
Parallel MATLAB: Doing It Right

RON CHOY AND ALAN EDELMAN

Invited Paper

MATLAB is one of the most widely used mathematical computing
environments in technical computing. It is an interactive environ-
ment that provides high-performance computational routines and
an easy-to-use, C-like scripting language. It started out as an in-
teractive interface to EISPACK and LINPACK and has remained a
serial program. In 1995, C. Moler of Mathworks argued that there
was no market at the time for a parallel MATLAB. But times have
changed and we are seeing increasing interest in developing a par-
allel MATLAB, from both academic and commercial sectors. In a
recent survey, 27 parallel MATLAB projects have been identified.

In this paper, we expand upon that survey and discuss the
approaches the projects have taken to parallelize MATLAB. Also,
we describe innovative features in some of the parallel MATLAB
projects. Then we will conclude with an idea of a “right” parallel
MATLAB. Finally we will give an example of what we think is a
“right” parallel MATLAB: MATLAB � P.

Keywords—MATLAB, MATLAB�P, parallel, Star-P.

I. MATLAB

MATLAB [29] is one of the most widely used tools in sci-
entific and technical computing. It started in the 1970s as an
interactive interface to EISPACK [41] and LINPACK [19], a
set of eigenvalue and linear system solution routines. It has
since grown to a feature-rich product utilizing modern nu-
merical libraries such as ATLAS [46] and FFTW [23] and
with toolboxes in a number of application areas, for example,
financial mathematics, neural networks, and control theory.
It has a built-in interpreted language that is similar to Fortran
90, and the flexible matrix indexing makes it very suitable
for programming matrix problems. Also, it provides hooks
to Java classes and dynamically linked libraries, making in-
tegration with compiled code easy.

MATLAB gained popularity because of its user-friendli-
ness. It has seen widespread use in classrooms as a teaching
tool. Its strong graphical capabilities makes it a good data

Manuscript received November 17, 2003; revised October 15, 2004. This
work was supported in part by the Singapore-MIT Alliance.

The authors are with the Computer Science AI Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA (e-mail: cly@mit.edu;
edelman@math.mit.edu).

Digital Object Identifier 10.1109/JPROC.2004.840490

analysis tool. Also, researchers have been known to build
very complex systems using MATLAB scripts and toolboxes.

II. WHY THERE SHOULD BE A PARALLEL MATLAB

Because of its roots in serial numerical libraries,
MATLAB has always been a serial program. In 1995,
C. Moler of Mathworks wrote a paper [37] stating Math-
works’ intention not to develop a parallel MATLAB at that
time. His arguments could be summarized as follows.

1) Memory model: Distributed memory was the dominant
model for parallel computers, and for linear algebra
applications, scatter/gather of the matrix took too long
to make parallel computation worthwhile.

2) Granularity: For typical use, MATLAB spends most
of its time in the parser, interpreter and graphics
routines, where any parallelism is difficult to find.
Also, to handle embarrassingly parallel applications,
which only requires a collection of results at the end,
MATLAB would require fundamental changes in its
architecture.

3) Business situation: There were not enough customers
with parallel computers to support the development.

It has been nine years since the article was written, and
we have seen tremendous changes in the computing world.
These changes have invalidated the arguments that there
should not be a parallel MATLAB.

1) Memory model: As modern scientific and engineering
problems grow in complexity, the computation time
and memory requirements skyrocket. The increase in
processor speed and the amount of memory that can fit
in a single machine could not catch up with the pace
of computation requirements. Very often, current sci-
entific problems simply do not fit into the memory of a
single machine, making parallel computation a neces-
sity. This has always been true throughout the history
of computing—problems just do not fit into memory.
But we have hit the point where a lot of interesting and
practical problems from different areas do not fit into
memory of a single machine. This has made parallel
computing a necessity.

0018-9219/$20.00 © 2005 IEEE

PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005 331

Table 1
CiteSeer and Google Search for Three Popular Math Packages,
Measured on April 7, 2004

2) Granularity: Over the past eight years simple parallel
MATLAB projects, some consisting of only 2 m-files,
have shown that multiple MATLAB instances running
on a parallel computer could be used to solve em-
barrassingly parallel problems, without any change to
MATLAB itself. Also, increase in problem sizes and
processor speed have reduced the portion of time spent
in noncomputation related routines.

3) Business situation: The past few years have seen
the proliferation of Beowulf clusters. Beowulf clus-
ters are parallel computers made from commodity
off-the-shelf (COTS) hardware. They often consist of
workstations connected together with Ethernet or other
common, nonproprietary interconnect. Researchers
prefer Beowulf clusters over traditional supercom-
puters because Beowulfs are quite easy to set up and
maintain and are cheap enough so that a researcher
can get his or her “personal supercomputer.” Also, in
the financial industry, large “compute farms” which
are basically large clusters are widely used for various
pricing and value at risk (VaR) simulations. However,
often researchers in science wanting to use a parallel
computer to solve problems are not experts in parallel
programming. The dominant way of parallel program-
ming, Message Passing Interface (MPI) [1], is too low
level and too error prone. MATLAB is well known for
its user-friendliness. There is a huge potential market
for a MATLAB that could be used to program parallel
computers.

III. MATLAB, MAPLE, AND MATHEMATICA

Besides MATLAB, there are two other very popular tech-
nical computing environments. First there is Maple, devel-
oped by Maplesoft. Then there is Mathematica, developed
by Wolfram Research.

We are interested in looking at parallel MATLAB mainly
for the following reasons.

1) MATLAB is popular: Compared to Maple and Math-
ematica, we feel a parallel MATLAB would reach a
wider audience. MATLAB has seen extensive use in
classrooms at the Massachusetts Institute of Tech-
nology (MIT), Cambridge, and worldwide. To get
a rough idea of the popularity of the three software
packages, we did a search on CiteSeer [10] for the
number of citations and Google for the number of
page hits, as shown in Table 1.

