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ABSTRACT

In the paper, we discuss the visualization of multidimensional vectors taking into account the learning flow of
the self-organizing neural network. A new algorithm realizing a combination of the self-organizing map
(SOM) and @mmon’s mapping has been proposed. It takes into account the intermediate learning results of
the SOM. The experiments have showed that the algorithm gives lower mean projection errors as compared
with a consequent application of tB©M and @mmon’s mapping. This is the essential advantage of the new
algorithm, i.e. we succeed tdireinate the influence of the “magic factoryr (0O<a <1) on Sammon’s
mapping results. For larger values @f (a >1), the mean projection error grows. However, in this case the
new algorithm operates more stable and gives smaller values of the mean projection error.
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multidimensional data. It is shown in [Dze01la]
1_' IN_TR_ODUCTION ] ) ) experimentally that a combination of ti&M and
Visualization of multidimensional data is a ggmmon’s mapping is an effective method of
complicated  problem followed by extensive \igyalization. The so-called vectors-winners,
researches. There exist a lot of methods that can b@pained after neural network training, are analyzed
used for reducing the dimensionality of data, and, 4nq visualized here by using Sammon’s algorithm.
particularly, for visualizing the n-dimensional  poyever, the results of Sammon’s algorithm are
vectors. A deep review of the methods is performed, yependent on the initial data. In this paper, we have
e.g. in [Kas97a] and [KohOlaHowever t_he_:re 1SN0 hroposed a new combination of tHBOM and
universal - method. Th? self-organizing  map gammon’s mapping. Here the multidimensional data
[KohOla] and Sammon's algorithm (mMapping, are projected onto the plane by using Sammon’s
projection) [Sam69a] are the methods often used fory|gqrithm, taking into account the process of SOM
the visaulization of multidimensional vectors. When training. The experiments have showed that the new
a multidimensional space is projected onto a plane,gjgorithm gives lower mean Sammon’s projection
the projection errors are inevitable. It iscessary to gy ors as compared with the applicaton of Sammon’s
create methods that minimize these errors or thatalgorithm after the SOM training is complete.
allow to increase the comprehension of ygreover, the dependance of Sammon’s projection
error on the so-called “magic factor” has been
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Let us have vectorsXj = (Xj1,Xi2,..-.Xin), 1=1....,S




problem is to visualize (get the projection) these  The coordinatesyj, i =1,...,s, k=1,2 of the two-

dimensional vectorsX;,i =1,...,s onto the plane dimensional vectorsY, OR? are computed by the

R?. Two-dimensional vector¥y,Y,,....Yg O R? will iteration formula:
correspond to them. Herg =(yiq,Vi2), i=1....s.

0E(m
Denote the distance between the vectdts and ay:Em;
* a =v. —g 2K/
Xj by dj, and the distance between the Vi (m+1) = i () -~ 92E4(m) 2)
corresponding vectors in the projected spageand aYi|2< (m)

Yj) by dj . Sammon’s algorithm tries to minimize _ _ _ _
Here m' denotes the iteratiory is named a “magic

the distortion of projection: factor”, because the error of projection depends on it.

1 n (df —d- )2 In fact, the error depends both on and the initial
— Iy ly .
Es=— & 1) values Y2,Y2,..YQ of vectors Y,,Y,,...Ys. It is
dj :<JJ‘1 ! found completely experimentally that 0[0.3, 0.4]
:,<Jj=1 guarantees fairly good convergence [Koh01a].
a) Multidimensional Sammon’s Two-dimensional
vectors Xq, Xo,...,Xg algorithm vectorsY;,Ya,....Ys
Multidimensional || Sammon’s Two-dimensional
b) | vectors Xy, X5,....Xs SOM algorithm vectorsYy,Ys,....Y;
Initial values
Y10,Y20,...,Y0 of
vectorsY;,Y7,.. ,Yl
_j[1jSammon’s Two-dimensional
algorithm 1
vectorsY1 Y2, ,Y
Multidimensional
€) | vectors Xy, X5,.. X5 | ) SOM 2{Sammon’s —> Two-dimensional
L 4| algorithm 2
9 vectorsY2,Y2,.. Y7
|
\Y
9 Sammon’s Two-dimensional
algorithm vectorsY,”,Y) ... ,YrV
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Figure 1. Three scenarios of the projecting multidimensional vectors onto the plane

