
 1

Table of Contents

Preface 32
About On-line Help .. 32
Acknowledgments ... 32

Product Information 33
Contacting NeuroDimension.. 33
NeuroSolutions Technical Support.. 34
NeuroDimension Products and Services... 35
Level Restrictions .. 39
Evaluation Mode.. 40
NeuroSolutions Pricing .. 41
NeuroSolutions University Site License Pricing .. 41
Ordering Information.. 41

Getting Started 42
System Requirements ... 42
Running the Demos... 42
What to do after Running the Demos .. 45
Frequently Asked Questions (FAQ) .. 45
Terms to Know... 51

Main Window... 51
Inspector ... 52

Breadboards.. 53
Neural Components .. 54
Toolbars and Palettes ... 54
Selection and Stamping Modes .. 54
Temporary License ... 55

Menus & Toolbars ... 55
File Menu & Toolbar Commands .. 55
Edit Menu & Toolbar Commands.. 56
Alignment Menu & Toolbar Commands.. 57
Windows Menu & Toolbar Commands .. 59
Component Menu.. 59
Tools ... 60

Tools Menu Commands ... 60
Control Menu & Toolbar Commands.. 61
Macro Menu & Toolbar Commands ... 63
Customize Toolbars Page .. 63

Component Palettes ..64
Command Toolbars ...65

Customize Buttons Page.. 65
View .. 66

View Menu.. 66
Macro Bars.. 67
Status Bar ... 69
Help... 69

Help Menu & Toolbar Commands .. 69
Activate Software Panel ... 71

User Options.. 72
Options Window.. 72
Options Workspace Page ... 72

 2

Options Save Page ... 73
Examples ... 75

Example 1 - Toolbar Manipulation .. 75
Example 2 - Component Manipulation.. 75
Example 3 - Inspecting a Component's Parameters 76

Simulations 77
Simulations .. 77
Introduction to Neural Network Simulations .. 78

What Are Artificial Neural Networks.. 78
A Prototype Problem... 79

Ingredients of a Simulation .. 80
Formulation of the problem... 80
Data Collection and Coding .. 80
Getting Data into the Network... 81
Cross Validation .. 82
Network Topology ... 83
Network Training... 85
Probing.. 87
Running the Simulation... 87

Concepts 87
Concepts.. 87
NeuroSolutions Structure .. 88

NeuroSolutions Structure.. 88
Palettes ... 88
Breadboard ... 89

NeuroSolutions Graphical User Interface (GUI) .. 90
NeuroSolutions Graphical User Interface (GUI) 90
Logic of the Interface... 90
Components.. 91
The Inspector .. 91
Single-Click vs. Double-Click .. 92
File Open Dialog Box .. 93
Save As Dialog Box .. 93
Toolbars and Palettes ... 93
Title Bar... 94
Scroll Bars... 94
Network Construction.. 95

Network Construction ... 95
Stamping... 95
Manipulating Components.. 95
Replacing Axons and Synapses... 96
Connectors ... 96
Cabling.. 97
Stacking.. 98

Network Access .. 98
Network Access.. 98
Probes .. 99
Data Input/Output ... 100
Transmitters and Receivers.. 101

Network Simulation ... 101
Network Simulation... 101

Application Window Commands ... 101

 3

Size command (System menu) 101

Move command (Control menu) 102
Minimize command (application Control menu) 102

Maximize command (System menu) 102

Close command (Control menus) 102

Restore command (Control menu) 103

Switch to command (application Control menu) 103
Generating Source Code... 104

Generating Source Code .. 104
Customized Components .. 104

Customized Components.. 104
Testing the Network... 105

The TestingWizard.. 105
Freezing the Network Weights.. 105
Cross Validation .. 105
Production Data Set .. 106
Sensitivity Analysis.. 106
Confusion Matrix ... 106
Correlation Coefficient .. 107
ROC Matrix ... 108
Performance Measures... 109

Practical Simulation Issues.. 110
Practical Simulation Issues ... 110
Associating a File Extension with an Editor .. 111
Data Preparation ... 111
Normalization File ... 112
Forms of Backpropagation.. 113
Probing.. 114
Saving and Fixing Network Weights ... 114
Weights File .. 114
Saving Network Data .. 119
Stop Criteria .. 119
Constructing Learning Dynamics .. 119
Simulating Recurrent Networks .. 120
Component Naming Conventions ... 120
Coordinating Unsupervised and Supervised Learning 122

Organization of NeuroSolutions... 122
Organization of NeuroSolutions .. 122
Activation Family ... 123
Activation Family ... 123

Axon Family.. 125
MemoryAxon Family... 126
FuzzyAxon Family .. 128
ErrorCriteria Family .. 129
Synapse Family .. 131

Backprop Family ... 132
Backprop Family ... 132

BackAxon Family.. 133
BackMemoryAxon Family... 135
BackSynapse Family .. 137

 4

GradientSearch Family ... 138
GradientSearch Family ... 138
Controls Family ... 140
Controls Family ... 140

ActivationControl Family... 141
BackpropControl Family ... 143

Unsupervised Family... 144
Unsupervised Family... 144

Hebbian Family... 145
Competitive Family ... 146
Kohonen Family.. 147

Probe Family ... 148
Probe Family ... 148
Input Family... 149
Input Family... 149
Transmitter Family .. 150

Transmitter Family.. 150
Schedule Family.. 151
Schedule Family.. 151

Introduction to Neural Computation 152
Introduction to NeuroComputation .. 152
Introduction to Neural Computation... 153

Introduction to NeuroComputation.. 153
History of Neural Networks ... 153
What are Artificial Neural Networks .. 154
Neural Network Solutions ... 155

Neural Network Analysis ... 156
Neural Network Analysis... 156
Neural Network Taxonomies... 158
Learning Paradigms.. 160

Learning Paradigms ... 160
Cost Function ... 161
Gradient Descent.. 162

Constraining the Learning Dynamics.. 167
Constraining the Learning Dynamics ... 167

Practical Issues of Learning .. 169
Practical Issues of Learning.. 169
Training Set... 169
Network Size ... 170
Learning Parameters... 170
Stop Criteria .. 171

Unsupervised Learning.. 172
Unsupervised learning .. 172

Support Vector Machines .. 175
Support Vector Machines.. 175

Dynamic Networks... 177
Dynamic Networks .. 177

Famous Neural Topologies ... 178
Famous Neural Topologies... 178
Perceptron... 178
Multilayer Perceptron .. 179
Madaline.. 181
Radial Basis Function Networks ... 181
Associative Memories ... 182
Jordan/Elman Networks..183

 5

Hopfield Network... 184
Principal Component Analysis Networks .. 185
Kohonen Self-Organizing Maps (SOFM) .. 186
Adaptive Resonance Theory (ART) .. 188
Fukushima... 188
Time Lagged Recurrent Networks .. 188

Tutorials 191
Tutorials Chapter ... 191
Running NeuroSolutions.. 191
Signal Generator Example .. 192

Signal Generator Example.. 192
Construction Rules.. 193
Stamping Components ... 194
On-line Help .. 194
Connectors.. 194
Selecting and Configuring a Component .. 195
Arranging Icons ... 195
Connecting Components .. 196
The Cursor .. 196
Component Compatibility.. 196
Bringing in the Function Generators ... 197
Stacking Components... 197
Accessing the Component Hierarchy.. 198
Access Points.. 199
Displaying the Output Waveform .. 199
Opening the Display Window.. 200
Controlling Data Flow.. 200
Configuring the Controller ... 200
Running the Signal Generator Example ... 201
Things to Try with the Signal Generator ... 202
What You have Learned from the Signal Generator Example 203

Combination of Data Sources Example .. 204
Combination of Data Sources Example.. 204
Constructing a McCulloch-Pitts Processing Element............................ 204
Preparing Files for Input into NeuroSolutions 205
Things to Try with the Combination of Data Sources Example 207
What You have Learned from the Combination of Data Sources Example208

The Perceptron and Multilayer Perceptron.. 208
Perceptron and Multilayer Perceptron Example 208
Perceptron Topology... 208
Constructing the Learning Dynamics of a Perceptron 209
Alternate Procedure for Constructing the Learning Dynamics of a Perceptron 211
Selecting the Learning Paradigm.. 212
Running the Perceptron .. 213
MLP Construction.. 214
Running the MLP .. 215
Things to Try with the Perceptron and Multilayer Perceptron Example 216
What You have Learned from the Perceptron and Multilayer Perceptron Example
.. 217

Associator Example... 218
Associator Example .. 218
Building the Associator ... 218
Things to Try with the Associator.. 222
What you have Learned from the Associator Example......................... 222

Filtering Example... 223

 6

Filtering Example .. 223
Constructing A Linear Filter .. 223
Things to Try with the Linear Filter.. 225
Adaptive Network Construction... 226
Running the Adaptive Network ... 226
Things to Try with the Adaptive Network .. 227
What You have Learned from the Filter Example................................. 230

Recurrent Neural Network Example.. 230
Recurrent Neural Network Example ... 230
Creating the Recurrent Topology.. 230
Fixed Point Learning ... 232
Running the Recurrent Network.. 233
Things to Try with the Recurrent Network .. 235
What You have Learned from the Recurrent Network Example........... 238

Frequency Doubler Example... 238
Frequency Doubler Example .. 238
Creating the Frequency Doubler Network .. 238
Configuration of the Trajectory.. 240
Running the Frequency Doubler Network... 240
Using the Gamma Model to Double the Frequency.............................. 241
Visualizing the State Space .. 243
Things to Try with the Frequency Doubler Network.............................. 245
What You have Learned from the Frequency Doubler Example 247

Unsupervised Learning Example .. 248
Unsupervised Learning Example .. 248
Introduction to Unsupervised Learning ... 248
Noise Reduction with Oja's or Sanger's Learning................................. 249
Things to Try with the Unsupervised Network 250
What You have Learned from the Unsupervised Learning Example.... 252

Principle Component Analysis Example.. 252
Principal Component Analysis Example ... 252
Introduction to Principal Component Analysis 252
Running the PCA Network .. 252
Things to Try with the PCA Network ... 254
What You have Learned from the Principal Component Analysis Example 254

Competitive Learning Example.. 254
Competitive Learning Example ... 254
Introduction to Competitive Learning .. 254
Constructing the Competitive Network.. 255
Things to Try with the Competitive Network ... 257
What You have Learned from the Competitive Learning Example....... 259

Kohonen Self Organizing Feature Map (SOFM) Example 260
Kohonen Self Organizing Feature Map (SOFM) Example.................... 260
Introduction to SOFM Example... 260
SOFM Network Construction .. 260
Running the SOFM Network ... 261
Things to Try with the SOFM Network .. 262
What you have Learned from the Kohonen SOFM Example 262

Character Recognition Example.. 262
Character Recognition Example ... 262
Introduction to Character Recognition Example 263
Constructing the Counterpropagation Network..................................... 263
Running the Counterpropagation Network ... 264
Things to Try with the Counterpropagation Network 265
What You have Learned from the Character Recognition Example..... 266

Pattern Recognition Example.. 266

 7

Pattern Recognition Example ... 266
Introduction to Pattern Recognition Example 267
Constructing the Pattern Recognition Network..................................... 267
Running the Pattern Recognition Network.. 269
What you have Learned from the Pattern Recognition Example.......... 270

Time Series Prediction Example ... 270
Time Series Prediction Example... 270
Introduction to Time Series Prediction Example................................... 270
Constructing the TLRN Network ... 271
Running the TLRN Network .. 272
What You have Learned from the Time Series Prediction Example 272

Neural Network Components 272
Components .. 272
Engine Family .. 273
Activation Family ... 273

Axon Family .. 273
Axon.. 273
BiasAxon... 274
CombinerAxon.. 275
GaussianAxon .. 276
LinearAxon ... 277
LinearSigmoidAxon .. 278
LinearTanhAxon ... 279
NormalizedAxon ... 280
NormalizedSigmoidAxon .. 281
SigmoidAxon .. 282
SoftMaxAxon .. 283
TanhAxon ... 284
ThresholdAxon ... 285
WinnerTakeAllAxon .. 286
Access Points ... 287

Axon Family Access Points ...287
DLL Implementation ... 288

Axon DLL Implementation ...288
BiasAxon DLL Implementation ..289
GaussianAxon DLL Implementation ..289
LinearAxon DLL Implementation ...290
LinearSigmoidAxon DLL Implementation...291
LinearTanhAxon DLL Implementation ...292
SigmoidAxon DLL Implementation...293
SoftMaxAxon DLL Implementation ..293
TanhAxon DLL Implementation ...294
ThresholdAxon DLL Implementation..295
WinnerTakeAllAxon DLL Implementation ..296

Examples.. 297
Axon Example ...297
BiasAxon Example...298
GaussianAxon Example ..299
LinearAxon Example..300
LinearSigmoidAxon Example...301
LinearTanhAxon Example ...302
SigmoidAxon Example...303
SoftMaxAxon Example ..304
TanhAxon Example ...305
ThresholdAxon Example..306
WinnerTakeAllAxon Example ..307

Macro Actions... 308

 8

Axon ..308
Axon Macro Actions...308
setRows...309
cols ..309
fireNext ..309
fireNextOnReset ..310
rows ...310
setCols...310
setDimensions ...310
setFireNext ..311
setFireNextOnReset ..311
Gaussian Axon ..312
GaussianAxon Macro Actions..312
assignCenters..312
assignVariance ..312
neighbors...312
setEngineData ...313
setNeighbors ...313
Linear Axon ...313
LinearAxon Macro Actions...313
beta..314
setBeta ..314
setWeightMean..314
setWeightVariance...315
weightMean ...315
weightVariance ..315
Winner Take All Axon ..315
WinnerTakeAllAxon Macro Actions..315
maxWinner ..316
setMaxWinner..316

Inspectors.. 316
Axon Inspector.. 316
GaussianAxon Inspector .. 317
WinnerTakeAllAxon Inspector .. 319

Engine Inspector..320
Soma Family Inspector ... 322

Transfer Function Inspector.. 323
Drag and Drop... 324

Axon Family Drag and Drop ... 324
MemoryAxon Family ... 324

ContextAxon ... 324
GammaAxon... 325
IntegratorAxon .. 326
LaguarreAxon ... 327
SigmoidContextAxon .. 328
SigmoidIntegratorAxon... 329
TanhContextAxon... 330
TanhIntegratorAxon.. 331
TDNNAxon ... 332
DLL Implementation ... 333

ContextAxon DLL Implementation ...333
GammaAxon DLL Implementation...333
IntegratorAxon DLL Implementation ..334
LaguarreAxon DLL Implementation ...335
SigmoidContextAxon DLL Implementation ..336
SigmoidIntegratorAxon DLL Implementation ...337
TanhContextAxon DLL Implementation ...338
TanhIntegratorAxon DLL Implementation ..339
TDNNAxon DLL Implementation ...339

Examples.. 340

 9

IntegratorAxon Example ..340
TanhIntegratorAxon Example ..341
SigmoidIntegratorAxon Example ...342
ContextAxon Example ...344
SigmoidContextAxon Example ..345
TanhContextAxon Example ...346
GammaAxon Example...347
LaguarreAxon Example ...348
TDNNAxon Example..349

Inspectors ... 350
TDNNAxon Inspector...350
Feedback Inspector ...351

Macro Actions... 352
TDNN Axon ...352
TDNNAxon Macro Actions...352
setTapDelay ..353
setTaps..353
tapDelay ..353
taps..353

FuzzyAxon Family... 354
BellFuzzyAxon.. 354
GaussianFuzzyAxon... 355
DLL Implementation ... 355

GaussianFuzzyAxon DLL Implementation...355
BellFuzzyAxon DLL Implementation ..357

Inspectors ... 358
FuzzyAxon Inspector ...358

Synapse Family... 358
ArbitrarySynapse .. 358
CombinerSynapse .. 359
ContractorSynapse... 360
ExpanderSynapse .. 361
ModularSynapse... 362
FullSynapse.. 363
SVMOutputSynapse ... 364
Synapse.. 364
Access Points ... 365

Synapse Family Access Points..365
DLL Implementation ... 366

FullSynapse DLL Implementation ..366
Synapse DLL Implementation..367

Drag and Drop .. 368
Synapse Family Drag and Drop...368

Inspectors ... 368
ArbitrarySynapse Inspector ...368
CombinerSynapse Inspector ...370
ContractorSynapse Inspector ..371
ExpanderSynapse Inspector..372
ModularSynapse Inspector ..372
Synapse Inspector ...373

Macro Actions... 374
ArbitrarySynapse ...374
ArbitrarySynapse Macro Actions..374
autoconnect ...374
disconnectAll ...375
forward...375
nConnections...375
removeConnections...376
setAutoconnect ..376
setForward...377

 10

setNConnections ...377
toggleInputNeuron ...377
toggleOutputNeuron ..377
FullSynapse...378
Synapse...378
Synapse Macro Actions ...378
delay ..378
inputConnector ..378
outputConnector ..379
setDelay...379

Macro Actions ... 379
Soma .. 379

Soma Macro Actions..379
networkJog ..380
networkRandomize ..380
setEngineData ...380
setWeightsFixed ..381
setWeightMean..381
setWeightsSave...381
setWeightVariance...382
weightsFixed..382
weightMean ...382
weightsSave ..382
weightVariance ..383
Backprop Family.. 383

BackAxon Family .. 383
BackAxon.. 383
BackBiasAxon .. 384
BackCombinerAxon.. 385
BackLinearAxon ... 386
BackNormalizedAxon ... 387
BackNormalizedSigmoidAxon .. 387
BackSigmoidAxon .. 388
BackTanhAxon ... 389
BackCriteriaControl .. 390
BackBellFuzzyAxon.. 391
BackGaussianFuzzyAxon... 392
Access Points ... 393

BackAxon Family Access Points ...393
DLL Implementation ... 394

BackAxon DLL Implementation ...394
BackBiasAxon DLL Implementation...395
BackLinearAxon DLL Implementation..395
BackSigmoidAxon DLL Implementation...396
BackTanhAxon DLL Implementation ...397
BackBellFuzzyAxon DLL Implementation ..398
BackGaussianFuzzyAxon DLL Implementation...399

Inspectors ... 401
BackLinearAxon Inspector...401

Macro Actions... 401
Back Linear Axon...401
BackLinearAxon Macro Actions...401
offset..402
setOffset ..402

BackMemoryAxon Family ... 402
BackContextAxon ... 402
BackGammaAxon... 403
BackLaguarreAxon ... 404
BackIntegratorAxon .. 405

 11

BackSigmoidContextAxon.. 406
BackSigmoidIntegratorAxon... 407
BackTanhContextAxon... 407
BackTanhIntegratorAxon.. 408
BackTDNNAxon ... 409
DLL Implementation ... 410

BackContextAxon DLL Implementation ...410
BackGammaAxon DLL Implementation...410
BackIntegratorAxon DLL Implementation ..411
BackLaguarreAxon DLL Implementation ...412
BackSigmoidContextAxon DLL Implementation ..414
BackSigmoidIntegratorAxon DLL Implementation ...414
BackTanhContextAxon DLL Implementation ...415
BackTanhIntegratorAxon DLL Implementation ..416
BackTDNNAxon DLL Implementation..417

BackSynapse Family... 418
BackArbitrarySynapse.. 418
BackFullSynapse.. 419
BackSynapse.. 419
DLL Implementation ... 420

BackFullSynapse DLL Implementation ..420
BackSynapse DLL Implementation..421

Drag and Drop... 422
Backprop Family Drag and Drop .. 422

Controls Family.. 423
StaticControl.. 423
BackStaticControl.. 424
DynamicControl... 424
BackDynamicControl... 426
GeneticControl .. 427
Access Points.. 428

StaticControl Access Points ... 428
GeneticControl Access Points.. 428

Drag and Drop... 428
Controls Drag and Drop.. 428

Inspectors.. 429
Exemplar Weighting Inspector ... 429
Progress Display Inspector... 430
Weights Inspector... 431
StaticControl Inspector ... 433
Termination Inspector... 435
DynamicControl Inspector .. 436
Iterative Prediction Inspector .. 437
Backpropagation Inspector (Dynamic) ... 438
Teacher Forcing Inspector.. 439
BackStaticControl Inspector (Static)... 440
Code Generation Inspector .. 442
Auto Macros Inspector.. 444
GeneticControl Inspector.. 445
Genetic Operators Inspector .. 447
Genetic Termination Inspector ... 450

Windows.. 451
Simulation Progress Window.. 451
Optimization Log Window... 452

Macro Actions ... 453
Back Dynamic Control .. 453

BackDynamicControl Macro Actions..453

 12

backpropOffset ..453
setBackpropOffset ...453

Back Static Control ... 453
BackStaticControl Macro Actions...453
allocateBackpropPlane ..455
batch..455
costWeightingActive ..455
custom ...455
freeALL ..456
freeBackpropPlane ..456
gradientClass...456
gradientWeightingActive ..456
learning..457
learningOnReset..457
setBatch...457
setCostWeightingActive...458
setCustom ...458
setForceLearning...458
setGradientClass ...458
setGradientClassName..459
setGradientWeightingActive ..459
setLearning..459
setLearningOnReset..460
setUpdateEvery ...460
setWeightingFilePath...460
updateEvery ..461
weightingFilePath ..461

Dynamic Control ... 461
DynamicControl Macro Actions..461
fixedPointMode..462
samples ...462
setFixedPointMode..462
setSamples..462
setZeroState ..463
setZeroStateEpoch ..463
zeroState ...463
zeroStateEpoch ...464

Static Control .. 464
StaticControl Macro Actions ..464
activeDataSet ..467
autoIncrement..467
closeMacro ..467
codeGenProjectPath..467
codeGenTargetPath ..468
compileSourceCode ..468
debugSourceCode...468
dither..468
dualName ..469
elapsedTimeInSeconds ...469
epochCounter ..469
epochs ...469
epochsPerTest ..470
executableFilePath ..470
exemplarCounter ...470
exemplars ..470
forceWindowOnTop...471
learning..471
jogNetworkWeights..471
loadWeights...471
openMacro...472
pauseNetwork..472
postRunMacro ...472

 13

preRunMacro...473
randomizeNetworkWeights..473
resetNetwork ...473
runCompiledCode..473
runNetwork ..474
runSensitivity ...474
saveWeights ..474
setActiveDataSet ...474
setAutoIncrement...475
setCloseMacro...475
setCodeGenProjectPath ..475
setCodeGenTargetPath...476
setDither ..476
setEpochCounter ...476
setEpochs..477
setEpochsPerTest ...477
setExemplarCounter ..477
setExemplars...478
setForceWindowOnTop ...478
setLearning..478
setOpenMacro ...478
setPostRunMacro ..479
setPreRunMacro..479
setShowExemplars ..479
setUpdateDisplayByEpoch ..480
setUpdateDisplayEvery ...480
setUseName..480
setXValDataSet ...480
setZeroOnReset ..481
showExemplars ...481
stepEpoch..481
stepExemplar...482
stopNetwork...482
updateDisplayByEpoch..482
updateDisplayEvery...482
useName ...483
xValDataSet...483
zeroOnReset ...483
ErrorCriteria Family ... 484

L1Criterion... 484
L2Criterion... 485
L2TemporalCriterion ... 486
LpCriterion... 487
LinfinityCriterion .. 487
SVML2Criterion... 488
Access Points.. 489

ErrorCriteria Access Points .. 489
DLL Implementation.. 491

L1Criterion DLL Implementation... 491
L2Criterion DLL Implementation... 492
LinfinityCriterion DLL Implementation .. 492
DeltaBarDelta DLL Implementation.. 493

Drag and Drop... 494
ErrorCriteria Drag and Drop ... 494

Inspectors.. 495
ErrorCriteria Inspector .. 495
L2TemporalCriterion Inspector... 496

Macro Actions ... 498
Criterion .. 498

Criterion Macro Actions ...498

 14

autoSave ...499
averageOverUpdates...499
bestCost ..499
checkCostEvery...499
onIncrease...500
reportEvery ..500
setAutoSave ..500
setAverageOverUpdates ...501
setBestCost ...501
setCheckCostEvery ...501
setOnIncrease ...502
setReportEvery..502
setTrainTest...502
trainTest...503
GradientSearch Family.. 503

ConjugateGradient .. 503
DeltaBarDelta.. 505
Momentum .. 506
Quickprop.. 507
Step... 508
SVMStep ... 509
Access Points.. 510

Momentum Access Points .. 510
Quickprop Access Points.. 510
Step Access Points... 510

DLL Implementation.. 511
Momentum DLL Implementation .. 511
Quickprop DLL Implementation.. 512
Step DLL Implementation... 513

Drag and Drop... 514
GradientSearch Drag and Drop.. 514

Inspectors.. 514
DeltaBarDelta Inspector ... 514
Momentum Inspector.. 515
Step Inspector .. 516

Macro Actions ... 517
Delta Bar Delta ... 517

DeltaBarDelta Macro Actions...517
beta..518
kappa...518
setBeta ..518
setKappa ...519
setZeta...519
zeta..519

Momentum.. 520
Momentum Macro Actions ...520
momentumRate ...520
setMomentumRate ..520

Step .. 520
Step Macro Actions..520
broadcastBumpStep ..521
bumpStep ..521
individualSteps ..521
normalized ...522
setIndividualSteps..522
setNormalized..522
setStepSize ...523
stepSize...523
Input Family ... 523

 15

Access... 523
Function .. 524
Noise ... 524
DLLInput.. 526
DLLPreprocessor .. 526
OLEInput ... 527
File .. 527

File .. 527
Translators.. 529

ASCII Translator ..529
Binary Translator ...529
Bitmap Translator ..530
Column-Formatted ASCII Translator ...530
DLL Translator ...532
Translator Customize...532
Column Translator Customize ...532

DLL Implementation ... 535
File DLL Implementation..535

Inspectors ... 536
File Inspector ...536
Data Sets Inspector ...537

File Macro Actions .. 538
File Macro Actions ...538
activeDataSet ..541
activeFileName..542
activeFilePath ..542
activeTranslatorName..542
addFile...542
associateActiveFile ..543
beginCustomizeOfActiveFile..543
binaryEncodingForSymbols...543
columnCountForActiveFile...544
columnTagForActiveFile ..544
customizeActiveFile ...544
dataSetCount...545
dataSetForActiveFile ...545
dataSetNameAt ...545
dataSetUsedForNormalization...545
durationForActiveFile...546
endCustomizeOfActiveFile ..546
expandedColumnCountForActiveFile ..546
fileCount ..546
filePathAt ...547
generateSymbolFile...547
matchPEsWithColumns ...547
normalizationFileName ..547
normalizationFilePath ..548
normalizationFileReadOnly..548
numericForActiveFile ...548
offsetForActiveFile ...549
removeActiveFile ...549
removeAllFiles ...549
segmentForActiveFile ..549
setActiveDataSet ...550
setActiveFileNameAndDataSet ...550
setActiveFilePath ...550
setActiveTranslatorName ..551
setBinaryEncodingForSymbols..551
setColumnTagForActiveFile ..551
setDataSetForActiveFile ..552
setDataSetUsedForNormalization ...552

 16

setDurationForActiveFile ...552
setNormalizationFilePath...553
setNormalizationFileReadOnly ..553
setNumericForActiveFile..553
setOffsetForActiveFile ...554
setSegmentForActiveFile...554
setSkipForActiveFile ..554
setSymbolFilePath...555
setSymbolFileReadOnly ..555
setSymbolForActiveFile ...555
setUseDefaultTranslatorForActiveFile ...556
skipForActiveFile ...556
symbolFileName..556
symbolFilePath ..556
symbolFileReadOnly..557
symbolForActiveFile ..557
toggleColumnForActiveFile..557
translate...558
translateIfNeeded ..558
translatorCount ..558
translatorNameAt...558
useDefaultTranslatorForActiveFile...559
verifiedSamples ...559

Access Points.. 559
Preprocessor Access Points... 559
Access Access Points .. 560

DLL Implementation.. 560
Function DLL Implementation... 560
Noise DLL Implementation ... 561
DLLInput DLL Implementation.. 561
DLLPreprocessor & DLLPostprocessor DLL Implementation 562

Drag and Drop... 563
Access Drag and Drop ... 563
Input Drag and Drop ... 563

Inspectors.. 563
Function Inspector .. 563
Noise Inspector... 565
Stream Inspector .. 566
Access Inspector .. 568
Associate File ... 570

Macro Actions ... 572
Access .. 572

Access Macro Actions ...572
accessDataSet ..572
accessedComponent ...573
activeAccessPoint..573
autoWindow...573
codeNormalizesData ...573
flashFileMode ..574
normalizeDataFile..574
setAccessDataSet ...574
setActiveAccessPoint ..575
setAutoWindow..575
setCodeNormalizesData..575
setFlashFileMode ..576
setNormalizeDataFile ..576

Function.. 576
Function Macro Actions ...576
amplitude ...577
offset..577

 17

phaseShift..577
setAmplitude..577
setOffset ..578
setPhaseShift ..578

Noise... 578
Noise Macro Actions..578
mean..579
regenerateData..579
setMean...579
setRegenerateData..580
setVariance..580
variance ...580

Multi Channel Stream... 580
MultiChannelStream Macro Actions...580
activeChannel ..582
amplitudeForChannel ..582
broadcast...583
channels ..583
dataSource ..583
endChannel ...584
incrementActiveChannel..584
incrementEndChannel ...584
inject ..584
lowerBound..585
networkReset...585
normalize ...585
normalizeByChannel..585
offsetForChannel ...586
resetAll...586
samples ...586
saveStream ...587
scale ..587
setActiveChannel...587
setAmplitude..588
setBroadcast..588
setDataSource...588
setEndChannel ..588
setInject ...589
setLowerBound..589
setNormalize..589
setNormalizeByChannel ..590
setOffset ..590
setSamples..590
setScale...591
setStreamOn ...591
setUpperBound..591
streamOn...592
upperBound ...592

OLE Input.. 592
OLEInput Macro Actions..592
setEngineData ...592
setNormalizationFilePath...593
Probe Family.. 593

StaticProbe Family .. 593
StaticProbe Family ... 593
BarChart ... 594
DataGraph .. 594
DataWriter... 595
DataStorage ... 596
Hinton ... 597
ImageViewer... 598

 18

MatrixEditor .. 598
MatrixViewer... 599
DLLPostprocessor .. 600
Access Points ... 601

DataStorage Access Points ...601
Postprocessor Access Points ..601

DLL Implementation ... 601
Static Probe DLL Implementation ..601

Drag and Drop .. 602
Static Probe Family Drag and Drop ...602

Inspectors ... 602
BarChart Inspector...602
DataGraph Inspector ...603
DataWriter Inspector..605
DataStorage Inspector...606
Hinton Inspector...607
ImageViewer Inspector ..608
Label Inspector ..609

Windows ... 610
BarChart Window...610
DataGraph Window ...611
DataWriter Window..612
Hinton Window ..612
ImageViewer Window..613
MatrixEditor Window..614
MatrixViewer Window ..614

