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Abstract—To move mixed criticality research into industrial
practice requires models whose run-time behaviour is acceptable
to systems engineers. Certain aspects of current models, such as
abandoning lower criticality tasks when certain situations arise,
do not give the robustness required in application domains such
as the automotive and aerospace industries. In this paper a new
bailout protocol is developed that still guarantees high criticality
tasks but minimises the negative impact on lower criticality tasks
via a timely return to normal operation. We show how the bailout
protocol can be integrated with existing techniques, utilising
offline slack to further improve performance. Static analysis is
provided for the strong schedulability guarantees, while scenario-
based evaluation via simulation is used to explore the effectiveness
of the protocol.

I. INTRODUCTION

An increasingly important trend in the design of real-
time and embedded systems is the integration of components
with different levels of criticality onto a common hardware
platform. At the same time, these platforms are migrating
from single cores to multi-cores and, in the future, many-
core architectures. Criticality is a designation of the level
of assurance against failure needed for a system component,
where the level of assurance needed depends on both the
likelihood of failure and the consequences of that failure [21].
A mixed criticality system (MCS) is one that has two or more
distinct levels (for example safety critical and mission critical).
Perhaps up to five levels may be identified (see, for example,
the IEC 61508, DO-178B, DO-254 and ISO 26262 standards).

Most of the complex embedded systems found in, for
example, the automotive and avionics industries are evolving
into integrated rather than federated mixed criticality systems
in order to meet stringent non-functional requirements relating
to cost, space, weight, heat generation and power consumption;
the latter being of particular relevance to mobile systems.

The fundamental research question underlying these initia-
tives and standards is: how, in a disciplined way, to reconcile
the conflicting requirements of partitioning for assurance and
sharing for efficient resource usage. This question gives rise to
theoretical problems in modeling and verification, and systems
problems relating to the design and implementation of the
necessary hardware and software run-time controls.

Although the formal study of mixed criticality systems is
a relatively new endeavour, starting with the paper by Vestal
(Honeywell Aerospace) in 2007 [30], a standard model has
emerged (see for example [6], [8], [15], [19], [23], [27]) For
dual criticality systems this standard model has the following
properties:

o Each task is characterised by its criticality level (e.g.
HI- or LO-criticality), the minimum inter-arrival time
of its jobs (period denoted by T'), deadline (relative
to the release of each job, denoted by D) and worst-
case execution time (one per criticality level up to the
criticality level of the task), denoted by C(HI) and
C(LO). A key aspect of the standard MCS model is that
C(HI)> C(LO) [30].

o The system executes in one of two modes. It starts in the
LO-criticality mode, and remains in that mode as long
as all jobs execute within their LO-criticality execution
times (C'(LO)).

o If any LO-criticality job executes for its C'(LO) execution
time without completing then that job is immediately
aborted by a runtime monitoring mechanism.

o If any Hl-criticality job executes for its C(LO) execution
time without completing then the system immediately
moves to the Hl-criticality mode. As the system moves
to this mode all LO-criticality tasks are abandoned.
No further LO-criticality jobs are executed. The system
remains in the HI-criticality mode.

The motivation for the standard model having two values
for the Worst-Case Execution Time (WCET) [30], [14] is
taken from either of two situations often seen in industrial
practice [22]. The first situation involves the High WaterMark
(HWM), i.e. the largest execution time observed during testing,
which is highly reliable as testing for functional correctness is
intensive (e.g. MCDC coverage). This value would be taken as
C(LO). However for the most critical software an engineered
safety margin is added to give a C'(HI) value. Values for
this engineered safety margin come from industrial practice
and are based on engineering judgement and experience. A
margin of around 20% is typical in aerospace applications'.
It is considered sufficiently unlikely that this value will be
exceeded®. The second situation is when static or hybrid
analysis is used to obtain a WCET, which can be treated as
C(HI). Even though this value is considered safe [22], it
is often too pessimistic, and its use may lead to difficulties
in obtaining a schedulable system. Again the HWM may be
used as C'(LO). In both cases, it is necessary that the system
is schedulable when all tasks execute for C'(LO); however it is
also important to gracefully degrade when C'(LO) is exceeded,
i.e. Hl-criticality tasks must still meet their deadlines and as

'Note, we know of no theoretical support for using such a value, rather
such margins come from engineering experience.

2In some systems, further runtime monitoring may be employed to ensure
that such overruns, however unlikely, do not lead to complete system failure.



few as possible of the LO-criticality tasks miss their deadlines.

The abstract behavioural model described above has been
useful in allowing key properties of mixed criticality systems
to be derived, but it is open to criticism from systems engineers
that it does not match their expectations [21]. In particular,
in the Hl-criticality mode LO-criticality tasks should not be
abandoned. Some level of service should be maintained if at
all possible, as LO-criticality tasks are still critical. It should
be possible for the system to return to the LO-criticality
mode as soon as conditions are appropriate. In this mode all
functionality should be provided.

Clearly, in general, if the system is in the HI-criticality mode
and all HI-criticality tasks are executing for the maximum time
defined for such tasks then the LO-criticality tasks will not
be able to receive enough execution time to guarantee that
their deadlines are met. However, in many situations the worst-
case conditions will not be experienced and in this case LO-
criticality tasks should receive some level of service.

In the following section, we discuss related work. Ap-
proaches to degraded service are considered in Section III.
We then define, in Section IV, a new bailout protocol for
MCSs in which HI-criticality tasks are not allowed to fail (they
are too important to fail) and therefore LO-criticality tasks
must sacrifice their quality of service by not starting a certain
number of jobs. The actual number of sacrificed jobs depends
on the size of the bailout and the time needed for recovery.
However, once the bailout has been serviced the LO-criticality
tasks can return to their full timely behaviour. A key aspect
of this paper is the evaluation of MCS protocols via scenario-
based simulation; this is addressed in Section VI. Analysis
for the bailout protocol is given in Section VII. Section VIII
concludes with a summary and a discussion of future work.

