
 

0. STRUCTURED ABSTRACT 

Detection of shot boundary plays important roles in many 

video applications. Herein, a novel method on shot boundary 

detection from compressed video is proposed. Firstly, we 

extract several local indicators from macroblocks, and these 

features are used in determining candidate cuts via rule-based 

decision making into five sub-spaces. Then, global indicators 

of frame similarity between start and end frames of candidate 

cuts are examined, using fast phase correlation on cropped DC 

images. Gradual transitions like fade and dissolve as well as 

combined shot cuts are also identified in compressed domain. 

Experimental results on the test data from TRECVID 2007 

have demonstrated the effectiveness and robustness of our 

proposed methodology. Moreover, our submissions can 

achieve nearly 5 times faster than real-time video play (25 

frames/s) due to the nature of its compressed-domain 

processing, achieving additional advantages in terms of 

processing speed and computing costs. 

1) Briefly, what approach or combination of approaches did 

you test in each of your submitted runs? (please use the run id 

from the overall results table NIST returns)  

 
We have three switches and by turning them on or off we 

have generated 8 different runs, i.e. UB_IAIS0, UB_IAIS1, 

UB_IAIS4, UB_IAIS5, UB_IAIS8, UB_IAIS9, UB_IAIS12, 

and UB_IAIS13. The other run with a system ID UB_IAIS15 is 

designed separately. These three switches are: 1) To consider 

3-frame event as cut or gradual transition; 2) To merge 

combined shots as a whole or separate cuts; 3) To consider 

change of half frame as a cut or not. 

o  UB_IAIS0: One basic run with all three switches 
turned off;  

o UB_IAIS1: One basic run with the first switch on and 

the other two off;  

o UB_IAIS4: One basic run with the 2nd switch on and 

the other two off; 

o UB_IAIS5: One basic run with the first two switches 
on and the third off; 

o UB_IAIS8: One basic run with the third switch on but 

the other two off; 

 

o UB_IAIS9: One basic run with the first and the third 

switches on and the 2nd off; 

o UB_IAIS12: One basic run with the 2nd and 3rd 
switches on and the 1st off; 

o UB_IAIS13: One basic run with all the three switches 

on; 

o UB_IAIS15: A relative separate submission using 

traditional features without post-processing of 

phase-correlation to remove false alarms. 

2) What if any significant differences (in terms of what 

measures) did you find among the runs?  

Except for UB_IAIS15, all other eight runs share same 

concepts in algorithm design. The only difference between 
them is turning on or off of three switches to deal with complex 

cases for robustness, and this has slightly changed the detected 

results in fusion stage. 

3) Based on the results, can you estimate the relative 

contribution of each component of your system/approach to its 

effectiveness? 

First of all, it is our extracted features which demonstrate 

very well in such a context. Then, the classification of cuts into 

five categories has brought benefits in implementing effective 

detection. Moreover, phase-correlation for post-processing 

help to reduce about 3% false alarms. Detecting of combined 

shots has improved the effectiveness and accuracy in 

determination of gradual transitions. The overall improvement 

in comparison with traditional methods is about 5%.  

4) Overall, what did you learn about runs/approaches and the 

research question(s) that motivated them?  

Firstly, we prefer compressed domain processing as it is 

straightforward for MPEG videos, and this can help to extract 

motion features inside and skip expensive decoding for 

real-time applications. We find when shot transitions occur 

there are significant changes in luminance and/or chromatic 

intensity no matter how bright or dark the original frames are, 

and this has brought our attention to consider change ratios 

rather than absolute values of frame difference. Then, to reduce 

false alarms caused by motion, either from camera or objects, 

we propose phase-correlation methods in DCT images as it 
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provides overall measurement of frame correlation/similarity 

and can help to reduce such errors.   

 

1. INTRODUCTION 

Detection of shot boundary for video segmentation is not a 
new topic, which was originally introduced decades ago to 

detect abrupt cuts in videos [1-4]. From then on, many 

techniques have been developed in either compressed domain 

or uncompressed domain. Recently, a formal study of shot 

boundary detection is presented [5] in which the problem is 

basically divided into three parts, namely feature extraction (or 

visual contents representation), constructing continuity signal 

(via similarity measurement), and decision (or classification). 

