
An Evaluation of Strict Timestamp Ordering Concurrency
Control for Main-Memory Database Systems
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Abstract: With the fundamental change of hardware technology, main-memory
database systems have emerged as the next generation of DBMS. Thus, new meth-
ods to execute partitionable transactions in a serial, lock-free mode have been inves-
tigated and successfully employed, for instance in H-Store or HyPer. Although these
techniques allow for unprecedentedly high throughput for suitable workloads, their
throughput quickly diminishes once unsuitable transactions, for instance those cross-
ing partition borders, are encountered. Still, little research concentrates on the overdue
re-evaluation of traditional techniques, that do not rely on partitioning.

Therefore, this paper studies strict timestamp ordering (STO), a “good old” tech-
nique, in the context of modern main-memory database systems built on commodity
hardware with high memory capacities. We show that its traditional main drawback
– slowing down reads – has a much lower impact in a main-memory setting than in
traditional disk-based DBMS. As a result, STO is a competitive concurrency con-
trol method which outperforms the partitioned execution approach, for example in the
TPC-C benchmark, as soon as a certain percentage of the workload is partition cross-
ing.

1 Introduction

In recent years, hardware with large capacities of main memory has become available,
leading to a renewed interest in main-memory database systems. Here, page faults no
longer need to be compensated by executing parallel transactions, which allows for re-
moving many synchronization components that are indispensable in traditional, disk-based
database systems. Harizopoulos et al. [HAMS08] found, that most time spent executing a
transaction is actually used by components like buffer manager, lock manager and latch-
ing.

Without the need for hiding I/O latencies, other execution paradigms like serial partitioned
execution, as first investigated by Kallman et al. [KKN+08] in their H-Store prototype,
become viable alternatives to traditional locking. Here, transactions are executed sequen-
tially on each partition of the data without the need for any concurrency control at all.

Even though a sequential execution approach leads to outstanding performance when the
data and workload allow for partitioning in a suitable way [KKN+08, KN11], partition
crossing transactions quickly lead to a deterioration in throughput, even on a single node
without additional network delays. Current implementations oftentimes rely on coarse
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Figure 1: The performance in the TPC-C benchmark while varying the number of
partition-crossing transactions

granularity synchronization mechanisms, like the full database lock used in the HyPer
DBMS prototype [KN11].

In this paper, we reinvestigate the “good old” timestamp-based concurrency control as
investigated in [BHG87, Car83] decades ago. Having data solely in main-memory, major
drawbacks of the timestamp approach – like having to write a timestamp for every read –
have to be re-evaluated.

The remainder of this paper is structured as follows: In Section 2, we will introduce both
partitioned serial execution, as well as the strict timestamp ordering approach (STO) eval-
uated in this work. Section 3 describes our implementation of STO inside the HyPer
database system prototype and highlights the most severe adjustments required when us-
ing timestamp-based concurrency control mechanisms. We offer a thorough evaluation
of STO, as well as a comparison of STO with partitioned serial execution in Section 4.
Section 5 concludes this paper.

2 Formal Background

Before discussing the implementation of strict timestamp ordering in HyPer, we will intro-
duce the theoretical foundation of the strict timestamp ordering algorithm. Additionally,
we outline serial execution and partitioned execution, which we will compare strict times-
tamp ordering against in the evaluation section.



2.1 Serial Execution

Traditional disk-based database systems frequently rely on locking to achieve serializabil-
ity among concurrent transactions. When reading or writing data to disk, this is essential
since I/O latency need to be masked. In main-memory database systems, however, the
need for masking I/O misses no longer exists allowing for the efficient serial execution of
suitable workloads without traditional concurrency control.

H-Store [KKN+08] pioneered the idea of removing buffer management, as well as locking
and latching from main-memory database systems, allowing for the efficient execution
of partitionable workloads with minimal overhead. This concept, which we refer to as
serial execution, has since been picked up by other main-memory database systems, for
instance the commercialized version of H-Store named VoltDB [Vol10] as well as our
HyPer research prototype DBMS [KN11].

