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ABSTRACT 
In this paper we present the geometrical construction of an approximate generalized Voronoi diagram for 
generalized polygons and circular objects based on their minimum geometrical structure that are extracted from 
the object's digital image. The construction  is done in  )(nΟ  time complexity, where n is the number of single 
points defining the set of objects. An application of this technique has been done for mobile robot path planning. 
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1. INTRODUCTION 
The geometric construction of Voronoi diagrams 

has an extensive literature (see [Aur91,Oka92] and 
references therein). The image-based construction of 
Voronoi diagrams for a set of digital points has been 
treated in [Par93,Bor86,Mel92] and for extended 
digital shapes in [Arc86,Mel94,Sud99]. In these 
papers the main approach to compute the Voronoi 
diagram is based on labeling the connected 
components of the objects and in the  application of 
the morphological operation of shape dilation. By this 
means, the Voronoi edges are found between two 
adjacent objects when two different labels are met. 
The computational cost is of the order of ( )2nΟ , 

where 2n  is the image size. 

The construction of the Voronoi diagram for a set of 
digital shapes is actually an approximate diagram due 
to the fact that the objects are constituted of pixels, 
which have a discrete structure. In this paper, we 

discuss an alternative approach to construct the 
Voronoi Diagram for generalized polygons and 
circular objects based on their minimum geometrical 
structures, which are extracted from their digital 
images. The principle is quite simple. A simple 
polygon is fully characterized by its ordered sequence 
of vertices and an arc segment can be approximated 
by the set of vertices that form its polygonal line 
approximation. Therefore, a generalized polygon, 
whose edges are straight lines and arc segments, can 
ultimately be characterized by a set of vertices, too. 

In the section 2 a brief introduction to the geometric 
construction of planar Voronoi diagrams is given, in 
the section 3 the image processing required to 
identify the minimum geometrical structure of 
generalized polygonal objects and circles is 
presented; section 4 briefly report the application to 
robot path planning and section 5 is devoted to 
conclusions. 

2. VORONOI DIAGRAM 
In what follows, we provide a brief introduction to 
the geometrical construction of planar Voronoi 
diagrams.  

2.1 Ordinary Voronoi diagrams 
The planar ordinary Voronoi diagram (OVD) 
[Oka92] is defined as a partition of the plane into 
regions according to the principle of the nearest 
neighbor. More precisely, let consider 
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},,,{ 21 npppP K=  a set of non-collinear points in 
the plane and let consider ( )ippd ,  the Euclidean 
distance from a point ipp ≠  to a point ip . The 
Voronoi region ( ) ii RpR ≡  generated by the point ip  
is defined as 

( ) ( ){ }jijii ppppdppdpR ≠∀≤= ,,,;

. 

(1) 

The Voronoi diagram ( )PV  for a set of points 
},,,{ 21 npppP K= , is defined as the union of all 

Voronoi regions ( ) ( )U i
n
i pRPV 1== . The points 

ip  are called Voronoi generators, the edge common 
to two Voronoi regions is called a Voronoi edge and 
the vertices where three or more Voronoi edges meet 
are called Voronoi vertices. We say that a Voronoi 
generator ip  is adjacent to jp  when their Voronoi 

regions share a common edge. According to this 
definition, the Voronoi diagram is such that any point 
on the edge of two neighboring regions is equidistant 
from the corresponding Voronoi generators.  

2.2 Generalized Voronoi diagram 
The planar OVD can be extended to objects like 
straight lines and arcs segments or polygons and 
circles. The diagram for these objects is called the 
generalized Voronoi diagram (GVD). 

2.2.1 GVD for lines and arcs 
Let { } 2

321 ,,,, RLLLLL n ⊆= K  be a set, where iL  
can be a straight line or arc segment, such that 

0≠ji LL I , for ji ≠ . Let us define the distance 

from a point p to iL  by the shortest distance between 
p and a point ip  on iL : 

( ) iii
x

is LLpd
i

∈−= x||;xx||min,  (2) 

where x  and ix  are the position vectors of p  and 

ip , respectively. The Voronoi region ( )iLR  is given 
by 

( ) ( ) ( ){ }njsisi IjijLpdLpdpLR ∈≠≤= ,,,,;

 

(3) 

The union of all Voronoi regions ( ) ( )U i
n
i LRLV 1==  

generates the line Voronoi diagram for the set L. 