With features extracted from compressed and/or uncompressed 

domain, a continuity signal is constructed which represents 

similarity between neighboring frames. As for decision, 
rule-based approaches and statistical machine learning like 

SVM and neural network become more popular than traditional 

threshold-based approaches, even the latter may cover some 

adaptability [7].   

Regarding feature extraction, pixel-based methods are 

perhaps the simplest ones for shot detection, but they are 

sensitive to either motions or lighting changes, and motion 

compensation is usually utilized to obtain a more reasonable 

measurement of frame differences [8]. Then, histogram-based 

approaches, including luminance and chromatic histograms, are 

introduced, as they are invariant or insensitive to motions [5]. 
Although texture and edge (including edge change ratio) 

information is useful in image segmentation, they are less 

effective in shot detection possibly due to the fact that these 

features are not dominant in general video sources. On the other 

hand, motion feature is widely adopted in shot cut detection or 

other video processing applications in both compressed domain 

and uncompressed domain [3,4]. 

Shot boundary detection (SBD) is the fundamental task in 

content-based analysis, indexing and retrieval of videos, which 

is also one of the three tasks from the well-known TRECVID 

competition. In this paper, techniques are discussed in details 

for our submission to TRECVID’07 on shot boundary 
detections, including abrupt cuts and several types of gradual 

transitions. Additional advantages are also achieved by our 

techniques due to the fact that all shot boundary detection is 

performed in compressed domain, achieving almost 5 times 

faster than real-time video play. Therefore, our contributions 

can be highlighted as: (i) From a very small set of features as 

local content indicators, abrupt shot changes are effectively 

detected; (ii) Phase correlation on DC images of candidate shot 

boundaries is utilized to remove false alarms caused by 

motions; (iii) Full implementation in compressed domain for 

efficiency.   
 

2. FEATURE EXTRACTION FROM MPEG VIDEOS 

In our implementation, a macroblock of 16 16 pixels in 

MPEG videos is taken as a basic element for motion analysis 

and feature extractions. Without losing generality, we take the 

4:2:0 video format to describe the technique we propose for 

extracting local content features, where four luminance blocks 

and two chrominance blocks for Cb and Cr components are 

included. 

For the thi  input frame 
if , let

hN  and 
vN  denote the 

number of macroblocks in horizontal and vertical directions, 

and )(),( iUiY dcdc  and )(iVdc  represent the corresponding 

DC images of Y, Cb and Cr components. If we denote 

cby NN ,  and crN  as the numbers of elements in  

)(),( iUiY dcdc  and )(iVdc , respectively, we can easily have 

vhcrcbvhy NNNNandNNN  ,4       (1) 

Since all the macroblocks are intra-coded in I-frames, the 

corresponding DC images can be directly extracted for 

I-frames. As for P-frames and B-frames, weighted motion 

compensation is applied as the current macroblock may contain 

contributions from its four original neighboring blocks in the 

reference frame. As each DC value corresponds to the average 

pixel value inside the related block, the DC image provides a 

low-resolution version of the original frame, which presents a 

scaled-down visual content platform for further analysis. 

Based on the extracted DC image, a motion prediction 

error can be defined for the ith frame:  
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where iC  is the number of non-intra coded 88  blocks 

indexed by j .  

From the luminance component of the DC image, a 

normalized energy of Y component in the 
thi  frame can be 

extracted as follows: 
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represent the maximum value of 

energy in Y components, and 256j is the number of 

intensity levels in the frame. 

Since cby NN 4 , in each macroblock, we have six DC 

values, four from Y and two from U and V components, 

respectively. For the convenience of description, we use the 

mean of the four Y values as an overall measurement of the 

macroblock, and thus from each of Y, U and V components, we 

have only one DC value corresponding to each macroblock, 

which can be denoted as dcY .  

For the 
thi  frame, we define its DC-differencing image  

between the 
thi  frame and the 

thi )1(   frame as follows:  

|})1()(||)1()(|

|)1()({|3)( 1



 

iViViUiU

iYiYiD

dcdcdcdc

dcdc
   (4) 



 

Figure 1 illustrates one example of cut in four consecutive 

frames and their corresponding DC-images. For each two 

consecutive DC-images, their differencing image is extracted 

and shown in Fig. 2(a). For each difference image )(iD , we 

further obtain its mean and standard derivation, )(i
 
and 

)(i , as follows: 
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Furthermore, we define )(1 ip
 
and

 
)(2 ip

 
as two 

proportions which represent the percentage of pixels in )(iD  

that are larger than the two given thresholds )(1 i and )(2 i  

determined by )(i .  

