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ABSTRACT
In the paper, we discuss the visualization of multidimensional vectors taking into account the learning flow of
the self-organizing neural network. A new algorithm realizing a combination of the self-organizing map
(SOM) and Sammon’s mapping has been proposed. It takes into account the intermediate learning results of
the SOM. The experiments have showed that the algorithm gives lower mean projection errors as compared
with a consequent application of the SOM and Sammon’s mapping. This is the essential advantage of the new
algorithm, i.e. we succeed to eliminate the influence of the “magic factor” α  ( 10 ≤<α ) on Sammon’s
mapping results. For larger values of α  ( 1>α ), the mean projection error grows. However, in this case the
new algorithm operates more stable and gives smaller values of the mean projection error.
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1. INTRODUCTION
Visualization of multidimensional data is a
complicated problem followed by extensive
researches. There exist a lot of methods that can be
used for reducing the dimensionality of data, and,
particularly, for visualizing the n-dimensional
vectors. A deep review of the methods is performed,
e.g., in [Kas97a] and [Koh01a]. However there is no
universal method. The self-organizing map
[Koh01a] and Sammon’s algorithm (mapping,
projection) [Sam69a] are the methods often used for
the visaulization of multidimensional vectors. When
a multidimensional space is projected onto a plane,
the projection errors are inevitable. It is necessary to
create methods that minimize these errors or that
allow to increase the comprehension of

multidimensional data. It is shown in [Dze01a]
experimentally that a combination of the SOM and
Sammon’s mapping is an effective method of
visualization. The so-called vectors-winners,
obtained after neural network training, are analyzed
and visualized here by using Sammon’s algorithm.
However, the results of Sammon’s algorithm are
dependent on the initial data. In this paper, we have
proposed a new combination of the SOM and
Sammon’s mapping. Here the multidimensional data
are projected onto the plane by using Sammon’s
algorithm, taking into account the process of SOM
training. The experiments have showed that the new
algorithm gives lower mean Sammon’s projection
errors as compared with the applicaton of Sammon’s
algorithm after the SOM training is complete.
Moreover, the dependance of Sammon’s projection
error on the so-called “magic factor” has been
reduced.

2. BASIC ALGORITHMS
Sammon’s algorithm. Sammon’s projection
[Sam69a] is a nonlinear projection method to map a
high-dimensional space onto a space of lower
dimensionality. In our case, the initial
dimensionality is n, and the resulting one is 2.

Let us have vectors iX = ),,...,,( 21 inii xxx  si ,...,1=

from an n-dimensional space nR . The pending
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problem is to visualize (get the projection) these n-
dimensional vectors siXi ,...,1, =  onto the plane

2R . Two-dimensional vectors 2
21 ,...,, RYYY s ∈  will

correspond to them. Here iY = ),,( 21 ii yy  si ,...,1= .

Denote the distance between the vectors iX  and

jX  by *
ijd , and the distance between the

corresponding vectors in the projected space (iY  and

jY ) by ijd . Sammon’s algorithm tries to minimize

the distortion of projection:
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The coordinates iky , 2,1,,...,1 == ksi  of the two-

dimensional vectors 2RYi ∈  are computed by the

iteration formula:
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Here 'm  denotes the iteration, α  is named a “magic
factor”, because the error of projection depends on it.
In fact, the error depends both on α  and the initial

values 00
2

0
1 ,...,, sYYY  of vectors sYYY ,...,, 21 . It is

found completely experimentally that ]4.0,3.0[∈α
guarantees fairly good convergence [Koh01a].

a)

b)

c)

Figure 1. Three scenarios of the projecting multidimensional vectors onto the plane

Self-organizing map (SOM). The self-organizing
map (SOM) [Koh01a] is a class of neural networks
that are trained in an unsupervised manner, using
competitive learning. It is a well-known method for
mapping a high-dimensional space onto a low-
dimensional one. We present here some general
details on the SOM. We consider here a mapping
onto a two-dimensional grid of neurons. Let

n
s RXX ∈,...,1  be a set of n-dimensional vectors for

mapping. Usually, the neurons are connected to each
other via a rectangular or hexagonal topology. Let us

consider an example of the rectangular case, because
all ideas can be easily extended to the hexagonal
one. The rectangular SOM is a two-dimensional
array of neurons },...,1,,...,1,{ yxij kjkimM === .