Macro Actions... 615
Bar Chart ...615
BarChart Macro Actions...615
barSize ..615
setBarSize ...616
Data Writer ..616
DataWriter Macro Actions..616
bufferSize ..617
clear...617
clearBeforeRun..617
dumpFile..618
filePath...618
fileType ..618
fontSize..618
inputEnabled..619
mergeProbeName ...619
saveText ..619
scientificNotation..620
setBufferSize ...620
setClearBeforeRun ..620
setDumpFile ..620
setFilePath...621
setFileType ..621
setFontSize..621
setInputEnabled...622
setMergeProbeName...622
setScientificNotation ..622
setTranspose...623
transpose...623
Data Storage ...623
DataStorage Macro Actions...623
bufferLength ..623
messageEvery...624
setBufferLength ...624
setMessageEvery ..624

 19

Hinton ..625
Hinton Macro Actions...625
setSquareSize ...625
squareSize...625
Image Viewer...625
ImageViewer Macro Actions ..625
loadPaletteBeforeRun..626
restorePaletteAfterRun ..626
saveImageToBitmap..626
setLoadPaletteBeforeRun..627
setRestorePaletteAfterRun ..627
Label..627
Label Macro Actions ..627
accessRows ..628
activeNeuron ...629
autosizing ..629
decrementNeuron..629
enableLabels ...629
fileForColumnHeadings ...630
fontHeight ..630
incrementNeuron ...630
label ...630
labelSize ..631
loadColumnHeadings ..631
setAccessRows ...631
setActiveNeuron ..632
setAutosizing ...632
setEnableLabels ..632
setFileForColumnHeadings ...632
setFontHeight ..633
setLabel ...633
setLabelSize ..633
setShowLabels ..634
setWantsColumn ...634
showLabels..634
wantsColumn...635

TemporalProbe Family.. 635
TemporalProbe Family ... 635
MegaScope .. 635
ScatterPlot .. 636
Access Points ... 637

MegaScope Access Points ..637
Drag and Drop .. 637

Temporal Probe Drag and Drop ..637
Inspectors ... 637

Scope Inspector...637
Sweep Inspector ..639
ScatterPlot Inspector ...640
StateSpaceProbe Inspector...641
3DProbe Inspector...642

Windows ... 643
MegaScope Window..643
ScatterPlot Window ...644
StateSpaceProbe Window...645

Macro Actions... 646
Mega Scope ..646
MegaScope Macro Actions..646
amplitude ...647
autoscaleChannel ..647
autoSetUpChannels...648
horizontalPos...648

 20

horizontalPosSamples ...648
multiplier ..648
scale ..649
setAmplitude..649
setHorizontalPos..649
setHorizontalPosSamples..649
setMultiplier ...650
setScale...650
setSweepMult ..650
setSweepRate ...651
setSweepScale..651
setVerticalPos..651
setVerticalPosVolts..652
sweepMult ...652
sweepRate...652
sweepScale ...652
verticalPos ...653
verticalPosVolts ...653
Scatter Plot ..653
ScatterPlot Macro Actions ...653
autoSetUpChannels...654
decrementXChannel ..654
dotSize...655
incrementXChannel ...655
performAutoscale...655
setDotSize ...656
setXChannel ..656
setXMaxScale..656
setXMinScale...656
setYMaxScale..657
setYMinScale...657
xChannel ...657
xMaxScale ...658
xMinScale ..658
yMaxScale ...658
yMinScale ..658
Temporal Probe...659
TemporalProbe Macro Actions ..659
activeChannel ..659
autoSetUpChannels...660
broadcast...660
decrementChannel ..660
grid...660
incrementChannel..661
setActiveChannel...661
setBroadcast..661
setColor ...662
setGrid ...662
setVisible ...662
visible...663

3DProbe Family .. 663
3DProbe Family.. 663
StateSpaceProbe ... 663
Macro Actions... 664

3D Probe ...664
3DProbe Macro Actions...664
amplitude ...665
autoscale ...666
distance ...666
offset..666
phi..666
reset...667

 21

setAmplitude..667
setAutoscale ..667
setPhi...668
setShowCube ..668
setShowDots ...668
setShowLines ..668
setSquareCube..669
setTheta...669
showCube..669
showDots...670
showLines..670
squareCube ...670
theta...670
setDistance..671
setOffset ..671
State Space Probe...671
StateSpaceProbe Macro Actions...671
displacement ...672
history ..672
setDisplacement ..672
setHistory...673

Drag and Drop... 673
Inspectors.. 673

Probe Inspector .. 673
Macro Actions ... 675

Access .. 675
Probe .. 675

Probe Macro Actions ...675
autoNormalize ...676
dataLength...676
dataWidth ..676
denormalizeFromFile ...677
displayEvery ..677
fixWindowTitle ...677
getProbeData ..677
maxNormValue..678
minNormValue...678
normalizationFilePath ..678
setAutoNormalize ..678
setDenormalizeFromFile..679
setDisplayEvery ...679
setFixWindowTitle..679
setMaxNormValue ...680
setMinNormValue ..680
setNormalizationFilePath...680
setWindowTitle ..681
tileWindow ...681
tileWindowBelow..682
tileWindowNextTo..682
windowTitle..683
Transformer Family ... 683

Transformer Family ... 683
SpectralTransform... 683
Transformer... 684
Access Points.. 685

Transformer Access Points .. 685
DLL Implementation.. 685

Transformer DLL Implementation... 685
Inspectors.. 686

SpectralTransform Inspector .. 686

 22

Display Inspector .. 687
Drag and Drop... 689
Macro Actions ... 689

Spectral Transform... 689
SpectralTransform Macro Actions..689
fftSize...689
linear..689
overlap...690
segments ...690
setFFTSize ..690
setLinear..691
setOverlap ...691
setSegments..691
setWindowSize ..692
windowSize..692

Access .. 692
Schedule Family .. 692

ExpScheduler.. 692
LinearScheduler .. 693
LogScheduler .. 694
DLL Implementation.. 695

ExpScheduler DLL Implementation.. 695
LinearScheduler DLL Implementation .. 695
LogScheduler DLL Implementation .. 696

Inspectors.. 697
Schedule Inspector... 697

Drag and Drop... 698
Access Points.. 698
Macro Actions ... 698

Scheduler.. 698
Scheduler Macro Actions...698
beta..698
maximum ...699
minimum ..699
setBeta ..699
setMaximum ..699
setMinimum ...700
setStart ..700
setStop ..700
start..701
stop..701

Access .. 701
Transmitter Family... 701

ControlTransmitter Family... 701
ControlTransmitter Family .. 701
DeltaTransmitter ... 702
ThresholdTransmitter ... 702
Access Points ... 703

ThresholdTransmitter Access Points ...703
DLL Implementation ... 703

ThresholdTransmitter DLL Implementation..703
Inspectors ... 705

ThresholdTransmitter Inspector ...705
Macro Actions... 707

Threshold Transmitter..707
ThresholdTransmitter Macro Actions ...707
absoluteValue..708
beta..708
initialValue ...708

 23

lessThan ..708
multBy..709
setAbsoluteValue...709
setBeta ..709
setInitialValue ..710
setLessThan ..710
setMultBy...710
setThreshold..711
setThresholdDecay..711
setThresholdType..711
threshold..712
thresholdDecay..712
thresholdType..712

DataTransmitters Family... 713
DataTransmitter Family .. 713
DataStorageTransmitter ... 713

Inspectors.. 714
Transmitter Inspector.. 714

Drag and Drop... 715
Access Points.. 715
Transmitter Macro Actions .. 715

Transmitter Macro Actions.. 715
toggleConnection.. 715
setParameter .. 715

Unsupervised Family ... 716
HebbianFull ... 716
OjasFull ... 717
SangersFull ... 718
SVMInputSynapse .. 719
Competitive Family.. 719

StandardFull ... 719
ConscienceFull ... 720
Access Points ... 721

ConscienceFull Access Points...721
DLL Implementation ... 722

Competitive DLL Implementation...722
Inspectors ... 723

Conscience Inspector ..723
Competitive Inspector ..723

Macro Actions... 724
Competitive Full ...724
CompetitiveFull Macro Actions ..724
metric...724
setMetric ..724
Conscience Full ...725
ConscienceFull Macro Actions ..725
beta..725
gamma...725
setBeta ..726
setGamma ...726

Kohonen Family .. 726
DiamondKohonen... 726
LineKohonen .. 727
SquareKohonen.. 728
Access Points ... 729

Kohonen Access Points...729
DLL Implementation ... 730

DiamondKohonen DLL Implementation ...730
LineKohonen DLL Implementation...731

 24

SquareKohonen DLL Implementation..732
Inspectors ... 734

Kohonen Inspector...734
Macro Actions... 735

Kohonen Full ...735
KohonenFull Macro Actions...735
neighborhood...735
setNeighborhood ...735

Access Points.. 735
Unsupervised Access Points.. 735
HebbianFull Access Points... 736

DLL Implementation.. 736
HebbianFull DLL Implementation ... 736
OjasFull DLL Implementation ... 737
SangersFull DLL Implementation ... 738

Drag and Drop... 739
Unsupervised Drag and Drop... 739

Inspectors.. 740
Rate Inspector .. 740
SVMInputSynapse Inspector .. 741

Macro Actions ... 741
Unsupervised Full... 741

UnsupervisedFull Macro Actions ...741
learning..742
learningOnReset..742
setLearning..742
setLearningOnReset..743
setStepSize ...743
stepSize...743
Inspectors .. 744

Genetic Parameters Inspector .. 744
Engine Macro Actions.. 745

Engine Macro Actions ... 745
activateDLL ... 747
baseEngineOnDocument.. 747
bottom ... 748
className .. 748
closeEngineWindow.. 748
connectTo ... 748
delete .. 749
dllActive... 749
dllName ... 749
dllPath ... 750
engineAtAccessPoint .. 750
fixToSuperengine.. 750
fixName ... 750
isDescendant ..751
isKindOf... 751
isMemberOf... 751
isMemberOf... 752
isSubengine .. 752
keepWindowActive.. 752
left.. 753
moveBy ... 753
moveEngineWindow ... 753
moveOn... 754
moveTo ... 754

 25

name ... 754
openEngineWindow .. 755
right ... 755
setDLLName ... 755
setFixName... 755
setFixToSuperengine.. 756
setKeepWindowActive .. 756
setName.. 756
sizeEngineWindow.. 757
subengines.. 757
top ... 757

Dialog Components 758
DialogEngine Family.. 758

DialogEngine Family ... 758
ArrowEngine.. 758
MacroEngine Family ... 759

MacroEngine Family... 759
TextBoxEngine ... 759
ButtonEngine .. 760
EditEngine .. 761
Drag and Drop .. 761

MacroEngine Family Drag and Drop..761
Inspectors ... 761

Text Box Inspector...761
Edit Inspector...762
Macro Inspector ...763

Macro Actions... 764
Edit Engine ..764
EditEngine Macro Actions..764
autosize ...766
bold..766
borderType ..766
editModeEnabled...767
fontSize..767
height...767
italic ...767
padding..768
position ..768
setAutosize ..768
setBackgroundColor ..768
setBold...769
setBorderType ...769
setColor ...769
setEditModeEnabled..770
setFontSize..770
setHeight ...770
setItalic ..771
setPadding...771
setPosition ...771
setText...772
setTextFromFile...772
setTransparent ..772
setUnderlined ..773
setWidth...773
sizeToFit ..773
text...773
transparent ..774
underlined..774

 26

width ..774
Macro Engine ..775
MacroEngine Macro Actions..775
macroAction...775
macroPath ...775
runMacro ...775
setMacroAction..776
setMacroPath ..776

Drag and Drop... 776
ArrowEngine Drag and Drop .. 776

The Theory 777
The Theory .. 777
Contributions to the Theory of Neural Networks ... 777
Introduction to the Theory Chapter.. 777
Equation-based Modeling.. 779
Object-oriented Modeling of Neural Networks... 782

Object-oriented Modeling of Neural Networks 782
Static ANNs... 784
Dynamic ANNs.. 785
Learning Dynamics ... 789
Error Criterion.. 792
Gradient Search Methodology .. 793
Implications for ANN Simulations.. 793
Ideal Simulation Environments ... 795

Code Generation 796
Code Generation ... 796
Introduction to Code Generation ... 796
System Requirements for Code Generation ... 796
Code Generation User Interface ... 797
Behind the Scenes of C++ Code Generation .. 797
Network Input/Output for Generated Code.. 797
A Simple Example of Code Generation... 799
Limitations of Code Generation... 800
Generating DLL Source Code ... 800
Porting the Generated Code.. 800
Examples of Integrating the Generated C++ Code 801

Examples of Integrating the Generated C++ Code............................... 801
Code Generation Example - Keyboard Input using Function Calls 801
Code Generation Example - ASCII File Input using Function Calls 803
Code Generation Example - ASCII File Input using a File Component 804

Dynamic Link Libraries (DLLs) 805
Dynamic Link Libraries (DLLs) .. 805
Introduction to DLLs .. 805
System Requirements for creating DLLs... 806
Structure of a DLL ... 806
How to Use DLLs... 806
User Interface of the DLL Feature... 807
Behind the Scenes of DLLs ... 807
Perform Sub-Protocol .. 808

Perform Sub-Protocol.. 808
DLL Example... 808

Memory Management Sub-Protocol.. 810
Memory Management Sub-protocol.. 810

 27

The DLLData Structure ... 810
Adding Adaptable Weights to the Instance Data 812
Adding Parameters to the Instance Data.. 813
Adding User-Defined Data .. 814
Memory Management of Instance Data.. 814
Creating Global Variables ... 816

Breadboard Sub-Protocol .. 817
Breadboard Sub-Protocol ... 817

DLL Examples ... 818
DLL Examples... 818
Axon .. 819

Adjustable Transfer Function Slope DLL Example 819
TanhAxon with Gain DLL Example .. 821

Synapse .. 823
Subset FullSynapse DLL Example... 823
Locally-Connected Synapse DLL Example.................................... 825

ErrorCriterion... 828
Loser Learn All DLL Example... 828

GradientSearch ... 829
DeltaBarDelta with Limited Step DLL Example.............................. 829
DeltaBarDelta with Exponential Step DLL Example....................... 831

General Input and Postprocessor ... 831
Strange Attractor DLL Example.. 831
Logistic Map DLL Example... 833
Discriminant Function DLL Example .. 835
Scaling DLL Example ... 839

Function Generator ... 842
Sawtooth DLL Example .. 842
Triangle DLL Example .. 842
Square DLL Example ... 843
Decayed Sine DLL Example .. 843
Pulse DLL Example .. 844

Noise Generator.. 845
Gaussian DLL Example.. 845
Decayed Gaussian DLL Example .. 845
Decayed Uniform DLL Example ... 846

File .. 847
Binary DLL Example... 847
Binary Float DLL Example.. 847
Binary Integer DLL Example .. 849
Binary Short DLL Example ... 849
Binary Character DLL Example.. 850

Preprocessor... 851
Averaging Filter DLL Example.. 851
Decimator Filter DLL Example ... 852
Extractor DLL Example... 854

Postprocessor and Probe ... 856
Confusion Matrix DLL Example.. 856

Transformer... 861
Derivative DLL Example ... 861
Autocorrelation DLL Example... 862
Crosscorrelation DLL Example... 863

Customizing NeuroSolutions Components using DLLs 864
Customizing an Activation Component ... 864

Customizing an Activation Component using DLLs 864
Customizing an Axon using DLLs .. 865

 28

Customizing a Synapse using DLLs... 865
Customizing an ErrorCriterion Component ... 866

Customizing an ErrorCriterion using DLLs 866
Customizing a Gradient Search Component .. 866

Customizing a Gradient Search component using DLLs 866
Customizing an Input Component... 867

Customizing an Input Component using DLLs............................... 867
Customizing a General Input using DLLs....................................... 867
Customizing a Function using DLLs... 867
Customizing a Noise using DLLs ... 868
Customizing a File using DLLs... 868
Customizing a Preprocessor or Postprocessor using DLLs........... 868

Customizing a Probe Component .. 869
Customizing a Probe Component using DLLs 869
Customizing a General Probe using DLLs 869
Customizing a Transformer using DLLs ... 869

Customizing a Scheduler Component .. 869
Customizing a Scheduler using DLLs .. 869

Customizing a Transmitter Component .. 870
Customizing a Transmitter using DLLs .. 870

Customizing an Unsupervised Component .. 870
Customizing an Unsupervised component using DLLs.................. 870

DLL Protocols 871
Axon Family Protocols... 871

PerformAxonProtocol .. 871
PerformBiasAxon Protocol.. 872
PerformLinearAxon Protocol... 874

MemoryAxon Family Protocols.. 876
PerformContextAxon Protocol .. 876
PerformGammaAxon Protocol .. 877
PerformTDNNAxon Protocol... 879

FuzzyAxon Family Protocols ... 882
PerformFuzzyAxon Protocol ... 882

Synapse Family Protocols ... 884
PerformFullSynapse Protocol ... 884
PerformSynapse Protocol ... 886

BackAxon Family Protocols... 887
PerformBackAxon Protocol... 887
PerformBackBiasAxon Protocol.. 889
PerformBackLinearAxon Protocol... 891
PerformBackFuzzyAxon Protocol ... 892

BackMemoryAxon Family Protocols.. 895
PerformBackContextAxon Protocol .. 895
PerformBackGammaAxon Protocol .. 897
PerformBackTDNNAxon Protocol... 899

BackSynapse Protocols... 902
PerformBackFullSynapse Protocol ... 902
PerformBackSynapse Protocol ... 904

ErrorCriteria Family Protocols ... 906
PerformCriterion Protocol ... 906

GradientSearch Family Protocols.. 907
PerformDeltaBarDelta Protocol... 907
PerformMomentum Protocol ... 909
PerformQuickprop Protocol... 911
PerformStep Protocol.. 913

 29

Input Family Protocols ... 915
PerformFile Protocol ... 915
PerformFunction Protocol ... 916
PerformNoise Protocol.. 918
PerformInput Protocol ... 919
PerformPrePost Protocol .. 920

StaticProbe Family Protocols .. 922
PerformOutput Protocol .. 922

Transformer Family Protocols ... 923
PerformTransform Protocol... 923

Schedule Family Protocols .. 925
PerformScheduler Protocol... 925

ControlTransmitter Family Protocols ... 926
PerformThresholdTransmitter Protocol... 926

Unsupervised Family Protocols ... 928
PerformUnsupervised Protocol ... 928

Competitive Family Protocols .. 930
PerformCompetitive Protocol .. 930

Kohonen Family Protocols... 932
PerformKohonen Protocol... 932

Macros 934
Macro Introduction... 934
Macro Language.. 935

Macro Language ... 935
Active Breadboard Macro Actions... 935
Application Macro Actions... 938

MacroWizard Window.. 939
MacroWizard Window ... 939
MacroWizard List Page... 940
MacroWizard Edit Page .. 941
MacroWizard Debug Page..942
MacroWizard Watch Page .. 943

Application Macro Actions ... 944
breadboards .. 944
closeBreadboard... 944
horizontalResolution.. 944
maximize ... 944
minimize .. 945
moveWindow... 945
newBreadboard... 945
openBreadboard ... 945
pathFromActiveBreadboard .. 946
pathFromMacro... 946
pathFromNS.. 946
pathFromWizard.. 946
restore ... 947
runSubMacro... 947
runWizard.. 947
setUserParameter ... 948
sizeWindow... 948
sleep.. 948
verticalResolution.. 948
strcat ... 949
displayInspector .. 949
openApplicationDocument .. 949

 30

closeApplication .. 950
activateBreadboard... 950
runExecutable ... 950
openDefaultEditorWithFile .. 950

Active Breadboard Macro Actions ... 951
alignBottom ... 951
alignLeft... 951
alignRight .. 951
alignTop .. 951
animatePointX... 951
animatePointY... 952
centerHorizontal .. 952
centerObjects .. 952
centerVertical .. 952
copySelection.. 953
copyToFile... 953
cutSelection... 953
deleteObject .. 953
deleteSelection.. 954
distributeHorizontal ... 954
distributeVertical.. 954
isModified .. 954
lockWindowUpdate ... 954
maximize ... 955
minimize .. 955
moveAnimatePointBy.. 955
moveSelectionBy .. 955
moveToBack ... 956
moveToFront... 956
onBreadboard ... 956
pasteFromFile ... 956
pasteToSelection .. 957
pathName.. 957
replaceWith ... 957
restore ... 958
runMacro ... 958
save... 958
saveAs .. 958
select... 958
selectKind.. 959
selectMembers.. 959
selectRespondingTo ... 959
sendDataToEngine ... 960
setAnimatePoint .. 960
setAnimatePointBottomLeft .. 960
setPromptToSaveModifications .. 961
showOpenProbes.. 961
sizeWindow... 961
stampAndMove ... 962
stampOnAndMove .. 962
stampOnMoveAndName... 962
title... 962
unlockWindowUpdate ... 963
unselect... 963
stampOnAndMoveAtAccessPoint ... 963
setTitle... 963

 31

setPathName .. 964
setEditModeEnabledForTextAndButtons.. 964
promptToSaveModifications ... 964

OLE Automation 965
OLE Automation Introduction .. 965
Sample Visual Basic Project Demonstrating OLE Automation 965
Sample Visual C++ Project Demonstrating OLE Automation 966

References 967
References .. 967

 32

Preface
About On-line Help

NeuroSolutions

Program version: 4.30

Help version: 4.30

Help Release Date: 02/20/04

Download the latest release from: http://www.neurosolutions.com/downloads/doc
umentation.html

Acknowledgments

NeuroSolutions is the product of significant effort by everyone at NeuroDimension, Incorporated.
The various technical and theoretical achievements present in this package are to be attributed to:
NeuroSolutions

Designed and written by Curt Lefebvre, in collaboration with Jose Principe.
NeuroSolutions - Components

The various components were developed by Curt Lefebvre, David Samson, Neil Euliano and Gary
Lynn.

NeuroSolutions - Wizards

The NeuralExpert, NeuralBuilder and TestingWizard were developed by Dan Wooten, Neil Euliano,
and Gary Lynn.

NeuroSolutions - Documentation

The manual and on-line help was written by Jose Principe, Curt Lefebvre, Gary Lynn, Craig Fancourt
and Dan Wooten.

NeuroSolutions - Demos

The demo was constructed by Craig Fancourt, Mark Allen, and Curt Lefebvre.
NeuroSolutions for Excel Add-in

NeuroSolutions for Excel was developed by Dan Wooten and Richard Madden, in collaboration with
Curt Lefebvre.

Custom Solution Wizard

 33

The Custom Solution Wizard was developed by Dan Wooten, Jason Gerstenburger, Jeremy Purvis and
Gary Lynn.

The following personnel deserve special mention for their individual contributions:
Steven A. Reid

For believing in, and financially supporting, this product through its extensive development phase.
Matt Kochtan

For the exceptional work done in maintaining and enhancing the NeuroDimension web site.

Product Information
 Contacting NeuroDimension

NeuroDimension, Inc.

1800 N. Main Street, Suite D4

Gainesville, FL 32609

www.nd.com

Sales and Information

Place an Order 1-800-634-3327 (Option 1)

Questions about our Products 1-800-634-3327 (Option 2)

Fax 352-377-9009

Email info@nd.com

Calls Outside U.S. 352-377-5144

Technical Support

 34

Bug Reports, Installation Problems, and Priority Support 1-800-634-3327 (Option 0)

All Other Technical Support 352-377-1542

Fax 352-377-9009

Email support@neurosolutions.com

Calls Outside U.S. 352-377-1542

Before contacting technical support, please attempt to answer any questions by first consulting the
following resources:

• The printed manual (if applicable)
• The on-line help
• The Frequently Asked Questions (FAQ)

The latest versions of the on-line help and FAQ can always be found at the NeuroDimension
web site: .

NeuroSolutions Technical Support

Included with Evaluation/Demo Software
� Toll-free line for bug reports and installation problems

Included with Purchased Software
� Toll-free line for bug reports and installation problems
� 1 year unlimited email, fax and phone support (toll line)

Contact Information

Bug Reports, Installation Problems and Priority Support 1-800-634-3327 (Option 0)

All other Technical Support (352) 377-1542

Fax (352) 377-9009

Email support@neurosolutions.com

Calls Outside U.S. (352) 377-1542

Please have your invoice number ready when calling and include your invoice number in all fax, email, or
written correspondence.

 35

Note that the technical support described above is for questions regarding the software package.
Neural network experts are on staff and available for consulting on an hourly basis. Consulting
rates are dependent on the specifics of the problem.

NeuroDimension Products and Services

NeuroSolutions

There are six levels of NeuroSolutions, all of which allow you to implement your own neural
models. The Educator, our entry level version, is intended for those who want to learn about neural
networks and work with MLPs. The Users version extends the Educator with a variety of neural
models for static pattern recognition applications. The Consultants version offers enhanced
models that support dynamic pattern recognition, time-series prediction and process control
problems.

The Professional version adds ANSI C++ compatible code generation, allowing you to embed
NeuroSolutions’ algorithms into your own applications (including learning). Furthermore, this
version allows any simulation prototyped within NeuroSolutions to be run on other platforms, e.g.
faster computers or embedded real time systems. The Developer versions allow you to extend the
functionality of NeuroSolutions by integrating your own neural network, preprocessing, control, and
input/output algorithms.

NeuroSolutions for Excel

NeuroSolutions for Excel is an Excel Add-in that integrates with any of the six levels of
NeuroSolutions to provide a very powerful environment for manipulating your data, generating
reports, and running batches of experiments.

The Custom Solution Wizard

The Custom Solution Wizard is a program that will take any neural network created with
NeuroSolutions and automatically generate and compile a Dynamic Link Library (DLL) for that
network, which you can then embed into your own application.

NeuroSolutions for MATLAB

NeuroSolutions for MATLAB is a neural network toolbox for MATLAB. The toolbox features 15
flexible neural models, 5 learning algorithms and a host of useful utilities that enable you to employ
the power of neural networks to solve complicated real-world problems. The NeuroSolutions
toolbox is a valuable addition to MATLAB’s technical computing capabilities allowing you to
leverage the power of NeuroSolutions inside MATLAB. All the capabilities are integrated into
MATLAB through an easy-to-use interface, which requires "next to no knowledge" of neural
networks to begin using.

The toolbox is also integrated with NeuroSolutions which enables you to build custom networks in
NeuroSolutions and utilize them inside MATLAB using the NeuroSolutions for MATLAB interface.

The Genetic Server/Library
The Genetic Server and Genetic Library provide a general purpose API for genetic algorithm
design. Genetic Server is an ActiveX component that can be used to easily build a custom genetic
application in Visual Basic. Genetic Library is a C++ library that can be used for building custom
genetic applications in C++.

 36

TradingSolutions
TradingSolutions is a financial analysis and investment program that combines traditional technical
analysis with state-of-the-art neural network and genetic algorithm technologies. Use any
combination of financial indicators in conjunction with advanced neural networks and genetic
algorithms to create remarkably effective trading models.

Consulting

Neural network and genetic algorithm experts are on staff and available for Consulting on an hourly
basis. Consulting rates are dependent upon the specifics of the problem. To obtain an estimate for
consulting, please email your problem specifics to info@nd.com.

Training Courses

Twice a year NeuroDimension holds a course in Orlando, Florida to teach both the theory of neural
networks and use of NeuroSolutions. The course uses interactive hypertext material that allows a
"learn by doing" methodology. For more information on the course content and the date of the next
scheduled course offering, please visit http://www.neurosolutions.com/products/course/.

Priority Support Package

The priority support package is a valuable service that can be added to the purchase of any
NeuroDimension product anytime within the first 30 days of product purchase. This service
provides the following benefits:

� Priority treatment for all support issues

� Guaranteed bug fixes within 5 business days

� Toll-free line for all calls

� Free minor and major upgrades

The annual subscription price for the Priority Support Package is 30% of the purchase price of the
product to be covered.

NeuroSolutions Feature Summary by Level

Educator
Unrestricted Topologies

� Multilayer perceptrons (MLPs)

� Generalized feedforward networks

� User-defined network topologies

� Up to 50 neurons per layer

� Up to 2 hidden layers
Learning Paradigms

� Backpropagation
Competitive Advantage

� 32-bit code

 37

� Faster simulations

� Icon-based graphical user interface

� Extensive probing capabilities

Users
Unrestricted Topologies

� All topologies of the Educator

� Modular networks

� Jordan-Elman networks

� Self Organizing Feature Map nets

� Radial Basis Function networks

� Neuro-Fuzzy

� Support Vector Machines (SVM)

� Up to 500 neurons per layer

� Up to 6 hidden layers
Additional Features

� Genetic Parameter Optimization
Learning Paradigms

� Backpropagation

� Unsupervised Learning

� Hebbian

� Oja’s

� Sanger’s

� Competitive

� Kohonen
Competitive Advantage

� More neurons per layer

� More neural models to choose from

� More unsupervised learning rules

Consultants
Additional Topologies

� Hopfield networks

� Time Delay Neural Networks

� Time-Lag Recurrent Networks

� Unrestricted User-defined network topologies

� Over 90 components to build from

� A virtually infinite number of possible networks
Learning Paradigms

 38

� All paradigms of Users version

� Recurrent backpropagation

� Backpropagation through time
Competitive Advantage

� Modular design allowing user-defined network topologies

� Dynamic systems modeling

� Time-Lag Recurrent Networks

Professional
Additional Features

� ANSI C++ Source Code generation

� Embed networks into your own applications

� Train networks on faster computers

Developers
Additional Features

� User-defined dynamic link libraries

� Customized neural components

� Nonlinearities

� Interconnection matrices

� Gradient search procedures

� Error criteria

� Unsupervised learning rules

� Memory structures

� Customized input

� Customized output

� Customized parameter scheduling

Developers Lite
Features

� All features of the Developers version except for ANSI C++ Source Code generation

NeuroSolutions for Excel
Features

� Visual Data Selection

� Data Preprocessing and Analysis

� Batch Training and Parameter Optimization

� Sensitivity Analysis

 39

� Automated Report Generation

Custom Solution Wizard
Features

� Encapsulate any NeuroSolutions NN into a Dynamic Link Library (DLL)

� Use the DLL to embed a NN into your own Visual Basic, Microsoft Excel, Microsoft Access or Visual C++
application

� Support for both Recall and Learning networks available

� Simple protocol for sending the input data and retrieving the network response

Genetic Library/Server
Features

� Provides a general purpose API for genetic algorithm design

� Genetic Server 1.0 is an ActiveX component that can be used to easily build a custom genetic application in
Visual Basic

� Genetic Library 1.0 is a C++ library that can be used for building custom genetic applications in C++

� There are no royalties for distributing applications built with the ActiveX component or the library

TradingSolutions
Features

� Download data directly from the Internet or import from a variety of other sources

� Get up and running fast with animated demonstrations and step-by-step tutorials

� Perform calculations on a single security or multiple securities at once

� Model optimal actions and predict future prices with exclusive time-based neural networks

� Implement your own functions, systems, and complete trading solutions

� Evaluate trading models for profit potential using historical back-testing

� Optimize your models for maximum profit

Level Restrictions

All levels of NeuroSolutions use the same executable. The software detects the level you are
licensed for by reading a code from the attached hardware key or from a password stored on the
file system. The restrictions for each of the levels are summarized in the table below.

