
Robust Satisfaction of Temporal Logic
over Real-Valued Signals

Alexandre Donzé and Oded Maler

CNRS-Verimag, 2 Av. de Vignate, 38610 Gières, France
@imag.fr

Abstract. We consider temporal logic formulae specifying constraints in contin-
uous time and space on the behaviors of continuous and hybrid dynamical system
admitting uncertain parameters. We present several variants of robustness mea-
sures that indicate how far a given trajectory stands, in space and time, from sat-
isfying or violating a property. We present a method to compute these robustness
measures as well as their sensitivity to the parameters of the system or parameters
appearing in the formula. Combined with an appropriate strategy for exploring
the parameter space, this technique can be used to guide simulation-based ver-
ification of complex nonlinear and hybrid systems against temporal properties.
Our methodology can be used for other non-traditional applications of temporal
logic such as characterizing subsets of the parameter space for which a system is
guaranteed to satisfy a formula with a desired robustness degree.

1 Introduction

Analyzing the behavior of complex hybrid and nonlinear systems admitting uncertain
parameters and inputs is an important ingredient in the design of control systems and
analog circuits as well as in studying biochemical reactions. The adaptation of veri-
fication techniques to this domain proceeds along different threads, two of which are
combined in the present paper. Property checking, also known as monitoring or run-
time verification, uses temporal formulae to express desired behaviors and then checks
whether individual system behaviors satisfy them, without worrying whether the set
of behaviors checked covers the reachable state space. Simulation-based verification
attempts to guide the generation of traces so as to demonstrate the satisfaction or viola-
tion of a property based on finitely many of them. In [8] we developed an algorithm that
verifies this way safety properties of high-dimensional nonlinear systems. In this work
we extend this technique to arbitrary properties expressed in a suitable temporal logic,
for which we have devised a monitoring procedure [15]. The approach of [8] is strongly
based on sensitivity, which in a nutshell, is the derivative of one continuous quantity
with respect to another. To apply this concept to temporal formulae, we need to “con-
tinualize” their semantics by making it real-valued, to extend the monitoring procedure
to compute this semantics efficiently for a given trace and compute the sensitivity of
this semantics to parameters. This is what we do in the present paper after giving some
background and motivation.

The introduction by Amir Pnueli [20] of linear-time temporal logic (LTL) into sys-
tems design as a formalism for specifying desirable and acceptable behaviors of reactive

systems is recognized as an important turning point in verification, putting the ongoing
sequential behavior of a system at the center stage of the verification process. The ver-
ification framework developed over the years by Manna and Pnueli [18] consisted of
three major components:

1. A system description formalism, specifying a behavior-generating mechanism S;
2. A property specification formalism, describing sets of acceptable behaviors, those

that satisfy a formula ϕ;
3. A verification methodology for checking whether all behaviors of S satisfy ϕ.

In addition to verification where one checks whether all system behaviors satisfy
ϕ, LTL is also used for lightweight verification (monitoring, runtime verification [5])
where the satisfaction of a formula by one or more individual behaviors is checked.
For both uses, monitoring and verification alike, we point out three fundamental fea-
tures of this framework, the first two related to the nature of the systems and behaviors
considered while the third is related to the very notion of property and logical truth.

1. Discrete qualitative time: behaviors are defined as sequences of states or events,
which are often interpreted in a purely qualitative manner, that is, without consid-
ering the metric distance between subsequent time instances;

2. Discrete state space: the sequences are defined over discrete and often finite do-
mains emphasizing control rather than data;

3. Yes/No answer: the satisfaction of a temporal formula by a behavior is considered
as membership in a set, with no quantitative degree of satisfaction.1

The first two features are natural for all sorts of transition system models expressed in
various syntactic forms. Logically speaking, they imply the use of discrete-time and
typically propositional temporal logic. The third feature often goes without saying. In
the past two decades various attempts have been made to extend this methodology to-
ward more refined models of systems and behaviors, going from discrete to timed and
then to hybrid (discrete-continuous) systems. Such extensions involve departures from
each of the above features.

The first departure consists in replacing the discrete time domain by the dense and
metric domain R. Behaviors of this type are generated by timed system models such
as timed automata [1] and similar formalisms that can express the durations of dis-
crete processes. Natural extensions of LTL to handle dense time are logics such as
MTL [14] or MITL [2] which can express requirements concerning the time elapsing
between events. Timed behaviors can be viewed as either Boolean signals, which are
functions from the real time axis to Bn, or as timed words consisting of instantaneous
events, taken from some alphabet, separated by real time durations, see [4]. The sec-
ond departure, motivated by the application of verification and monitoring techniques
to continuous and hybrid systems, consists of letting predicates over the reals, such as

1 In a probabilistic setting one assigns probabilities to the satisfaction of a formula but this is
done with respect to a set of behaviors, while the satisfaction by individual behaviors remains
Boolean.

inequalities, play the role of atomic propositions2 and thus specify properties of real-
valued signals. In [15] the logic STL (signal temporal logic) which combines the dense
time modalities of MITL with such numerical predicates has been introduced, along
with a monitoring tool [17, 19] for deciding satisfaction of such properties by time-
stamped traces produced by numerical simulators.