II. RELATED WORK

Background material on MCS research can be obtained from
the following sources [S5]-[8], [18], [19], [23], [30]. and from
an ongoing survey [14]. While mixed criticality behaviour
has some similarities to traditional mode changes, there are
also significant differences [21], [12]. These include the mode
change being driven by temporal rather than functional be-
haviour, permitting a more specific schedulability analysis.

A. Current Scheduling Analysis and its Limitations

Although the standard model requires an immediate change
to the Hl-criticality mode and the consequential abandonment
of all active LO-criticality jobs, the analysis of this model has
shown [3]-[5] that the mixed criticality schedulability problem
is strongly NP-hard even if there are only two criticality levels.
Hence only sufficient rather than exact analysis is possible.
One of the consequences of this constraint is that a significant
proportion of the available analyses that have been produced
for MCSs actually assume that any LO-criticality job that has
been released by the time of the mode change will complete,
rather than being aborted.

For example, the Adaptive Mixed Criticality (AMC Method
1 or AMC-rtb) approach presented at RTSS in 2011 [6] first

computes the worst-case response times for all tasks in the LO-
criticality mode (denoted by R(LO)). This is accomplished by
solving, via fixed point iteration, the following response-time
equation for each task 7;:

Ri(LO) = Ci(LO) +
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where hp(i) is the set of all tasks with priority higher than
that of task ;.

During the criticality change the only concern is HI-
criticality tasks, for these tasks:
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where hpH(i) is the set of Hl-criticality tasks with priority
higher than that of task 7; and hpL(i) is the set of LO-
criticality tasks with priority higher than that of task ;. So
hp(i) is the union of hpH(i) and hpL(i). Note R;(HI) is
only defined for Hl-criticality tasks.

This equation takes into account the fact that LO-criticality
tasks cannot execute for the entire busy period of a HI-
criticality task in the HI-criticality mode. A change to the
HI-criticality mode must occur at or before R;(LO) which
‘caps’ the interference from LO-criticality tasks as R;(HI)
must be greater than R;(LO).

The cap is however at the maximum possible level. The
maximum number of LO-criticality jobs are assumed to in-
terfere and each of these jobs is assumed to complete — each
inducing the maximum interference of C(LO). Note that if,
for any HI-criticality task, R;(HI) < D; during the transition
to the Hl-criticality mode then the task will remain schedulable
once the Hl-critically mode is fully established and there is
no interference from LO-criticality tasks.

This AMC approach assumes that once the system goes
into the HI-criticality mode then it will stay in that mode.
As discussed in the introduction this is not an acceptable
behaviour in practice. A simple but necessary extension to
AMC is therefore to allow a switch back to the LO-criticality
mode when the system experiences an idle instant (a point in
time at when there are no ready jobs that were released prior
to that time). This is a well-known protocol for controlling
mode changes [29]. In this paper we will refer to this extended
approach as AMC+.

In the remainder of this paper, for AMC and AMC+, we
assume that any job of a LO-criticality task that is released be-
fore HI-criticality mode is entered may complete its execution,
since this is allowed by the analysis; however, LO-criticality
jobs released during Hl-criticality mode are abandoned by
these schemes.



III. DEGRADED SERVICE FOR LO-CRITICALITY TASKS

The key properties of MCS scheduling are (i) that if all
tasks execute within their C'(LO) bounds then all deadlines
for all task will be satisfied, and (ii) that Hl-criticality tasks
will always meet their deadlines, assuming that they execute
within their C(HI) bounds.

Notwithstanding these key static properties of a system,
an actual implementation must exhibit clear and effective
behaviours for all of its potential run-time characteristics. In
particular, for a dual criticality system, if at some point during
its execution only the Hl-criticality jobs can be guaranteed,
then what level of service can be expected for the LO-
criticality jobs? As indicated in the introduction it is not
acceptable to permanently abandon these tasks just because
they cannot be fully guaranteed.

The dual requirement (both to meet all deadlines and to
have sensible behaviour when deadlines are missed) is not
a contradiction, rather it is a necessary property of any
robust system model. MCSs have, in this regard, a number of
similarities to fault tolerance systems: faults should be avoided,
but also faults should be tolerated and result in minimum
disturbance to the system [12].

There are various forms of degraded service that can be
defined for LO-criticality tasks: Run all tasks, but extend
their periods and/or deadlines — sometimes called the elastic
task model [28]. Run all tasks but reduce the executions
times of LO-criticality tasks (i.e. C(HI) < C(LO) for these
tasks) [13] — perhaps by switching to simpler version of the
software. Drop jobs from a specific subset of tasks [24], [20].

An orthogonal approach to improving the overall service
for LO-criticality tasks was adopted by Santy et al. [27]. They
effectively scale the C'(LO) values using sensitivity analysis
until the system is just schedulable. Using these values at
runtime makes the system more robust, since LO-criticality
tasks can execute for longer, and Hl-criticality tasks are less
likely to exceed their larger budgeted C'(LO) values, making
the system less likely to enter its Hl-criticality mode. This
approach was subsequently refined by Burns and Baruah [13]
using Robust Priority Assignment techniques [17] that permit
priorities to change during the sensitivity analysis process.

A further important aspect of providing service for LO-
criticality tasks is the ability to restore the system to its
LO-criticality mode following an interval of HI-criticality
behaviour. As mentioned previously, this can be achieved by
waiting for an idle instant. Santy et al. explored this ap-
proach [27], and also developed a protocol for multiprocessor
scheduling where there may be no idle instant across all
processors [26].