2.2.2 GVD for polygons and circles 
An extension of the line Voronoi diagram for the case 
of polygonal (simple or generalized1) objects can be 
done considering the generation of the Voronoi 
                                                           
1 Generalized polygons are polygons whose edges are 

straight lines or arc segments. 

diagram for areas. Let { }nI AAAA K,, 2=  in 2R  be a 
set of areas. Assuming that the areas are connected 
closed sets with unity Euler number and that they do 
not intersect each other, we define the distance from a 
point p to iA  as the shortest distance from p  to ip  
on iA  as follows: 

( ) iiiis AApd
i

∈−= x;xxmin,
x

, (4) 

where x  and ix  are the position vectors of p  and 

ip , respectively. According to this distance, we may 
define the Voronoi regions ( )iAR  associated to each 
area as  

( ) ( ) ( ){ }njsisi IjijApdApdpAR ∈≠≤= ,,,,; . (5) 

The area Voronoi diagram is the set 

( ) ( )U i
n
i ARAV 1== . The area Voronoi diagram can 

be seen as the diagram for generalized polygons, 
where the generalized polygons can be represented by 
their area contours. Note that the area Voronoi 
diagram subsumes the line and the ordinary Voronoi 
diagrams. 

2.3 Computational generation of the GVD  
Several algorithms have been proposed to generate 
the planar Voronoi diagram for a set of objects 
[Aur91]. An interesting algorithm was proposed by  
Sugihara and Iri [Sug92], based on an incremental 
construction, to generate the OVD with average 
running time complexity of ( )nΟ , where n is the 
number of Voronoi generators, that is also stable to 
numerical errors. 

The construction of the OVD based in [Sug92] starts 
with a trivial diagram for three generators and adds 
up a new generator one by one at a time. To generate 
the new Voronoi region ( )lpR  for lp  one need first 
to identify the generator ip , in whose region ( )ipR  
the new generator lp  is contained in. Then one draw 
the perpendicular bisector between lp  and ip  until it 
intersects the edges of ( )ipR . The bisector intersects 
the edges of ( )ipR  in two points. Let call q be one of 
them.  Now take the perpendicular bisector of lp  and 

jp , starting from q till it intersects another edge of 

( )jpR . This procedure should be followed for all 

Voronoi generators adjacent to lp  until we get back 
to the region ( )ipR . Now, removing the edges 
enclosed by the closed sequence of bisectors the 
Voronoi region for the new generator lp  is found. 
Figure 1 shows the OVD for a set of 14 Voronoi 
generators. Figure 2 illustrates the procedure to 



generate the new Voronoi region )( 15pR , when the 
generator P15 is inserted. 

 

 
Figure 1: OVD for 14 Voronoi generators. 

 

 
Figure 2: Construction of Voronoi region )( 15pR for 
the new generator P15. 

2.3.1 Constructing approximate GVD   
An extension of the incremental type algorithm 
described above can be done to construct an 
approximate generalized Voronoi diagram (AGVD) 
[Sug93] for straight lines, arc segments, generalized 
polygons and circles. For that, let us consider a line 
or arc segment approximated by a sequence of n 
points with a constant small displacement δ between 
them. In other words, we are doing a polygonal 
approximation of the segments with a variable 
number of vertices. The OVD algorithm can be 
applied to generate the AGVD for these objects if the 
Voronoi edges that cross the line or arc edges be 
invalidated and omitted, remaining only the Voronoi 
edges of  adjacent objects. The same approach can be 
applied to generalized polygons and circles.  

Figure 3 shows the AGVD for a set of generalized 
polygonal objects in a bounded square region. In this 
picture all Voronoi edges can be seen and the 
resolution displacement parameter δ was fixed, but it 
can be arbitrarily adjusted at the expense of 

computational cost. Figure 4 shows the corresponding 
AGVD omitting the invalid Voronoi edges.  
 