However, the third premise of a yes/no answer is not fully compatible with quan-
titative entities in the continuous domain where real-valued distance functions play an
important role. As an illustration, consider the inequality x ≤ c. Boolean satisfaction
does not make a difference between x = c+ε and x >> c as both cases are classified as
violating the property. Likewise, one cannot distinguish between marginal satisfaction
by x = c − ε and a more robust satisfaction by x << c. The same criticism applies to
satisfaction of timing constraints: a requirement that some event occurs within t time
can be violated by its occurrence at t+ ε, at t′ >> t as well as by its complete absence,
and a yes/no answer cannot tell the difference.

These issues are extremely important in the continuous setting because such sys-
tems are subject to noise and numerical errors, not to mention the inherent approxima-
tive character of mathematical models of natural phenomena. Consequently, parameters
appearing in system descriptions such as differential equations, as well as in formulae,
are often a result of guessing and estimation and should not be regarded as representing
universal constants. Thus if a property is violated in a marginal way as in x = c + ε,
satisfaction can still be achieved by slight modifications in the property, in the behavior
or in the parameters of the generating system. In fact, the use of temporal logic in a
scientific context, as in systems biology is methodologically different from its use in
the engineering context of system design. In biology, it is often the case that the role
of the temporal formula is to provide a succinct abstract model of the observed be-
havior of a complex network of chemical reactions [10, 3]. The question there is not
whether the system model satisfies a given specification but rather to find a formula,
as semantically-tight as possible, compatible with the system model or with a set of
observed behaviors. In such a model-search process it is important to know how close
we are to a satisfactory model and which parameters should be changed (and in which
direction) in order to approach it.

These observations have led several researchers to look more closely at the notion of
robust satisfiability by continuous signals of properties expressed in STL or similar for-
malisms [11, 22, 23].3 Fainekos and Pappas [11] define the notion of robustness degree
as a real number associated with a property-behavior pair, based on, roughly speaking,
the distance between the behavior and the (boundary of) the set of all behaviors that sat-
isfy the property. This measure is more positive when the behavior is deeper inside the
set of satisfying behaviors and more negative the further is the behavior outside that set.
Hence it satisfies a natural notion of soundness of such a robustness measure, namely,

2 Such predicates are used, of course, also in more conventional applications of temporal logic
to programs with numerical variables and also in similar logics introduced and used in biology
[3, 10]. All such logics are quantifier-free fragments of first-order temporal logic.

3 The study of robust satisfaction and, more generally, of multi-valued and quantitative inter-
pretation of logical formalisms is, of course, very old. We focus on works relevant to our
motivation, sensitive monitoring of continuous signals.

being positive for signals that satisfy the property and negative for violating signals.
They propose an inductive procedure for computing the robustness degree, as well as a
recent tool [12]. Their approach is behavior oriented, indicating how much should the
signal be modified in order to satisfy or violate the property.

The measures introduced by Rizk et al. [22, 23] are more property oriented and in-
tend to assess how far a given formula, written in some variant of LTL4 augmented with
numerical predicates, is from being an adequate description of a given simulation trace.
Their real-valued degree of satisfaction is obtained first by replacing all constants in
the formula by parameters and hence viewing all formulae admitting the same form as
points in an Euclidean parameter space. They compute the set of all points that corre-
spond to formulae satisfied by a given trace (or set of traces) and define a real-valued
satisfaction/violation degree based on the distance between the original formula and
the set of satisfied formulae. They use this measure to guide a search in the parameter
space. Their approach has been integrated into the BIOCHAM tool [6] and has been
applied to numerous biological examples.

In this paper we extend these works in several directions. First we propose an alter-
native quantitative semantics for MITL/STL which focuses on the robustness of satis-
faction with respect to time. We then show how these two robustness measures can be
combined into a generalized robustness measure which captures both space and time,
from which both the space robustness of [11] and our time robustness are obtained as
special cases. Then we present an efficient dense-time algorithm for computing these
measures for piecewise-linear signals. Finally we extend the algorithm to compute the
sensitivity of these measures with respect to parameter variations thus paving the way
for the extension of sensitivity-based parameter-space exploration methodology of [7]
to handle STL formulae.

2 Logics for Real-Valued Signals

In this section, we partly and briefly recall the framework set in [15, 17] to define an
appropriate logic for real-valued continuous time signals. In the rest of the paper, we
implicitly assume the existence of a system under study whose state is described by a
set of n variables V = {x1, x2, . . . , xn}. The domain of valuation of V is denoted by
D = D1×D2× . . .×Dn. The domain R is the set of real numbers, B = {true, false} is
the Boolean domain and the time set is T = R≥0. As a preparation for the real-valued
semantics we will view B as {−1,+1} rather than {0, 1}. Disjunction and conjunc-
tion are realized as max and min and negation as minus. This way the passage to
the quantitative semantics of [11] will be immediate. A trace (or signal or behavior)
w describing an evolution of the system is a function from T to D. We define a set
P = {p1, p2, . . . , pn} of projectors, so that for a given trace w, pi(w[t]) = xi[t] for all
t. If the context is not ambiguous, we write pi[t] instead of pi(w[t]).

4 Their treatment of time, interpreting the next operator as referring to the next integration step,
is too implementation-dependent to serve as a solid basis for defining time robustness.