Here xk  is the number of rows, and yk  is the

number of columns. The total number of neurons is
equal to xk × yk . All neurons adjacent to a given

neuron can be defined as its neighbours of a first
order, then the neurons adjacent to a first-order
neighbour, excluding those already considered, as
neighbours of a second order, etc. The dimension of
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the vectors, that will be presented as inputs to train
the network, is n. Each component of the input
vector is connected to every individual neuron. Thus,
there is a connection between the neuron of the
network and every component of the input vector.
The weights of these connections form an n-
dimensional synaptic weight vector (the codebook
vector, also called a reference, model, or parameter
vector [Koh01a]). Thus, any neuron is entirely
defined by its location on the grid (the number of
row i and column j) and by the codebook vector, i.e.,
we can consider a neuron as an n-dimensional vector

nn
ijijijij Rmmmm ∈= ),...,,( 21 . In this way, each vector

(neuron) ijm  represents a part of nR .

The learning starts from the vectors ijm  initialized

randomly (other ways of initializing the vectors ijm

are possible, too). At each learning step, an input
vector X  is drawn from the training set

},...,{ 1 sXX  and passed to the neural network. The

Euclidean distance from this input vector to each
vector ijm  is calculated and the vector (neuron)

},...,1,,...,1,{ yxijc kjkimm ==∈  with the minimal

Euclidean distance to X  is designated as a winner.
Denote the row, where cm  is located, by ci , and the

column by cj , i.e., c is a combination of two

numbers: ci  and cj . The components of the vector

ijm  are adapted according to the rule

←ijm )( ij
c
ijij mXhm −+ , where c

ijh  is the learning

rate, which is maximal for the winning neuron, and
decreases with an increase in the neighbourhood
order and learning steps.

Let us introduce a term “learning epoch”. The epoch
consists of s learning steps: the input vectors from

1X  to sX  are passed to the neural network in

consecutive or random order. The consecutive order
was used in [Dze01a]. Both the orders were
examined in [Dze01b]. In this paper we use the
random order, because we try to eliminate the
influence of numeration of the input vectors on the
learning process. The whole learning process
consists of v epochs.

After a large number of learning steps, the network
has been organized and n-dimensional input vectors

sXX ,...,1  have been mapped – each input vector is

related to the nearest neuron, i.e., the vectors are
distributed among the elements of the map during
training. Some elements of the map may remain

unrelated with any vector from },...,{ 1 sXX , but

there may occur elements related with some vectors.

Using the SOM-based approach above we can draw
a table with cells corresponding to the neurons. The
cells corresponding to the neurons-winners are filled
with the numbers of vectors sXX ,...,1 . Some cells

may remain empty. One can decide visually on the
distribution of vectors sXX ,...,1  in the n-

dimensional space nR  in accordance with their
distribution among the cells of the table.

Combining Sammon’s mapping with the self-
organizing maps. The way of integration of
Sammon’s mapping and the SOM is presented in
[Dze01a]. The self-organizing map provides
structured information about the set of the analysed
vectors: several elements (neurons) of the two-
dimensional rectangular grid are activated (become
winners), while the remaining elements are not
activated. The activated elements of the grid may be
considered as points on the plane. The number of
row and column characterizes any of these elements,
i.e., the location of these elements is fixed on the
plane by the nodes of a rectangular grid. However,
the elements are characterized by n-dimensional
vectors, too. A natural idea arises to apply the
distance-preserving projection method to additional

mapping of vectors-winners rZZZ ,...,, 21 ,

corresponding to the neurons-winners, in the SOM
[Kas97a]. Sammon’s mapping may be used for such
purposes. The combined algorithm is as follows: all
input vectors sXX ,...,1  are first processed using the