2) MATLAB is user friendly: From our experience of
using the three packages, we feel that MATLAB has
the best user interface. Its C/Fortran 90-like scripting
language is the most intuitive among the three for

Fig. 1. Embarrassingly Parallel.

numerical parallel computing applications. This is
in some sense a matter of taste, but the proliferation
of MATLAB in classrooms seem to at least partially
substantiate this claim.

IV. PARALLEL MATLAB SURVEY

The popularity of MATLAB and the fact that it could only
utilize one processor sparked a lot of interest in creating a
parallel MATLAB. We have done a survey [16] and found
through extensive Web searching 27 parallel MATLAB
projects. These projects vary in their scope: some are
one-man projects that provide basic embarrassingly parallel
capabilities to MATLAB; some are university or government
lab research projects; while some are commercial projects
that enables the use of MATLAB in product development.
Also, their approaches to making MATLAB parallel are
different: some compile MATLAB scripts into parallel
native code; some provide a parallel back end to MATLAB,
using MATLAB as a graphical front end; and some others
coordinate multiple MATLAB processes to work in parallel.
These projects also vary widely in their status: some are now
defunct and exist only in the Google Web cache, while some
are entering their second or third revision.

For each approach we try to include descriptions for some
representative projects.

A. Embarrassingly Parallel

See Fig. 1. Software that makes use of this approach: Multi
[33], Paralize [2], PLab [32], and Parmatlab [5]

This approach makes use of multiple MATLAB processes
running on different machines or a single machine with
multiple processors. However no coordination between the
MATLAB processes is provided. Instead, a parent process
passes off data to the child processes. Then all processes
work on its local data and return the result to the parent
process.

Under this model, the type of functions that can be par-
allelized is limited. For example, a for-loop with any data
dependency across iterations would be impossible to paral-
lelize under this model. However, this model has the advan-
tage of simplicity. In the software we found that utilize this
approach, usually no change in existing code is needed to par-
allelize the code, if the code is parallelizable using this simple
approach. From our experience, this approach is sufficient for
a lot of real world applications. For example, Seti@Home be-
longs to this category.

1) PLab: PLab is one of the most sophisticated embar-
rassingly parallel MATLABs, consisting of 15 m-files and 26

332 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 2. Message Passing.

C/C++ files. It runs task in parallel on a “MATLAB Parallel
Machine,” created either locally through fork() or remotely
through rsh, ssh, rexec, or a custom Beowulf Job Manager.
In local mode MATLAB workspace variables are automat-
ically transferred to the slave processes through the fork().
In the remote case, they have to be transferred over sockets.
PLab also supports integration with MOSIX [8] and can mi-
grate slave processes to nodes with smaller load.

PLab supports two modes of parallelization. emu-
lates a parallel for-loop. For example

is equivalent to the for-loop

;
for ,

;
;
;

end

run in parallel. Two scheduling methods are built into PLab
for . In the fixed method, the server hands out fixed
number of loop iterations in chucks to each slave. In the dy-
namic method, the number of iterations passed to each slave
at a time varies dynamically trying to make each chunk take
1 second of computing time.

The second mode, peval, is the typical embarrassingly par-
allel eval function.

B. Message Passing

See Fig. 2. Software that makes use of this approach:
MultiMATLAB [35], CMTM [47], DPToolbox [39],
MPITB/PVMTB [22], PMI [34], PTToolbox [26],
MatlabMPI [30], pMatlab [31], and Matlab Paralleliza-
tion Toolkit [25]

This approach provides message passing routines between
MATLAB processes. This enables users to write their own
parallel programs in MATLAB in a fashion similar to writing
parallel programs with a compiled language using MPI. In
fact, for some of the projects [22], [30], the routines pro-
vided are wrappers for MPI routines. This approach has the
advantage of flexibility: in theory, users are able to build any
parallel system in MATLAB that they can build in compiled

languages with MPI. This approach is a superset of the em-
barrassingly parallel approach.

1) MultiMATLAB: MultiMATLAB is perhaps one of the
most well known parallel MATLABs. It was developed by
A. Trefethen, V. Menon, C. Chang, G. Czajkowski, C. Myers,
and L. Trefethen at Cornell University. In MultiMATLAB, a
MATLAB user can start MATLAB processes on other ma-
chines and then pass commands and data between these var-
ious processes. The most important commands are:

• Init—initialize the MultiMATLAB environment;
• Nproc—returns the number of processes in the envi-

ronment; equivalent of MPI Comm size();
• ID—returns the rank of the process; equivalent of MPI

Comm rank();
• Send/Recv—sends and receives data between

processes;
• Eval—evaluates a string in every process in the

environment.
This is essentially the MPI “Basic Six” without MPI Fi-

nalize(), and with Eval added. The Send and Recv commands
in MultiMATLAB are blocking, so one is not able to take ad-
vantage of pipelining.

MultiMATLAB is built upon the P4 device of MPICH
[24], an implementation of MPI developed at Argonne Na-
tional Laboratory and Mississippi State University. Because
of that, it runs over a heterogeneous network of workstations.

C. Back-End Support

Software that makes use of this approach: NetSolve [13],
DLab [38], Matpar [42], PLAPACK [45], PARAMAT [43],
and MATLAB P [27]

This approach uses MATLAB as a front end for a parallel
computation engine. Computation is done on the engine, usu-
ally making use of high-performance numerical computation
libraries like ScaLAPACK [9]. For some projects e.g. [13],
the data reside in MATLAB and are passed to the engine and
back. And for some projects, e.g., [27], the data reside on the
server and are passed back to MATLAB only upon request.
The latter approach has the advantage that there is less data
traffic. This is important for performance when data sets are
large.

The advantage of this approach is that it only requires one
MATLAB session (therefore, only one license), and it usually
does not require the end user to have knowledge of parallel
programming.

1) NetSolve: NetSolve is actually much more than a
parallel MATLAB. It is a project at University of Tennessee,
Knoxville, “that aims to bring together disparate computa-
tional resources connected by computer networks” (from
their Web page). An interface to the NetSolve system exists
for MATLAB. The user can submit jobs to the system, and
then NetSolve will search for computational resources on
a network and choose the best one for the task. It supports
fault-tolerance and load-balancing. In some sense, it is a
very user-friendly batch system.

