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Abstract

This paper introduces a new efficient algorithm for computing Grébner bases. To avoid
as much as possible intermediate computation, the algorithm computes successive truncated
Grobner bases and it replaces the classical polynomial reduction found in the Buchberger
algorithm by the simultaneous reduction of several polynomials. This powerful reduction
mechanism is achieved by means of a symbolic precomputation and by extensive use of
sparse linear algebra methods. Current techniques in linear algebra used in Computer Al-
gebra are reviewed together with other methods coming from the numerical field. Some
previously untractable problems (Cyclic 9) are presented as well as an empirical comparison
of a first implementation of this algorithm with other well known programs. This compari-
son pays careful attention to methodology issues. All the benchmarks and CPU times used
in this paper are frequently updated and available on a Web page. Even though the new
algorithm does not improve the worst case complexity it is several times faster than previous
implementations both for integers and moduloomputations.

1 Introduction

In view of the progress already achieved and the promising potential of current and planned
algorithms, polynomial solving could become one of the more attractive application of Com-
puter Algebra: practical problems can be solved, the algorithms are competitive with numerical
methods. The main conclusion to be drawn from practice and experience of solving polynomial
systems coming from various fields (industrial [Fau98b] problems, pure mathematics [Fro96]) is
the following: first of all, even though the computation of a Grobner basis is a crucial point it
must be emphasized that it is ordgestep in the full solving process (change of ordering, trian-
gular systems, real or numerical roots are complementary tools); secondly classical Buchberger
algorithms [Buc65, Buc70, Buc85] must be improved since even the best implementations of-
ten do not succeed to compute Grobner bases from big problems. This paper is concerned with
describing a new algorithm (whose nameFig for computing Grobner basis. Even if the algo-
rithm works for any admissible ordering, the algoritfimhas been designed to be efficient for a
degree reverse lexicographical ordering (DRL); computing efficiently a lexicographical Grobner
basis from an already computed Grobner basis being the task of another algorithm. Paradoxi-
cally, if the Buchberger algorithm without optimizations is very simple to describe it becomes
much harder to understand how to improve a real implementation. By and large, however, it may
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eventually be possible to suggest two improvements: giiZeof the times is spent computing

zero it would be useful to have more powerful criterion to remove useless critical pairs [Buc79]
(a powerful theoretical criteria exists but it is too costly); this crucial aspect of the problem is
not studied in this paper, but is implemented in another algorithihs([Fau98a]). The second
improvement is concerned with strategies: during a Grobner computation, several choices can be
made (select a critical pair, choose a reductor) and even if strategies have been proposed ([Gio91]
or even [Ger95]) the heuristics which they rely on could not be satisfactorily explained. So it is
difficult to be convinced that they are optimal optimizations. Another bad consequence is that
it is very difficult to (massively) parallelize the Buchberger algorithm because the sugar (for in-
stance) strategy imposes a strong sequential ordering. The primary objective of this paper is to
propose a more powerful reduction algorithm. For that purpose we will resitadtaneously
several polynomials by a list of polynomials by using linear algebra techniques which ensure a
global view of the process.

The plan of the paper is as follows. The main Section 2 is devoted to presenting the new
algorithm. This section has been divided into several parts: first (2.1), we review the necessary
mathematical notations (we make the choice to use the same notations as in the book [Bec93])
and in 2.2 we establish the link between linear algebra (matrices) and polynomial algebra. Then
we present (2.3) a basic version of the algorithm without any criteria to eliminate useless pairs.
A improved version of the algorithm including the Buchberger criteria is then given in 2.4. We
close this section in 2.5 by motivating the choice of a good selection strategy (it seems that
selecting all critical pairs with a minimal exponent is a good strategy). Since the algorithm
relies heavily on linear algebra, Section 3 contains a short survey of linear algebra techniques
we have implemented. A first version of this algorithm has been implemented in C in a new
small system called FGb (for Fast Gb). In Section 4 we report an experimental evaluation of this
first implementation. The best Grobner bases programs are compared on a set of well known
benchmarks and industrial problems. Finally, in Section 5 we outline the main features of the
algorithm along with a list of possible related works and open issues.

The name of this algorithm is simply algorithm numiein the rest of this papef’, stands
for this algorithm.

2 Description of the F}; algorithm

2.1 Standard notations

We use the notations of [Bec93] for basic definitioRss the ground ringR[z] = R[z1, .. ., Zy)
is the polynomial ring. We denote B¥(z1,...,z,), or simply byT, the set of all terms in
these variables. We choose an admissible ordering ofi. If ¢ = 2" -.-2%» € T, then
the total degreeof ¢ is defined asleg(t) = > -, ;. Now let f € R[z], f # 0, so that
f = > clog,...,0n)x --- 28 (Wherec(ay,...,q,) are elements oR). Then we define
the setM (f) of monomials off asM(f) = {c(ai,...,an)xT - 2% | c(a,-- ., 0n) # 0}.
The setl’(f) of terms of f isT(f) = {«* ---22" | c(ay, ..., a,) # 0}. Thetotal degreeof
[ # 0is defined asleg(f) = max {deg(t) |t € T(f)}. We define thénhead termHT(f), the
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head monomiaHM(f), and thehead coefficienHC(f) of f w.r.t. < as follows: HT(f) =
max(T(f)), HM(f) = max(M(f)), andHC(f) = the coefficient o HM(f). If F' is a subset
of R[z] we can extend the definitiddT (F) = {HT(f) | f € F}, HM(F) = {HM(f) | f € F}
andT'(F) ={T(f) | f € F},; Id(F) denotes the ideal generated by

Let f, g,p € R[z] with p # 0, and letF" be a finite subset aR[z]. Then we say that

e freduces tgy modulop (notationf — g), if 3t € T(f),3s € T such that« HT (p) = ¢
p

andg = f — ﬁ(m x s * p wherea is the coefficient of in p.

e f reduces tgy moduloP (notationf — g), if f — g for somep € P.
p
e fisreducible modulg if there existy; € R[z] such thatf — g¢.
p

e fisreducible moduld if there existy € R|z] such thatf — 9

e f is top reducible moduld if there existsg € R[z] such thatf — 9 andHT(g) <
HT(f).

o f —;> gis the reflexive-transitive closure of>.

e TheS-polynomiabf f andg is defined as

lem(HT(f), HT (g))
HT(f)

lem(HT(f), HT (g))

spol(f,g) = HC(g) g

2.2 Linear algebra and polynomials.

Definition 2.1 By convention if\f is as x m matrix, M; ; is j th element of the th row of M.
If Ty = [t1,...,tn] an ordered set of terms, I¢t;);—1 ., be the canonical basis @@, we
consider the linear mapr,, : Vr,, — R™ (whereV7,, is the submodule a®[z] generated by
Tr) such thatpr,, (t;) = €. The reciprocal function will be denoted y,,. The application
Yr,, allows to interpret vectors ak™ as polynomials. We note §y/, 7,) a matrix with such
an interpretation.