SOM; then the vectors-winners, whose number r is
less or equal to s, are displayed using Sammon’s
mapping. In [Dze01a] such a combination of
mapping methods has been examined and grounded
experimentally by comparing the results of
Sammon’s mapping of the vectors, that correspond
to some parameters characterized by their correlation
matrix, and Sammon’s mapping of the vectors-
winners in the SOM.

Therefore, two scenarios of visualizing the n-
dimensional vectors were analysed in [Dze01a] and
[Dze01b]. They are given in Figures 1a and 1b: the
original Sammon’s algorithm and its consequent
combination with the SOM.

The third scenario is presented in Figure 1c. It is a
new combination of the self-organizing map and
Sammon’s algorithm. The experiments have showed
that namely this combination of SOM and
Sammon’s mapping is very good in search for a
more precise projection of multidimensional vectors



in the sense of criterion sE  (1), when vectors,

corresponding to the neurons-winners of the SOM,
are analysed.

3. A NEW ALGORITHM
We suggest the following way of integrating the
SOM and Sammon’s algorithm:

1. The training set consists of s n-dimensional
vectors sXXX ,...,, 21 . The neural network will be

trained using e learning epochs.

2. All the e epochs are divided into equal training
parts – blocks. Before the training of the neural
network starts, we choose the number γ of blocks
into which the training process will be divided. Each
block contains p training epochs (p = e div γ).
Denote by q a block of the training process
consisting of p epochs. q = 1,…, γ.

3. Denote vectors-winners obtained by the q-th

block of the training process by q
r

qq

q
ZZZ ,...,, 21  and

two-dimensional projections of these vectors-
winners, calculated using Sammon’s algorithm, by

q
r

qq

q
YYY ,...,, 21  ( ),,( 21

q
i

q
i

q
i yyY =  qri ,...,1= ). Note

that the number qr  of vectors-winners will be

smaller or equal to s. The vectors-winners
11

2
1
1 ,...,,

qr
ZZZ , obtained after the first block of the

training process (q=1), are analyzed by using
Sammon’s algorithm. However, there is a unique
relation between a vector-winner and the
corresponding vector (or several vectors) from the
training set { sXXX ,...,, 21 }. The initial coordinates

of two-dimensional vectors ),,( 0
2

0
1

0
iii yyY =

,,...,1 1ri =  for Sammon’s algorithm are set as

follows: 
3

10
1 += iyi , 

3

20
2 += iyi . Two-dimensional

projections 11
2

1
1 1

,...,,
rYYY  of vectors-winners are

calculated using Sammon’s algorithm.

4. The vectors-winners obtained after the q-th block
of the training process are analyzed by using
Sammon’s algorithm. The initial coordinates of two-

dimensional vectors q
r

qq

q
YYY ,...,, 21  for Sammon’s

algorithm are selected taking into account the result
of the (q-1)-st block. Note that 1−≠ qq rr  in general.

A way of the selection is presented below. We must
determine the initial coordinates of each two-

dimensional vector q
iY  correspondent to the neuron-

winner q
iZ , qri ,...,1= . The sequence of steps is as

follows. Determine vectors from { sXXX ,...,, 21 }

that are related with q
iZ . Denote these vectors by

,...,
21 ii XX  ( ∈,...,

21 ii XX  },...,,{ 21 sXXX ).

