definition 
 
A pth-degree NURBS curve C  defines a point 
that traces a trajectory in 2D space as the scalar 
parameter value u varies within the range [0, 1]. 
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where a set of  control points forms a control 
polygon and 

n { }iB
{ }iw  is the weights. An increase in the 

weight  pulls the curve closer to the control point 
. 

iw

iB ( )uN pi,

p

 is the ith B-spline basis function of 

degree (order 1+p ), defined recursively as 
 

( )


 ≤≤

= +

otherwise
uuuif

uN ii
pi 0

1 1
,  

 

( ) ( ) ( )uN
uu
uu

uN
uu
uu

uN pi
ipi

pi
pi

ipi

i
pi 1,1

11

1
1,, −+

+++

++
−

+ −

−
+

−
−

=

(2) 
 
A non–uniform knot vector, which is a 
nondecreasing sequence of real numbers is defined 
as 
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where 10 1 ≤≤≤ +ii uu , and  = 
number of knots. Knots in a NURBS curve are the 
points in parameter space where rational polynomial 
curves are grafted together to form a multi segment 
curve. Detailed explanations of NURBS can be 
found in [Lpieg97]. 
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2.2 NURBS Characteristics as a Shape 
Descriptor 

 
For an accurate shape representation, free-form 
shape should be represented by a mathematical 
definition that exactly matches with what the user 
feels as a shape, so that the shape may be 
manipulated in parametric form. The choice of 
NURBS as a shape descriptor offers a common 
mathematical form for representing any arbitrary 
shape including standard analytic shapes such as 
conics and quadrics, as well as free form curves. 
Therefore, both analytic and free form shapes are 
represented precisely. Inclusion of weight ( )iw  as 
an additional parameter adds an extra degree of 
freedom to NURBS and facilitates the representation 
of a wide variety of shapes. Furthermore, the use of 
non-uniform knot vectors allows better shape 
control and the modelling of a much larger class of 
shapes than the uniform knot vector used in B-
splines. On the other hand, the use of a B-spline 
curve with uniform knot vector to interpolate highly 
unevenly spaced data points can result in unwanted 
oscillations or loops. The non-uniform knot vector 
allows the endpoints of the curve coincide with the 
first and last control points.  
 
NURBS representation is suitable for use in the 
shape-based image retrieval systems because 
NURBS features computation is reasonably fast and 
stable. This is because they can represent very 
complex shapes with remarkably little data and are 
well defined in the mathematical form. Furthermore, 
NURBS posses characteristic of shape invariance 
under affine transformation, which means that the 
affine transformed curve is still a NURBS curve 
whose control points and weights are related to the 
original object control points and weights through 
the transformation. In additional, a very important 
motivation for using NURBS representation is its 
ability to control smoothness and curvature 
continuity. The control points of the NURBS curve 
can be modified without altering the curve’s 
continuity because this property is determined by its 
basis functions, which are independent of the control 
point modification. The NURBS model allows a 
curve to be defined with no sudden changes of 
direction or with precise control when kinks and 
bends occur. Another important property of NURBS 
features is that they offer local controllability, which 
implies that local changes in shape are confined to 
the NURBS parameters local to that change. 
 
With all these attractive characteristics, we strongly 
believe that NURBS is a highly suitable shape 
descriptor for shape based similarity retrieval in the 
future. 
 

3. OVERVIEW OF THE APPROACH 
 
Shape representation of a curve using NURBS 
involves determining the NURBS parameters such 
as control points and weights. This procedure is 
referred to as NURBS fitting and is a very 
challenging task. One of the difficulties in this 
procedure is the determination of the weights. Farin 
[Gfari92] suggested allocating weights according to 
the curvature, with points of high curvature being 
assigned larger weight. Hoschek[Jhosc94] 
investigated non-linear approaches for NURBS 
curve approximation. In this method, both control 
points and the weights of a NURBS curve are 
identified simultaneously by minimising the sum of 
the square of the distances from the original 
boundary to the corresponding fitted curve points.  
 
In this paper, a new method for defining NURBS 
parameters is introduced. In this, allocation of a set 
of positive weights is determined according to the 
frequency distribution of the boundary points. This 
allocation method ensures a better weight fitting 
solution than the methods mentioned earlier. An 
accurate and stable weight would ensure good 
control point determination. Parameterization 
techniques for both the boundary points and knot 
parameters have been derived in order to perform 
least squares fitting of the NURBS curve. After the 
knot vector is determined, a two-step linear 
approach for fitting the NURBS curve is introduced. 
During the first step, the weights are identified from 
a homogeneous system through Singular Value 
Decomposition (SVD) procedure [Weima94]. In 
SVD, an orthogonal matrix and a diagonal matrix 
are decomposed. A set of positive weights is 
generated from the combination of the eigen vectors 
from the orthogonal matrix. At the second step, the 
control points are solved with the identified weights 
as known parameters. 
 