Jobs can be submitted as

CHOY AND EDELMAN: PARALLEL MATLAB: DOING IT RIGHT 333

This creates a 1000 1000 matrix locally, makes the call
to netsolve, and blocks. When the appropriate computational
resource is found, the matrix is transferred over the network
and the server performs on the matrix. The result is then
passed back to the client, in this case, MATLAB. There exists
a nonblocking version of the netsolve call, netsolve nb.

Netsolve comes with an interface to

• dense linear algebra—ScaLAPACK [9];
• sparse iterative solver—PetSc [6], Aztec [44];
• sparse direct solver—SuperLU [17], MA28 [21].

D. MATLAB Compilers

Software that makes use of this approach: Otter [40],
RT-Express [28], ParAL [36], FALCON [18], CONLAB
[20], MATCH [7], and Menhir [14]

These projects compile MATLAB scripts into an exe-
cutable, sometimes translating the scripts into a compiled
language as an intermediate step. Some projects, e.g., [40]
and [20], link the compiled code with parallel numerical
libraries, while some software, e.g., [18], generates code
that is already parallel.

This approach has the advantage that the compiled code
runs without the overhead incurred by MATLAB. Also an
executable is usually easier to manage if it is to be run non-
interactively regularly. In this approach, MATLAB is used
as a development platform instead of a computing environ-
ment. This allows the produced parallel program to run on
platforms which does not support MATLAB (e.g. SGI).

E. Shared Memory

Software that make use of this approach: MATmarks [3]
MATmarks, the only project in this category, allows mul-

tiple running instances of MATLAB to share the value of
variables. It is based on Treadmarks [4], a distributed shared
memory system developed at Rice University.

A new project has been started at MIT to build shared vari-
ables support into MATLAB P, using GASNet [11].

F. Parallel MATLABs

The Parallel MATLABs are defined in Tables 2–6.

V. PARALLEL MATLAB FEATURES

In evaluating the 27 parallel MATLAB projects, we found
that some contain features that are innovative in the parallel
MATLAB world.

A. File-System-Based Communication

Some parallel MATLAB projects utilize a file-system-
based communication system. Machines in a Beowulf
cluster often share a common file system, e.g., Network File
System (NFS), and it can be exploited for communication.
One of the earliest parallel MATLAB projects to make use
of this is Paralize [2] (1998). Sends and receives are handled
through writing to and reading from files, and synchroniza-
tion is done through checking for the existence of certain

Table 2
Message Passing

Table 3
Embarrassingly Parallel

Table 4
Back-End Support

Table 5
MATLAB Compiler

Table 6
Shared Memory

lock files. MatlabMPI [30] implements basic MPI functions
in MATLAB using cross-mounted directories. Bandwidth
comparable to C-based MPI is reported, although the latency
is inferior.

B. M-File Implementation

Simple parallel MATLAB approaches like the embar-
rassingly parallel approach or MPI could be implemented
with only MATLAB m-files. One of the earliest parallel
MATLAB to be implemented this way is Paralize [2] (1998),
a parallel MATLAB using the embarrassingly parallel ap-
proach and implementing dynamic load balancing in only
120 lines of MATLAB code. Pure m-file implementation
has the advantage of being portable to any platform on
which MATLAB runs. Also, it makes installation simple
and user-friendly—no compilation is needed. pMATLAB

334 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

[31] is trying to take this approach further by implementing
global structures like distributed matrices with only m-files.

C. Parallelism Through Polymorphism

Parallel MATLABs often introduce new commands into
MATLAB—for example, a function for parallel for-
loops or a set of MPI-like functions for message passing op-
erations. The problem with this approach is that it does not re-
duce the complexity of writing a parallel program. MPI is not
the level general users want to or should want to program at.

Since the number of functions in MATLAB is finite and
most, if not all, of them depends on a set of built-in func-
tions, it is sufficient to parallelize those built-in functions
in MATLAB through overloading. Users can call the par-
allelized built-in functions directly or call functions which
depend on those parallel built-in functions. Toolboxes can
also be parallelized in this way, by parallelizing the under-
lying built-in functions. This is introduced in MATLAB P
[27] seamlessly in the concept of parallelism through poly-
morphism. MATLAB P is a parallel MATLAB using the
back-end support approach, attaching a parallel back-end
server to MATLAB. This will be explained further in a later
section.

D. Lazy Evaluation

Back-end support parallel MATLABs utilize a server to
perform the computation. While the server is busy com-
puting, the front-end MATLAB often idles, wasting precious
cycles. To remedy this problem, DLab [38] introduces a
concept called lazy evaluation. When a command is sent to
the server, the MATLAB program does not block and wait
for the result. Instead, the MATLAB program only blocks
when it tries to make a server call again. This way, additional
computations could be done in the time between the server
call and the next, which is wasteful in other back-end support
parallel MATLABs.

VI. WHAT DOES THE USER WANT IN A

PARALLEL MATLAB?

A. MATLAB Experience

We could reflect on the experience of MATLAB to under-
stand what a user would want in a parallel MATLAB.

MATLAB started out as an interactive interface to EIS-
PACK and LINPACK, a set of eigenvalue and linear system
solution routines. EISPACK and LINPACK were written in
Fortran, so normally a user would have to write a program in
Fortran to use the routines. That way the user will have to take
care of the memory allocation, indexing, and studying the
(quirky) EISPACK/LINPACK syntaxes. Furthermore, there
is no way to visualize the result without writing your own
code.

But MATLAB took care of all of this. User calls create
matrices and operate on them using simple, intuitive calls.
Visualization could also be done in the same framework. Fur-
thermore, the scripting language in MATLAB contains fea-
tures from Fortran 90, making it easier to use than Fortran
and more suitable for matrix computation than C.

All this convenience came at a cost of performance. The
graphical user interface, parser, interpreter, and the lack of
type inference take away processor cycles which could be
used for computation. Also, the interpreted scripts could not
match the performance of compiled C or Fortran code. Yet
still MATLAB is a huge success. We can see that what the
users really want is ease of use, not peak performance. Users
prefer a system that is easy to use and has good performance
over a system with peak performance but is hard to use and
clumsy. The gain in performance in the latter system is easily
offset by the additional time needed to program it.

