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Abstract. In this paper we describe an approach for real-time modeling in UML
focusing on analysis and verification of time and scheduling related properties.
We show that the use of timed events, representing instant of state changes, pro-
vides the right level of abstraction for reasoning about timed computations. This
is also, at notation level, the choice of the OMG UML Real-Time Profile. We
complete this profile by identifying important events and duration expressions.
One originality of the approach presented here, is that it provides a formal se-
mantics of the time related primitives in terms of timed automata with urgency.
An interesting point is that this time extension is independent of the dynamic
semantics of the functional part.

1 Introduction

Modeling plays a central role in software and systems engineering. The use of models
can replace experimentation on actual systems with important advantages such as:

– Enhanced modifiability of the model and of its parameters,
– Ease of construction by integration of models of heterogeneous components,
– Generality by using generalization mechanisms and behavioural non determinism,
– Enhanced observability and controllability, in particular, avoidance of probe effect

and of disturbances due to experimentation,
– Possibility of abstraction and application of formal methods.

Building models which faithfully represent complex systems in all their aspects is a
non-trivial problem. Mostly, modeling techniques are applied at early phases of system
development at a high level of abstraction. Nevertheless, there is a need for a unified
view of the various activities in the whole life cycle and of their inter dependencies. In
particular, non functional aspects, such as timing, must be integrated into the system
model, and this must be done already at an early stage of development.

UML has become a standard by now in the domain of software development and is
imposing itself also in the domain of real-time and embedded systems. UML aims at
providing an integrated modeling framework encompassing architecture descriptions,
and behaviour descriptions, as supported by various behavioral specification languages
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such as languages based on the concept of communicating state machines. To cover
real-time aspects, a proposal for "Schedulability, performance and time" has been sub-
mitted to OMG in August 2000 and accepted as standard in March 2002. Nevertheless,
this profile provides syntax, and cannot be considered as a complete framework for
UML based development of real-time applications. Also, relatively little work on ap-
plying timed analysis and verification methods to UML models has been carried out so
far.

1.1 The OMEGA project

The work reported here is ongoing in the OMEGA project [30]. The purpose of Omega
is to provide a framework for a model based development approach in the domain of
real-time and embedded systems. The main problem to be solved is how to build sys-
tems with a guaranteed level of quality in a cost effective manner. There is a general
agreement that a means to achieve this the existence of a global model, integrating all
aspects of the system, as well as the assumptions made on the environment, during the
entire life cycle of the system allows the maintenance of a coherent system. In partic-
ular, information on non functional aspects, such as timing, should be available at an
early development stage.

Such a model-based approach is only useful if it is accompanied by tool support for
analysis at all stages of development in order to detect inconsistencies and design errors
as early as possible. Extraction of particular analysis models must be tool supported,
and in the case of model updates, guidance must be provided, indicating which analysis
has to be redone and which ones need not. Finally, the existence of automatic genera-
tion of code depending on the target platform is the only means to avoid that bugs are
eliminated at code level only, leading to the divergence between model and code and
making the model useless.

A means to detect design errors early, especially in the context of real-time systems,
where the reactivity of the system is as important as the functionality, is to take into
account non functional aspects, and in particular time-related aspects, as early as possi-
ble. Indeed, early decisions on the order of activities may later need important redesign
when it turns out that time constraints are not met. Not resolving non-determinism be-
fore timing constraints are taken into account, may avoid this problem. Nevertheless,
models with more non-deterministic interactions are harder to verify.

The long-term vision of the Omega project is to provide an environment for an UML
based approach for real-time embedded systems, providing the right notations, a formal
semantics and validation tools supporting this semantics and methodology.

In this paper, we discuss the framework for real time defined in the Omega project.

1.2 A framework for Time in UML

In the context of UML, where a system is described as a set of communicating objects,
the order in which causally unrelated actions in concurrent objects are executed is a
priori non constraint. This is fine for an abstract model with many possible implemen-
tations; but on one hand, a high degree of non determinism makes validation extremely
hard, and on the other hand some of the possible ordering of system activities may
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lead to violation of desired system properties. There are two approaches for getting a
restricted set of possible executions:

– use of particular interaction modes, as the one used in the synchronous approach,
or run-to-completion execution of groups of objects or, more generally, the use of
a priority order between actions (defined by their triggers).

– take into account known (or assumed, required,..) real-time features of the environ-
ment and the system at run-time, in order to determine possible ordering.