 
Figure 3: AGVD for a set of objects, including the 
invalid Voronoi  edges in a bounded region. 

 

 

 
Figure 4: AGVD for objects omitting the invalid 
Voronoi   edges. 

3. GEOMETRICAL STRUCTURE 
FROM DIGITAL IMAGES  
The construction of the GVD for a set of objects in a 
digital picture is actually an approximate diagram due 
to the fact that the objects are constituted of pixels, 
which correspond to a discrete structure. Remind 
that, in a 8-neighborhood scheme, the distance from 

the central pixel to its neighbors is either 1  or 2 . 

Several algorithms have been proposed to compute 
the Voronoi diagram from a set of digital points 
[Par93, Mel92] or for extended digital shapes [Arc86, 
Bor86, Sud99]. The main approach used by them to 
compute the Voronoi diagram was based on the 
principle of labeling the objects and applying the 
morphological operation of shape dilation to grow the 
objects. The Voronoi edge is formed between two 
adjacent objects when two different labels are met. 



According to the AGVD algorithm construction 
discussed in section 2.3, an alternative approach to 
construct the diagram for a set of digital objects is to 
find out the pixels that form the border of the objects. 
Provided with the sequence of pixels of the border of 
an object the AGVD can be computed. Nevertheless, 
as was pointed in the previous section, the 
computational cost becomes high due to the large 
number of single points. One alternative to diminish 
the computational cost is to get rid of  a number of  
pixels of the border, but this procedure has a 
drawback and requires caution because while doing 
that we may loose the actual geometrical structure of 
the object. For instance, if some vertices are dropped 
out. Therefore, in order to preserve the this  structure 
it is necessary to identify the minimal geometrical 
structure that characterize each one of the objects. 

3.1 Vertex Detection 
Let Q  be a simple polygon and 

( ){ }nvvvV n mod;,, 110 −= K  be its ordered sequence 
of vertices. A simple polygon can be minimally 
characterized by the set V . The edges of a simple 
polygon are straight line segments. Generalized 
polygons can also be characterized by its ordered 
sequence of vertices, however now the arc edges 
connecting two vertices must be specified. 

To identify the minimum geometric structure of a 
generalized polygon P , from its digital image, one 
need to detect the pixels that form its ordered 
sequence of vertices. Let },,,{ 21 nIIIS K=  be a 
digital image containing a set of generalized 
polygons. To get the pixels that form the border of a 
generalized polygon from its digital image kI , first 
the digital image is segmented by threshold. In our 
case, we binarize the image as we are assuming that 
the objects are black on a white background. Once 
binarized, we apply the edge detection algorithm 
based on the standard second-order Laplacian 
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010
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L  containing the border pixels of all objects 
nkIk ,,1, K= .  

To obtain the ordered sequence of  border pixels for 
each individual object a modified version of the 
contour following algorithm given in [Cos01], based 
on the 8-connected neighbor approach, is applied on 
the list L . The modified algorithm takes care of the 
chain-code direction in a clockwise manner to 
properly find the next contour pixel along the edge. 
After completion of this algorithm, each object has 
been  labeled and their ordered sequence of pixels 
have been obtained.  

To be able to get the ordered sequence of vertex 
pixels of an object, a corner detection algorithm shall 
be applied on the set of pixels that form each object. 
There are several algorithms in the literature for 
corner detection (see [Cos01] and references therein). 
Recently, Tsai et al. [Tsa99] proposed an algorithm, 
with an average running time complexity of )(nO , for 
corner detection that is simple to implement, robust 
to noise and sensible to identify both convex and 
nonconvex vertices. The algorithm  relies in the 
analysis of the covariance matrix eigenvalues of a 
digital curve segment. It takes the sequence of border 
pixels  of an object },,2,1),,{( niyxP ii K== , where 
the pixel 1+ip is the neighbor of )mod(, npi  and 

),( ii yx  is the Cartesian coordinate of the pixel. A 
region of support around the pixel ip  is defined as 

}1,,1,;{)( −++−−== kikikijppS iik K , where 
k  is an integer number that defines the length of the 
support region. The covariance matrix is given by 
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The covariance matrix is Hermitian with real 
eigenvalues, which are given by: 