3.1 Determination Of Knot Vector 
 
The determination of the knot vector from a set of 
boundary points involves two parameterization 
steps. The first step involves the parameterization of 
boundary points. Prior to the least squares fitting, 
each of the boundary points is parameterized by 
allocating a location parameter, u . The second step 
involves the parameterization of knots. After the 
boundary points are parameterized, the complete 
knot sequence is defined. The information of a 
complete knot sequence includes the order, the 
number of control points and the knot parameters. 
For practical applications, there are three 
parameterization methods that are commonly used to 
assign the location parameters [Weima95a]. These 
are the uniform, cumulative chord length and 
centripetal model parameterization methods. In our 
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approach, we choose the centripetal model 
parameterization because the extracted boundary 
points in our samples are more or less evenly 
spaced. 
 
For the parameterization of knots, a proper knot 
selection method consistent with the 
parameterization method of the boundary points is 
needed in order to achieve a good fitting result in the 
NURBS curve fitting process. Average Knot method 
is chosen because this method samples the boundary 
with high frequency in order to allocate more knots 
at places where the curve changes rapidly. When the 
parameter values of the boundary points are fixed, 
an optimal set of knots for a fixed order and number 
of control points will be derived. The details of these 
two parameterization methods can be found in 
[Weima95a]. 
 
3.2 Numerical Approach: Determination Of 

Weights And Control Points 
 
In this approach, a homogeneous system has been 
derived so that the weight parameter can be 
computed independently. The homogeneous system 
defined in [Weima95b] is as follows: 
 

[ ] 10. nxwM =         
(4) 

 
where M = Mx + My is a n x n symmetric and non-
negative matrix with 
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If  is a solution of Eq. 4, for all nRw∈ R∈α  and 

0≠α , so wα  is also a solution of Eq. 4. Owing to 
this property, one can simply use the following 
criterion for solving the equation: 
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function for , which is defined as w
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As an application, both the general solution and the 
solution with positive weights of Eq. 4 can be 
represented as a linear combination of some 

eigenvectors of Q corresponding to smaller eigen 
values. According to the properties of , there is 
an important relationship between the singular value 
decomposition (SVD) of M and the singular eigen 
value decomposition (SEVD) of Q. Owing to this 
relationship, one can use the SVD of M for NURBS 
identification [Weima94].   
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In general, the weights can be computed from the 
singular value decomposition of M, in which M is 
factorized as 
 

TPDPM =  
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where [ ]nddddiagD ,,, 21 L=  is a diagonal matrix 
whose diagonal elements are the eigen values of M 
in decreasing order with  and 0.01 ≥+id≥id P  is 
an orthogonal matrix whose columns  for ip
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where r is the increment step achieved from the 
minimization of an objective function to obtain the 
best subspace of vector p, which contains positive 
weights, and a set of feasible solutions in this 
subspace. A constrained minimization algorithm is 
applied to the objective function to determine a set 
of vector α  in order to find a set of best fitting 
solutions in this subspace. The objective function, 
which is derived by introducing w into Eq. 6 is: 
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where the value [ ]nr ,1∈  will be increased until best 
fitting subspace can be determined and 

 are positive upper and lower bounds 
for the weights. By having a set of vector 

0.0>≥ lu ww
α , the 

weight of the corresponding control points is 
derived from Eq. 8. 
 
By taking the identified weights as known 
parameters, the corresponding control points are 
obtained. When the weights are available, a non-



negative least square optimization method is applied 
to achieve an accurate solution for control point 
determination. The control points in can be 
recovered from the control points in homogeneous 
space divided by the related weight. 
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4. EXPERIMENTAL RESULTS 
 
Fig. 1 summarizes all the steps taken to represent 
shapes with NURBS features using the proposed 
method as described above. These have been 
implemented using the MATLAB software, which is 
a powerful mathematical software offering a high 
performance language for technical computing, 
visualization and programming. In order to validate 
the proposed method, two sets of silhouette images 
have been used. These images consist of geometrical 
shapes and free form shapes. Both sets of images are 
converted into an array of 128 x 128 pixels.   
 