In this paper, we introduce the Bailout Protocol. This
protocol allows jobs to be dropped, but rather than abandon
jobs that have been released, and so waste the consumed
execution time and potentially leave them in an inconsistent
state, it allows these jobs to continue. However, it disables the
release of new jobs of LO-criticality tasks until the system
is back into the normal mode of execution whereby it can

again guarantee all tasks. As noted previously many forms
of analysis actually reduce their complexity by assuming all
released jobs will complete. The bailout protocol aims to
restore LO-criticality mode as soon as possible following an
interval of HI-criticality activity, and so minimise the number
of LO-criticality jobs that miss deadlines or are not executed.

IV. THE BAILOUT PROTOCOL

We describe the Bailout Protocol assuming two levels of
criticality in the system software. We focus on single processor
systems (or individual cores in a partitioned multiprocessor
system) and the fixed priority pre-emptive scheduling (FPPS)
of sporadic tasks with constrained deadlines.

At run-time, dual criticality systems are typically defined to
be in one of two modes: LO-criticality mode and HI-criticality
mode. With the bailout protocol, we defined three modes:
normal mode, bailout mode and recovery mode. Normal mode
corresponds to the traditional LO-criticality mode, since every
LO-criticality job with a release time and a deadline in a
single normal mode interval must be guaranteed to complete
by its deadline. Bailout and recovery modes correspond to the
traditional HI-criticality mode.

The bailout protocol comprises the following modes and
mechanisms, which operate only in the mode for which
they are described. In all modes, LO-criticality tasks are
prevented from executing for more than their C'(LO) values.
LO-criticality tasks dispatched in normal mode, continue to
execute in both bailout and recovery modes. (Note, such jobs
may miss their deadlines in these modes, but continue to
execute provided they do not exceed C'(LO)).

Normal mode:

(i) While all jobs of Hl-criticality tasks execute for no more
than their C(LO) values, the system remains in normal mode.

(ii) If any HlI-criticality job executes for its C'(LO) value
without signalling completion it must take out a loan of
C(HI)— C(LO); this loan is always granted, and the system
moves into the bailout mode. The bailout fund (BF') is
initialised to BF' = C(HI) — C(LO).

Bailout mode:

(iii) If any Hl-criticality job executes for its C'(LO) value
without signalling completion then it must also take out a
loan of C(HI) — C(LO), adding to the bailout fund: BF =
BF + C(HI) - C(LO).

(iv) If any HlI-criticality job completes with an execution
time of e, with e < C(LO) then it donates its underspend (if
any), reducing the bailout fund: BF = BF — (C(LO) —e).

(v) If any LO-criticality job completes with an execution
time of e, with e < C(LO) then it donates its underspend (if
any) to the bailout fund: BF = BF — (C(LO) — e). (Such
a job would need to have been released in an earlier normal
mode).

(vi) If any Hl-criticality job with a loan completes with
an execution time of e, with C(LO) < e < C(HI) then it
donates its loan underspend, reducing the bailout fund: BF' =
BF — (C(HI) —e).



(vii) LO-criticality jobs released in bailout mode are aban-
doned (not started). Further, when the scheduler would other-
wise have dispatched such a job, the job’s budget of C(LO)
is donated to the bailout fund: BF = BF — C(LO).

(viii) If the bailout fund becomes zero (note BF' is con-
strained to never become negative), then the lowest priority
HI-criticality job with outstanding execution is recorded (let
this job be .J) and the recovery mode is entered >.

(ix) If during bailout mode, an idle instant occurs, then a
transition is made to normal mode, and BF' is reset to zero.
Recovery mode:

(x) LO-criticality jobs released in recovery mode are aban-
doned (not started).

(xi) If any HI-criticality job executes for its C(LO)
value without signalling completion, then the system re-enters
bailout mode — as described in (ii) above.

(xii) When the job Jj; noted at the point when recovery
mode was last entered completes, then the system transitions
to normal mode.

The bailout protocol is designed to have a simple imple-
mentation, with each operation (i) to (xii) requiring only O(1)
time, and all actions taking place at the release, completion, or
context switch to a job, all of which are already well defined
RTOS operations in FPPS, or when a job executes for C'(LO)
without signalling completion, which is necessarily required
by a MCS implementing AMC.

We now give an example illustrating the behaviour of the
bailout protocol. This example includes four tasks: 7; and
7o are LO-criticality tasks, while 73 and 74 are HI-criticality.
Task 7 has the highest priority and task 74 the lowest. The
parameters of the tasks are given in the table below. The tasks
are schedulable according to the AMC-rtb schedulability test
with the R(LO) and R(HI) upper bounds on the worst-case
response times given in the table below.

1 | LO 8 - 24 | 12 8 -
72 | LO 4 - 26 | 12 12 -
T3 HI 4 10 48 | 24 16 22
T4 HI 8 8 32 | 32 24 30

Figure 1 illustrates the behaviour of the bailout protocol.
At time ¢t = 16, task 73 has executed for C'(LO) without
signalling completion, hence bailout mode is entered. As
C(HI) = 10, BF is initialised to 6. Task 75 completes its
HI-criticality execution at time ¢t = 22; however, the system
cannot simply resume normal mode behaviour, since then the
releases of task 71 and 79 at ¢ = 24 and ¢ = 26 respectively
would result in task 74 (HI-criticality) missing its deadline.
Instead, since BF' > 0, the system remains in bailout mode.
At time t = 24 the second job of task 7 is released; however,
as the system is in bailout mode, and the task is of LO-
criticality, then the job is abandoned at the time it would have

3Job .J;, defines the extent of the recovery mode, which is necessary to
ensure that no Hl-criticality job can be subject to more interference than
accounted for by the analysis of AMC, for further details see Theorem 2 in
Section VII and the discussion that follows it.
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Fig. 1. Example showing the operation of the bailout protocol, including

normal, bailout and recovery modes.

started to execute (¢ = 24 in this case) repaying the bailout
fund, which now goes to zero. However, the system still cannot
resume normal mode operation, as doing so would result in
task 74 (HI-criticality) missing its deadline due to interference
from the second job of task 7,. Instead the system enters
recovery mode and records the lowest priority Hl-criticality
job with outstanding execution. This is the first job of task
74. When this job completes at ¢ = 30, the system re-enters
normal mode. It is interesting to note that in this example, if
task 74 were a LO-criticality task, then recovery mode would
end immediately (i.e. at the same time as bailout mode at
t = 24), the second job of task 75 would not be abandoned,
and task 74 would miss its deadline. This shows that under the
bailout protocol, (in common with AMC) LO-criticality jobs
with release times and deadlines that span some HI-criticality
behaviour cannot be guaranteed to meet their deadlines, even
if the system returns to LO-criticality behaviour before they
complete.

