
Massively Parallel NUMA-aware Hash Joins

Harald Lang, Viktor Leis, Martina-Cezara Albutiu,
Thomas Neumann, and Alfons Kemper

Technische Universität München
�rstname.lastname@in.tum.de

Abstract. Driven by the two main hardware trends increasing main
memory and massively parallel multi-core processing in the past few
years, there has been much research e�ort in parallelizing well-known
join algorithms. However, the non-uniform memory access (NUMA) of
these architectures to main memory has only gained limited attention
in the design of these algorithms. We study recent proposals of main
memory hash join implementations and identify their major performance
problems on NUMA architectures. We then develop a NUMA-aware hash
join for massively parallel environments, and show how the speci�c im-
plementation details a�ect the performance on a NUMA system. Our
experimental evaluation shows that a carefully engineered hash join im-
plementation outperforms previous high performance hash joins by a
factor of more than two, resulting in an unprecedented throughput of
3/4 billion join argument tuples per second.

1 Introduction

The recent developments of hardware providing huge main memory capacities
and a large number of cores led to the emergence of main memory database
systems and a high research e�ort in the context of parallel database operators.
In particular, the probably most important operator, the equi-join, has been
investigated. Blanas et al. [1] and Kim et al. [2] presented very high performing
variants of hash join outperforming prior implementations by factors.

So far, those algorithms only considered hardware environments with uni-
form access latency and bandwidth over the complete main memory. With the
advent of architectures which scale main memory via non-uniform memory ac-
cess, the need for NUMA-aware algorithms arises. While in [3] we redesigned the
classic sort/merge join for multi-core NUMA machines, we now concentrate on
redesigning the other classic join method, the hash join.

In this paper we present our approach of a NUMA-aware hash join. The core
improvement concerns the design of the build input's hash table. We optimized
its parallelism via a lock-free synchronization mechanism based on optimistic val-
idation instead of a costly pessimistic locking/latching, as illustrated in Figure 1.
Also, we devised a NUMA-optimized storage layout for the hash table in order to
e�ectively utilize the aggregated memory bandwidth of all NUMA nodes. In ad-
dition, we engineered the hash table such that (unavoidable) collisions are locally

...

...

...

...

??

...

Detect conflict
with CAS

Fig. 1: Pessimistic vs. optimistic write access to a hash table

consolidated, i.e., within the same cache line. These improvements resulted in a
performance gain of an order of magnitude compared to the recently published
multi-core hash join of Blanas et al. [1]. Meanwhile Balkesen et al. [4] also stud-
ied the results of [1] and published hardware optimized re-implementations of
those algorithms [5] which also far outperform the previous ones. They focused
their research on multi-core CPU architectures with uniform memory access,
albeit the source code contains rudimentary NUMA support which improves
performance by a factor of 4 on our NUMA machine.

Throughout the paper we refer to the hash join algorithms as described in [1]:

1. No partitioning join: A simple algorithm without partitioning phase that
creates a single shared hash table during the build phase.

2. Shared partitioning join: Both input relations are partitioned. Thereby, the
target partitions' write bu�ers are shared among all threads.

3. Independent partitioning join: All threads perform the partitioning phase
independently from each other. They �rst locally create parts of the tar-
get partitions which are linked together after all threads have �nished their
(independent) work.

4. Radix partitioning join: Both input relations are radix-partitioned in par-
allel. Thereby, the partitioning is done in multiple passes by applying the
algorithm recursively. The algorithm was originally proposed by Manegold
et al. [6] and further revised in [2].

We started to work with the original code provided by Blanas et al. on a
system with uniform memory access, on which we were able to reproduce the
published results. By contrast, when executing the code on our NUMA system
(which is described in section 4) we noticed a decreased performance with all
algorithms. We identi�ed three major problems of the algorithms.

1. Fine-grained locking while building the hash table reduces parallelism,
which is not just NUMA related, but becomes more critical with an increas-
ing number of concurrently running threads.