Self-organizing map (SOM). The self-organizing  consider an example of the rectangular case, because
map (SOM) [Koh01a] is a class of neural networks all ideas can be easily extended to the hexagonal
that are trained in an unsupervised manner, usingone. The rectangular SOM is a two-dimensional
competitive learning. It is a well-known method for array of neuronsM :{mj Jd=1 . Ky, :L...,ky }
mapping a high-dimensional space onto a low-
dimensional one. We present here some genera
details on theSOM. We consider here a mapping nhumber of columns. The total number of neurons is
onto a two-dimensional grid of neurons. Let equal tokyxky. All neurons adjacent to a given

X1,....Xs OR" be a set ofi-dimensional vectors for  neuron can be defined as its neighbours of a first

mapping. Usually, the neurons are connected to eactPrder, then the neurons adjacent to a first-order

other via a rectangular or hexagonal topology. Let usneighbour, excluding those already considered, as
neighbours of a second order, etc. The dimension of

f—|ere kx is the number of rows, andy is the



the vectors, that will be presented as inputs to trainunrelated with any vector fror{ Xq,...,Xs , }but

the network, isn. Each component of the input there may occur elements related with some vectors.
vector is connected to every individual neuron. Thus,

there is a connection between the neuron of theUsing the SOM-based approachose we can draw
network and every component of the input vector. @ table with cells corresponding to the neurons. The
The weights of these connections form an cells corresponding to the neurons-winners are filled
dimensional synaptic weight vector (the codebook With the numbers of vectorXy,...,Xs. Some cells
vector, also called a reference, model, or parametermay remain empty. One can decide visually on the
vector [KohOla]). Thus, any neuron is entirely distribution of vectors Xq,..,Xg in the n-
defined by its location on the grid (the number of
rowi and columrj) and by the codebook vector, i.e.,
we can consider a neuron asradimensional vector
m; :(mjl1Mj21"'vm?)DRn' In this way, each vector Comb_in_ing Sammon’s mapping With the_ self-
organizing maps. The way of integration of
(neuron)my represents a part 6" . Sammon’s mapping and tH&8OM is presented in
[DzeOla]. The self-organizing map provides
The learning starts from the vectony initialized  structured information about the set of the analysed
randomly (other ways of initializing the vectons; vectors: several elements (neurons) of the two-
dimensional rectangular grid are activated (become
winners), while the remaining elements are not

dimensional spaceR" in accordance with their
distribution among the cells of the table.

are possible, too). At each learning step, an input

vector X is drawn from the ftraining set activated. The activated elements of the grid may be
{X1,...Xs} and passed to the neural network. The .,nqjdered as points on the plane. The number of
Euclidean distance from this input vector to each row and column characterizes any of these elements,
vector my is calculated and the vector (neuron) j.e., the location of these elements is fixed on the
plane by the nodes of a rectangular grid. However,

] ) ) ) ] the elements are characterized ydimensional
Euclidean distance tX is designated as a winner. vectors, t00. A natural idea arises to apply the

Denote the row, wherer is located, byic, and the  gjistance-preserving projection method to additional
column by j., i.e.,, ¢ is a combination of two

numbers:i; and j.. The components of the vector

me D{mj d=1 . Ky, :l...,ky} with the minimal

mapping  of  vectors-winners Z,, 25, Ly

corresponding to the neurons-winners, in the SOM
m; are adapted according to the rule [Kas97a]. Sammon’s mapping may be used for such
purposes. The combined algorithm is as follows: all
input vectorsXy,...,Xg are first processed using the