Unlike VoltDB, HyPer also supports mixed OLTP/OLAP applications by separating the
two disparate workloads using virtual memory snapshotting [MKN11]. Here, we concen-
trate only on the OLTP synchronization.

2.2 Partitioned Execution

Scaling the transactional throughput when using serial execution is possible by running
multiple serial execution threads in parallel for disjoint partitions of the data. As shown
by Curino et al. [CZJM10], some workloads can be partitioned such that cases where a
transaction has to access multiple partitions are rare. For the TPC-C benchmark1, for
instance, only 12.5% of all transactions access more than one partition of the data.

Other main memory database systems, which rely on partitioning, disallow the execution
of transactions which might access more than one partition of the data. In contrast, HyPer
executes transactions assuming that they will operate on only one data partition. If a
transaction accesses data outside its own partition, a database lock is acquired causing
transactional processing to fall back into serial execution mode without concurrency on
separate partitions. After the transaction has finished, the database lock is released and
concurrent execution on all partitions of the database is resumed. We call this execution
mode partitioned execution or PE for short.

2.3 Strict Timestamp Ordering (STO)

Timestamp-based concurrency control uses timestamps for synchronization instead of
locks. From the outside it seems that the transactions are executed sequentially accord-
ing to their starting time. In other words, the scheduler generates serializable schedules
that are equal to the serial execution of the transactions ordered by their starting time.

1See http://www.tpc.org/tpcc/



To achieve this, the transaction manager assigns a timestamp TS(Ti) to each transaction
Ti at its start and guarantees that the timestamp of transactions that started later is always
higher than the timestamps of all earlier transactions. These timestamps are used to guar-
antee the Timestamp Ordering (TO) rule: if two operations pi(x) and qj(x) are in conflict,
i.e. they access the same tuple x and at least one operation is a write operation, then the
operation of the transaction with the lower timestamp is always executed first. Thereby,
the resulting schedule is equal to the serial execution of the transactions ordered by their
timestamp and, as a consequence, it is serializable.

In order to enforce the TO rule, the database system has to save the timestamp of the
transaction which has last read tuple x, and the timestamp of the transaction which has
last changed tuple x. In the following, these timestamps are denoted as readTS(x) and
writeTS(x).

With these meta data, the transaction manager is able to perform the following test, which
enforces the TO rule:

1. ri(x): Ti wants to read x:

(a) If TS(Ti) < writeTS(x), the TO rule would be violated. Thus, the transac-
tion Ti has to be aborted.

(b) Otherwise, allow access and set
readTS(x) := max(TS(Ti), readTS(x)).

2. wi(x): Ti wants to write x:

(a) If TS(Ti) < readTS(x) or TS(Ti) < writeTS(x),
the TO rule would be violated. Thus, the transaction Ti has to be aborted.

(b) Otherwise, allow access and set writeTS(A) := TS(Ti).

We require that write operations on the same data tuple are executed atomically and write
and read operations are mutually excluded.

According to [BHG87] and [CS84], this algorithm is called Basic Timestamp Ordering
(BTO). It generates serializable schedules, but does not guarantee recoverability. In fact,
aborted transactions can cause inconsistency, as another transaction which accessed dirty
data could have already committed.

As recoverability is essential for database systems, we employ an extension of Basic
Timestamp Ordering called Strict Timestamp Ordering (STO) [BHG87]. STO does not
only provide recoverable schedules, but also strict schedules. That means, that no uncom-
mitted changes of a running transaction are overwritten or read by another transaction.
This is prevented by the use of a dirty bit. Each transaction marks tuples with uncommit-
ted changes by setting the dirty bit and other transactions accessing such a tuple have to
wait until the dirty bit is unset, which happens when the previous transaction commits or
aborts.

In order to avoid deadlocks, the transaction manager ensures that a transaction never waits
for younger transactions. Thereby, cyclic waiting is prevented, which is one of the neces-
sary Coffman conditions for a deadlock [CES71].



