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ABSTRACT
This article presents our experimental results for classfying edges and faces as manifold or non-manifold elementsin 4D Orthogo
nal Pseudo-Polytopes (4D-OPPs). For facesin 4D-OPPs we propcse a ondtion to classfy them as manifold or nonrmanifold. For
the edges analysis in 4D-OPPs we have developed two approacies. 1) The analogy ketween incident (manifold and nonmanifold)
edges to a vertex in 3D Orthogoral Pseudo-Polyhedra (3D-OPPs) with incident (manifold and normanifold) faces to a ege in
4D-OPPs; and 2 The etension d the cncept of "cones of faces' (which is applied for classfying a vertex in 3D-OPPs as mani-
fold or nonrmanifold) to "hypercones of volumes® for classfying an edge @ manifold or non-manifold in 4D-OPPs. Both approa-
ches have provided the same results, which present that there ae a@ght types of edgesin 4D-OPPs. Finally, the generalizations for
classfying the n-3 and the n-2 dmensional boundary elements for n-dimensional Orthogoral Pseudo-Polytopes as manifold or non

manifold elementsisalso presented.

Keywords. Computational geometry, Geometric interrogations and reasoning, Geometric and topdogica representations.

1.INTRODUCTION

Recent interest has been growing in studying multi dimensional
polytopes (4D and beyond) for representing prenomena in n
dimensional spaces. Some examples include the works descri-
bed in [Fei90], [Weg97 and [Leed9]. These previous works
show how some of these phenomenas feaures rely on the
polytopes geometric and topdogic relations. However, due to
the nead o visuaizing and analyzing these phenomena (i.e.
multidimensional data), it is essntial first to analyze these
polytopes and their boundxries that compase them [Her98]. So,
this article mvers that first step, in ou reseach, with the
boundry's analysis for classfying edges and faces as manifold
or nonrmanifold elementsin 4D Orthogoral Pseudo-Polytopes.
2. THE 4D ORTHOGONAL POLYTOPES

[Cox63 defines an Euclidean pdytope IT, as a finite region of
n-dimensional space @closed by a finite number of (n-1)-
dimensional hyperplanes. The finiteness of the region implies
that the number N,; of boundng hyperplanes stisfies the
inequality Nn.1>n. The part of the paytope that lies on ore of
these hyperplanes is cdled a cdl. Each cdl of aIl,isan (n-1)-
dimensional polytope, IT,1. The cdls of alln; are Iy.;'s, and so
on; we thus obtain a descending sequence of elements Iy,
Iya,..., 11 (a0 edge), Io (a vertex).

Orthogoral Polyhedra (3D-OP) are defined as polyhedra with all
their edges (IT;’'s) and faces (I1,'s) oriented in three orthogoral
diredions ([Jua88] & [Pre85]). Orthogoral Pseudo-Polyhedra
(3D-OPP will refer to reguar and athogoral polyhedra with
non-manifold boundry [Agu9§.

Similarly, 4D Orthoganal Polytopes (4D-OP) are defined as
4D pdytopes with all their edges (I1y's), faces (I12’'s) and vdu-
mes (I15's) oriented in four orthogoral diredions and 4D Ortho-
gonal Pseudo-Polytopes (4D-OPP) will refer to 4D regular and
orthogoral polytopes with honmanifold bourdary. Because the
4D-OPPs definition is an extension from the 3D-OPPs, is easy
to generdize the concept to define n-dimensional Orthoganal
Polytopes (nD-OP) as n-dimensional polytopes with all their
ITh1's, In2's,..., I11's oriented in n athogordl diredions. Fina-
Ily, n-dimensional Orthoganal Pseudo-Polytopes (nD-OPP)

are defined as n-dimensional regular and athogoral polytopes
with nonmanifold bourdary.

3. THE I1,, ANALYSISFOR 2D, 3D AND 4D-OPP S

ThelIl, Analysisfor 2D-OPP's

A set of quasi-digoint redangles determines a 2D-OPP whaose
vertices must coincide with some of the redangles vertices
[Agu9g. Each o these redangles vertices can be mnsidered as
the origin of a 2D locd coordinate system, and they may belong
to upto four redangles, one for eat locd quadrant. The two
possble aljacancy relations between the four possble redan-
gles can be of edge or vertex. There ae 2* = 16 pesdble mmbi-
nations which, by applying symmetries and rotations, may be
grouped into six equivalence dasss, aso cdled configurations
[Sri81].
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Table 1. The 2D configurationswith all their
rectanglesincident to theorigin.