Very often, in practice, the first approach is used, and only at a later stage assumptions
or knowledge on the environment or the execution platform are used to verify if the
chosen execution order is a possible one. Taking into account timing constraints early
may avoid the risk of necessary redesign by still providing a model simple enough to
be verified.

A notation for the expression of the time related aspects of a system must be able to
express:

– Time related requirements, mainly constraints on end-to-end delays of the system
or its components

– Time related assumptions on the external environment of the system, mainly re-
sponse times and inter occurrence times of requests. In UML, the external envi-
ronment being modeled explicitly by means of actors, assumptions on the external
environment can be modeled in the same way as constraints on the system.

– Time related assumptions on the underlying execution platform, such as execution
times of tasks and actions as well as the dependencies between concurrent tasks via
shared resources. Particular notations are needed for that, as we do not want to ask
the user to build an explicit platform model.

– Time dependent system behaviour, which is often modeled best by means of timers
or explicit access to a system clock.

We define a notation based on the UML profile for Performance, Scheduling and
Time, including:

– A constraint-based formalism allowing to restrict the duration between occurrences
of events (where our notion of event allows to capture any event or state transi-
tion at the semantic level) by means of convenient patterns (such as ResponseTime
associated with calls, InteroccurrenceTime associated with events, ExecutionTime
associated with actions or “sequences of actions”, ...), as well as an expressive set of
notations for the identification of durations between any occurrences of any events.

– a number of operational concepts, as they exist in most modelling languages for
real-times systems: a notion of system time, which can be explicitly accessed in the
action language by a constructnow, stored in variables and used in guards, as well
as a timer concept.

Notice that, from the semantic point of view, the introduction of a global clock, time
stamps and time dependent guards in the action language is sufficient to provide all the
expressive power, but it is not sufficient from the modelling point of view. It leads to an
important modelling overhead and implies that assumptions on execution time must be
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expressed in the form of explicit waiting, thus hindering appropriate code generation.
Moreover, it is easy to generate operational timing annotations from patterns (express-
ing the intuition), whereas the other direction is not possible. Notice that many of the
existing modelling formalisms for real-time (such as timed automata like extensions of
state charts) are semantic level formalisms.

The semantics of our timing extensions defines a mapping from derived notations
into primitive ones, whereas the semantics of primitive notations is defined in terms of
extended timed automata which synchronize on occurrences of events and restrict the
set of possible sequences of timed events representing the semantics of the model.

An interesting point is that this timed semantics is orthogonal to the semantics of
the functional model, and can therefore be combined withany functional semantics
for UML which is expressive enough to identify all events referred to in the time con-
straints.

The paper is organized as follows. Section 2 gives an overview on related effort on
the introduction of time in UML and related modelling formalisms. Section 3 presents
our real-time profile of UML, and Section 4 sketches its semantics. Section 5, provides
a short discussion on the implementation of the time extensions in the IF verification
tool.

2 Related work on UML and time

UML offers a variety of notations for capturing many aspects of software development,
mostly focused on functional aspects, but also covering requirement analysis, imple-
mentation, verification, and testing. In this paper we address an aspect neglected in the
initial definitions of UML: the specification of the model behavior with respect to time
progress. In this section, we discuss related work dealing with explicit handling of time
and of time related information.

The UML Real-Time profile [28] (called in the sequel UML RT) is a first step in an-
swering OMG’s request for a “UML-based paradigm for modeling time-, schedulability-
, and performance-related aspects of real-time system that would be used to (1) enable
the construction of models appropriate for quantitative analysis regarding these char-
acteristics and (2) to enable inter-operability between different analysis and design
tools.” UML RT includes features for describing a variety of aspects of models of real-
time systems, such as timing, resources, performance, schedulability, etc. For what con-
cerns timing, the profile provides only operational features liketimer andclock objects,
and a set of data types (time, duration). With respect to this, our approach introduces
new features that allow a more abstract and descriptive specification of timing, allowing
event identification and definition of general timing constraints on events. Moreover, the
profile does not enter into deep semantic considerations.

The UML 2.0 [14] proposal pays more attention to time related aspects than the
current UML standard [34]. Indeed, operational time-related concepts that are common
to our approach and to the UML RT profile (timers, time related types), are present in
UML 2.0. But there is no syntax for the expression of time constraints.
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In [7], Douglass underlines the importance of time-related information in real-time
systems. He distinguishes between six kinds of time (absolute, mission, friendly, simu-
lation, interval and duration), but most of these distinctions do not really help to solve
the analysis problem. The main intended application is schedulability analysis, sup-
ported by a tool based on rate monotonic analysis (RMA) [16] of a set of periodic tasks
in order to estimate (statistically) execution times.

