SFU at TRECVid 2010: Surveillance Event Detection

Zhi Feng Huang
School of Computing Science
Simon Fraser University, Canada
zfh@sfu.ca

Abstract

This paper describes the SFU entry for the TRECVid
2010 surveillance event detection challenge. We focus
on detecting the “PresonRuns” event. The system has
three stages. First, a pre-processing step is performed to
extract moving candidate space-time regions using back-
ground subtraction, optical flow, and photogrammetric con-
text. A short clip representation is constructed for each
moving candidate region with a human figure detection.
Motion features are extracted from the clip representation,
and the features are scored by an AdaBoost classifier. Fi-
nally, a post-processing step produces temporally localized
responses for evaluation.

1. Introduction

In the TRECVid 2009 event detection evaluation, Yang
et al. [1] have made an attempt to detect events that com-
prise one or two individuals, namely “person running”,
“embrace”, and “pointing”. For this year’s entry, we de-
velop an enhanced system based on their framework. In-
stead of attacking the same events from last year, we focus
on the “’person running” event.

The dataset used for this year is unchanged from last
year. It consists of surveillance camera footage which was
acquired at London Gatwick airport. The development
dataset is an approximately 100 hour video dataset, which
consists of videos from five fixed-view surveillance cam-
eras in the airport. The event detection only requires lo-
cating times (i.e. frames) at which the events occur, rather
than accurate spatial locations. The final evaluation has an
approximately 45 hour video dataset.

Compared with the benchmark human action datasets in
common usage in the computer vision literature (e.g. KTH
and Weizmann datasets), TRECVid is much more difficult
and realistic. We list the main challenges of TRECVid be-
low.

e Rarity of events: Detecting events in surveillance

Greg Mori
School of Computing Science
Simon Fraser University, Canada

mori@cs.sfu.ca

Pre-procassing Photogrammetric
Context
. Foreground
/ Video ‘ Mask
Optical Flow

Moving HOG
Regions Descriptors

v

Candidate
Regions
|

¥
Tracklets
Scores
+

Post-processing Ev'em

Event
Locations

Figure 1. The general flowchart of our event detection system.
Given an input video, we first extract the candidate moving re-
gions by background subtraction, optical flow, and photogrammet-
ric cue. We then use a HOG detector to find out if there are people
inside the candidate regions. We then perform tracking and clas-
sification on the candidate regions with people, whose results are
further processed by the post-processing step.

Classification

videos is a rare event detection problem. Finding in-
stances of an event such as ”person running” is akin
to searching for a needle in a haystack. Most of peo-
ple in the videos are walking and standing. Since there
are too few positive samples (i.e. running events) com-
pared with negative samples (i.e. walking events), the
classification problem between running and walking
becomes very difficult.

e Cluttered background and occlusion: The TRECVid
videos all have cluttered backgrounds, which not only
contain static background objects, but also dynamic
ones, e.g. moving people. In addition, instances of
events are often occluded by other people. Tracking in
such environment is not reliable. Our system requires
to track moving people (Fig. 1).



t

Figure 2. Sample images collected in moving regions. The first

row contains the person images. The second row contains the not-
person images.

e Action variation: Different people may perform
the same action differently. Unlike many bench-
mark datasets, the actions in TRECVid are not chore-
ographed, instead the captured actions are natural and
realistic. This leads to a very large variation for the
same pre-defined action. Furthermore, actions are cap-
tured from a variety of different camera viewpoints.

e Incomplete annotation information: For the devel-
opment videos, the annotations only provide tempo-
ral locations of the pre-defined events, and no spatial
bounding box information is provided. Our system re-
quires the bounding box information to train a classi-
fier.

Our system has three steps, a pre-processing step, a de-
tection step, and a post-processing step. The detection step,
following a typical machine learning framework, includes
feature extraction, training, and classification components.
The system uses a HOG detector to scan over the candi-
date moving regions returned from the pre-processing step.
For each human figure found by the HOG detector, the sys-
tem performs a short tracklet [5] of 15 frames by using both
the HOG feature and color histogram. The classification
framework by Fathi and Mori [3] is applied to each success-
ful tracklet. There are only two classes in the classification
problem, either running or not-running. The classifier in the
framework gives every tracklet a score, which can be con-
sidered as a confidence measure of the classification. The
system records the maximum score among all the scores
from all the tracklets in each frame. The post-processing
step thresholds the list of scores from the detection step to
generate a list of discrete events for evaluation.

The reminder of this paper is organized as follows. In
section 2, we present the system in detail. In section 3, we
present some experimental results and the evaluation result

on the formal run of TRECVid 2010. Finally, we conclude
the paper in section 4.