2. Extensive remote memory accesses to shared data structures (e.g., the
shared partitions' write bu�ers of the radix partitioning join) which reside
within a single NUMA node. This results in link contention and thus de-
creased performance.

Partition
Build

Probe
Overall

0

5

10

15

20

25

1 Node 4 Nodes

M
tu
p
le
s
p
e
r
se
c
o
n
d

(a) NO

Partition
Build

Probe
Overall

0

20

40

60

80

100

120

140

1 Node 4 Nodes

M
tu
p
le
s
p
e
r
se
c
o
n
d

(b) Shared

Partition
Build

Probe
Overall

0

20

40

60

80

100

120

140

160

1 Node 4 Nodes

M
tu
p
le
s
p
e
r
se
c
o
n
d

(c) Independent

Partition
Build

Probe
Overall

0

50

100

150

200

250

1 Node 4 Nodes

M
tu
p
le
s
p
e
r
se
c
o
n
d

(d) Radix

Fig. 2: Performance of the algorithms presented in [1] on a NUMA system, when
8 threads are restricted to 1 memory node, or distributed over 4 nodes

3. Accessing multiple memory locations within a tight loop increases
latencies and creates additional overhead by the cache coherence protocol
which is more costly on NUMA systems.

In the following section we examine the e�ects on the given implementations
that are mostly caused by non-uniform memory accesses. In section 3 we focus on
how to implement a hash join operator in a NUMA-aware way. Here we address
the main challenges for hash join algorithms on modern architectures: Reduce
synchronization costs, reduce random access patterns to memory, and optimize
for limited memory bandwidth. The results of the experimental evaluations are
discussed in section 4.

2 NUMA E�ects

To make the NUMA e�ects visible (and the changes comparable) we re-ran
the original experiments with the uniform data set in two di�erent con�gura-
tions. First we employed eight threads on eight physical cores within a single
NUMA node, thereby simulating a uniform-memory-access machine. Then, we
distributed the threads equally over all 4 nodes, i.e., 2 cores per node.

Figure 2 shows the performance of the individual hash join implementations.
It gives an overview how the join phases are in�uenced by NUMA e�ects. The
performance of all implementations decreases. Only the shared-partitioning and
the independent-partitioning algorithms show a slightly better performance dur-
ing the probe phase. The no-partitioning and shared-partitioning algorithms are
most a�ected at the build and the partition phase, respectively. In both phases
they extensively write to shared data structures. The build performance drops
by 85% and the performance of the partitioning phase by 62%. The overall per-
formance decreases by 25% in average in the given scenario.

In contrast to the original results we can see that the build performance is
always slower than the probe performance, which we provoked by shu�ing the
input. However, due to synchronization overhead it is reasonable that building

a hash table is slower than probing it. Therefore, the build phase becomes more
important, especially when the ratio |R|/|S| becomes greater. This is the reason
why we pay additional attention to the build phase in the following section.

3 NUMA-aware Hash Join

3.1 Synchronization

Synchronization in a hash join with a single shared hash table is intensively
needed during the build phase where the build input is read and the tuples are
copied to their corresponding hash buckets. Here it is guaranteed that the hash
table will not be probed until the build phase has been �nished. Additionally,
it will no longer be modi�ed after the build phase has been �nished. Therefore
no synchronization is necessary during the later probe phase. Another crucial
part are the write bu�ers which are accessed concurrently. Especially the shared
partitioning algorithm makes heavy use of locks during the partitioning phase
where all threads write concurrently to the same bu�ers. This causes higher lock
contention with an increasing number of threads. In this paper we only focus on
the synchronization aspects of hash tables.

