
A Characterization of Data Mining
Algorithms on a Modern Processor

Amol Ghoting, Gregory Buehrer, and Srinivasan Parthasarathy

Data Mining Research Laboratory,

The Ohio State University

Daehyun Kim, Anthony Nguyen, Yen-Kuang Chen,

and Pradeep Dubey

Architecture Research Laboratory,

Intel Corporation

Roadmap

• Motivation and Contributions
• Algorithms under study
• Performance characterization
• Case study:

– Improving performance of FP-Growth

• Related work
• Conclusions

Motivation

• KDD applications constitute a rapidly growing
segment of the commercial and scientific
computing domains

• Interactive process � response times
• Memory and compute intensive

• Modern architectures
– Memory wall issues

• Latency tolerating mechanisms – prefetching, SMT

• Objective here is to characterize such
applications on a modern architecture
– Can we leverage above mechanisms effectively?

Contributions
• Specifically, we study

– Performance and memory access behavior of
eight data mining algorithms

– Impact of processor technologies such as
hardware pre-fetching and simultaneous
multithreading (SMT)

– How to leverage latency-tolerating
mechanisms to improve performance of
frequent pattern mining

Roadmap

• Motivation and Contributions
• Algorithms under study
• Performance characterization
• Case study:

– Improving performance of FP-Growth

• Related work
• Conclusions

Algorithms under study (1)

• Frequent itemset mining
– Finds groups of items that co-occur frequently in a

transactional data set
– Example: “Item A and Item B are purchased together 90% of the

time”
• FPGrowth (FP-tree)
• MAFIA (Tid-list as a bit vector)

• Sequence mining
– Discovers sets of items that are shared across time
– Example: “70% of the customers who buy item A also buy item B

within 1 month”
• SPADE (Tid-list)

Algorithms under study (2)

• Graph mining
– Finds frequent sub-graphs in a graph data set

• FSG
– Tid-list

• Clustering
– Partitions data points into groups or clusters such that

intra-cluster distance in minimized and inter-cluster
distance in maximized

• kMeans and vCluster

Algorithms under study (3)

• Outlier detection
– Finds the top k points in a data set that are

most different from the remaining points
• ORCA

• Decision tree induction
– Learns a decision tree from a data set

• C4.5

Roadmap

• Motivation and Contributions
• Algorithms under study
• Performance characterization
• Case study:

– Improving performance of FP-Growth

• Related work
• Conclusions

Performance characterization

• Setup
– Intel P4 at 2.8GHz with HT technology
– 1.5GB of main memory
– 8KB L1 d-cache and 512 KB L2 u-cache
– Intel VTune Performance Analyzers to collect

performance characteristics of execution
– Synthetic/Real datasets
– All codes were obtained from the authors

Operation mix

0.1560.1630.1540.0570.1660.1770.0740.136Branch
operations /
instruction

0.3920.5170.3530.2670.6920.5930.4330.65Memory
operations /
instruction

0.2730.0870.2070.2520.0150.0040.0010.001Floating point
operations /
instruction

0.6070.7690.6200.6880.6250.6360.8220.56Integer ALU
operations /
instruction

ORCAC4.5vClusterkMeansFSGSPADEMAFIAFPGrowth

Cache and CPU performance

• FPGrowth
– Poor cache hit rates
– Large number of DTLB

misses per instruction
– Poor data locality
– Low ILP

0.119CPU utilization

0.000ITLB misses /
instruction

0.024DTLB misses /
instruction

0.135ST operations /
instruction

0.515LD operations /
instruction

0.03L2 LD misses /
instruction

0.430L2 LD hit rate

0.891L1 LD hit rate

Cache and CPU performance

• MAFIA
– Has the highest CPU

utilization of the
considered workloads

• Counting using bit-
vectors is very efficient

– Temporal locality can
be improved

• Note:
– The search is not as

efficient as FPGrowth
0.446CPU utilization

0.000ITLB misses /
instruction

0.000DTLB misses /
instruction

0.042ST operations /
instruction

0.391LD operations /
instruction

0.001L2 LD misses /
instruction

0.997L2 LD hit rate

0.953L1 LD hit rate

Cache and CPU performance

• SPADE
– Temporal locality can

be improved
– Very poor CPU

utilization
• Tidlist joins are

expensive

0.146CPU utilization

0.000ITLB misses /
instruction

0.012DTLB misses /
instruction

0.116ST operations /
instruction

0.538LD operations /
instruction

0.001L2 LD misses /
instruction

0.992L2 LD hit rate

0.954L1 LD hit rate

Cache and CPU performance

• FSG
– Temporal locality can

be improved
– Very poor CPU

utilization
• Tidlist joins are

expensive

0.152CPU utilization

0.000ITLB misses /
instruction

0.007DTLB misses /
instruction

0.160ST operations /
instruction

0.532LD operations /
instruction

0.002L2 LD misses /
instruction

0.985L2 LD hit rate

0.963L1 LD hit rate

Cache and CPU performance

• kMeans
– Poor CPU utilization

• FPU intensive

0.244CPU utilization

0.001ITLB misses /
instruction

0.001DTLB misses /
instruction

0.013ST operations /
instruction

0.254LD operations /
instruction

0.000L2 LD misses /
instruction

0.989L2 LD hit rate

0.979L1 LD hit rate

Cache and CPU performance

• vCluster
– Poor data locality

• Graph partitioning

0.322CPU utilization

0.000ITLB misses /
instruction

0.001DTLB misses /
instruction

0.083ST operations /
instruction

0.279LD operations /
instruction

0.000L2 LD misses /
instruction

0.987L2 LD hit rate

0.882L1 LD hit rate

Cache and CPU performance

• C4.5
– The sort routine has

poor data locality
• Cache-conscious sort?