3 Implementation of STO

In order to evaluate the performance of STO, we used the database system HyPer [KN11]
to implement the described algorithm. HyPer is an in-memory, high-performance hy-
brid OLTP and OLAP DBMS that originally relies on sequential execution for transaction
processing. To further improve transaction processing throughput, transactions are not
interpreted but are compiled to machine code using the LLVM compiler back-end. This
removes interpretation overhead at runtime and improves hardware optimizations, for ex-
ample branch prediction [Neu11].

The implementation of STO in HyPer required not only a new transaction manager, but
also architectural modifications because of concurrency inside partitions. These impacts of
STO on the architecture will be described in Section 3.2. Before that, the basic data struc-
tures needed by the STO implementation are presented to provide a better understanding
of the implementation.

3.1 Data Structures

Besides the read and write timestamps, further data structures were necessary. To avoid
that dirty data is read or overwritten, a dirty bit is needed. Furthermore, because of reasons
presented in Section 3.2.1, our implementation requires a delete flag. And last but not
least, a commit log was needed, which is responsible for unsetting the dirty bits after a
transaction has aborted or committed.

3.1.1 Timestamp Codes

In order to save memory, we used 32-bit values for the read and write timestamps and
encoded the dirty bit and delete flag into the write timestamp. The highest bit is reserved
for the dirty bit and the delete flag is set when all other 31 bits of the write timestamp are
set. This design has two advantages compared to a separate delete flag and dirty bit:

• As the write timestamp has to be checked anyway, the check for the dirty bit does not
require an additional memory operation, as it is embedded in the write timestamp.
Furthermore, checking the dirty bit and the admissibility criteria concerning the
write timestamp can be done in one arithmetic operation.

• The delete flag design is beneficial, as it makes a separate check for tuple deletion
unnecessary. When the delete flag is set, the write timestamp is equal to the high-
est possible timestamp. So, all transactions accessing the deleted tuple will abort
without an additional check of the delete flag.

As the transactions’ timestamps have to be assigned in strictly increasing order, the size of
the timestamp variables determines when the timestamp arrays have to be reset. Assuming
a database that processes 250 000 transactions per second, which is only feasible in a lab



setting – in a real-world scenario, this throughput would simulated simply too many orders
than can realistically be expected by the current world population. Despite, the timestamps
would have to be reset only after approximately 2 hours in this scenario, which could be
achieved by rolling back running transactions, resetting all timestamp variables to 0 and
restarting the transactions. For domains, where a short delay of the transaction processing
is not tolerable, 64-bit timestamps could be used. Thereby, no reset of the timestamps is
required, as the timestamp values would last for many years.

3.1.2 Commit Log

The commit log is necessary for unsetting the dirty bits and is maintained for each running
transaction. Whenever a transaction sets the dirty bit of a tuple and it was not set before,
the tuple identifier is inserted into the commit log. After a transaction aborts or commits,
the commit log is processed and the transaction’s dirty bits are unset. As a tuple identifier
is only ever inserted once into the commit log and as each tuple identifier cannot be in two
different commit logs at the same time, it need not be checked whether the dirty bit is set
and originates from the current transaction, making unsetting the dirty bit cheap.

3.2 Architectural Details

By contrast to partitioned execution, strict timestamp ordering allows multiple concurrent
transactions inside partitions. We will briefly discuss the necessary architectural adaption
in this section.

3.2.1 Undoing Deletes

One problem is that concurrency on partition level could violate recoverability. When a
transaction aborts, all its effects have to be undone. If the transaction has deleted tuples,
they have to be reinserted. However, this could fail in a naive implementation because of
violations of unique keys, if a concurrent transaction has inserted a tuple with the same
key in the meantime. Thus, the transaction could not be aborted and recoverability would
be violated.

We have solved this problem by deferring the removal of tuples to the commit phase of a
transaction. In the meantime, it is marked with a delete flag, so that the current transaction
skips this tuple and other transactions trying to access this tuple will wait until the deleting
transaction has committed or aborted which is a result of the dirty bit being set as well.