Lavazza et al. [24] present an approach to real-time development centered around a
concrete case study. The approach consists in translating UML models in which time-
related properties are specified (e.g. guarded timeouts, transitions dependent on other
transition times, etc.) into first-order temporal logic with time, on which a standard
model checking tool [35] is applied. Knapp et al. [23] use timed state machines for
describing a model, and collaboration diagrams with time constraints to describe prop-
erties. In order to check the consistency of the time constraints of the model and the
property, timed state machines as well as timed collaboration diagrams are compiled
into timed automata and checked using the model checking tool UPPAAL [22].

[9] presents work on a UML profile for real-time constraints specifications based on
OCL 2.0 [27]. The work consists in extending the OCL 2.0 meta-model with concepts
needed to express state chart configurations, execution paths, past and future execution
paths, etc. The semantics of the temporal expressions is given in terms of a mapping
to “Clocked” version of temporal logic [31]. Nevertheless, the paper only shows some
very simple properties, and it is not described how/if they can be verified.

Amongst the commercial UML tools, we mention Rhapsody [19], which is based
on a synchronous approach. Globally, the system is seen as a sequential system advanc-
ing in well defined global steps (cycles) where time is measured in number of cycles.
Within a cycle, concurrency boils down to priority based preemptive scheduling, where
timing analysis is based on RMA. ARTISAN Real-Time Studio [2] extends UML to
model the system’s reaction to events, time constraints, concurrent tasks and partition-
ing applications across multiple processors. ROOM[32] and Tau Generation-2 [33] are
based on communication via asynchronous events. A global notion of time is defined
which can be used to define time dependent behaviours using timers, time stamps and
time guards. Both Rhapsody and Artisan-RtS use UML as a graphical programming
language, whereas ROOM and Tau have more features of modeling tools.

Although not UML-based, we mention here the related efforts done in the context
of SDL [20] because of the similarities of the aims and the formalisms involved. Like
ROOM, SDL has basic concepts for time, time-related data types (time and duration),
and timers which can be used for the definition of time dependent behaviours. [4] de-
scribes the concepts necessary to better address real-time needs, consisting mainly in
the ability to define time and schedulingconstraints. [11] provides a framework for
specifying real-time constraints leading to verifiable systems. The QSDL [6] defines an
extension of SDL with probabilistic execution time constraints attached with tasks and
a notation for some minimal deployment information. The so defined extended mod-
els are then fed into a simulator for performance evaluation. An adaptation of the here
presented time model to SDL, is presented in [12].

Message sequence charts (MSC) defined by ITU [21] are a formalism related with
UML sequence diagrams. The two main directions of the work on timed MSCs are those
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based onevent distance - the ITU efforts on adding time to MSC as part of the standard
and those usingtime guards - the efforts of Harel and al. [17] apply temporal logic
on LSC [5], an extension of sequence diagrams with mandatory/optional behaviour.
The latter embeds a subset of LSC into temporal logic. The result is an operational
framework for timed specifications.

Metropolis [29] comprises a framework for pure scheduling and allows to express
deadlines, execution times, scheduling policies, etc.

At the semantic level, different variants of timed automata [1] are used with success
to model time related features in verification tools for an expressive set of real time
properties. KRONOS[35], UPPAAL [22] or Hytech [18] are the most significant tools of
this family.

Many other approaches dealing withtemporal aspects on UML, deal in fact with
(partial)orders of events. This is the case for instance of the OCL extensions for spec-
ifying timing constraints [8]. Here, OCL is extended withtemporal operators for rea-
soning on possible ordering of events.

3 Framework for the definition of timed models

This section gives a brief overview of the constructs an notations introduced in our
profile. The main ingredients are: time related typestime andduration and a notion of
timer as it exists in real-time programming languages. We refine the notion oftimed
event as it is defined in UML RT and provide a syntax for defining events associated
with any state change in the semantic model, we define also an expressive set of duration
expressions and introduce concepts for scheduling and schedulability analysis.

3.1 Time related types, time monitoring mechanisms and time progress model

The proposed profile uses a small set of time related primitives, which are defined with
the concern of being compatible with UML RT. The time model is based on two data
types:Time - corresponds to time instances, andDuration - corresponds to the time
elapsed between two instances of time. A particular expression of type time isnow,
which always holds thecurrent time. Now can be used in action specifications, guards,
as actual parameters of signals and operations, in constraints, etc.