Definition 2.2 If (M, Ty,) is as x m matrix with such an interpretation, then we can construct
the set of polynomials:

Rows(M,Ty) := {¢r,, (row(M,1)) |i=1,...,s} \{0}
whererow(M, i) is thei-th row of M (an element oRR™). Conversely, if is a list of poly-
nomials andl; an ordered set of terms we can constructsan m matrix A (wheres = size((),
m = size(T})):
A;j=coeft(l[i], T;[j]) i=1,...,sj=1,...,m
We notedT) the matrix(A; ;).



fo (% % x o)

fo [ x x x

M= 1
Jiok X X X (1)
fi2k+1 X X X v
fi \ X X X e /

Definition 2.3 Let M be as x m matrix, andY = [Yi,...,Y,,] new variables. Thed =
Rows(M,Y) is a set of equations, so we can compita reduced Gdbner basis of for a
lexicographical ordering such that; > ... > V;,. From this basis we can reconstruct a matrix
M = A®Y) We called)M the (unique) row echelon forhof M. We say also thaf is a row
echelon basis of .

1o tk gt tm
fi /1 0 ... 0 x X\
ij 0 1 Ce 0 X X
. X X
M=f o o0 1 x x )
finl0 0 - 0 0 0
: 0 0
f N0 0 - 0 0 0/

wherex denotes a possibly non zero element.
In the case of polynomials we have a similar definition:

Definition 2.4 Let I be a finite subset dk[z] and < an admissible ordering. We defifie (F)
to beSort({T(f) | f € F},<), A := AFT<(") and A the row echelon form ofl. We say that
F = Rows(A,T.(F)) is the row echelon form of w.r.t. <.

Elementary properties of row echelon matrices are summarized by the following theorem:

Theorem 2.1 LetM be asxm matrix, andY. = [Y;, ..., Y] new variablesf’ = Rows(M,Y),
M the row echelon form a¥Z, F' = Rows(M,Y’). We define

F+={g ¢ F|HT(g) ¢ HT(F)}
F- = P\F+

1In some computer algebra system, this is the only way to compute a row echelon form !
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For any subsef’_ of F' such thatsize(F_) = size(HT(F)) andHT(F_) = HT(F), then
G = F+ U F_ is a triangular basis of thek—moduleV,, generated by¥". That is to say, for
all f € Vi there exist(\;), elements o and (gx), elements oy such thatf = >, A\xgx,
HT(g:) = HT(f) andHT(gx) > HT (gg11)-

Proof Since the head terms of are pairwise distinct(s is linearly independent. We claim

that it is also a generating system1df;. Suppose for a contradiction that there exjsts V),

such thatf % f" # 0. By definition of a Grobner basig; — 0, consequently’ is top
F

reducible moduldT(F) = HT(F+) UHT(F-) = HT(F+) UHT(F_) = HT(G), so thatf' is
top-reducible modul@:. This is a contradiction]
We can transpose immediately the theorem for polynomials:

Corollary 2.1 LetF be a finite subset df and< an admissible ordering, anff the row echelon
form of F w.r.t. <. We define

F+={ge F|HT(g) ¢ HT(F)}

For all subsetF_ of F' such that sizé(_)=sizelT(F)) andHT(F_) = HT(F), thenG =
F+ U F_is atriangular basis o¥/;; the R—module generated bi. For all f € V,, there exist
(Ax)x elements of? and (gi ), elements ofs such thatf = >, Axgr, HT(9:) = HT(f) and
HT(gx) > HT(gk+1)-

2.3 TheF}, algorithm
It is well known that during the execution of the Buchberger algorithm, one has a lot of choices:
e select a critical pair in the list of critical pairs.

e choose one reductor among a list of reductors when reducing a polynomial by a list of
polynomials.

Buchberger[Buc65] proves that these choices are not important for the correctness of the
algorithm, but it is well known that these choices are crucial for the total time computation.
Moreover the best strategies [Gio91] inspect only the leading terms of the polynomials to make
a choice. Consider the case where all the input polynomials have the same leading term. In that
case, all the critical pairs are equal and it is not possible to take a decision. In some sense this
problem can be corrected in a simple and surprising wag:make no choiceMore precisely
instead of choosingnecritical pair at each step, we selecsabsebf critical pairs at the same
time. So, in fact, we are delaying the necessary choices in a second step of the algorithm, the
linear algebra part of the algorithm

Definition 2.5 A critical pair of two polynomialg f;, f;) is an element of 2 x R[z] x T x R[z],
Pair(fz-, f]) = (lcmij, ti, fi, tj, f]) such that
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Definition 2.6 We say that the degree of the critical paif;, = Pair(f;, f;), deg(pi;), is
deg(lcm; ;). We define the two projectiordse ft(p; ;) = (t;, fi) and Right(p; ;) = (;, f;)-
If (¢,p) € T x R[z] then we notenult((¢, p)) the evaluated products p.

We have now the tools needed to present the basic version of our algorithm. All the matrices
occuring in following algorithms are the representation of a list of polynomials through the set
of all their terms, as explained in Definition 2.2.

Algorithm F4
Input: {F a finite subset of R[z]
" | Sel a function List(Pairs) — List(Pairs) such that Sel(l) # @ if | # ()
Output: a finite subset oR[z].
G:=F,Ff :=Fandd:=0
P :={Pair(f,q9) | f,g € Gwith f # g}

while P # () do
d:=d+1
Pd = S@l(P)
P:=P\P,

Lg := Left(Py) U Right(Py)
F := Reduction(Lg4, G)
for h e F; do
P := PU{Puair(h,g) | g € G}
G :=GU{h}
return G

We have to extend the reduction of a polynomial modulo a subseludf to the reduction of
a subset oR[z] modulo another subset &f[x]:

Reduction

L afinite subset of T' x R[z]

G a finite subset of R[x]

Output: a finite subset oR[z] (possibly an empty set).
F := Symbolic Preprocessitd, G)

F = Reductipn to Row Echelon Form éfw.r.t. <
Ft = {f e F|HT(f) ¢ HT(F)}

return '+

Input :

Remark 2.1 By Lemma 2.1, we will see that an equivalent (but slower) definitidhitotould
be F+ := {f € F |f top irreducible by G}.