B. Modes of Parallel Computation

Over the years we have seen many parallel programs from
various application areas: e.g., signal processing, graphics,
artificial intelligence, computational mathematics, and cli-
mate modeling. From the code we have seen, we divide par-
allel computation in general into four categories.

1) A lot of small problems that require no communica-
tion. Also known as embarrassingly parallel problems.
The problem size is small enough so that it will fit
into the memory of one machine, but there are a lot
of them, so parallel computation is needed. No com-
munication is required between the parallel threads of
computation, except for an initial scatter—to distribute
the computation, and a final gather—to collect the re-
sults. An example of this type of computation would
be Monte Carlo simulations, currently heavily used in
the finance industry for risk management and product
pricing. From anecdotal evidence this seems to be the
largest class of problems, partly due to the fact that no
easy-to-use tools exists for the two other classes.

2) A lot of small problems that require some communica-
tion. Just like the first case, the problem size is small
enough to fit into the memory of one machine. How-
ever, in this category it is necessary to communicate
between the parallel threads during the computation.

3) Large problems. This class of problems has a problem
size that would not fit into the memory of a single ma-
chine. Example: the high-performance Linpack (HPL)
benchmark

4) A mixture of the three. In this class of problems, the
data is sometimes processed individually in embarrass-
ingly parallel mode, while sometimes it is treated as a
global data structure. We have seen an example of this
in climate modeling.

A good parallel MATLAB should address at least one of
these areas well.

C. “Right” Parallel MATLAB

When building the “right” parallel MATLAB targeting the
widest possible audience (and, thus, would be most commer-
cially viable), we should take the above arguments into ac-
count. First, the interface in the parallel MATLAB should be
easy to use, should not differ much from ordinary MATLAB,
and should not require learning on the users’ part. Second,

CHOY AND EDELMAN: PARALLEL MATLAB: DOING IT RIGHT 335

it should allow the four modes of parallel computation de-
scribed above.

VII. MATLAB P

We present MATLAB P [15] as an example of what could
be a “right” parallel MATLAB. MATLAB P is a parallel
MATLAB using the back-end support approach, aimed at
widespread circulation among a general audience. In order
to achieve this, we took ideas from the approaches used by
other software found in the survey. For example, the embar-
rassingly parallel approach allow simple, yet useful, divi-
sion of work into multiple MATLAB sessions. The message
passing approach, which is a superset of the embarrassingly
parallel approach, allows finer control between the MATLAB
sessions.

The main idea in MATLAB P is that data exist on the par-
allel server as distributed matrices. Any operations on a dis-
tributed matrix (which exists in the MATLAB front end only
as a handle) will be relayed to the server transparently. The
server calls the appropriate routine from a parallel numerical
library (e.g. ScaLAPACK, FFTW,) and the results stay on
the server until explicitly requested.

The “transparency” comes from the use of polymorphism
in MATLAB. This will be explained in the next section.

MATLAB P has progressed a lot since the original
version by Husbands [27]. New developments include im-
proved sparse matrix support, support for complex numbers,
garbage collection for distributed objects, the “Multi-
MATLAB” mode, and visualization routines.

VIII. FEATURES OF MATLAB P

A. Parallelism Through Polymorphism—

The key to the parallelism lies in the variable. It is an ob-
ject of dlayout class in MATLAB, defined by the MATLAB
P system. By overloading MATLAB functions for the class
dlayout, we were able to create a parallel MATLAB that has
exactly the same interface as MATLAB.

Through the use of the variable, matrices that are dis-
tributed on the server could be created. For example

The above creates a row-distributed, 8192 8192 nor-
mally distributed random matrix on the server. multi-
plies the MATLAB double 8192 with the dlayout instance .
Multiplication for dlayout instances is overloaded to embed
the 8192, which is the size information, within the dlayout
that will be created. with arguments that are of class
dlayout is overloaded to make calls to the server to create the
distributed matrix.

X is a handle to the distributed matrix, identified by
MATLAB as a ddense class object. By overloading
and many other built-in functions in MATLAB, we are able
to tie in the parallel support transparent to the user. This
is called parallelism through polymorphism. Note that the

syntax is exactly the same as ordinary MATLAB except for
the additional multiplication with the variable

The command computes the eigenvalues of X by calling
the appropriate ScaLAPACK routines and stores the result in
a matrix , which resides on the server. The result is not re-
turned to the client unless explicitly requested, to reduce data
traffic. Again the syntax is the same as ordinary MATLAB

This command returns the result to MATLAB. This is one
of the few commands in MATLAB P not found in ordinary
MATLAB (matlab2pp is another).

The use of the variable along with overloaded MATLAB
routines enable existing MATLAB scripts to be reused. For
example

function
;

;
;

;
;

The above is the built-in MATLAB routine to construct
a Hilbert matrix (obtained through type). Because the
operators in the routine (colon, ones, subsasgn, transpose,
rdivide, +, -) are overloaded to work with , typing

would create a 16 384-by-16 384 Hilbert matrix on the
server. By exploiting MATLAB’s object-oriented features in
this way, many existing scripts would run in parallel under
MATLAB P without any modification.

B. MultiMATLAB/MultiOctave Mode

One of the goals of the project is to make the software
to be useful to as wide an audience as possible. In order to
achieve this, we found that it would be fruitful to combine
other parallel MATLAB approaches into MATLAB P, to
provide a unified parallel MATLAB framework.

In conjunction with P. Husbands, we developed a pro-
totype implementation of a MultiMATLAB [35]-like, dis-
tributed MATLAB package in MATLAB P, which we call
the PPEngine. With this package and associated m-files, we
can run multiple MATLAB processes on the back end and
evaluate MATLAB functions in parallel on dense matrices.

The system works by starting up MATLAB engine in-
stances on each node through calls to the MATLAB engine
interface. From that point on, MATLAB commands can be
relayed to the MATLAB engine. The command is do this is

.
Examples of the usage of follow.