V. INCREASING EXECUTION TIME BUDGETS

In this section we describe an offline method which is
complementary to the bailout protocol, reducing the number
of times that a given system will go into bailout mode, and
the amount of time that it spends in that mode, hence reducing
the number of LO-criticality jobs that miss their deadlines or
are abandoned.

The offline method was introduced by Santy et al. [27] and
further refined by Burns and Baruah [13]. It uses sensitivity
analysis [11], [25] to explore by how much C(LO) values
can be changed without making the system unschedulable,
effectively making use of the statically available slack in
the system [16]. Intuitively, this method is compatible with
the bailout protocol, since it effectively increases budgeted
C(LO) values while ensuring that the system remains prov-
ably schedulable.

The specific method we use is as follows: First, we increase
the C(LO) values of all Hl-criticality tasks as much as



possible while ensuring that the system remains schedulable
according to AMC-rtb analysis (i.e. (1) and (2)). We do
this by forming a binary search for the largest value of
a such that the system remains schedulable when all HI-
criticality task’s C'(LO) values are replaced by C(BU) =
min(C(HI),aC(LO)). Note we use C(BU) rather than
C(LO) to emphasize that these are no longer the LO-criticality
WCETs associated with those Hl-criticality tasks, but rather
execution time budgets that will be used to police normal
mode behaviour at runtime. The initial lower value of o used
for the binary search is 1, since the system is assumed to
be schedulable under AMC-rtb to begin with, and the initial
upper value is given by the largest C(HI)/C(LO) for any HI-
criticality task. At each step of the binary search, Audsley’s
Optimal Priority Assignment algorithm [1] is used along with
the single task schedulability test (i.e. (1) and (2)) to determine
if the system is schedulable for that value of a.. Second, we use
a similar process to further increase, if possible, the C'(BU)
value for each individual task in turn, since after the first step,
some but not all of the C(BU) values may still be increased
without making the system unschedulable. (We do this for all
HI-criticality tasks in order of increasing deadlines).

At runtime, we use FPPS along with the bailout protocol,
replacing all occurrences of C'(LO) for Hl-criticality tasks by
the larger C'(BU) values. We refer to the basic bailout protocol
as BP, and the more sophisticated approach described here as
BPS (Bailout Protocol with Sensitivity analysis). For systems
that are schedulable under classical FPPS (i.e. assuming that
all jobs may take an execution time that corresponds to
their own criticality level), then BPS has the useful property,
unlike AMC+ and BP, that no LO-criticality jobs miss their
deadlines. This is the case, since for such systems the first step
described above will result in C(BU) = C(HI) for all HI-
criticality tasks. The AMC+ approach may also take advantage
of increased C'(BU) values. We refer to such an approach as
AMCH+S.

VI. SCENARIO-BASED EVALUATION

In this section, we present a scenario-based evaluation of
the performance of the bailout protocol using an experimental
framework or simulation. Scenario-based evaluation is an
essential complement to schedulability analysis as the latter
only tells us under what conditions timing requirements are
met, whereas we are also interested in the amount of time
spent outside of normal mode, and consequently how many
LO-criticality tasks miss their deadlines. Our evaluation aims
to provide an understanding of how the different scheduling
schemes (AMC+, AMC+S, BP, BPS) meet the needs of mixed-
criticality systems. The first step in this process is the selection
of evaluation metrics.

A. Evaluation Metrics

We use the following key evaluation metrics. This combi-
nation of metrics covers the percentage of deadlines missed,
broken down into HI- and LO-criticality tasks, as well as
providing insight into the operation of the bailout protocol.

1) Percentage of HI-criticality Deadline Misses (#H DM ):
These deadline misses should not be experienced with the
bailout or AMC schemes, but may occur with standard
FPPS.

2) Jobs Not Executed (#JNE): The percentage of LO-
criticality jobs that are abandoned.

3) Percentage of LO-criticality Deadline Misses (#LDM ).
For LO-criticality jobs that are executed.

The most important metric is #H DM, since any valid
protocol must ensure first that there are no HI-criticality
deadline misses. Given that, then the next metric to optimise
is the percentage of LO-criticality jobs that fail to meet their
deadlines, either by missing their deadlines (#LDM) or not
being executed #JNE. Although the simulator computes
# L DM, this number is far smaller than #.JN E, we therefore
do not separately show # LD M in the graphs presented below;
these values are however shown in the accompanying tables.

B. Experimental Framework

The experimental framework consists of four principal com-

ponents: scheduling schemes, task set generation, configura-
tions, and simulation.
Scheduling Schemes: The scheduling schemes were imple-
mented using a layered approach, with FPPS used to schedule
the tasks, and additional mechanisms used to control release,
dispatch and execution of jobs according to the different
approaches considered:

1) Default (FPPS) — Basic FPPS where execution time

overruns are allowed.

2) Bailout Protocol (BP) — The basic bailout protocol (sec-
tion IV).

3) Bailout Protocol - Slack (BPS) — The bailout protocol
enhanced by offline increases in execution time budgets
making use of static slack (section V).

4) Adaptive Mixed Criticality - (AMC+) — The standard
AMC scheme [6] (section II-A), enhanced so the system
resumes LO-criticality execution after an idle instant.