2.1 Metric Interval Temporal Logic (MITL)

We first consider continuous-time Boolean signals, i.e., when D = Bn. A popular logic
to characterize such timed behaviors is the Metric Interval Temporal Logic (MITL) [2]
whose grammar is given by:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2 (1)

where ϕ, ϕ1 and ϕ2 are MITL formulae, p ∈ P = {p1, p2, . . . , pn} and I is an interval
of the form I = (i1, i2), (i1, i2], [i1, i2) or [i1, i2], where i1 < i2 are in T. For t in T,
t + I is the set {t + t′ | t′ ∈ I}. Traditionally the satisfaction of an MITL formula ϕ
by a trace w at time t is denoted by (w, t) � ϕ. We will use instead the characteristic
function χ(ϕ,w, t) which is 1 when (w, t) � ϕ and −1 otherwise.

Definition 1 (Semantics). The characteristic function of an MITL formula relative to
a trace w at time t is defined inductively as

χ(p, w, t) = p[t] (2)
χ(¬ϕ,w, t) = −χ(ϕ,w, t) (3)

χ(ϕ1 ∧ ϕ2, w, t) = min(χ(ϕ1, w, t), χ(ϕ2, w, t)) (4)
χ(ϕ1 UI ϕ2, w, t) = max

t′∈t+I
min(χ(ϕ2, w, t

′), min
t′′∈[t,t′]

χ(ϕ1, w, t
′′)) (5)

Note again that the semantics of until is equivalent to the more familiar notation:

(w, t) � ϕ1 UI ϕ2 ⇔ ∃t′ ∈ t+ I s.t. (w, t′) � ϕ2 and ∀t′′ ∈ [t, t′], (w, t′′) � ϕ1

where dense Boolean operations are replaced by dense min and max. From the ba-
sic operators of MITL, other standard operators can be defined such as eventually and
always: ♦Iϕ , true UI ϕ, �Iϕ , ¬♦I¬ϕ.

2.2 Signal Temporal Logic (STL)

Signal temporal logic (STL) [15] allows one to apply MITL-like reasoning to traces
over D = Rn. The connection is done via a finite set M = {µ1, . . . , µk} of predicates
(Booleanizers), each mapping Rn to B. For a given 1 ≤ j ≤ k, the predicate µj is of
the form µj ≡ fj(x1, x2, . . . , xn) ≥ 0 where fj is some real-valued function.

Definition 2. We call xi the primary signals of w and call their images by fj secondary
signals that we denote by {y1, . . . , yk}.

The syntax is thus identical to MITL except for the predicates inM replacing the atomic
propositions in P . The semantics is identical to that of Definition 1 except for the base
case (we interpret sign(0) as 1):

χ(µ,w, t) = sign(f(x1[t], . . . , xn[t])) (6)

Figure 1 illustrates the semantics of the STL formulae♦[1,2](x1 +2x2−2 ≥ 0) relative
to a two-dimensional real-valued signal. The methodology developed in [15, 17] for

deciding satisfaction of an STL formula ϕ by a real-valued signal is based on assigning
to each sub-formula ψ of ϕ a satisfaction signal, that is a Boolean signal whose value
at t is equal to χ(ψ,w, t). The computation goes bottom up (and backwards, for the
future fragment of the logic) starting from the primary signals from which the secondary
signals and their Booleanizations are computed, and then climbing up the parse tree
of ϕ until the satisfaction signal of the top formula is computed. This procedure is
similar in spirit to the novel translation from MITL to timed automata [16] based on the
compositional principles of temporal testers initiated in [13, 21] where each formula
is associated with a transducer which computes the satisfaction signal of the formula
based on those of its sub-formulae. In Section 4 we present a monitoring procedure for
the quantitative semantics. With the flexibility of the definition of STL we can express

0 1 2 3 4 5 6 7 8
-2

-1

0

1

2

0 1 2 3 4 5 6 7 8

-2

-1

0

1

2

0 1 2 3 4 5 6 7 8

-2

-1

0

1

2

Fig. 1. A two-dimensional real-valued signal w and the time evolution of χ(ϕ,w, t) and
ρ(ϕ,w, t) for ϕ , ♦[1,2](x1 + 2x2 − 2 ≥ 0). (a) the primary signals x1, x2 and the sec-
ondary signal y = x1 + 2x2 − 2; (b) the truth value and spatial robustness of the sub-formula
corresponding to y ≥ 0; (c) the truth value and spatial robustness of ♦[1,2]y ≥ 0 (notice the
smoothing effect of the non-punctual eventually operator).

a rich collection of relevant temporal properties for continuous signals. However, it has
two drawbacks: first, the values of the primary and secondary signals at different time
instances cannot “communicate” before being Booleanized and then handled by the
temporal operators. This limitation can be alleviated by letting predicates use also the

shift operator (which is a punctual version of ♦). Although our implementation allows
this feature we will assume here only simple point-wise predicates in order to focus on
the second drawback mentioned in the introduction: the loss of quantitative information
due to Booleanization. In the next section, we propose several quantitative semantics
for STL reflecting the robustness, in space and time, of satisfaction or violation.