In fact, this thresholding will help to yield two binary masks 

in which white and black pixels refer to those whose )(i  are 

larger or smaller than )(1 i and )(2 i , respectively. 

According to differencing images in Fig. 2(a), three binary 

masks obtained by thresholding using )(2 i are given in Fig. 

2(b) in which majority white pixels can be found in the middle 

image when a cut occurs. In comparison, the other two images 

in Fig. 2(b) have a small proportion of white pixels. However, 

this small proportion may become large when motion exists in 

frames as it will inevitably lead inconsistency between frames 

and high values in )(iD . To overcome this drawback, median 

filtering (in 3*3 window) of )(iD  is employed before 

calculating its mean and standard derivation for further 

adaptive thresholding. The results after median filtering of 

)(iD
 
and new obtained binary masks are illustrated in Fig. 

2(c) and 2(d). Please note that before and after median filtering, 

the corresponding )(2 ip
 
in three differencing images are 

found as (3.8%, 96.2%, 14.6%) and (0.3%, 97.1%, 2.3%), 

respectively. This has clearly demonstrated that median 

filtering of differencing image can help to reduce the effect of 

local motions and produce more accurate measurement of 

changed blocks for more robust detection of shot changes.  

 

3. DETECTING ABRUPT SHOT CHANGES 

Based on the local features extracted in DCT domain as 

described in previous section, a feature vector iV can be further 

constructed: 

))(),(),(),(),(),(( 21 ipipiiiEierrV yi 

 
   (7) 

As most of the cuts are found appearing as a peak in the 

sequence of )(i  and also a small peak of )(i , their relative 

heights are defined as a change ratio in comparison with its 

neighboring frames as follows.  
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1) Categories of Different Cuts 

In our system, we have category cuts into 5 sub-spaces, 

denoting as ]5,1[|)(  kkc , for effective detection. In 

)1(c  and )2(c , two boundary frames of a cut almost 

share nothing in background and foreground. In )1(c  we can 

find very highly change of intensity in frame images while in 

)2(c  the intensity change seems limited though may be 

apparent in colors. In )3(c , there is a relative large part of 

common background or foreground can be found. For the three 

subspaces of cuts above, they all satisfy 1)(min i  and 

1)(min i , i.e. a peak of )(i  and )(i .  

In )4(c ,  shots satisfy 1)(min i
 
and 1)( ileft , 

but )(iright
 
is near or smaller than 1. This corresponds to a 

shot followed by sudden intensity changes like the effect of 

flash lighting. Although this kind of shot change is not a strict 

cut as it is usually a three-frame event, they are considered as 

cut in TRECVID on evaluation. Finally, )5(c  contains shot 

changes followed by strong motions, which leads to 

1)(min i  but )(i a very small peak or non-peak. 

In our system, these five categories of cuts are classified in 

a sequential way, i.e. to check and see if the conditions are 

satisfied category by category. If conditions in the prior 

category are matched, a cut is detected as in the corresponding 

category. Otherwise, the following conditions are examined. If 

a change in the video sequence is found failed satisfying either 

category of cuts above, it is defined as “non-cut”.  

2) Validating of Detected Cuts 

Although the above decision rules can successfully detect 

real cuts, there are still quite a few false alarms owing to camera 

motion like panning or object motion such as moving people. 

Here the well-known phase correlation method is utilized to 

measure the similarity of two frames as follows: 



 

1) For two frames if and 'if , their DC image in Y 

component, )(iYdc  and )'(iYdc , are taken as two coarse 

versions of the original images; 

2) Let )(idc  and )'(idc  be Fourier transform 

(represented by )( ) of )(iYdc  and )'(iYdc , 

respectively, their phase correlation )',( iidc  is then 

obtained as follows: 

 
 





















|)'()(|

)'()(
)',(

)'()'(

)()(

*

*
1

ii

ii
ii

iYi

iYi

dcdc

dcdc
dc

dcdc

dcdc

  (14) 

3) Find the global peak of maximum amplitude over 

)',( iidc  surface, and the corresponding amplitude 

which belongs ]1,0[  is then taken as similarity between 

frames if  and 'if . 