 +−++= 2

12
2

22112211 4)(
2
1

cccccLλ , (12) 

.4)(
2
1 2

12
2

22112211 




 +−−+= cccccSλ   (13) 

The analysis of the eigenvalue Sλ  shows that a 
corner is detected when its value is greater than a 
predefined threshold value. Each corner is separated 



by at least k  pixels. It has been experimentally 
observed that pixels on a straight line have their Sλ  
value very close to zero and Sλ  much greater 
correspond to a corner. After these observations we 
have chosen the region of support parameter with 

7=k  and the threshold value for detecting a corner 
(vertex) as 110− . According to Tsai's paper, circular 

shapes would have 1≈
L

S

λ
λ

 . However, unfortunately, 

our experiments have shown that the algorithm is not 
reliable to identify circles as was claimed. 

To characterize  digital arc edges in generalized 
polygons, the eigenvalue Sλ  is used to identify a 
minimum set of vertices in order to approximate the 
arc segment by a polygonal curve. Let 

},,,{ 211 mm veeveA === K  be the set of  vertices 
that characterize an arc edge of a generalized polygon 
P , then its geometric structure will be given by     
the ordered sequence of vertices 

}.,,,,,,,,{ 1110 −+++++ == nmkmkmkkkk vvveeevv KKK
 

3.2 Identifying Digital Circles 
The geometric structure of a circle can be minimally 
characterized by its center ),( 00 yxC =  and radius r .  
To recognize digital circles an algorithm was 
proposed by Sauer [Sau93] with linear time 
complexity )(nO , where n  is the number of pixels of  
the digital function.  In short, the algorithm is as 
follows: Let ),,( mm yxrC =  be a digital closed 
curve, where ),( mm yx  is the centroid coordinate and 
r  its radius mean value, then to the digital curve be a 
digital circle the following relation has to be fulfilled: 

mymxmy ypxpryp −+≤−−±≤−− 5.0)(5.0 22  

(14) 

where ),( yx pp  are the pixel coordinates. Essentially, 

the identification of a circle translates to the 
computation of the centroid and the radius under a 
threshold value. The implementation of this algorithm 
was done to decide if the sequence of pixels of the 
border of an object form a digital circle. 

The identification of the ordered sequence of vertices 
V  of a generalized polygon,  and of the center and 
radius of a circle, provide the minimal 
characterization of their geometrical structure and 
from that it allows its full reconstruction. 

3.3 The Minimum Geometric Data 
Structure 
Based on the geometric data structure extracted from 
the  digital image of the objects, the AGVD can be 
constructed according to the algorithm provided in 
section 2.3. The geometrical data structure of the 
objects are given in the following format: 

P (x,y) 

S (x0,y0) (x1,y1) 

C (xc,yc) r 

A N (x1,y1)...(xn,yn) 

L N (x1,y1)...(xn,yn), 

where P specifies the Cartesian coordinate ),( yx  of a 
single pixel (point); S corresponds to a straight line 
segment from pixel  ),( 000 yxp =  to pixel 

),( 111 yxp = ; C gives the pixel coordinates 
),( cc yxC =  of the center of a circle of radius r ; A 

gives the sequence of n  vertices from ),( 111 yxp =  
to ),( nnn yxp =  of the polygonal line that forms an 
arc segment; finally, L gives the sequence of n  
vertices that forms a generalized polygon.  

Figure 5 exhibits, on the left side, the actual digital 
image of a set of  generalized polygonal objects, 
captured by a CCD camera disposed on the top center 
of an arena, and on the right side the corresponding 
AGVD. There are 4 simple polygons, 2 generalized 
polygons and 1 circular object in the picture. The 
total number of pixels that form the border of all 
objects is 1661=n . The application of the algorithm 
to identify the minimal geometrical structure reduces 
this number of pixels (or points) to 60m = . The 
number of Voronoi generators to construct the 
AGVD, according to the current value of the 
resolution displacement parameter δ ,  is given 
by 141p = . We can see that by this approach only 
8.4% of the total number of pixels were sufficient to 
construct the AGVD.  