Because we ae interested in the vertex analysis, we will consi-
der only those mnfigurations where dl their redangles are inci-
dent to the origin. According to the @nfigurations' nomen-
clature presented in [Agu9§, the studied configurations are b, c,
d, e and f (seeTable 1). There ae only two types of verticesin
the 2D-OPPs: the manifold vertex with two incident edges
(configurations b and e€), and the non-manifold vertex with
four incident edges (configuration d [Agu9g. The remaining
configurations represent no vertex becaise configuration ¢ has
only two incident and collinea edges, and in configuration f
there ae noincident edges.

TheIl; Analysisfor 3D-OPP's

A set of quasi-digoint boxes determines a 3D-OPP whaose
vertices must coincide with some of the boxes vertices [Agu9§.
Eadh o these boxes' vertices can be mnsidered asthe origin of a
3D locd coordinate system, and they may belongto upto eight
boxes, one for ead locd octant. There ae 2° = 256 pesble
combinations which, by applying symmetries and rotations, may
be grouped into 22 equivalence dasses [Lor87], also cdled
corfigurations [Sri81]. Each configuration hes its complemen-
tary configuration which is the dassthat contains the comple-
mentary combinations of all the cmbinations in the given class
[Agu9g. Grouping complementary configurations leads to the
14 major cases [Van94]. The mnfigurations with 5, 6, 7 and 8
surroundng boes are omplementary, and thus analogots, to




combinations with 3, 2, 1 and Osurroundng boes, respedively
[Agu9q. Finaly, ead corfiguration, with four surroundng
boxesis =lf-complementary.

N N
i

b c d f i

Table 2. The 3D configurationswhereall their boxes are
incident to asame alge (the arr ows ow the analyzed edge).

Because we ae interested in the elge analysis, we will consider
only those mnfigurations where dl their boxes are incident to a
same adge. According to the cnfigurations' associated namen-
clature presented in [Agu9§, the studied configurations are b, c,
d, f andi (seeTable 2). [Agu9g concluded that there ae only
two types of edgesin the 3D-OPPs:

= The manifold edge with two incident faces. This type of ed-
gesisfoundin configurations b and f. The edge’ stwo incident
faces in configuration b kelong to ore abe's boundry and
they are perpendicular to eat ather. The elge’s two incident
faces in configuration f belong to two dfferent cubes with
edge aljacency and they result perpendicular to ead ather.
The non-manifold edge with four incident faces. This type
of edges is foundin configuration d where two of its faces
belongs to a aibe and the remaining belongto a second cube
with edge adjacency.

The remaining configurations represent no edge becaise in
configuration c there ae only two incident and coplanar faces,
andin configurationi there ae noincident faces.

TheIl> Analysis For 4D-OPP's
A set of quasi-digoint hyper-boxes (i.e., hypercubes, which in
this paper will be represented wing Claude Bragdoris
projedion [Ruc84]) determines a 4D-OPP whose vertices must
coincide with some of the hyper-boxes' vertices. We will
consider the hyper-boxes' vertices as the origin of a 4D locd
coordinate system, and they may belong to up to 16 hyper-
boxes, one for ead locd hyper-octant. The 4D-OPP's vertices
are determined acording to the presence of absence of eah of
these 16 surroundng hyper-boxes. The four possble aljacency
relations between the 16 passble hyper-boxes can be of volume,
face edge or vertex. There ae 2'°=65536 pedble mmbi-
nations of verticesin 4D-OPP s which can be grouped, applying
symmetries and rotations, into 253equivalence dasss, also ca
lled configurations [Pér01]. Each configuration hes its comple-
mentary configuration which is the dassthat contains the com-
plementary combinations of al the cmbinations in the given
class Grouping complementary configurations leads to the 145
major cases [Pér01]. The mmbinationswith 9,10, 11,12, 13, 14,
15and 16 surroundng hyper-boxes are momplementary, and thus
analogots, to combinations with 7, 6, 5, 4, 3, 2, 1 and Osurroun-
ding hyper-boxes, respedively. Finaly, eat corfiguration, with
eight surroundng hyper-boxes is €lf-complementary [Pér01].
We will consider only those configurations whose hyper-boxes
are incident to a same face According to the @nfigurations’
asociated nomenclature presented in [Pér01], the studied
corfigurations are 2, 3, 4, 7 and 13(Table 3). In [Pér01] is con
cluded that there ae only two types of facesin the 4D-OPPs:
= The manifold faces with two incident volumes. The facés
two incident volumes in corfiguration 2 kelong to the
boundiry of only one hypercube and they are perpendicular to
ead aher. While in configuration 7, The facés two incident
volumes belong to two dfferent hypercubes with face
adjacency and they result perpendicular to ead cther.
= The non-manifold faces with four incident volumes. This
type of faces is foundin corfiguration 4 where two of its
incident volumes belongs to a hypercube and the remaining
two belongto asecond hypercube with face ajacency.