OM; then the vectors-winners, whose numbés

ess or equal te, are displayed using Sammon’s
mapping. In [DzeOla] such a combination of
Let us introduce a term “learning epoch”. The epoch mapping methods has been examined and grounded
consists ofs learning steps: the input vectors from experimentally by comparing the results of
X4 to Xg are passed to the neural network in Sammon’s mapping of the vectors, that correspond
consecutive or random order. The consecutive order© some parameters characterlz_ed by their correlation
was used in [DzeOla]. Both the orders were Matrix, and Sammon's mapping of the vectors-
examined in [DzeO1b]. In this paper we use the WiNnersinthe SOM.

random order, because we try to eliminate theTherefore' two scenarios of Visuanzing the
influence of numeration of the input vectors on the dimensional vectors were analysed in [Dze0O1a] and
learning process. The whole learning process[Dze01b]. They are given in Figures 1a and 1b: the
consists of/ epochs. original Sammon’s algorithm and its consequent

After a large number of learning steps, the network combination with th&SOM.

has been organized anetlimensional input vectors  The third scenario is presented in Figure 1c. It is a
X1,...,Xs have been mapped — each input vector isnew combination of the self-organizing map and
related to the nearest neuron, i.e., the vectors arédammon’s algorithm. The experiments have showed
distributed among the elements of the map duringthat namely this combination ofSOM and

training. Some elements of the map may remain Sammon’s mapping is very good in search for a
more precise projection of multidimensional vectors

mp o~ my +hij°(X —-m; ), where hijc is the learning

rate, which is maximal for the winning neuron, and
decreases with an increase in the neighbourhoo
order and learning steps.



in the sense of criterionEg (1), when vectors, \inner z9, i =1...ry. The sequence of steps is as
corresponding to the neurons-winners of the SOM’foIIows Determine vectors from X, X X<}
are analysed. ' 11 A2 s

that are related Wichiq. Denote these vectors by
3. ANEW ALGORITHM Xi o Xi s (X, X, 0000 {X1, X5, Xg}H).
. . . 1 2 1 2
We suggest the following way of integrating the

; i -Wi f -st block th
SOM and @mmon'’s algorithm: Determine neurons-winners of thg X)-st block that

were related withX; , X;, ,..Denote these neurons-
1. The training set consists of n-dimensional
vectors X1, X»,...,Xg. The neural network will be
trained using learning epochs. {Zf_l,Zg_l,..,qu_ll}), and their two-dimensional
-
2. All the e epochs are divided_ir_lto equal training projections, obtained in a result of Sammon’s
parts — blocks. Before the training of the neural . 4-1 -1 g1 q-1
network starts, we choose the numlyeof blocks algorithm, by le ’sz (le ’sz pereHl
into which the training process will be divided. Each {
block contains p training epochs p(= e div}).
Denote by q a block of the training process yaq
consisting op epochsq=1,...,y. !

. g1l -qg-1 g1l -qg-1
winners by Zjl ,Zj2 (Zjl ,Zj2 ,.

qu_l,Yzq_l,...,Yrq_ll}). The initial coordinates of
o

are set to be equal to the mean value of the set of

_ _ vectors {v91y9l 3 Afterwards, two-
3. Denote vectors-winners obtained by tleth h 2

block of the training process by, z},...z" and  dimensional projections qu,Yzq,---,Yrg
q

two-dimensional projections of these vectors- (Yiq :(yi?pyiqz)’ i=1...rq) of the vectors-winners
winners, calculated using Sammon'’s algorithm, by

are calculated using Sammon’s algorithm.
Yy (Y =(yidyd), i=1..0g). Note
q

_ _ 5. The training of the neural network is continued
that the number q of vectors-winners will be yntill o=y. After yth block we get two-dimensional

smaller or equal tos The vectors-winners projections Y)Y, ,...Y” of the n-dimensional
y