 

Let if  to 1if  be one candidate cut detected above, and 

then we extract four phase correlation results on DC images 

below: 
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If a real cut exists between frame if  and 1if , both 

),( 1 ii ff   and ),( 21  ii ff  should be pair of similar images 

which lead to large value of )(0 ic  and )(2 ic . On the contrary, 

)(1 ic  and )(3 ic  should be small due to dissimilar pair of 

images involved. These facts are utilized in verifying the 

candidate in our system.  .  

 

4. DETECTING GRADUAL TRANSITIONS 

After detection of abrupt changes, we need to identify 

boundaries of gradual transitions within each pair of 

neighboring cuts. Except for fade, dissolve and wipe, combined 

shot of cuts is also considered and the techniques are discussed 

below.  

1) Detecting Combined Shots 

Combined cuts containing cuts and a series of black or 

white frames can be classified into two parts namely normal 

cuts in the boundary and monochrome frames (black or white) 

in the middle. To detect such patterns, frame energy is taken as 

priority owing to the fact that these black or white frames are 

normally of nearly constant energy. Most importantly, this 

constant energy appears greatly smaller or larger than the 

energy in the start or end frames of relevant normal cuts. Based 

on the above analysis, such combined shots can be successfully 

identified. 

2) Detecting Other Gradual Transitions 

When gradual transitions of dissolve occur, usually we can 

find that the corresponding prediction error in several frames 

becomes large. At the same time, )(i  also turns big. This can 

help to design our method in detecting dissolve below. 

Firstly, a candidate frame of dissolve is obtained if we have 

etierr )( , where 15et  is a  threshold. Secondly, each 

single candidate frame is extended to a small clip by iteratively 

merging its neighboring frames if the neighboring frame has its 

prediction error larger than one third of the average prediction 

error in the formed clip. Thirdly, we combine all the short clips 
into a whole if their distance less than 3 frames.  

Then, if the whole segment found contains less than 3 

frames, it is abandoned. Otherwise, this candidate is further 

verified by checking if the difference between its two boundary 

frames is large enough as a cut. 

As for the event of fade, it is detected only if a fade out 

event followed by fade in (FOI) exists. During such a FOI 

process, one apparent appearance is the change of luminance 

intensity which shows a clear V-shape. The left and right sides 

of this V-shape are corresponding to fade out and fade in, 

respectively. To determine such changes, we firstly locate the 

valley of lowest energy in a temporal window of wN  frames, 

then we locate two peaks in the left and right of this valley. If 

we denote vi , lefti  and righti  as frame indexes of the valley and 

two peaks, a FOI is detected if 2 leftv ii , 2 vright ii , 

and ))(),(min()( rightyleftyvye iEiEiE  , i.e. there are 

intermediate frames in both sides and the intensity, measured 

by energy, has significant changes ( 5e ).  

3) Fusion of Detected Results 

As we have different detectors for abrupt and gradual 

transitions of shot changes, a fusion procedure is necessary for 

a final decision and further improves both the accuracy and 

robustness. First of all, if two cuts are found too close to each 

other, say less than 5 frames, they are considered as false 

alarms. Then, a detected gradual transition is removed if it is 

found containing cut changes as cut results are taken of first 

priority. Next, overlapped gradual transitions are merged. Final 

output is generated in XML format in accordance with the 

requirements from TRECVID. 
 

5. EVALUATION RESULTS AND DISCUSSIONS 

We apply the proposed methodology to TRECVID 2007 

data and present the results in this Section. In TRECVID 2007, 

in total we have 2320 shots in 17 test sequences of 637,805 

frames, in which about 90% of the shots are cuts. For 

quantitative evaluation, ground truth data is manually 

extracted. It is worth noting that even after hard working there 



 

are still some errors in these GT data such as missing or false 

definitions, and this is mainly due to unclear boundary of some 

special editing effects and massive labors involved.  

Unlike news video used in previous years, test data in 2007 

cover a wide range of sources from news reports, 

documentaries, and educational programmes to archived videos 

in black and white. For SBD, about 6 hours of test data in 

MPEG-1 is selected from 400 hours video sources provided by 

the Netherlands Institute for Sound and Vision 

(http://portal.beeldengeluid.nl/).  

According to the data in TRECVID 2007, percentages of 

cuts in different categories are listed in Table 3 below, in which 

we can find these categories cover 99.63% of all cuts among the 

test data.  

 

Table 1.  Percentage of cuts in different categories, which 

covers 99.63% of cuts in the data from TRECVID 2007. 