3 Quantitative Semantics

The first quantitative measure of satisfaction that we present is a simple reformulation
of the spatial robustness degree of [11], after which we proceed to a novel measure
of temporal robustness and finally to a generalized measure that combines both. The
definitions of all these measures are identical to Definition 1 except for the base cases.

3.1 Space Robustness

Definition 3 (Space Robustness). The space robustness of an STL formula relative to
a trace w at time t, denoted by ρ(ϕ,w, t), is defined inductively as

ρ(µ,w, t) = f(x1[t], . . . , xn[t]) where µ ≡ f(x1, . . . , xn) ≥ 0
ρ(¬ϕ,w, t) = −ρ(ϕ,w, t)

ρ(ϕ1 ∧ ϕ2, w, t) = min(ρ(ϕ1, w, t), ρ(ϕ2, w, t))

ρ(ϕ1 UI ϕ2, w, t) = max
t′∈t+I

(
min(ρ(ϕ2, w, t

′), min
t′′∈[t,t′)

ρ(ϕ1, w, t
′′)

)
It is not hard to see that the definition above is sound in the sense of [11]: χ(ϕ,w, t) =
sign(ρ(ϕ,w, t)). Figure 1 illustrates the behavior of this measure. Note that taking the
min or max of a signal over a temporal window is an alternative way (compared to
averaging) of “smoothing” it. In Section 4 we will present an efficient algorithm for
computing this semantics on piecewise-linear signals, the natural interpretation of the
output of numerical simulators. This measure captures the robustness of the satisfaction
to noise in w. Let the point-wise distance between two finite signals of the same length
be ||y − y′|| = maxt |y[t] − y′[t]|. The following is a reformulation of the results of
[11]:

Theorem 1 (Property of Space Robustness). If ρ(ϕ,w, t) = r then for every w′ in
which every secondary signal satisfies ||yj − y′j || < r, χ(ϕ,w, t) = χ(ϕ,w′, t).

3.2 Time Robustness

While this semantics captures the robustness of satisfaction with respect to point-wise
changes in the value of the signal or in constants appearing in the predicates, it does not
fully capture the effect of changes in the constants appearing in the temporal operators
of the formula nor in changes in the signal along the time axis. Such changes are often
expressed using a retiming function, a monotone function α : T→ T which transforms
a signal x to x′ by letting x′[t] = x[α(t)]. Figure 3.2 shows three different signals

satisfying ρ(ϕ,w1, 0) = ρ(ϕ,w2, 0) = ρ(ϕ,w3, 0) > 0 for the formulaϕ , ♦[a,b](x >
0). Intuition tells us, however, that w1 satisfies ϕ more robustly being positive during a
large part of the [a, b] interval while w2 has only a short positive spike and w3 almost
misses the deadline for satisfying the positivity condition. All those signals have the
same value of ρ because they admit the same maximal value in the interval and the
point-wise space robustness cannot account for these differences. For the same reason, it
cannot capture the similarity between w3 and the property-violating signalw4, obtained
from w3 by a slight shifting in time, that is, w4[t] = w3[t− ε].

This observation motivates our definition of time robustness which indicates the
effect on satisfaction of shifting events in time, where the term event refers to rising and
falling edges in Boolean signals, the moments where certain secondary signals cross a
threshold and their predicates change their truth value. Since the notion of a change in
a truth value is discrete, we define time robustness with respect to MITL and Boolean
signals but the definition applies as well to the standard Boolean semantics of STL
where Booleanizers replace atomic propositions.

0

w1

0

w2

0

w3

0

a b
w4

0

Fig. 2. Limitations of the point-wise quantitative semantics: signalsw1,w2 andw3 are considered
as satisfying ♦[a,b](x > 0) from t = 0 at the same degree, while the similarity between w3 and
the violating w4 is not captured.

Definition 4 (Time Robustness). The left and right time robustness of an MITL for-
mula ϕ with respect to a trace w at time t are defined inductively by letting

θ−(p, w, t) = χ(ϕ,w, t) ·max{d ≥ 0 s.t. ∀t′ ∈ [t− d, t], χ(ϕ,w, t′) = χ(ϕ,w, t)}
θ+(p, w, t) = χ(ϕ,w, t) ·max{d ≥ 0 s.t. ∀t′ ∈ [t, t+ d], χ(ϕ,w, t′) = χ(ϕ,w, t)}

and then applying to each of (θ−, θ+) the rules (3-4) as in Definition 1.

Figure 3 illustrates the time robustness of the satisfaction of p by a Boolean signal.
Note that there are (unavoidable) discontinuities in the evolution of these measures at

d1
d2

t t′

d′1
d′2

p

θ−θ+

(b)(a)

Fig. 3. (a) Illustration of time robustness of a propositional formula p with respect to a Boolean
signal: θ−(p, w, t) = d1; θ

+(p, w, t) = d2; θ
−(p, w, t′) = −d′1; θ+(p, w, t) = −d′2; (b) The

evolution of θ− and θ+ with time.

rising/falling edges and that θ−(p, w, t) + θ+(p, w, t) is constant inside an interval in
which the truth value of p is uniform. The following property holds naturally for atomic
propositions and is preserved by temporal operators:

Theorem 2 (Property of Time Robustness). If θ−(ϕ,w, t) = s (resp. θ+(ϕ,w, t) =
s) then for any signal w′ obtained from w by shifting events to the right (resp. to the
left) by less than s, we have χ(ϕ,w, t) = χ(ϕ,w′, t).