  

Figure 5: AGVD for a  digital image with generalized 
polygons and a circular object.  

 



Considering only the application of the algorithm for 
the AGVD construction base in the number of pixels, 
we can see that there would be a gain of  91.6%  in 
computational time. Nevertheless, the overall 
computation cost to construct the AGVD from the 
digital image changes only after  the computation of 
the total number of border pixels of  the objects. In 
the full pixel approach the AGVD could be generated 
straightway from the set of all pixels that form the 
borders. On the other hand, in the reduced pixel 
approach, the AGVD construction is based on the 
identification of the minimal geometrical structure, 
which needs the application of the vertex detection 
algorithm of section 3.1, to reduce the number of 
pixels.  

Full Pixel  Reduced Pixel  

# Pixels Time(ms) # Pixels Time(ms) 

260 2690 24 110 

393 5600 33 270 

559 10660 47 380 

691 15600 55 490 

763 18790 66 660 
 

Table 1: The table illustrates the gain obtained by the 
reduced pixel approach over the full pixel approach. 

Therefore, despite of both algorithms have a linear 
average running time complexity, the overall 
computational cost depends on the hidden constant 
factors, which for the AGVD using the minimal 
geometrical structure still provides a smaller average 
running time than just computing it considering the 
full pixel approach. This fact has been observed 
comparing the CPU time for the AGVD construction 
based on both approaches. Table 1 gives the time 
versus pixel number relation for both approaches. 
The linear fit of each approach shows that the AGVD 
construction based on the reduced pixel proposed 
here is better than the full pixel approach by an order 
of 38%.  Figure 6 shows the graph of the linear fit 
curves taking into account only the slopes.  

4. ROBOT APPLICATION 
The generalized Voronoi diagram technique has been 
applied in many different areas. One of these 
applications can be seen in the field of mobile 
robotics, where the problem of collision-free path 
planning plays a central role for the robot safe 
navigation. 

If we consider a global vision system composed of a 
single CCD camera posed on the top center of an 
arena, where the arena is seen as the workspace and 

the objects correspond to the obstacles, the AGVD 
provides a roadmap with maximal clearance from the 
obstacles. In addition, in a closed 2D workspace the 
AGVD is fully connected and any configuration 
(position and orientation) in the free configuration 
space freeC  can be accessed by a robot navigating on 

the roadmap and then departing to reach the specified 
configuration. The Voronoi roadmap can be seen as a 
graph, therefore the shortest path between two 
configurations in freeC  can be computed. 

 

Figure 6: Linear fit curves for the AGVD 
construction based on the full pixels and reduced 
pixels approaches. 

Considering a disk-like robot with radius r and taking 
into account that the Voronoi edges are the maximal 
clearance paths for the robot collision-free 
navigation, this will provide a natural threshold for 
the resolution displacement parameter as at most 

r2<δ . The Voronoi edges that are invalidated and 
omitted in the AGVD would, otherwise, lead to the 
robot collision with the obstacles.  

Based on the approach described in the previous 
sections, a Global Vision module has been developed 
to provide a roadmap. In addition to this module, a 
Trajectory Planning module and a Navigation Control 
module have been developed and integrated in a 
mobile robot path planning system (see [Roq02] for 
further details). 

5. CONCLUSION 
In this paper we have shown that based on the 
geometrical structure that are extracted from the 
digital images of generalized polygons and circular 
objects, the construction of the approximate 
generalized Voronoi Diagram can be done with a 
running time complexity of )(nO , where n  is the 
number of pixels defining the objects. The approach 
proposed here reduces the number of pixels  
improving the gain in computational time of  the 
order of 38%, as pointed out in the previous section.  
In addition, this algorithm is also robust to numerical 
errors [Sug92] . The reduction in the number of 



pixels depends on the number of vertices representing 
the objects and on the resolution displacement 
parameter δ , whose value can be arbitrarily adjusted 
at the expense additional of computational cost.   

An application of the reduced pixel approach has 
been done for robot path planning, where a global 
vision module was developed to capture the robot 
workspace image, identify the geometrical structure 
of the obstacles and the robot configuration, and 
finally generate the AGVD roadmap [Roq02].  
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