Program Visualization through Visual Metaphors

Bernhard Reitinger

Institute for
Computer Graphics and Vision
Technical University Graz
Inffeldgasse 16/11
A-8010 Graz, Austria
reitinger@icg.tu-graz.ac.at

Dieter Kranzlmiiller

GUP (Dept. for
Graphics and Parallel Processing)
Joh. Kepler University Linz
Altenbergerstrasse 69
A-4040 Linz
dk@gup.uni-linz.ac.at

Andrej Ferko

Institute for
Computer Graphics and Vision
Technical University Graz
Inffeldgasse 16/11
A-8010 Graz, Austria
ferko@icg.tu-graz.ac.at

ABSTRACT

Program understanding is of major importance for software developers. This defines the demand for
on-the-fly inspection and analysis tools to understand the behavior of software. This paper describes an
approach based on Virtual Reality (VR) for visualization of program activity. The solution shows, that
VR can substantially support the users’ understanding by providing suitable graphical representations.
The main difference of this approach compared to traditional program analysis tools is the usage of
metaphors instead of common textual or 2D graphical displays.

Keywords

program visualization, virtual reality, program activity, behavioral analysis

1 INTRODUCTION

Visualization is a central point of todays computer
science applications. As large amounts of data are
not perceivable by humans, graphical representa-
tions are utilized to bring the processed data into
a comprehensible form.

The word wisualization itself is often mis-
used [SDBP98]. Since visual and means “sight”
(in Latin), many people believe that visualization
is restricted to making pictures. However, a more
appropriate definition related to the field of visu-
alization uses the term “mental image”, which is
not necessarily related to something in one’s visual
field [Gal95].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
free provided that copies are not made or distributed profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WSCG POSTERS proceedings

WSCG’2003, February 37, 2003, Plzen, Czech Republic.
Copyright UNION Agency — Science Press

Definition 1: Visualization [SDBP98]

The power or process of forming a mental
picture or vision of something not actually
present to the sight.

Visualization, if properly used, quickly cuts the
essentials [Mil93]. On contrary, improper usage
brings colorful but disastrous results. Thus, eval-
uation of visualization tools must focus on the
difference between guiding and rationalizing. To
guide means, that the user will discover things,
which were unknown before. To rationalize means,
that visualization does not provide a new experi-
ence. It just lets you know things, which you are
already aware of.

This paper focuses on program visualization,
where aspects of a program or it’s run-time exe-
cution behavior are illustrated [Mye90]. The re-
search has been conducted in the frame of the
MoSt environment!, a monitoring and steering
tool for interactive investigation of large-scale
long-running parallel programs. MOST supports
the user during various stages of the software life-
cycle such as performance tuning and error detec-
tion.

The paper is organized as follows: Section 2 de-

!1MoST [KRV00] [RKVO01] is an ongoing research project
at the GUP, Joh. Kepler University Linz.



scribes the activity formula in theory. Corre-
sponding visual metaphors including some results
are given in Section 3, before a discussion about
future work and a conclusion summarizes this pa-
per.

2 PROGRAM ACTIVITY

One source of information exploited in the MoSt
environment is the activity of a program, which
is computed for time interval [tmin, tmaz] and de-
livers a floating-point value between 0 and 1 (in-
dicating low or high activity, respectively). Each
single memory cell can have two states, accessed
(1) and not accessed (0). The activity a(t) of a
certain memory cell at a time ¢ is 0, if the mem-
ory cell has not been accessed, or 1, if it has been
accessed since the last observation. This activity
is determined over a given discrete time interval
[tmins> tmaz], SO that memory locations with many
accesses will yield higher activity values. Since
an arbitrary area of a program consists of n such
memory cells, its normalized level of activity can
be computed as follows:

Definition 2: Accumulated activity

Let tmins tmaz € N, tmin < tmaz, and a;(t) €
{0,1} for some i € N.

tmaz
> ai(t)
tmin
Az’(tminatmaz) =
tmaz — tmin
is called accumulated activity of a single
memory cell ¢ within [tmin, tmaz]-

Summing up the activity values of all single mem-
ory cells of one process leads to the following def-
inition:

Definition 3: Process activity
Let tmin, tmaz,m,% € N.

n—1
Z Ai(tmin)tmaz)
PA(tminatmaz) ==

n

is called process activity.

The formula of Definition 2 is illustrated in Fig-
ure 1 with a single memory cell, whose activity is

a(t)

timet

Figure 1: Activity of a memory cell

09 -
08 - -
0.7 - -
0.6 -
05 -

A(0,t_max)

04
03
02
01

Figure 2: Accumulated activity

monitored over 10 time steps. In Figure 2 the cor-
responding function A is shown, where t,,;, = 0
and t,,., takes values between 0 and 9.

3 ACTIVITY VISUALIZA-
TION

A very challenging tasks of MoSt was to find a
suitable representation for displaying the activity
information. After some investigations, we imple-
mented the activity landscape and the immersive
stripe tunnel.

The activity landscape approach describes the pro-
gram’s activity with attributes like color, object
size, and animation. The accumulated activity of
a memory cell is expressed by hills or flat regions
intensified by some colors as shown in Figure 3.
The higher (and more red) the hills are, the more
activity is determined in this part. Flat (and blue)
regions indicate no activity measured over a pe-
riod of time.