5) Adaptive Mixed Criticality - Slack (AMC+S) — The
AMC+ scheme, enhanced by offline increases in execu-
tion time budgets making use of static slack (section V).

Task Set Generation: Task sets of cardinality 20 were gener-
ated according to the following parameters.

1) Periods and Deadlines - The period of each of the tasks
was chosen at random from a set of harmonics of two
base frequencies (e.g. 25, 50, 100, 250, 500, 1000 and 20,
40, 80, 200, 400, 800ms) as typically found in automotive
and avionics systems [9]. The deadlines were implicit.

2) Execution Times - LO-criticality utilisation U (LO) values
for each task where determined according to the Uunifast
algorithm [10], thus ensuring an unbiased distribution
of values that sum to the target utilisation for the
system. LO-criticality execution times were then set to
C(LO) = U(LO).T, and HI-criticality execution times
to C(HI) = CF.C(LO) where CF is the criticality
factor (CF = 2.0). Finally, best case execution times



(BCET) were chosen at random between 80% and 100%
of C(LO).

3) Criticality - (CP = 0.5) Tasks were randomly chosen to
be either HI- or LO-criticality, with a 50% probability of
being Hl-criticality.

We note that since CF = 2.0 and C'P = 0.5, then the total
HI-criticality utilisation was approximately equal to the total
LO-criticality utilisation.

Configurations: An important issue for this research is un-
derstanding how the different scheduling schemes perform in
different circumstances, in terms of both typical and worst-
case behaviours. The configurations we used were as follows.

1) Config 1 - 70% LO-criticality Utilisation - Only task sets
with LO-criticality utilisation of 70% were used.

2) Config 2 - 90% LO-criticality Utilisation - One of the
benefits of some of the mixed-criticality scheduling ap-
proaches is that task sets with overall utilisation exceed-
ing 100% are schedulable as LO-criticality tasks do not
have to be executed all of the time [6]. For this config-
uration, only task sets with LO-criticality utilisations of
90% were used, meaning that many of the task sets had
an overall utilisation exceeding 100% (when accounting
for Hl-criticality execution times).

In both configurations, we required that the task sets chosen
had at least one task that was unschedulable according to exact
analysis of FPPS [2], but were schedulable according to AMC-
rtb [6]. Thus the configurations represent cases where both
LO- and HI- criticality jobs may miss their deadlines under
classical FPPS, but not when the AMC or Bailout schemes
are employed. Further, we required that the number of HI-
criticality tasks was actually in the range 40% to 60% of the
total number of tasks (recall that each individual task had a
50% probability of being HI-criticality).

Simulation: Our experiments covered 1,000 task sets for each
of the two configurations considered. The duration of each
simulation run was 10! time units, each time unit was 0.1ms,
thus this was sufficient for 10° jobs of the longest period task.

In the simulation, job releases were strictly periodic. On

each release, an actual execution time was chosen for the job
as follows. If the job was from a LO-criticality task, then this
value was chosen at random from a uniform distribution in the
range [BCET,C(LO)]. If the job was from a Hl-criticality
task, then a random boolean variable with a probability of
10~* of returning true was used to determine if the job
would exhibit Hl-criticality behaviour. If true was returned,
then its execution time was chosen at random from a uniform
distribution in the range [C'(LO), C(H]I)], otherwise the range
was [BCET,C(LO)]. The probability used to determine if
HI-criticality behaviour would be exhibited was deliberately
set to a relatively high value as we wanted to stress the system
behaviour. In practice such a high value is perhaps unlikely,
but possible, for example if the High WaterMark testing used
to determine C'(LO) had not revealed the worst-case path?.

4We note that functional testing, even that requiring MCDC coverage, is
not in general sufficient to determine WCETSs.

Note for the schemes making use of statically available
slack, the C(BU) parameters were computed via offline
sensitivity analysis, as described in Section V, before running
the simulator. These values were then used by the simulator to
determine when the system should transition to HI-criticality
or bailout mode, with the C(LO) values used in the selection
of job execution times, as explained above. We note that
the simulation did not include scheduling overheads, while
these would have some impact in practice, all of the schemes
compared have low overheads similar to those incurred by
execution time budget accounting.

C. Evaluation Results

Our evaluation results are shown using box and whisker
plots as this helps illustrate important statistical properties. The
box itself represents the range of values between quartiles (25
and 75 percentiles). The horizontal line in the middle of the
box is the median. There are then vertical lines from the box
to two horizontal lines, above and below it. These horizontal
lines show the 5 and 95 percentiles respectively. Finally there
are small circles. These are the outlying values that are outside
of the 5 to 95 percentile range. The box and whisker plot
gives a strong indication of typical performance, the variance
observed, and information about the outliers. In each figure,
each scheduling scheme is coloured coded according to the
legend in the top right, with the information appearing in the
order AMC+, AMC+S, BP, and BPS.

The percentage of LO-criticality jobs not executed (#J N E)
for each of the scheduling schemes, is shown for task sets with
harmonic periods in Fig. 3 and Fig. 2.

We observe that in both configurations, the bailout protocol
(BP) is effective in reducing the percentage of LO-criticality
jobs that are not executed compared to the baseline AMC+
scheme. In configuration 2, increasing execution time budgets
(C(BU)) by making use of static slack, leads to a roughly
similar reduction in #J N E as BP, albeit with larger variability
caused by variability in the amount of slack available in the
various task sets.

Since the bailout protocol and making use of static slack are
complementary techniques, the BPS scheme provides signifi-
cantly better performance than AMC+S or BP. The results for
configuration 1 (Fig. 2) are similar; however, since the system
is more lightly loaded, there is more static slack available and
so the improvements due to that technique are increased.