Level Restrictions Restriction Type

Evaluation Always in Evaluation Mode Evaluation Mode

Educator ContextAxon

UnsupervisedFull

Evaluation Mode

 40

FuzzyAxon

GeneticControl

SVMStep

PEs per Axon > 50

Axons on BB > 5

All restrictions of Users

Users TDNNAxon

GammaAxon

LaguarreAxon

PEs per Axon > 500

Axons on BB > 9

All restrictions of Consultants

Evaluation Mode

Consultants Code Generation

All restrictions of Professional

Disabled

Professional Non-public DLLs Disabled

Developers
Lite

Code Generation Disabled

Developers None

Evaluation Mode

There are six levels of NeuroSolutions (the Educator, Users, Consultants, Professional, Developers
Lite and Developers versions). If you have not purchased the Consultants version or higher, then
you may encounter restricted operations. However, this will not keep you from experimenting with
all of the features available within the Consultants version.

Whenever a restricted operation is attempted, the program will ask if you would like to enter into
evaluation mode. The evaluation mode allows you to use all of the features of the Consultants
version. However, once you have entered this mode, you will encounter the following restrictions:

Components Restrictions

Axons &
Synapses

The weights are not stored when the breadboard is saved

DataWriter Cannot save the text from the display window to a file

Cannot copy the text from the display window to the pasteboard

 41

Cannot redirect the probed data to a file

ImageViewer Cannot save the probed image to a bitmap file

Criterion Cannot automatically save the best network weights to a file

StaticControl &
DynamicControl

Cannot save the network weights to a weights file

The source code generation feature produces incomplete source code

All Neural
Components

Cannot create, compile, or debug a DLL

Can only load DLLs created by NeuroDimension

Macro Bars Cannot create a new Macro Bar or delete an existing one

Some of the tutorials within the on-line help require some advanced features available only in the
higher-level versions. By allowing the program to switch to evaluation mode when prompted, you
will be able to work through all of the tutorials within the text.

Note: If you have not activated your copy of NeuroSolutions within 60 days from the time of
installation then the evaluation software will expire.

NeuroSolutions Pricing

The latest pricing for all NeuroDimension products can be found on our web site at:
http://www.nd.com/neurosolutions/pricing.html.

Note: If you do not have access to the Internet, see the Contacting NeuroDimension topic for
information on how to contact NeuroDimension via phone, fax and mail.

NeuroSolutions University Site License Pricing

The latest university site license pricing for NeuroDimension products can be found on our web site
at: http://www.nd.com/neurosolutions/univsite.html.

Note: If you do not have access to the Internet, see the Contacting NeuroDimension topic for
information on how to contact NeuroDimension via phone, fax and mail.

Ordering Information

NeuroDimension products can be ordered using any of the following 3 methods:

 42

1 Place the order on-line using our SECURE order entry system.
2 Download and print the latest order form then fax the completed form to 352-377-9009, or mail it
to:

NeuroDimension, Inc.

Order Processing Department

1800 N. Main Street, Suite #D4

Gainesville, FL 32609-8606

3 Phone in your order (800-634-3327 or 352-377-5144) Monday through Friday between the hours
of 8:30 AM and 5:00 PM EST.

We accept payment by credit card (Visa, MasterCard or American Express), wire transfer, or
prepayment by check or money order.

Note: In order to use the links within this topic, you must be connected to the Internet.

Getting Started
System Requirements

Before installing NeuroSolutions, you should verify that the configuration of your system meets the
following minimum specifications:

Operating System Windows 95/98/Me/NT/2000

Memory 16MB RAM (32MB recommended)

Hard Drive 40MB free space

Video 640x480 with 256 colors (800x600 with 16M
colors recommended)

Running the Demos

 43

The best way to get an overview of the features provided by NeuroSolutions is to run the demos.
These demos present a series of examples in neural computing in an attempt to illustrate the broad
range of capabilities NeuroSolutions has to offer.

All demos are live! Each one starts with random initial conditions and learns on-line. Since most of
the examples deal with highly nonlinear problems, they may get stuck in local minima. In such
cases, simply run the simulation a couple of times.

Demo selection panel

 44

To display the Demo Panel, select the Demos item from the Help menu. To run a demo, make a
selection by pressing one of the demo buttons followed by the Run button. The two buttons at the
bottom are the exception; they do not use the Run button.

A running demo

These demos are designed to be interactive. Many of the panels have edit cells that allow you to
modify the network parameters and buttons to run the simulation or single-step through an epoch.

These demos are also not very restrictive. At any time during the presentation you are able to
manipulate the breadboard by, adding a component, removing a component or changing a
component’s parameters with the inspector. This can be advantageous in that you can learn a lot
about the software by experimenting with the components. However, changing the state of the
breadboard may result in a failure for the remainder of the demo, since the demos were designed
with the assumption that no changes would be made. If the demo does fail, simply re-run the demo
from the demo selection panel and do not make any changes to the components as you are
stepping through the panels.

It is important to note that the demos are nothing more than NeuroSolutions macros. In other
words, you the user have the same the same tools at your disposal that we had to create this
demo. To take a look at the macro source code, open one of the macro files (*.nsm) within the
Demos subdirectory of NeuroSolutions using the MacroWizard (under the "Tools" menu).

Once you have run the demos for NeuroSolutions, you should have a good idea of the broad range
of capabilities provided by the base software. The next step you will want to take is to run the demo
for NeuroSolutions for Excel. There is a button at the bottom of the NeuroSolutions demo panel that

 45

will launch this demo for you, or you can click here . Note that both NeuroSolutions for Excel and
Microsoft Excel (97 or higher) need be installed for this demo to work.

What to do after Running the Demos

After running the demos you will want to read the Getting Started Manual. This document steps you
through the process of building a neural network with the NeuralExpert and NeuralBuilder utilities.
The examples are written based on sample data included with the software, but you can use your
own data instead. Click here to open the electronic version of this manual.

One possible starting point for building your own networks is to use the Demos. Simply run one of
the demos that closely resembles the topology you want to use, then step through the panels until
the network is constructed. From there you can load your own data into the File component(s) and
make any other parameter and/or topology modifications that you wish. One you have made the
desired changes, save the breadboard to a file for future use.

If you have purchased or are interested in purchasing NeuroSolutions for Excel, then you will want
to read the Getting Started chapter of the NeuroSolutions for Excel help file. Click here to open
this documentation.

Included with the full installation of NeuroSolutions is an introductory chapter of an electronic book
entitled Neural Systems: Fundamentals Through Simulations by Principe, Lefebvre, and Euliano. If
you want to read this chapter and work through the simulations, then select "Interactive Book" from
the Help menu. Please visit the Interactive Book page of the NeuroDimension web site for more
information on this revolutionary teaching tool.

Frequently Asked Questions (FAQ)

General
What is NeuroSolutions?

NeuroSolutions is the premier neural network simulation environment.
What is a neural network?

A neural network is an adaptable system that can learn relationships through repeated presentation
of data, and is capable of generalizing to new, previously unseen data. Some networks are
supervised, in that a human must determine what the network should learn from the data. Other
networks are unsupervised, in that the way they organize information is hard-coded into their
architecture.

What do you use a neural network for?

Neural networks are used for both regression and classification. In regression, the outputs
represent some desired, continuously valued transformation of the input patterns. In classification,
the objective is to assign the input patterns to one of several categories or classes, usually
represented by outputs restricted to lie in the range from 0 to 1, so that they represent the
probability of class membership.

Why are neural networks so powerful?

 46

For regression, it can be shown that neural networks can learn any desired input-output mapping if they
have sufficient numbers of processing elements in the hidden layer(s). For classification, neural networks
can learn the Bayesian posterior probability of correct classification.

What is the NeuralBuilder?

The NeuralBuilder is an external program that aids the user in neural network design and setup. It
automatically constructs any of the eight most popular neural architectures, including file and probe
specifications.

What is NeuroSolutions for Excel?

NeuroSolutions for Excel is an Excel add-in that allows the user to construct, train, and test neural networks
entirely from Excel. The user simply selects columns of data as input or target, and rows of data as training,
testing, or cross-validation. NeuroSolutions for Excel then sends messages to NeuroSolutions in order to
train or test a network.

Algorithms
How does NeuroSolutions implement neural networks?

NeuroSolutions adheres to the so-called local additive model. Under this model, each component
can activate and learn using only its own weights and activations, and the activations of its
neighbors. This lends itself very well to object orientated modeling, since each component can be
a separate object that sends and receives messages. This in turn allows for a graphical user
interface (GUI) with icon based construction of networks.

What algorithm does NeuroSolutions use to train recurrent networks?

NeuroSolutions uses the back-propagation through time (BPTT) algorithm, which "unfolds" a dynamic net at
each time step into an equivalent feed-forward net.

How does NeuroSolutions implement Radial Basis Function (RBF) networks?

The centers and widths of the Gaussian axons are determined from the cluster centers of the data, which
are found through an unsupervised clustering algorithm. The weights from the Gaussian axons to the output
layer are then determined through supervised learning with a desired signal.

Can I implement my own algorithms?

Yes, the easiest way to modify NeuroSolutions is through Dynamic Link Libraries (DLL’s), available with the
Developer’s Lite and Developer’s levels. Every component has default code, which can be generated and
edited from the "Engine" property page, and then compiled with MS Visual C++.

Platforms and OS Issues
What operating systems does NeuroSolutions run on?

The full GUI environment of NeuroSolutions runs under Windows NT and Windows95.
Are there versions of NeuroSolutions for the Macintosh, Sun, etc.?

Not at present, and there are no immediate plans for porting the GUI environment to other platforms (see the
next question).

Does NeuroSolutions run under Unix?

Yes, NeuroSolutions runs under Unix, but without the GUI environment. The source code license provides
the user with the complete NeuroSolutions’ core algorithmic code, either as a pre-compiled library or raw
source code to be compiled by the user. The easiest way to make use of the library is to use the code

 47

generation capabilities of the Professional and Developer’s versions, which generate source code from the
GUI breadboard. Alternatively, the user can write code that calls the library.

How can I communicate with NeuroSolutions from another program?

NeuroSolutions is an OLE compatible server, which means it can be controlled by any OLE client, such as
MS Excel or an MS Visual Basic application. The OLE commands take advantage of NeuroSolutions’ macro
language. Two of our other products, the "NeuralBuilder" and "NeuroSolutions for Excel", control
NeuroSolutions externally as clients in this way.

Network Components
What do Axons do?

The Axon family sums all incoming vectors from multiple connections, and then applies a transfer
function to the sum.

What does the plain blank Axon do?

This Axon acts the same as all other Axons, except its transfer function is the identity function.

What does a Full Synapse do?

A Full Synapse takes its input and multiplies it by a matrix. If a delay is specified, the output is
delayed by that many time steps.

What’s does the straight Synapse do?

Using the Straight synapse to connect two Axons is exactly the same as making a direct
connection between them, except it gives the additional option of specifying a delay.

What is that 2nd network that seems to lie on top of the main network?

This is the backpropagation network. Every Axon and Synapse has a corresponding BackAxon
and BackSynapse that attaches to the upper right corner of the corresponding forward component.
Data flows forward from the input to the output through the forward propagation network. The
criterion compares the output with the desired response, and computers the error. The error is then
injected into the backpropagation network, and the data flows through this network, back towards
the original input.

In the control palette, what’s the difference between the clocks with one and two dials?

The clocks with one dial are for use with static networks, where the complete forward activation
and back-propagation cycle can be completed in the same time step. The clocks with two dials are
dynamic controllers for use with dynamic networks (see the next question).

When do I need to use the dynamic controllers?

You need to use the dynamic controllers anytime your network has a feedback loop with an adaptable
weight(s). This includes the Gamma and Laguarre Axons, which are components that have internal
feedback loops with an adaptable weight. You also need the dynamic controllers whenever a component
with delays is used at any point in the network other than the input layer. For example, you can use a static
controller for a network with a TDNN Axon (tapped delay line) at the input layer, but you must use a dynamic
controller if the TDNN Axon is in the hidden layer.

Constructing Networks
How do I connect two components on the breadboard?

There are two ways. The easiest way is to left-click select the "from" component, and then right-click select
the "to" component, and choose "Connect To" from the menu. The other way is to manually grab the male

 48

connector of the "from" component, and drag it over the female component of the "to" component, and
release it.

How do I move or delete a connection?

First, of the two components connected by the connector, identify the "to" component. Then,
identify where the male end of the connector joins with the female receptor of the "to" component.
To move it, left-click select it, and then left-click drag it to a new location. To delete it, right-click
select it and choose delete from the menu.

How can I make a connector follow a path instead of straight line?

First, move the male end of the connector to the first way-point on your path (see the previous question).
Then, while holding down the shift key, drag the end of the connector to the next way-point. Continue in this
fashion until the connector follows the desired path. Finally, drag the male end of the connector over the
female receptor of the "to" component.

Why can’t I connect a Synapse to multiple Axons?

In NeuroSolutions, only Axons can branch. Thus, you can connect a single Axon to multiple
Synapses but not the opposite.

When I try to create a recurrency in my network, why do I get a message that there’s an
infinite loop in the data flow?

NeuroSolutions is a discrete-time simulator, and thus any recurrent loops must have a delay.
Otherwise, the components in the loop would fire in sequence forever without ever advancing the
time. In NeuroSolutions, Synapses implement the delays, and can be changed from the inspector’s
Synapse property page. Setting at least one Synapse in your recurrent loop to a delay of one or
greater will solve the problem.

What’s the meaning of "stacked access"?

When you put one component on another, such as placing a probe on a file component, its access
is said to be "stacked", in that the data it receives (or sends) comes from (or goes to) the same
access point as the component below it. Note that a stacked component only communicates with
those components that are below it, not above it.

Editing Networks
What is the Inspector?

The inspector is a panel that displays component specific information that the user can edit.

How do I bring up the Inspector for a particular component?

Right-click on the component and choose "Properties". You can also left-click select the
component and then use the keyboard combination Alt-Enter.

How can I simultaneously edit the parameters of several components?

Right-click select the first component and, if the inspector is not already open, choose properties
from the menu. Then hold down the shift key while left-click selecting the remaining
components. Any changes you make in the inspector will be reflected in all selected components,
as long as they all have the same parameter. For example, you can simultaneously change the
number of PE’s of a group of Axons, even if they have different transfer functions (tanh, sigmoid,
etc.).

In the Axon family, what is the meaning of "Rows" and "Cols" of PE’s on the Axon property
page?

The PE’s of an Axon can be arranged as a matrix for display purposes, such as viewing the
activations as an image. However, for calculation purposes, NeuroSolutions only cares about the

 49

total number of PE’s, given by rows times columns, and this is the number shown on the "Axon"
property page. If you don’t care about arranging the Axon’s activations as a matrix, just set the
"Rows:" of PE’s. Note that some Axons have a "Transfer Function" property page with a "PEs"
edit box, which is the same as the "Rows:" edit box.

Why can’t I change the number of PE’s of an output Axon?

The number of PE’s of the last Axon in a supervised network are completely determined by the number of
PE’s of the Criteria.

Why can’t I change the dimensions of a Synapse?

The dimensions of a Synapse are completely determined by the two axons to which it is
connected.

In the forward controller’s Inspector, why can’t I choose the number of exemplars/epoch?

For file input, the number of exemplars is entirely determined by the number of data points in the input file
divided by the number of PE’s of the input axon. For other input, such as the function generator, you can set
the number of exemplars.

What’s the standard naming convention?

All components on the breadboard must have distinct names. NeuroSolutions provides default names, which
can be viewed or changed in the Inspector’s "Engine" property page. The standard naming convention is a
set of suggested names for components based on their place and function within the network. The
suggested names can be found in the on-line help index under "naming".

Why should I name my components according to the standard convention?

Following the standard naming convention means that you can use the same macros with any network, and
that weight files and generated code will be easier to read.

File Management
How do I feed a test set through the network?

First, go to the "File List" property page of the input file, click "Add…", and choose your test set. When the
"Associate File" panel appears, choose "Testing" under the "Data Sets" list. If your test set has an
associated desired file and you want to view error information, repeat the above steps for the desired file.
Then, go to the "Static" property page of the forward controller, and choose "Testing" in the "Active Data
Set" pull down menu. This automatically turns off learning. From the "Access" property page of the output
probe, switch the "Access Data Set" to "Testing". You may then run the test set.

How do I split a file into a training set and a test set?

Add the file as usual from the File List property page of the File Inspector. It will be added as a
Training data set by default. Click "Customize…" and then, within the "Data Segmentation" area
of the resulting pop-up window, click the "Segment" box, and choose the offset and duration of
the Training set. Then add the same file to the Data Set list, but this time as a test set (see the
previous question). With the Testing file highlighted in the Data Set list, click "Customize…"
again, and then the "Segment" box, and set the offset and duration to a different region of the file.
These procedures must be applied to both the input and desired files. In addition, make sure you
change your probe’s Access Data Set (see question H.2).

Note that this technique can only be used to split files into contiguous regions. To split a file
randomly, use NeuroSolutions for Excel, or some other external pre-processor.

How can I train a network to do prediction of a data set without using multiple files?

Add the input file as usual from the File List property page of the File Inspector. Click
"Customize…" and then, within the "Data Segmentation" area of the resulting pop-up window,

 50

click the "Segment" box. Leave the offset at zero. If you are predicting P steps in advance, and
your file has N exemplars, enter the difference N-P as the duration. Then add the desired file and
click "Customize…". Click the "Segment" box and enter P as the offset and the difference N-P as
the duration.

This process of setting up prediction is much simpler in the NeuralBuilder. Consider using it if
your network is one of the default architectures it constructs.

What is the normalization file?

NeuroSolutions can scale and shift your data so that it fits in any range. This can be set from the "Stream"
property page of the File Inspector. The normalization file is where NeuroSolutions stores the scale and bias
parameters. You can view, select, and resave the normalization file under a different name from the "Data
Sets" property page.

How do I denormalize the network output?

Place a probe on the network output, and go to the "Probe" property page, and check the box "Denormalize
from Normalization File". Then choose the file that is used to normalize the desired output.

What is the meaning of the various NeuroSolutions extensions?

The extension "nsb" indicates a breadboard, "nsm" is for a macro, "nsn" is used for a
normalization file, and "nsw" indicates a weight file.

Running Networks
Why doesn’t anything happen when I hit the Start button?

NeuroSolutions now keeps track of the total number of epochs trained. After a training run, if you wish to
continue training, you must increase the epochs in the "Static" property page of the forward controller, or
reset the network and start over.

When using a test data set, why don’t I see anything happening in the probes?

All probes have an access property page, where you can set the "Access Data Set", through a pull-
down menu, to "All", "Cross-Validation", "Training", or "Testing". The default setting is
"Training", and thus you need to set it to either "All" or "Testing".

If I "fix" a component’s weights in the "Soma" property page, are they permanently frozen?

No, fixing a component’s weights simply means that they can’t be randomized. The component can,
however, still learn and improve its weight estimates.

How can I freeze a component’s weights while allowing others to learn?

For supervised components, set the associated gradient descent component’s learning rate to zero.
For unsupervised components, set the learning rate of the component itself to zero.

What’s the difference between randomize and jog in the control panel?

Randomize alters the weights according to a uniform distribution with the given mean and range.
Jog alters the weights around their current value, using the given range. Jog can be useful during
training to nudge a network out of a local minima.

 51

Terms to Know
Main Window

From the Start menu of Windows (the lower-left corner of your screen), select "Programs" then
"NeuroSolutions 4". The icon represents the NeuroSolutions program. Double-click on this icon
to begin or click the following shortcut to run NeuroSolutions.

Once the program is launched you will see the main window of NeuroSolutions. The top of the
window contains the main menus. These are used to issue commands to the program. The icons
just below the menus are the toolbars. These buttons are shortcuts to the menu commands. The
icons at the bottom of the main window represent neural components. All NeuroSolutions
components are grouped into families and reside on palettes, which are very similar to toolbars.
The sub-windows are referred to as the breadboards. These are the NeuroSolutions "documents"
and it is where the network construction and simulations take place. This multi-document interface
(MDI) allows you to run multiple simulations simultaneously.

 52

The NeuroSolutions Main Window

Inspector

The Inspector is a window that is used to view and modify the parameters of the selected
component(s) on the breadboard. Within the Inspector are multiple property pages, each page
containing a different set of parameters. The pages are selected by clicking on the labeled tabs at
the top of the Inspector window. To display the inspector window, select Inspector item of the View
menu, or right-click on the component (to bring up the Component menu) and select the Properties
item.

 53

Axon Inspector

Breadboards

From the File menu select the New item. The blank window that appears is referred to as a
breadboard. This is a simulation "document", similar to a document in your word processing
program. The breadboard contains all of the information that defines an experiment. When the
breadboard is saved to disk, all of the components, connections, parameters and (optionally)
weights are stored.

The breadboard is where the network construction and simulation takes place. Networks can be
automatically constructed using the NeuralBuilder utility or they can be built from scratch by
selecting components from palettes and stamping them on a breadboard. Note that networks
constructed with the NeuralBuilder can later be customized by removing components and/or adding
new ones from the palettes.

Multiple breadboards can be opened at one time, allowing you to run multiple simulations
simultaneously. To select between the breadboards you can click on the breadboard window (if it is
not hidden), or use the Window menu. To maximize a breadboard to fill the entire workspace,
simply double-click on the title bar of the breadboard window.

Breadboard containing a MLP

 54

Neural Components

Each neural component encapsulates the functionality of a particular piece of a neural network. A
working neural network simulation requires the interconnection of many different components.

As mentioned above, the NeuralBuilder utility automates the construction process of many popular
neural networks. There may be times when you will want to create a network from scratch, or to
add components to a network created by the NeuralBuilder. This is done by selecting components
from palettes and stamping them onto the breadboard.

Axon component

Toolbars and Palettes

Both the toolbars and palettes are control bars that can be positioned anywhere on the screen.
These control bars are also dockable, meaning that they have the ability to be attached or "docked"
along any edge of the main window.

Both the toolbars and palettes have a feature called tooltips. On palettes, tooltips display the name
of an icon’s component. To activate the tooltip for an icon, simply hold the mouse cursor over the
icon for a couple of seconds.

Axon Palette

The Customize Toolbars Page is used to toggle the visibility of toolbars. This feature is available so
that only the palettes and toolbars used most often occupy the screen area. This page also allows
you to switch between large and small buttons (the sample toolbar shown above contains small
buttons). The contents of the toolbars is fully customizable within the Customize Buttons Page.

 See Also

Selection and Stamping Modes

 55

The default operating mode of the NeuroSolutions main window is the Selection mode. The
Selection mode is required in order to move and select components on the breadboard. The
Stamping mode is used to select new components from palettes and stamp them onto the
breadboard.

Once a component is selected from a palette (by pressing the corresponding palette button), the
program switches to Stamping mode. When the cursor is placed over a valid location on the
breadboard, the mouse cursor will change from an arrow to a white stamp. At this point, pressing
either the left or right mouse button will create a new component of the selected type and place it
on the breadboard at the location of the cursor. By using the left mouse button, the program will
return to Selection mode after the component is stamped. The right mouse button will leave the
program in Stamping mode.

If your cursor changes to a gray stamp, this means you are in replacement mode. Clicking the left
mouse button will replace the component on the breadboard with the one selected from the palette.

 See Also

Temporary License

There may be cases when you would like to run simulations of sophisticated networks on multiple
machines, but you do not want to have to purchase a high-end license for each machine. The
temporary license feature of NeuroSolutions offers a viable alternative.

Suppose you have purchased one copy of the Developers version and five copies of the Educator.
You have used the Developers version to build an elaborate neural network and you would like to
run simulations using this topology on the other five machines. Once you copy the breadboard to
those machines, the networks will run just as if they were licensed for the Developers version.
However, there are two restrictions: 1) you cannot modify the topology, and 2) the breadboard
expires after 30 days. The temporary license can be renewed by re-saving the breadboard using
the Developers version.

Menus & Toolbars
File Menu & Toolbar Commands

Description:

The "File" menu pertains to the NeuroSolutions documents, otherwise referred to as breadboards.
Open this toolbar segment by selecting "System" from the "Toolbars" menu.

Menu/Toolbar Commands:

 56

 New

Creates a new breadboard (document) and opens it as a separate window.

 Open

Opens an existing breadboard (document) as a separate window. The file is specified using the File
Open dialog box.

 Close

Closes the active breadboard (document). If there have been any changes to the breadboard since the
last save then you will be given the option to save the breadboard before closing.

 Save

Use this command to save the active document to its current name and directory. When you save a
document for the first time, NeuroSolutions displays the Save As dialog box so you can name your
document. If you want to change the name and directory of an existing document before you save it,
choose the "Save As" command (see below).

 Save As

Use this command to save and name the active document. NeuroSolutions displays the Save As
dialog box so you can name your document.

 Recent Files

Use the numbers and filenames listed at the bottom of the File menu to open the last four documents
you closed. Choose the number that corresponds with the document you want to open.

 Exit

Ends your NeuroSolutions session. You can also use the Close button () of the NeuroSolutions
main window. You will be prompted to save documents with unsaved changes.

Edit Menu & Toolbar Commands

Description:

The "Edit" menu contains commands for manipulating the components on the breadboard. Open
this toolbar segment by selecting "System" from the "Toolbars" menu.

Menu/Toolbar Commands:

 57

 Undo

Reverses the most recent change to the breadboard. To return the breadboard its original state, issue
the Undo command a second time.

 Cut

Removes the currently selected components from the breadboard and puts them on the clipboard.
This command is unavailable if there are no components currently selected. Cutting data to the
clipboard replaces the contents previously stored there.

 Copy

Copies the currently selected components onto the clipboard. This command is unavailable if there are
no components currently selected. Copying data to the clipboard replaces the contents previously
stored there.

 Paste

Inserts a copy of the clipboard contents at the insertion point. This command is unavailable if the
clipboard is empty or if a valid insertion point has not been selected.

 Delete

Removes the currently selected components from the breadboard. This command is unavailable if
there are no components currently selected.

 Copy to File

Copies the currently selected components to the selected Clipboard file (*.nsc). This command is
unavailable if there are no components currently selected.

 Paste from File

Inserts the contents of the selected Clipboard file (*.nsc) at the insertion point. This command is
unavailable if the clipboard is empty or if a valid insertion point has not been selected.

 Selection Cursor

Use this command to switch the cursor from the stamping mode to the selection mode.

Alignment Menu & Toolbar Commands

 58

Description:

This toolbar is used for arranging the components on the breadboard. Open this toolbar by
selecting "Alignment" from the "Toolbars" menu. These alignment commands can also be found
under the "Alignment" menu.

Menu/Toolbar Commands:

 Align Left

Moves the selected components so that the left borders all have the same x coordinate on the
breadboard.

 Align Right

Moves the selected components so that the right borders all have the same x coordinate on the
breadboard.

 Align Top

Moves the selected components so that the top borders all have the same y coordinate on the
breadboard.

 Align Bottom

Moves the selected components so that the bottom borders all have the same y coordinate on the
breadboard.

 Space Across

Distributes the selected components within the horizon tal space between the left-most selected
component and the right-most selected component.

 Space Down

Distributes the selected components within the vertical space between the top selected component
and the bottom selected component.

 Center Horizontal

Moves the selected components horizontally to the center of the visible portion of the breadboard.

 Center Vertical

Moves the selected components vertically to the center of the visible portion of the breadboard.

 Center Objects

Moves the selected components so that their centers all have the same x coordinate on the
breadboard.

 Bring To Front

 59

Moves selected component in front of any other components sharing the same space.

 Send To Back

Moves selected component behind any other components sharing the same space.

Windows Menu & Toolbar Commands

Description:

The "Windows" menu contains commands for manipulating the breadboard (document) windows.

Menu/Toolbar Commands:

 New Window

Opens a new window with the same contents as the active window. This feature allows you to
view/modify two sections of the same breadboard at once.

 Cascade

Displays all breadboards in windows that do overlap.

 Tile

Displays all breadboards in windows that do not overlap.

 Arrange Icons

Arranges the minimized versions of the windows along the bottom of the application workspace.

 Currently Open Breadboards

Activates the window of the selected breadboard.

Component Menu

The component menu is used to issue commands specific to a particular component or group of
components. To issue a command for an individual component on the breadboard, click the right
mouse button while the cursor is on top of the component and select the menu item for the
command. To issue a command for a group of components, you must first select the components
(see Logic of the Interface) before right-clicking to display the menu.

Menu Item Description

 60

Properties Displays the inspector window, which is used to
view/modify the component’s parameters.

Connect to Connects the previously selected component to
the selected component.

Cut See Edit Menu

Copy See Edit Menu

Paste See Edit Menu

Delete Removes the selected component(s) from the
breadboard.

Copy to File Writes the selected component(s) to a user-
specified clipboard (*.nsc) file.

Paste from File Pastes the component(s) stored in a user-
specified clipboard file (*.nsc) onto the
breadboard.

Insert New
Object

Displays a list of object types available on your
system. Once a type is selected, the appropriate
OLE-compliant application will be launched and a
new object of that type will be embedded into the
NeuroSolutions breadboard.

Tools

Tools Menu Commands

Description:

The "Tools" menu contains macro and control commands. It also provides short cuts to wizard
programs such as the NeuralBuilder.

Menu/Toolbar Commands:

 NeuralBuilder

Launches the NeuralBuilder neural network construction utility. The user steps through a series of
panels to specify the topology, input data, learning parameters and probing. The network is then
constructed and ready for simulations.

 NSForExcel

Launches NeuroSolutions for Excel. This Excel add-in can be used in conjunction with any level of
NeuroSolutions to simplify and enhance the process of getting data in and out of the network. Both
NeuroSolutions for Excel and Microsoft Excel must be installed in order for this toolbar button to
function.

 CustomSolutionWizard

 61

Launches the Custom Solution Wizard. This utility will take any neural network created with
NeuroSolutions and automatically generate and compile a Dynamic Link Library (DLL) for that
network, which you can then embed into your own application. The Custom Solution Wizard must be
installed in order for this toolbar button to function.

 NeuralExpert

Launches the NeuralExpert neural network contruction utility. This is similar to the NeuralBuilder, but it
is much simpler to use. It asks the user a series of questions about their problem and then intelligently
builds a neural network based on the size and type of problem specified.

 TestingWizard

Launches the TestingWizard. This utility provides an easy way to produce the network output for a
new dataset once the training phase has been completed. The network output can be displayed within
a window or saved to a file.

 MacroWizard

Opens the MacroWizard Window.

 Record Macro

See Macro Menu & Toolbar Commands.

 Control

See Control Menu & Toolbar Commands.

 Customize

See Customize Toolbars Page.

 Options

See Options Window.

 Add

Opens a file selection panel to select an executable file. A menu cell is created that when selected will
execute this file.

 Remove

Opens a panel listing the user-defined tools. Select from this list to remove one of the tools from the
Tools menu.