There are many ways to implement a thread safe hash table. One funda-
mental design decision is the synchronization mechanism. The implementation
provided by Blanas et al. [1] uses a very concise spin-lock which only reserves
a single byte in memory. Each lock protects a single hash bucket, whereas each
bucket can store two tuples. In the given implementation, all locks are stored
within a contiguous array. Unfortunately, this design decision has some draw-
backs that a�ect the build phase. For every write access to the hash table, we
have to access (at least) two di�erent cache lines. Whereas, the one that holds
the lock is accessed twice. Once for acquiring and once for releasing the lock after
the bucket has been modi�ed. This greatly increases memory latencies and has
been identi�ed as one of the three major bottlenecks (listed in section 1). We can
reduce the negative e�ects by modifying the buckets' data structure so that each
bucket additionally holds its corresponding lock. Balkesen et al. [4] also identi-
�ed this as a bottleneck on systems with uniform memory access. Especially on
NUMA systems, we have to deal with higher latencies and we therefore expect
an even higher impact on the build performance. In the later experimental eval-
uation (Section 4) we show how the lock placement a�ects the performance of
our own hash table. Thereby, we also consider the case, where a single lock is
responsible for multiple hash buckets.

For our hash table we use an optimistic, lock-free approach instead of locks.
The design was motivated by the observation that hash tables for a join are
insert-only during the build phase, then lookup-only during the probe phase,
but updates and deletions are not performed. The buckets are implemented as
triples (h, k, v), where h contains the hash value of the key k and v holds the value
(payload). In all our experiments we (realistically for large databases) use 8 bytes
of memory for each component. We use h as a marker which signals whether a
bucket is empty or already in use. During the build phase, the threads �rst check

if the marker is set. If the corresponding bucket is empty they exchange the value
zero by the hash value within an atomic Compare-and-Swap operation (CAS).
If meanwhile the marker has already been set by another thread, the atomic
operation fails and we linearly probe, i.e., try again on the next write position.
Once the CAS operation succeeds the corresponding thread implicitly has ex-
clusive write access to the corresponding bucket and no further synchronization
is needed for storing the tuple. We only have to establish a barrier between the
two phases to ensure that all key-value pairs have been written before we start
probing the hash table.

3.2 Memory Allocation

In this section we describe the e�ects of local and remote memory access as well
as what programmers have to consider when allocating and initializing main
memory. On NUMA systems we can directly access the whole available memory,
but we (at least) have to di�erentiate between local and remote memory. Access-
ing local memory is cheaper than accessing remote memory. The costs depend on
how the NUMA partitions are connected and therefore this is hardware depen-
dent. In our system the four nodes are fully connected though we always need
to pass exactly one QPI link (hop) when accessing remote memory. By default
the system allocates memory within that node the requesting thread is running
on. This behavior can be changed by using the numactl tool. Especially the
command line argument �interleave=all tells the operating system to inter-
leave memory allocations among all available nodes, an option which non-NUMA
aware programs may bene�t from. It might be an indicator for optimization po-
tentials if a program runs faster on interleaved memory, whereas NUMA-aware
programs may su�er due to loss of control over memory allocations. We show
these e�ects in our experiments.

For data intensive algorithms we have to consider where to place the data the
algorithm operates on. In C++memory is usually allocated dynamically using the
new operator or the malloc function. This simply reserves memory but as long
as the newly allocated memory has not been initialized (e.g., by using memset)
the memory is not pinned to a speci�c NUMA-node. The �rst access places the
destination page within a speci�c node. If the size of the requested memory
exceeds the page size, the memory will then only be partially pinned and does
not a�ect the remaining untouched space. A single contiguous memory area can
therefore be distributed among all nodes as long as the number of nodes is less
than or equal to the number of memory pages. This can be exposed to keep
the implementations simple by just loosing a reasonable amount of control and
granularity with respect to data placement.

For evaluation we started with a naive implementation which we improved
step-by-step. Our goal was to develop a hash join implementation that performs
best when using non-interleaved memory because running a whole DBMS process
in interleaved mode might not be an option in real world scenarios. We also
avoided to add additional parameters to the hash join, especially we do not want
to constrain our implementation to a particular hardware layout. We consider

the general case that the input is equally distributed across the nodes and the
corresponding memory location in known to the �nearest� worker thread. We
will show that interleaved memory increases performance of non-NUMA-aware
implementations, but we will also show in the following section that our hash
join performs even better when we take care about the memory allocations by
ourselves than leaving it to the operating system.