We have now to describe the main function of our algorithm, that is to say the consruction
of the “matrix” F'. This subalgorithm can be viewed as an usual reduction of all the considered
polynomials if we replace the standard arithmetic by:Olet z,0 # y € R, thenx +y = 1,
zxy=1,2%0=0andz + 0= 1. So this is really aymbolicpreprocessing.
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Symbolic Preprocessing
Input {L a finite subset of T x R[z]
" | G a finite subset of R[z]
Output: a finite subset oR[z].
Fo={t«f| (@ f) €L}
Done := HT(F)
while T(F') # Done do
m an element off' (F)\ Done
Done := Done U {m}
if m top reducible moduld- then
m =m' « HT(f) for somef € G and somen’ € T
F:=Fu{m'«f}
return F

Remark 2.2 It seems that the initial values of Done should(bbut in all application of this
function the result is in fact the same with less iterations.

Remark 2.3 The symbolic preprocessing is very efficient since its complexity is linear in the size
of its output ifsize(G) is smaller than the final size @f(F') which is usually the case.

Lemma 2.1 Let G be finite subset aR[z], L be the image bynult of a finite subset df’ x G
and F+ = Reduction(L,G). Then for allh € F+,HT(h) ¢ Id(HT(G)).

Proof Let F' the set computed by the algorithBymbolic Preprocessiitg, G). Assume for a
contradiction thaBh € F+ such that = HT(h) € Id(HT(G)). HenceHT(g) dividest for
someg € G. SotisinT(F+) c T(F) c T(F) and is top reducible by, henceﬁ(g) * g
is inserted inF' by Symbolic Preprocessingr another product with the same head term). This
contradicts the fact tha7'(h) ¢ HT(F'). O

The following lemma is useful to proof the correctness of the algorithm.

Lemma 2.2 LetG be finite subset ak[z], L be the image bynult of a finite subset ¢f x G and
F+ = Reduction(L,G). ThenF+ is a subset of d(G). Moreover for all f in the R—module
generated by, f —— 0

GUF+
Proof Apply the Corollary 2.1 taF' the set generated tymbolic Preprocessirid, G). Clearly
Fis a subset of' U Id(G), but it is obvious that. is a subset of d(G), so thatF' is a subset
of Id(G). Hence anyF' fulfilling the hypothesis of Theorem 2.1 is a subset/d{G). This
conclude the proof of the lemma since tRe-module generated by is a submodule of the
R—module generated hy. O

Remark 2.4 LetG be a finite subset a®[z]. It is possible thayf —2) 0 but thatNormal Form

(f,G) # 0 where NormalForm is the reduction which is used in Buchberger algorithm. The
reason for that is that the result éf ormal Form depends on many choices (strategies).
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Theorem 2.2 The algorithmF, computes a Gibner basisG in R[z] such thatF® C G and
Id(G) = Id(F).

Proof Termination: Assume for a contradiction that thehile-loop does not terminate. We see
that there exists an ascending sequefageof natural numbers such thﬁi';: # () for all 7. Let
say thay; € F:;L (henceg; can be any element @*) LetU; beU;_, +Id(HT(g;)) fori > 1 and
Us = (0). By Lemma 2.1 we hav&;_; C U;. This contradicts the fact th&[z] is noetherian.
CorrectnessWe haveG = Udzoff“:;’. We claim that the following are loop invariants of the
while-loop: G is a finite subset oR?[z] such thatF C G C Id(F), andspol(g1,g2) % 0

for all g1,9o € G such that{g, g} ¢ P. The first claim is an immediate consequence of the
first part of Lemma 2.2. For the second one{4f, g} ¢ P, this means thaPair(g:, go) =
(lemy o, t1, 91,2, g2) has been selected in a previous step @apy the functionSel. Hence

t1 * g1 andt, * go @re inLy, S0spol(g1, go) is an element of th&-module generated b, hence

by Lemma 2.2pol (g1, g2) % 0.0

Remark 2.5 If size(Sel (1)) = 1forall I # () then the algorithn¥’, is the Buchberger algorithm.
In that case th& el function correspond to the selection strategy in the Buchberger algorithm.

Example 2.1 One might wonder why in the proof of the termination of the algorithm we consider
only one element df; and not the wholé;".

If z >y > 2 for alexicographical orderingF' = [f1 = zy? +1, fo = 222 + 1, f3 = y* + ?]
andSel = identity, we findP;, = {Pair(f1, f2), Pair(fs, f3), Pair(fi, f3)} and FTl+ = {y? -
22, y+1}so that[d(HT(fl*)) = {y}. So contrarily to Buchberger Algorithm this not true that
after each operatiod’’ := G U {h}, we haveld(HT(G")) 2 Id(HT(QG)).

2.4 Buchberger criteria. Improved F} algorithms

In order to obtain an efficient algorithm we need to insert into the previous algorithm the Buch-

berger Criteria. Since it is not the subject of this paper to improve the Buchberger Criteria we
will use a standard implementation of these criteria such as the Gebauer and Moller installation
[GM8S]:

Buchberger Criteria
. . (Gnewa Pnew) = Update(Gold, Pold; h)
Specification {Update of critical pair list and ideal basis (see [Bec93 p.230)
a finite subset G4 of R|x]
Input: ¢ a finite set P4 of critical pairs of R[z]
0# h € R[z]
Output: a finite subset oR[z] and a list of critical pairs.



In the previous version of the algorithm we used ostynerows of the reduced matrix (the
setsF+), rejecting the rows which were already in the original matrix(the $ét. In the new
version of the algorithm we keep these useless rows, and we try to replace some prodycts
occuring in the rows of the “matrixF’ by a new “equivalent” produet’ x f' with m > m’. This
is the task of the functioBimplify : T' x R[z] x List(Subset(R[z])) — T x R[z]. The third
argument oSimplify is the list of all the already computed matrices. A complete description of
this function will be given below.

Improved Algorithm F4

F afinite subset of R[z]

Sel a function List(Pairs) — List(Pairs) such that Sel(l) # 0if | # 0
Update the part of Buchberger algorithm which select the pairs to compute,
using the criteria like the algorithm of p. 230 in[Bec93.

Output: a finite subset oR[z].