The values for JNE, LDM, and HDM are given, as a
percentage of the total number of jobs of that type (i.e. HI-
or LO-criticality) in the table below. Note that with the AMC,
AMC+S, BP, and BPS schemes, there were no Hl-criticality
deadlines misses (#H DM). Note also that there were very
few LO-criticality deadline misses, only non-executed jobs.
With basic FPPS, there were a small but highly significant
number of Hl-criticality jobs that missed their deadlines. The
frequency of these deadline misses was 1.8 x 1079 (i.e.
1.8 x 1077%) in the second configuration. This may not be
acceptable in a real system. The small but non-zero values for
#JNE for FPPS are because under that policy, the simulation



abandoned any jobs that were released while the previous
job of the same task was still active (having already missed
its deadline), thus avoiding any possibility of a cascading
overload. We note that in both configurations, on average the
BPS scheme reduced the number of LO-criticality jobs not
executed by over a factor of three compared to the AMC+
scheme.
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Fig. 2. Results for #JNE - Config 1: 70% LO-criticality Utilisation:
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Fig. 3. Results for #JNE - Config 2: 90% LO-criticality Utilisation:
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TABLE I
PERFORMANCE METRICS FOR SYSTEMS WITH HARMONIC PERIODS

U=0.7 | AMC+| AMC+S| BP BPS | FPPS
INE 0.026%| 0.015%| 0.02% | 0.01% | 0%
LDM | 3.0e-7% 1.6e-6%| 3.0e-7% 2.5e-6% 0%
HDM 0% 0% 0% 0% 0%

U=09 | AMC+| AMC+S| BP BPS FPPS
INE 0.039%| 0.027%| 0.024%| 0.014%| 1.8e-7%
LDM | 6.2e-7% 6.7e-7%| 6.2e-7% 1.1e-6%| 6.4e-7%)
HDM 0% 0% 0% 0% | 1.8e-7%

The bailout and AMC-based schemes sacrifice a small
percentage of LO-criticality jobs in order to ensure that the
deadlines of Hl-criticality tasks are met (i.e. #HDM = 0).
Nearly all of these LO-criticality jobs are abandoned without
execution (#JN E); however, some can start but not meet
their deadlines. All LO-criticality jobs that are started under

these schemes are however completed. By comparison basic
FPPS executes (very nearly) all jobs, but significantly both
LO- and Hl-criticality jobs can miss their deadlines. Note, we
did not simulate the basic AMC scheme as that would have a
very high value for #JN E as all LO-criticality jobs would be
abandoned after the system first entered Hl-criticality mode.

VII. ANALYSIS OF THE BAILOUT PROTOCOL

In this section, we prove important properties of the bailout
protocol. For systems that are deemed schedulable by AMC-
rtb analysis (see (1) and (2) in Section II-A), we claim that if
the system is scheduled at runtime using FPPS and the bailout
protocol, then:

P1. LO-criticality jobs that are released and complete in
normal mode, with no intervening start of a bailout mode,
are guaranteed to meet their deadlines.

P2. HI-criticality jobs released at any time are guaranteed to
always meet their deadlines.

Stated otherwise, the AMC-rtb test is a sufficient schedula-
bility test for MCS using FPPS and employing the bailout
protocol. We note that: (i) LO-criticality tasks that are released
during bailout or recovery modes are abandoned, and so
effectively miss their deadlines. (ii) LO-criticality tasks that
are dispatched in normal mode, but complete after the start of
a bailout mode are not guaranteed to meet their deadlines.

We now prove, via a set of Lemmas and Theorems, Proper-
ties P1 and P2 of the bailout policy. Consider a system that is
schedulable according to AMC-rtb analysis, and is scheduled
at runtime using FPPS and the bailout protocol. Let S be
some bailout scenario, corresponding to an arbitrary but valid
sequence of job releases under which the system operates the
bailout protocol due to one or more jobs of Hl-criticality tasks
exceeding their LO-criticality execution times. Let [NV be the
alternate normal scenario for S. The alternate normal scenario
N has its job releases at exactly the same times as scenario S
however, unlike scenario .S where jobs may take arbitrary but
valid execution times (i.e. < C(LO) for LO-criticality tasks
and < C(HI) for Hl-criticality tasks) all jobs in scenario N
require exactly their LO-criticality execution times C(LO),
hence under scenario N, the system is always in normal (i.e.
LO-criticality) mode and all deadlines are met. We will show
that S behaves in an equivalent way to V.

For bailout scenario S, let W5(t, k) be the total pending
workload due to jobs of priority k& and higher (i.e. in hep(k))
that have execution outstanding at time ¢. Note that at the
release of a job, we recognise its LO-criticality execution
time up to a maximum of C(LO) as contributing to the
total pending workload; however, the additional Hl-criticality
execution time up to (C(HI) — C(LO)) is only considered
as contributing to the total pending workload once the job
has executed for C'(LO) without signalling completion. Let
WHN(t, k) be the total pending workload at priority k and
higher at time ¢ in the alternate normal scenario IN. Further,
let [ts,t.) be an interval during which the system is in bailout
mode in scenario S. Thus t, is the start of a bailout mode



interval, and ¢, the end, hence ¢, is also the start of recovery
mode.

Lemma 1. For any arbitrary bailout scenario S, provided that
at the end t. of each bailout mode interval [ts,t.), the total
pending workload for every priority level j, is no greater than
that for the alternate normal scenario N, i.e:

Vi Wh(te,5) < W (te,4) 3)

then all jobs released and not immediately abandoned® at or
after time t. with deadlines prior to a subsequent transition
to bailout mode are guaranteed to meet their deadlines.