Nevertheless, the model cannot explicitly alter the value ofnow which is provided
by some external mechanism, representing “physical time” and satisfying the constraint
that values ofnow increase. Moreover, in any infinite computation the value ofnow
must grow over all bounds (absence of Zeno behaviours). Finally, we suppose that time
progress is fair with respect to system progress, that means that whenever, a system
transition is enabled “forever” (without time-limit), it will be taken at some point of
time. Notice, that an important feature of our model is that enabled transitions arenot
necessarily taken at theearliest point of time at which they are enabled, as this is the
case in many existing modeling frameworks based on a “synchrony hypothesis”. Our
choice leads on one hand to more realistic time models, but it makes mandatory the
addition of hypotheses on maximal time progress in system states.
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As in UML RT and in many formalisms for real-time software development, we
define two related timing mechanisms with the same set of actions and attributes:timer
andclock. Timer is a mechanism that generates atimeout when a specified duration time
elapsed. There are two versions of a timer, one wheretimeout corresponds to sending an
asynchronous signal, which can immediately or later be used for triggering an action,
and one, in whichtimeout corresponds to acall, which can be “canceled” when areset
action is issued after the timeout time has been reached, but before the timeout has been
consumed.

This time model has a unique global reference time which is external.Local time
can be handled by means of local timers and clocks, for which a maximaldrift and/or
offset with respect to global time can be defined, as in UML RT.

3.2 Timed events

The aim of our approach is to express constraints on the duration between occurrences
of events. Thus, the notion ofevent, defining a point of time - the point of time at which
the eventoccurs, plays a crucial role in our approach. We have identified a number of
“event kinds” allowing to identify all changes of the system state. For instance, in a
signal exchange, three events can be identified:

– thesend event, defining the moment at which the signal is sent by the sender,
– the receivesignal event, defining the moment at which it is received in the input

queue of its target,
– and theacceptsignal event, defining the moment at which the signal is processed

(this corresponds to the implicit discarding of the signal or to the instant at which a
transition is triggered by the signal)

Notice that in some cases, some of the events may coincide. E.g. in the case of
a run-to-completion semantics, the eventsreceivesignal andacceptsignal of a signal
exchange between two objects of the same activity group, may coincide, and when
there is no transmission delay between the sender and the receiver, then the eventssend
andreceivesignal may coincide.

List of event kinds We have identified for each syntactic construct some associated
event kinds. These event kinds should allow to capture all meaningful state changes in
the underlying semantic model (which is a transition system defining a set of state/event
sequences):

1. With a signal transmission, are associated three events:send, receivesignal , and
acceptsignal explained above.

2. With anoperation call are associated six events:
invoke - the emission of the call request by the caller,
receive - the reception of the call by the callee,
accept - the start of the actual processing of the call by the callee,
invokereturn - the emission of the “return” response by the callee,
receivereturn - the reception of the “return” by the caller, and
acceptreturn - the consumption of the return.
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3. With anaction specification are associated two events:
start - the moment at which the action execution starts,
end - the moment at which the action execution ends,startend - the moment at
which the action is executed - shorthand defined in the case of instantaneous ac-
tions.

4. with atimer are associated two events:
occur - the moment at which the expiration time is reached, and
timeout - the moment at which the timeout triggers a transition
Other important moments are the events corresponding to the execution of the in-
stantaneous actionsset andreset.

5. With astate machine transition are associated two events:
starttransition - the moment at which the transition execution starts, and
endtransition - the moment at which the transition execution ends. Again, in the
case of instantaneous transitions, we define a shorthand
startendtransition - the moment at which the transition is executed.

6. With astate machine state are associated two events:
enter - the moment at which the state is entered, and
exit - the moment at which the state is left.

7. With anobject are associated two events:
create - the moment at which the object is created, and
delete - the moment at which the object is deleted from the system.

8. With anyBoolean expression may be associated achange event - corresponding to
the moment at which its value changes.

Notice that even a fully specified event can have several occurrences throughout the
lifetime of a system. Just as any attribute has a “current value” at any time, an event has
a currentoccurrence, which we choose to be themost recent occurrence of this event.
That means that at any point of time the “current”occurrence time of an event is the
occurrence time of the most recent occurrence of this event, whose value is undefined
before its first occurrence.

In order to reason about histories of occurrences of events, we define event expres-
sions of the formpre(event) - naming the second last occurrence ofevent - pre(pre(event)),
etc. This allows to reason on the occurrence times of any finite history of occurrences
of events, which is sufficient in most cases.