3.3 Combined Space-Time Robustness

We can now move to a combined space-time robustness which reflects trade-offs be-
tween space and time robustness: the same signal will be more robust temporally if we
are ready to compromise its spatial robustness and vice versa. The space-time robust-
ness of an STL formula ϕ with respect to a trace w at time t is a family of function pairs
{θ+c , θ−c }c∈R which map every spatial robustness c to left/right temporal robustness.
For an STL predicate µ, let χc(µ,w, t) = sign(ρ(µ,w, t)− c), that is, a Boolean whose
value is positive if and only if the robustness of µ for w at t is at least c.

Definition 5 (Space-Time Robustness). The temporal robustness of a formula ϕ rela-
tive to a spatial robustness c is obtained by letting

θ−c (µ,w, t) = θ−(χc(µ,w, t))
θ+c (µ,w, t) = θ+(χc(µ,w, t))

and then applying the rules of Definition 4.

Geometrically, these functions define the basis of the largest rectangle of height c that
can be constructed around t while remaining below the secondary signal associated
with µ, as illustrated in Figure 4. In fact, the set of realizable triples (ρ, θ−, θ+) repre-
sents the possible trade-offs (a kind of Pareto curve) between these measures. It could
equivalently be captured by a function ρ

d−,d+ which maps time robustness to space ro-
bustness. The previously-defined space and time robustness measures are obtained as
the special cases: ρ = ρ0,0 , θ− = θ−0 and θ+ = θ+0 .

c1

t2

c2

t1

θc1(t1) θc2(t2)

Fig. 4. Illustration of the combined time-space robustness.

4 Computing Robustness Degrees

In this section we extend the algorithm of [15] for deciding the satisfaction of an STL
formula by a given signal w, to compute the quantitative semantics. We focus on space
robustness ρ but the computation for θ or θc (for any value of c) is similar. The ro-
bustness function ρ(ϕ,w, ·) is computed inductively on the structure of the formula,
beginning with the computation of the secondary signals based on the primary signals
in w and the predicates inM . Thus we need to compute the right-hand side terms of the
semantics in Definition 1 which reduces to the following subproblems corresponding,
respectively, to operators ¬, ∧ and UI :

1. Given y : T→ R, compute z : T→ R such that ∀t ∈ T, z[t] = −y[t];
2. Given y, y′ : T→ R, compute z : T→ R such that

∀t ∈ T, z[t] = min(y[t], y′[t]) (7)

3. Given y, y′ : T→ R and an interval I, compute z : T→ R such that
∀ t ∈ T, z[t] = max

τ∈t+I
(min(y′[τ], min

s∈[t,τ]
y[s]))) (8)

The first of these being trivial, we focus on the second and third. The difficulty lies
in the fact that we compute functions and not only single values at specific time instants.
Dealing with continuous time and space, a natural input for our algorithm is a sequence
of time-stamped values of w obtained via variable step-size numerical simulation that
we interpret as a piecewise-linear function by linear interpolation. More precisely, we
assume that a secondary signal y is a piecewise-affine function of time with a finite
sequence of points {tk}1<k<ny

where its derivative changes. We do not require conti-
nuity at these points (which allows us to deal with hybrid behaviors) but we assume that
y is right-continuous and admits a right-derivative noted dy[t] , limε→0

y[t+ε]−y[t]
ε ,

which is just its slope at time t. As usual, if y is not continuous at t, we note y[t−]
(resp. y[t+]) its limit to the left (resp. to the right) of t. Finally, we extend the trace to
be unbounded by a constant extrapolation before t0 and after tny

, that is, y[t] = y[t0]
for t < t1 and y[t] = y[tny] for t > tny .5

It is not hard to see that if y and y′ are piecewise-affine and represented by a finite
number of sampling point so is any z satisfying (7) or (8). Hence it is sufficient to know

5 There are various other ways to interpret temporal logic over finite traces, such as the weak
semantics of [9] and other solutions surveyed in [17]. This topic is orthogonal to the rest of the
paper.

its values and its slopes at a finite sequence of time instances {rk}1≤k≤nz
such that z

is continuous and dz is constant on each interval [rk, rk+1). We note

NextEvent(z, t) =
{
∞ if (z, dz) is continuous for r > t
min{r > t | (z[r−], dz[r−]) 6= (z[r+], dz[r+])} otherwise

thus z can be computed incrementally by the generic Algorithm 1. An interesting fea-
ture of this approach is that it can easily be adapted to work online where input w is
revealed progressively. Indeed, each time a new pair (z(rk), dz(rk)) is computed, the
algorithm can be paused to wait for additional input dataw needed to compute rk+1 and
(z(rk+1), dz(rk+1)). To implement Algorithm 1, we need to implement the intializa-

Algorithm 1 An iterative algorithm to compute the robustness z of the conjunction or
the until of two secondary signals y and y′

1: Init r1, k = 1
2: Repeat
3: Compute (z[rk], dz[rk]) from (y, y′)
4: Compute rk+1 = NextEvent(z, rk) from (y, y′)
5: Let k = k + 1
6: Until rk =∞

tion (line 1), the computation of (z, dz) at a given time instant (line 3) and the NextEvent
function (line 4) based on the representation of y and y′ sampled at {tk}1≤k≤ny and
{t′k}1≤k≤ny

.

