A Characterization of Data Mining
Algorithms on a Modern Processor

Amol Ghoting, Gregory Buehrer, and Srinivasan Parthasarathy
Data Mining Research Laboratory,
The Ohio State University

Daehyun Kim, Anthony Nguyen, Yen-Kuang Chen,
and Pradeep Dubey
Architecture Research Laboratory,
Intel Corporation

Roadmap

Motivation and Contributions
Algorithms under study
Performance characterization

Case study:
— Improving performance of FP-Growth

Related work
Conclusions

Motivation

« KDD applications constitute a rapidly growing
segment of the commercial and scientific

computing domains
 Interactive process - response times
« Memory and compute intensive

e Modern architectures

— Memory wall issues
e Latency tolerating mechanisms — prefetching, SMT

e Objective here is to characterize such
applications on a modern architecture

— Can we leverage above mechanisms effectively?

Contributions

o Specifically, we study

— Performance and memory access behavior of
eight data mining algorithms

— Impact of processor technologies such as
hardware pre-fetching and simultaneous
multithreading (SMT)

— How to leverage latency-tolerating
mechanisms to improve performance of
frequent pattern mining

Roadmap

Motivation and Contributions
Algorithms under study
Performance characterization

Case study:
— Improving performance of FP-Growth

Related work
Conclusions

Algorithms under study (1)

* Frequent itemset mining

— Finds groups of items that co-occur frequently in a
transactional data set

— Example: “Item A and Item B are purchased together 90% of the
time”
 FPGrowth (FP-tree)
 MAFIA (Tid-list as a bit vector)

e Seguence mining

— Discovers sets of items that are shared across time

— Example: “70% of the customers who buy item A also buy item B
within 1 month”

. SPADE (Tid-list)

Algorithms under study (2)

e Graph mining
— Finds frequent sub-graphs in a graph data set
e FSG
— Tid-list
e Clustering

— Partitions data points into groups or clusters such that
Intra-cluster distance in minimized and inter-cluster
distance in maximized

 kMeans and vCluster

Algorithms under study (3)

e Qutlier detection

— Finds the top k points in a data set that are
most different from the remaining points

« ORCA

e Decision tree induction

— Learns a decision tree from a data set
e C4.5

Roadmap

Motivation and Contributions
Algorithms under study
Performance characterization

Case study:
— Improving performance of FP-Growth

Related work
Conclusions

Performance characterization

o Setup
— Intel P4 at 2.8GHz with HT technology
— 1.5GB of main memory
— 8KB L1 d-cache and 512 KB L2 u-cache

— Intel VTune Performance Analyzers to collect
performance characteristics of execution

— Synthetic/Real datasets
— All codes were obtained from the authors

Operation mix

FPGrowth

MAFIA

SPADE

FSG

kMeans

vCluster

C4.5

ORCA

Integer ALU
operations /
instruction

0.56

0.822

0.636

0.625

0.688

0.620

0.769

0.607

Floating point
operations /
Instruction

0.252

0.207

0.087

0.273

Memory

operations /
instruction

Branch

operations /
instruction

0.136

0.074

0.177

0.166

0.057

0.154

0.163

0.156

Cache and CPU performance

L1 LD hit rate

e FPGrowth

. L2 LD hit rate
— Poor cache hit rates

— Large number of DTLB |L2 LD misses/
misses per instruction [nstruction

: LD operations / 0.515
— Poor data locality insmf’ ction

— Low ILP ST operations / 0.135
Instruction

DTLB misses /
Instruction

ITLB misses / 0.000
Instruction

CPU utilization

Cache and CPU performance

L1 LD hit rate 0.953
e MAFIA _

_ Has the highest CPU L2 LD hit rate 0.997
utilization of the L2 LD misses / 0.001
considered workloads instruction

 Counting using bit- !_D ope_rations/ 0.391
vectors is very efficient Instruction

— Temporal locality can ST operations / 0.042
be improved INstruction

DTLB misses / 0.000
* Note: Instruction

— The search is not as ITLB misses / 0.000

efficient as FPGrowth instruction
CPU utilization 0.446

Cache and CPU performance

L1 LD hit rate 0.954
« SPADE
: L2 LD hit rate 0.992
— Temporal locality can
be improved L2 LD misses / 0.001
. Very poor CPU |nStrUCt|0n.
utilization LD operations /
e instruction
* Tidlist joins are : 116
expensive _ST operations / .
instruction
DTLB misses / 0.012
Instruction
ITLB misses / 0.000
Instruction
CPU utilization

Cache and CPU performance

L1 LD hit rate 0.963
e FSG
: L2 LD hit rate 0.985
— Temporal locality can
be improved L2 LD misses / 0.002
. Very poor CPU |nStrUCt|0n.
utilization LD operations /
e instruction
* Tidlist joins are : 160
expensive _ST operations / .
instruction
DTLB misses / 0.007
Instruction
ITLB misses / 0.000
Instruction
CPU utilization

Cache and CPU performance

L1 LD hit rate 0.979
* kMeans _
- . L2 LD hit rate 0.989
— Poor CPU utilization
* FPU intensive L2 LD misses / 0.000
Instruction
LD operations / 0.254
Instruction
ST operations / 0.013
Instruction
DTLB misses / 0.001
Instruction
ITLB misses / 0.001
Instruction
CPU utilization