Event definition and identification The event types listed above are used in time an-
notations. Notice that not all events can be identified syntactically in the UML specifica-
tion. For example, amongst the events associated with a signal exchange, only thesend
event and theacceptsignal event, under the condition that it corresponds effectively
to a transition trigger (and not to an implicit discard), can be syntactically identified,
whereas thereceivesignal event corresponding to the instant at which the signal reaches
the receivers input queue can not be syntactically captured. Therefore, we need a syntac-
tic mechanism to specify events. In our setting, events are defined as attributes of some
event type which is a UML class stereotyped with�TimedEvent� Events are eitherlo-
cal to a class, orglobal to the model.Local events are defined as attributes of some class
present in the model. This class defines the context for the event instance.Global events
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Display

x : Integer

show(p : Integer) : Integer
updateInfo() : Integer

Engine

i : Integer

start()
11

+screen

1

+owner

1

Fig. 1.UML class diagram for the example

are defined as attributes of a special class, stereotyped�TimeAnnotations�. This class
is never instantiated and is not part of the functional specification of the model. We only
add it to gather global model information needed for the definition of time constraints.

An event type defines a pattern for recognizing event occurrences. Anevent type
definition may include localattributes storing information on the system state at event
occurrence time. It contains amatching clause describing thekind of event (as provided
by the list in the previous section) and someevent parameters - specific to its kind (e.g.
for a send event the signal that is sent, the target, etc.). Afilter condition over the event
parameters allows to refine the specification of the event type, while anaction statement
specifies a simple action to be executed when the matching clause and its filter condition
are satisfied. The most common example of action statement in an event definition is
the assignment of the event type attributes with some values extracted from the global
system state.

In any execution, each event defines a possibly empty sequence of actualevent
occurrences. Each event occurrence satisfies the pattern and conditions imposed by the
event type definition. As the system evolves, the values of the attributes - including the
occurrence time - of an event instance may vary with every occurrence of the event.

Event syntax We give an example of an UML model containing an event specification,
using the syntax of our setting. For the complete syntax for all event kinds, the interested
reader is referred to [13]. Our goal is here just to illustrate how event types and event
declarations are integrated within a UML model.

Consider a very simple UML model for an engine showing some information on
some display device. After performing the modeling we obtained the UML class dia-
gram described in Figure 1. The blueprints for this model contain the following time
constraint:

Between the moment the engine starts to show data on its display and the moment
the same engine updates the information on the display less than 10 time units pass, if
the data on the engine (attribute i) increases exactly with 7 units.

This constraint cannot be captured by the regular UML model, instead it will be
expressed as a time annotation. For this, we have to define the event types corresponding
to the moments described in the time constraint. Figure 2 contains the definition of the
event types obtained from the time constraint.EvTIR captures the moment the Engine
starts to show information on its display. The match statement specifies the kind of
event we have (invoke) and its parameters (caller, callee, operation), ensures that we are
talking about the right display and stores the local information of the engine. The event
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EvTIR

local : Integer
k : Integer
a : Engine
d : Display

<<TimedEvent>>

EvTIR2

local : Integer
a : Engine
d : Display

<<TimedEvent>>

match invoke Display::show(k) by a on d
when a.screen = d
do local := a.i

match invoke Display::updateInfo() by a on d
when a.screen = d
do local := a.i

Fig. 2. Event type definitions

Engine

i : Integer

start()

Display

x : Integer

show(p : Integer) : Integer
updateInfo() : Integer

1 1

+owner

1

+screen

1

timeevents {
  ev1 : EvTIR;
  ev2 : EvTIR2;
}

Fig. 3.Updated UML class diagram for the example

typeEvTIR2 is defined similarly. As the evaluations described in the time constraint are
done in the context of the engine, we add event instances, corresponding to the event
types we just defined, in the context of the engine. This leads us to the updated class
diagram described by Figure 3.

In the next section we describe how the durations are evaluated, which allow us to
finalize the modeling of this example.

3.3 Durations

The main objective of time annotations are the definition of constraints ondurations be-
tween occurrences of events. In this section, we describe the concepts for the definition
of durations offered by our framework.

One of the main challenges in this context is to find a suitable mechanism for identi-
fying event occurrences corresponding to a “matching event occurrence pair”, defining
a duration (or time distance). Intuitively speaking, in almost all cases, the matching
pairs consist in “causally related” events. Nevertheless, this causal relationship can not
always be identified syntactically.