336 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

% Example 1
;

;

The first example creates a distributed matrix of length
100, then fills it with random values from the chi-square
distribution through calls to the function chi2rnd from the
MATLAB statistics toolbox.

% Example 2
;
;

;

This example creates two column distributed matrices of
size 100 100, adds them, and puts the result in another
matrix. This is the slow way of doing the equivalent of

;
;

;

The “MultiOctave” mode works exactly the same as
“MultiMATLAB” mode, only using Octave, a freely avail-
able MATLAB-like scientific computing software, for the
computation. The command to use “MultiOctave” mode is

.

% Example 3
;

The above interesting example shows that Octave and
MATLAB use a different algorithm for the sine function.
Octave serves the purpose of an embarrassingly parallel back
end very well, because although its graphical capabilities
are not as good as MATLAB, its numerical parts are up to
par with MATLAB. As a back-end engine, we are mostly
concerned with numerical performance.

% Example 4
;

;
;

disp (Pi from quad in mm mode)

Pi from quad in mm mode

3.1416

The above example illustrates how , the variable that
returns the number of processes running on the back-end
server, can be used in a script to write adaptive code. When
the above example is run on four processes, is 0:0.25:0.75,
and is 0.25:0.25:1. In the “MultiMATLAB” call, each slave
MATLAB will compute the adaptive Simpson quadrature of

in the intervals (0,0.25), (0.25,0.50), (0.50,0.75), (0.75,1.0),
respectively. The result from each slave MATLAB is
summed to form .

C. Distributed File I/O

When the user wants to handle data that is too large to
fit in the client MATLAB’s memory, the mechanism of
matlab2pp/pp2matlab can no longer be used, as those calls
involve moving data to client MATLAB. In this situation,
we provide two routines, dload and dsave, which stands for
distributed load/save. Currently the only format supported
is the MATLAB MAT file format. Users can choose to
load/save a single file, which will then be distributed and
become the distributed matrix, or can choose to load/save a
collection of files, which represent the local “pieces” of a
distributed matrix.

D. Visualization Package

This visualization package was written by Bruening, Hol-
loway, and Sulejmanpasic, under supervision of R. Choy, as
a term project for the class 6.338/18.337—Applied Parallel
Computing at MIT. It has since then been merged into the
main MATLAB P source.

This package adds spy, surf, and mesh routines to
MATLAB P. This enable visualization of very large ma-
trices. The rendering is done in parallel, using the Mesa
OpenGL library.

Figs. 3, 4, and 5 shows the routines in action.
All three routines allow zooming into a portion of the ma-

trix. Also, ppsurf and ppmesh allow changing of the camera
angle, just as supported in MATLAB.

IX. BENCHMARKS

A. Test Platform

• Beowulf cluster with 15 nodes.
• Dual-processor nodes, each with two Intel Xeon 2.4

GHz with Hyperthreading.
• All tests are run with one process per processor.

Also, the minimum number of nodes are used. So if
a test is using four processors, two nodes are used.
Thus, in this case we are using two shared-memory
pairs of processors.

• Two gigabytes of RAM per node. No swapping oc-
curred during the tests.

• Fast Ethernet (100 Mb/s) interconnect. Intel Ether-
fast 410T switch.

CHOY AND EDELMAN: PARALLEL MATLAB: DOING IT RIGHT 337

Fig. 3. ppspy on a distributed 1024 � 1024 matrix on eight nodes.

Fig. 4. ppsurf on the distributed 1024 � 1024 “peaks” matrix.

• Linux kernel version: 2.4.20–9 smp.
• MATLAB 6.1.0 R12.1.

B. Linear System Solve

We compare the time required by MATLAB and
MATLAB P to solve a linear system of equations with one
right-hand side. The one processor case in the graph is serial
MATLAB, while the cases with more than one processor are
results from MATLAB P.

For and , as we go from serial
MATLAB to two processors in MATLAB P, we notice su-
perlinear speedup. The memory available to MATLAB and
MATLAB P in this case are the same, as the two processors
come from a single node in the cluster. Thus, we can elim-
inate swapping as the cause of this behavior, as the amount
of memory available in the serial case and the two proces-
sors case is the same. Instead, this is most likely caused by
more cache memory being available. Each Xeon processor

338 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 5. ppmesh on the distributed 1024 � 1024 “peaks” matrix.

has 512 KB of L2 cache, so there is a total of 1 MB of cache
memory available to the MATLAB P computation.

Then for each problem size, as we increase the number
of processors used, we observe that the amount of time
needed either increases or decreases by very little. This is
due to granularity—as we break the problem into smaller
and smaller pieces, any performance gain is overwhelmed
by the increase in communication cost.

As MATLAB P uses the PDGESV routine from
ScaLAPACK, it would be interesting to compare the over-
head involved.

As we can see, MATLAB P is always slower than the bare
ScaLAPACK PDGESV call. The biggest overhead is caused
by the fact that when the user calls

in MATLAB, he would expect and to be unchanged. This
is not true for the ScaLAPACK PDGESV routine, which uses

to return the LU factors of the input and to return the so-
lution. To preserve the MATLAB call property, MATLAB P
has to create copies of the inputs to preserve them. The time
needed for this is listed in Table 7.

This table can explain the poor performance of MATLAB
P versus ScaLAPACK for . It appears the input
copying time depends on a function of number processor plus
a function of the input size. As is very small, the
first function dominates. Also, the time needed by PDGESV
is very small. Thus, the ratio of MATLAB P solution time,
which is PDGESV time added by the copying cost, to the
PDGESV time is large.

Table 7
Breakdown of Time Taken by MATLAB � P Solve

Figs. 6 and 7 show how the MATLAB P linear system
solve scale with the number of processors and compare the
performance with ScaLAPACK.

C. RT-STAP

The Real-Time Space-Time Adaptive Processing
(RT-STAP) benchmark [12] is a benchmark for real-time
signal processing systems developed by MITRE Corpo-
ration. In the hard version of the benchmark that we are
testing, the input to the MATLAB code is a data cube of

channels doubles. The code performs the
following three steps:

1) conversion of the input data to baseband;
2) Doppler processing;
3) weight computation and application to find the

range–Doppler matrix.
Upon running the code in serial MATLAB, we notice

that step 1, the conversion of the input data to baseband,
is the most time-consuming step. This is surprising, as the
weight computation should be the step that has the highest

CHOY AND EDELMAN: PARALLEL MATLAB: DOING IT RIGHT 339

Fig. 6. Timing for linear system solve.