Due to the fact, that the memory content is one-
dimensional and the landscape has two dimen-
sions, the content must be mapped in a certain
kind of way. Each “row” of the landscape repre-
sents a block of the memory content. This means



memory cell \/n’- 1

accumulated
activity

2nd row:
memory cell \/?

memory cell n-1

Figure 3: Landscape approach [KRVO00]

that the conglomeration of all rows results in the
whole memory content again. Consequently, it es-
tablishes relations with neighboring cells that ac-
tually do not exist in memory. Another draw-
back is the visualization of communication be-
tween processes, which is displayed with a com-
munication tube. With more than two processes,
the visualization of communication may become
very complex.

The immersive stripe tunnel consists of n stripes
each representing the memory contents of one pro-
cess of a parallel program. Similar to the land-
scape, the color indicates the amount of activity
in a particular region.

In the initial state an inactive stripe tunnel is
displayed, where all stripes have the same blue
color. As soon as memory activity information is
delivered by the monitoring module, the tunnel
changes its colors according to the activity map.
An example is shown in Figure 4, where regions
are colored according to their amount of activity.

The problem of communication visualization is
solved by cylinders, which connect the sender’s
and receiver’s respective memory block. A ficti-
tious communication channel in the middle of the
tunnel represents the physical media between the
sender and receiver node. All communication is
transferred over this main channel.

Considering a send or receive event, several pa-
rameters are used to specify the message: identi-
fier of source/destination process, message type,
message length, and message buffer. The first pa-
rameter specifies the identification of either the
source or the destination process. The second one
describes the type of the message and the third
one indicates the message size of the transmitted
message buffer in bytes. Besides these parame-

Figure 4: Immersive stripe tunnel with active re-
gions [RKV01]

ters, the memory location of the message buffer is
also needed, to display the cylinder at the correct
position in the tunnel.

Each send event is represented by a green cylin-
der, drawn from the memory location of the cor-
responding buffer straight to the communication
channel. On the contrary, a receive event is dis-
played in yellow as a cylinder from the memory
location of the message buffer to the correspond-
ing sending event in the message channel.

Almost all of the parameters above can be found
in the graphical representation. The identification
is used to localize the destination (source) process,
and the message length is expressed by an elliptic
cylinder.

Figure 5 shows a parallel program with 8 pro-
cesses, where process 0 broadcasts a message,
which is displayed by a green cylinder. All other
processes receive the message which is indicated



Figure 5: Immersive stripe tunnel including com-
munication channels

by the yellow cylinders to the communication
channel.

4 CONCLUSION AND FU-
TURE WORK

This paper discusses on-line program visualiza-
tion in the MoSt environment. Analysis activi-
ties concentrate on the activity information, which
supports scientists during identification of critical
points in their applications. The VR program vi-
sualization of activity data may seem a little bit
controversial at first. However, leading the user
to an suitable starting place for in-depth investi-
gations is very important, and there is only limited
support from related work in this area.

An idea for future work in this project is
sound mapping, which has originally been in-
spired by a story about the Whirlwind computer
(1950) [Fre9l]: “You even had audio output in
the sense that you could hear the program because
there was an audio amplifier on one of the bits
of one of registers - so each program had a signa-
ture. You could hear the tempo of how your pro-
gram was running. You could sense when it was
running well, or when it was doing something sur-
prising.” (A similar idea is presented in [FJ93].)
By integrating sound output, the activity in the
region of the tunnel, that is currently inspected
by the user, can further be emphasized. This in-
cludes sonification of hardware performance coun-
ters, the program counter, and similar state data.

5 ACKNOWLEDGMENTS

We are most thankful to Christian Glasner,
Roland Hiigl, and Prof. Dr. Jens Volkert who have
made essential contributions to the M OST project.

References
[FJ93] JM. Francioni and J.A. Jackson.
Breaking the silence: Auralization of

parallel program behavior. Academic
Press, Inc., pages 181-194, 1993.

[Fre9l1] K.A. Frenkel. An interview with Fer-
nando Jose Corbaté. volume 34, pages

8390, September 1991.

[Gal95] R.S. Gallagher. Computer visualiza-
tion: graphics techniques for scientific
and engineering analysis. CRC Press,

Inc., USA, 1995.

[KRV00] D. Kranzlmiiller, B. Reitinger, and
J. Volkert. Experiencing a program’s
execution in the CAVE. In Proceedings
of the IASTED International Confer-
ence on Parallel and Distributed Com-
puting and Systems (PDCS), volume 1,

pages 259-264, November 2000.

[Mil93] B.P. Miller. What to draw? when
to draw? an essay on parallel pro-
gram visualization. Journal of Paral-
lel and Distributed Computing, 18:265—

269, 1993.

[Mye90] B.A. Myers. Taxonomies of visual pro-
gramming and program visualisation.
Journal of Visual Languages and Com-

puting, 1, 1990.

[RKV01] B. Reitinger, D. Kranzlmiiller, and
J. Volkert. The MoSt Immersive Ap-
proach for Parallel and Distributed
Program Analysis. In Proc. of the
5th International Conference on Infor-
mation Visualisation (IV 2001), July
2001.

[SDBP9S8] J. Stasko, J. Dominigue, M.H. Brown,
and B.A. Price. Software Visualization.
MIT Press, 1998. ISBN 0262193957.