A possible mechanism (proposed in some frameworks) consists in indexing all oc-
currences of events and to define the durations between occurrences of events with
indexes satisfying some relationship. E.g., the “duration between thei th invoke and the
ith acceptreturn of some operation invoked by a particular object” (defining a response
time for the operation under consideration). While this kind of duration definition may
be useful in some situations, it is clearly not appropriate in many cases, where no rela-
tionship exists between the causal relationship of events occurrences and their index.
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We propose two different mechanisms for the identification of matching event oc-
currence pair defining a duration.

(1) The first one consists in a duration expression of the formduration (event1,event2),
in which always themost recent occurrences of the two involved event instances
are matched. The powerful filtering mechanism possible in event definitions makes
this mechanism quite expressive. Moreover, we increase the expressivity by allow-
ing an additionalfilter condition on the event pair (similar to the event type filter
conditions attached to the matching clauses described in the previous section) in
terms of the event attributes (representing the history variables necessary for timed
verification).

Some interesting types of matching event occurrence pairs can not be identified by
the mechanism defined above. A typical example are causally related events in different
objects which communicate through fifo buffers. Still, in many cases, the functional
model itself includes an appropriate identification mechanism. For example, in a sliding
window protocol, an explicit “sequence number” allows to identify causally related
“send” and “acceptsignal” events. In this case, the mechanism above can be used by
requiring a matching pair of event occurrences to carry the same sequence number.

Nevertheless, in cases where the functional model relies on the fifo communication
mechanism, such an explicit identification of matching events might not be possible. In
order to avoid the “pollution” of the software model with information only needed for
timed validation, we need a more powerful concept for defining durations.

(2) In the present proposal, we just propose two more temporal patterns which we
found useful in practice:
� in order to deal with events matching in a pipelined fashion as in the example

above, we introduce an explicit notation for apipelined duration (p-duration ).
� another useful pattern is the duration between thefirst of a sequence of oc-

currences of anevent1 and thefirst consecutiveoccurrence of anevent2, for
which we introduce a notationf-duration . A typical example is when event
event1 corresponds to a request - which might be repeated a number of times
due to message loss - andevent2 corresponds to the occurrence of the desired
effect, which should happen within a limited time starting from the first time a
request has issued.

Example.
In the previous section example, we started the modelling of a time constraint that

comes on the top of a non-time aware UML model. We added all the ingredients needed
in order to capture the time constraint: event types (Figure 2), the event instance (present
in the updated class diagram from Figure 3). The next thing to do is to define the time
constraint corresponding to the specification given in plain text. The constraint is a sim-
ple duration expression on the event instances added, filtered by the specified condition.
In our framework, the concrete syntax for this example is:

timeconstraints{ C1: duration (ev1, ev2)<=10
when ev2.local = 7+ ev1.local;

}
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3.4 Predefined durations

The duration concepts defined in the previous section based on the explicit identifi-
cation of events are powerful enough for the expression of most time constraints and
allow a strict separation of functional design and time related specification. Neverthe-
less the explicit definition of all the events occurring in some constraint as well as the
corresponding event type, can quickly become cumbersome. Moreover, typical time
constraints correspond to relatively small set of patterns.

In order to simplify as much as possible the task of defining time constraints, we
add explicitly notations for a number of duration patterns frequently used in practice.
These patterns can be expressed in terms of basic events and durations defined in the
previous section. Presently, we have identified only a small number of such patterns,
listed hereafter, but more of them will be added depending on the needs identified by
users:

– A ClientResponseTime associated with someoperation in a given context (which
might be restricted to subset of actual operation calls by amatching condition) cor-
responds the overall duration of a call, that is to the time elapsed between the occur-
rence of theinvoke event associated with an operation call satisfying the mathing
condition and the correspondingacceptreturn event.

– A ServerResponseTime associated with anoperation (and possible restrictions as
above) corresponds to the time needed by the callee to handle the call, that is time
elapsed between the occurrence of theaccept event and the correspondinginvok-
ereturn event, that is the time.

– The ExecutionDelay associated with anaction or a transition corresponds to the
time between correspondingstart andend events,

– Whereas theExecutionTime associated with anaction or a transition is useful in
the context of scheduling analysis and defines only the accumulated duration dur-
ing which the corresponding object (or activity group) is not suspended (due to
execution of tasks of objects with higher priority)

– ThePeriod associated with anyevent corresponds to the inter-occurrence time be-
tween any two consecutive occurrences of this event. In case that the event corre-
sponds to areceive event, this duration corresponds to an inter-arrival time.

