A Characterization of Data Mining Algorithms on a Modern Processor

Amol Ghoting, Gregory Buehrer, and Srinivasan Parthasarathy
Data Mining Research Laboratory,

The Ohio State University

Daehyun Kim, Anthony Nguyen, Yen-Kuang Chen, and Pradeep Dubey Architecture Research Laboratory, Intel Corporation

Roadmap

- Motivation and Contributions
- Algorithms under study
- Performance characterization
- Case study:
 - Improving performance of FP-Growth
- Related work
- Conclusions

Motivation

- KDD applications constitute a rapidly growing segment of the commercial and scientific computing domains
 - Interactive process → response times
 - Memory and compute intensive
- Modern architectures
 - Memory wall issues
 - Latency tolerating mechanisms prefetching, SMT
- Objective here is to characterize such applications on a modern architecture
 - Can we leverage above mechanisms effectively?

Contributions

- Specifically, we study
 - Performance and memory access behavior of eight data mining algorithms
 - Impact of processor technologies such as hardware pre-fetching and simultaneous multithreading (SMT)
 - How to leverage latency-tolerating mechanisms to improve performance of frequent pattern mining

Roadmap

- Motivation and Contributions
- Algorithms under study
- Performance characterization
- Case study:
 - Improving performance of FP-Growth
- Related work
- Conclusions

Algorithms under study (1)

- Frequent itemset mining
 - Finds groups of items that co-occur frequently in a transactional data set
 - Example: "Item A and Item B are purchased together 90% of the time"
 - FPGrowth (FP-tree)
 - MAFIA (Tid-list as a bit vector)
- Sequence mining
 - Discovers sets of items that are shared across time
 - Example: "70% of the customers who buy item A also buy item B within 1 month"
 - SPADE (Tid-list)

Algorithms under study (2)

- Graph mining
 - Finds frequent sub-graphs in a graph data set
 - FSG
 - Tid-list
- Clustering
 - Partitions data points into groups or clusters such that intra-cluster distance in minimized and inter-cluster distance in maximized
 - kMeans and vCluster

Algorithms under study (3)

- Outlier detection
 - Finds the top k points in a data set that are most different from the remaining points
 - ORCA
- Decision tree induction
 - Learns a decision tree from a data set
 - C4.5

Roadmap

- Motivation and Contributions
- Algorithms under study
- Performance characterization
- Case study:
 - Improving performance of FP-Growth
- Related work
- Conclusions

Performance characterization

Setup

- Intel P4 at 2.8GHz with HT technology
- 1.5GB of main memory
- 8KB L1 d-cache and 512 KB L2 u-cache
- Intel VTune Performance Analyzers to collect performance characteristics of execution
- Synthetic/Real datasets
- All codes were obtained from the authors

Operation mix

	FPGrowth	MAFIA	SPADE	FSG	kMeans	vCluster	C4.5	ORCA
Integer ALU operations / instruction	0.56	0.822	0.636	0.625	0.688	0.620	0.769	0.607
Floating point operations / instruction	0.001	0.001	0.004	0.015	0.252	0.207	0.087	0.273
Memory operations / instruction	0.65	0.433	0.593	0.692	0.267	0.353	0.517	0.392
Branch operations / instruction	0.136	0.074	0.177	0.166	0.057	0.154	0.163	0.156

FPGrowth

- Poor cache hit rates
- Large number of DTLB misses per instruction
- Poor data locality
- Low ILP

L1 LD hit rate	0.891
L2 LD hit rate	0.430
L2 LD misses / instruction	0.03
LD operations / instruction	0.515
ST operations / instruction	0.135
DTLB misses / instruction	0.024
ITLB misses / instruction	0.000
CPU utilization	0.119

MAFIA

- Has the highest CPU utilization of the considered workloads
 - Counting using bitvectors is very efficient
- Temporal locality can be improved

Note:

 The search is not as efficient as FPGrowth

L1 LD hit rate	0.953
L2 LD hit rate	0.997
L2 LD misses / instruction	0.001
LD operations / instruction	0.391
ST operations / instruction	0.042
DTLB misses / instruction	0.000
ITLB misses / instruction	0.000
CPU utilization	0.446

SPADE

- Temporal locality can be improved
- Very poor CPU utilization
 - Tidlist joins are expensive

L1 LD hit rate	0.954
L2 LD hit rate	0.992
L2 LD misses / instruction	0.001
LD operations / instruction	0.538
ST operations / instruction	0.116
DTLB misses / instruction	0.012
ITLB misses / instruction	0.000
CPU utilization	0.146

FSG

- Temporal locality can be improved
- Very poor CPU utilization
 - Tidlist joins are expensive

L1 LD hit rate	0.963
L2 LD hit rate	0.985
L2 LD misses / instruction	0.002
LD operations / instruction	0.532
ST operations / instruction	0.160
DTLB misses / instruction	0.007
ITLB misses / instruction	0.000
CPU utilization	0.152