Control Menu & Toolbar Commands

 62

Description:

This toolbar allows you to perform global data flow operations on the network. Open this toolbar by
selecting "Control" from the "Toolbars" menu. These control commands can also be found within
the "Tools" menu.

Toolbar Commands:

 Start

Begins an experiment defined by the Control component on the breadboard. If this button is disabled,
then the experiment has run to completion and the network must either be reset (see below) or the
epochs must be increased (see the Static property page).

 Pause

Pauses the simulation after finishing the current epoch.

 Reset

Resets the experiment by resetting the epoch and exemplar counters, and randomizing the network
weights. Note that when the Learning switch from the Static property page is off, the weights are not
randomized when the network is reset

 Zero Counters

Sets the Epoch and Exemplar counters to zero without resetting the network.

 Step Epoch

Runs the simulation for one epoch.

 Step Exemplar

Runs the simulation for one exemplar.

 Randomize

Randomizes the network weights. The mean and variance of the randomization is defined within the
Soma property page of each component that has adaptable weights.

 Jog

Alters all network weights by a random value. The variance of the randomization is defined within the
Soma property page of each component that has adaptable weights.

 Hide Windows

When this button is selected (pressed down), all display windows are hidden from view. When the
button is de-selected (popped up), the display windows are restored to their original state.

 63

 See Also

Macro Menu & Toolbar Commands

Description:

This toolbar is used to issue commands associated with the MacroWizard. Open this toolbar by
selecting "Macro" from the "Toolbars" menu. These macro commands can also be found within the
"Tools" menu.

Toolbar Commands:

 MacroWizard

Displays the MacroWizard window.

 Record New

Opens a panel for entering a macro name, creates a new macro with the specified name, and begins
recording the macro.

 Stop

Stops the macro recording process and displays the MacroWizard Edit Page.

 Pause

Pauses the macro recording process. Press the button again to resume recording.

Customize Toolbars Page

A palette contains a group of neural components belonging to the same family. A toolbar contains
shortcut buttons to the various menu commands. The Customize Toolbars page allows you to
toggle the visibility of the various palettes and toolbars, as well as adding new ones and
customizing the appearance.

 64

Component Palettes
Menu Item Description

Axon Contains the processing elements (PEs) and
activation functions of the network.

Backprop Backpropagation components, which
backpropagate the error through the network and
compute weight gradients.

Controls Control the data flow of the network.

Dialog Text boxes, edit cells and buttons.

ErrorCriteria Produce a measure of error based on the output
and desired signal of the network.

GradientSearch Updates the weights of the network based on first
order gradient information.

Input Bring data into the network, either by generating it
or by reading it from the file system.

MemoryAxon Axons that store information over time.

Probes Graph the parameters and data contained within
the network.

Schedule Components that modify the network’s
parameters during an experiment.

 65

Synapse Connect axons together and contain the weights
of the network.

Transmitter Transmit data and control messages from one
component to another.

Unsupervised
Family

Synapses whose weights are updated based on
unsupervised learning rules.

Command Toolbars
Menu Item Description

Alignment Commands used to align components on the
breadboard.

Control Commands used to control the simulation.

Macro Commands used to record and manipulate
macros.

Necessities The most commonly used commands taken from
several toolbars.

System Commands that are common to most Windows
programs.

Tools Shortcuts to wizards and related programs.

Options:

Show Tooltips

This feature will display the full name of the command/component when the cursor is placed over
the toolbar/palette button.
Cool Look

This feature diplays the toolbar/palette button in 3-D only when the cursor is placed over it.
Large Buttons

Displays a larger version of the toolbar/palette buttons, which includes the names of the
commands/components.

See also Customize Buttons Page

Customize Buttons Page

The Customize Buttons page allows you to select which tool buttons should be displayed on each
toolbar.

 66

To add a button to a toolbar/palette, select the category of the command/component and then drag
the desired button to the location in the toolbar/palette that you would like it displayed. Note: You
must drag the button to the actual toolbar/palette -- not to the category list.

To remove a button, simply drag the button from the toolbar/palette to an emply place on the
screen (while the Customize Buttons page is displayed).

See also Customize Toolbars Page

View

View Menu

This menu is used to toggle the visibility of the selected toolbar or window.
Menu Item Description

Custom Macro
Bars

Commands that are defined with user-defined
macros. The default installation includes a set of
sample macro bars.

 67

Status Bar Section of the main window that indicates the
current state of the system.

Inspector Window to view/modify the component
parameters.

Console Window that displays the log of error and
diagnostic messages.

New Macro Bar Creates a blank Macro Bar with the user-specified
name.

Macro Bars

Macros can be run from the MacroWizard, a MacroEngine or a Macro Bar. Macro bars allow you to
easily run macros directly from the main window of NeuroSolutions. Simply clicking a button on a
macro bar will run the associated Macro.

To create a new macro bar, select "New Macro Bar…" from the View Menu and enter a name for
the bar. A new macro bar with a blank button should appear. Right-click on this bar to configure the
buttons. Left-click on a button while holding down the shift key to move the button within the
toolbar.

Macro Bar Commands (right-click to display menu):
Add Button

Adds a blank button to the macro bar.
Delete Button

Deletes the selected button from the macro bar.
Name Button

Opens a dialog box for entering the name of the selected button.
Assign Macro

Opens a file selected panel for selecting the macro file (*.nsm) to associate with the button.
Edit Macro

Opens the MacroWizard Edit Page with the associated macro loaded.
Delete Macro Bar

Deletes the macro bar and removes its entry from the View Menu.

The default installation of NeuroSolutions includes three macro bars, which can be found at the top
of the View Menu. Below is a summary of the default macros.

 68

Common Macros
Macro Description

Confusion Configures the network to display a confusion
matrix (see also the Confusion Matrix DLL
Example).

Discrim. Configures the network to display a discriminant
function (see also the Discriminant Function DLL
Example).

Reset-Run Resets and Runs the network.

Test Net Configures the network for testing and runs the
simulation for one epoch.

Train Net Configures the network for training and runs the
simulation for the number of epochs defined
within the Static Inspector.

Build MLP Builds a multi-layer perception. Note that the data
files need to be added to the File Inspector.

Probe Manipulation
Macro Description

BarChart Replaces the existing training probes with the
BarChart.

DataWriter Replaces the existing training probes with the
DataWriter.

MatrixView Replaces the existing training probes with the
MatrixViewer.

Cross Val Configures the existing training probes to access
the Cross Validation data set (see the Access
inspector).

Training Configures the existing training probes to access
the Training data set (see the Access inspector).

Testing Configures the existing training probes to access
the Testing data set (see the Access inspector).

Custom Dialogs
Macro Description

Epoch Creates a DialogEngine component that can be
used to enter the training epochs directly on the
breadboard.

Layer1 PEs Creates a DialogEngine component that can be
used to enter the number of PEs in the first
hidden layer.

 69

Layer1 Mom. Creates a DialogEngine component that can be
used to enter the momentum of the first hidden
layer.

Layer1 Step Creates a DialogEngine component that can be
used to enter the step size of the first hidden
layer.

Output Mom. Creates a DialogEngine component that can be
used to enter the momentum of the output layer.

Output Step Creates a DialogEngine component that can be
used to enter the step size of the output layer.

Status Bar

The status bar is displayed at the bottom of the NeuroSolutions window. To display or hide the
status bar, select the "Status Bar" item within the View Menu.

The left side of the status bar describes the action in progress or the action associated with the
current cursor position. The right areas of the status bar indicate which of the following keys are
latched down:

Indicator Description

CAP The Caps Lock key is latched down.

NUM The Num Lock key is latched down.

SCRL The Scroll Lock key is latched down.

Help

Help Menu & Toolbar Commands

Description:

 70

The "Help" menu contains commands for displaying the on-line help, the about panel, and the
demos.

Menu/Toolbar Commands:

 NeuroSolutions Help

Displays the main window for the on-line help system. From there you can find the documentation by
the table of contents, keyword index, or content search.

 Context Help

When you click this toolbar button or menu item, the mouse cursor will change to an arrow and
question mark. Click somewhere inside one of the windows of NeuroSolutions and the help topic will
be shown for that specific item.

 Getting Started Manual

This is the online version of the printed manual that comes with all licensed copies of NeuroSolutions.
It is recommended that new users read this manual before reading the main NeuroSolutions Help.

 About NeuroSolutions

Display the copyright notice and version number of your copy of NeuroSolutions.

 Demos

Use this command to run the NeuroSolutions Demo. This will show a panel that contains a number of
macros that demonstrate some of the capabilities of the program. Once an example is complete, the
breadboard can be modified and additional experiments can be run.

 Interactive Book

Opens the introductory chapter of an electronic book entitled Neural Systems: Fundamentals Through
Simulations by Principe, Lefebvre, and Euliano. Please visit the Interactive Book page of the
NeuroDimension web site for more information on the entire publication.

 Open ND Web Page

Opens the home page of NeuroDimension (http://www.nd.com) using the default browser.

 Technical Support

Opens the Tech Support Help Page.

 Activate Software

Opens the Activate Software Panel, which displays the serial number for your installation and allows
you to enter in the activation codes needed to upgrade the software from the evaluation level to the
level you have purchased.

 71

Activate Software Panel

This panel displays the serial number for your installation and allows you to enter in the activation
codes needed to upgrade the software from the evaluation level to the level you have purchased.
Serial Number

This is the number that the system automatically assigned to your installation of NeuroSolutions.
You will need this number to obtain the activation code(s) from the Licensed Users section of the
NeuroDimension web site.
NeuroSolutions

Use this text box to enter in the activation code for the level of NeuroSolutions you purchased. This
code can be obtained from the Licensed Users section of the NeuroDimension web site.

NeuroSolutions for Excel

Use this text box to enter in the activation code for NeuroSolutions for Excel if you purchased this
product. This code can be obtained from the Licensed Users section of the NeuroDimension web
site.

Custom Solution Wizard

 72

Use this text box to enter in the activation code for the Custom Solution Wizard if you purchased
this product. This code can be obtained from the Licensed Users section of the NeuroDimension
web site.
Activate

Once you have entered in the activation codes for the products you purchased, click this button to
save these codes. If the codes are correct, the software will be activated to the proper level. To
verify the level is correct, select "About NeuroSolutions" from the NeuroSolutions Help menu.

User Options
Options Window

This window is used to view/modify the user preference settings. These settings are stored in the
file "NeuroSolutions.ini" located within the Windows directory.
OK

Saves all changes and closes the window.
Cancel

Closes the window and discards all changes that have not yet been applied.
Apply

Saves all changes and keeps the window open.
Help

Displays the on-line help for the selected options page.

 See Also

Options Workspace Page

 73

This page relates to the components and documents.

Animation Speed

Adjusts the speed at which the components are painted on the screen. A slower setting will yield a
smoother, yet slower, animation effect.
Open Previous Docs.

Automatically opens the breadboards that were last opened whenever NeuroSolutions is first
launched.
Prompt to change PEs

When two axons are connected together, their dimensions (number of processing elements) must
match. If this box is checked and the dimensions of one of two connected axons are changed, a
dialog box will open asking if you want to make the same change to the other axon. If this box is
not checked then this change is made automatically.

 See Also

Options Save Page

 74

This page relates to the saving of files to the file system.

Autosave

Saves a backup copy of all open breadboards every x number of minutes, where x is specified in
the corresponding edit cell. The backup files have a ".auto" extension appended to their names.
Save before Run

Saves the breadboard whenever a simulation starts.
Backup on Save

When a breadboard is saved it first copies the previously saved breadboard to a backup file. The
backup files have a ".back" extension appended to their names.
Data Directory

This is the directory used to store all data files associated with the breadboards. If this directory is
blank, then the data files will be stored in the same directory as their corresponding breadboards.
Temp Directory

The input components often use a temp directory to store temporary files. When one copy of
NeuroSolutions is shared over a network, it is recommended that each machine have a unique
temp directory.
DLL Directory

The directory used to store user-defined DLLs.
Book Path

 75

The directory where the Interactive Book files are stored. If you purchased this product then this
directory should be on your CD-ROM drive. Otherwise, this directory will be a sub-directory of your
NeuroSolutions installation and will contain only the files for the first chapter.

 See Also

Examples
Example 1 - Toolbar Manipulation

The figure below shows the default toolbar. Try moving this toolbar by beginning a drag operation
with the mouse cursor just to the right of the right-most button. Drag the toolbar to the center of the
main window and release. This toolbar is no longer attached to the main window. Try moving the
main window to verify this.

Default Toolbar

Now drag the toolbar to the right border of the main window. As you drag the toolbar across, you
should see the border change from a horizontal orientation to a vertical one. At this point, release
the mouse button. The toolbar should now be docked on the right side of the main window. Both
toolbars and palettes can be docked at any of the four borders of the main window.

Move the mouse cursor to the button with the button labeled "NBuilder". After leaving it there for
about a half of a second, a small yellow box with the text "NeuralBuilder" will appear. This is the
button’s tooltip.

Select "Customize" within the Tools menu to view the list of available palettes. Click on the Axon
check box to display the Axon palette. You may move this palette as described above.

 See Also

Example 2 - Component Manipulation

During the previous example you displayed the Axon palette. Select the left-most (or top-most if the
palette is arranged vertically) button on this palette. You have now selected the Axon component.
Move the mouse cursor over the breadboard and click the left mouse button. This should have
placed an Axon component on the breadboard. From the Probes palette, select the left-most (or
top-most) button. Now move the mouse cursor over the Axon on the breadboard and click the left
mouse button. You have now placed a MatrixViewer probe on the Axon. At this point there is little

 76

to probe since you are missing key elements of the network. This exercise is only intended to be a
brief introduction to component manipulation.

MatrixViewer attached to an Axon.

 See Also

Example 3 - Inspecting a Component's Parameters

During the previous example you placed an Axon and a MatrixViewer on the breadboard. If you
stamped the MatrixViewer using the right mouse button, then you are still in Stamping mode. If this
is the case, you will first need to click the following button from the System toolbar:

Selection Cursor toolbar button

This changes the mouse cursor from Stamping mode to Selection mode. Now when you click the
mouse on the breadboard, you will not stamp a new component as you did earlier. Move the mouse
over the Axon on the breadboard and single-click. A square should appear around the Axon to
indicate that this component is selected.

From the View menu, select the Inspector item. This should display the Inspector window
containing the parameter settings for the Axon component that you just selected. Click the tab
buttons at the top of the Inspector window to switch between the three property pages of the Axon.
From the breadboard, single click on the MatrixViewer’s icon to make it the selected component.
Note that the Inspector has been updated to reflect the parameter settings of the MatrixViewer
component.

 77

Axon Inspector

Double-click on the MatrixViewer’s icon to open its display window. This shows the current value of
the Axon’s single processing element.

If the Help toolbar button is enabled, click on it to switch to the Context-Sensitive Help mode.
Click on the MatrixViewer’s icon to display the on-line help for this component. Return to the
Context-Sensitive Help mode and click on the current property page within the Inspector window.
Note that if you click on a different property page, then a different section of the help will be
displayed. Repeat the process for the display window of the MatrixViewer, as well as the
MatrixViewer’s button on the palette. This should give you an appreciation for the powerful on-line
help facility. Context-Sensitive help is available for most components, inspectors, toolbars and
display windows.

 See Also

Simulations
Simulations

NeuroSolutions

NeuroDimension, Incorporated.

Gainesville, Florida

 78

Purpose

This chapter describes general principles useful in simulating neural networks, and motivates the
step by step procedure utilized later in the Manual. After reading this chapter, the user should have
a better understanding of the power of neural networks and how they can be effectively used to
solve real world problems.

Introduction to Neural Network Simulations
What Are Artificial Neural Networks

Before delving into the solution of real world problems using neural networks, a definition of neural
networks will be presented. It is important to know the conditions under which this style of problem
solving excels and what its limitations are.

At the core of neural computation are the concepts of distributed, adaptive and nonlinear
computing. Neural networks perform computation in a very different way than conventional
computers, where a single central processing unit sequentially dictates every piece of the action.
Neural networks are built from a large number of very simple processing elements that individually
deal with pieces of a big problem. A processing element (PE) simply multiplies an input by a set of
weights, and nonlinearly transforms the result into an output value (table lookup). The principles of
computation at the PE level are deceptively simple. The power of neural computation comes from
the massive interconnection among the PEs, which share the load of the overall processing task,
and from the adaptive nature of the parameters (weights) that interconnect the PEs.

Normally, a neural network will have several layers of PEs. This chapter only covers the most basic
feedforward architecture, the multilayer perceptron (MLP). Other feedforward architectures as well
as those with recurrent connections are addressed in the Tutorials chapter.

The diagram below illustrates a simple MLP. The circles are the PEs arranged in layers. The left
column is the input layer, the middle column is the hidden layer, and the right column is the output
layer. The lines represent weighted connections (i.e., a scaling factor) between PEs.

A simple multilayer perceptron

By adapting its weights, the neural network works towards an optimal solution based on a
measurement of its performance. For supervised learning, the performance is explicitly measured

 79

in terms of a desired signal and an error criterion. For the unsupervised case, the performance is
implicitly measured in terms of a learning law and topology constraints.

A Prototype Problem

Sleep staging is a quantitative measure to evaluate sleep. Sleep disorders are becoming quite
common, probably due to the stress of modern living. Sleep is not a uniform process. The brain
goes through well defined patterns of activity that have been catalogued by researchers. Insomnia
is a disruption of this normal pattern, and can be diagnosed by analyzing sleep patterns. Normally
these patterns are divided into five stages plus awake (sleep stage 0). Sleep staging is a time
consuming and extremely expensive task, because the expert must score every minute of a
multichannel tracing (1,200 feet of paper) recorded during the whole night. For these reasons, there
is great interest in automating this procedure.

In order to score sleep automatically, it is necessary to measure specific waveforms in the brain
(alpha, beta, sigma spindles, delta, theta waves) along with additional indicators (two rapid eye
movements -- REM 1 and 2, and muscle artifact).

This example illustrates the type of problem that is best solved by a neural network. After much
training the human expert is able to classify the sleep stages based on the input signals, but it
would be impossible for that person to come up with an algorithm to automate the process. A
neural network is able to perform such a classification by extracting information from the data,
without any prior knowledge.

The table below shows a segment of the brain wave sensor data. The first column contains the
time, in minutes, of each reading, and the next eight columns contain the eight sensor readings.
The last column is the sleep stage, scored by the sleep researcher, for each minute of the
experiment.

Sleep Staging Data

Min ? ? ? ? ? MA REM 1 REM 2 Stage

37 0 0 25 1 16 0 6 0 1

38 0 0 25 2 14 0 1 0 1

39 0 0 29 3 13 0 4 0 2

40 0 0 29 1 8 0 5 0 1

41 0 0 32 2 8 0 2 0 0

42 0 0 29 1 8 0 1 1 1

The problem is to find the best mapping from the input patterns (the eight sensors) to the desired
response (one of six sleep stages). The neural network will produce from each set of inputs a set of
outputs. Given a random set of initial weights, the outputs of the network will be very different from
the desired classifications. As the network is trained, the weights of the system are continually
adjusted to incrementally reduce the difference between the output of the system and the desired
response. This difference is referred to as the error and can be measured in different ways. The
most common measurement is the mean squared error (MSE). The MSE is the average of the
squares of the difference between each output PE and the true sleep stage (desired output).

 80

This simple example illustrates the basic ingredients required in neural computation. The network
requires input data and a desired response to each input. The more data presented to the network,
the better its performance will be. Neural networks take this input-output data, apply a learning rule
and extract information from the data. Unlike other technologies that try to model the problem,
artificial neural networks (ANNs) learn from the input data and the error. The network tries to adjust
the weights to minimize the error. Therefore, the weights embody all of the information extracted
during learning.

Essential to this learning process is the repeated presentation of the input-output patterns. If the
weights change too fast, the conditions previously learned will be rapidly forgotten. If the weights
change too slowly, it will take a long time to learn complicated input-output relations. The rate of
learning is problem dependent and must be judiciously chosen.

Each PE in the ANN will simply produce a nonlinear weighted sum of inputs. A good network output
(i.e. a response with small error) is the right combinations of each individual PE response. Learning
seeks to find this combination. In so doing, the network is discovering patterns in the input data that
can solve the problem.

It is interesting that these basic principles are very similar to the ones used by biological
intelligence. Information is gained and structured from experience, without explicit formulation. This
is one of the exciting aspects of neural computation. These are probably the same principles
utilized by evolution to construct intelligent beings. Like biological systems, ANNs can solve difficult
problems that are not mathematically formulated. The systematic application of the learning rule
guides the system to find the best possible solution.

Ingredients of a Simulation
Formulation of the problem

As in the example given, one needs a well defined problem domain. In our everyday life we are
bombarded with situations so complex that we do not have analytical ways to solve them. Some
examples are: the best way to invest your money in a diversified portfolio, the prediction of your
company’s next quarterly sales, repairs to your car which maximize its commercial value, who is
going to win the football game. Note that in each one of these cases, there is a clearly defined
problem. Once you have a crisp definition, the next step is to select the input variables and the
desired responses. Here you always use common sense to select the variables that are relevant for
the problem. As an example, using your birthday to forecast the weather is probably not a valuable
variable. One should seek variables and conditions that appear relevant to the problem being
analyzed. One should also seek data that cover a wide spectrum of cases. If the ANN does not see
an equilibrated set of cases, its output will be ‘biased’. Since ANNs learn from the data, the data
must be valid for the results to be meaningful.

Sometimes the desired response is unknown. For instance, what is the desired response for a
stock prediction problem? Everyday there is a stock price, so the history of the prices can be used
as a basis for making a prediction. If the network can do this reliably for every day in the past, then
it may also be able to predict tomorrow’s stock price.

NeuroSolutions implements the basic building blocks of neural computation, such as multi-layer
perceptrons, Jordan and Elman networks, radial basis function (also called probabilistic) networks,
principal component analysis networks, self-organizing feature map networks, and time-lagged
recurrent networks. With these neural models one can solve virtually any problem where a neural
network solution has been reported. See the on-line documentation of the NeuralBuilder for more
information on these models.

Data Collection and Coding

 81

Data collection is crucial for the training of neural networks. You have to make sure that your data
covers conditions that the network may encounter later. It is not only necessary to collect large data
sets, but also representative data sets. The Concepts chapter in this manual provides some
heuristics to find out if you have enough data to reliably train your network.

The next step is to get the data in computer readable format. Some data is already quantified and
readily available, such as financial market indicators. If the data is not in numeric format, you have
to decide a way to code the data into a numeric format. This may be challenging because there are
many ways to do it, and unfortunately some are better than others for neural network learning. See
the File component for a description of the facility provided for automatically coding non-numeric
data into numeric data. Spreadsheets are a good way to structure and save data. Once the data is
stored in a spreadsheet, a significant portion of the problem solution is already accomplished.

Once you have collected and coded your data, you must address the specifics of neural network
technology to effectively utilize the knowledge embedded in the input data and the desired
response. The following sections cover these specifics.

Getting Data into the Network

The input and desired response data that was collected and coded must be written to one of the
four file formats that NeuroSolutions accepts: ASCII, column-formatted ASCII, binary and bitmap
(bmp image). Column-formatted ASCII is the most commonly used, since it is directly exportable
from commercial spreadsheet programs.

Each column of a column-formatted ASCII file represents one channel of data (i.e., input into one
PE). Each channel may be used for the input, desired output, or may be ignored. The desired
response data can be written to the same file as the input data, or they can each be written to
separate files.

The first line (row) of the file should contain the column headings, and not actual data (See figure
below). Each group of spaces and/or tabs indicates a break in the columns. In order for the
program to detect the correct number of columns, the column headings must not contain spaces.

 82

Example of a column-formatted ASCII file

The remaining lines contain the individual samples of data. The data elements (values) are
separated by spaces and/or tabs. The number of data elements for each line must match the
number of column headings from the first line. The data elements can be either numeric or
symbolic. There is a facility to automatically convert symbolic data to numeric data.

The remaining three file types are simply read as a sequential stream of floating-point values. Non-
formatted ASCII files contain numeric value separated by tabs and/or spaces. Any non-numeric
values are simply ignored. Bitmap files can be either 16-color or 256-color. Each pixel of the image
is converted to a value from 0 to 1, based on its intensity level. Binary files contain raw data, such
that each 4-byte segment contains a floating-point value. Many numerical software packages
export their data to this type of format.

Cross Validation

During training, the input and desired data will be repeatedly presented to the network. As the
network learns, the error will drop towards zero. Lower error, however, does not always mean a
better network. It is possible to overtrain a network.

Cross validation is a highly recommended criterion for stopping the training of a network. Although
highly recommended, it is not required. One will often want to try several networks using just
training data in order to see which works best, and then use cross validation for the final training.

When using cross validation, the next step is to decide how to divide your data into a training set
and a validation set, also called the test set. The network is trained with the training set, and the
performance checked with the test set. The neural network will find the input-output map by
repeatedly analyzing the training set. This is called the network training phase. Most of the neural
network design effort is spent in the training phase. Training is normally slow because the
network’s weights are being updated based on the error information. At times, training will strain the
patience of the designer. But a carefully controlled training phase is indispensable for good
performance, so be patient. NeuroSolutions’ code was written to take maximum advantage of your
computer’s resources. Hardware accelerators for NeuroSolutions that are totally transparent to the
user are forthcoming.

There is a need to monitor how well the network is learning. One of the simplest methods is to
observe how the cost, which is the square difference between the network’s output and the desired
response, changes over training iterations. This graph of the output error versus iteration is called
the learning curve. The figure below shows a typical learning curve. Note that in principle the
learning curve decreases exponentially to zero or a small constant. One should be satisfied with a
small error. How small depends upon the situation, and your judgment must be used to find what
error value is appropriate for your problem. The training phase also holds the key to an accurate
solution, so the criterion to stop training must be very well delineated. The goal of the stop criterion
is to maximize the network’s generalization.

 83

Typical learning curve

It is relatively easy to adapt the weights in the training phase to provide a good solution to the
training data. However, the best test for a network’s performance is to apply data that it has not yet
seen. Take a stock prediction example. One can train the network to predict the next day’s stock
price using data from the previous year. This is the training data. But what is really needed is to use
the trained network to predict tomorrow’s price.

To test the network one must freeze the weights after the training phase and apply data that the
network has not seen before. If the training is successful and the network’s topology is correct, it
will apply its ‘past experience’ to this data and still produce a good solution. If this is the case, then
the network will be able to generalize based on the training set.

What is interesting is that a network with enough weights will always learn the training set better as
the number of iterations is increased. However, neural network researchers have found that this
decrease in the training set error was not always coupled to better performance in the test set.
When the network is trained too much, the network ‘memorizes’ the training patterns and does not
generalize well.

A practical way to find a point of better generalization is to set aside a small percentage (around
10%) of the training set and use it for cross validation. One should monitor the error in the training
set and the validation set. When the error in the validation set increases, the training should be
stopped because the point of best generalization has been reached. Cross validation is one of the
most powerful methods to stop the training. Other methods are discussed under Network Training.

Network Topology

After taking care of the data collection and organization of the training sets, one must select the
network’s topology. An understanding of the topology as a whole is needed before the number of
hidden layers and the number of PEs in each layer can be estimated. This discussion will focus on
multilayer perceptrons (MLPs) because they are the most common.

A multilayer perceptron with two hidden layers is a universal mapper. A universal mapper means
that if the number of PEs in each layer and the training time is not constrained, then
mathematicians can prove that the network has the power of solving any problem. This is a very
important result but it is only an existence proof, so it does not say how such networks can be
designed. The problem left to the experimentalist (like you) is to find out what is the right

 84

combination of PEs and layers to solve the problem with acceptable training times and
performance.

This result indicates that there is probably not a need for more than two layers. A common
recommendation is to start with a single hidden layer. In fact, unless you’re sure that the data is not
linearly separable, you may want to start without any hidden layers. The reason is that networks
train progressively slower when layers are added. It is just like tapping a stream of water. If you
take too much water in the first couple of taps there will be less and less water available for later
taps. In multilayer neural networks, one can think of the water as being the error generated at the
output of the network. This error is propagated back through the network to train the weights. It is
attenuated at each layer due to the nonlinearities. So if a topology with many layers is chosen, the
error to train the first layer’s weights will be very small. Hence training times can become
excruciatingly slow. As you may expect by the emphasis on training, training times are the
bottleneck in neural computation (it has been shown that training times grow exponentially with the
number of dimension of the network’s inputs), so all efforts should be made to make training easier.

This point has to be balanced with the processing purpose of the layers. Each layer increases the
discriminant power of the network. For instance, a network without hidden layers is only able to
solve classification problems where the classes can be separated by hyper-planes. The figure
below shows how this can be restrictive for a two-dimensional input space.

Comparison between linear and nonlinear separability

For completeness, the role of each PE in the network should also be addressed. These concepts
can be difficult to grasp, so do not be discouraged if it is unclear at first. NeuroSolutions provides
the option of hiding these low-level details. Therefore, understanding these concepts is not a
prerequisite to using this software.

Each PE is able to construct a linear discriminant function (i.e., a plane in many dimensions) in the
space of its inputs. So for a single hidden layer network, each PE is cutting the input space with a
plane. Points that are above the plane belong to one class, points that are below the plane belong
to the other class. The weights position the planes in the input space (i.e., they can rotate or
displace the planes) to best suit the classification task. The PEs for the other layers perform a
similar function, but now in the space defined by the hidden layer activations. The final input/output
map created by the neural network is a composition of all these planes. You may now see the
purpose of the number of PEs -- they give the network the possibility of fitting very complex
discriminant functions by compositions of piecewise linear approximations in successive spaces
(the input space, the first hidden layer space, etc.). The number of sections in each space is
approximated by the number of PEs. You can also appreciate how difficult it is to find the right
number of PEs. It has nothing to do with the size of the input space, but with the complexity of the
discriminant function needed to solve the problem. Since one normally does not have any idea as
to the shape of the discriminant function required to solve a difficult problem, it is impossible to
analytically (i.e., by a formula) set the number of PEs.

 85

Once again, some heuristics are needed. A base rule is to start small, and observe the behavior of
the learning curve. If the final training error is small, the number of PEs is probably appropriate. If
the final error is large, either the learning was caught in a local minima (See Network Training) or
the network does not have enough degrees of freedom to solve the problem, so you should
increase the number of PEs.

Is there a problem with having too many PEs in a neural network? Unfortunately the answer is yes.
Many PEs in a fully connected neural network means many weights. Neural network researchers
have shown that an excessive number of weights is the culprit for poor generalization. If the
network performance drops dramatically from the training set to the test set one of two things has
happened: either your training set is not representative of the problem domain, or you have
configured your network with too many weights. You can still train a large network appropriately,
but you will need a lot of training patterns. A good rule of thumb is that the number of weights
should be equal to the number of training patterns multiplied by the precision required for the
classification (in percentage), i.e.

where N is the number of patterns, W the number of weights and ε the classification error that you
desire. For instance for a 5% classification error a network with 1000 weights requires 20,000
patterns.