Fig. 7. Ratio of time taken by MATLAB � P and ScaLAPACK.

flop count. It turns out that this is caused by problematic
MATLAB coding in the benchmark MATLAB code. But
as the point of this is to time MATLAB P on a typical
application, we chose to proceed without modifying the
code. The conversion step in the original MATLAB code is
the following loop:

for :NCHAN
;

xx, NRNG, NPRItotal, MM, w_demod,
w_LPT,
NTAPS_LPF, LPFdecFlag);
end

It loops over the input channels and process them in an
embarrassingly parallel fashion. It is a natural candidate for
mm mode, and we converted the loop to run in MATLAB P
by changing the loop into a function call and putting in an
mm mode call

P

Fig. 8. Time taken by RT STAP conversion step.

lab2pp (CPI1_INITIAL, 2);

P_CPI1_INITIAL, NRNG, NPRItotal, MM,

w_demod, w_LPF, NTAPS_LPF,
LPFdecFlag);

;

Note that the calls before and after the mm call are used
to transfer data to the server and back. Time used by those
calls are included in our timings. We compared the timing
results of serial MATLAB and MATLAB P on 2, 11, and
22 processors.

The solid line shows the timings that would be obtain if
the code scales perfectly, i.e., when the number of proces-
sors is doubled, the amount of time needed is halved. The
real timings follow the solid line quite closely except for the
22 processors case. Going from 11 processors to 22 proces-
sors provide no additional benefits. This is easy to under-
stand in terms of granularity. As the input data cube has only
22 channels, in the 22 processors case each processor has
only one channel of work, versus two channels in the 11
processors case. So there is very little to gain from using
additional processors, and any benefit is overcome by the
additional time needed for communication.

Fig. 8 shows the scalability of the RT-STAP benchmark
under MATLAB P.

X. CONCLUSION

MATLAB P shows how a parallel MATLAB system
can address different needs of parallel computing. Back-end
calls to ScaLAPACK handles large problems in parallel. The
MultiMATLAB/MultiOctave mode takes care of problems
that are embarrassingly parallel in nature and collects the
result in a distributed matrix so that global operations can
be performed on the result. Last but not least, a parallel
MATLAB system has to be user-friendly in order to be
useful. MATLAB P achieves this through transparent
parallelization with parallelism through polymorphism.

The system has been used to solve dense linear system
of size 100 000 100 000 and two-dimensional FFT of size

340 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

64 000 64 000 with success. It has been used for biomed-
ical imaging and climate modeling applications, as well as a
teaching tool in MIT.

REFERENCES

[1] MPI: The Complete Reference, 2nd ed. Cambridge, MA: MIT
Press, 1998.

[2] T. Abrahamsson. (1998) Paralize. [Online]. Available:
ftp://ftp.mathworks.com/pub/contrib/v5/tools/paralize/

[3] G. Almasi, C. Cascaval, and D. A. Padua, “Matmarks: a shared
memory environment for MATLAB programming,” presented at the
IEEE Int. Symp. High Performance Distributed Computing Symp.,
Redondo Beach, CA, 1999.

[4] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-
mony, W. Yu, and W. Zwaenepoel, “Treadmarks: Shared memory
computing on networks of workstations,” IEEE Computer, vol. 29,
no. 2, pp. 18–28, Feb. 1996.

[5] L. Andrade. (2001) Parmatlab. [Online]. Available: ftp://ftp.
mathworks.com/pub/contrib/v5/tools/parmatlab/

[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “PETSc
2.0 users manual,” Argonne Nat. Lab., ANL-95/11, Revision 2.0.29,
2000.

[7] P. Banerjee and U. N. Shenoy et al., “A MATLAB compiler for
distributed, heterogeneous, reconfigurable computing systems,”
in Proc. IEEE Symp. Field-Programmable Custom Computing
Machines, 2000, pp. 39–48.

[8] A. Barak and O. La’adan, “The MOSIX multicomputer operating
system for high performance cluster computing,” J. Future Generat.
Comput. Syst., vol. 13, no. 4–5, pp. 361–372, Mar. 1998.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’
Guide. Philadelphia, PA: SIAM, 1997.

[10] K. Bollacker, S. Lawrence, and C. Lee Giles, “A system for auto-
matic personalized tracking of scientific literature on the Web,” in
Proc. Digital Libraries 99—4th ACM Conf. Digital Libraries, pp.
105–113.

[11] D. Bonachea, “GASNet Specification, v1.l,” Univ. California,
Berkeley, Tech. Rep. UCB/CSD-02-1207, 2002.

[12] K. C. Cain, J. A. Torres, and R. T. Williams, “RT STAP: Real Time
Space-Time Adaptive Processing benchmark,” MITRE Corp., Tech.
Rep. MTR 96B0000021, Feb. 1997.

[13] H. Casanova and J. Dongarra, “NetSolve: a network-enabled server
for solving computational science problems,” Int. J. Supercomput.
Appl. High Perform. Comput., no. 3, pp. 212–223, Fall 1997.

[14] S. Chauveau and F. Bodin, “Menhir: an environment for high per-
formance MATLAB,” in Languages, Compilers, and Run-Time Sys-
tems for Scalable Computers. New York: Springer-Verlag, 1998,
pp. 27–40.

[15] R. Choy, “MATLAB p 2.0: Interactive supercomputing made prac-
tical,” M.Sc. thesis, Massachusetts Inst. Technol., Cambridge, 2002.

[16] R. Choy. (2001) Parallel MATLAB survey. [Online]. Available:
http://theory.lcs.mit.edu/cly/survey.html

[17] J. W. Demmel, J. Gilbert, and X. S. Li, “SuperLU users’
guide,” Comput. Sci. Div., Univ. California, Berkeley, Tech.
Rep. CSD-97-944, 1997.