Z1,23,...Z% , obtained after the first block of the _ Vv oy _
q vectors-winners 2,725 ,....Z/ that are uniquely
training process ¢gFl), are analyzed by using _ Y )
Sammon’s algorithm. However, there is a unique "élated with vectorsXy, X5,...,Xs (see Section 2).
relation between a vector-winner and the
corresponding vector (or several vectors) from the4., STRATEGY OF INVESTIGATION
training set {X;, X2,...,Xs}. The initial coordinates  Qur purpose was to examine the mean projection
error by the new algorithm compared with that
obtained by the algorithm 1b [DzeOla] in
dependance on the “magic factar” (2). Therefore,
follows: Yi1:i+}a yi02:i+§_ Two-dimensional  the experiments were carried out using different
3 3 values of the “magic factorty .

projections Y',YJ,....YT of vectors-winners are
1

of two-dimensional vectors Y.°=(y9,y% ),
i=1...r;, for Sammon’s algorithm are set as

The projection errorEg is minimized by a gradient

calculated using Sammon’s algorithm. method (2). With an increase in the order number of
the iteration, the projection error decreases. But
sometimes the error may vary, i.e., it decreases,
increases, and decreases again [Apo99a]. It may
increase in the last iteration. Therefore, we fix the
dimensional vectorsqu,Yzq,...,Yrg for Sammon’s  |east projection error over all the iterations as a final
result.

4. The vectors-winners obtained after tipeh block
of the training process are analyzed by using
Sammon’s algorithm. The initial coordinates of two-

algorithm are selected taking into account the result
of the @-1)-st block. Note that, #rq— in general. ~ The projection errors can differ for various sets of
A way of the selection is presented below. We mustth€ initial values of neurons, because they are

determine the initial coordinates of each two- 9enerated at random. Thus, much higher or much
lower projection error, that is of a random nature,

i i q _ . .
dimensional vectoly;” correspondent to the neuron can be obtained both by the new algorithm and by



algorithm 1b. To avoid that, the experiments have Table 1 and Figure 2, that this ratio is always greater
been carried out 200 times with different, randomly than one. Thus, the mean projection errors, obtained
generated sets of the initial values of neurons. Thenby the new algorithm, are smaller. When increasing
the results have been averaged. Therefore, we get ththe numbery of the training blocks (Figure 2), this
so-called mean projection error for a fixed value of ratio increases: essentially when t8®M is of a

a. smaller size. The ratio decreases with an increase in
the network size.
. RESULTS OF ANALYSIS Figures 3 and 4 show that the mean projection error,

The advantages of the new algorithm, proposed ingptained by the new algorithm, depends much less
Section 3 and given in Figure 1c, in comparison g, the value of the “magic factort in comparison
with algorithm 1b [DzeOla] have been shown yin aigorithm 1b. Figures 3 and 4 illustrate four
analyzing the data on coastal dunes and theircaqeq however, the similar results are observed in
vegetation in Finland [Hel98a]. The following he most of remaining cases. This is the essential
parametersa, -a,5 characterize the dunesy isthe  ,qyantage of the new algorithm, i.e., if we need to
distance from the water ling, is the height above visualize the neurons-winners of th&@OM, we

the sea levela; is the soil PH;a,, ag, ag, and succeed to Iaminate the influence of the "magic

a; are the contents of calcium (CA), phosphorous factor a on Sammon’s mapping results. This
conclusion is true foD < a < 1. For larger values of

(P), potassium (K), magnesium (Mggg and ag a, the mean projection error grows. However, in

are the mean diameter and sorting of saa} is  this case the new algorithm operates more stable
the northernness in the Finnish coordinate system;than algorithm 1b, and it gives smaller values of the
ay1 is the rate of land uplift;ay, is the sea level ~mean projection error.