Determine neurons-winners of the (q-1)-st block that
were related with ,...,

21 ii XX  Denote these neurons-

winners by ,..., 11
21

−− q
j

q
j ZZ  ( ∈−− ,..., 11

21

q
j

q
j ZZ

},..,,{ 11
2

1
1 1

−−−
−

q
r

qq

q
ZZZ ), and their two-dimensional

projections, obtained in a result of Sammon’s

algorithm, by ,..., 11
21

−− q
j

q
j YY  ( ∈−− ,..., 11

21

q
j

q
j YY

},...,,{ 11
2

1
1 1

−−−
−

q
r

qq

q
YYY ). The initial coordinates of

q
iY  are set to be equal to the mean value of the set of

vectors { ,..., 11
21

−− q
j

q
j YY }. Afterwards, two-

dimensional projections q
r

qq

q
YYY ,...,, 21

( ),,( 21
q
i

q
i

q
i yyY =  qri ,...,1= ) of the vectors-winners

are calculated using Sammon’s algorithm.

5. The training of the neural network is continued
untill q=γ. After γ-th block we get two-dimensional

projections γγγ
γr

YYY ,...,, 21  of the n-dimensional

vectors-winners γγγ
γr

ZZZ ,...,, 21  that are uniquely

related with vectors sXXX ,...,, 21  (see Section 2).

4. STRATEGY OF INVESTIGATION
Our purpose was to examine the mean projection
error by the new algorithm compared with that
obtained by the algorithm 1b [Dze01a] in
dependance on the “magic factor” α  (2). Therefore,
the experiments were carried out using different
values of the “magic factor” α .

The projection error sE  is minimized by a gradient

method (2). With an increase in the order number of
the iteration, the projection error decreases. But
sometimes the error may vary, i.e., it decreases,
increases, and decreases again [Apo99a]. It may
increase in the last iteration. Therefore, we fix the
least projection error over all the iterations as a final
result.

The projection errors can differ for various sets of
the initial values of neurons, because they are
generated at random. Thus, much higher or much
lower projection error, that is of a random nature,
can be obtained both by the new algorithm and by



algorithm 1b. To avoid that, the experiments have
been carried out 200 times with different, randomly
generated sets of the initial values of neurons. Then
the results have been averaged. Therefore, we get the
so-called mean projection error for a fixed value of
α .

5. RESULTS OF ANALYSIS
The advantages of the new algorithm, proposed in
Section 3 and given in Figure 1c, in comparison
with algorithm 1b [Dze01a] have been shown
analyzing the data on coastal dunes and their
vegetation in Finland [Hel98a]. The following
parameters 1a - 16a  characterize the dunes: 1a  is the

distance from the water line; 2a  is the height above

the sea level; 3a  is the soil PH; 4a , 5a , 6a , and

7a  are the contents of calcium (CA), phosphorous

(P), potassium (K), magnesium (Mg); 8a  and 9a

are the mean diameter and sorting of sand; 10a  is

the northernness in the Finnish coordinate system;

11a  is the rate of land uplift; 12a  is the sea level

fluctuation; 13a  is the soil moisture content; 14a  is

the slope tangent; 15a  is the proportion of bare sand

surface; 16a  is the tree cover.

The correlation matrix },...,1,,{ sjirR
jiaa ==  of

these sixteen parameters is given in [Hel98a]. Using
the method developed by Dzemyda [Dze01a], sixteen
vectors sXXX ,...,, 21 , s=16, of unit length have

been computed. Their dimension n is equal to 16.
The values of the vectors are presented in [Dze02a].
These vectors correspond to the parameters 1a - 16a .

Namely, they are used during the experiments.

Cases with various parameters of the proposed
algorithm and its constituent parts have been
analyzed:
• size of neural network (2x2, 3x3, 4x4, 5x5, 6x6);
• number of training epochs e (100, 200, 300);
• number γ  of training blocks and number p of

epochs per each training block (e= pγ);
• values of the “magic factor” α  in Sammon’s

mapping (0.1; 0.11;…; 1.99; 2).