– A Reactivity can be associated with anoperation call or asignal (possibly restricted
to a class or object), and it defines the time elapsed between areceive event and the
correspondingaccept event.

– A TransmissionDelay is associated with acommunication path, and defines the
transmission delay of signals and/or calls, that is the time elapsed between asend
and a correspondingreceive event.

An interesting point of these patterns is that the constrained events need not to be
explicitly defined by the user1, but can be implicitly defined by the verification tool.

For instance, when the user defines a constraint of the form

ExecutionDelay�some-action�� 5

1 the only exception is period, which has an event as argument
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the system behaves as if there would be two event type definitions: one for the start
and one for the end of the action, each one with the filter condition identifying “some-
action”, two event instance definitions (one for each event type), and a duration expres-
sion between the two event instances.

3.5 Time constraints

As already mentioned, the definition of time constraints is the main objective of our
framework. Time constraints are boolean combinations of basic time constraints which
are comparisons between 2 expressions of type duration. These time constraints can be
used in the model as predicates in transition guards or in decisions. And they can also
be used to express invariance properties of the system.

Predicates defininginvariants of the system can play two different roles:

– they may represent properties characterizing the model (that is they are assumptions
on the environment or the underlying execution platform),

– or properties which can be derived from the model and which should be verified.

We distinguish these two kinds of constraints by means of explicit keywords.

3.6 Scheduling issues

In order to enable scheduling and schedulability analysis, some additional concepts are
needed, but we haven’t worked out yet a concrete syntax for them.

As specified in in Section 3.4, we distinguish already betweenexecution delay and
execution time of actions or transitions, where the first one refers to the time elapsing
between the start time end the end time of an action and the second one refers to pure
execution time, which is obtained by integrating over all the durations in which the
object was in the “executing” state.

In order this distinction to make sense we need to distinguish distributed and re-
source sharing parallelism between active objects, as this determines which execution
times add up and which ones don’t. For this purpose, we allow the identification of
resources (which might be dynamically created during the lifetime of the system, and
where we distinguish between preemptible and non preemptible ones). The definition
of the mapping from actions to resources, defining the set of resources needed for each
action, is defined by means of particular actions which allow to dynamically add and
eliminate resources from the set of needed resources.

Schedulers and scheduling policies are defined by dynamic priority orders between
trigger events or objects. An important point for mastering the complexity is that prior-
ity orders are defined hierarchically, following the architectural structure of the specifi-
cation.

4 Semantics of the timed annotations

In this Section we provide a sketch of the principle of the semantics of the time related
concepts introduced in Section 3. This semantics is defined in terms of a dynamically
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evolving set of timed automata synchronizing on the occurrence of events, which de-
fine a set of possible occurrence times of all events defined by the functional model
and which constrain the occurrence times of events according to the set of duration
constraints defined in the model.

4.1 Timed automata with urgency

We use the model of timed automata with urgency [3]. For each timed automata is
defined a set ofclocks, which are in fact time counters. In states, the values of time
counters increase at the same rate with some externally defined abstract notion of time
and transitions are taken at time instances as allowed by theirguard, defined by a pred-
icate on the values of clocks. In transitions, some clocks may be reset to zero. Each
transition has aguard (which may betrue) and anurgency which may take one of the
valueslazy, delayable or eager. The guard defines the set of time points at which the
transitioncan be taken, whereas its urgency defines when the transitionmust be taken:

– a lazy transition may be taken within its enabledness interval, but time may progress
and disable the transition

– aneager transition must be taken at the earliest point of time at which it is enabled;
that means eager transition ensure maximal progress

– a delayable transition which is enabled at some point of time may not be disabled
just by the fact that time progresses

Finally, an execution of a timed automata is a sequence of transitions (where in our case,
transitions representevents) where for each transition an occurrence time is defined in
terms of a valuation of its clock. If there exists a clock which is never reset, it can be
used to define an occurrence time satisfying the criteria of monotonicity defined earlier.

Thus, timed automata are used to define the occurrence time ofevents, whereas the
dynamic semantics of the untimed model defines only the possible ordering of events.
The only requirement we impose on the untimed semantics is that it allows to identify
all the events on which constraints are defined.