fluctuation; a;3 is the soil moisture contently4 is  Figure 5 illustrates output of both the algorithms
the slope tangentg, s is the proportion of bare sand (projection of the multidimensional test data on a
plane). We do not present scales of variables,
because we are interested in observing the
The correlation matfiXR:{rqaj J,j=1...8 }of interlocation of points on a plane. Dimension of the

. . . . SOM is 6x6, number of epochs is 200, humperf
these sixteen parameters is given in [Hel98a]. USIngtraining blocks is 40. Following the recommendation

the method developed by Dzemyda [Dze01la], sixteen.
vectors Xy, X,.... X<, s=16, of unit length have in [KohO1a], the value ofr has been selected equal

to 0.35. The visually presented distributions of the

been computed. Their dimensienis equal t© 16.  nhoints are quite different. This proves the necessity
The values of the vectors are presented in [Dze02alyy; make every effort for minimization of the

These vectors correspond to the paramedgrsy g . distortion of projectionEg (1).
Namely, they are used during the experiments.

Cases with various parameters of the proposed6. CONCLUSIONS
algorithm and its constituent parts have beenWhen comparing the mean projection error,

surface;ay g is the tree cover.

analyzed: obtained by using the combination of t8®M and

« size of neural network (2x2, 3x3, 4x4, 5x5, 6x6); Sammon’s mapping (algorithm 1b), with that by the

« number of training epoches(100, 200, 300); new algorithm that takes into account the learning

. numbery of training blocks and numbqn of flow of the self—organizing neural network, we see
epochs per each training block (ep; lower projection errors in the results got by the new

e values of the “magic factor’a in Sammon’s algorithm. A Iarger numbery of training blocks
mapping (0.1; 0.11;...; 1.99; 2). decreases the mean projection error. However, that

o N needs much more computing time.
Under the same initial conditions, the errors of ) ) _ ]
projection have been calculated for all the The main result of this paper is that, if we need to

parameters referred above by using both 1b and the/isualize the neurons-winners of t8©M, we have
new algorithm. As mentioned above, the @ strategy how to eliminate to a certain extent the
experiments have been repeated 200 times withinfluence of the “magic factor'a on Sammon’s
different (random) initial values of the components Mapping results, i.e., the mean projection error,
of the neurons-vectors. The ratio between the mearPbtained by the new algorithm, depends much less
projection errors, obtained by both 1b and the new©On the value of the “magic factor” than that obtained
algorithm, has been calculated. It appears from by algorithm 1b.



e 100 200 300
p [50(| 25| 20| 10| 5| 50 40 2% 20 1p % 9S50 235 20 Q10 |5
y | 24| 5| 10| 20 4| 5| 8| 10 20 40 g 1 15 30 &0

2x2 [2.15] 2.69 2.72 2.81 2.81 2.84 2,91 2(99 3.01 3.02 B.04 |3.09(3.16/ 3.17 3.1p 3.19
3x3 (1.07] 1.1] 1.1} 1.18 1.16 1.07 1.p9 111 1]11 1.34 1.58 (1.09|1.11|1.12 1.14 1.16
4x4 |1 1.511.67 1.69 1.7p 1.§2 2.36 2.44 2(51 2.54 2.62 P.66 (3.32|3.47| 3.5| 3.58 3.59
1
1

5x5 (1.03| 1.03 1.04 1.06 1.05 1.04 1,04 1|04 1.05 1.05 [L.05|1.04(1.05/ 1.04 1.04 1.05
6x6 [1.06/ 1.07 1.09 1.1 1.141 1.12 1.7 1{18 217 1.19 [1.19 (1.27(1.29/1.29 1.3 1.3
Table 1. The ratio between the projection errors obtained by algorithm 1b and the new algorithm
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Figure 2. Ratio of the projection errors for different number of training blocks y
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Figure 3. Dependence of the projection error on the “magic factor’a
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Figure 5. Examples of visualization:
a) algorithm 1b (a =0.35, Eg= 0.0890), b) the new algorithm ¢ =0.35, Eg= 0.0764)