)1(c  )2(c  )3(c  )4(c  )5(c  

11.38% 82.00% 3.52% 1.26% 1.47% 

 

1) Overall Performance and Evaluation 

There are three measurements used in evaluating the results, 

i.e. recall and precision rate of cut detection, gradual transition, 

and overall performance. For gradual transitions, one additional 

measure is frame accuracy in locating shot boundaries. A 

combined measurement of both precision and recall, 1F  , is 

defined below to rank performance of different algorithms.  

precisionrecall

precisionrecall
precisionrecallF
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The overall performance of our suns in TRECVID 2007 is 

summarized in Table 2. According to the results in Table 2, we 

can easily find some facts below: 

 For cut detection, the best results of our submission 

can achieve the recall and precision rates as 97.3% and 

98.2%, respectively; 

 For gradual transition detection, our submission can 

achieve detection rate and frame accuracy as (58.7%, 

42.5%) and (82.3%, 76.1%), which need to be 

improved in further investigation; 

 As for overall performance, our submission has a 

recall rate of 94.1% and precision rate of 91.9%, 

respectively.  

2) Performance Analysis of Post-processing 

Here, we’d like to analyze the reasons which lead to the best 

results of our submission on cut detection. In this experiment, 

phase-correlation for post-processing is removed and the 

performance is compared in Table 3. From Table 3 we can see 

that this post-processing can help to reduce about 3% false 

alarms of improved precision rate while degraded recall rate of 

0.2%.  

 

 

Table 3.  Percentage of cuts in different categories, which 

covers 99.63% of cuts in the data from TRECVID 2007. 

 Recall Precision F1 

No post-processing 0.986 0.958 0.972 

With post-processing 0.984 0.987 0.986 

3) Speed Analysis 

Owing to compressed-domain processing, our system 

achieves a speed of about 123 frames per second on our 

machine (PentiumD 2.8G/1G memory), in which nearly 84% of 

time is used for partially decoding of MPEG stream and 16% 

for video segmentation. This speed is about 5 times faster than 

real-time playing of the video.  

 

6. CONCLUSIONS 

A novel method is presented for shot boundary detection in 

compressed MPEG videos. Taking this fundamental task as a 

process of decision making, we have introduced a series of 

rules in mapping extracted local features into five sub-spaces. 

Post-processing using phase correlation is found essential in 
eliminating false alarms caused by camera or object motion. 

The effectiveness and robustness of the method has been fully 

validated by the results on a wide range of test data from 

TRECVID 2007.  
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Figure 1. Example of one cut in four consecutive frames with the original frame images (top)  
and their corresponding DC images (bottom) (enlarged for better visualization). 
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(a) 

 (b) 

 (c) 

(d) 
Figure 2. Three differencing images of each two DC images in Fig. 1 (a) and their corresponding binary masks after adaptive  

thresholding (b). Results in (c) are those by median filtering of (a) and their binary masks are given in (d). 

 

 

Table 2. Results of our submitted runs, and the best results are highlighted in grey cells.  

 

Run ID All Transitions Cuts Gradual Transitions (GT) Frame Accuracy of GT 

Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1 

 AIS0 0.938 0.913 0.925 0.973 0.975 0.974 0.558 0.412 0.474 0.796 0.727 0.760 

 AIS1 0.939 0.913 0.926 0.973 0.976 0.974 0.558 0.412 0.474 0.796 0.727 0.760 

 AIS4 0.939 0.911 0.925 0.973 0.973 0.973 0.558 0.412 0.474 0.796 0.727 0.760 

 AIS5 0.939 0.912 0.925 0.974 0.973 0.974 0.558 0.412 0.474 0.796 0.727 0.760 

 AIS8 0.940 0.919 0.929 0.973 0.982 0.977 0.587 0.425 0.493 0.823 0.761 0.791 

 AIS9 0.941 0.919 0.930 0.973 0.982 0.977 0.587 0.425 0.493 0.823 0.761 0.791 

AIS12 0.941 0.917 0.929 0.973 0.979 0.976 0.587 0.425 0.493 0.823 0.761 0.791 

AIS13 0.941 0.917 0.929 0.973 0.980 0.977 0.587 0.425 0.493 0.823 0.761 0.791 

AIS15 0.889 0.887 0.888 0.920 0.952 0.936 0.553 0.394 0.46 0.792 0.718 0.753 

 

 