[18] L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf, and D. Padua,
“Falcon: A MATLAB interactive restructing compiler,” in Lecture
Notes in Computer Science, Languages and Compilers for Parallel
Computing. Heidelberg, Germany: Springer-Verlag, 1995, pp.
269–288.

[19] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LIN-
PACK User’s Guide. Philadelphia, PA: SIAM, 1979.

[20] P. Drakenberg, P. Jacobson, and B. Kågström, “A CONLAB com-
piler for a distributed memory multicomputer,” in Proc. 6th SIAM
Conf. Parallel Processing for Scientific Computation, vol. 2, 1993,
pp. 814–821.

[21] I. Duff, “MA28—A set of Fortran subroutines for sparse unsym-
metric linear equations,” HMSO, London, U.K., Rep. AERE R8730,
1977.

[22] J. Fernádez, A. Canas, A. F. Díaz, J. González, J. Ortega, and A.
Prieto, “Performance of message-passing MATLAB toolboxes,” pre-
sented at the High Performance Computing for Computational Sci-
ence—VECPAR 2002: 5th Int. Conf., Porto, Portugal.

[23] M. Frigo and S. Johnson, “FFTW: an adaptive software architecture
for the FFT,” in Proc. Int. Conf. Acoustics, Speech and Signal Pro-
cessing, vol. 3, 1998, p. 1381.

[24] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “High-performance,
portable implementation of the MPI message passing interface stan-
dard,” Parallel Comput., vol. 22, no. 6, pp. 789–828, 1996.

[25] E. Heiberg. (2003) MATLAB parallelization toolkit. [Online]. Avail-
able: http://hem.passagen.se/einar heiberg/documentation.html

[26] J. Hollingsworth, K. Liu, and P. Pauca. (1996) Parallel toolbox for
MATLAB Pt v. 1.00: Manual and reference pages. [Online]. Avail-
able: http://www.mthcsc.wfu.edu/pt/pt.html

[27] P. Husbands and C. Isbell, “MITMatlab: A tool for interactive super-
computing,” presented at the 9th SIAM Conf. Parallel Processing for
Scientific Computing, San Antonio, TX, 1999.

[28] Integrated Sensors Inc.. RTExpress. [Online]. Available: http://
www.rtexpress.com/

[29] Mathworks Inc. (2001) MATLAB 6 user’s guide. [Online]. Avail-
able: http://www.mathworks.com

[30] J. Kepner, “Parallel programming with MatlabMPI,” presented at the
High Performance Embedded Computing (HPEC 2001) Workshop,
Lexington, MA, 2001.

[31] J. Kepner and N. Travinin, “Parallel MATLAB: The next genera-
tion,” presented at the 7th High Performance Embedded Computing
Workshop (HPEC 2003), Lexington, MA.

[32] U. Kjems. (2000) PLab home page. [Online]. Available:
http://bond.imm.dtu.dk/plab/

[33] T. Krauss. COMMSIM and MULTI Toolbox home page.
[Online]. Available: http://www.lapsi.eletro.ufrgs.br/Disciplinas/
ENG ELETRICA/CAD-ENG/Matlab/CommSim/COMMSIM

[34] D. D. Lee. (1999) PMI Toolbox home page. [Online]. Available:
ftp://ftp.mathworks.com/pub/contrib/v5/tools/PMI

[35] V. Menon and A. E. Trefethen, “MultiMATLAB: Integrating
MATLAB with high performance parallel computing,” presented at
the Supercomputing ’97, San Jose, CA.

[36] I. Z. Milosavljevic and M. A. Jabri, “Automatic array alignment in
parallel MATLAB scripts,” presented at the 13th Int. Parallel Pro-
cessing Symp. and 10th Symp. Parallel and Distributed Processing,
San Juan, Puerto Rico, 1999.

[37] C. Moler. (1995) Why there isn’t a parallel MATLAB. [On-
line]. Available: http://www.mathworks.com/company/newsletter/
pdf/spr95cleve.pdf

[38] B. R. Norris, “An environment for interactive parallel numerical
computing,” Univ. Illinois, Urbana, IL, Tech. Rep. UIUCDCS-R-99-
2123, 1999.

[39] S. Pawletta, T. Pawletta, W. Drewelow, P. Duenow, and M. Suesse,
“A MATLAB toolbox for distributed and parallel processing,” pre-
sented at the Matlab Conf. ’95, Cambridge, MA.

[40] M. Quinn, A. Malishevsky, and N. Seelam, “Otter: Bridging the gap
between MATLAB and ScaLAPACK,” in Proc. 7th IEEE Int. Symp.
High Performance Distributed Computing, 1998, pp. 114–123.

[41] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ilebe, V. C.
Kelma, and C. B. Moler, Matrix Eigensystem Routines—EISPACK
Guide, 2nd ed. New York: Springer-Verlag, 1976.

[42] P. L. Springer, “Matpar: parallel extensions for MATLAB,” in Proc.
Int. Conf. Parallel and Distributed Processing Techniques and Ap-
plications, vol. 3, 1998, pp. 1191–1195.

[43] Alpha Data Parallel Systems. (1999) Paramat. [Online]. Available:
http://www.alpha-data.com

[44] S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro, “Aztec User’s
Guide: Version 1.1,” Sandia Nat. Labs., Albuquerque, NM, Tech.
Rep. SAND95-1559, 1999.

[45] R. A. van de Geijn, Using PLAPACK: Parallel Linear Algebra
Package. Cambridge, MA: MIT Press, 1997.

[46] R. Clint Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimization of software and the ATLAS project,” Parallel Comput.,
vol. 27, no. 1–2, pp. 3–35, 2001.

[47] J. Zollweg. (2001) Cornell Multitask Toolbox for MATLAB
home page. [Online]. Available: http://www.tc.cornell.edu/Services/
Software/CMTM/

Ron Choy, photograph and biography not available at the time of
publication.

Alan Edelman, photograph and biography not available at the time of
publication.