= The remaining configurations represent no face becaise in
corfiguration 3 there ae only two incident and co-
hyperplanar volumes, and in configuration 13there ae no
incident volumes (analogous to 3D configurations ¢ and i in
Table 2).

Adjacencies between hyper-boxes

Configuration
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Table 3. Configurations 2, 3, 4, 7 and 13for 4D-OPP's

Classfying the ITn2'sin nD-OPP's

Finally, the generalized condtions to classfy aIl,, as manifold

or nonmanifold in anD-OPPare:

o If two perpendicular IT,.'s are incident to a Iy, then it must
be dassdfied as manifold.

o If four I, s areincident to aIl;., then it must be dassfied as
non-manifold.

4. THE ITh.3 ANALYSISFOR 3D AND 4D-OPFP' S
TheTlo Analysisfor 3D-OPP's
There ae eght types of vertices (also two non alid vertices are
identified) for 3D-OPPs [Agu9§. These vertices can be dass-
fied depending on the number of two-manifold and non
manifold edges incident to them and they are referred as V3, V4,
V4N1, V4N2, V5N, V6, VEN1 and VEN2[Agu9g (Table 4). In
this nomenclature "V" means vertex, the first digit shows the
number of incident edges, the "N" is present if at least one non
manifold edgeisincident to the vertex and the second dgit isin-
cluded to dstinguish between two dfferent types that otherwise
could receve the same name.
Each vertex has the following properties[Agu9g:
e V3: dl three incident edges are two-manifold and perpen-
dicular to ead aher.



e V4: all four incident edges are two-manifold, they lie on a
plane, and can be grouped in two coudes of colli nea edges.

o VANI: three of its four incident edges are perpendicular to
eah caher and aso two-manifold ores, while the fourth is
non-manifold and colli nea to ore of the other three

e VAN2: two o its four incident edges are two-manifold and
collinea, while eab of its other two is non-manifold and
perpendicular to the other three

o V5N: four of its five incident edges are two-manifold and lie
in aplane, while the fifth isnonrmanifold and perpendicular to
the rest of them.

¢ V6: all six incident edges are two-manifold.

o V6N1: threeof its $x incident edges are perpendicular to ead
other and also two-manifold ores, while eat of its remaining
three @lges is nonrmanifold and collinea to ore of the first
three

e V6N2: al of its $x incident edges are nornrmanifold.

e Non walid vertex 1: its two manifold edges are alli nea.

o Non valid vertex 2: itstwo nonmanifold edges are lli nea.

V3 V4 VANL V4N2 V5N
Ve V6N1 VBN2 | Nonalid | Non waid
‘ L vertex 1 vertex 2

-% - - - - -

Table 4. Vertices present in 3D-OPP's (dotted linesindicate non-
manifold edges and continuous linesindicate manifold edges).

TheIl; Analysisfor 4D-OPP's

Vertices can be defined in terms of the manifold or non

manifold edges that are incident to these vertices in 3D-OPPs

[Agu9q. The same processwill be extended to describe edges

in terms of the manifold or nonrmanifold faces that are incident

to those adgesin 4D-OPPs. In thisway, we have identified eight
types of edges and two non \alid edges. We will also extend the
nomenclature used by [Agu9g to describe them. Such edges
will be referred as E3, E4, E4AN1, E4AN2, ESN, E6, E6N1 and

E6N2 (Table 5). The only diff erence with the nomenclature used

to describe the vertices is that "E" means edge instead of "V"

that means vertex. Each edge has the following properties:

e E3: dl threeincident faces are two-manifold and perpendi-
cular to ead ather.

e E4: dl four incident faces are manifold and lie on a hyperpla-
ne, andthey can be grouped in two coudes of coplanar faces.