We have considered two different formal UML semantics: one based on labeled
transition systems [30] and one [25] defined in terms of abstract state machines [15]. In
both of them, all the events defined in the previous section can be identified, although
they were developed with no timing capabilities in mind. Thus it is possible to define
time extensions for both of them, using the approach described here. Although the two
semantics differ2, both of them can be timed so that we can reason about e.g. the
duration of an operation call or the execution time of an action.

4.2 Semantics in terms of timed automata

In order to define the the semantics of a time extended model, we need to define how
events, timers, time constraints and resource mappings are expressed in terms of timed
automata.
2 For example, the concurrency model is different: while [30] considers that an active class has

a single execution thread, in [25] an active class may do several things at a time, a new thread
being created for each accepted operation call.
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The timed automaton associated with each timer is relatively straightforward.

Each event is represented by a timed automaton synchronizing with all occurrences
of the corresponding event in the functional model and updating the event memory. The
amount of history that need to be stored depends on the kind of durations for which
constraints are defined.

The semantics of a duration constraint is defined either by a single timed automaton
or by a dynamically evolving set of timed automata, depending on the type of duration
which is constraint:

– in the case of an expressionduration(e1,e2) or f-duration(e1,e2) without additional
filtering condition on the event pair - where at any time there exists at most onee1
event which occurred in the past and might match some futuree2 event - a unique
timed automaton is needed for each constraint.

– in the case of a constraint onp-duration(e1,e2) or durations with matching con-
ditions on pairs, at any point of time there may be severale1 events, which have
occurred in the past and for which a matchinge2 event may occur in the future.
Here, a timed automaton needs to be created foreach occurrence of an e1 event
and which can be deleted at the occurrence of the correspondinge2 event.

The exact nature of the timed automata with constraints on the different types of dura-
tions can be found in a technical document [13]. An interesting point is the distinction
of constraints expressing properties and constraints expressing assumptions. In timed
automata expressing properties all the transitions are lazy as the occurrence time of the
constrained events should be guaranteed by the rest of the model. On the other hand,
timed automata expressing assumptions must impose time constraints on the model; for
this they use delayable transitions forcing the constrained event to occur in a specified
interval.

4.3 Some remarks concerning implementation

The semantics as sketched above is constructive, that means it can be directly imple-
mented and used for simulation purposes. Obviously, such a naive implementation will
be very inefficient and produce an infinite model, even if the underlying functional
model is finite state. In the tool described in [26], we define a more efficient implemen-
tation, exploiting knowledge on the structure of the system. In this tool, the functional
semantics of the model is defined in the IF format [10] as a dynamically evolving set of
communicating state machines. For example,

– whenever a duration constraint is local to some state machine - meaning that both
events correspond to transitions in the same state machine - they are sequential,
and a more efficient implementation can be achieved, by just extending the state
machine implementing the functional behaviour with a clock measuring the du-
ration which is set at the occurrence of the first event and which is reset at the
corresponding occurrence of the second event.
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– static analysis can be used to detect “dead” duration constraints, corresponding to
constraints where the first event has occurred, but the corresponding second event
will never occur. In this case the corresponding clock (the local case) can be elimi-
nated.

– the fact that all constraints express constraints on duration only, there is no need
to consider the global time (represented in the model bynow) in the model which
eliminates one source of infiniteness of the model.

5 Conclusions

In this paper we describe an approach for adding time information to UML models,
based on the definition of a framework for timed annotations. This framework is com-
patible with theUML Real-Time profile for Performance Scheduling and Real-Time in
the sense that it is based on some of the concepts defined by this profile.

The main added value of our work is that we clearly identify the set of time concepts
to be used together, and we give a formal semantics of a UML model containing such
time concepts. Our set of primitives is intended to be used in the context of time and
scheduling analysis.

Our framework is based on the intensive use of events. We identify the set of events
that are needed in time annotations and that can be identified in most operational un-
timed semantics of UML (we have considered [30] and [25]). Through a concrete syn-
tax, these events can be used in time annotations, on the form of constraints on duration
expressions.

We define the semantics of our framework in terms of timed automata with urgency
that use the identified events. The timed semantics of a UML model is built on the top
of the untimed semantics. We consider important while defining a semantics for timed
UML models not only to treat the timed part, but also to integrate it in properly with
the rest of UML concepts: inheritance, association, data structure etc. Nevertheless, the
current practice is rather oriented towards focusing on small parts of UML, and less on
their integration with the whole UML definition.

Using the toolset based on this approach [26], we have successfully applied our
profile on small UML models, and we intend to apply it on more realistic case studies
in the framework of the OMEGA IST project.
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