2. Event Detection System

Given a pre-defined event, the objective of event detec-
tion is to temporally localize all similar events in test videos.
We develop an event detection system for the TRECVid
workshop evaluation that first detects running events in spe-
cific spatial and temporal locations in test videos, and then
post-processes them to produce temporally localized out-
put for evaluation. The system is based on the framework
developed by Yang ef al. [1] in 2009. We only keep their
background subtraction, optical flow, and photogrammetric
context components. The details of each step are provided
below. An overall flowchart view of our system is provided
in Fig. 1. Note that the system is implemented in C++ with
OpenCV. The tracking and classification of each candidate
region is independent. Thus, we use multithreads to speed
up the processes in the detection step. The system takes
0.5s to 7s to process one frame depending on the number of
candidate regions returned from the pre-processing stage.

2.1. Pre-processing

Our system uses a space-time window-scanning to lo-
cate people first. To reduce the searching space, we apply
a pre-processing step using background subtraction, optical
flow, and photogrammetric context to discard the majority
of static (i.e. no motion) regions in a video. Foreground
regions are detected using the standard Gaussian Mixture
Model (GMM), and those which do not cover enough fore-
ground are discarded. To further reduce the searching
space, we employ photogrammetric context information to
roughly estimate the human height on images and determine
where events are likely occur. The photogrammetric con-
text component is a linear regression model which estimate
a person height by giving the person distance to the camera.
The optical flow of every two adjacent frames is computed.
Then the motion descriptors proposed by Efros et al. [4]
are computed for each frame. The motion descriptors are
four non-negative channels Fj , Eo, F;r s Fy_ represented
the motions in horizontal and vertical directions. For every
bounding box given by the photogrammetric context com-
ponent, the system sums over the motion descriptors inside
the box. A bounding box with motion is then evaluated by
a HOG [6] detector (Sec. 2.2). The bounding boxes with
moving people are considered as candidate regions and are
passed to the tracking step (Sec. 2.3). The classification step
(Sec. 2.4) scores a tracklet from the tracking component and
it gives a score to a frame by recording the maximum score
in the frame. Finally, the list of scores is post-processed to
produce temporally localized output (Sec. 2.5).



BARALEEESERE)
AEERAAARENE
RERRARRABRARALY
EERadadAARARNRRR

BEAL)

Figure 3. Sample tracklets. The first row is a tracklet of a running person in camera view 1. The second row is a tracklet of a running
person in camera view 2. The third row is a tracklet of a walking person in camera view 1. The last row is a tracklet of a walking person in

camera view 2.

2.2. HOG Detector

After the pre-processing step, the system has a list of
candidate moving regions. The regions are defined by
the bounding boxes given by the photogrammetric context.
However, a region that has motion may not contain a per-
son. For example, it can contain the shadow of a moving
person, or it can contain a moving luggage. To further re-
duce the searching space, we only interest in the moving
regions that contain people. Given a region (i.e. a bounding
box), we first resize it to 29 x 60. We then extract the HOG
feature from the resized image. A linear SVM is used to
classify the HOG feature, either person or not-person. The
linear SVM is from liblinear [2]. There are usually several
moving regions detected for the same person. To solve this
non-maximum suppression problem, we cluster the regions
based on color histogram and spatial constraints. For each
cluster we take only the region with the largest score from
the SVM among all the regions in the cluster. After this
pedestrian detection step, a list of candidate regions with
moving people is passed to the tracking component for fur-
ther analysis.

Some sample images of both person and not-person are
shown in Fig. 2.

2.3. Tracking

The AdaBoost classifier in Sec. 2.4 requires a figure-
centric volume. To construct such representation, we per-
form a short tracking of 15 frames on each candidate mov-
ing region that contains a person. The tracking algorithm we
implement is very basic. We perform an exhaustive search-
ing on each of these four directions: right, top, left, and bot-
tom. The exhaustive searching is done in a frame-by-frame
manner. In one tracking, given a moving region that con-
tains a person in the current frame, we assume that the per-
son either stays in the same region or moves no further than
a certain distance (i.e. 10 pixels) in next frame and that the
person does not change his or her moving direction rapidly.
The certain distance defines a fixed searching space in the
next frame for a given region and a given direction. We then
use the same technique in Sec. 2.2 to try to find the same
person in the searching space. If the same person is found
in the next frame, the next frame becomes the current frame
and the tracking is continued with the same procedure. The
tracking is terminated when either a tracklet of 15 frames is
constructed or the tracking person cannot be found by the
system in the next frame. The tracklets that have fewer than
15 frames are discarded.