3.3 Hash Table Design

Hash tables basically use one of two strategies for collision handling: chaining
or open addressing. With chaining, the hash table itself contains only pointers,
buckets are allocated on demand and linked to the hash table (or previous buck-
ets). With open addressing, collisions are handled within the hash table itself.
That is, when the bucket that a key hashes to is full, more buckets are checked
according to a certain probe sequence (e.g., linear probing, quadratic probing,
etc.). For open addressing we focus on linear probing as this provides higher
cache locality than other probe sequences, because a collision during insert as
well as during probing likely hits the same cache line. Both strategies have their
strengths. While chaining provides better performance during the build phase,
linear probing has higher throughput during the probe phase. For real world
scenarios the build input is typically (much) smaller than the probe input. We
therefore chose to employ linear probing for our hash join implementation.

3.4 Implementation Details

In listing 1.1 we sketch the insert function of our hash table. In line 2 we compute
the hash value of the given key (more details on hash functions in Section 4.3)
and in line 3 the bucket number is computed by masking all bits of the hash
value to zero that would exceed the hash table's size. The size of the hash table
is always a power of two and the number of buckets is set to at least twice the
size of the build input. Thus, for n input tuples we get the number of buckets
b = 2dlog2(n)e+1 and themask = b−1. The relatively generous space consumption
for the hash table is more than compensated by the fact that the probe input,
which is often orders of magnitude larger than the build input, can be kept
in-place. The radix join, in contrast, partitions both input relations.

Listing 1.1: Atomic insert function

1 insertAtomic(uint64_t key, uint64_t value) {

2 uint64_t hash = hashFunction(key);

3 uint64_t pos = hash & mask;

4 while (table[pos].h != 0

5 || (! CAS(&table[pos].h, 0, hash))) {

6 pos = (pos + 1) & mask;

7 }

8 table[pos].k = key;

9 table[pos].v = value;

10 }

Pthread-Lock

Spin-Lock

Spin-Lock in buckets

Lock-Free

No Sync

0 50 100 150 200 250 300 350 400 450 500

M tuples per second

Fig. 3: Build performance using di�erent synchronization mechanisms

Within the condition of the while loop (line 4 to 7) we �rst check, if the bucket
is empty. If this is the case the atomic CAS function is called as described in
section 3.1. If either the hash value does not equal zero 1 or the CAS function
returns false, the bucket number (write position) is incremented and we try
again. Once the control �ow reaches line 8 the current thread has gained write
access to the bucket at position pos where the key-value pair is stored.

The notable aspect here is that there is no corresponding operation to giv-
ing up an acquired lock. Usually a thread acquires a lock, modi�es the bucket,
and �nally gives up the lock, which establishes a happened-before relationship
between modi�cation and unlocking. In our implementation the CPU is free to
defer the modi�cation or to execute them in an out of order manner because we
do not have any data dependencies until the probe phase starts. Further, we op-
timized for sequential memory accesses in case of collisions by applying the open
addressing scheme with a linear probing sequence for collision resolution. This
strategy leads to a well predictable access pattern which the hardware prefetcher
can exploit.

4 Evaluation

We conducted our experiments on a Linux server (kernel 3.5.0) with 1 TB main
memory and 4 Intel Xeon X7560 CPUs clocked at 2.27GHz with 8 physical
cores (16 hardware contexts) each, resulting in a total of 32 cores and, due
to hyperthreading, 64 hardware contexts. Unless stated otherwise we use all
available hardware contexts.

4.1 Synchronization

In our �rst experiment we measure the e�ect of di�erent synchronization mecha-
nisms on build performance. To reduce measurement variations we increased the

1
hashFunction sets the most signi�cant bit of the hash value to 1 and thus ensures
no hash value equals 0. This limits the hash domain to 263, but does not increase
the number of collisions, since the least signi�cant bits determine the hash table
position.