G:=0andP :=pandd:=0

Input :

while F # () do

f = first(F)

Fi= F\{f)

(G, P) := Update(G, P, f)
while P # () do

d:=d+1

Pd = SGZ(P)

P:= P\P,

Ly := Left(Py) U Right(Py)
(F:j, Fy) := Reduction(Lq, G, (F})4=1,...(d-1))
for h e F; do
(G, P) := Update(G, P, h)
return G

The new Reduction function is identical to the previous version except that there is a new
argument and that it returns also the resulsgibolic Preprocessing

Reduction
L a finite subset of T x R[z]
Input: ¢ G a finite subset of R[z]
F = (Fk)k=1,..(d-1), Where F} is finite subset of R[z]
Output: two finite subsets oR[z].
F := Symbolic Preprocessirig, G, F)

F = Reductipn to Row Echelon Form éfw.r.t. <
Fr:={feF|HT(f) ¢ HT(F)}

return (F+, F)



Symbolic Preprocessing
L a finite subset of T x R[z]
Input: ¢ G a finite subset of R[z]
F = (F)k=1,..(d-1), where F}, is finite subset of R[z]
Output: a finite subset oR[z].
F := {mult(Simplify(m, f, F)) | (m, f) € L}
Done := HT(F)
while T(F') # Done do
m an element off' (F)\ Done
Done := Done U {m}
if m top reducible modulds then
m = m/ x HT(f) for somef € G and somen’' € T
F := F U {mult(Simplify(m/, f, F))}
return F

Simplify

t €T aterm
Input: < f € R[z] a polynomial
_____ (d—1), where F} is finite subset of R[z]
Output: a non evaluated product, i.e. an elemernt’of R[z].
for u € list of divisors oft do
if 3j (1 < j < d)suchthaiu * f) € F; then
F; is the row echelon form of; w.r.t. <
there exists a (unique) € Fj+ such thatT(p) = HT (u * f)
If u # t then
return Simplify (£, p, F)
else
return (1, p)
return (¢, f)

Lemma 2.3 If (', f') is the result oBimplify(¢, f, ) thenHT (¢’ x f') = HT(t x f). Moreover
if 7+ denoteg F}' )s—1,..(a_1) there exis # X € R, andr € R — module(F+ U F) such that
tf =M f'+rwithHT(r) < HT(¢ % f).

Proof Termination: Simplify constructs a sequende, f;) such thatt, = ¢, fo = f and
trr1 < ty except perhaps for the last stép.is noetherian, this implies that the algorithm stops

afterr, steps.

Correctness:The first part is obvious SiNCHT (u fr) = HT(fxs1) so thatHT (¢ fx) =
HT(i—’;ka) = HT(tg11frs1). The proof is by induction on the step number. So we suppose
ry = 1, = 5 andu x f € F;, f' € Fj for somej with HT(f') = HT(u * f). The set
F_ = {uf} can be supplemented by other elementg’psuch thatHT(F_) = HT(F') and
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size(F_) = size(HT(F)). We can apply Corollary 2.1 we fin@d;) € R, g, € F_U(F}),, such
thatf' = )", augr andHT (¢1) = HT(f") andHT(f") > HT(gx) for £ > 2. By construction of
F_,g1 =uxf. Hencef' = ayuf +r with HT (r) < HT(f’), consequently; # 0 and we have
tf = t'f — ot'r. 0

Remark 2.6 Experimental observation establishes that the effegtablify is to return, in95%

of the cases, a produ¢t;, p) wherez; is a variable (and frequently the produgt,,, p)). This
technique is very similar to the FGLM algoritm for computing normal forms by using matrix
multiplications.

For the verification of the improved version of the algorithm we recall the following definition
and theorem([Bec93], p. 219):

Definition 2.7 Let P be a finite subset oR[z], 0 # f € R[z], andt € T. Supposef =
Zle m;p; With monomials) # m; € R[z] andp; € P not necessarily pairwise different
(1 <i < k). Then we say that this istarepresentationf f w.r.t. P, if HT (m;p;) < t for all
i=1,2,... k.

Theorem 2.3 Let G be a finite subset oR[z] with 0 ¢ G. Assume that for aly;,¢, € G,
spol(g1, g2) either equals zero or it has &representation w.r.tG for somet < lem(HT(g1),
HT(g2)). ThenG is a Grobner basis.

Theorem 2.4 Let F' be a finite subset ak[z], F = (F)k=1,..,(4-1), WhereFy is finite subset of
R[&], PG,’L'T(gl, gg) = (lcml,Q, t1, 91,12, gg) with lcml,Q, 11,12 € T such that the fOIIOWing hold:

(i) Fy is the image bynult of a finite subset df’ x F

(i) (Fx), c Gfork=1,...,(d—1) (F; being as usual the row echelon Bf)
(iii) f; = mult(Simplify(¢;, g;, F)) fori =1, 2.
(iv) spol(fi, f2) has at-representation w.r.tF' with ¢t < lem(HT(f1), HT(f2)).

Then theS-polynomialspol(gi, go) has at’-representation w.r.tF’ with ¢’ < lem, 5.

Proof Let (¢}, i) be Simplify(t;, g;, F). By Lemma 2.3 we havélT(t ¢;) = HT(t101) =
lemy o = HT (t290) = HT(t5g%) so that (we suppose that all the polynomial are monics):

spol(g1,95) = thgy — th95
= (thg} — tigr) + (t1g1 — t2go) + (t2g2 — thgh)
=71+ spol(fi, fo) +1'

T(r")) < lemyy. Hence

with 7,7/ € Id(F+ U F) C Id(G) such thatmaz(HT(r), H
t) <lemyo O

spol(g1, g2) has at'-representation faf' = max(HT(r), HT (1),
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2.5 Selection strategy

The choice of a good selection strategy, that is to say the choice of the fudtiioms very
important for the performance of the algorithm.

Computing Grobner bases for a degree ordering is very frequently the most difficult step in
the solving process (other steps are elimination or decomposition of the ideal). One reason for
that is that the input of the algorithm is only a subseRgf] with no mathematical structure. We
want to give some structure to these polynomials at the beginning of the computation: we use
the concept ofi-grobner bases:

Definition 2.8 If G4 is the result of the Buchberger algorithm truncated to the degdrébat is
to say we reject all critical pairs whose total degree (Definition 2.6):ard), then we callz; a
(truncated)d-Grobner basis of .

The following theorem give a structure to this list when the polynomials are homogenenous.

Theorem 2.5 ([Laz83], [Bec93] p. 471) For homogeneous polynomidls..., f;, G4 is a
Grobner basis “up to degreé” that is to say:

. Gi> is well defined for polynomialg such thatdeg(f) < d.
d

o Vpe st deg(p) <d = pG—*>O
d
e spol(f,q) GL> 0 for f, g in G4 such thadeg(lem(HT(f),HT(g))) < d
d

Moreover, there exists &, such that for alld > Dy, G4 = Gp, is the Gibbner basis of .
We note by the numbelD,.