3.2.2 Index Structures

Index structures need to be refitted to be suitable for concurrent access. Optimizing index
structures for concurrency is an active topic of research. Transactional memory implemen-
tations [DFGG11, DGK09], as well as relativistic programming [TMW10, HW10] provide



promising results on modern hardware.

In our implementation, due to short transaction runtimes, we use full index latching to
synchronize the access to index structures. When a transaction accesses a partition, it
acquires the latch of its index and releases the latch when it has finished processing the
partition’s data.

This approach can cause contention, as it was shown that traditional latching can involve
a major performance bottleneck [HAMS08]. We were able to achieve reasonable results
by optimizing the latch implementation used in our prototype. Concretely, by using an
extension of the MCS lock [MCS91], we were able to boost our STO implementation
by a factor of 2 compared to traditional latching using the lock implementation from the
pthreads library.

4 Evaluation

In this Section, we will evaluate the strict timestamp ordering approach and compare its
performance to regular partitioned serial execution. All benchmarks were conducted on
a Dell PowerEdge R910 server with 4x Intel Xeon X7560 processors each containing 8
cores clocked at 2.26GHz. The server is equipped with 1TB of main-memory split into
64x 16GB RDIMMs connected to four separate memory controllers interconnected by
Intel’s Quick Path Interconnect technology. For our evaluation, redo logging was disabled
for all approaches.

4.1 Read versus Write Performance

One reason, why STO performed poorly in disk-resident database systems, is that it sig-
nificantly slowed down read operations: Updating the read timestamp caused additional
disk latency. In memory resident database systems, I/O latency is not dominating the
performance any more. Therefore, we re-evaluated the read performance of STO.

For this, we designed a microbenchmark. It consists of one large table with 100 million
tuples. Each tuple consists of two attributes: a 64-bit integer key and a 64-bit integer value.
A hash map is used as primary index. The table is divided into 128 partitions by using the
Fibonacci hash on the primary key. To avoid conflicts, each thread has its own set of tuples,
which we call the threads workset.

Concretely, the first thread accesses only the first b10 million/(number of threads)c tuples,
the second thread the following b10 million/(number of threads)c tuples, etc.

The benchmark offers two modes: read or write. In both modes, there is only one type
of transaction that is provided with an array of 50 primary keys taken from the threads
workset. In write mode, the transactions increments the value attribute of the correspond-
ing tuples and in read mode, the transactions fetches the value attribute of each tuple and
checks a condition, that is always false. The condition is needed to avoid that the query



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1  2  6  10  14 4  8  12  16  20  24  28  32

tr
a
n
sa

ct
io

n
s 

p
e
r 

se
co

n
d

 (
tp

s)

number of threads

STO read
Serial Execution read

STO write
Serial Execution write

Figure 2: The read and write performance of STO
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optimizer removes the fetch query, as the value is not used.

As the partitions are arranged by the Fibonacci hash of the primary key, the workset of
each thread is uniformly distributed over all partitions. This has two implications: First, all
transactions are partition-crossing. Second, although no conflicts are possible, the trans-
actions interfere with each other, as they have to latch the partitions’ index structures.

Figure 2 shows the results from the micro benchmark subject to the number of threads.
The duration of processing 1 million transactions was measured and the transactions per
second (tps) determined. Three runs were executed for each measurement and the mean
tps count was taken.

STO’s read and write curve both start nearly with the same throughput. The slope exhibits
linear growth up to 14 threads. Each additional thread constantly increases the throughput
by about 20 000 tps.

Starting from 14 threads, the gradient slowly declines, that is, the throughput increase
gained by adding a new thread declines with each additional thread. This can be explained
by most likely hyper-threading effects. However, this effect is tolerable, as the throughput
still increases, although at a slower rate of about 10 000 tps on average.

Looking at write performance, STO can outperform serial execution when using at least 2
threads. Furthermore, by using 32 threads, we can increase the throughput by one order of
magnitude compared to the serial execution.