- kMeans
 - Poor CPU utilization
 - FPU intensive

L1 LD hit rate	0.979
L2 LD hit rate	0.989
L2 LD misses / instruction	0.000
LD operations / instruction	0.254
ST operations / instruction	0.013
DTLB misses / instruction	0.001
ITLB misses / instruction	0.001
CPU utilization	0.244

- vCluster
 - Poor data locality
 - Graph partitioning

L1 LD hit rate	0.882
L2 LD hit rate	0.987
L2 LD misses / instruction	0.000
LD operations / instruction	0.279
ST operations / instruction	0.083
DTLB misses / instruction	0.001
ITLB misses / instruction	0.000
CPU utilization	0.322

- C4.5
 - The sort routine has poor data locality
 - Cache-conscious sort?

L1 LD hit rate	0.60
L2 LD hit rate	0.969
L2 LD misses / instruction	0.031
LD operations / instruction	0.385
ST operations / instruction	0.131
DTLB misses / instruction	0.005
ITLB misses / instruction	0.000
CPU utilization	0.049

- ORCA
 - Similar trends

L1 LD hit rate	0.970
L2 LD hit rate	0.993
L2 LD misses / instruction	0.000
LD operations / instruction	0.335
ST operations / instruction	0.057
DTLB misses / instruction	0.003
ITLB misses / instruction	0.000
CPU utilization	0.316

Impact of hardware prefetching and SMT

	FPGrowth	MAFIA	SPADE	FSG	kMeans	vCluster	C4.5	ORCA
Speedup due to hardware pre-fetching	1.11	1.65	1.02	1.15	1.02	1.19	1.06	1.01
Speedup due to SMT	1.02	1.06	1.05	1.26	1.30	1.26	1.18	1.03

- Prefetching improves performance for MAFIA, significantly
 - AND operation on bit-vectors
 - Working set is larger than other frequent pattern mining workloads
- SMT helps the FPU intensive workloads, as it is able to mask FPU latency
 - Not easy to hide memory latency

Characterization summary

- Compute intensive
 - Integer ALU and FPU intensive
- Memory intensive
 - Limits CPU utilization
- Good spatial locality
 - Temporal locality can be improved in most cases
- SMT improves performance for FPU intensive workloads

Roadmap

- Motivation and Contributions
- Algorithms under study
- Performance characterization
- Case study:
 - Improving performance of FP-Growth
- Related work
- Conclusions

Improving performance of FPGrowth (1)

- FP-tree as an intermediate data set representation
- Pointer-based structure
- Tree traversals are bottom-up accesses
 - We only need item and parent pointer!

Improving performance of FPGrowth (2)

- Improve spatial locality
 - Node size reduction
 - Depth-first tree reordering
- Improve temporal locality
 - Path tiling
- Improve ILP
 - Thread co-scheduling on an SMT for improved cache-reuse

Speedup

- DS1 to DS4 synthetic datasets (increasing size)
- DS5 real dataset

Roadmap

- Motivation and Contributions
- Algorithms under study
- Performance characterization
- Case study:
 - Improving performance of FP-Growth
- Related work
- Conclusions

Related work

- Cache-conscious data base algorithms
 - DBMS on modern hardware
 - Ailamaki et al. [VLDB99]
 - Cache sensitive search trees and B+ trees
 - Rao and Ross [VLDB99,SIGMOD00]
 - Prefetching for B+ trees and Hash-Join
 - Chen et al. [SIGMOD01,ICDE04]
- Cache performance of data mining algorithms
 - SOM
 - Kim et al. [WWC99]
 - C4.5
 - Bradford and Fortes [WWC98]
 - Apriori
 - Parthasarathy et al. [KAIS01]
- Parallel scalability and I/O performance of data mining algorithms
 - Y. Liu et al. [PDCS04]

Conclusions

- We presented a characterization of 8 data mining algorithms
 - Compute and memory intensive
 - Temporal locality can be improved in most cases
 - Prefetching helps workloads with good spatial locality
 - SMT helps FPU intensive workloads
 - Memory intensive nature of these algorithms limits performance
- Improved performance of FPGrowth
- Effective algorithm design needs to take account both traditional complexity issues <u>and</u> modern architectural designs.

Questions?

- Thanks
 - NSF CAREER IIS-0347662
 - NSF NGS CNS-0406386
 - DOE ECPI DE-FE02475

Improving performance of FPGrowth

- FP-tree as an intermediate data set representation
- Pointer-based structure
- Tree accesses are bottom-up and are repeated for each item
 - We only need item and parent pointer!

Cache-conscious prefix tree

Header lists (for Node pointers)

0		
0	0	0
0	0	
0	0	
0	0	
0	0	

Count lists (for Node counts)

0		
0	0	0
0	0	
0	0	
0	0	
0	0	

Path tiling & Co-scheduling for cache-reuse SMT