An effective Nullstellensatz may give an estimatel2f; from a theoretical point of view
such an explicit bound for the degrees reduces the problem of finding the polyndfgiais
the resolution of a system of linear equations. This reduction to linear algebra of the computa-
tion Grobner bases has been used for a long time for analysing the complexity of Buchberger
algorithm [Laz83].

For practical computation this does not work well since:

e D is often over estimated.

e the linear system is huge: the matrix which is generated is frequently larger that really
needed.

e the matrix of the linear system has a generalized sylvester structure and solving efficiently
such a system is not a well known task.
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Other algorithms are also closely related to linear algebra [Laz79, Laz81, Att96, Ger95,
Lom98].

In fact the Buchberger algorithm and tl#& algorithm giveincrementalmethods to solve
this systems. The new algorithm will compuig,,; from G,. Thus the algorithm transforms
a mathematical objectd; is unique) into another object with a stronger structure. In fact the
Buchberger algorithm is also incremental since it computes one polynomial after another but in
our case we compute a whole new truncated basis.

GO—)G1—>G2—>"'—>Gd—)Gd+1—>"'

Unfortunately Theorem 2.5 is false for non homogeneous polynomials. One solution to over-
come this difficulty is to homogenize the list of polynomials but it is not efficient for big systems
since parasite solutions are also computed (solutions at infinity can be of greater dimension);
a better method is to consider the sugar degree [Gio91] of each polynomial: we add a “phan-
tom” homogenization variable and the sugar degleg; of a polynomial is the degree of the
polynomial if all the computations were performed with the additional variable:

Definition 2.9 For the initial polynomials:degq(f;) = deg(f;) , foralli = 1,...,m. The
polynomials occurring in the computation have the following fopmsg or ¢ x p wheret € T'is
aterm. We defindegq(p+q) = maz(degg(p), degg(q)) anddegg(m*p) = deg(m)+degg(p).
We say thatleg¢(q) is the “sugar” of q.

Definition 2.10 fo) is the result of the Buchberger algorithm when we reject all critical pairs
whosedeg is > d. (We replaceleg by degg is the Definition 2.8)

The weak point of this approach is ttﬂﬁ)l\(}ff) contains polynomials with various degrees
and that near to the end of the computatieg ¢(p) > deg(p).

We give now some possible implementationSaf. These results are not discussed in detail
as they will been reported in a more technical paper.

e The easiest way to implemeSt! is to take the identity ! In that case we really reduce all
the critical pairs at the same time.

e The best function we have tested is to take all the critical pairs with a minimal total degree:

Sel(P)
Input: P a list of critical pairs
Output: a list of critical pairs
d := min{deg(lcm(p)), p € P}
Py :={p € P |deg(lem(p)) = d}
return P,

We call this strategy theormal strategy fo#;. If the input polynomials are homogeneous,
we already have a Grobner basis up to degreel andSel selects exactly all the critical
which are needed for computing a Grobner basis up to debjree
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e \We can also change tlieg(Pair(f;, f;)) to be the sugar degreéeg (lcm;;) (see Defini-
tion 2.6). In our experiments, this variant of the algorithm was less efficient.

2.6 Example

The reader should be aware that it is impossible to fully appreciate the efficiency of the algo-
rithm for small examples. We consider the cyecliproblem. We choose a total degree reverse
lexicographical ordering and the normal strategy.

F =[fy = abed — 1, f3 = abc + abd + acd + bed, fo = ab+ bec+ ad + cd, fy = a+ b+ ¢+ d]

At the beginningG = {fy} and P, = {Puair(fs, f4)} so thatL, = {(1, f3), (b, fa)}.
We enter now inSymbolic Preprocessittd,, G,#); Fi1 = L;, Done = HT(F;) = {ab} and
T(Fy) = {ad,ab,b? bc,bd, cd}, we pick an element i’ (F})\ Done, for instanceud, butad is
top reducible byG; we haveDone = {ab,ad}, F, = F, U {df,} andT(F,) = T(F,) U {d*}.
Since the other elements @f(F;) are not top reducible by7, Symbolic Preprocessintgturns
{f3,bf4, dfs}. Or in matrix form:

00011110
Ai=110110100
11101000

the row echelon form ofl; is

00071 1 1 1 0
Al=]l1010 -10 -1 0
0100 2 0 1 0

that is to sayFy, = {fs = ad + bd + cd + d?, fs¢ = ab+ bc — bd — d?, f; = b> + 2bd + d?}
and sincaib, ad € HT(F,) we haveF, . = {f;} and nowG = {f,, f;}.

In the next step we have to study = {Pair(fs, f1)}, thusLy = {(1, f2), (be, f4)} andF =
{F1}. In Symbolic Preprocessinge first try to simplify (1, f2) and(bc, f1) with F. We see that
bf, € F, and thatfs is the unique polynomial iF; such thatiT(fs) = HT(bf;) = ab, hence
Simplify(be, f1, F) = (¢, fs). Now Fy = {fs,cfs} andT(Fy) = {abc, bc?, abd, acd, bed, cd?}.
We pickabd wich is reducible bydf, but again we can replace this productify. After several
steps we find = {c/fs, df7,bfs, f2,cfe}

00001 1 10 1 00
00010 0 02 0 10
A,=|00110 1 01 0 00
10101 1 00 0 00
| 11000 -100 —-10 0|
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00001 1 1 0 1 0 0
00010 0 0 2 0 1 0
Ab,=]00100 1 0 -1 0 —-10
10000 -1 -1 1 -1 1 0
01000 0 1 -1 0 -1 0]

Fy = {fo = acd + bed + d + cd?, fig = b?d + 2bd? + d®, fi; = abd + bed — bd? — P,
Ji2 = abe — bed — *d + bd? — cd® + d°, fi3 = bc® + ¢*d — bd* — d®} andG = { fu, f7, f13}.

In the next step we haves = {(1, f1), (bed, f4), (¢%, f7), (b, f13)}, and we call recursively
the function Simplify:Simplify(bed, fi) = Simplify(cd, f¢) = Simplify(d, fi2) = (d, fi2).
We haveFs = { f1, dfi2, ¢ f, bf13}. Notice that? f; cannot be simplified, but very often we have
only a polynomial multiplied by a variable. After several stepSymbolic Preprocessinge find
F; = {fl, dflg, 02f7, bf13, df13, dfm} andﬁg = {f15 = c?b? — 2 d? +2 bd? +2 d4, 16 = abed —1,
fir = =bed? — Ad? +bd3 — cd® +d* + 1, fig = 2bd + 2d? —bd> — d*, f19 = b2d® +2bd? + d*}.
Note that the rank of3 is only 5. This means that there is a reduction to zero.