The experiments in this work are aimed at proving 
that NURBS is a powerful shape descriptor with an 
ability to represent various shapes that include free 
form shapes and have high data reduction and 
accuracy. The experiments are carried out on five 
images that include geometric as well as free form 
shapes. In these experiments, the number of control 
points of the reconstructed image is iteratively 
incremented until the matching value is equal to or 
less than a desired value. In these experiments, the 
desired matching value used is 10 pixels. The initial 
number of control points is equivalent to the number 
of corner points. Corner points are used as a basis 
because they coarsely approximate the optimum 
number of control points to represent the original 
shape. The centroid-radii method is used as an error 
function to determine the matching value between 
the original shape and the reconstructed shape using 
NURBS representation parameters. In this method, 
radii lines are projected from the centroid to the 
boundary point of the original shape and the 
reconstructed shape at regular interval. For each 
radii lines, distance between the intersection points 
by radii lines on the boundary of the original shape 
and the reconstructed shape is accumulated. In this 
experiment, a sampling interval of 10 is used. The 
matching value is the cumulative distance difference 
between the original shape and the reconstructed 
shape at the sampled points. This method is 
illustrated in Fig. 2. In this figure, the red curve is 
the boundary of the original shape and the blue 
curve is the boundary of the reconstructed shape. 
The radii lines in magenta are projected from the 
centroid to these boundaries to find the interpolation 
points, which are coloured with yellow and cyan. 
The results of the experiments conducted with 
shapes shown in Fig.3 are presented in Table 1.  

0

 

In Fig. 3, Table (a) shows the original geometric 
shapes at the left column and the reconstructed 
geometric shapes from the NURBS features at the 
right column. Meanwhile, Table (b) in Fig. 3 shows 
the original free form shapes at the left column and 
the reconstructed free form shapes from the NURBS 
features at the right column. Based on the right 
columns of Table (a) and Table (b), they show the 
reconstructed geometric as well as free form shapes 
that are very similar to the original shapes.  
 
It may be seen from Table 1 that the accuracy of 
reconstruction for both geometric and free form 
shapes is very high with a maximum difference of 
10 pixels. In Table 1, the number of boundary points 
of the original shapes and the number of control 
points needed to represent the geometric and free 
form shapes are shown respectively. The data 
reduction ratio between the number of boundary 
points and control points show that NURBS able to 
reduce the representation data, which is less than the 
quarter of the original amount of the boundary 
points. 
 
In our experiments, we tested the NURBS descriptor 
for use in shape-based image retrieval on a database 
of 100 images of fishes and tools, which is displayed 
in the Fig. 4. In the experiments, 8 query images 
from the database are selected as query images. In 
Fig. 5, we represent some of our experimental 
results by showing the response of the system to 
these queries. 
 
 

Shapes No. 
Boundary 
Points, bp 

No. 
Control 
Points, 
cp 

Data 
Reduction 
Ratio 
=cp/bp(%) 

Matching 
Value 
(pixel) 

Geometric Shapes 
Circle 160 10 6.25 4 
Ellipse 212 12 5.66 0 
Rectangle 224 22 9.82 0 
Square 278 30 10.79 0 
U Shape 296 60 20.27 0 

Free Form Shapes 
Fish 1 262 29 11.06 9 
Fish 2 301 49 16.28 8 
Fish 3 326 40 12.27 5 
Fish 4 227 36 15.86 10 
Fish 5 228 36 15.79 9 

 
Table 1: This table shows the experiment results 

with ratio between the number of control point and 
number of boundary point (%) and matching value 

(pixel) 
 
 
 
 
 
 



5. CONCLUSION AND FUTURE WORK 
 
From the results presented in Section 4, it is clear 
that NURBS is powerful shape descriptor for free 
form shapes as well as geometric shapes. We are 
presently working on the further development of 
using NURBS-descriptor in shape-based image 
retrieval in order to improve the reliability and 
accuracy of the retrieval results from a larger 
database. 
 

 
 

Figure 1: Step by step procedures for NURBS 
parameters determination 

 
 

 
 

Figure 2: The centroid radii method to 
determine the matching value 
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Figure 3: The difference between the original 

shapes and the reconstructed shapes by 
NURBS descriptor has been shown; (a) 

Geometric Shapes,  (b) Free Form Shapes 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 4: The database contains 100 images 
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Figure 5: The results of the relevant image databases 

requested by the selected query images 
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