This illustrates an inherent problem with the MLP. The network needs a lot of PEs to classify
complex patterns, but these PEs will have many weights that require lots of training data to
generalize. The way out is to use data reduction techniques or special topologies (such as principal
component analysis, or self-organizing maps). This reduces the number of inputs to the network
(normally the largest layer). Another method is to use alternative topologies to the multilayer
perceptron that use less weights per PE (such as the radial basis function networks), or to use
modular MLP designs that decrease the number of weights per PE because their topologies are not
fully connected.

Network Training

Training is the process by which the free parameters of the network (i.e. the weights) get optimal
values. The weights are updated using either supervised or unsupervised learning. This chapter
focuses on the MLP, so the details of unsupervised learning are not covered here (see the on-line
documentation for the NeuralBuilder). With supervised learning, the network is able to learn from
the input and the error (the difference between the output and the desired response). The
ingredients for supervised learning are therefore the input, the desired response, the definition of
error, and a learning law. Error is typically defined through a cost function. Good network
performance should result in a small value for the cost. A learning law is a systematic way of
changing the weights such that the cost is minimized. In supervised learning the most popular
learning law is backpropagation.

The network is trained in an attempt to find the optimal point on the performance surface, as
defined by the cost definition. A simple performance surface is illustrated in the figure below. This
network has only one weight. The performance surface of this system can be completely
represented using a 2D graph. The x-axis represents the value of the weight, while the y-axis is the
resulting cost. This performance surface is easy to visualize because it is contained within a two-
dimensional space. In general, the performance surface is contained within a N+1 dimensional
space, where N is the number of weights in the network.

Backpropagation changes each weight of the network based on its localized portion of the input
signal and its localized portion of the error. The change has to be proportional (a scaled version) of
the product of these two quantities. The mathematics may be complicated, but the idea is very

 86

simple. When this algorithm is used for weight change, the state of the system is doing gradient
descent; moving in the direction opposite to the largest local slope on the performance surface. In
other words, the weights are being updated in the direction of down.

Simple performance surface

The beauty of backpropagation is that it is simple and can be implemented efficiently in computers.
The drawbacks are just as important: The search for the optimal weight values can get caught in
local minima, i.e. the algorithm thinks it has arrived at the best possible set of weights even though
there are other solutions that are better. Backpropagation is also slow to converge. In making the
process simple, the search direction is noisy and sometimes the weights do not move in the
direction of the minimum. Finally, the learning rates must be set heuristically.

The problems of backpropagation can be reduced. The slowness of convergence can be improved
by speeding up the original gradient descent learning. NeuroSolutions provides several faster
search algorithms such as Quickprop, Delta Bar Delta, and momentum. Momentum learning is
often recommended due to its simplicity and efficiency with respect to the standard gradient.

Most gradient search procedures require the selection of a step size. The idea is that the larger the
step size the faster the minimum will be reached. However, if the step size is too large, then the
algorithm will diverge and the error will increase instead of decrease. If the step size is too small
then it will take too long to reach the minimum, which also increases the probability of getting
caught in local minima. It is recommended that you start with a large step size. If the simulation
diverges, then reset the network and start all over with a smaller step size. Starting with a large
step size and decreasing it until the network becomes stable, finds a value that will solve the
problem in fewer iterations. Small step sizes should be utilized to fine tune the convergence in the
later stages of training.

Another issue is how to choose the initial weights. The search must start someplace on the
performance surface. That place is given by the initial condition of the weights. In the absence of
any a priori knowledge and to avoid symmetry conditions that can trap the search algorithm, the
weights should be started at random values. However, the network’s PEs have saturating
nonlinearities, so if the weight values are very large, the PE can saturate. If the PE saturates, the
error that goes through becomes zero, and previous layers may not adapt. Small random weight
values will put every PE in the linear region of the sigmoid at the beginning of learning.
NeuroSolutions uses uniformly distributed random numbers generated with a variance configurable
per layer. If the networks are very large, one should further observe how many inputs each weight
has and divide the variance of the random number generator by this value.

 87

The stop criteria for learning are very important. The stop criterion based on the error of the cross
validation set was explained earlier. Other methods limit the total number of iterations (hence the
training time), stopping the training regardless of the networks performance. Another method stops
training when the error reaches a given value. Since the error is a relative quantity, and the length
of time needed for the simulation to get there is unknown, this may not be the best stop criterion.
Another alternative is to stop on incremental error. This method stops the training at the point of
diminishing returns, when an iteration is only able to decrease the error by a negligible amount.
However, the training can be prematurely stopped with this criterion because performance surfaces
may have plateaus where the error changes very little from iteration to iteration.

Probing

A successful neural network simulation requires the specification of many parameters. The
performance is highly dependent on the choice of these parameters. A productive way to assess
the adequacy of the chosen parameters is to observe the signals that flow inside the network.
NeuroSolutions has an amazingly powerful set of probing tools. One can observe signals flowing in
the network, weights changing, errors being propagated, and most importantly the cost, all while
the network is working. This means that you do not need to wait until the end of training to find out
that the learning rate was set too high.

All probes within NeuroSolutions belong to one of two categories -- static probes and temporal
probes. The big difference is that the first kind access instantaneous data, while the second access
the data over a window in time. The temporal probes have a buffer that stores past values, so one
can visualize the signals as they change during learning. Fourier transforms provide a look at the
frequency composition of such signals. There is also a probe that provides a 3-D representation of
the state space.

Running the Simulation

The simulation of a network in NeuroSolutions requires the orchestration of many pieces. When
you run the simulation you should start by checking if the data is being correctly fed into the
network by placing probes on the input sources. Likewise you should verify the desired signal.

Another important aspect is to check if the learning rates are sufficiently low to avoid divergence.
Divergence will usually occur during the beginning of training. You might place a matrix viewer on
the first synapse to see if the weights are changing. Observing a steady decrease of the cost is the
best overall indicator (the temperature) that everything is progressing well.

Note that with a lot of the probes open, you are stealing computing cycles from the simulations.
Therefore once you are convinced that the training is OK, you should momentarily stop the
simulation and close the probe windows. Minimally you should leave the matrix viewer to report the
cost, or even better to attach a scope to the cost, such that you can have the history of the learning
during the length of the simulation. At this point you can leave the simulation unattended until the
stop criterion halts the simulation.

You now have to decide if the learning was successful or not. Most of the time, the first check is to
see if the cost is within what you think is appropriate for your application. In the affirmative case,
you should save your network. Remember that all the information gathered by the network from the
input data is contained in the weights. So you should save the weights, along with the topology.
The weights are saved by default.

Concepts
Concepts

 88

NeuroSolutions

NeuroDimension, Incorporated.

Gainesville, Florida

Purpose

This chapter links neural network theory with the principles and components embodied within
NeuroSolutions. It will provide an abstract tour of the NeuroSolutions components while motivating
their application to neural network simulations.

NeuroSolutions Structure
NeuroSolutions Structure

NeuroSolutions consists of two major parts: the main window and the neural network components.
The main window includes the ability to load, create and save the document, which is called the
breadboard. The neural components are used to construct neural network topologies and are
organized into palettes that can be attached to the main window.

Palettes

Breadboard

Palettes

Palettes provide organized storage for neural components. Since NeuroSolutions is object-
oriented, the program modules that implement the neural component functionality are naturally
organized in code hierarchies that have common ancestry. Each member of the hierarchy
increases the functionality of its ancestors. Each branch in the code hierarchy has a specific
function in the neural network simulations.

NeuroSolutions associates an icon to each neural component. The user interacts with these icons
within a graphical user interface (GUI) to construct and simulate neural topologies. The
components are organized into families and stored within palettes. Select the Palettes menu from
the NeuroSolutions main window to see a list of the component families.

Networks are constructed by simply selecting components from the palettes and stamping them
onto the breadboard. Palettes that are used frequently can be docked (attached) to the main
window (see Toolbar Manipulation).

 89

Example of a palette

Breadboard

NeuroSolutions has one document type, the breadboard. Simulations are constructed and run on
breadboards. With NeuroSolutions, designing a neural network is very similar to prototyping an
electronic circuit. With an electronic circuit, components such as resistors, capacitors and inductors
are first arranged on a breadboard. NeuroSolutions instead uses neural components such as
axons, synapses and probes. The components are then connected together to form a circuit. The
electronic circuit passes electrons between its components. The circuit (i.e., neural network) of
NeuroSolutions passes activity between its components, and is termed a data flow machine.
Finally, the circuit is tested by inputting data and probing the systems' response at various points.
An electronic circuit would use an instrument, such as an oscilloscope, for this task. A
NeuroSolutions network uses one or more of its components within the probes family (e.g., the
MegaScope).

Networks are constructed on a breadboard by selecting components from the palettes, stamping
them on the breadboard, and then interconnecting them to form a network topology. Once the
topology is established and its components have been configured, a simulation can be run. An
example of a functional breadboard is illustrated in the figure below.

Example of a breadboard (single hidden layer MLP)

New breadboards are created by selecting New from the File menu. This will create a blank
breadboard titled "Breadboard1.nsb". The new breadboard can later be saved. Saving a
breadboard saves the topology, the configuration of each component and (optionally) their weights.
Therefore, a breadboard may be saved at any point during training and then restored later. The
saving of weights is a parameter setting for each component that contains adaptive weights. This
parameter can be set for all components on the breadboard or just selected ones.

 90

NeuroSolutions Graphical User Interface (GUI)
NeuroSolutions Graphical User Interface (GUI)

Logic of the Interface

Components

The Inspector

Single-Click vs. Double-Click

Network Construction

Network Access

Network Simulation

Logic of the Interface

User interaction with NeuroSolutions follows very simple and clear principles:

� Each neural component is represented by an icon.

� Single-clicking on a component's icon will display its Inspector window. A component's inspector is where the
user can inspect and alter any variables of the component.

� Double-clicking on a component's icon will open its animation window, if such a window exist. Animation
windows allow components to display data while a simulation is running.

� Single-clicking on a component's icon with the help cursor will display its on-line help quick reference page.

� Networks are constructed by placing and interconnecting components on a breadboard.

� Components are created by selecting them from palettes and stamping them onto the breadboard. Components
can be removed from the topology by means of the cut operation.

� During a stamp operation, the cursor will indicate whether stamping the component in its present location is
valid. These operations and their corresponding mouse cursor are as follows:

� A stamp indicates that the selected palette component can be copied to the present mouse location.

� A move cursor means that the component is under mouse control (drag).

� A circle with a slanted line means that the component can not be copied to the present mouse position.

� A gray stamp indicates that the selected palette component can be used to replace the component at
the present mouse location.

� Stamping by pressing the left mouse button will stamp a single component and return to selection mode.

� Stamping by pressing the right mouse button will stamp a single component and remain in stamping mode. This
allows multiple copies of the same component to be stamped easily.

� The Selection Cursor toolbar button is used to switch from stamping mode to selection mode. Several
components can be selected at the same time by pressing the Shift key and mousing down on the component.
Another method is to select a rectangular region of the breadboard, which then selects all components that lie
within. A box is drawn around each of the selected components.

 91

� Selected components can be cut, copied, pasted or moved. The multiple-selection feature is also used to
broadcast parameter changes made in one component’s inspector to a group of components.

Components

The building blocks used to create, control and inspect neural networks are referred to as
components. Each component is represented by an icon. An example is the Axon, which
corresponds to the icon illustrated in the figure below.

Icon for the Axon

Each component is concisely described within the Components chapter. You will find the
component’s function (with an equation if appropriate), how to manipulate and configure it (via its
inspector), where it can "live" (be stamped), and how to access its data (access points). You can

reach the help for a component by selecting the help cursor and then selecting the component
that you want help on.

The Inspector

The Inspector window is the tool used to configure individual components. If for any reason the
Inspector window is closed, it can be re-opened by selecting Inspector from the View menu. Single-
clicking on any component will highlight it (put a square around it) and load its property pages into
the Inspector window. The name of the inspected component is displayed at the top of the
Inspector window. This procedure is referred to as selecting a component.

The Inspector window has a folder organization (see figure belowHIDD_NAXONINSPECTOR),
reflecting the hierarchical organization of the code (inheritance in object-oriented parlance). The
name of the hierarchy level is placed on the tab of the folder. The highest ancestor is the right most
tab. This system of inspecting components minimizes the number of windows open at any given
time. A single breadboard may have hundreds of components. If each component used space on
the screen for user interaction, the entire screen would quickly become cluttered. After a while this
convention becomes natural and easy to use.

 92

Axon inspector

The tabs at the top of the inspector allow the user to configure variables defined by a superclass of
the component being inspected. The number and contents of these tabs are determined by the
"object-oriented" style with which each component was developed. While the concepts of object-
oriented design are beyond the scope of this document, a brief analogy should help.

A component may be considered to be an "object." Each component belongs to a "family" of
objects. This family consists of parents, siblings, and children. Each component inherits (i.e.,
assumes the characteristics) of its parent. All siblings will share the characteristics of their parents
and their parents' parent, etc. The tabs will contain the name of each ancestor contributing any
parameters to the selected component. Selecting a tab will display the parameters that are
common to all components having that same ancestor.

More than one component of the same type may be inspected at the same time. This allows the
parameters of multiple components to be changed simultaneously. Only the parameters of the first
component selected will be displayed in the inspector window. Changing a parameter setting from
the inspector will make that change to all selected components that have that same parameter. For
example, if you select all the axons and gradient search components from a breadboard and then
change the learning rate, the gradient search components will all be updated to the same learning
rate and the axons will be left unchanged (since they do not have a learning rate).

To select a group of components, you first must be in selection mode (by clicking the Selection

Cursor toolbar button). Select the first component of the group by clicking on its icon. Hold
down the Shift key while selecting the remaining members of the group. As the components are
selected they are highlighted with a square border.

Another method of multiple component selection is to select a rectangular region of the
breadboard. First determine a rectangle that will encompass all of the components that you would
like to have selected. Draw this rectangle by placing the mouse cursor at the upper-left corner of
the region, holding the mouse button down, dragging the cursor to the lower-right corner of the
region, and releasing the mouse button. All of the components that reside directly on the
breadboard and are contained within this region will be highlighted (selected).

Single-Click vs. Double-Click

The single-click and double-click concepts are essential for using NeuroSolutions. As described
above, when the user single-clicks (i.e., presses and releases the mouse button) on a component's
icon, that component becomes selected and its current configuration is displayed in the Inspector
window. When the user double-clicks (i.e. presses the mouse button twice in quick succession) on

 93

any component, NeuroSolutions will select the component and attempt to open any windows that
the component may have. Component windows allow components to display data while a
simulation is running. If the inspector is hidden and the component’s window is already open (or it
doesn’t have a window), then double-clicking on the component will bring the inspector into view.

File Open Dialog Box

The following options allow you to specify which breadboard to open:
File Name

Type or select the filename of the breadboard you want to open. This box lists files with the
extension you select in the List Files of Type box.
List Files of Type

Select the file type you want to open. Since NeuroSolutions only document type is the breadboard,
you should find your files with the ".nsb" extension.
Drives

Select the drive in which NeuroSolutions stores the breadboard that you want to open.
Directories

Select the directory in which NeuroSolutions stores the breadboard that you want to open.
Network...

Choose this button to connect to a network location, assigning it a new drive letter.

Save As Dialog Box

The following options allow you to specify the name and location of the file you're about to save:
File Name

Type a new filename to save a document with a different name. A filename can contain up to eight
characters and an extension of up to three characters. NeuroSolutions adds the extension you
specify in the Save File As Type box.
Drives

Select the drive in which you want to store the document.
Directories

Select the directory in which you want to store the document.
Network...

Choose this button to connect to a network location, assigning it a new drive letter.

Toolbars and Palettes

 94

Both the toolbars and palettes are control bars that can be positioned any where on the screen.
These control bars are also dockable, meaning that they have the ability to be attached or "docked"
to the main window.

Both the toolbars and palettes have a feature called tooltips. Tooltips provide a means for labeling
the buttons with a name in addition to the icons.

The Toolbars menu and the Palettes menu are used to toggle the visibility of the control bars. This
feature is available so that only the palettes and toolbars used most often occupy the screen area.

Title Bar

The title bar is located along the top of a window. It contains the name of the application and
document.

To move the window, drag the title bar. Note: You can also move dialog boxes by dragging their
title bars.

A title bar may contain the following elements:

� Application Control-menu button

� Maximize button

� Minimize button

� Close Button

� Name of the application

� Name of the document

Scroll Bars

Displayed at the right and bottom edges of the breadboard. The scroll boxes inside the scroll bars
indicate your vertical and horizontal location in the document. You can use the mouse to scroll to
other parts of the breadboard.

 95

Network Construction

Network Construction

Components are selected from palettes and stamped on the breadboard. The network topology is
specified by interconnecting components via male and female connectors. This topology is then
tested by injecting data into and probing output from components via access points.

The following sections describe each step in this simulation process.

Stamping

Manipulating Components

Replacing Axons and Synapses

Connectors

Cabling

Stacking

Stamping

The method used to copy components from palettes to breadboards is by selecting and stamping.
Selecting is accomplished by clicking on the component’s button on the palette. The cursor then
becomes a stamp, and the component can be copied many times on the breadboard by clicking on
a specific location. Note that some components cannot be stamped directly on the breadboard and
can only be stamped on top of other components.

To switch from stamping mode back to selection mode, click the Selection Cursor button from the
main toolbar (see figure below).

Toolbar button used to switch to selection mode

Manipulating Components

Moving a component is very straightforward. Select the component by clicking on its icon. Holding
down the mouse button will make the cursor change to a move cursor. While the mouse button is
down, the component will track the location of the cursor. Release the mouse button to place the
component at a new location.

Copying a component will create a clone with the exact same configuration. To copy a component,

select it and click the Copy toolbar button. Then select where the clone should reside; click on

 96

the breadboard or component where the copy should be placed. Then click the Paste toolbar
button to create the clone. If the Paste button is disabled (grayed-out), that means that the
component can not be pasted on the selected location. Copied components that reside directly on
the breadboard must be pasted on the breadboard. Copied components that are attached to other
components must be pasted onto other components.

These concepts get a bit more complicated, and more powerful, when a component is connected to
other components on the breadboard. There are basically two methods for connecting components:
through connectors and stacking. When a component is moved or copied, all components stacked
on top of it will also be moved or copied. Components attached by connectors will be disconnected
during a copy, except for those connections made between the copied components. However,
connectors will be disconnected when a component is removed from the breadboard.

Replacing Axons and Synapses

There will often be times when you would like to change the transfer function or memory structure
of an Axon, or change a fully connected Synapse to a sparsely connected one. This requires that
you replace a component, which can be inconvenient when other components are attached and
connected. The component replace feature automatically swaps an Axon or Synapse and re-
establishes all of the attachments and connections. Simply select the new component from the
palette, place your cursor over the component to replace (notice that the cursor changes to a gray
stamp), and click the left mouse button.

Connectors

Constructing a network topology is equivalent to assigning the order in which data flows through
network components. Data flow connections are made using male and female connectors. These
connectors have the icons illustrated in the figure below.

Male Connector Female Connector

Connections are formed by dragging a MaleConnector over a FemaleConnector and releasing the
mouse button (dropping). The cursor will turn to a move cursor when a male is dragged over an
available female. Otherwise the forbidden sign will show up. The icon for a male connected to a
female is shown in the figure below.

Connection

There is also a shortcut for making a connection between two components. First, select the source
component (by single-clicking the left mouse button), then single click the destination component
with the right mouse button to bring up the Component Menu. Select the "Connect to" menu item.

 97

The connection may be broken by simply dragging the MaleConnector to an empty spot on the
breadboard and performing a Cut operation. If a connection is valid, a set of lines will be drawn
indicating that data will flow between the components. Data flows from the male to the female. The
valid connection of two Axons is shown in the figure below.

Valid connection between two axons

Notice that a new FemaleConnector has appeared on the right Axon and a new MaleConnector
was created on the left Axon. This indicates that axons have a summing junction at their input and
a splitting node at their output. Since the axons contain a vector of processing elements, the
summing junctions and splitting nodes are multivariate. Axons can accept input from an arbitrary
number of simulation components, which are summed together. The axons’ output can feed the
inputs of multiple components.

An invalid connection between two components for any reason will look like the image shown in the
figure below.

Invalid connection between two axons.

The reason for an invalid connection will appear in an alert panel. Most often the mismatch is due
to incompatible component dimensions. The user must alter the dimensions of one of the
components to correct the situation.

Cabling

Cabling is a graphical option to interconnect components that have connectors. A cable is started
by dropping the MaleConnector at any empty location on the breadboard. Hold down the Shift key
while dragging this connector again. This second drag operation will create a new segment of the
connection (cable). With each successive move of the MaleConnector, a line (cable segment) will
be drawn to show the connection path. This process may be repeated indefinitely.

Single-clicking on the MaleConnector will highlight all breakpoints along the cable. A breakpoint
may then be moved by dragging and dropping. If a breakpoint is Cut from the breadboard, then it is
removed from the cable. Double-clicking on a breakpoint will insert an additional breakpoint next to
it in the cable. Cabling is particularly useful when forming recurrent connections. An example of
cabling between two axons is shown in the figure below.

 98

Example of a cable between two axons

NeuroSolutions verifies that all connections make sense as they are formed. This was already
evident in the visual indication of incompatibility between components. In cabling, if the output of an
element is brought to its input, an alert panel will be displayed complaining that an infinite loop was
detected. It is up to the user to modify the cabling (e.g., making sure that the recurrent connection
is delayed by at least one time step).

Stacking

Connectors are normally used to specify the network topology by defining the data flow. There are
many situations where components should be connected to a network without altering its topology.
Examples of such situations are probing, noise injection and attaching learning dynamics. Stacking
allows this form of connection.

The figure below illustrates the use of stacking to probe the activity flowing through an Axon. Notice
that stacking does not use the male and female connectors.

A probe stacked on top of an Axon.

Network Access

Network Access

NeuroSolutions allows access to any data within the network via access points. The concept is
simple. Every internal variable (i.e. piece of data or parameter) is encapsulated within an access
point. All access points report their data through a universal language or protocol. Typical data that
would be reported by a component are activations, gradients, weights and MSE.

 99

Components that understand this protocol belong to the Access family. Access components attach
to access points through stacking. Any component with accessible data will report its available
access points to an Access component during the stamping operation. If the component being
stamped has a compatible access point, then the cursor will turn to a stamp. The Probe stacked on
top of an Axon figure illustrates a MatrixViewer that has been placed on an Axon.

Since each component may have more than one access point, the desired access point must be
selected from a list. This list is contained within the Access property page of the stacked
component’s inspector (see The Inspector).

The inspector for the MatrixViewer allows the user to select between the activity and pre-activity
access reported by the Axon. This inspector is illustrated in the figure below.

Available access points of the Axon component

All Access components have an access point called Stacked access. This access point allows data
to be simultaneously used by more than one Access component. In the above example, another
probe can be dropped on top of the MatrixViewer using its Stacked access to visualize the data in a
different way.

Probes

Data Input/Output

Transmitters and Receivers

Probes

Probes are one family of components that speak the Access protocol. Each probe provides a
unique way of visualizing the data provided by access points. Consider an access point presenting
a fully connected matrix of weights. You could view this data instantaneously as a matrix of
numbers or you could view this data over time as weight tracks. What is important here is that
NeuroSolutions provides an extensive set of visualization tools that can be attached to any data
within the network.

 100

The DataStorage component collects multi-channel data into a circular buffer, which is then
presented as the Buffered Activity access point. Temporal probes, such as the MegaScope, can
only stack on top of a DataStorage component (directly or indirectly). In the configuration illustrated
in the figure below, the MegaScope is used to display the Axon's activity over time. Used in this
manner, the MegaScope/DataStorage combination functions as an oscilloscope.

The DataStorage component may also be used in conjunction with the DataStorageTransmitter,
allowing data from different locations in the topology to be displayed on a single probe. This is also
illustrated in the figure below.

Probing the output and input of a network using the same scope.

Data Input/Output

Probes attach to access points to examine data within the network. Network data can also be
altered through access points. This provides an interface for using input files, output files and other
I/O sources. Illustrated in the figure below is a FunctionGenerator stacked on top of the left Axon.
This will inject samples of a user defined function into the network's data flow.

FunctionGenerator as the input to a network

To read data from the file system, the File component must be used. This component accepts
straight ASCII, column-formatted ASCII, binary, and bitmap files. Several files of any type may be
opened at the same time and input sequentially to the network. Segmentation and normalization of
the data contained in the files is also provided by this component. The figure below shows a File
component attached to the left Axon.

Any network data can be captured and saved to a binary or ASCII file using the DataWriter probe.
The figure below also shows a DataWriter attached to an output Axon to capture its activity as it
flows through the network.

 101

A File component to read data in and a DataWriter probe to write data out

Transmitters and Receivers

Both connectors and stacking provide local communication between components. There are
situations where a global communication channel is necessary, either to send/receive data or for
control. NeuroSolutions provides a family of components, called Transmitters, to implement global
communications. These components use access points to globally transmit data, or to send global
messages based on local decisions. Several components can receive data or control messages
that alter their normal operation. This allows very sophisticated tasks to be implemented, such as
adaptive learning rates, nonuniform relaxation, and error-based stop criteria.

Network Simulation

Network Simulation

When a network is "run", data will flow one sample at a time from the input components, through
the network topology, and into the output components. The standard data flow is from left to right,
but this depends on how the components are connected together. Note that the NeuroSolutions
main window has no menu options for controlling the simulation. This is done strictly at the
component level using members of the Controls family.

Application Window Commands
Size command (System menu)

Use this command to display a four-headed arrow so you can size the active window with the arrow
keys.

After the pointer changes to the four-headed arrow:

1 Press one of the DIRECTION keys (left, right, up, or down arrow key) to move the pointer to the border you
want to move.

2 Press a DIRECTION key to move the border.

3 Press ENTER when the window is the size you want.

 102

Note: This command is unavailable if you maximize the window.

Shortcut

Mouse: Drag the size bars at the corners or edges of the window.

Move command (Control menu)

Use this command to display a four-headed arrow so you can move the active window or dialog
box with the arrow keys.

Note: This command is unavailable if you maximize the window.

Shortcut

Keys: CTRL+F7

Minimize command (application Control menu)

Use this command to reduce the NeuroSolutions window to an icon.

Shortcut

Mouse: Click the minimize icon on the title bar.

Keys: ALT+F9

Maximize command (System menu)

Use this command to enlarge the active window to fill the available space.

Shortcut

Mouse: Click the maximize icon on the title bar; or double-click the title bar.

Keys: CTRL+F10 enlarges a document window.

Close command (Control menus)

 103

Use this command to close the active window or dialog box.

Double-clicking a Control-menu box is the same as choosing the Close command.

Note: If you have multiple windows open for a single document, the Close command on the
document Control menu closes only one window at a time. You can close all windows at once with
the Close command on the File menu.

Shortcut

Keys: ALT+F4 exits NeuroSolutions

Restore command (Control menu)

Use this command to return the active window to its size and position before you chose the
Maximize or Minimize command.

Switch to command (application Control menu)

Use this command to display a list of all open applications. Use this "Task List" to switch to or
close an application on the list.

Shortcut

Keys: CTRL+ESC

Dialog Box Options

When you choose the Switch To command, you will be presented with a dialog box with the
following options:

Task List

Select the application you want to switch to or close.
Switch To

Makes the selected application active.
End Task

Closes the selected application.
Cancel

Closes the Task List box.
Cascade

 104

Arranges open applications so they overlap and you can see each title bar. This option does not affect
applications reduced to icons.
Tile

Arranges open applications into windows that do not overlap. This option does not affect applications
reduced to icons.
Arrange Icons

Arranges the icons of all minimized applications across the bottom of the screen.

Generating Source Code
Generating Source Code

The Code Generation facility of NeuroSolutions produces ANSI-compatible C++ source code for
any breadboard, including learning. There are two main uses for this feature.

You may find that the processing power of your PC is too limited to train your network in a
reasonable amount of time. By generating the code for your network, you can compile this code on
a high-end workstation and train the network there. The resulting weights can then be saved to a
file and imported back into your breadboard within NeuroSolutions.

Secondly, you may have a network that is trained to a point that it is of practical use. You may then
want to use the code generation feature to produce a "black box" that can easily be integrated into
a C++ application. This application would use function calls to feed data into the network and
extract the resulting output.

Note that this feature is only available within the Professional and Developer versions of
NeuroSolutions. If you have a license for one of these versions, see the Developers manual for
complete documentation. Also refer to the Code Generation Inspector.

Customized Components
Customized Components

NeuroSolutions provides close to 100 neural components for you to build your neural networks
from. Even though this is a fairly representative set of the algorithms most commonly used in the
field, it is impossible to meet the needs of everyone. NeuroSolutions’ object oriented design
methodology provides an ideal platform for an extensible simulation environment. These
extensions are implemented as C/C++ functions that conform to the appropriate protocol and are
then compiled as Dynamic Link Libraries (DLLs).

In order for you to write DLLs to implement your own algorithms, you must be licensed for one of
the Developer versions of NeuroSolutions. However, you do not have to be a programmer to reap
the benefits of customized components. NeuroDimension continually develops new components
that are public to all Developer customers. In addition, there is a subset of DLLs provided that is
accessible within all versions of NeuroSolutions.

The loading of a DLL is a very straightforward procedure. You first must select the component on
the breadboard that the DLL overrides. Open the inspector window, switch to the Engine property
page, press the Load button, and select the DLL ("*.dll") from the file list. Now the component’s
functionality is overridden by the DLL. See the Engine property page for more detailed instructions.
If you are licensed for the Developers version, see the Dynamic Link Libraries chapter for a
complete description of this feature.

 105

Testing the Network
The TestingWizard

After training a network, you will want to test the network performance on data that the network was
not trained with. The TestingWizard automates this procedure by providing an easy way to produce
the network output for the testing dataset that you defined within the NeuralExpert or NeuralBuilder,
or on a new dataset not yet defined.

To launch the TestingWizard from within NeuroSolutions go to the Tools menu and choose
"TestingWizard" or click the "Testing" toolbar button. If your breadboard was built with the
NeuralExpert, you may alternatively click the "Test" button in the upper-left corner of the
breadboard.

Online help is available from all TestingWizard panels. To access help, click the Help button in the
lower left corner of the wizard.

Freezing the Network Weights

The method that the TestingWizard uses for freezing the network weights is to turn off the Learning
switch from the Static page of the activation control inspector. This method is easy but not very
efficient because the error is still computed, even though the weights are not modified. This method
is convenient for times when you just want to run a small test set through your network, where
efficiency is not a concern.

To run a fixed network most efficiently, the Backprop and Gradient Search planes, as well as the
ErrorCriteria component, should be removed from the breadboard. First save the breadboard so
that you can easily return to the learning state. Press the Free All Backprop button of the
Backpropagation page of the backprop control inspector to discard these learning planes
automatically. The fixed network is now ready to run.

Cross Validation

Cross validation computes the error in a test set at the same time that the network is being trained
with the training set. It is known that the MSE will keep decreasing in the training set, but may start
to increase in the test set. This happens when the network starts "memorizing" the training
patterns. The Termination page of the activation control inspector can be used to monitor the cross
validation set error and automatically stop the network when it is not improving.