CHOY AND EDELMAN: PARALLEL MATLAB: DOING IT RIGHT 341

	toc
	Parallel MATLAB: Doing It Right
	RON CHOY and ALAN EDELMAN
	I. MATLAB
	II. W HY T HERE S HOULD B E A P ARALLEL MATLAB

	Table€1 CiteSeer and Google Search for Three Popular Math Pack
	III. MATLAB, M APLE, AND M ATHEMATICA

	Fig.€1. Embarrassingly Parallel.
	IV. P ARALLEL MATLAB S URVEY
	A. Embarrassingly Parallel
	1) PLab: PLab is one of the most sophisticated embarrassingly pa

	Fig.€2. Message Passing.
	B. Message Passing
	1) MultiMATLAB: MultiMATLAB is perhaps one of the most well know

	C. Back-End Support
	1) NetSolve: NetSolve is actually much more than a parallel MATL

	D. MATLAB Compilers
	E. Shared Memory
	F. Parallel MATLABs
	V. P ARALLEL MATLAB F EATURES
	A. File-System-Based Communication

	Table€2 Message Passing
	Table€3 Embarrassingly Parallel
	Table€4 Back-End Support
	Table€5 MATLAB Compiler
	Table€6 Shared Memory
	B. M-File Implementation
	C. Parallelism Through Polymorphism
	D. Lazy Evaluation
	VI. W HAT D OES THE U SER W ANT IN A P ARALLEL MATLAB?
	A. MATLAB Experience
	B. Modes of Parallel Computation
	C. Right Parallel MATLAB

	VII. ${\hbox{MATLAB}}\ast{\hbox{P}}$
	VIII. F EATURES OF ${\hbox{MATLAB}}\ast{\hbox{P}}$
	A. Parallelism Through Polymorphism $^{\ast}p$
	B. MultiMATLAB/MultiOctave Mode
	C. Distributed File I/O
	D. Visualization Package

	IX. B ENCHMARKS
	A. Test Platform

	Fig.€3. ppspy on a distributed 1024 \times 1024 matrix on eigh
	Fig.€4. ppsurf on the distributed 1024 $% \times$ 1024 peaks matri
	B. Linear System Solve

	Fig.€5. ppmesh on the distributed 1024 $% \times$ 1024 peaks matri
	Table 7
 Breakdown of Time Taken by ${\hbox{MATLAB}}\ast{\hbox{
	C. RT-STAP

	Fig.€6. Timing for linear system solve.
	Fig. 7. Ratio of time taken by ${\hbox{MATLAB}}\ast{\hbox{P}}$ a
	Fig.€8. Time taken by RT STAP conversion step.
	X. C ONCLUSION

	MPI: The Complete Reference, 2nd ed. Cambridge, MA: MIT Press, 1
	T. Abrahamsson . (1998) Paralize . [Online] . Available: ftp://f
	G. Almasi, C. Cascaval, and D. A. Padua, Matmarks: a shared memo
	C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony
	L. Andrade . (2001) Parmatlab . [Online] . Available: ftp://ftp.
	S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, PETSc 2.0
	P. Banerjee and U. N. Shenoy et al., A MATLAB compiler for distr
	A. Barak and O. La'adan, The MOSIX multicomputer operating syste
	L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I.
	K. Bollacker, S. Lawrence, and C. Lee Giles, A system for automa
	D. Bonachea, GASNet Specification, v1.l, Univ. California, Berke
	K. C. Cain, J. A. Torres, and R. T. Williams, RT STAP: Real Time
	H. Casanova and J. Dongarra, NetSolve: a network-enabled server
	S. Chauveau and F. Bodin, Menhir: an environment for high perfor
	R. Choy, MATLAB * p 2.0: Interactive supercomputing made
	R. Choy . (2001) Parallel MATLAB survey . [Online] . Available:
	J. W. Demmel, J. Gilbert, and X. S. Li, SuperLU users' guide, Co
	L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf, and D. Padua
	J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LIN
	P. Drakenberg, P. Jacobson, and B. Kågström, A CONLAB compiler f
	I. Duff, MA28 A set of Fortran subroutines for sparse unsymmetri
	J. Fernádez, A. Canas, A. F. Díaz, J. González, J. Ortega, and A
	M. Frigo and S. Johnson, FFTW: an adaptive software architecture
	W. Gropp, E. Lusk, N. Doss, and A. Skjellum, High-performance, p
	E. Heiberg . (2003) MATLAB parallelization toolkit . [Online] .
	J. Hollingsworth, K. Liu, and P. Pauca . (1996) Parallel toolbox
	P. Husbands and C. Isbell, MITMatlab: A tool for interactive sup
	Integrated Sensors Inc. . RTExpress . [Online] . Available: http
	Mathworks Inc . (2001) MATLAB 6 user's guide . [Online] . Availa
	J. Kepner, Parallel programming with MatlabMPI, presented at the
	J. Kepner and N. Travinin, Parallel MATLAB: The next generation,
	U. Kjems . (2000) PLab home page . [Online] . Available: http://
	T. Krauss . COMMSIM and MULTI Toolbox home page . [Online] . Ava
	D. D. Lee . (1999) PMI Toolbox home page . [Online] . Available:
	V. Menon and A. E. Trefethen, MultiMATLAB: Integrating MATLAB wi
	I. Z. Milosavljevic and M. A. Jabri, Automatic array alignment i
	C. Moler . (1995) Why there isn't a parallel MATLAB . [Online] .
	B. R. Norris, An environment for interactive parallel numerical
	S. Pawletta, T. Pawletta, W. Drewelow, P. Duenow, and M. Suesse,
	M. Quinn, A. Malishevsky, and N. Seelam, Otter: Bridging the gap
	B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ilebe
	P. L. Springer, Matpar: parallel extensions for MATLAB, in Proc.
	Alpha Data Parallel Systems . (1999) Paramat . [Online] . Availa
	S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro, Aztec User's
	R. A. van de Geijn, Using PLAPACK: Parallel Linear Algebra Packa
	R. Clint Whaley, A. Petitet, and J. J. Dongarra, Automated empir
	J. Zollweg . (2001) Cornell Multitask Toolbox for MATLAB home pa