On the other hand, STO still significantly slows down read operations. At 32 threads, in the
best case, STO achieves about 25% better throughput in read mode than in write mode. By
contrast, the serial execution, where no concurrency control is used, the read throughput is
about a factor of 2.5 higher than the write throughput. In fact, at least 4 threads are needed
in read mode to compete with the serial execution. In summary, the traditional problem of
STO slowing down read operations still exists in main-memory database systems but its
impact is reduced: While in disk-resident database systems the difference between read
and write operations was about one order of magnitude because of disk latency, in main-
memory database systems, the difference is about a factor of 2 or 3.



4.2 Overhead analysis

As it was shown by Harizopoulos et al. [HAMS08] that latching in traditional database
systems produces severe overhead, we employed a lock implementation that is optimized
for highly parallel systems, called the MCS lock. Still, we should differentiate between
the overhead produced by the STO logic and the overhead produced by latching, as STO
does not rely on latching index structures. For example, lock-free index structures or index
structures which rely on relativistic programming could be used.

We analyzed how much time is needed for each component of the concurrency control
approach: Latching, STO logic and execution of the transaction itself using the previous
benchmark in both modes. For determining the time difference between two evaluation
points, we used the CPU cycles counter. Concretely, we defined analysis points before
and after each latching operation as well as each STO operation. At these points, the
difference between the current cycles count and the cycles count at the previous analysis
point is computed and the result is summarized.

Figure 3 shows the resulting distribution taken from one run with 32 threads. Similar
results were obtained when using a different number of threads and are therefore omitted
here. It can be observed that the total cycles count of the write transactions is about 25%
higher than of the read transaction, which matches the result from the write and read
comparison.

Furthermore, in both cases, the basic transaction instructions such as updating tuples,
fetching tuples, etc., cover about half of the time of a transaction. In read mode, this
does not seem to fit to the previous benchmark, where serial execution was about 4 times
faster than STO run with a single thread. Concretely, the time needed for the base trans-
action instructions should be about one quarter of the cycles total. The reason for this
difference can be explained by cache effects. When, for example, a timestamp is updated,
the changes will be written into the processor’s cache. As a result, the expensive propa-
gation of the change to the main-memory will happen, when the cache line is replaced,
which is usually caused by a read operation. As the base transaction instructions are read
intensive – looking up primary keys in the hash map, fetching tuples – they are likely to
replace cache lines and cause costly propagation to main-memory. As a consequence, the
expensive write operations caused by latching or timestamp maintenance slow down the
base transaction instructions, as these are read intensive. Therefore, the overhead of lock-
ing and latching comprises additionally about half of the time needed for the transaction
instructions in read mode. On the other hand, this effect does not seem exist in write mode.
Here, the analysis reflects the results of the previous benchmark: When using one thread
STO achieves about half of the performance of serial execution.

The overhead caused by concurrency control is divided similarly in read and write mode.
Although the STO overhead in write mode is higher than in read mode – the commit log
has to be processed and the dirty bits have to be reset – in both cases index latching causes
more overhead than the STO logic itself. The MCS lock could decrease the overhead of
latching by about a factor of 4 compared to the results of running a disk-resident database
in main-memory [HAMS08]. Still, index latching produces significant overhead and we
will investigate the performance impact of lock free index structures in future research.
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Figure 4: TPC-C benchmark with varying the number of partition-crossing transactions

4.3 STO versus PE

Finally, we compared strict timestamp ordering to partitioned execution while varying
the number of partition crossing transactions. We used a slightly altered version of the
well-known TPC-C benchmark2 as it is easily partitionable by using the warehouse id and
widely used as a benchmark for main-memory database systems comparable to HyPer, for
instance in [KKN+08, Vol10].

In the TPC-C benchmark there are two types of transactions that cross partition borders
– 25% of the payment transactions and 10% of the new order transactions. Regarding
their ratio in the total workload, this leads to a total of about 12.5% partition-crossing
transactions. For this benchmark, we equally adjusted the percentage of partition-crossing
payment and new order transactions from 0% to 100%, resulting in a total ratio of 0% to
87, 5%.