The easiest way to understand the mechanics of cross validation is to use the NeuralBuilder or
NeuralExpert to build a simple network that has cross validation. The Static Inspector is used to
configure the switching between the testing and training phases of the simulation. The File
components each contain a Training data set and a Cross-Validation data set (see the Data Set
property page). The Cross-Validation data can either be a different segment of the same file, or a
different file. There is an additional set of Probes and a ThresholdTransmitter for monitoring the
cross validation phase of the simulation. Observe the Access Data Set setting of the Access
property page for these components.

 106

Production Data Set

Once you have trained and tested a network and have determined that the network adequately
models your data, you may want to then put that network into production. In doing so, you will have
input data but no desired data. The data set to use for this case is the "Production" data set. The
easiest way to configure a Production set is to run the TestingWizard and specify an input data file
but no desired data file.

Sensitivity Analysis

As you are training a network, you may want to know the effect that each of the network inputs is
having on the network output. This provides feedback as to which input channels are the most
significant. From there, you may decide to prune the input space by removing the insignificant
channels. This will reduce the size of the network, which in turn reduces the complexity and the
training times.

Sensitivity analysis is a method for extracting the cause and effect relationship between the inputs
and outputs of the network. The network learning is disabled during this operation such that the
network weights are not affected. The basic idea is that the inputs to the network are shifted slightly
and the corresponding change in the output is reported either as a percentage or a raw difference.

The activation control component generates the input data for the sensitivity analysis by temporarily
increasing the input by a small value (dither). The corresponding change in output is the sensitivity
data, which is reported by the ErrorCriteria component and displayed by an attached probe.

To configure a network to report the sensitivity data, simply stamp a StaticProbe component on
either the "Sensitivity", "Raw Sensitivity", or "Overall Sensitivity" Access Point of the ErrorCriteria
component. Double-click the icon of the probe to open its display window. Once you have trained
the network, open the Static Inspector, select the "Active Data Set" to perform the sensitivity
operation on, specify the "Dither", then click the "Perform" button. The display window of the probe
should be updated with the calculated sensitivity data.

Probing the "Sensitivity" access point with a MatrixViewer will display a matrix of values, each
corresponding to the percentage effect that a particular input has on a particular output. Each row
represents a single input and each column represents a single output. Note that the total for each
column (output channel) sums to 100 percent. Likewise, the "Raw Sensitivity" access point
produces a matrix, but each value corresponding to the raw difference between the outputs for the
dithered and non-dithered inputs. Probing the "Overall Sensitivity" access point with a MatrixViewer
will display a column of values, each corresponding to the percentage effect that a particular input
has on the output vector as a whole (the sum of all output channels).

Confusion Matrix

A confusion matrix is a simple methodology for displaying the classification results of a network.
The confusion matrix is defined by labeling the desired classification on the rows and the predicted
classifications on the columns. For each exemplar, a 1 is added to the cell entry defined by (desired
classification, predicted classification). Since we want the predicted classification to be the same as
the desired classification, the ideal situation is to have all the exemplars end up on the diagonal
cells of the matrix (the diagonal that connects the upper-left corner to the lower right). Observe
these two examples:

 107

Confusion Matrix Example 1

Confusion Matrix Example 2

In example 1 we have perfect classification. Every male subject was classified by the network as
male, and every female subject was classified as female. There were no males classified as
females or vice versa. In example 2 we have imperfect classification. We have 9 females classified
incorrectly by the network as males and 5 males classified as females.

In NeuroSolutions, a confusion matrix is created by attaching a probe to one of the Confusion
Matrix access points of the ErrorCriterion component. One option is to display the results as the
raw number of exemplars classified for each combination of desired and actual outputs, as shown
in the above examples. The other option is to display each cell as a percentage of the exemplars
for the desired class. In this format, each row of the matrix sums to 100.

Correlation Coefficient

The size of the mean square error (MSE) can be used to determine how well the network output fits
the desired output, but it doesn't necessarily reflect whether the two sets of data move in the same
direction. For instance, by simply scaling the network output, we can change the MSE without
changing the directionality of the data. The correlation coefficient (r) solves this problem. By
definition, the correlation coefficient between a network output x and and a desired output d is:

Correlation Coefficient Definition

 108

The correlation coefficient is confined to the range [-1,1]. When r =1 there is a perfect positive linear
correlation between x and d, that is, they covary, which means that they vary by the same amount.
When r=-1, there is a perfectly linear negative correlation between x and d, that is, they vary in
opposite ways (when x increases, d decreases by the same amount). When r =0 there is no
correlation between x and d, i.e. the variables are called uncorrelated. Intermediate values describe
partial correlations. For example a correlation coefficient of 0.88 means that the fit of the model to
the data is reasonably good.

In NeuroSolutions, a correlation vector is created by attaching a probe to the Correlation access
point of the ErrorCriterion component.

ROC Matrix

Receiver Operating Characteristic (ROC) matricies are used to show how changing the detection
threshold affects detections versus false alarms. If the threshold is set too high then the system will
miss too many detections. Conversely, if the threshold is set too low then there will be too many
false alarms. Below is an example of an ROC matrix graphed as an ROC curve.

Example ROC Curve

 109

In NeuroSolutions, a ROC matrix is created by attaching a probe to the ROC access point of the
ErrorCriterion component. The matrix contains three columns: 1) the detection threshold, 2) the
percentage of detections classified correctly, and 3) the percentage of non-detections incorrectly
classified as detections (i.e., false alarms). The ouput channel and the number of thresholds are
defined within the error criteria inspector.

Performance Measures

The Performance Meassures access point of the ErrorCriterion component provides six values that
can be used to measure the performance of the network for a particular data set.
MSE

The mean squared error is simply two times the average cost (see the access points of the
ErrorCriterion component.) The formula for the mean squared error is:

NMSE

The normalized mean squared error is defined by the following formula:

r

The correlation coefficient.
% Error

The percent error is defined by the following formula:

 110

Note that this value can easily be misleading. For example, say that your output data is in the range
of 0 to 100. For one exemplar your desired output is 0.1 and your actual output is 0.2. Even though
the two values are quite close, the percent error for this exemplar is 100.
AIC

Akaike's information criterion (AIC) is used to measure the tradeoff between training performance
and network size. The goal is to minimize this term to produce a network with the best
generalization:

MDL

Rissanen's minimum description length (MDL) criterion is similar to the AIC in that it tries to
combine the model’s error with the number of degrees of freedom to determine the level of
generalization. The goal is to minimize this term:

Practical Simulation Issues
Practical Simulation Issues

Data Preparation

Forms of Backpropagation

Probing

Saving and Fixing Network Weights

 111

Saving Network Data

Stop Criteria

Constructing Learning Dynamics

Simulating Recurrent Networks

Component Naming Conventions

Coordinating Unsupervised and Supervised Learning

Macro Bars

Associating a File Extension with an Editor

There are several places within NeuroSolutions where you can view or edit a text file within an
editor. The editor that is used is based on the file’s extension (type). To select or modify the editor
associated with a particular file type you should perform the following steps:

1 Select ‘Options’ from the ‘View’ Menu of the Windows Explorer.

2 Select the ‘File Types’ tab.

3 If the File Type is already registered then select it from the list.

4 If the File Type is not registered then press the ‘New Type" button. Enter the Description and Extension and press
the ‘OK’ button.

5 Press the ‘Edit’ button.

6 If there is an item labeled ‘open’ under the Actions list, then select it and press ‘Edit’. Type ‘notepad.exe’ for the
standard Windows editor or enter the full path of the application you wish to use.

7 If there is not an ‘open’ item listed then press the ‘New’ button. Enter ‘open’ as the Action and type ‘notepad.exe’
for the standard Windows editor or enter the full path of the application you wish to use.

8. Press ‘OK’ from all panels.

The ‘Edit’ and ‘View’ buttons of NeuroSolutions should now open up the associated editor for all
files of the specified type.

Data Preparation

The training data and testing data must first be converted to a format supported by NeuroSolutions.
The most common data format is column-formatted ASCII, since this can be easily generated by a
spreadsheet program. The first line (row) of the file is used to define the column labels, and should
not contain actual data. In general, each column corresponds to one channel (PE) of the input or
output of the network. Individual columns can be selected for inclusion or exclusion from the data
stream.

 112

The input data and desired output data may reside within different columns of the same file, or
within two separate files. The testing data may be contained within different rows of the same file(s)
as the training data, or from separate files.

Normalization File

The Input components have the ability to normalize the data between an upper and lower bound.
Each sample of data is multiplied by an amplitude and shifted by an offset. The amplitude and
offset are often referred to as normalization coefficients. These coefficients are most often
computed "by channel", meaning that there is a unique amplitude and offset for each channel. The
coefficients are stored in a normalization file (*.nsn) within the same directory as the breadboard.

The normalization coefficients are computed based on the minimum and maximum values found
across all of the data sets selected from the Data Set Inspector. All of the data streams within a
given File component are generated using the same normalization file. For most cases you will
want to compute the coefficients based on all of the data sets. This will guarantee that all of the
samples of the data streams will fall between the upper and lower bounds.

The normalization file is also used by the numerical probes to denormalize the network data to put
it in terms of the original data. When the ‘Denormalize from File’ option is set (see the Probe
Inspector) the inverse of the amplitude and offset is applied to each channel before
displaying/writing the data.

The normalization files contain two columns of ASCII data: the first column being the amplitude
terms and the second column being the offset terms. Each row represents one channel of data
(starting with channel 0).

4-channel normalization file

 113

These coefficients are calculated using the following formula:

 Amp(i) = (UpperBound - LowerBound) / (Max(i) - Min(i))

 Off(i) = UpperBound - Amp(i) * Max(i)

where Max(i) and Min(i) are the maximum and minimum values found within channel i, and
UpperBound and LowerBound are the values entered within the Stream Inspector.

The Input components normalize the data using the following formula:

 Data(i) = Amp(i) * Data(i) + Off(i)

The Probe components then use the following formula to denormalize the data:

 Data(i) = (Data(i) - Off(i)) / Amp(i)

Forms of Backpropagation

Backpropagation can either be synchronized in Static, Trajectory or Fixed Point modes.

Static

Static backpropagation assumes that the output of a network is strictly a function of its present
input (i.e., the network topology is static). In this case, the gradients and sensitivities are only
dependent on the error and activations from the current time step.
Trajectory

Training a network in Trajectory mode assumes that each exemplar has a temporal dimension
defined by its forward samples (period), and that there exists some desired response for the
network's output over this period. The network is first run forward in time over the entire period,
during which an error is determined between the network's output and the desired response. Then
the network is run backwards for a prescribed number of samples (defined by the

samples/exemplar of the BackDynamicControl) to compute the gradients and
sensitivities. This forward/backward pass is considered a single exemplar.
Fixed Point

Fixed Point mode assumes that each exemplar represents a static pattern that is to be embedded
as a fixed point of a recurrent network. Here the terms forward samples and backward samples can
be thought of as the forward relaxation period and backward relaxation period, respectively. All
inputs are held constant while the network is repeatedly fired during its forward relaxation period,
specified by the samples/exemplar of the DynamicControl component. Note that there are no

 114

guarantees that the forward activity of the network will relax to a fixed point, or even relax at all.
After the network has relaxed, an error is determined and held as constant input to the
backpropagation layer. Similarly, the error is backpropagated through the backprop plane for its
backward relaxation period, specified by the samples/exemplar of the BackDynamicControl

. This forward/backward relaxation is considered to be one exemplar.

Probing

Probing is a fundamental concept of NeuroSolutions. Each probe provides a unique way of
visualizing the data available throughout the network. Here are some hints on how to use probing
to better guide the simulations:

� Monitor the progression of learning by observing the output means square error.

� Judiciously select learning parameters by observing if the learning curve oscillates or is too flat.

� Monitor a component’s weights and/or activities to see if they did not change from their initial values during
learning. These features can indicate redundant units.

� Try to understand how the network learned its task, by observing how the waveforms change when they pass
through the neural topology (particularly useful in dynamic nets).

Saving and Fixing Network Weights

Once a network is trained, its weights can be saved along with the breadboard. Each component
with adaptive weights is responsible for saving them. The Soma property page of a component’s
inspector contains a Save Weights switch. When the breadboard is saved to a file, the current
weight settings (of all components with the Save switch set) are stored along with the components.
By default, the Save switch is set on all components. When the breadboard is later re-loaded, the
training can them resume from where it had left off.

There is also an option within the StaticControl Inspector for saving all adaptive weights of the
network to a NeuroSolutions Weights File. This allows a convenient interface with which to extract
trained network weights to be used by another application, or to save the weights of several trials
and keep the best results.

The Soma property page also contains a Fix Weights switch. This switch protects the component
weights from being modified by the global commands of the controller (i.e., Reset, Randomize and
Jog). This switch is useful when you want to set the values of a component’s weight matrix (using
the MatrixEditor) and have those values stay fixed while the rest of the network is trained. Note that
if there is a gradient search component attached, then the learning rate must be set to zero for the
weights to remain fixed.

Weights File

The NeuroSolutions weights file is used to store the weights, biases and internal states of each
component on the breadboard. This file has several uses:

� Save the best weights of a training session (see "Save Best" within the ErrorCriteria Inspector).

� Save multiple states of the network (see "Auto Increment" within the Weights Inspector).

 115

� Stores the state of the network to be retrieved by the Generated C++ Source Code.

� Allows one to implement their own recall network by looking up the formulas for the components and using the
parameters stored in the weights file.

The default extension for NeuroSolutions weights files is "nsw", but the "Save Best" feature of the
ErrorCriteria components stores the file with a "bst" extension. The file consists of a sequence of
component definitions, one for each component on the breadboard containing adaptive weights.
The file format for individual component definitions is as follows:

#NAME CLASS

SIZE

WEIGHTS

STATES

All component definitions begin with the # delimiter. Immediately following this delimiter is the
component’s name and the component’s class. The component's name is reported in the Engine
property page of its inspector. The user can alter this name in order to match specific names within
a weights file, but the name entered will be checked to verify that it is unique to the current
breadboard. The component’s class must appear as reported by the title bar of its inspector
(displayed at the top of the inspector window).

The next lines following the component’s class is reserved for a set of numbers defining the
component’s size. The contents of these lines will depend on the type of component.

The next line contains the actual values of the weights. All Somas will store their adaptive weights
in the following format:

N w(1) w(2) w(N)

where N is the total number of weights and w(i) represents each individual weight in integer,
floating point or exponential format.

The last line contains any parameters that determine the internal state of the component such as
momentum or delayed activity. Most components do not include this line.

Size Definitions

Axon Family

All axons will store their number of rows and columns in the following format:

ROW_COUNT COL_COUNT

Tapped MemoryAxon Family

 116

All tapped memory axons will store their number of taps, rows and columns in the following format:

TAP_COUNT

ROW_COUNT COL_COUNT

ArbitrarySynapse Component

This component will store its user-defined connections in the following format:

m

FROM_INDEX(1) n(1) TO_INDEX(1) TO_INDEX(2) ... TO_INDEX(n(1))

FROM_INDEX(2) n(2) TO_INDEX(1) TO_INDEX(2) ... TO_INDEX(n(2))

 : :

 : :

FROM_INDEX(m) n(m) TO_INDEX(1) TO_INDEX(2) ... TO_INDEX(n(m))

where m is the total number of feeding indices and n(i) is the total number of indices that the
feeding index FROM_INDEX(i) is connected to. Each TO_INDEX is connected to the
FROM_INDEX by an adaptive weight. The total number of weights is the sum of the n(i)’s.

FullSynapse Family

The number of weights of a fully-connected Synapse is determined by the dimensions of the Axons
that it is connected to. For this reason, there is no size field stored for these components.

Weights Definitions

ArbitrarySynapse Component

This component stores its weights in the order that the "TO_INDEX" indices are listed (see above).

FullSynapse Family

These components store their weights in the following order:

w(1,1) w(1,2) … w(1,N) w(2,1) w(2,2) … w(2,N) … w(M,1) w(M,2) … w(M,N)

where w(i,j) is the weight connecting output processing element i to input processing element j. M is
the total number of outputs and N is the total number of inputs (see the Soma Family Inspector).

 117

GammaAxon Component

This component uses the weights line to store its gamma coefficents, one for each processing
element (see the GammaAxon component definition page).

LaguarreAxon Component

This component uses the weights line to store its Laguarre coefficents, one for each processing
element (see the LaguarreAxon component definition page).

BiasAxon Family

These components use the weights line to store their biases, one for each processing element (see
the BiasAxon component definition page).

Feedback Family

These components use the weights line to store their time constants, one for each processing
element (see the Feedback Family Inspector).

State Definitions

Input Components

This component uses the weights file to store its normalization coefficients, which are used to
normalize the input data. These are the same coefficents stored in the associated Normalization
File. Note that these coefficients are used by the generated C++ source code, but are ignored
when using the weights file within the NeuroSolutions interface.

Probe Components

This component uses the weights file to store its normalization coefficients, which are used to
denormalize the probed data. These are the same coefficents stored in the associated
Normalization File. Note that these coefficients are used by the generated C++ source code, but
are ignored when using the weights file within the NeuroSolutions interface.

Tapped MemoryAxon Family

All tapped memory axons store the values of each individual memory element in the following
format:

ELEMENT_COUNT e(1,1) e(1,2) … e(1,N) e(2,1) e(2,2) … e(2,N) … e(T,1) e(T,2) …
e(T,N)

 118

where e(i,j) is the value of the memory element for tap i and processing element j. T is the number
of taps (see the TDNNAxon Inspector) and N is the total number of processing elements of the
axon ("Rows" times "Columns" defined within the Soma Family Inspector).

Feedback Family

These components store the delayed activities (the activities from the previous time step), one for
each processing element. The format for this line is as follows:

 PE_COUNT a(1) a(2) … a(N)

where a(i) is the delayed activity for processing element i and N is the number of processing
elements of the axon ("Rows" times "Columns" defined within the Soma Family Inspector).

FullSynapse Family

When there is a delay specified (see the Synapse Inspector), these components store the delayed
inputs (the inputs from the previous time step), one for each processing element of the axon that is
feeding the synapse. The format for this line is as follows:

 PE_COUNT a(1) a(2) … a(N)

where a(i) is the delayed activity for processing element i and N is the number of processing
elements of the feeding axon ("Rows" times "Columns" defined within the Soma Family Inspector).

Momentum Component

This components stores the momentum parameters (see the Momentum component reference),
one for each processing element. The format for this line is as follows:

 PE_COUNT m(1) m(2) … m(N)

where m(i) is the momentum parameter for processing element i and N is the number of processing
elements of the attached Activation component.

Quickprop Component

This components stores the momentum parameters (see the Momentum component reference)
and the second order derivative parameters (see the Quickprop component reference). The format
for these lines is as follows:

 119

 PE_COUNT d(1) d(2) … d(N)

 PE_COUNT m(1) m(2) … m(N)

where d(i) is the second order derivative for processing element i , m(i) is the momentum
parameter for processing element i and N is the number of processing elements of the attached
Activation component.

Saving Network Data

Any data that can be probed can also be stored to an ASCII or binary file by attaching a DataWriter

probe. The DataWriter probe functions similar to the MatrixViewer probe . It displays
the probed data within a display window. From the DataWriter inspector, there is an option to
specify a file on the file system. Once this is set, then all data that passes through the attached
access point is displayed and written to the file.

Stop Criteria

The StaticControl and the DynamicControl components contain a parameter for
the maximum number of training epochs. This parameter assigns a stop criterion. Other stop
criteria can be specified that will supersede this criterion.

The stop criterion of unsupervised components is often based on the amount of weight change
between epochs. Once this change (for all weights) reaches some threshold then the unsupervised
training is terminated.

The stop criteria for supervised training is usually based on the mean squared error (MSE). Most
often the training is set to terminate when the MSE drops to some threshold. Another approach is
to terminate when the change in the error between epochs is less than some threshold.

NeuroSolutions also provides a cross validation method to stop the training. Cross validation
utilizes the error in the test set. Even though the MSE of the training set will keep decreasing
throughout the simulation, at some point the MSE of the test set will begin to rise. This is an
indication that the network has begun to overtrain or "memorize" the training patterns. The network
can be automatically terminated at this point to insure the best generalization.

The stop criteria just summarized are the most commonly used. NeuroSolutions provides the
flexibility to specify a wide range of stop criteria using components from the Transmitter family.

Constructing Learning Dynamics

The BackStaticControl and the BackDynamicControl components provide a
mechanism for automatically adding or removing the Backprop and the GradientSearch planes.
This is used to specify whether or not the weights are to be frozen (i.e., when testing the network).
The Remove button from the corresponding inspector will remove the two planes and the Add
button will create two new planes. Note that the type of GradientSearch components created is
based on the menu selection from the inspector. The learning rates for these components will be
set to default values and not those from the previous training session.

 120

An alternative method for freezing the weights during a simulation is to set all of the learning rates
of the GradientSearch components to zero. However, note that the efficiency is worse since the
learning dynamics are still being computed.

Simulating Recurrent Networks

Recurrent networks are more powerful than feedforward networks, but they are difficult to train and
their properties are not well understood. NeuroSolutions provides both construction primitives and
training paradigms (fixed point learning) for fully recurrent networks, while minimizing these
disadvantages.

The training of a recurrent network is much more sensitive to divergence. Most often, several step
sizes must be used. NeuroSolutions provides the facilities for staging the step sizes during training.
Another important aspect of fixed point leaning is the relaxation of the system. Without proper
relaxation, a recurrent network will not learn. The Transmitter family is used for both of these
functions.

The user should extensively use the probing capabilities of NeuroSolutions to make sure that the
network is not becoming unstable during training. This type of instability can be recognized when
an activation constantly saturates for all input exemplars, effectively shutting the PE off and
decreasing the number of degrees of freedom available in the network. This type of instability is
difficult to recognize using the mean squared error of the output.

Another aspect to be considered is the possibility of creating an infinite loop in the simulations.
NeuroSolutions checks for a connection that causes an infinite loop and displays a warning if one is
detected. In order to avoid this condition, the user must include at least one synapse in every
recurrent connection, and set a non-zero Delay (normally 1, meaning that the activation is delayed
one sample). A one-layer fully recurrent network can be constructed as illustrated in the figure
below.

Fully recurrent network

If the user wants to impose a firing order (as is sometimes the case in simulations of biological
nets), the network should be constructed from many axons with a single PE each. The firing can be
controlled by appropriately interconnecting the elements on the breadboard and appropriately
choosing the delays.

Component Naming Conventions

Whenever a wizard, macro, or add-in is used to manipulate a network, it must know the names of
the various components in order to make the appropriate function calls. For this reason, the

 121

following naming conventions have been defined in order to identify each component based on its
particular function within the topology. It is recommended that you name your components
according to these conventions if you plan to use a wizard, macro, or add-in with your network. It is
important to note that the names should begin with a lower case letter, but that the remaining words
should be capitalized (e.g., trainingCostProbe).

Naming Conventions

Family Template Comments

Input #File # = {input, desired}

Axon #%Axon # = {input, output, context, unsupervised,
memory1, memory2, …, hidden1,
hidden2, …}

% = {Lower}

The ‘Lower’ tag is only used if there are
two axons in the same layer (e.g., a
modular network).

The ‘context’ tag is signifies a layer of
context units, such as those found in a
Jordan/Elman network.

The ‘unsupervised’ tag signifies the axon
fed by the unsupervisedSynapse of a
hybrid network (see below).

The ‘memory’ tag signifies a TDNNAxon,
as found in the TLRN network.

Synapse #%Synapse # = {output, unsupervised, hidden1,
hidden2, …}

% = {Lower}

The ‘Lower’ tag is only used if there are
two synapses in the same layer (e.g., a
modular network).

The ‘context’ tag is signifies a connection
to a contextAxon (see above).

The ‘unsupervised’ tag signifies the
unsupervised component of a hybrid
network (e.g., PCA, RBF, SOFM).

 %To#Synapse % = name of component feeding the
synapse

= name of the component that the
synapse feeds

The second template is used for
connections between non-adjacent layers
(e.g., Modular and Generalized
Feedforward networks).

 122

Probe %#@Probe % = {training, crossValidation}

= {Input, Output, Desired, Cost,
ConnectionWeights, BiasWeights}

@ = {Temporal}

Only temporal probes (ones that attach to
the ‘Buffered Activity’ access point of a
DataStorage) use the ‘Temporal’ tag.

Transmitter #Transmitter # = {cost, weights}

Schedule #Scheduler # = {stepSize, radius}

Backprop #Backprop # = name of attached activation
component

GradientSearc
h

#Gradient # = name of attached backprop
component

ActivationCont
rol

control

Coordinating Unsupervised and Supervised Learning

NeuroSolutions provides a very efficient integration of supervised and unsupervised learning within
the same network. Hybrid networks are a very powerful class that has been largely unused due to
the difficulty of the simulation of the two types of learning.

NeuroSolutions’ modularization of learning enables a very elegant integration of unsupervised and
supervised networks within the same simulation. Examples of this class of networks are the PCA
networks, the Radial Basis Function Networks and the Self-Organizing Feature Map Networks. The
unsupervised segment of the network functions as a preprocessor or feature extractor. The
supervised segment is used to classify the extracted features.

While the unsupervised segment extracts the features, the supervised classifier does not need to
train (since it will learn incorrect features). The most efficient way to implement this hybrid training
is to break the dataflow and train each piece of the network independently. The coordination of the
learning and the dataflow requires the use of the Transmitter family.

Organization of NeuroSolutions
Organization of NeuroSolutions

In this section, each family is presented along with any concepts regarding the use of its
components.

A list of component families is maintained under the Palettes menu of NeuroSolutions. There are
also "families of families" (e.g., the Activation family), which do not have associated palettes.

The user can dock some or all of the available palettes on the border of the NeuroSolutions main
window. When the palette is visible, a check mark is placed by the family name. To dock a
particular palette, first single-click on the desired menu item to make the palette visible. Then drag

 123

the palette (grab it along its edge) to a free space on the border of the NeuroSolutions main
window. When dropped, the palette will attach itself.

Activation Family

Backprop Family

GradientSearch Family

Controls Family

Unsupervised Family

Probe Family

Input Family

Transmitter Family

Activation Family

Activation Family

Ancestor: Engine

At the core of any artificial neural network (ANN) is the neuron, or processing element (PE). Most
ANNs use PEs, which are derivatives of the McCulloch-Pitts neurons. However, the McCulloch-
Pitts neuron is not a model for network learning, but rather a model for network activation. By
activation, we are describing the way in which information, or data, flows through the network. The
McCulloch-Pitts model describes each neuron as receiving weighted input from every other neuron

 124

in the network, applying a non-linear threshold and presenting its output for the others to input. The
activation of data through a first order McCulloch-Pitts neuron is defined by the following equation,

where xi(t) represents a neurons activity, ? is a nonlinearity and wij is a connection weight linking
PEj to PEi..

Time t is discrete, and it relates to one simulation step. This equation means that the next value of
the activation is obtained from the values of the other activations of PEj at the previous time step. If
the first order model is generalized to any discrete time delay d, more sophisticated models for the
neuron can be implemented from multiple first order models, as given by,

Neural networks are constructed by first defining the neuron interconnections, and then assigning a
learning procedure to adapt its weights. The Activation family only addresses the interconnection of
PEs to form a neural network topology. A network constructed from Activation components
contains no inherent procedure for learning, but rather supports a general communications protocol
such that components belonging to various learning procedure families can adapt its weights.

The McCulloch-Pitts model describes a network topology with a fully interconnected set of neurons
(i.e., each neuron feeds all of the others). In practice, ANN topologies typically interconnect
distributed clusters, or layers of PEs. For this reason, each component in the Activation family will
operate on a layer, or vector of PEs. This leads to very efficient simulations.

Activation family components model the McCulloch-Pitts neuron by dividing its functionality into a
temporally discrete linear map, and an instantaneous nonlinear map.

A Special Note for Neurobiologists

Many of the terms used in NeuroSolutions have different meanings than when used in a biological context.
This section is included to help neurobiologists avoid confusion by explicitly listing these differences.

In NeuroSolutions, the term "soma" refers to a parent, or archetypal class of elements. Both "synapse" and
"axon" are derivative classes of "soma". There is no specific "soma" element used in the construction of
NeuroSolutions breadboards.

The term "axon" in NeuroSolutions refers to an element that integrates its input weights and creates an
output. Often this is a nonlinear process. The NeuroSolutions "axon" more closely resembles the combination
of the neuronal dendrites, soma, and axon hillock in neurobiology.

"Synapse" in NeuroSolutions refers to the principal element that transmits information between
NeuroSolutions "axons". These "synapses" are more like the combined axon and synapses of neurobiology. A
NeuroSolutions "synapse" can be connected to many NeuroSolutions "axons", and is therefore similar to a
highly branched, or arborized, neurobiological axon. A biological synapse is functionally similar to a single
weight in NeuroSolutions.

 125

Members:

Axon Family

MemoryAxon Family

Synapse Family

 See Also

Axon Family

Axon family palette

Ancestor: Activation Family

Artificial neural networks are constructed by interconnecting processing elements (PEs) which
mimic the biological nerve cell, or neuron. NeuroSolutions divides the functionality of a neuron into
two disjoint operations: a nonlinear instantaneous map, which mimics the neuron’s threshold
characteristics; and a linear map applied across an arbitrary discrete time delay, which mimics the
neuron’s synaptic interconnections. The Axon family implements common variations on the
nonlinear instantaneous maps employed by neural models. Each axon represents a layer, or
vector, of PEs. All axons will also be equipped with a summing junction at their input and a splitting
node at their output. This allows multiple components to feed an axon, which then processes their
accumulated activity. It is important to notice the difference between this sum of activity vectors,
and the weighted sum of products depicted by the McCulloch-Pitts neuron model (see Activation
family). The latter is implemented as a linear map by the other functional division of the neuron, the
Synapse family.

For generality, an axon's map may actually be either linear or nonlinear. However, components in
the Axon family typically apply a nonlinear instantaneous map, as given by,

 126

where yi(t) is the axon's output, xi(t) is an accumulation of input activity from other components,
is an internal weight or coefficient and represents an arbitrary functional map. We call

 the activation function, and the on-line help for a particular axon gives the definition of
this map for that axon.

All members of the Axon family accumulate input from, and provide output to, an arbitrary number
of activation components. In other words, each axon has a summing junction at its input and a
splitting node at its output. This functionality is illustrated by the following block diagram:

The mapping for the PE of the Axon class.

Axons can receive input from, and provide output to both axons and synapse within the network.

Members:

Axon

BiasAxon

GaussianAxon

LinearAxon

LinearSigmoidAxon

LinearTanhAxon

SigmoidAxon

SoftMaxAxon

TanhAxon

ThresholdAxon

WinnerTakeAllAxon

 See Also

MemoryAxon Family

 127

MemoryAxon family palette

Ancestor: Axon

Members of the MemoryAxon family encapsulate a local memory structure into a single axon. They
store a history of the input vector, which is contained within memory taps. MemoryAxons still
belong to the Axon family (even though they are contained within a separate palette), but they
diverge slightly from typical axon functionality. Most axons provide some form of an instantaneous
map. A MemoryAxon's activation function is not instantaneous, but has been wrapped for efficiency
into an axon.