4.1 Conjunction: z[t] = min(y[t], y[t′])

Initialization and computation of (z, dz). In the case of the conjunction, we initial-
ize r1 to min(t1, t′1) and we note that computation of (z, dz) satisfying (7) is triv-
ial except when y[t] = y′[t]. In that case it can be seen easily though that dz[r] =
min(dy[z], dy′[r]) (the min operator preserves the right-derivative) so that if we extend
the min function with the lexicographic order, we have

∀t ∈ T, (z[t], dz[t]) = min { (y[t], dy[t]), (y′[t], dy′[t]) } (9)

Computation of next event. Observe first that since we know y and y′, we know their
NextEvent functions. Then, the slope of z can be discontinuous in r > rk only if r is a
time event for y or y′ or if y[r] = y′[r]. Thus there are three possibilities:
1. (z[rk], dz[rk]) = (y[rk], dy[rk]) then

NextEvent(z, rk) = min{ NextEvent(y, rk), arg min
t>rk

{y[t] = y′[t]}}

2. (z[rk], dz[rk]) = (y′[rk], dy′[rk]) then
NextEvent(z, rk) = min{ NextEvent(y′, rk), arg min

t>rk

{y[t] = y′[t]}}

3. (z[rk], dz[rk]) = (y[rk], dy[rk]) = (y′[rk], dy′[rk]) then
NextEvent(z, rk) = min { NextEvent(y, rk), NextEvent(y′, rk)}

The resulting computation of the conjunction is illustrated on Figure 5.

Fig. 5. Computation of min(y, y′).

4.2 The Until Operator: z[t] = max
τ∈t+I

(min(y′[τ], min
s∈[t,τ]

y[s])))

The computation for the until operator involves the detection of the change in the max-
imal or minimal value of a signal over a moving time window. We note y[t, τ] =
mins∈[t,τ] y[s], so that we have to compute

∀ t ∈ T, z[t] = max
τ∈t+I

(min(y′[τ], y[t, τ]))) (10)

The value z[t] is provided either by y or by y′ at some time instant in [t, t + i2]. The
following result, that we use to compute (z, dz) and the NextEvent function, shows that
if z[t] is not provided by y′, then it has to be y[t, t+ i1].

Lemma 1. We say that τ is an admissible time for y′ iff y′[τ] ≤ y[t, τ]. If there is no
admissible time for y′, then z[t] = y[t, t+ i1] = min

s∈[t,t+i1]
y[s].

Proof. Since there is no admissible time for y′, there must be t∗ ∈ [t, t + i2] such
that z[t] = y[t∗]. Moreover, y[t∗] has to be equal to min

s∈[t,τ]
y[s] for some τ in [t +

i1, t + i2]. Since [t, t + i1] ⊆ [t, τ], z[t] = y[t∗] ≤ min
s∈[t,t+i1]

y[s]. Furthermore, z[t] =

y[t∗] = max
τ∈t+I

(min
s∈[t,τ]

y[s]) and since t + i1 ∈ t + I, z[t] ≥ min
s∈[t,t+i1]

y[s] so that

z[t] = min
s∈[t,t+i1]

y[s].

Initialization and computation of (z, dz). Since (z[t], dz[t]) depends on the values of y
and y′ on the interval [t, t+ i2], the first time event for z is r1 = min(t1 − i2, t′1 − i2).
Then to compute z[t] for a given t, we first scan chronologically the values of y on
[t, t + i1] to compute their minimum y[t, t + i1]. Then we scan the values of y′ and y
for τ in [t+ i1, t+ i2], updating y[t, τ], then getting the minimum with y′[τ] and finally
the maximum with the value obtained before τ . At the end, we get the value z[t].

In the process, we also compute dz[t] starting by initializing it to dy[t]. Then, each
time a new value for the minimum of y is found for some τ in the interval (t, t + i1),
we compare the current value for dz[t] with 0 (because τ does not depend on t) and
keep the minimum. For τ = t + i1, we compare the current value for (z[t], dz[t])
with (y′[t + i1], dy′[t + i1]) and (y[t + i1], dy[t + i1]) and keep the minimum (in the
lexicographic sense). For τ in the interval (t+ i1, t+ i2), as long as we do not find an
admissible time for y′, we only update dz[t] if y[τ] is equal to the current value of z[t],
in which case we set to dz[t] = min(0, dz[t]). When a new admissible time τ is found,

(z[t], dz[t]) is updated to max((y′[τ], 0), (z[t], dz[t])). Finally, if t+i2 is admissible, we
let (z[t], dz[t]) = max((y′[τ], dy′[τ]), (z[t], dz[t])). We note arg z[t] the time instant in
[t, t+ i1] when the value of (z[t], dz[t]) is determined.