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

0

50

100

150

200

250

300
Spin-Lock Spin-Lock in buckets Pthread-Lock

number of buckets / number of locks

M
tu

p
le

s
p
e
r
se

co
n
d

(1)

(2)

(3)

Fig. 4: E�ects of lock-striping on the build phase

cardinality of the build input R to 128M tuples. Again we used a uniform data
set with unique 64 bit join keys. The results are shown in Figure 3. We compared
the original spin-lock implementation with the POSIX-threads mutex and our
lock-free implementation. While the spin-lock and the pthreads implementation
o�er almost the same performance, our lock-free implementation outperforms
them by factor 2.3. We can also see a performance improvement of 1.7 x when
placing the lock within the hash bucket instead of placing all locks in a separate
(contiguous) memory area. The hatched bar (labeled �No Sync�) represents the
theoretical value for the case where synchronization costs would be zero.

In the second experiment we reduce the number of locks n that are synchro-
nizing write accesses to the hash buckets. We start with one lock per bucket and
successively halve the number of locks in every run. Therefore a lock becomes
responsible for multiple hash buckets (�lock striping�). In our case these are the

neighboring buckets. The ith lock is responsible for the buckets
[
i · bn , (i+1) · bn

)
,

where n is the number of locks, b is the total number of buckets and b ≥ 2 · |R|
∧ b is a power of two.

In Figure 4 we can see that the build performance can be signi�cantly in-
creased by reducing the number of locks. Especially when using the spin-lock it
shows a steep growth in the beginning. Blanas' spin-lock implementation only
needs a single byte and therefore a single cache line can hold up to 64 locks.
Reducing the total number of locks leads to fewer cache misses when locks are
acquired (marker (1) in the plot). Because we implemented linear probing it
is very unlikely that a hash collision leads to a cache miss when acquiring the
lock of the neighboring bucket. On the other hand, the spin-lock performance
drops signi�cantly when multiple threads access locks that reside in the same
cache-line (2). Even if there is low lock contention, manipulating the same cache
line causes cache coherency misses in order to keep the caches coherent. This
e�ect cannot be observed when the locks are stored in the buckets. Here, we
just can see the natural performance drop due to higher lock contention (3). In

contrast to the 1-byte spin-lock, we can not observe those caching e�ects with
the pthreads mutex. This is due to the fact that a single lock uses 40 bytes.

Our experiment also revealed that using lock striping together with locks
that are stored in the hash buckets is very cache ine�cient. The more buckets
a single lock is responsible for, the higher is the propability that a single hash
table access incur two cache line loads (for the lock and for the bucket).

The experiments con�rmed that an e�cient lock implementation is crucial for
the build phase. It also showed that protecting multiple buckets with a single lock
indeed can have positive e�ects on the performance but cannot compete with a
lock-free implementation. Especially the �rst two data points of the �Spin-Lock
in buckets� curve show that on NUMA architectures writing to two di�erent
cache lines within a tight loop can cause crucial performance di�erences.

4.2 Memory Allocation

For the experimental evaluation of the di�erent memory allocation strategies
we consider the build and the probe phase separately. We focus on how they
are a�ected by those strategies, but we also plot the overall performance for
completeness. To get good visual results we set the cardinality of both relations
to the same value (128M). During all experiments we only count and do not
materialize the output tuples. We use the following four setups:

1) non-NUMA-aware: Allocation of the input data and the hash table takes
place within a single NUMA node.

2) interleaved: Same as 1) but running in �interleave=all mode.
3) NUMA-aware / dynamic: Both input relations are allocated and initial-

ized thread-local whereas the hash tables' memory is initialized dynamically
during runtime.

4) NUMA-aware: As in 3), both relations are placed thread-local and the
memory of the hash table is (manually) initialized across all NUMA nodes in
chunks of page size.