The tracking result is very good if the tracking person
does not go behind other people or objects such that a large
occlusion of the tracking person occurs. Some typical sam-



ple tracklets are shown in Fig. 3. Note that every image
shown in Fig. 3 has a size of 29 x 60 since a detected region
is resized to such size during the tracking (see Sec. 2.2).
However, during the computation, the system only keeps the
original size of each bounding box in a tracklet. The orig-
inal size information is used to scale the low-level motion
features extracted later during the classification described in
next section.

2.4. Classification

After the tracking step described in the previous section,
the system has a set of figure-centric tracklets. The track-
lets can be directly fed into the classification framework by
Fathi and Mori [3] with a small modification. In the classi-
fication framework, a variant of AdaBoost [7] is used, and
we implement the same AdaBoost classifier. The classifier
works on a figure-centric volume and every images in the
volume should have the same size. However, the tracklets
returned from the tracking component in Sec. 2.3 do not
have such property. We decide to resize every image in a
tracklet to 29 x 60. The resizing also requires to scale the
low-level motion features in every image. The low-level
motion features are the four non-negative motion channels
FJr F- Fy , F similar to Efros et al. [4] and a zero mo-
tion FO which is obtained by computing the Lo norm of the
four basic channels. The low-level features should have the
same values if they represent the same amount of motion
in the real world. In the system, the low-level features are
computed from the optical flow of two adjacent frames in
the video. The optical flow of the pixels that are far from
the camera has smaller value than the the optical flow of
the pixels that are close to the camera even if they represent
the same amount of motion in the real world. To fix this
issue, we first resize a given region to 29 x 60 by a linear
interpolation and then scale the low-level features inside the
region as the following. Let the original size of a region be
W, x H, and the four non-negative channels be Fj , Fo,
F; s Fy_ . The two scaled horizontal channels are

. 29 . 29
Ff=Ff— F =F, — 1
W W, (1)
and the two scaled vertical channels are
60 - 60
F FJr F T =F — 2
Y v v ()

The scaled zero motion E} is obtained by computing the
L5 norm of the four scaled channels.

After the resizing and scaling, the low-level motion fea-
tures and the mid-level motion features of a tracklet can be
extracted. These features are scored by the AdaBoost clas-
sifier. The AdaBoost classifier solves a two-class classifi-
cation problem, running versus not-running. It computes a
score for each tracklet found in a frame. The score can be

considered as a confidence measure of the classification. A
higher score means that the tracklet is more likely to contain
a running person. For every frame, the system records the
maximum score among all the tracklets found in the frame.
The list of scores is then passed to the post-processing step.

2.5. Post-processing

The post-processing step thresholds the list of scores
from the detection step to generate a list of discrete events
for evaluation. Given a pre-defined threshold, the system
merges a set of consecutive frames into one event. The
starting frame and the ending frame of an event have scores
larger or equal to the threshold. It is not necessary that ev-
ery frame within an event has a score larger or equal to the
threshold. The system merges a frame into an event if the
gap between the frame and the last frame of the event is less
than a pre-defined number of frames (i.e. 25 frames). This
allows the system to tolerate some errors introduced by the
tracking. For the same reason, the system also adds a pre-
defined number of frames to both the starting and the ending
of an event. The score of an event is the mean of the scores
of the frames in the event which are larger or equal to the
threshold. The system sorts the list of discrete events based
on the scores of the events in descending order. It then takes
2% events (i.e. x = 10) from the top of the sorted list for
computing the actual DCR score in the evaluation. Since
the AdaBoost classifier for each camera view is trained in-
dependently, the post-processing step also tries to normal-
ize the event scores across camera views. We use a simple
heuristic way to put the event scores into the same range.
The system finds all the generated events for each camera
view and calculate the mean event score m;(i = 1,2, 3,5)
for each camera view. Each event score in camera view ¢ is
then divided by the mean event score m;.

3. Experiment on Development Data and Eval-
uation Data

To evaluate our system, we train a HOG detector and
an AdaBoost classifier for every camera view except cam-
era view 4. There is very little activity in camera view 4.
We focus on detecting running events that involve adults
only. The TRECVid 2010 development dataset contains two
parts: TRECVid 2008 development dataset and TRECVid
2008 evaluation dataset. Each set has 5 videos and each
video has a length of 2 hours. We only use the TRECVid
2008 development dataset for our training. We first extract
all running events from the dataset. Then, we separate the
events in each camera view into two groups: adult and child.
The adult group contains the running events such that the
running person is an adult. The child group contains the
running events such that the running person is a child.