Proof: Consider the bailout mode interval [ts,t.), and an
arbitrary job J; released at or after time t. with a deadline
prior to any subsequent transition into bailout mode. As FPPS
is used, the response time of job J; depends only on (i) the
total pending workload for priority i at time t. i.e. W5(t,1)
and (ii) the higher priority workload released at or after time
te, but before the completion of job J;. By the Lemma, (i) is
no greater than in the alternate normal mode scenario. Further,
(ii) is also no greater, since this workload comprises only jobs
released after time ¢., all of which (by the Lemma) exhibit
LO-criticality behaviour prior to the deadline of job J;. (We
note that the release times of these jobs are the same in both
the bailout scenario and its alternate normal scenario; however,
some releases may be abandoned in the bailout scenario due
to the recovery mode behaviour immediately following ..
This can only reduce the amount of workload compared to
the alternate normal scenario). Hence the response time of job
J; is no greater than it would have been if the system had
always executed in normal mode. Since job .J; is guaranteed
to meet its deadline in normal mode, it is also guaranteed to
meet its deadline in the bailout scenario with a transition into
and out of bailout mode prior to its release ]

We now classify the mechanisms of the bailout protocol into

three basic types of operation as follows. (Note the numbering
below e.g. (ii) and (xi) refers to the clauses in the description
of the bailout protocol given in section IV above)

e BF increases: (i), (iii) and (xi): These mechanisms in-
crease the bailout fund when a Hl-criticality job executes
for C'(LO) without signalling completion.

e BF reductions (completion): (iv), (v), and (vi): These
mechanisms involve a job at some priority k£ complet-
ing execution and reducing the bailout fund by any
underspend with respect to the execution time that was
previously accounted for.

e BF reductions (abandonment). (vii): With this mecha-
nism, a LO-criticality job released during the bailout
interval, would have executed at some priority k, but
is instead abandoned, donating its execution time to the
bailout fund.

Note we do not consider mechanism (ix) further as at an

idle instant the total pending workload at all priority levels

SRecall that LO-criticality jobs released in recovery mode are immediately
abandoned.

is zero and hence there can be no impact on subsequent
jobs. Mechanism (viii) indicates when the system exits bailout
mode, which can only occur as a result of BF' reductions due
to either job completion or release.

Lemma 2. Consider a bailout mode interval [ts,t.) of an
arbitrary bailout scenario S. Provided that at the start of
the bailout mode interval, the total pending workload for
every priority level j, is no greater for the bailout sce-
nario (without yet recognising the additional execution time
from the Hl-criticality job that will cause the transition to
bailout mode) than for its alternate normal mode scenario
ie. Vj WH(ty,j) < WN(t,,j) then at the end t. of the
bailout mode interval inequality (3) holds i.e. Vj W (t,, ) <
W (te, 7).

Proof: To prove the Lemma, we divide the bailout interval
[ts,t.) into a number of contiguous (non-overlapping) sub-
intervals [ts,te1), [ts2,te2) - .- [tsn, te). The end of each sub-
interval is demarked by a BF reduction, due to either a job
completion or release. We note there are no BF reduction
operations within a sub-interval.

Initial step: At the start of the bailout interval ¢t = t5, by the
Lemma Vj W5 (ts,j) < W¥(tg,4) without recognising the
additional execution time from the Hl-criticality job causing
the transition to bailout mode. We now recognise this addi-
tional execution time C(HI) — C(LO). Hence we have:

vj WE(t,j) <WN(t.j) + BF @)
where the initial value of BF is C(HI) — C(LO).
First sub-interval: During the first sub-interval, HI-

criticality tasks may execute for their C'(LO) without sig-
nalling completion and add to BF' via mechanism (iii). Since
BF is incremented by C(HI)— C(LO) for each such job, it
follows that (4) continues to hold. The sub-interval ends with
a BF reduction operation.

Case I: BF reduction (completion): Completion of a job at
priority k at time ¢ implies the following (since no workload
can be pending at a higher priority than k otherwise the job
at priority k£ would not be executing):

Vj € hp(k) WP(t,j) =0 (5)

Further, as the job may have completed earlier than previously
accounted for, either (a) via requiring less execution time than
its C(LO) value (mechanisms (iv) and (v)), or (b) via requiring
less time for HI-criticality execution than was previously
accounted for in BF' (mechanism (vi)), then BF can be
decremented by any underspend and the following holds. This
is the case because (a) W (¢, j) includes workload that would
have been pending if the job had required its full C'(LO)
execution time, and (b) BF had previously been adjusted to
include all of C(HI)— C(LO) and we now know that not all
of that execution time was required.

Vj € lep(k) WB(t,j) < WN(t,j) + BF (6)

Case 2: BF reduction (abandonment): Recall that under
mechanism (vii) a job of a LO-criticality task that is released in



Bailout mode is abandoned (not started) and at the time ¢ that
this job would otherwise have started to execute, it donates its
budget of C'(LO) to the bailout fund (BF = BF — C(LO).
Donation of this budget implies (5), since the fact that the job
would have executed at time ¢ means that there can be no
pending higher priority jobs (workload) at that time. Further,
the total pending workload at priorities lower than £ is reduced
by the execution time C'(LO) of the abandoned job. Hence the
value of BF' is reduced according to mechanism (vii), yet (6)
still holds, since W (¢, j) includes C'(LO) for the abandoned
job.

Subsequent sub-intervals: All subsequent sub-intervals in
the bailout mode interval may be considered in the same way
as the first sub-interval, thus (5) and (6) continue to hold at
the end of each sub-interval, where k is the priority of the task
that completes its execution or would have started to execute
but has instead been abandoned. It follows that the bailout
interval ends with some BF reduction operation due to a task
at priority k, and at that time we have:

¥j € hp(k) WP (te, 5) =0 )

and
Vj € lep(k) WPB(te,j) < WN(te,j)+ BF  (8)
with BF = 0. Since W% (t.,7) > 0, it follows that
Vi WE(te, j) < WN(te, j) u

Theorem 1. All jobs that are released (and not immediately
abandoned because they are LO-criticality jobs released in
recovery mode) and have their deadlines within an interval
that does not include bailout mode (but may comprise recovery
and normal mode) are guaranteed to meet their deadlines
provided that the system is schedulable according to AMC-
rtb analysis and is scheduled at runtime using FPPS and the
bailout protocol.