e E4AN1: three of its four incident faces are perpendicular to
eah caher and aso two-manifold ores, while the fourth is
non-manifold and coplanar to ore of the other three

e E4N2: two of its four incident faces are two-manifold and
coplanar, while eat o its other two is nonmanifold and
perpendicular to the other three

o E5N: four of itsfive incident faces are two-manifold andliein
a hyperplane, whil e the fifth is non-manifold and perpendicu-
lar to the rest of them.

e E6: al six incident faces are two-manifold.

e E6N1: three of its $x incident manifold faces are perpen-
dicular to eat ather, while eab of itsremaining threefacesis
non-manifold and coplanar to ore of the first three

e E6N2: al of its sx incident faces are nonrmanifold.

o Non valid edge 1: its two manifold faces are aplanar.

o Non valid edge 2: itstwo nonmanifold faces are mwplanar.

It results interesting that the number, clasdfications and pasi-

tions of the incident faces to an edge in 4D-OPPs are analogous

to the way that a set of edges are incident to a vertex in 3D-

OPPs.

E3 E4 E4AN1 E4N2 E5N
E6 E§N1 E6N2 Non valid Non valid
B o | _edeel | edge2
NG N

Table 5. Edges present in 4D-OPP's (dotted lines indicate non-
manifold faces and continuous linesindicate manifold faces).

Classfying the Tlo's in Polyhedra Through its Cones of
Faces

A polyhedron is a bounded subset of the 3D Euclidean Space
enclosed by a finite set of plane poygors sich that every edge
of a paygonis sared by exadly one other paygon (adjacent
paygors) [Pre85]. A pseudo-polyhedron is a boundd subset
of the 3D Euclidean Space @closed by a finite @lledion o
planar faces such that every edge has at least two adjacent faces,
andif any two faces med, they meet at a cmmon edge [Tan91].
Edges and \ertices, as boundry elements for polyhedra, may be
either two-manifold (or just manifold) or nonrmanifold
elements. In the cae of edges, they are (non) manifold elements
when every paints of it is aso a (non) manifold pant, except
that either or both of its ending vertices might be apoaint of the
oppaite type [Agu9g. A manifold edge is adjacent to exadly
two faces, and a manifold vertex is the gex (i.e., the mmon
vertex) of only ore cone of faces. Conversely, a nonmanifold
edge is adjacent to more than two faces, and a nornrmanifold
vertex is the gex (i.e., the mmon vertex) of more than ore
cone of faces[Ros91].

3D vertex Classfication
V3 Manifold
V4 Manifold
V4N1 Non-manifold
VAN2 Non-manifold
V5N Non-manifold
V6 Non-manifold or manifold
acording to its geometric
context.
VEN1 Non-manifold
V6N2 Non-manifold

Table 6. 3D-OPP's vertices classfication.

Using the concept of cones of faces it is easy to construct an
agorithm to determine the dassficaion d a vertex as manifold
or nonmanifold in any pdyhedron a pseudo-poyhedron.
Using this algorithm over the possble vertices in 3D-OPPs we
have the results presented in Table 6 which coincide with those
presented by [Agu9§.

Classgfying the ITy'sin 4D Polytopes Through its Hyper-
Cones of Volumes

Due to the analogy between 3D-OPPs vertices described in
terms of their incident manifold or non-manifold edges, and 4D-
OPPs edges described in terms of their incident manifold or
non-manifold faces, the next logicd step is to extend the amncept
of cones of faces presented in the previous ®dionto classfy 4D
polytopes' edges as manifold or non-manifold.

Faces, edges and \ertices, as boundry elements for 4D
palytopes, may be dther manifold or non-manifold elements.
[Cox63 and [Han93 have stated that a manifold faceis adja-
cent to exadly two vdumes, and nav we suggest that a mani-
fold edge is the common edge (apex) of only ore hyper-cone of
volumes. Conversely, we have suggested that a non-manifold
faceis adjacent to more than two vdumes, and nawv we suggest
that a non-manifold edge is the cmmon edge (apex) of more
than ore hyper-cone of volumes.



Using the oncept of hyper-cones of volumes, it is easy to ex-
tend the dgorithm for obtaining the vertex classfication for 3D-
OPP s used for previous ®dion, to alow us classfying an edge,
as manifold or nonrmanifold, in any 4D polytope or 4D pseudo
p0|ytope The dgorithm is defined with the foll owing steps:
Get the set of I13's that areincident to edge A (aIly).
2 From the set of I15's sled one of them.
3 The seleded I3 has two I1;'s that are incident to A, get
one of them and label it as START and ANOTHER.