Cache and CPU performance

L1 LD hit rate

» vCluster _
: L2 LD hit rate
— Poor data locality

e Graph partitioning L2 LD misses / 0.000
Instruction
LD operations / 0.279
Instruction
ST operations / 0.083
Instruction
DTLB misses / 0.001
Instruction
ITLB misses / 0.000
Instruction

CPU utilization 0.322

Cache and CPU performance

L1 LD hit rate
e C4.5

. L2 LD hit rate
— The sort routine has

poor data locality L2 LD misses /
e Cache-conscious sort? Instruction

LD operations / 0.385
Instruction

ST operations / 0.131
Instruction

DTLB misses / 0.005
Instruction

ITLB misses / 0.000
Instruction

CPU utilization

Cache and CPU performance

L1 LD hit rate 0.970
» ORCA |
.. L2 LD hit rate 0.993
— Similar trends

L2 LD misses / 0.000
Instruction
LD operations / 0.335
Instruction
ST operations / 0.057
Instruction
DTLB misses / 0.003
Instruction
ITLB misses / 0.000
Instruction
CPU utilization 0.316

Impact of hardware prefetching and
SMT

FPGrowth | MAFIA | SPADE FSG kMeans | vCluster | C4.5 ORCA
Speedup due | 1 117 1.02 | 1.15 | 1.02 | 1.19 | 1.06 | 1.01
to hardware
pre-fetching
Speedupdue | 102 | 1.06 | 1.05 1.18 | 1.03

to SMT

* Prefetching improves performance for MAFIA, significantly
— AND operation on bit-vectors

— Working set is larger than other frequent pattern mining workloads

« SMT helps the FPU intensive workloads, as it is able to mask FPU

latency

— Not easy to hide memory latency

Characterization summary

Compute intensive
— Integer ALU and FPU intensive

Memory intensive
— Limits CPU utilization

Good spatial locality

— Temporal locality can be improved in most
cases

SMT improves performance for FPU
iIntensive workloads

Roadmap

Motivation and Contributions
Algorithms under study
Performance characterization

Case study:
— Improving performance of FP-Growth

Related work
Conclusions

Improving performance of
FPGrowth (1)

e FP-tree as an
Intermediate data set =
representaton

e Pointer-based structure

« Tree traversals are oy
bottom-up accesses gy
— We only need item and
parent pointer!

NNNNNNNNNNN

IIIIIIIIIIIII

Improving performance of
FPGrowth (2)

* Improve spatial locality
— Node size reduction
— Depth-first tree reordering

* Improve temporal locality
— Path tiling

e I[mprove ILP

— Thread co-scheduling on an SMT for
Improved cache-reuse

Speedup

« DS1 to DS4 - synthetic datasets (increasing size)
 DS5 - real dataset

OSPATIAL + PREFETCHING ESPATIAL + PREFETCHING + TILING OSPATIAL + PREFETCHING + TILING + SMT

6

5

fs

SPEEDUP
w

DSA Ds2 DS3 DS4 Dss

Roadmap

Motivation and Contributions
Algorithms under study
Performance characterization

Case study:
— Improving performance of FP-Growth

Related work
Conclusions

Related work

Cache-conscious data base algorithms

— DBMS on modern hardware
« Ailamaki et al. [VLDB99]

— Cache sensitive search trees and B+ trees
 Rao and Ross [VLDB99,SIGMODOQO]

— Prefetching for B+ trees and Hash-Join
 Chen et al. [SIGMODO01,ICDEO04]

Cache performance of data mining algorithms
—~ SOM
e Kim et al. WWC99]

— C4.5
» Bradford and Fortes [WWC98]

— Apriori
» Parthasarathy et al. [KAIS01]
Parallel scalability and I/O performance of data mining
algorithms
— Y. Liu et al. [PDCS04]

Conclusions

« We presented a characterization of 8 data mining
algorithms
— Compute and memory intensive
— Temporal locality can be improved in most cases
— Prefetching helps workloads with good spatial locality
— SMT helps FPU intensive workloads
— Memory intensive nature of these algorithms limits performance

* Improved performance of FPGrowth

« Effective algorithm design needs to take account both
traditional complexity issues and modern architectural
designs.

Questions?

e Thanks
— NSF CAREER 11S-0347662
— NSF NGS CNS-0406386
— DOE ECPI DE-FEO02475

Improving performance of
FPGrowth

e FP-tree as an
Intermediate data set
representation

e Pointer-based structure

 Tree accesses are
bottom-up and are
repeated for each item

— We only need item and
parent pointer! o

IIIIIIIIIIIII

Cache-conscious prefix tree

ITEM

PARENT POINTER

/ /7
/ /
I R / /
] / / I
1’ // |' AN \\ g
- I
I / /70N \ AN
| ! / N \ \\\\
I | / S N
| 'l ‘I ANEANY \\
N \
: | VAN \ \\\\ \
| [[L AN \
I | [- [AN \
| | I / [N
| I / b \\ \
| \
| [[/ ['\
L R ' o \
| I ' / [YA
' | | \ I | / Iy (I
! ‘ | \ I | f I oA
! ‘ | | I | \ I I
' \ | \ ' by I !
'. | | \ | | \ / ! /
T \
v Y1 vl Y]v | v |« V1w V1 <

Header lists (for Node pointers)

o

O |0 |0 |Oo (o
O |0 |0 |Oo (o

Count lists (for Node counts)

Path tiling & Co-scheduling for
cache-reuse SMT

 d—

i :

Tile 1 Tile N -1 Tile N