To train the HOG detectors, we manually select person



Person image | Not-person image
Camera view 1 2010 1450
Camera view 2 2308 2595
Camera view 3 2687 3651
Camera view 5 3016 3340

Table 1. The number of images selected to train the HOG detector
for each camera view.

Running tracklet

Not-running tracklet

Camera view 1 295 5721
Camera view 2 635 8698
Camera view 3 415 3554
Camera view 5 661 4345

Table 2. The number of tracklets selected to train the AdaBoost
classifier for each camera view after the bootstrapping step.

images and not-person images from the extracted events in
the adult groups. The images are generated from moving
regions. Details of how many images have been selected is
stated in Table 1. The kernel parameter C' in the linear SVM
is set by cross-validation. To train the AdaBoost classifiers,
we manually select running tracklets and not-running track-
lets from the extracted events in the adult groups. After
the first round training, we perform a bootstrapping step to
collect more not-running tracklets. We run the trained sys-
tem on the TRECVid 2008 development dataset and select
the not-running tracklets in the false positives that are given
high scores. Details of how many tracklets have been se-
lected in total is stated in Table 2. There are a few param-
eters in the AdaBoost classifier. The AdaBoost classifier is
a two-layer AdaBoost classifier. The first layer consists of
low-level features and the second layer consists of mid-level
features. Each mid-level feature is a linear combination of
10 low-level features. The final classifier is a linear com-
bination of 50 mid-level features. Each mid-level feature is
represented by a cuboid in the figure-centric volume. The
size of the cuboid is 5 x 5 x 15. More detail of this AdaBoost
setting can be found in [3].

We compare our system with the system from Yang et
al. [1]in 2009. We run both systems on the TRECVid 2008
evaluation dataset, a part of the TRECVid 2010 develop-
ment dataset. We only run the systems on camera view 1, 2,
3, and 5. However, we evaluate the systems with the ground
truth from all camera views. The DET curves of these two
systems are plotted in Fig. 4.

The result of our system on the TRECVid 2010 evalu-
ation formal run is shown in Table 3. The baseline system
has a similar minimum DCR on the formal run of TRECVid
20009.

DET Plot

T
Tso-DCR Lines
Event PersonRuns: 28088 canl to can5 baseline —@#—
Event PersonRuns: fixed 2088 canl to can bootstrap —fli— |

99.5

a9

98

95

98

88

PHiss {in %)

68

48

18 —

1 I I I
5
8,81 8,1 1 18 188 1808

RFA (in Events/Hour}

Figure 4. DET curves of our system and the baseline system from
Yang et al. The blue curve represents the performance of our sys-
tem, while the green one represents the performance of the base-
line system.

Actual DCR | Minimum DCR

Running 1.058 0.982
Table 3. Actual DCR and Minimum DCR of the running event on
the formal run.

4. Conclusion

We present a system for the TRECVid 2010 event detec-
tion challenge. We focus on the “PersonRuns” event. The
system utilizes pre-processing to extract candidate space-
time regions based on background subtraction, optical flow,
and a photogrammetric context cue. These candidate re-
gions are further reduced by a HOG detector. For a can-
didate moving region with a person, the system performs a
short tracking and a successful tracklet is scored by an Ad-
aBoost classifier. Given a list of scores, a post-processing
step produces temporally localized responses for evalua-
tion.

References

[1] W. Yang, T. Lan, and G. Mori. SFU at TRECVid 2009: Event
Detection. In TRECVID Workshop, 2009. 1, 2, 5

[2] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-
J. Lin. LIBLINEAR: A Library for Large Linear Classifica-
tion. In Journal of Machine Learning Research 9, 1871-1874,
2008. 3

[3] A. Fathi and G. Mori. Action Recognition by Learning Mid-
level Motion Features. In CVPR, 2008. 2,4, 5

[4] A. Efros, A.Berg, G. Mori, and J. Malik. Recognizing action
at a distance. In Proc. 9th Int. Conf. Computer Vision, volume
2, pages 726-733, 2003. 2, 4



[5] V. K. Singh, B. Wu, and R. Nevatia. Pedestrian Tracking
by Associating Tracklets using Detection Residuals. In /EEE
Workshop on Motion and Video Computing, 2008. 2

[6] N. Dalal and B. Triggs. Histograms of Oriented Gradients for
Human Detection. In CVPR, 2005. 2

[7]1 R. E. Schapire and Y. Singer. Improved Boosting Algorithms
Using Confidence-rated Predictions. In Machine Learning,
37(3):297-336, 1999. 4