Figure 5 shows the results of all four experiments. We measured the perfor-
mance of the build and probe phase as well as the overall performance in M
tuples per second. The distributed memory allocation of the hash table in 4) is
done as follows: We divide the size of the hash table into i equally sized chunks
of size 2MB and let them be initialized by all threads in parallel where the ith

chunk is �memsetted� by thread i mod #threads.
We can see an improvement by a factor of more than three by just running

the non-NUMA-aware implementation on interleaved memory. When comparing
the setup 3) with 2) a decreased performance during the build phase can be
seen which is caused by the dynamic allocation of the hash tables' memory.
Finally the 4th setup shows the best performance. Our own implementation,
that simulates an interleaved memory only for the hash tables' memory achieves
(approximately) the same build performance as in the second setup, but we can
increase the performance of the probe phase by additional 188mtps, because we
are not enforced to read the probe input from interleaved memory.

Build Probe Overall
Performance

0

200

400

600

800

1000

1) Allocation within a single NUMA node
2) Interleaved memory
3) Thread-local input +dynamic HT allocation
4) Thread-local input +distributed HT allocation

M
tu
p
le
s
p
e
r
se
co
n
d

Fig. 5: Experimental results of di�erent data placement / memory allocation
strategies

Performance Comparisons
Setup, |R|/|S| our NO Radix [5] VectorWise

16M / 16M 503 mtps 147 mtps
16M / 160M 742 mtps 346 mtps
32M / 32M 505 mtps 142 mtps
32M / 320M 740 mtps 280 mtps
1G / 1G 493 mtps -
1G / 10G 682 mtps - 50 mtps

Table 1: Performance comparisons NO vs. Radix, using a uniform data set
(key/foreign-key join)

We assume that in practice the relations are (equally) distributed across all
memory partitions and we only need to assign the nearest input to each thread.

Table 1 shows comparisons with the Radix join implementation of [5]. Unfor-
tunately, the Radix implementation was not able to handle extremely large work-
loads such as 1G/ 10G (176GB of data). For comparison, the TPC-H record
holder VectorWise achieves 50 mtps for this large join [3].

4.3 Hash Functions

In accordance to previous publications, and in order to obtain comparable per-
formance results, we used the modulo hash function (implemented using a logical
AND, as discussed in Section 3.4) in all experiments. In this section we study
the in�uence of hash functions on join performance. On the one hand, modulo
hashing is extremely fast and has good join performance in micro benchmarks.
On the other hand, it is quite easy to construct workloads that cause dramatic
performance degradation. For example, instead of using consecutive integers, we
left gaps between the join keys so that only every tenth value of the key space was

used. As a consequence, we measured a 84% decrease performance for the NO
implementation of [5]. Whereas our implementation is a�ected by power-of-two
gaps, and slows down by 63% when we use a join key distance of 16.

We evaluated a small number of hash functions (Murmur64A, CRC, and
Fibonacci hashing) with our hash join implementation. It turned out that the
Murmur hash always o�ers (almost) the same performance independent from the
tested workload. At the same time it is the most expensive hash function, which
reduces the overall join performance by 36% (over modulo hashing with consec-
utive keys). The CRC function is available as a hardware instruction on modern
CPUs with the SSE 4.2 instruction set and therefore reduces the performance
by less than 1% in most cases. However, it is less robust than Murmur, for a
small number of workloads it caused signi�cantly more collisions than Murmur.
The Fibonacci hash function o�ered almost the same performance as modulo,
but unfortunately had the same weaknesses.

Real-world hashing naturally incurs higher cost, but does not a�ect all al-
gorithms equally. Employing a costly hash function a�ects the Radix join more
than the NO join, because the hash function is evaluated multiple times for
each tuple (during each partitioning phase, and in the �nal probe phase). Fi-
nally, using more realistic hash functions makes the results more comparable to
algorithms that do not use hashing like sort/merge joins.

5 Related Work

Parallel join processing has been investigated extensively, in particular since the
advent of main memory databases. Thereby, most approaches are based on the
radix join, which was pioneered by the MonetDB group [7, 6]. This join method
improves cache locality by continuously partitioning into ever smaller chunks
that ultimately �t into the cache. Ailamaki et al. [8] improved cache locality
during the probing phase of the hash join using software controlled prefetching.
Our hash join virtually always incurs only one cache miss per lookup or insert,
due open addressing.