Tapped MemoryAxons also diverge from the Axon family by having more outputs than inputs. In
fact, if there are n inputs and K taps (K-1 delay elements), then the MemoryAxon will have n*K
outputs. MemoryAxons can be best described by using a z-domain (frequency domain) activation
function. All MemoryAxons will be defined by their activation function given by:

Tapped MemoryAxons will use a tap activation function as given by:

with the topological understanding illustrated in the figure below.

 128

Block diagram of a memory axon

The index k refers to the tap value.

Probing the Output:

When attaching a MatrixViewer or MatrixEditor to an Axon without memory, the vector of PEs is
displayed as a matrix of rows and columns based on the Rows and Cols parameters set within the
Axon’s inspector. When probing a member of the MemoryAxon family, the number of columns
displayed is the number of channels (Rows*Cols). The number of rows displayed is the number of
Taps entered in the inspector. Therefore, each column represents data stored in a given channel’s
memory taps.

Members:

ContextAxon

GammaAxon

IntegratorAxon

LaguarreAxon

SigmoidIntegratorAxon

TanhContextAxon

TanhIntegratorAxon

TDNNAxon

FuzzyAxon Family

FuzzyAxon family palette

 129

Ancestor: Axon

Members of the FuzzyAxon family contain a set of membership functions (MFs) for each input
processing element. The parameters of the membership functions are stored within the weight
vector of the FuzzyAxon. The number of membership functions per processing element is specified
within the FuzzyAxon inspector. The number of outputs is computed by taking the number of
membership functions per processing element and raising it to the Nth power, where N is the
number of inputs.

Activation Function:

The output of a FuzzyAxon is computed using the following formula:

where i = input index

 j = output index

 xi = input i

 wij = weights (MF parameters) corresponding to the jth MF of input i

 MF = membership function of the particular subclass of FuzzyAxon

Members:

BellFuzzyAxon

GaussianFuzzyAxon

ErrorCriteria Family

ErrorCriteria family palette

 130

Ancestor: Axon

Supervised learning requires a metric, a measure of how the network is doing. Members of the
ErrorCriteria family monitor the output of a network, compare it with some desired response and
report any error to the appropriate learning procedure. In gradient descent learning, the metric is
determined by calculating the sensitivity that a cost function has with respect to the network's
output. This cost function, J, is normally positive, but should decay towards zero as the network
approaches the desired response. The literature has presented several cost functions, but the
quadratic cost function is by far the most widely applied (see L2Criterion).

Components in the ErrorCriteria family are defined by a cost function of the form:

and error function:

Where d(t) and y(t) are the desired response and network's output, respectively.

Each ErrorCriteria component accepts its desired response through the Desired Signal access
point, and reports the total cost between weight updates to the Average Cost access point.
ErrorCriteria components are responsible for determining an error that is used by the
backpropagation plane to calculate the gradient information.

NeuroSolutions implements supervised learning procedures using component planes. Each
component used for implementing the activation plane has a single dual component that is used to
implement the backprop plane. Components of the backprop plane are responsible for computing
the weight gradients and backpropagating the sensitivities. ErrorCriteria components are
responsible for determining the error used for the backpropagation.

The ErrorCriteria family is also a member of the Axon family (i.e., its components interact within the
network topology as an axon). It is generally used by attaching MaleConnector of network's output
to the ErrorCriteria component’s FemaleConnector. The figure below illustrates the output segment
of a network. The error is computed by the L2Criterion using the signal from the output Axon (left)
and the data read from the desired output File. The resulting error is displayed using the
MatrixViewer probe.

 131

Output segment of a network (activation plane only)

Members:

L1Criterion

L2Criterion

LpCriterion

LinfinityCriterion

User Interaction:

Macro Actions

 See Also

Synapse Family

Synapse family palette

Ancestor: Activation Family

Artificial neural networks are constructed by interconnecting processing elements (PEs) which
mimic the biological nerve cell, or neuron. NeuroSolutions divides the functionality of a neuron into
two disjoint operations: a nonlinear instantaneous map, which mimics the neuron’s threshold
characteristics; and a linear map applied across an arbitrary discrete time delay, which mimics the
neuron’s synaptic interconnections. The Synapse family implements the dynamic linear mapping
characteristics of the neuron. A synapse connects two layers of PEs (axons). A synapse will
receive input from, and provide output to, components belonging to the Axon family.

If a synapse is connected between two axons, then these axons represent distributed layers of PEs
within a network. If the synapse's input and output are applied to the same axon, then the axon PEs
are recurrently interconnected as described by the McCulloch-Pitts model. The concept of
interconnected layers of distributed PEs is fundamental to neural network theory. The
interconnection is normally defined by an interconnection matrix. In theory, any network topology
can be specified through a single interconnection matrix. In practice, however, it is impractical to
burden an already computationally expensive task with "connect by zero" operations. It makes

 132

more sense to isolate groups of neurons to be fully interconnected, and interconnect the rest by a
more efficient map.

A synapse's map may actually be either linear or nonlinear. However, components in the Synapse
family typically apply a temporally discrete linear map between their input and output axon
activation vectors. The general form for the activation of a synapse is given by:

where d is an arbitrary delay in time. This functionality can be illustrated by the following block
diagram:

The mapping for the PEs of the Synapse family.

Members:

Synapse

FullSynapse

ArbitrarySynapse

 See Also

Backprop Family

Backprop Family

Backprop family Palette

 133

Ancestor: Activation Family

The Activation family provides a base set of neural components which may be interconnected to
construct an enormous number of network topologies. Once a specific topology has been
constructed, the user can apply an arbitrary learning rule (if a specific rule is not supported,
developers can write their own). The Backprop Family implements the backpropagation learning
rule for elements in the Activation family. Each member of the Activation family will have a dual
component in the Backprop family, which is responsible for calculating the gradient information
based on its activation function. Backprop components are stacked on top of their Activation dual
component.

First, there needs to be a clear definition for the term backpropagation. The literature has presented
many variations to the backpropagation learning rule, such as steepest descent, quickprop and
conjugate gradients. At the core of all backpropagation methods is an application of the chain rule
for ordered partial derivatives to calculate the sensitivity that a cost function has with respect to the
internal states and weights of a network. In other words, the term backpropagation is used to imply
a backward pass of error to each internal node within the network, which is then used to calculate
weight gradients for that node.

The Backprop family does not specify the way in which this gradient information is used to adapt
the network. The GradientSearch family is responsible for applying the gradient information
computed by the Backprop components to adapt the weights within the Activation components. Any
member of the GradientSearch family may be applied to each member of the Backprop family,
providing the variations to backpropagation (e.g. steepest descent, quickprop and conjugate
gradients).

Recall that the Activation family was divided into components having one of two activation
functional forms, corresponding to the Axon and Synapse families. The functional form of
backpropagation components is completely defined by the topology of their respective Activation
duals. In other words, the Backprop family is divided into two distinct functional families. For
convenience, these two families are contained within the same Backprop palette.

Members:

BackAxon Family

BackMemoryAxon

BackSynapse Family

 See Also

BackAxon Family

 134

BackAxon section of the Backprop family Palette

Ancestor: Backprop Family

Members of the Axon family implement the instantaneous nonlinear threshold characteristics of the
neuron, and its members are constrained to a standard activation functional form. Thus
components implementing backpropagation for axons will also share a common functional form.

Backpropagation requires that all members of the BackAxon family perform two operations. First,
given an error at their output, BackAxons must calculate gradient information for all adaptive
weights within their dual components (i.e. from the Axon family). Second, they must derive the
relative error at their input to be backpropagated to any components which precedes them. Recall
the standard activation function for members of the Axon family (see equation). Similarly, members
of the BackAxon Family can be defined by a backward sensitivity function (error) as given by,

Each member of the Axon family was completely defined through its activation function. Similarly,
members of the BackAxon family can be defined by a backward sensitivity function (error) as given
by:

and a weight gradient function of the form:

where and are sensitivities, is the weight gradient, ' denote derivatives,
and J is the cost function. The error propagation can be illustrated by the block diagram in the
figure below.

 135

BackAxon functionality

Each BackAxon will assign its error function, and weight gradient function,

.

Members:

BackAxon

BackBiasAxon

BackLinearAxon

BackSigmoidAxon

BackTanhAxon

BackMemoryAxon Family

 See Also

BackMemoryAxon Family

BackMemoryAxon section of the Backprop family Palette

Ancestor: BackAxon Family

 136

Members of the MemoryAxon family encapsulate a local memory structure into a single axon.
MemoryAxons do not use time domain equations to describe their activation, but instead use z-
domain tap activation equations. Similarly BackMemoryAxons are defined by a z-domain sensitivity
function given by,

Tapped MemoryAxons are defined by a z-domain tap sensitivity function,

A topological perspective for the tapped components is illustrated in the figure below. Each

individual pair of activations (i.e., ,) is treated as in the backward sensitivity equation
and the weight gradient equation.

Block diagram for BackMemoryAxons

Members:

BackContextAxon

BackGammaAxon

BackLaguarreAxon

BackIntegratorAxon

 137

BackSigmoidContextAxon

BackSigmoidIntegratorAxon

BackTanhContextAxon

BackTanhIntegratorAxon

BackTDNNAxon

 See Also

BackSynapse Family

BackSynapse section of the Backprop family Palette

Ancestor: Backprop Family

Neural network topologies are constructed by interconnecting components that mimic the biological
neuron. Members of the Synapse family implement the linear dynamic characteristics of the
neuron, and its members are constrained to a standard activation functional form. Thus
components implementing backpropagation for synapse will also share a common functional form.

Backpropagation requires that all members of the BackSynapse family perform two operations.
First, given an error at their output, BackSynapses must calculate gradient information for all
adaptive weights within their family of dual components (i.e., the Synapse family). Second, they
must derive the relative error (the sensitivities) at their input to be backpropagated to any
components which precedes them. Recall the equation for the standard activation function for
members of the Synapse family. Similarly, members of the BackSynapse family can be defined by
a backward sensitivity function as given by:

Each member of the Synapse family was completely defined through its activation function.
Similarly, members of the BackSynapse family can be defined by a backward sensitivity function
(error) of the form:

 138

and a weight gradient function of the form:

The error propagation can be illustrated by the block diagram in the figure below.

BackSynapse block diagram

Each BackSynapse is defined by an error function and weight gradient function.

Members:

BackSynapse

BackFullSynapse

BackArbitrarySynapse

 See Also

GradientSearch Family

GradientSearch Family

 139

GradientSearch family palette

Ancestor: Engine

Components in the GradientSearch family search a network’s performance surface in an attempt to
find the global minima. Recall that the Activation family is responsible for passing activity forward
through the network, and the Backprop family is responsible for passing an error backwards, in
addition to calculating weight gradients. The GradientSearch family will use the weight gradients
provided by the Backprop family to update the weights of the Activation family. This is depicted by
the general form for the weight update equation given in the equation below.

Conceptually, members of the Activation family are interconnected to form the network topology,
which in turn fixes the performance surface topography. Members of the Backprop family act as a
level, i.e. given the current location in weight space, they estimate the direction of a minima or
valley within the performance surface. Members of the GradientSearch family move the location (by
updating the weights) based on this estimated direction in an attempt to minimize the error.

There are many methods for searching the performance surface based on first order gradient
information (e.g., steepest descent, quickprop and conjugate gradients), as well as several
methods for deriving these gradients (e.g., static backpropagation, backpropagation through time
and real time recurrent learning). This is the motivation for separating gradient calculations from
weight updates.

A GradientSearch component can be stacked on top of any member of the Backprop family that
contains weights (see figure below). This allows the GradientSearch component to access the
errors and gradients of the Backprop component, as well as the activities and weights of the
Activation component.

Network with Activation, Backprop and GradientSearch planes

 140

Members:

Step

Momentum

Quickprop

DeltaBarDelta

 See Also

Controls Family

Controls Family

Controls family palette

Ancestor: Engine

The Activation family is a collection of components which may be interconnected to form neural
networks. Each component in this family performs a simple neural (processing) function, but when
interconnected, these components work together to simulate very complicated neural networks.
The order in which activity is fired through this network establishes a data flow machine. Input data
is presented to the first component, which processes it and passes the result to the next
component. This will continue until the last component has processed the data (i.e., the output of
the network is reached). Each component in the Activation family understands the local rules of
interaction required to operate as a data flow machine. Global rules of interaction are also required
when simulating neural networks to insure the proper ordering of events.

NeuroSolutions uses members of the Controls Family (i.e., controllers) to provide global activation
and learning synchronization for simulations. All breadboards require at least one member of this
family in order to run simulations. The Controls family consists of three sub-families. All Controls
components are contained within the Controls palette.

Members:

ActivationControl Family

BackpropControl Family

 141

 See Also

ActivationControl Family

The ActivationControl family consists of the StaticControl and DynamicControl
components. These components are responsible for synchronizing the presentation of data to a
neural network. The activation of network simulations are divided into experiments, epochs,
exemplars and forward samples. The StaticControl component is only capable of controlling static
network topologies, while the DynamicControl component supports both static and dynamic
topologies.

The outputs of a static network are only a function of its inputs and states at the current instant in
time. This relationship can be depicted by the equation

where y(t) are the network's outputs, i(t) are inputs, x(t) are internal nodes and w are the weights.

The outputs of a dynamic network can be a function of its inputs and internal states at the present
time, as well as its states at any past instant in time. This is defined by

Note that static networks are a special case of dynamic where T is set to zero.

An example may be the best method for explaining the settings available on the inspectors of these
two components. Assume that you have designed a dynamic network for isolated speech
recognition. In particular, you wish to train the network to recognize the digits 0-9. These digits
have been individually spoken into a microphone and properly sampled. Each digit is completely
contained within an isolated segment consisting of 8000 samples. To complete the training set, this
process was repeated 100 times for each digit.

The term samples, refers to the individual pieces of temporal information. An exemplar is a
complete pattern of samples (e.g., each spoken digit), which may be static or temporal. The
temporal dimension of an exemplar is defined by its Samples/Exemplar (in this case 8000). Static
problems will have one sample per exemplar. An epoch refers to the set of all exemplars to be
presented during the training of a network (e.g., all 100 exemplars of each of the 10 digits). Thus an
epoch is defined by assigning the Exemplars/Epoch (1000 in our example). A neural network
experiment will consist of the repeated presentation of an epoch to the network until it has
sufficiently trained. Thus an experiment is defined by assigning the Epochs/Experiment.

 142

Inspector for the DynamicControl component

The StaticControl inspector does not contain the Samples/Exemplar parameter. This is because
every sample corresponds to one exemplar. A simple example of a static case is the XOR problem.
The XOR table is composed of 4 cases. You train an MLP to solve the XOR by presenting the 4
cases 100 times. Here an exemplar is one of the four entries of the XOR table. An epoch consists
of the four patterns (Exemplars/Epoch = 4). The experiment consists of 100 presentations of each
of the 4 cases (Epochs/Experiment = 100).

Inspector for the StaticControl component

The ActivationControl family is also responsible for cross validation of the network during learning.
It does this by sending a second set of data through the network during the training, while
temporarily freezing the network weights.

All Access components have the ability to choose the data set to access. Each probe can be
assigned to monitor a particular data set. Furthermore, a transmitter can make control decisions
based on one of the data sets, e.g. stopping training after the error in the cross validation set has
fallen below a given threshold.

 143

Members:

StaticControl

DynamicControl

 See Also

BackpropControl Family

The BackpropControl family consists of the BackStaticControl and the

BackDynamicControl components. They are responsible for synchronizing components
in the backpropagation plane. There are two distinct synchronization paradigms for
backpropagation. Synchronization refers to the way in which the network processes sensitivity
(error) data. The ActivationControl family divides simulations into experiments, epochs, exemplars
and samples. The BackpropControl family further defines a simulation by the number of backward
samples per exemplar and the number of exemplars per weight update. Backpropagation can
either be synchronized in Static, Trajectory or Fixed-Point modes.

The BackStaticControl component is used in conjunction with the StaticControl component. Static
backpropagation assumes that the output of a network is strictly a function of its present input (i.e.,
the network topology is static). In this case, the gradients and sensitivities are only dependent on
the error and activations from the current time step. The Exemplars/Update field of the
BackStaticControl inspector is the number of patterns presented to the networks before a weight
update is computed. If the weights are updated after every exemplar (Exemplars/Update = 1), then
this is termed on-line learning. If the weights are update after every epoch (Exemplars/Update =
Exemplars/Epoch in the activation control component), then this is termed batch learning.

BackStaticControl inspector

 144

Note that for linear systems, static backpropagation is equivalent to least mean squares (LMS). If a
network does not have any recurrent connections (i.e., the network is feed-forward) but has a
dynamic component such as a TDNNAxon, then the sensitivity that the output has with respect to
any internal node is strictly a function of that node at present time. Therefore, static
backpropagation can still be used even though the network topology is dynamic.

The BackDynamicControl component is used in conjunction with the DynamicControl
component. These components allow for Trajectory and Fixed-Point learning. Training a network in
Trajectory mode assumes that each exemplar has a temporal dimension defined by its forward
samples (period), and that there exists some desired response for the network's output over this
period. The network is first run forward in time over the entire period, during which an error is
determined between the network's output and the desired response. Then the network is run
backwards for a prescribed number of samples (defined by the Samples/Exemplar of the
BackDynamicControl inspector) to compute the gradients and sensitivities. This forward/backward
pass is considered a single exemplar. As with the static case, the Exemplars/Update field specifies
how many times this process is repeated before the weight gradients are applied to the weights.

Fixed Point mode assumes that each exemplar represents a static pattern that is to be embedded
as a fixed point of a recurrent network. Here the terms forward samples and backward samples can
be thought of as the forward relaxation period and backward relaxation period, respectively. All
inputs are held constant while the network is repeatedly fired during its forward relaxation period,
specified by the Samples/Exemplar of the DynamicControl component. There are no guarantees
that the forward activity of the network will relax to a fixed point, or even relax at all. If the network
becomes unstable or gets stuck in a limit cycle, simply randomize the weights and try again. Of
course, a clever researcher will start the network from initial conditions that are known to be stable
(as in the case of symmetric weights). After the network has relaxed, an error is determined and
held as constant input to the backpropagation layer. Similarly, the error is backpropagated through
the backprop plane for its backward relaxation period, specified by the Samples/Exemplar of the
BackDynamicControl inspector. This forward/backward relaxation is considered to be one
exemplar. Again, the Exemplars/Update specifies how often to update the weights.

Members:

BackStaticControl

BackDynamicControl

 See Also

Unsupervised Family

Unsupervised Family

Unsupervised family palette.

 145

Ancestor: Level

Unsupervised learning trains based on internal constraints, so no desired signal is used during
training. This should not be confused with not having a desired response. The way in which the
network responds to input data is pre-encoded into the learning procedure.

Unsupervised learning is only meaningful if there is redundancy in the input data. Without
redundancy it is impossible to find any patterns or features. Unsupervised networks extract
knowledge by exploring redundancy. In this sense, knowledge and information are exact opposites;
information can be measured by a signal’s lack of redundancy.

Unsupervised learning is normally applied to a single layer of weighted connections. In
NeuroSolutions, this corresponds to the Synapse family. Therefore, all components in the
Unsupervised family are also members of the Synapse family. Unlike supervised procedures,
unsupervised components do not require a dedicated network controller. These components insert
themselves into the data flow during the network's forward activation. The weights of the synapse
are adapted internally with every sample of data flowing through the network. Supervised and
unsupervised components may be intermixed within a single network.

Within the Unsupervised palette are three sub-families summarized below. All components in the
Unsupervised family can be functionally described through a weight update function in the form of
the equation below.

where η is the step size specified within the Learning Rateproperty page.

Members:

Hebbian Family

Competitive Family

User Interface:

 Macro Actions

Hebbian Family

The Hebbian learning is correlation learning. The elements of this family utilize directly the product
of its local input and output to derive the weight updates. NeuroSolutions implements straight
Hebbian (Hebbian, anti-Hebbian, forced-Hebbian) and normalized Hebbian (Oja and Sanger). The
last two types have an inherent normalization. These three components are HebbianFull, OjasFull
and SangersFull.

 146

Members:

HebbianFull

Ojas

Sangers

Competitive Family

Ancestor: Unsupervised Family

The goal of competitive networks is to cluster or categorize the input data. The user defines the
number of categories, but their coordinates are determined without supervision. There are an
enormous number of applications for such networks. Data encoding and compression through
vector quantization comprise one important class of applications.

Competitive learning weight updates are applied on a winner take all basis. In other words, only the
weights that feed the most active output are adjusted. Like all components in the Unsupervised
family, Competitive components are defined through their weight update function. However, this
function is now only applied to the winning index, i*.

where x is the input vector and i* is the index of the winning output. The difference between
competitive rules is based on how the winning output is determined. Therefore, each component is
defined by a winning index function of the form,

i* = f(y)

where y is the output vector. Note that the output vector y is a measure of the distance between the
input and the output neurons’ weight vectors. This distance is dependent on the particular metric
chosen.

 147

The Competitive family consists of two components, StandardFull and ConscienceFull. The first
component implements the standard competitive rule summarized above. With this rule, there are
cases when one PE will win the competition too much, causing the output to be skewed. The
second component implements the "competitive with a conscience" learning rule. This rule adds a
bias term to balance the competition, which reduces this problem.

The components of the Competitive family are often used in conjunction with a WinnerTakeAllAxon.
This component will extract the winning PE of the competition. For the Dot Product metric, the
winning PE is the one with the maximum value. For the other two metrics, the winning PE is the
one with the minimum value.

Members:

StandardFull

ConscienceFull

Kohonen Family

User Interface:

 Macro Actions

Kohonen Family

Ancestor: Competitive Family

The Kohonen family is an enhancement of the Competitive family. It extends the competition over
spatial neighborhoods. While competitive learning only updates the weights of the winning PE, in
Kohonen learning the weights in a neighborhood of the winning PE are also updated.
NeuroSolutions implements a 1D neighborhood and two types of 2D neighborhoods. Both the
neighborhood and the learning rates can be set to decay as the network learns.

The Kohonen components use the same weight update as used for the competitive components,
and they all use a conscience bias to determine the winning index. The difference is that a
neighborhood of PEs around the winning output are updated along with the winning PE.

The reference page of each component contains an illustration of its neighborhood for a
neighborhood size of 2. Both the neighborhood size and learning rate are available on the
component’s inspector. These parameters can also be scheduled to decay during the simulations.

Members:

DiamondKohonen

LineKohonen

SquareKohonen

 148

User Interface:

 Macro Actions

Probe Family

Probe Family

Probes family palette

Ancestor: Access Family

Probing is a fundamental concept of NeuroSolutions. Since it is very difficult to mathematically
describe the complex signal transformations occurring in highly nonlinear systems, neural networks
are often used as "black boxes". However in a simulation environment, considerable insight can be
gained by observing activations and weights at the input, output and internal nodes during training.
The learning curve (i.e., how the output MSE decreases with training) is a paradigmatic display of
the importance of probing.

Analyzing the activity within PEs tends to be almost exclusively applied to output components. In
NeuroSolutions, the user has the ability to place probes on ANY component in the network. Each
probe provides a unique way of visualizing the data available at a component’s access points. It is
obvious that on-line visualization of learning (i.e., visualizing the MSE or other network parameters
during the simulations) is a time savings feature. Maladjustments in learning parameter settings
can be observed early in the simulation, and corrected. Another useful feature of probing is the
added understanding that the user gets about the path that the network takes to arrive at a working
solution (see Frequency Doubler Example).

The core idea of probing is to extract data from signal paths for visualization, and further
processing, without disturbing the network topology. Probing will require additional clock cycles, but
NeuroSolutions allows the user to set how often the display is refreshed. If the user does not take
into account the interval between display cycles, probing can significantly hinder the simulation
speed.

In NeuroSolutions, whenever a component has data to monitor (e.g., activity, weights and learning
rates) it reports the data through a standard protocol. In this way, all NeuroSolutions components
speak the same language. No matter what the data represents, it is reported through the same
protocol. This is the same protocol that all probes speak, allowing the same data to be visualized in
many formats.

The Probes Family consists of static probes, temporal probes and transformers. The static probes
accept instantaneous data from component access points. Temporal probes are used to observe
data that has been collected and stored over a number of simulation clock cycles. Transformer
probes transform the data collected at temporal access points (e.g., a spectral estimator based on
the Fast Fourier Transform). The results of these transformations are then presented as another
temporal access point.

 149

Members:

StaticProbe Family

TemporalProbe Family

Transformer Family

User Interaction:

Macro Actions

Input Family

Input Family

Input family palette

Ancestor: Access Family

The Input family links NeuroSolutions with the computer file system for input, and also provides
testing signals (signal generators and noise sources) for the simulations. This is done by feeding
data to an access point of the attached network component.

These components are most often used to generate an input signal and a desired output signal.
This is implemented by attaching an Input component to the Pre-Activity access point of the input
Axon and another Input component at the Desired Signal access point of the ErrorCriterion
component.

The internal data input format in NeuroSolutions is a multi-channel stream. The number of channels
is determined by the number of PEs contained within the component stacked below. The data
stream for an input component is stored as a binary pattern file (*.nsp) within the same directory as
the breadboard. When the input component is a File, a data stream is generated for each unique
data set defined in the file list.

The function of the File component is to translate other file formats to data streams stored as
pattern files. Presently there is support for ASCII, column-formatted ASCII, binary, and bitmap file
formats. Multiple files of mixed type can be translated simultaneously within the same File
component. There are also provisions for normalization, segmentation and symbolic translation of
input files.

The Function component is a function generator, used for testing network topologies. It produces
periodic waveforms of a variety of types. The waveforms can be the same for all channels or they
can differ between them.

 150

The Noise component provides the ability to inject noise into network components. By attaching a
Noise component to another component, all data that flows through the selected access point has a
noise factor added in. This component provides both a uniformly distributed noise source and a
Gaussian distributed noise source. For both of these, the mean and variance of the noise is
adjustable and can vary between channels.

The DLLInput component is used to inject data into the network from a DLL. This is similar to using
the DLL capability of the Function component, except that this data is not cyclical.

The DLLPreprocessor component is used to preprocess the data sent from the component stacked
on the Preprocessor access point using a DLL. The DLL retrieves the data one sample at a time
and passes the processed data to the component attached below.

Members:

Function

File

Noise

DLLInput

DLLPreprocessor

OLEInput

Transmitter Family

Transmitter Family

Transmitters family palette.

Ancestor: Access Family

The purpose of the Transmitter Family is to provide global communications between the various
network components. This is necessary because each network component is an isolated entity that
only knows how to communicate with its immediate neighbors on the breadboard, via access points
and connectors. A transmitter transmits control messages or data based on the data that passes
through the access point of the attached component. In this way, data may be transmitted between
components that are not connected by the topology, or a component’s parameters may be altered
based on the data of a remote component.

 151

Many of the components that are on the breadboard will have message that can be sent to them.
When a transmitter is inspected, all of these messages are shown and any or all of them may be
sent. Some of these messages may have a parameter that must be sent with the message. These
parameters may be set using the inspector. The parameters will be of one of three types: a floating
point number, (i.e. 34.5322 or -3.21e5) an integer number, (i.e. 1322, -5, -132) or a boolean. (i.e.
TRUE or FALSE) The parameters type is determined by the message.

If a component has messages, they will be shown in the inspector page of their respective on-line
help screens. The messages are shown in the following manner:

(Message(parameter))

Members:

DataTransmitter Family

ControlTransmitter Family

User Interface:

 Macro Actions

Schedule Family

Schedule Family

Scheduler family palette

Ancestor: Access Family

The Scheduler family implements a graded change of a parameter during learning. This operation
is very important in neurocomputing in order to modify the behavior of learning throughout the
experiment. For instance, it may be advisable to start learning with a high learning rate or over a
large neighborhood, and during learning slowly decrease the learning rate and the neighborhood
size to consolidate (i.e., fine-tune) the learning. This is most important in Kohonen self-organizing
feature maps and other unsupervised topologies.

The Scheduler family consists of the three components, LinearScheduler, LogScheduler and
ExpScheduler. These components differ by the formula used to increase/decrease the parameter

 152

from one iteration to the next (i.e., a linear, logarithmic or exponential function). Each component is
defined by a recursive schedule equation of the form,

where β is a parameter available on each component’s inspector.

Members:

ExpScheduler

LinearScheduler

LogScheduler

User Interface:

 Macro Actions

Introduction to Neural Computation
Introduction to NeuroComputation

NeuroSolutions

NeuroDimension, Incorporated.

Gainesville, Florida

Purpose

NeuroSolutions is a highly advanced simulation environment capable of supporting users with
varying levels of expertise. A conceptual understanding of the fundamentals of Neural Network
Theory is deemed necessary. Our purpose here is not to provide a substitute for the already
voluminous literature in this area, but to set pointers to key articles, making explicit the level of user
knowledge required. This chapter provides a "guided tour" of neural network principles.

 153

Introduction to Neural Computation
Introduction to NeuroComputation

History of Neural Networks

What are Artificial Neural Networks

Neural Network Solutions

History of Neural Networks

Neural Networks are an expanding and interdisciplinary field bringing together mathematicians,
physicists, neurobiologists, brain scientists, engineers, and computer scientists. Seldom has a field
of study coalesced from so much individual expertise, bringing a tremendous momentum to neural
network research and creating many challenges.

One unsolved challenge in this field is the definition of a common language for neural network
researchers with very different backgrounds. Another, to compile a list of key papers which pleases
everyone, has only recently been accomplished, see Arbib, 1995. However, for the sake of
pragmatism, we present some key landmarks below.

Neural network theory started with the first discoveries about brain cellular organization, by Ramon
Y. Cajal and Charles S. Sherrington at the turn of the century. The challenge was immediately
undertaken to discover the principles that would make a complex interconnection of relatively
simple elements produce information processing at an intelligent level. This challenge is still with us
today.

The work of the neuroanatomists has grown into a very rich field of science cataloguing the
interconnectivity of the brain, its physiology and biochemistry [Eccles, Szentagothai], and its
function [Hebb]. The work of McCulloch and Pitts on the modeling of the neuron as a threshold
logic unit, and Caia-niello on neurodynamics merit special mention because they respectively led to
the analysis of neural circuits as switching devices and as nonlinear dynamic systems. More
recently, brain scientists began studying the underlying principles of brain function [Braitenberg,
Marr, Pellionisz, Willshaw, Rumelhart, Freeman, Grossberg], and even implications to philosophy
[Churchland].

� Key books are Freeman’s "Mass Activation of the Nervous System", Eccles et al "The Cerebellum as a Neural
Machine", Shaw and Palm’s "Brain theory" (collection of key papers), Churchland "NeuroPhilosophy", and
Sejnowski and Churchland "The Computational Brain".