In Figure 4, we show the average sustainable throughput of serial execution, partitioned
execution and strict timestamp ordering while varying the percentage of transactions which
cross partition boundaries. In order to provide a fair comparison, we counted only the
number of committed transactions per second. By this, STO is not privileged, which
solves conflicts by aborting. We set the number of warehouses to 128, which resulted in
about 17 GB of data, and used 20 threads.

When no partition crossing transactions are included in the workload, PE performs sig-
nificantly better than STO. Here, conditions are optimal for PE as every transaction is
restricted to one partition of the data and no locking is necessary at all. STO, on the other
hand, requires atomic operations to update read/write timestamps and change indexes.
Therefore, the throughput achieved by STO is about 33% lower than the throughput of PE.

For an increased number of partition crossing transactions, PE’s throughput declines sig-
nificantly. At 12.5% partition crossing transactions – the percentage in the original TPC-C

2See http://www.tpc.org/tpcc/



– the throughput achieved by PE has already dropped below the throughput achieved with
STO. As the number of partition crossing transactions increases further, the throughput
curve converges to the throughput achieved by serial execution. This was to be expected,
since PE uses serial execution without parallelism for partition crossing transactions caus-
ing it to behave like serial execution for high percentages of partition crossing transactions.

STO exhibits constant throughput regardless of how many transactions cross partition
borders. This is due to its reliance on per-tuple timestamps which a) constitutes a fine-
granularity concurrency control method and b) does not require a centralized locking in-
frastructure. Thus, it is perfectly suited for workloads that can not be completely parti-
tioned.

5 Conclusion

In this paper, we re-evaluated the traditional strict timestamp ordering concurrency control
algorithm in a main-memory database system on modern hardware, while most modern
main-memory DBMS omit explicit concurrency control in favor of partitioning and serial
execution.

We found that the traditional drawback of STO – slowing down read operations as if they
were write operations – is less significant in main-memory than in disk-based database
systems. Here, the performance of read and write operations differs by about a factor
of 2, whereas in disk-resident database systems the difference was at least one order of
magnitude because of disk latency.

As a result, STO is a competitive alternative to partitioned execution: While partitioned
execution is – by design – ideal for a perfectly partitionable workload, STO allows the effi-
cient execution of workloads regardless of the quality of the underlying partitioning. Even
a low number of partition-crossing transactions, for example the default ratio of 12.5%
partition crossing transactions in the TPC-C benchmark, suffice that STO outperforms PE.
Therefore, STO is suitable for environments where transactions can not be easily restricted
to work on only one partition of the data.

Additionally, we found that traditional bottlenecks like latching need to be re-evaluated
from an implementation standpoint: We could improve the performance of STO by a factor
of 2 by using an optimized latch implementation by factoring in the shift from uniform to
non-uniform memory access. Still, the overhead of latching stays a significant factor and it
should be evaluated if technologies like transactional memory or relativistic programming
can further reduce it.

In summary, re-investigating the suitability of traditional works in concurrency control for
their performance in a fundamentally changed hardware environment has allowed us to
find a more robust concurrency control method for main memory DBMS which we have
integrated into HyPer.
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[DGK09] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretching Transac-
tional Memory. ACM SIGPLAN Notices, 44:155–165, May 2009.

[HAMS08] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
OLTP Through the Looking Glass, and What We Found There. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, pages 981–
992, New York, New York, USA, 2008. ACM Press.

[HW10] Philip W. Howard and Jonathan Walpole. Relativistic Red-Black Trees. Technical
report, PSU Computer Science Department, Portland, Oregon, USA, 2010.

[KKN+08] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stan-
ley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang,
John Hugg, and Daniel J. Abadi. H-Store: A High-Performance, Distributed Main
Memory Transaction processing system. PVLDB, 1(2):1496–1499, 2008.

[KN11] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In ICDE, pages 195–206, 2011.

[MCS91] J.M. Mellor-Crummey and M.L. Scott. Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors. ACM Transactions on Computer Systems (TOCS),
9(1):21–65, 1991.
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