An Intel/Oracle team [2] adapted hash join to multi-core CPUs. They also
investigated sort-merge join and hypothesized that due to architectural trends
of wider SIMD, more cores, and smaller memory bandwidth per core sort-merge
join is likely to outperform hash join on upcoming chip multiprocessors. Blanas
et al. [1, 9] and Balkesen et al. [4, 5] presented even better performance results
for their parallel hash join variants. However, these algorithms are not optimized
for NUMA environments.

Albutiu et al. [3] presented a NUMA-aware design of sort-based join algo-
rithms, which was improved by Li et al. [11] to avoid cross-tra�c.

6 Summary and Conclusions

Modern hardware architectures with huge main memory capacities and increas-
ing number of cores have led to the development of highly parallel in-memory

algorithms for main memory database systems. The focus thereby is on hash-
based algorithms [1, 2]. However, prior work did not yet consider architectures
with non-uniform memory access. We identi�ed the challenges that NUMA poses
to hash join algorithms and based on our �ndings we developed our own algo-
rithm based on optimistic validation instead of a costly pessimistic locking. Our
algorithm distributes data carefully in order to provide balanced bandwidth on
the inter-partition links. At the same time, no architecture-speci�c knowledge
is required, i.e., the algorithm is oblivious to the speci�c NUMA topology. Our
hash join outperforms previous parallel hash join implementations on a NUMA
system. We further found that our highly parallel shared hash table implementa-
tion performs better than radix partitioned variants because these incur a high
overhead for partitioning. This is the case although hash joins inherently do not
exhibit cache locality as they are inserting and probing the hash table randomly.
But at least we could avoid additional cache misses due to collisions by employ-
ing linear probing. We therefore conclude that cache e�ects are less decisive for
multi-core hash joins. On large setups we achieved a join performance of more
than 740M tuples per second, which is more than 2 x compared to the best
known radix join published in [5] and one order of magnitude faster than the
best-in-breed commercial database system VectorWise.

References

1. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join
algorithms for multi-core CPUs. In: SIGMOD. (2011)

2. Kim, C., Sedlar, E., Chhugani, J., Kaldewey, T., Nguyen, A.D., Blas, A.D., Lee,
V.W., Satish, N., Dubey, P.: Sort vs. hash revisited: Fast join implementation on
modern multi-core CPUs. PVLDB 2 (2009)

3. Albutiu, M.C., Kemper, A., Neumann, T.: Massively parallel sort-merge joins in
main memory multi-core database systems. PVLDB 5 (2012)

4. Balkesen, C., Teubner, J., Alonso, G., Özsu, T.: Main-memory hash joins on multi-
core CPUs: Tuning to the underlying hardware. In: ICDE. (2013)

5. Balkesen, C., Teubner, J., Alonso, G., Özsu, T.: Source code. (http://www.
systems.ethz.ch/sites/default/files/multicore-hashjoins-0_1_tar.gz)

6. Manegold, S., Boncz, P.A., Kersten, M.L.: Optimizing Main-Memory Join on
Modern Hardware. IEEE Trans. Knowl. Data Eng. 14 (2002)

7. Boncz, P.A., Manegold, S., Kersten, M.L.: Database architecture optimized for the
new bottleneck: Memory access. In: VLDB. (1999)

8. Chen, S., Ailamaki, A., Gibbons, P.B., Mowry, T.C.: Improving hash join perfor-
mance through prefetching. ACM Trans. Database Syst. 32 (2007)

9. Blanas, S., Patel, J.M.: How e�cient is our radix join implementation? http:

//pages.cs.wisc.edu/~sblanas/files/comparison.pdf (2011)
10. Porobic, D., Pandis, I., Branco, M., Tözün, P., Ailamaki, A.: OLTP on hardware

islands. PVLDB 5 (2012)
11. Li, Y., Pandis, I., Mueller, R., Raman, V., Lohman, G.: NUMA-aware algorithms:

the case of data shu�ing. In: CIDR. (2013)