Computation of next event Assuming that we computed (z[rk], dz[rk]), we need to
compute the minimum time rk+1 > rk such that z is discontinuous in rk+1 and/or
dz[rk+1] is different from dz[rk]. Firstly, an event can occur at r > rk due to an event
for y or y′ at rk, rk + i1 or rk + i2, i.e. if

r = min{NextEvent(y, t),NextEvent(y′, t′) such that
t ∈ {rk, rk + i1, rk + i2}, t′ ∈ {rk + i1, rk + i2}}

(11)

The second possibility of event depends on whether the value of (z[rk], dz[rk])
comes from y or y′. If there is no admissible time for y′, we showed that z[rk] is
y[rk, rk + i1] so an event can occur when y[r, r + i1] and/or its derivative is discontin-
uous. We can show that this can happen only if r satisfies:

min{y[tj], y[t−j] | r < tj < r + i1} = min(y[r], y[r + i1])
or min{y[tj], y[t−j] | r < tj < r + i1} > y[r] = y[r + i1]

(12)

Now, whether there are admissible times for y′ or not, we have to monitor the ap-
pearance of new admissible (adm.) times. This can happen only if r satisfies:

y[r] = min{y′[t′j], y′[t
′−
j] | r + i1 < t′j < r + i2 with t′j not adm. for rk}

or y′[r + i1] = y[r] with r + i1 not adm. for rk
or y′[r + i2] = y[r, r + i2]

(13)

Finally, we have to monitor discontinuities in the maximum values of y′ among
existing admissible times. They can happen only if

r+i1 is adm. and y′[r]=max{y′[t′j], y′[t
−
j] | r+i1<t′j(adm.)<r+i2}

or r+i2 is adm. and y′[r+i2]=max{y′[t′j], y′[t
′−
j] | r+i1<tj(adm.) <r+i2}

or y′[r+i1] = y′[r+i2] with r+i1, r+i2 adm.
(14)

Then the expressions (11-14) provides conservative conditions for r > rk to be
NextEvent(z, rk). The algorithm compute the minimum r̃k > rk satisfying one of these
conditions, then (z[r̃k], dz[r̃k]) and iterates with rk = r̃k until (z, dz) is found to be
discontinuous in r̃k. Figure 6 illustrates the process.

4.3 Computational Cost

The complexity of the robustness computation for a given signal and a formula is clearly
linear with respect to the computational cost of Algorithm 1, the constant being the
size of the formula. The cost (time and space) of algorithm 1 depends on the number
of events generated. In the case of conjunction, there can be as many as ny + ny′ +
max(ny, n′y) (the third term counting the maximal number of intersections between y
and y′) so it is linear in the number of samples in y and y′.

Fig. 6. Computation of until robustness. Here, arg z represents the point that determines z. For
τ < rk, there is no admissible time for y′ and z[τ] = y[τ]. The following admissible time is
rk + i1, since y[τ] = y′[τ + i1] (second condition of (13)). At rk+1, another time becomes
admissible, which causes z to be discontinuous (first condition of (13)).

In the case of the until operator, this number is more difficult to estimate due to
the complex inter-dependance of values of y and y′ in the intervals [t, t+ i2]. We con-
jecture that this bound is also linear in ny + ny′ . Then each time step requires the
computation of (z, dz) for a given interval [t, t + i2] involving scanning and compar-
ing the values of y and y′ in this interval. The worst complexity for this operation
is of the order of the sum of the maximum number of sampling points of y and y′ that
[t, t+i2] can contain. We write this number n(y∪y′)∩I , so that our conjectured complex-
ity is O

(
(ny + ny′)× n(y∪y′)∩I

)
. In practice, we found that the complexity is usually

better since the value of z may have much less changes due to the fact that the maxi-
mum/minimum of a signal over a moving time window is likely to remain constant for
long periods.

We compared our implementation with TaLiRo [12], the only other known tool for
computing robustness degrees of temporal formulae. Their algorithm, for which the
implementation details are not provided, appeared experimentally to behave linearly
in the size of the input signals but, at least in some cases, exponentially (in time and
memory) in the size of the formula. For the same data and formulae, our algorithm was
behaving as (or better than) the above analysis suggests.6

5 Robustness Sensitivity

In [8, 7] we have developed a methodology, based on numerical simulation and sensitiv-
ity analysis, to explore the parameter space of a dynamical system in order to determine
the region in this space which induces some qualitative behavior. This work has been
restricted so far to simple reachability properties and the development in this paper ex-
tends its applicability to the whole range of temporal properties, with sensitivity defined
as follows.

6 See http://www-verimag.imag.fr/˜donze/breach page.html for experi-
mental data.

Assume that the robust satisfaction of a formula ϕ by a signal w is parameterized
by some λ ∈ R, i.e., for t ∈ R, its value is ρ(ϕ,w, t, λ), and that it is differentiable with
respect to λ, with derivative noted dλρ(ϕ,w, t, λ). As a simple illustration, consider the
predicate µ: x1 + 2x2 − λ ≥ 0 with the corresponding secondary signal y. We have
ρ(x1 +2x2−λ ≥ 0, w, t, λ) = y[t, λ] = x1[t]+2x2[t]−λ, which is differentiable with
respect to λ, with dλy[t, λ] = −1. Another common situation is when the signal results
from the simulation of a system with an uncertain parameter λ. Then w is a function of
λ and we can get the derivative of the primary signals from a sensitivity-aware simulator
and deduce those of the secondary signals by applying the chain rule.