4  Repea

4.1 If the number of ITy's to ANOTHER is more than org,
then A isanonmanifold I'T;. End.

4.2 The ANOTHERTI; is common to ancther I3, findit.

4.3 The I3 has another T1, that is common to A, find it
and label it as ANOTHER.

4.4 Until START = ANOTHER (it has been found a hyper-

cone of volumes).
5 If there ae more I15's to analyze then A is non-manifold
(there ae more hyper-cones of volumes). End.
6 Otherwise, A is manifold (A is the mmmon edge of only
one hyper-cone of volumes). End.
5.RESULTS
Using the dgorithm presented in the previous ®dion owr the
posshle alges in 4D-OPPs we have that the elges class-
fications are analogots to the 3D-OPPs vertices' clasdfications.
Table 7 shows the alges' clasdfications given by the extended
algorithm and their analogows 3D results.

ez(ljD thrﬁ&ﬁf;gﬁg;nes 3D Classificati?r; through

ge of volumes vertex cones of faces

E3 Manifold V3 Manifold

E4 Manifold V4 Manifold

E4N1 | Non-manifold V4N1 | Non-manifold

E4N2 | Non-manifold VAN2 [ Non-manifold

E5N Non-manifold V5N Non-manifold

E6 Non-manifold or V6 Norrmanifold or
manifold acording to manifold acarding to
its geometric oontext. its geometric context.

E6N1 | Non-manifold V6N1 [ Non-manifold

E6N2 | Non-manifold V6N2 [ Non-manifold

Table 7. 4D-OPP's edges classfications and their analogy
with 3D-OPP s vertices.

Clasgfying the TIn.z in nD Polytopes Through its nD

Hyper-Cones of I1n.1's

Due to the analogy found tetween 3D vertices and 4D edges

with the extension d the concept of cones of faces, isfeasible to

generdlize the last presented agorithm to classfy the I3 as

manifold or nornrmanifold in nD polytopes through their nD

hyper-cones of TIn1's. The proposed genera algorithm is the

following:

1  Get the set of I,4'sthat areincident to T, 3 A.

2 From the set of I1n1's €led one of them.

3 The sdeded In.1 has two I1,.2's that are incident to I3 A,
get one of them and label it as START and ANOTHER.

4  Reped

41 If the number of incident I1,:'s to ANOTHER is more

than ore, then Aiisanon-manifold ITy.s.

4.2 The ANOTHERII,,» is common to ancther I, 1, find it.

4.3 The I, has ancther I, that is common to A, find it
and label it as ANOTHER.

4.4 Until START = ANOTHER (it has been founda nD hyper-

cone of I1n1's).

5 If there ae more Iy4's to analyze then I3 A is non
manifold (there ae more nD hyper-cones of T1,.1's).

6  Otherwise, I3 A is manifold (A is the common IT,3 of
only one nD hyper-cone of I1;.1's).

The Eight Types of IT,3'sin hD Orthogoal Pseudo-
Polytopes

Due to the analogy between vertices in 3D-OPPs and edges in
4D-OPPs (Table 7), we can extend their properties to propcse
the eght types of IT,3's in ND-OPPs. Such TIn.3's will be refe-
rred as Hn.33, Hn.34, Hn.34Nl, Hn.34N2, Hn.35N, Hn.36, Hn.36N1
and I1,36N2. In this nomenclature ‘I, indicaes the (n-3)-
dimensional element (i.e. verticesin 3D-OPPs and edges in 4D-
OPPs), the first digit shows the number of incident I, (i.e.
edges in 3D-OPPs and faces in 4D-OPPs), the ‘N’ is present if
a least one nonrmanifold Il is incident to the I3 and the
seoond dgit is included to distingush between two dfferent
types that otherwise muld recave the same name.

6. FUTURE WORK

The results of this article ae being wed in studying the
extension for the Extreme Vertices Model (EVM) [Agu9]g to
the four dimensiona space(EVM-4D). The EVM-4D will be a
representation model for 4D-OPPs that will allow queries and
operations over them. However, the fad related to a model

purely geometric (four geometric dimensions) is nat restrictive
for our research, because it will be used under geometries as the
4D spacdime. The first main application for the EVM-4D will

cover the visualizaion and analysis for multidimensional data
under the antext of a Geographicd Information System (GIS).
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