Proof: We consider all of the intervals in an arbitrary
bailout scenario S, which has an alternate normal scenario N
that is schedulable under FPPS. Since the system starts in nor-
mal mode, during the first interval in S before entering bailout
mode, all jobs require at most their LO-criticality execution
time C'(LO) and hence the theorem trivially holds for those
jobs. Since the system starts in normal mode, at the start of
the first bailout interval, and before recognising the additional
execution time required by the job that causes the transition
to bailout mode, we have Vj W5(t,,7) < W¥(tg, ). From
Lemma 2 it follows that ¥j WB(t.,j) < W¥(t.,4) holds at
the end ¢, of the first bailout interval. From Lemma 1, the The-
orem therefore holds for the second interval between bailout
modes. Further, since during this second interval, jobs only
exhibit their LO-criticality execution times, it follows that at
the start of the next bailout mode Vj W5(t,,7) < W (¢, j).
again holds. Induction over all of the bailout modes and
intervals between them is sufficient to show that all jobs that
are released and have their deadlines within a single interval
between bailout modes are schedulable ]

Theorem 1 shows that all jobs released and not immediately
abandoned in recovery or normal mode with deadlines prior to
the start of the next bailout mode are guaranteed to meet their
deadlines provided that the system is schedulable according
to AMC-rtb analysis. This encompasses Property P1 — LO-
criticality jobs that are released and complete in normal mode,
with no intervening start of a bailout mode are guaranteed to
meet their deadlines under the bailout protocol.

Theorem 2. All jobs of HI-criticality tasks are guaranteed to
meet their deadlines provided that the system is schedulable
according to AMC-rtb analysis and is scheduled at runtime
using FPPS and the bailout protocol.

Proof: Theorem 1 suffices to show that any job of a HI-
criticality task that is released in a recovery or normal mode
interval and has a deadline prior to the start of the next bailout
mode is schedulable. We are therefore left with two further
cases to consider.

Case 1: A Hl-criticality job that is released in a recovery
mode or normal mode interval and completes in the next
bailout mode interval or the recovery mode interval that
follows it. The proof of Theorem 1 shows that Vj W5 (¢, j) <
W (t.,j) holds at the end of any bailout mode interval.
Hence any job that is released in recovery mode or normal
mode is subject to interference from the time of its release to
the start of the next bailout mode that is no greater than if the
system operated continually in normal mode. The maximum
possible time from the release of the job until it either
completes or the next bailout mode is entered is therefore
R(LO) (see AMC-rtb analysis, i.e. (1) and (2) in Section
II-A). This holds since in normal mode, the job must have
executed for C(LO) by R(LO) after its release, and will hence
trigger a transition to bailout mode if it has not completed
by then. The maximum amount of interference from higher
priority LO-criticality jobs is therefore limited to at most those
releases within an interval of length R(LO), as per the AMC-
rtb analysis. Further, since that analysis assumes interference
of C(HI) from all releases of higher priority Hl-criticality
tasks, the response time of the job must be bounded by the
worst-case response time computed by AMC-rtb.

Case 2: A HI-criticality job that is released in a bailout
mode interval and completes in that interval or the recovery
mode interval that follows it. Such a job cannot be subject to
more interference than considered in Case 1, and so is also
schedulable. No job of a Hl-criticality task that is released
in a recovery mode, normal mode, or bailout mode interval,
can complete after the end of the next recovery mode interval,
since that recovery mode would by definition extend until such
completion. Hence Cases 1 and 2 cover all further possibilities
for the release and completion of Hl-criticality jobs ]

We note that the presence of recovery mode is necessary
to ensure that Hl-criticality jobs always meet their deadlines.
Without the recovery mode, i.e. permitting LO-criticality
jobs to be released as soon as bailout mode ends, would
provide scope for increased interference from high priority
LO-criticality tasks beyond that considered by the AMC-rtb



analysis. Effectively the interval of LO-criticality interference
on a high criticality task would be split into two parts and
as [a] + [b] > [a + b] this interference may then be larger.
Finally, we note that despite the workload relationship given
by (3), there is no guarantee that LO-criticality tasks that are
released in normal mode and complete in a subsequent normal
mode after a transition through bailout mode will meet their
deadlines (as illustrated in the example shown in Figure 1).

VIII. CONCLUSIONS

In a mixed criticality system (MCS) most criticality levels
will require that deadlines are always met. However, it is
necessary to design systems that behave robustly in situations
where software is behaving in an unexpected manner — partic-
ularly if estimated executions times are exceeded. A number
of theoretical advances have been made in terms of scheduling
MCSs. In this paper we move the theory closer to industrial
application. In particular we consider how to minimise the
consequences of partial (temporal) failures, and how to restore
service for LO-criticality tasks while still guaranteeing the HI-
criticality ones.

The paper introduces a bailout protocol that allows over-
run of Hl-criticality jobs to be accommodated by the
non-execution of LO-criticality jobs. The number of non-
executions is however kept to a minimum. The bailout protocol
is described by analogy to the banking system; HI-criticality
tasks cannot fail, loans are taken out by HI-criticality tasks and
repaid by LO-criticality tasks. The bailout protocol is orthog-
onal to existing mechanisms based on offline slack calculation
which can be employed to further improve performance.

Finally, we used schedulability analysis techniques to show
that the bailout protocol has the same level of guarantee
as the best previously published approach (AMC), and a
scenario-based evaluation framework to show that it provides
significantly improved performance for LO-criticality tasks.
Specifically, whereas AMC abandons all LO-criticality tasks
following a transition to Hl-criticality mode, the bailout proto-
col can be shown to seldom miss any LO-criticality deadlines
for realistic assumptions about task execution times.
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