Having defined the robustness sensitivity to λ for some base formulae (supposedly
for all λ and t), we remark that our algorithm presented above can be easily adapted
to compute the robustness sensitivity of any formula built from these base formulae.
As for the robustness, the core of the algorithm needs only to implement the derivative
of some function z satisfying z[t, λ] = −y[t, λ], the relation (7) or the relation (8)
including λ, corresponding to ¬, ∧ and UI . We first observe that if y and y′ are
differentiable with respect to λ, then z = min(y, y′) is differentiable everywhere except
when y[t, λ] = y′[t, λ] for some t ∈ T. However, it has a right- and left-derivative at
this point which are

d+
λ z[t, λ] = min(d+

λ y[t, λ], d+
λ y
′[t, λ]) and d−λ z[t, λ] = max(d−λ y[t, λ], d−λ y

′[t, λ])
(15)

Thus we can adapt Algorithm 1 to compute the right- and left-derivatives of z in a
way similar to the way we compute dz. In addition to computing (z[rk]), dz[rk]), we
compute (d+

λ z[rk, λ], d−λ z[rk, λ]): each time z is updated with the comparison of two
signals taking the same value, we update d+

λ z and d−λ z using rule (15).

6 Discussion

We have contributed to further proliferation of logic-based ideas to the study of con-
tinuous and hybrid systems. Temporal logic offers a complementary way to evaluate
real-valued signals, a way which is different from other commonly-used norms, mea-
sures and metrics, most of which are either point-wise or based on summation and
averaging. We strongly believe that the measures introduced in this paper will find their
application niche in situations where the interaction between timing and magnitude is
non trivial as is the case in the design of electronic switching circuits or the analysis of
biochemical pathways.

Future work includes the application of these measures and algorithms to the explo-
ration of the parameter space of examples coming from the above application domains,
including the incorporation of the sensitivity measure into gradient-based optimiza-
tion procedures. To make the exploration procedure more effective, we intend to aug-
ment these measures with a more refined diagnostics to indicate more precisely what
(Boolean combinations of) changes in the primary signals are required or sufficient in
order to secure satisfaction. To this end we will need to propagate the information down
from the secondary to primary signals and resolve possible conflicts due to the fact that
the same primary signal may appear in several predicates. Finally it might be interesting

to see how the basic constructs of the calculus behave in the presence of the min and
max operations.

References

1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. J. ACM,
43(1):116–146, 1996.

3. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and model checking for
biochemical processes. Cell Biochem Biophys, 38(3):271–86, 2003.

4. E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. J. ACM, 49(2):172–206, 2002.
5. S. Bensalem and D. Peled, editors. Runtime Verification, volume 5779 of LNCS, 2009.
6. L. Calzone, F. Fages, and S. Soliman. Biocham: an environment for modeling biologi-

cal systems and formalizing experimental knowledge. Bioinformatics (Oxford, England),
22(14):1805, 2006.

7. A. Donzé, B. Krogh, and A. Rajhans. Parameter synthesis for hybrid systems with an appli-
cation to simulink models. In HSCC, LNCS. Springer-Verlag, April 2009.

8. A. Donzé and O. Maler. Systematic simulations using sensitivity analysis. In HSCC’07,
LNCS, April 2007.

9. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Campenhout. Reason-
ing with temporal logic on truncated paths. In CAV, pages 27–39, 2003.

10. F. Fages and A. Rizk. From model-checking to temporal logic constraint solving. In CP,
pages 319–334, 2009.

11. G.E. Fainekos and G.J. Pappas. Robustness of temporal logic specifications for continuous-
time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

12. Georgios E. Fainekos and George J. Pappas. A User Guide for TaLiRo V0.1, 2009.
13. Y. Kesten and A. Pnueli. A compositional approach to CTL∗ verification. Theor. Comput.

Sci., 331(2-3):397–428, 2005.
14. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Syst.,

2(4):255–299, 1990.
15. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In FOR-

MATS/FTRTFT, pages 152–166, 2004.
16. O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In FORMATS, pages

274–289, 2006.
17. O. Maler, D. Nickovic, and A. Pnueli. Checking temporal properties of discrete, timed and

continuous behaviors. In Pillars of Computer Science, pages 475–505, 2008.
18. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-

cation. Springer-Verlag New York, 1991.
19. D. Nickovic and O. Maler. AMT: A property-based monitoring tool for analog systems. In

FORMATS, pages 304–319, 2007.
20. A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symposium on Foundations

of Computer Science (FOCS), pages 46–57, 1977.
21. A. Pnueli and A. Zaks. On the merits of temporal testers. In 25 Years of Model Checking,

pages 172–195, 2008.
22. A. Rizk, G. Batt, F. Fages, and S. Soliman. On a continuous degree of satisfaction of temporal

logic formulae with applications to systems biology. In CMSB, pages 251–268, 2008.
23. A. Rizk, G. Batt, F. Fages, and S. Soliman. A general computational method for robustness

analysis with applications to synthetic gene networks. Bioinformatics, 25(12):i169–78, 2009.