2.7 Conclusion

So we have transformed the degree of freedom in the Buchberger algorithm into strategies for
efficiently solving linear algebra systems. This is easier because we have constructed almatrix
(the number of rows it is a little overestimated by the symbolic prediction) and we can decide

to begin the reduction of one row before another witig@od reason”. For integer coefficients

it is @ major advantage to be able to apply an iterative algorithm on the whole maticiq
method). Some negative aspects are that the mdtisxsingular and tha#l is often huge. A

good compression algorithm for the matrix reduces the storage requirements by a factor greater
than10 (see Section 3.4).

3 Solving sparse linear systems

Compared with naive linear algebra approach we have reduced dramatically the size of matrices
which are involved. Despite this reduction, the matrices that we have to solve during the program
execution are very big sparse matrices (see p. 22)5&30 x 50000 to give an idea (the record

IS 750000 x 750000 for a very sparse matrix). To give a comprehensive review of all useful linear
techniques is far beyond the scope of this paper and we give only some references to the original
papers. It should be observed that we have to sspeesematrices in @omputer algebraystem.

It is therefore not surprising that we have to merge techniques coming from sparse linear algebra
(possibly designed initially for floating point coefficients) and techniques coming from computer
algebra (for big integer computations for instance). But first we establish the link with the main
algorithm:
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3.1 Solving a matrix and reduction to row echelon

In the main algorithm we have teduce(find a basis of the image of the corresponfing linear
map) sparse matrices which are singulars and not square. On the other hand, linear algebra tech-
niques are often described feolvinglinear systems of equations: = 5. One way to connect

the two approaches is to first extract a square sub matrix and to put the remaining columns into
the right hand side. For instance if we want to reduce:

a’> ab b be

Al1 2 1 1

A= fHl1 2 1 2
BT 2 2 2

We first try to find the rank of the matrix using a fast algorithm mpoahd we find that the
second column is deffective. So we extract a square matrix and a right hand side:

111 2
A=111 2| r=1|2
1 2 2 2

Hence the system of equation can be rewritten:

| | K .
AL b | =—(ab)r or | b | =—(ab)(A 1)
[ be J [ be J

so we have tgolvethe linear system

2o 2
20 = 0
to 0

and the reduced form of the matrix

a’> ab b be a’> ab b be
f/1 xz 0 0 /1 2 0 0
HBl1 2 1 0o)l=fl1 0 1 0
B\1 t 0 1 H\1 0 0 1

3.2 Solving sparse linear systems

Solving sparse linear systems has been studied for a very long time for numerical computations,
there are mainly two types of methods: iterative methods (computing successively Ay; if
Ais an x n matrix) and decomposition methods. The methods wich are useful in our context

are the following:
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3.2.1 Iterative solvers

After O(n) steps we obtain an exact solution (up to rounding errors). This is the case of conjugate
gradient method or the Lanczos algorithm [Mon95] since aftgteps the result is exact. Another
well known iterative algorithm is the Wiedemann algorithm [Wie86, Kal91], which uses the
efficient Berlekamp and Massey algorithm [L.69] to recover the solution. Note that there exists
a more efficient version of the Wiedemann algorithm: the Wiedemann algorithm by blocks (but
we have not implemented this version yet).

The key operation in these algorithms is the multiplicatiosy. It is very easy to implement
this operation efficiently to take advantage of the sparsityl @nd to obtain a complexity of
O(]A|) for computingA x y where|A| is the number of non zero elementsdnthus the global
complexity for solving the system 3(n|A|) instead ofO(n?).

When the matrix has a regular pattern it is possible to apply even more efficient techniques
(for Toeplitz matrices for instance [Bin94]). These methods can not be applied in our case since
the pattern of the generated matrices is not regular enough. A significant drawback of these
methods is that there is no speedup if we try to solve simultaneously several linear systems with
the same left hand side.

3.2.2 Factorization methods

The classical LU decomposition try to decompose the input mdtinto a product.U whereL
(resp.U) is alower (resp. upper) triangular matrix. Rparsd_U decomposition [Geo81, Rei71,
Ros72, Duf84, Geo81, Ge093] there is an additional constraint: the number of non zero elements
in L andU minus the number of non zero elementsdmust be as smallest as possible (this
number is called the number of “fill-ins”). The sparse LU decomposition starts with a symbolic
preprocessing very similar to our. It aims is to avoid to spend time time for computing coefficients
the vanishing of which is predictable. The interest of this method is that both preprocessing may
be done simultaneously.

A large number of implementation for these methods are available (mainly in C/C++ or
Fortran) [Dav95] or even in Matlab. Unfortunately these programs and some algorithms are not
very robust: very often the input matrik must be non singular or square or positive definite. On
the other hand, parallel algorithms and parallel implementations exist [Van93, Hea, Don, Alv,
Pey]. We have modified the smms [Alv93] program in order to work with mogwoefficients
in order to evaluate the costs of different algorithms.

Solving large linear equations modulo a small prime number has been studied in cryptol-
ogy [LaM91, Mon95] for factoring integers or computing discrete logarithms (very gfterg
in that case). These authors use a combination of structured Gaussian elimination and other
iterative algorithms. In the current implementation of thgalgorithm we use by default the
structured Gaussian elimination. Note that in an ideal implementation the program should first
analysed the shape of the matrix and then decided which algorithm should be applied.

17



3.3 Computer Algebra methods for solving linear systems with integer co-
efficients.

Very specific methods have been developed in Computer Algebra for solving linear equations
when the coefficients are integers. First we recall that the Bareiss algorithm is better than the
classical Gauss algorithm but is very inefficient for big systems.

The best way of solving linear systems: = b with integer coefficients is to ugeadic
computations: we choose a primeand we comput€ = A~! mod p (very often a sparséU
decomposition is more appropriate). Then we define

b =p
y™ = Cb™ mod p
b(m+1) _ b(m)_Ay(m)
2 = YLy )y
Theorem 3.1 (Dixon [Dix82])
o Az™) — b =0modp™

e If B is upper bound of the coefficients dfand b it is sufficient to compute (™ for
m > 2nlog,(nB) and then to apply the extended Euclidean algorithnz @ and p™
to recover the value iQ).

In fact the iteration may be stopped whef) becomes stable (see [S.R71] for multi modular
methods which may be generalizedpteadic method).
The global complexity [Knu81] of this algorithms is

O(n°log(nB)?) Bareiss method
O(n3(n + log(nB))log(nB)) | multi modular method
O(n3log(nB)?) p-adic method

Note that thep-adic method is also an iterative algorithm (in fact this is a Newton algorithm)
and that we have previously noticed that this kind of algorithm is less efficient for solving simul-
taneous systemdz = by,---, Az, = by. If £ > n itis probably better to use a multi modular
approach: we computé b mod p; for different primegp,; and we apply the Chinese remainder
theorem to find the solution modul®;p;.