Under the same initial conditions, the errors of
projection have been calculated for all the
parameters referred above by using both 1b and the
new algorithm. As mentioned above, the
experiments have been repeated 200 times with
different (random) initial values of the components
of the neurons-vectors. The ratio between the mean
projection errors, obtained by both 1b and the new
algorithm, has been calculated. It appears from

Table 1 and Figure 2, that this ratio is always greater
than one. Thus, the mean projection errors, obtained
by the new algorithm, are smaller. When increasing
the number γ of the training blocks (Figure 2), this
ratio increases: essentially when the SOM is of a
smaller size. The ratio decreases with an increase in
the network size.

Figures 3 and 4 show that the mean projection error,
obtained by the new algorithm, depends much less
on the value of the “magic factor” α  in comparison
with algorithm 1b. Figures 3 and 4 illustrate four
cases, however, the similar results are observed in
the most of remaining cases. This is the essential
advantage of the new algorithm, i.e., if we need to
visualize the neurons-winners of the SOM, we
succeed to eliminate the influence of the “magic
factor” α  on Sammon’s mapping results. This
conclusion is true for 10 ≤< α . For larger values of
α , the mean projection error grows. However, in
this case the new algorithm operates more stable
than algorithm 1b, and it gives smaller values of the
mean projection error.

Figure 5 illustrates output of both the algorithms
(projection of the multidimensional test data on a
plane). We do not present scales of variables,
because we are interested in observing the
interlocation of points on a plane. Dimension of the
SOM is 6x6, number of epochs is 200, number γ of
training blocks is 40. Following the recommendation
in [Koh01a], the value of α  has been selected equal
to 0.35. The visually presented distributions of the
points are quite different. This proves the necessity
to make every effort for minimization of the
distortion of projection sE  (1).

6. CONCLUSIONS
When comparing the mean projection error,
obtained by using the combination of the SOM and
Sammon’s mapping (algorithm 1b), with that by the
new algorithm that takes into account the learning
flow of the self-organizing neural network, we see
lower projection errors in the results got by the new
algorithm. A larger number γ of training blocks
decreases the mean projection error. However, that
needs much more computing time.

The main result of this paper is that, if we need to
visualize the neurons-winners of the SOM, we have
a strategy how to eliminate to a certain extent the
influence of the “magic factor” α  on Sammon’s
mapping results, i.e., the mean projection error,
obtained by the new algorithm, depends much less
on the value of the “magic factor” than that obtained
by algorithm 1b.



e 100 200 300
p 50 25 20 10 5 50 40 25 20 10 5 50 25 20 10 5
γ 2 4 5 10 20 4 5 8 10 20 40 6 12 15 30 60

2x2 2.15 2.65 2.72 2.81 2.81 2.84 2.91 2.99 3.01 3.02 3.04 3.09 3.16 3.17 3.16 3.19

3x3 1.07 1.1 1.1 1.13 1.16 1.07 1.09 1.11 1.11 1.34 1.58 1.09 1.11 1.12 1.14 1.16

4x4 1.5 1.67 1.69 1.79 1.82 2.36 2.44 2.51 2.54 2.62 2.66 3.32 3.47 3.5 3.58 3.59

5x5 1.03 1.03 1.04 1.05 1.05 1.04 1.04 1.04 1.05 1.05 1.05 1.04 1.05 1.04 1.04 1.05

6x6 1.06 1.07 1.09 1.1 1.11 1.12 1.17 1.18 1.17 1.19 1.19 1.27 1.29 1.29 1.3 1.3

Table 1. The ratio between the projection errors obtained by algorithm 1b and the new algorithm
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Figure 2. Ratio of the projection errors for different number of training blocks γ
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Figure 3. Dependence of the projection error on the “magic factor” α
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100 tarining epochs, 20 training blocks, SOM 4x4
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Figure 4. Dependence of the mean projection error on the “magic factor” α
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Figure 5. Examples of visualization:
a) algorithm 1b (α =0.35, sE = 0.0890), b) the new algorithm (α =0.35, sE = 0.0764)