0.049CPU utilization

0.000ITLB misses /
instruction

0.005DTLB misses /
instruction

0.131ST operations /
instruction

0.385LD operations /
instruction

0.031L2 LD misses /
instruction

0.969L2 LD hit rate

0.60L1 LD hit rate

Cache and CPU performance

• ORCA
– Similar trends

0.316CPU utilization

0.000ITLB misses /
instruction

0.003DTLB misses /
instruction

0.057ST operations /
instruction

0.335LD operations /
instruction

0.000L2 LD misses /
instruction

0.993L2 LD hit rate

0.970L1 LD hit rate

Impact of hardware prefetching and
SMT

1.031.181.261.301.261.051.061.02Speedup due
to SMT

1.011.061.191.021.151.021.651.11Speedup due
to hardware
pre-fetching

ORCAC4.5vClusterkMeansFSGSPADEMAFIAFPGrowth

• Prefetching improves performance for MAFIA, significantly
– AND operation on bit-vectors
– Working set is larger than other frequent pattern mining workloads

• SMT helps the FPU intensive workloads, as it is able to mask FPU
latency
– Not easy to hide memory latency

Characterization summary

• Compute intensive
– Integer ALU and FPU intensive

• Memory intensive
– Limits CPU utilization

• Good spatial locality
– Temporal locality can be improved in most

cases

• SMT improves performance for FPU
intensive workloads

Roadmap

• Motivation and Contributions
• Algorithms under study
• Performance characterization
• Case study:

– Improving performance of FP-Growth

• Related work
• Conclusions

Improving performance of
FPGrowth (1)

• FP-tree as an
intermediate data set
representation

• Pointer-based structure
• Tree traversals are

bottom-up accesses
– We only need item and

parent pointer!

a:3

p:2

c:3

f:3

m:2

c:1

b:1

p:1

f:1

b:1

b:1

r

m:1

COUNT

ITEM

NODE POINTER

CHILD POINTERS

PARENT POINTER

Improving performance of
FPGrowth (2)

• Improve spatial locality
– Node size reduction
– Depth-first tree reordering

• Improve temporal locality
– Path tiling

• Improve ILP
– Thread co-scheduling on an SMT for

improved cache-reuse

Speedup

• DS1 to DS4 - synthetic datasets (increasing size)
• DS5 – real dataset

Roadmap

• Motivation and Contributions
• Algorithms under study
• Performance characterization
• Case study:

– Improving performance of FP-Growth

• Related work
• Conclusions

Related work
• Cache-conscious data base algorithms

– DBMS on modern hardware
• Ailamaki et al. [VLDB99]

– Cache sensitive search trees and B+ trees
• Rao and Ross [VLDB99,SIGMOD00]

– Prefetching for B+ trees and Hash-Join
• Chen et al. [SIGMOD01,ICDE04]

• Cache performance of data mining algorithms
– SOM

• Kim et al. [WWC99]
– C4.5

• Bradford and Fortes [WWC98]
– Apriori

• Parthasarathy et al. [KAIS01]

• Parallel scalability and I/O performance of data mining
algorithms
– Y. Liu et al. [PDCS04]

Conclusions

• We presented a characterization of 8 data mining
algorithms
– Compute and memory intensive
– Temporal locality can be improved in most cases
– Prefetching helps workloads with good spatial locality
– SMT helps FPU intensive workloads
– Memory intensive nature of these algorithms limits performance

• Improved performance of FPGrowth

• Effective algorithm design needs to take account both
traditional complexity issues and modern architectural
designs.

Questions?

• Thanks
– NSF CAREER IIS-0347662
– NSF NGS CNS-0406386
– DOE ECPI DE-FE02475

Improving performance of
FPGrowth

• FP-tree as an
intermediate data set
representation

• Pointer-based structure
• Tree accesses are

bottom-up and are
repeated for each item
– We only need item and

parent pointer!

a:3

p:2

c:3

f:3

m:2

c:1

b:1

p:1

f:1

b:1

b:1

r

m:1

COUNT

ITEM

NODE POINTER

CHILD POINTERS

PARENT POINTER

Cache-conscious prefix tree

a

p

c

f

m

c

b

p

f

b

b

r

m

ITEM

PARENT POINTER
o
o o o

oo
oo
oo
oo

Header lists (for Node pointers)

o
o o o

oo
oo
oo
oo

Count lists (for Node counts)

Path tiling & Co-scheduling for
cache-reuse SMT

r

Tile 1 Tile N -1 Tile N