3.4 Matrix compression

When the matrices are big it is necessary to adopt fairly complicated storage schemes to compress
the matrix in memory: consider 210* x 5.10* matrix with 10% non zero elements (this is

the case in Cycli® for instance); even if only one byte is allocated for each coefficients (an
optimistic assumption since some coefficients have hundred digits); the matrix rezjidirei) ©

bytes to be stored ! In our implementations we do not duplicate coefficients (relying on the fact
that some rows in the matrix are just term multiples of others); thus we have only to compress
the position of the non zero elements; we have experimented the following techniques:
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(i) No compression: inefficient both for CPU time and memory usage.

(i) Bitmap compression: each row of the matrix contains zero and non zero elements:
X00xx000x ..

ji, J2, - - - denote the indexes of the non zero elements (here 1,j, = 4,...), then

>, 2%~ 1is the bitmap compression (for the example 23 + 28 = 281) . This method

is efficient but consumes a substantial amount of memory. This is the prefered way to
implement the compression when the coefficients a@At{2)

(i) Distributed representation: the row is represented by the array

1| g2 — 51| g5 — da -

using bytes when, — jx_1 < 255 (this occurs very frequently). This method is most
efficient in memory than the previous one and a little slowef).

(iv) Apply a standard compression tool (gzip for instance) to one of the previous representation.
Very efficient in memory but rather slow.

For the moment our prefered methods are (ii) and (iii) (depending on the ground field), but
the compression algorithms should be seriously improved in future versions.

4 Experiments

The quality of the computer implementation of Grobner bases computations may have a dra-
matic effect on their performance. The theoretical results on complexity (even for homogeneous
systems, the complexity i&*” in most cases an2?” in some very pathological cases) cannot
throw light on the practical behavior of effective implementation. Thus, while "paper and pen-
cil” analysis of polynomial solving algorithms are important, they are not enough. Our view

is that studying and using programs which implement these algorithms is an essential compo-
nent in a good understanding of this area of Computer Algebra. To this end, we provide some
experiments and comparison with similar programs. This section should be considered as the
validation of our algorithm. Thus it plays the same role as its proof for theorems.

4.1 Methodology

Empirical analysis means that we have to pay particular attention to the development of method-
ologies in the field of benchmark for linear system solving. We adopt the following points:
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. We compare the new algorithm walate of the arGrobner bases implementation (namely
Magma [Can98], PoSSo/Frisco Grobner engine [Tra97], Macaulay 2 [Sti89, Gra97], Sin-
gular [Gre97], Asir [Tak96], Cocoa, Axiom, Maple [Cha91] and Gb [Faub]). It is also
crucial to compare the implementation of the new algorithm with the Buchberger algo-
rithm implemented byhe same persofin this case the author). In our opinion it is also
important to compare low-level implementation of the algorithms to avoid parasite inter-
actions with a high level language/compildt, has been implemented @ and most of

the competitors are implemented in C/C++.

. The list of examples is also a crucial issue: the examples caasiy accesseffFaua]

(the web site contains pointers to the Frisco test suite). The list is composed of classical
benchmarks (Cyclia, Katsuran) but also of industrial examples (coming from signal
theory, robotics). We have removed from the list all thygg examplesince nothing can be
concluded with them. Of course the toy concept is relative to current computers. For us,
an example is toy if it takes less than 1 sec on a PC.

. This section contains two timing tables: the first one corresponds to modular computations,

the second one corresponds to big integers computations. All the computations are done
several times on equivalent computers to prevent as much as possible interactions with
other programs. For each timing the program was run several times. This was necessary to
eliminate fluctuations in the measurements stemming from some other programs running

on the same computer. Of course the timings are rounded.

. We rigorously use the last version of all the programs and use an appropriate computer to
execute them.

. An even more convincing proof of the efficiency of a new algorithm is to solve previously
untractable problems. So we should test the algorithm on very difficult problems. In our
case,l, solves Cycli§ and Cycli®.

. The same strategy is used for all the programs. For instance if we homogenize the input
polynomials for one program we try the same strategy with all other programs. This is
the reason why we give the timing for cychcand homogeneous cyclic Some systems
(Singular for instance) allow the user to customize the internal strategy; we try several
parameters and we retain the best method.

. The outputs of the different programs are checked to be equal.

. Last, and it is the more difficult, we compare the algorithm with other methods: trian-
gular sets (Moreno/Aubry), homotopies (J. Verschelde), Bezoutian (Mourrain) and sparse
resultant (Emiris). The task is more difficult since the outputs are very different (quasi
component, floating point approximations).

e Triangular methods (Wu, Wang, Lazard, Kalkebrenner). On one hand triangular
methods seem to be less efficient than lexico Grobner bases computation (the cur-
rent limit is Cyclic6 and Katsur&) but on the other hand the quality of the output is
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better. So we think that these methods are useful to simplify lexicographical Grobner
bases.

e Homotopy methods. J. Vershelde reports timings (Cylon a Sparc-Server 1000
in 4h35m) which are less efficient than Grobner bases techniques. It is difficult to
handle over constrained systems.

e Mixed volume is extremely fast to estimate the number of isolated roots (up to Cyclic’
12) but with our experience it is not so efficient for other systems (and the number of
solution is often over estimated).

4.2 Modular Computations

Modular computations are very useful in Computer Algebra because they give a fast result (with
a very high probability) and information on the number of solutions (Hilbert function).

Moreover, since big integer computations could be done by meanadit or multi modular
arithmetics it means that the cost of an integer computation is roughly

time of modular computation * size of the output coeffs

Soitis also very important to have an efficient solver modulo a pgime

The computer is C Pentium Pro 200 Mhz with 128 Meg of Ram

We consider only non homogeneous systems, but in the following wergivenin(7homog,
Thon homog) DECAUSE Singular and Macaulay are often very slow for non homogeneous system.

Note that the PoSSo library uses generic coefficient to implefignZ but the other soft-
wares implement inlined modular arithmetic. In other words the overhead of function calls is
heavier in the PoSSo library. With a better implementation one can probably divide timings by a
factor betweer?2 and4.

FGb Gb PoSSo| Singular| Mac?2 | Asir
K 0.8s 3.2s 46 s 10s 12s 56 s
Ky 4.1s 29s | 9m58s| 1m47s | 1mb55s
Ky 30s 3m48s | 1h25m| 17m4ls| 17mlils
Ky 4ml13s | 36m23s 3h6m o0
K 30m29s 00 o0 o0 o0
Cyclic7 46s Im15s| 9m3s | 2m34s | 2mOs | 6m51s
Hom C; 52s 1mO02s
Cyclic 8 1m55s | 26m17s| 4h38m| 1h56 m| 1 h33m| 3h54m
Hom Cy 184.4s | 39ml7s
Cyclic9| 4h32m 00 00 o0 00 00
HomCy | 11 h 10 m? 00 00 o0 o0 o0

The conclusion of Table 4.2 is thiite old Gb is still faster than other systems, and that FGb
> Gh.
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We give the shape of some generated
matrices. The matrices can have a
/ f’/ very different structure and the num-

o ber of non zero elements varies greatly.
n Upper left figure:

! FromCyclic,

Matrix Ag 475 x 786 (13.8% non zero)
Upper right figure:

application example: fronfi 5 5 [Fau98b]
matrix A5 1425 x 2561 (0.47% non zero)
Lower left figure:

Example: engineering problem (Nuclear)
matrix A; 1557 x 3838 (0.2% non zero)
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The following figure shows the performance results for the homogenization strategy and the
affine strategy (the quotient “time to solve homog Cyelicdivided “time to solve non homog
Cyclic n” is plotted).

Comparison Homegeneous/ Non homogeneous

1000%

100%-
Cyclic 6 Cyclic 7 Cyclic 8 Cyclic 9 F 855

We conclude that for small systems the difference is small but for big systems like Gyclic
there is a huge difference (you add several components of dimehsioti4). For Cyclic9 the
algorithm generates202051 x 317850 matrix and it is3.2 times slower!

Cyclic n - Modulo p - DRL Groebner basis

6h10m
FGb

1h50m

Gb

Maple 5.5

C9

c7 cs
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4.3 Integers

In the following table, we have included a special version of the the classical PoSSo Grobner
engine called “Rouil”, this version has been optimized by Fabrice Rodillier

In the table we remove the Singular entry because Singular and Macaulay2 seem very close
and very slow for big integers.

Size s the size in digits of the biggest coefficient in the output.

FGb Gb Singular| Rouil | Asir | Mac2 | Magma| Size
K; 29s 42 s 50s | 3m28s| 10m56s 53
Ky 23s 10m21s 8m23s| 8m37s| 2h17m 102
K, 3m3s | 5h35m 1h31m 00 133
Ko 31m24s o0 00 00 00 192
Cyclic6| 0.3s 3.2s 5.3s 54s 8s 195s | 26s | 96
HomC; | 54.2s | 1h32m | 10h35m| >25m* | 2h50m 2202s | 96
Cyclic7| 39.7s |5h17n? 00 00 >2hP 00 = 96
Cyclic 8| 24m4s 00 o0 00 00 00 00 202
Cyclic 9 | 18 day$ 00 00 00 00 00 00 800
22d-+th
- Cyclic n - Big Integer - DRL Groebner Basis
§ s

84 5h

Singular

\Macaulay 2

6
We observe

Posso (Rouillier)

7

8 9
that Magma is very efficient for big integers (in fact the Magma version for alpha
workstations is evefi times faster).

Cyclic-9 for big integers is an example bigecomputation; we use:

e 3 Processors PPro 200 Mhz 512 Meg RAM + 1 Alpha 400 Mhz 570 Meg

3The algorithm uses a primeto avoid syzygies. Then the algorithm checks that the result was correct. At the
present state the implementation sometimes does not detect bad primes.
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e Total sequential CPU timet8 days
e Size of the file of coefficients in the output (binar60 Meg

e The result contains: 1344 polynomials with 1000 monomials and 800 digits numbers !

This success is also a failure in some sense: the size of the output is so big that we cannot do
anything with this result. That is to say we are now near to the intrinsic complexity of Grobner
bases. On the other side, the output is very big because the coefficients are big and floating point
computation would not suffer from this exponential growth.

We conclude that for all these examples FSGb and that it faster than other systems.

5 Final remarks

The conclusion is thafty is at least one order of magnitude faster than all previously implemented
algorithms.
We recall the main features of this algorithm are:

e Replace all the previous strategies (sugar([Gio91]), ...) by algorithms for (sparse) linear
algebra. It explains why the usual strategies in Buchberger algorithm could not be optimal.

e Faster for all kind of arithmetic (modular computation, integers, “generic” computation)

e In some sense it is as fast as possible for big integers coefficients or coefficients with
parametersi(y, - - -, y)) because the practical complexity is almost linear in the size of
the output coefficients: in the case of homogeneous polynomials the complexity of
is s't°() + M wheres is the size of othe result antf is the time needed for modular
computation which is generally much smaller.

e For homogeneous systems the algorithm generate reduction to zero or non zero polynomi-
als (completely reduced) which are all in the final Grobner basis. So the algorithm does
not generate “parasite” intermediate data.

e \ery good experimental behavior for non homogeneous systems (several times faster than
the corresponding homogeneous system).

e Parallel versions of the algorithm can be implemented (we have done a first implementa-
tion).

e The algorithm is easier to implement (no polynomial arithmetic is required, do not need
an efficient power product (exponents) implementation).

e It can solve previously intractable problems: we are now able to compute easily three new
records: Cyclie-9 for modular coefficients (4h30), Cyche for big integers coefficients
(25 mins) and the very challenging Cyché for bignum coefficients (18 days of CPU
time).
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A lot of work remains to do in the linear algebra part to apply less naive algorithms to the gen-
erated matrices and to compress more efficiently those matrices. Considerable works must also
be done to compare the algorithm with different possible strategies (sugar and homogenizing,
multi-weight in the case of multi-homogeneous ideals might reduce the size ot the matrices (as
suggest by D. Lazard and one anonymous referee)). How to use the symmetry of the problems
to handle more efficiently the matrices is also an open problem. Even if the algorithm presented
in this paper is heavily connected with the Buchberger algoritm (use the same criteria for useless
pairs), we think that an interesting work would be to use Mandache [Man94, Man96]’s technique
to check thatF, is nota Buchberger algorithm in the sense that the Buchberger algorithm cannot
simulate the new algorithm for any strategy. When the normal strategy is used, we can plot the
functiond — deg( first(P;)); we obtain an increasing function for homogeneous systems but
in the affine case we obtain different curves:

Cyclic 8 — Total degree of critical pairs

El 50 — Total degree of critical pairs
An open issue is to understand deeply the shape of this curves.
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