The theoretical neurobiologists’ work also interested computer scientists and engineers. The
principles of computation involved in the interconnection of simple elements led to cellular
automata [Von Neumann], were present in Norbert Wiener’s work on cybernetics and laid the
ground for artificial intelligence [Minsky, Arbib]. This branch is often referred to as artificial neural
networks, and will be the one reviewed here.

� There are a few compilations of key papers on ANN’s, for the technically motivated reader. We mention the
MIT Press Neuro Computing III, the IEEE Press Artificial Neural Networks and the book on Parallel models of
Associative memories by Erlbaum.

 154

� Patrick Simpson’s book has an extensive reference list of key papers, and provides one possible taxonomy of
neural computation.

� The DARPA book provides an early account of neural network applications and issues.

� Several books present the neural network computation paradigm at different technical levels:

� Hertz, Krogh and Palmer’s "Introduction to the Theory of Neural Computation" (Addison Wesley, 1991) has
probably one of the most thorough coverages of neural models, but requires a strong mathematical background.

� Zurada’s "Introduction to Artificial Neural Systems" (West, 1992) and Kung’s "Digital Neural Networks"
(Prentice Hall) are good texts for readers with an engineering background. Haykin’s book is encyclopedic,
providing an extensive coverage of neural network theory and its links to signal processing.

� An intermediate text is the Rumelhart and McClelland PDP Edition from MIT Press.

� Freeman and Skapura, and Caudill and Butler are two recommended books for the least technically oriented
reader.

� In terms of magazines with state-of-the art technical papers, we mention "Neural Computation", "Neural
Networks" and "IEEE Trans. Neural Networks".

� Proceedings of the NIPS (Neuro Information Processing Systems) Conference, the Snowbird Conference, the
Joint Conferences on Neural Networks and the World Congress are valuable sources of up-to-date technical
information.

An initial goal in neural network development was modeling memory as the collective property of a
group of processing elements [von der Marlburg, Willshaw, Kohonen, Anderson, Shaw, Palm,
Hopfield, Kosko]. Caianiello, Grossberg and Amari studied the principles of neural dynamics.
Rosenblatt created the perceptron for data driven (nonparametric) pattern recognition, and
Fukushima, the cognitron. Widrow’s adaline (adaptive linear element) found applications and
success in communication systems. Hopfield’s analogy of computation as a dynamic process
captured the importance of distributed systems. Rumelhart and McClelland’s compilation of papers
in the PDP (Parallel Distributive Processing) book, opened up the field for a more general
audience. From the first International Joint Conference on Neural Networks held in San Diego,
1987, the field exploded.

What are Artificial Neural Networks

Artificial neural networks (ANN) are highly distributed interconnections of adaptive nonlinear
processing elements (PEs). When implemented in digital hardware, the PE is a simple sum of
products followed by a nonlinearity (McCulloch-Pitts neuron). An artificial neural network is nothing
but a collection of interconnected PEs (see figure below). The connection strengths, also called the
network weights, can be adapted such that the network’s output matches a desired response.

 155

The building blocks of artificial neural networks

Distributed computation has the advantages of reliability, fault tolerance, high throughput (division
of computation tasks) and cooperative computing, but generates problems of locality of information,
and the choice of interconnection topology.

Adaptation is the ability to change a system’s parameters according to some rule (normally,
minimization of an error function). Adaptation enables the system to search for optimal
performance, but adaptive systems have trouble responding in a repeatable manner to absolute
quantities.

Nonlinearity is a blessing in dynamic range control for unconstrained variables and produces more
powerful computation schemes (when compared to linear processing) such as feature separation.
However, it complicates theoretical analysis tremendously.

These features of distributed processing, adaptation and nonlinearity, are the hallmark of biological
information processing systems. ANNs are therefore working with the same basic principles as
biological brains, but probably the analogy should stop here. We are still at a very rudimentary
stage of mimicking biological brains, due to the rigidity of the ANN topologies, restriction of PE
dynamics and timid use of time (time delays) as a computational resource.

Neural Network Solutions

Neural computation has a style. Unlike more analytically based information processing methods,
neural computation effectively explores the information contained within input data, without further
assumptions. Statistical methods are based on assumptions about input data ensembles (i.e. a
priori probabilities, probability density functions, etc.). Artificial intelligence encodes a priori human
knowledge with simple IF THEN rules, performing inference (search) on these rules to reach a
conclusion. Neural networks, on the other hand "discover" relationships in the input data sets
through the iterative presentation of the data and the intrinsic mapping characteristics of neural
topologies (normally referred to as learning). There are two basic phases in neural network
operation. The training or learning phase where data is repeatedly presented to the network, while
it’s weights are updated to obtain a desired response; and the recall or retrieval phase, where the
trained network with frozen weights is applied to data that it has never seen. The learning phase is
very time consuming due to the iterative nature of searching for the best performance. But once the
network is trained, the retrieval phase can be very fast, because processing can be distributed.

The user should become familiar with the types of problems that benefit from a neural network
solution. In general, neural networks offer viable solutions when there are large volumes of data to

 156

train the neural network. When a problem is difficult (or impossible) to formulate analytically and
experimental data can be obtained, then a neural network solution is normally appropriate.

The major applications of ANNs are the following:

Pattern classifiers: The necessity of a data set in classes is a very common problem in information processing.
We find it in quality control, financial forecasting, laboratory research, targeted marketing, bankruptcy
prediction, optical character recognition, etc. ANNs of the feedforward type, normally called multilayer
perceptrons (MLPs) have been applied in these areas because they are excellent functional mappers (these
problems can be formulated as finding a good input-output map). The article by Lippman is an excellent
review of MLPs.

Associative memories: Human memory principles seem to be of this type. In an associative memory, inputs
are grouped by common characteristics, or facts are related. Networks implementing associative memory
belong generally to the recurrent topology type, such as the Hopfield network or the bidirectional associative
memory. However, there are simpler associative memories such as the linear or nonlinear feedforward
associative memories. A good overview of associative memories is a book edited by Anderson et al,
Kohonen’s book (for the more technically oriented), or Freeman and Skapura book for the beginner.

Feature extractors: This is also an important building block for intelligent systems. An important aspect of
information processing is simply to use relevant information, and discard the rest. This is normally
accomplished in a pre-processing stage. ANNs can be used here as principal component analyzers, vector
quantizers, or clustering networks. They are based on the idea of competition, and normally have very simple
one-layer topologies. Good reviews are presented in Kohonen’s, and in Hertz et al book.

Dynamic networks: A number of important engineering applications require the processing of time-varying
information, such as speech recognition, adaptive control, time series prediction, financial forecasting,
radar/sonar signature recognition and nonlinear dynamic modeling. To cope with time varying signals, neural
network topologies have to be enhanced with short term memory mechanisms. This is probably the area
where neural networks will provide an undisputed advantage, since other technologies are far from
satisfactory. This area is still in a research stage. The books of Hertz and Haykin present a reasonable
overview, and the paper of deVries and Principe covers the basic theory.

Notice that a lot of real world problems fall in this category, ranging from classification of irregular
patterns, forecasting, noise reduction and control applications. Humans solve problems in a very
similar way. They observe events to extract patterns, and then make generalizations based on their
observations.

Neural Network Analysis
Neural Network Analysis

At the highest level of neural network analysis is the neural model. Neural models represent
dynamic behavior. What we call neural networks are nothing but special topologies (realizations) of
neural models.

The most common neural model is the additive model [Amari, Grossberg, Carpenter]. The neurodynamical
equation is

 157

where is the eventual input to the i-th unit, τ is the time constant of the unit, σ a nonlinearity, and are
the interconnection weights. Notice that in this model the weights do not depend explicitly on the input. This
model gives rise to the most common neural networks (the multilayer perceptron and the Hopfield networks).
Another neural model is Grossberg’s shunting model, where the weights depend directly on the inputs.

An ANN is an interconnection of PEs as depicted in the Building Blocks of ANN figure. In the figure
below, a more detailed view of one of the PEs is shown.

The McCulloch-Pitts processing element

Two basic blocks can be identified: a linear map, the weighted sum of activations from other units
(implemented as a sum of products) which produces the local variable given by

and an instantaneous nonlinear map that transforms to the output variable xi, the activation of
i-th PE, given by

 158

Here are the weights feeding the i-th PE, is the activation of the j-th PE, and the summation
runs over all the PEs that feed the i-th PE.

In general, the form of the nonlinearity is a smooth, monotonically increasing and saturating
function. Smooth nonlinearities are required when error backpropagation learning is used. The
figure below shows some commonly used nonlinearities and their equations.

Some commonly used nonlinearities

Neural Network Taxonomies

Learning Paradigms

Constraining the Learning Dynamics

Neural Network Taxonomies

A neural network is no more than an interconnection of PEs. The form of the interconnection
provides one of the key variables for dividing neural networks into families. Let us begin with the
most general case, the fully connected neural network. By definition any PE can feed or receive

 159

activations of any other including itself. Therefore, when the weights are represented in matrix form
(the weight matrix), it will be fully populated. A 6 PE fully connected network is presented in the
figure below.

A fully connected ANN, and the weight matrix

This network is called a recurrent network. In recurrent networks some of the connections may be
absent, but there are feedback connections. An input presented to a recurrent network at time t, will
affect the networks output for future time steps greater than t. Therefore, recurrent networks need
to be operated over time.

If the interconnection matrix is restricted to feedforwarding activations (no feedback nor self
connections), the neural network is defined as feedforward. Feedforward networks are
instantaneous mappers; i.e. the output is valid immediately after the presentation of an input. A
special class of feedforward networks is the layered class, which is called the multilayer perceptron
(MLP). This name comes from the fact that Rosenblatt’s network, which was called the perceptron,
consisted of a single layer of nonlinear PEs without feedback connections.

Multilayer perceptrons have PEs arranged in layers. The layers without direct access to the
external world, i.e. connected to the input or output, are called hidden layers (PEs 4,5 in the figure
below). Layers that receive the input from the external world are called the input layers (PEs 1,2,3
in the figure below); layers in contact with the outside world are called output layers (PE 6 in the
figure below).

A multilayer perceptron and its weight matrix

 160

Notice that most entries in the weight matrix of an MLP are zero. In particular, any feedforward
network has at least the main diagonal, and the elements below it populated with zeros.
Feedforward neural networks are therefore a special case of recurrent networks. Implementing
partially connected topologies with the fully connected system and then zeroing weights is very
inefficient, but unfortunately is sometimes done.

Learning Paradigms

Learning Paradigms

The process of modifying network parameters to improve performance is normally called learning.
Learning in ANN’s can also be thought of as a second set of dynamics, because the network
parameters will evolve in time according to some rules.

Consider the 6 PE MLP in A Multilayer Perceptron and its Weight Matrix figure. Assume that inputs
are currents, and the weights are potentiometers that the user can control. For this example, the
PEs can be thought of simply as being transistors. The goal is to obtain a value of 1 volt at the
output, when several different currents are presented to the network. What the user would do is the
following: start by connecting one of the inputs, and check the value at the output. If the value is not
1 volt, then some of the potentiometers will have to be changed until the goal state is reached.
Then a second input is presented, and the process repeated until the desired response is obtained
for all the inputs. When a neural network is trained, this very process of changing the weights is
automated.

Learning requires several ingredients. First, as the network parameters change, the performance
should improve. Therefore, the definition of a measure of performance is required. Second, the
rules for changing the parameters should be specified. Third, this procedure (of training the
network) should be done with known data.

The application of a performance measure produces another important taxonomic division in ANNs.
When the performance function is based on the definition of an error measure, learning is said to
be supervised. Normally the error is defined as the difference of the output of the ANN and a pre-
specified external desired signal. In engineering applications where the desired performance is
known, supervised learning paradigms become very important.

The other class of learning methods modify the network weights according to some pre-specified
internal rules of interaction (unsupervised learning). There is therefore no "external teacher". This is
the reason unsupervised learning is also called self-organization. Self-organization may be very
appropriate for feature discovery (feature extraction) in complex signals with redundancy. A third
intermediate class of learning is called reinforcement learning. In reinforcement learning the
external teacher just indicates the quality (good or bad) of the response. Reinforcement learning is
still in a research phase, but it may hold the key to on-line learning (i.e. with the present sample).

 161

A taxonomy for artificial neural networks

For the class of supervised learning there are three basic decisions that need to be made: choice of
the error criterion, how the error is propagated through the network, and what constraints (static or
across time) one imposes on the network output. The first issue is related to the formula (the cost
function) that computes the error. The second aspect is associated with mechanisms that modify
the network parameters in an automated fashion. Here we will see that gradient descent learning is
the most common in supervised learning schemes. The third aspect is associated with how we
constrain the network output versus the desired signal. One can specify only the behavior at the
final time (fixed point learning); i.e. we do not constrain the values that the output takes to reach the
desired behavior. Or, we can constrain the intermediate values and have what is called trajectory
learning. Note that a feedforward network, since it is an instantaneous mapper (the response is
obtained in one time step), can only be trained by fixed-point learning. Recurrent networks,
however, can be trained by specifying either the final time behavior (fixed-point learning) or the
behavior along a path (trajectory learning).

Learning requires the specification of a set of data for training the network. This is normally called
the training set. Learning performance should be checked against a disjoint set of data called the
test set. It is of fundamental importance to choose an appropriate training set size, and to provide
representative coverage of all possible conditions. During learning, the network is going to discover
the best mapping between the input data and the desired performance. If the data used in the
training set is not representative of the input data class, we can expect poor performance with the
test set, even though performance can be excellent with the training set.

Cost Function

Gradient Descent

Cost Function

Due to its importance, let us analyze the most general case of supervised learning in greater detail.
There are several ways of going from an error measure, the difference between the network output

 162

and the desired behavior, to a cost function. The mean square error is one of the most widely used

error norms (also called norm), and is defined by

where is the desired response (or target signal), are the output units of the network, and the
sums run over time and over the output units. When the mean square error is minimized, the power
of the error (i.e. the power of the difference between the desired and the actual ANN output) is
minimized. In certain cases we would prefer to minimize the maximum deviation between the

desired signal and net’s output (norm), or give equal weights to large and small errors (norm).

The appeal of the norm is that the equations to be solved for computing the optimal weights (the
weights that minimize the error) are linear for the weights in linear networks, so that closed form

solutions exist to perform the computation. In general the norm may be defined as

A point worth stressing here is that the norm of the error only affects the error that needs to be
backpropagated through the transpose network (see Gradient Descent). Therefore, gradient
descent learning can be used with any norm, provided one can find a way to approximate the
derivative of the cost function. NeuroSolutions is able to accept many error norms due to the clever
way in which the cost function is implemented in the program.

Gradient Descent

Gradient descent learning is the most widely used principle for ANN training. The reason is that
trivial computation is required to implement this method, and the fact that the gradient can be
computed with local information. The principle of gradient descent learning is very simple. The
weights are moved in a direction opposite to the direction of the gradient. The gradient of a surface
points to the direction of the maximum rate of change.

Therefore, if the weights are moved in the opposite direction of the gradient, the system state will
approach points where the surface is flatter (see figure below).

 163

Gradient descent in one dimension

In the figure above, let us assume that the first point is . The gradient along x at points to the
right, so we move to the left, to At , the gradient still points to the right, so we move to .
Now the gradient points to the left. so we move to the right. The bottom of the bowl is also the flat
region of the surface. So, at least for the convex surface depicted, moving in a direction opposite
that of the gradient moves in the direction of the smallest curvature. The weights that correspond to
the point of minimum error are the optimal weights.

Widrow showed that in order to implement gradient descent in a linear distributed network (called
an adaptive filter, see figure below) each of the weights (indexed by i) should be modified according
to

where ? is a sufficiently small constant (the learning rate parameter), is the error (the difference
between the desired response and the actual system response) at iteration step k, is the input
value to the weight i at iteration k, and is the value of weight i at iteration k.

This is the LMS (least mean square) algorithm. The basic idea behind the LMS algorithm is a
simplification of computing the gradient. Instead of averaging a lot of samples to obtain an accurate
representation of the gradient as indicated by the l2 cost equation, the LMS only uses the present
sample to estimate the gradient. Therefore one only needs to take the derivative of the present
difference between the desired signal and the present output with respect to the PE weights, which
simply becomes the multiplication of the present error by the input at each PE. This estimate is
unbiased, so although noisy, it will converge to the correct value.

Notice that only two multiplications and one addition are necessary per weight to implement this
equation, which is computationally very efficient. Notice also that all the necessary information
(input and local error) is available locally to the weight. These are the two features of gradient
descent that make it so appealing for ANN learning, but as with most things in the real world, there
are some shortcomings.

 164

The adaptive linear combiner (FIR filter)

The problem is with the existence of multiple minima (non-convex surfaces) that can trap the
adaptation, and with difficulty in choosing appropriate leaning constants for fast convergence (see
figure below).

A non-convex performance surface

Notice that, from the point of view of the gradient, a local minimum and the global minimum are
indistinguishable, i.e. in both cases the gradient will be zero.

In nonlinear systems such as the ANN PE, the easy LMS rule must be modified to account for the
nonlinearity. This gives rise to the delta rule, and this principle was known for a long time in
sensitivity analysis. If one wants to compute the sensitivity of one quantity (E) with respect to
another (w), related by a function (f(w)), as long as the function f is differentiable, the chain rule can
be used, i.e.

 165

Now we can understand why we required the nonlinearity of the PE to be monotonic and smooth,
otherwise the first term of the equation could not be computed. If we apply this principle to the error
at the output of the ith PE with respect to the weights, we see that

The first term is the derivative of the instantaneous mapper which will be denoted as σ'’ . The

second term gives the LMS rule applied to the weight (i.e. having as input and error), i.e.

Delta rule learning is just an application of these principles repeated over and over again for each
PE in the network. The problem that was faced by early ANN researchers when they tried to
extrapolate this simple procedure to multilayer perceptrons was the fact that the desired signal in
the hidden layers of the network was not known explicitly. It turns out that when the error is
considered as a signal that is propagated from the output of the net to the input, one can reason
that the error reaching a given node should be distributed proportionally to the strength of the
weights connecting to that node (just think of an electrical signal being propagated through a
resistive network where the weights are the conductances or resistors). This is the principle behind
the backpropagation algorithm.

A relevant aspect of this methodology, which can be considered a contribution of ANN research to
the theory of optimization, is the way the gradients are computed. In optimization, the method of
forward perturbation is normally used to compute the gradient, which implies a massive
computation of partial derivatives (see real time recurrent learning below). It has been shown
repeatedly by ANN researchers, however that gradients can also be computed by propagating the
error through the transpose network (or dual) and multiplying it locally with the activation residing at
the node (see figure below). The transpose network is obtained from the original network by
changing the direction of signal flow and switching the summing junctions with the nodes.

 166

Relation between a network and its transpose (dual)

It turns out that this is a much more efficient procedure for computing the gradients than forward
activation of the sensitivities. Moreover, the backpropagation procedure is not restricted to
feedforward networks. A recurrent network can also benefit from the same backpropagation
principle, and the backpropagation principle can even be applied to problems where the gradients
have to be computed over time. NeuroSolutions extensively uses this simplification.

Note that in the backpropagation procedure there is an intrinsic data flow. First, the inputs are
propagated forward through the network to reach the output. The output error is computed as the
difference between the desired output and the current system output. Then errors are propagated
back through the network up to the first layer after which the delta rule can be applied to each
network PE.

Normally, the backpropagation equations are written in a much more complicated manner because
one has to mathematically formulate the composition of intermediate errors. But these equations
cloud a very simple and uniform principle. All the PEs compute the gradient in the same manner as
expressed by the delta rule. When the transpose network is used to propagate the error, a routine
computing the backpropagation procedure only needs to know about the delta rule, because the
complication of propagating the error up to the unit is naturally taken care of by the transpose
network. This is the way NeuroSolutions implements the backpropagation procedure.

A final note about backpropagation that needs to be covered is the functional form of the
propagated error. Notice that the error passing across a PE is multiplied by the derivative of the
nonlinearity taken at the operating value given by the PE activation. Practically, one does not need
to explicitly compute the derivative of the nonlinearity since it can be given as a function of the
operating point.

We know that the nonlinearity is a saturating function. Therefore, the derivative of large activations
(positive or negative) will produce an attenuation in the propagated error. Since the weights will be
modified proportionally to the magnitude of the error, one can expect that learning speed decreases

 167

for multiple layer networks (this phenomenon is sometimes called error dispersion). Fahlman
proposes adding a small constant (0.1) to the propagated error to speed up learning.

Constraining the Learning Dynamics

Constraining the Learning Dynamics

Feedforward networks only accept fixed-point learning algorithms because the network reaches a
steady state in one iteration (instantaneous mappers). Due to this absence of dynamics,
feedforward networks are also called static networks. Backpropagation for these networks is a
static learning rule and is therefore referred to as static backpropagation. In recurrent networks, the
learning problem is slightly more complex due to the richer dynamic behavior of the networks.

One may want to teach a recurrent network a static output. In this case the learning paradigm is still
fixed point learning, but since the network is recurrent it is called recurrent backpropagation.
Almeida and Pineda showed how static backpropagation could be extended to this case. Using the
transpose network, fixed-point learning can be implemented with the backpropagation algorithm,
but the network dynamics MUST die away. The method goes as follows: An input pattern is
presented to the recurrent net. The network state will evolve until the output stabilizes (normally a
predetermined number of steps). Then the output error (difference between the stable output and
the desired behavior) can be computed and propagated backwards through the adjoining network.
The error must also settle down, and once it stabilizes, the weights can be adapted using the static
delta rule presented above. This process is repeated for every one of the training patterns and as
many times as necessary. NeuroSolutions implements this training procedure.

In some cases the network may fail to converge due to instability of the network dynamics. This is
an unresolved issue at this time. We therefore recommend extensive probing of recurrent networks
during learning.

The other learning paradigm is trajectory learning where the desired signal is not a point but a
sequence of points. The goal in trajectory learning is to constrain the system output during a period
of time (therefore the name trajectory learning). This is particularly important in the classification of
time varying patterns when the desired output occurs in the future; or when we want to approximate
a desired signal during a time segment, as in multistep prediction. The cost function in trajectory
learning becomes

where T is the length of the training sequence and i is the index of output units.

The ANN literature provides basically two procedures to learn through time: the backpropagation
through time algorithm (BPTT) and the real time recurrent learning algorithm (RTRL).

In BPTT the idea is the following [Rumelhart and Williams, Werbos]: the network has to be run
forward in time until the end of the trajectory and the activation of each PE must be stored locally in
a memory structure for each time step. Then the output error is computed, and the error is
backpropagated across the network (as in static backprop) AND the error is backpropagated
through time (see figure below). In equation form we have,

 168

where (n) is the error propagated by the transpose network across the network and through
time. Since the activations x(n) in the forward pass have been stored, the gradient across time can
be reconstructed by simple addition. This procedure is naturally implemented in NeuroSolutions.

Construction of the gradient in Backpropagation through time.

The other procedure for implementing trajectory learning is based on a very different concept. It is
called real time recurrent learning [Williams and Zipser] and is a natural extension of the gradient
computation in adaptive signal processing and control theory. The idea is to compute, at each time
step, ALL the sensitivities, i.e. how much a change in one weight will affect the activation of all the

PEs of the network. Since there are weights in a fully connected net, and for each we have to
keep track of N derivatives this is a very computationally intensive procedure (we further need N
multiplications to compute each gradient). However, notice that we can perform the computation at
each time step, so the storage requirements are not a function of the length of the trajectory. At the
end of the trajectory, we can multiply these sensitivities by the error signal and compute the
gradient along the trajectory (see figure below). In equation form we write the gradient as

where (n) is the output of the network. We can compute the derivative of the activation
recursively as

 169

where is the kronecker function, i.e. is 1 when p=i and is zero otherwise.

Computation of the gradient in real time recurrent learning

Practical Issues of Learning
Practical Issues of Learning

There are mainly three practical aspects related to learning. The first is the choice of the training
set and its size. The second is the selection of learning constants, and the third is when to stop the
learning. Unfortunately, there are no "formulas" to select these parameters. Only some general
rules apply and a lot of experimentation is necessary. In this regard, the availability of fast
simulation environments and extended probing abilities as implemented in NeuroSolutions are a
definite asset.

Training Set

Network Size

Learning Parameters

Stop Criteria

Training Set

The size of the training set is of fundamental importance to the practical usefulness of the network.
If the training patterns do not convey all the characteristics of the problem class, the mapping
discovered during training only applies to the training set. Thus the performance in the test set will

 170

be much worse than the training set performance. The only general rules that can be formulated
are to use a lot of data and use representative data. If you do not have lots of data to train the ANN,
then the ANN paradigm is probably not the best solution to solve your problem. Understanding of
the problem to be solved is of fundamental importance in this step.

Another aspect of proper training is related to the relation between training set size and number of
weights in the ANN. If the number of training examples is smaller than the number of weights, one
can expect that the network may "hard code" the solution, i.e. it may allocate one weight to each
training example. This will obviously produce poor generalization (i.e the ability to link unseen
examples to the classes defined from the training examples). We recommend that the number of
training examples be at least double the number of network weights.

When there is a big discrepancy between the performance in the training set and test set, we can
suspect deficient learning. Note that one can always expect a drop in performance from the training
set to the test set. We are referring to a large drop in performance (more than 10~15%). In cases
like this we recommend increasing the training set size and/or produce a different mixture of
training and test examples.

Network Size

At our present stage of knowledge, establishing the size of a network is more efficiently done
through experimentation. The theory of generalization addresses this issue, but it is still difficult to
apply in practical settings [VP dimension, Vapnik]. The issue is the following: The number of PEs in
the hidden layer is associated with the mapping ability of the network. The larger the number, the
more powerful the network is. However, if one continues to increase the network size, there is a
point where the generalization gets worse. This is due to the fact that we may be over-fitting the
training set, so when the network works with patterns that it has never seen before the response is
unpredictable. The problem is to find the smallest number of degrees of freedom that achieves the
required performance in the TEST set.

One school of thought recommends starting with small networks and increasing their size until the
performance in the test set is appropriate. Fahlman proposes a method of growing neural
topologies (the cascade correlation) that ensures a minimal number of weights, but the training can
be fairly long. An alternate approach is to start with a larger network, and remove some of the
weights. There are a few techniques, such as weight decay, that partially automate this idea
[Weigend, LeCun]. The weights are allowed to decay from iteration to iteration, so if a weight is
small, its value will tend to zero and can be eliminated.

In NeuroSolutions the size of the network can be controlled by probing the hidden layer weight
activations with the scopes. When the value of an activation is small, does not change during
learning, or is highly correlated with another activation, then the size of the hidden layer can be
decreased.

Learning Parameters

The control of the learning parameters is an unsolved problem in ANN research (and for that matter
in optimization theory). The point is that one wants to train as fast as possible and reach the best
performance. Increasing the learning rate parameter will decrease the training time, but will also
increase the possibility of divergence, and of rattling around the optimal value. Since the weight
correction is dependent upon the performance surface characteristics and learning rate, to obtain
constant learning, an adaptive learning parameter is necessary. We may even argue that what is
necessary is a strategy where the learning rate is large in the beginning of the learning task and
progressively decays towards the end of adaptation. Modification of learning rates is possible under
certain circumstances, but a lot of other parameters are included that also need to be
experimentally set. Therefore, these procedures tend to be brittle and the gains are problem
dependent (see the work of Fahlman, LeCun, and Silva and Almeida, for a review). NeuroSolutions

 171

enables versatile control of the learning rates by implementing adaptive schemes [Jacob] and
Fahlman’s quickprop [Fahlman].

The conventional approach is to simply choose the learning rate and a momentum term. The
momentum term imposes a "memory factor" on the adaptation, and has been shown to speedup
adaptation while avoiding local minima trapping to a certain extent. Thus, the learning equation
becomes

where γ is a constant (normally set between 0.5 and 0.9), and µ is the learning rate.

Jacob’s delta bar delta is also a versatile procedure, but requires more care in specification of the
learning parameters. The idea is the following: when there are consecutive iterations that produce
the same sign of weight update, the learning rate is too small. On the other hand, if consecutive
iterations produce weight updates that have opposite signs, the learning rate is too fast. Jacob
proposed the following formulas for learning rate updates:

where η is the learning rate for each weight, (n) is the gradient and

where ξ is a small constant.

One other option available to the researcher is when to perform the weight updates. Updates can
be performed at the end of presentation of all the elements of the training set (batch learning) or at
each iteration (real time). The first modality "smoothes" the gradient and may give faster learning
for noisy data, however it may also average the gradient to zero and stall learning. Modification of
the weights at each iteration with a small learning rate may be preferable most of the time.

Stop Criteria

The third problem is how to stop the learning. Stop criteria are all based on monitoring the mean
square error. The curve of the MSE as a function of time is called the learning curve. The most
used criterion is probably to choose the number of iterations, but we can also preset the final error.

 172

These two methods have shortcomings. A compromise that we use in practice is to threshold the
minimum incremental learning. When, between two consecutive iterations, the error does not drop
at least a given amount, training should be terminated. This gives us a criterion for comparing very
different topologies.

Still another possibility is to monitor the MSE for the test set, as in cross validation. One should
stop the learning when error in the test set starts increasing (see figure below). This is where the
maximum generalization takes place.

Behavior of MSE for training and test sets

To implement this procedure we must train the net for a certain number of iterations, freeze the
weights and test the performance in the test set. Then return to the training set and continue
learning. It is a little more cumbersome to implement this criterion since, for a block of training
iterations over the training set, an extra computation of the performance over the test set is
required. NeuroSolutions implements a wealth of stop criteria for learning that are not necessarily
limited to the mean square error.

Unsupervised Learning
Unsupervised learning

For the most part, neural networks that use the unsupervised learning paradigms are very simple,
one layer networks. In unsupervised learning there is no teacher, so the network must self-organize
according to some internal rules in response to the environment. One of the most biologically
plausible learning rules is called Hebbian learning due to the neurophysiologist Donald Hebb. The
idea is to modify a network weight, proportionally, to the product of the input and the output of the
weight, i.e.

where µ is the learning constant, and y the single output of the network. Anti-Hebbian rule is
formulated in the same way but with a negative learning rate. One of the problems of the Hebbian
rule is that the weights may grow without bounds if the input is not properly normalized, and
learning never stops. Hebbian learning implements, iteratively, the idea of correlation between x

 173

and y (the input and output of the weight). This principle can even be applied with the input and a
desired signal, as in heteroassociation (forced Hebbian).

A very effective normalization of the Hebbian rule has been proposed by Oja, and reads

For linear networks, one can show that Oja’s rule finds the principal component of the input data,
i.e. it implements what is called an eigenfilter. A common name for the eigenfilter is matched filter,
which is known to maximize the signal to noise ratio. Hence, Oja’s rule produces a system that is
optimal and can be used for feature extraction.

This network can be extended to M multiple output units and extract, in order, the M principal
components of the input [Sanger], yielding

where

Principal Component Analysis is a very powerful feature representation method. PCA projects the
data cluster on a set of orthogonal axes that best represent the input at each order. It can be shown
that PCA is solving an eigenvalue problem. This can be accomplished with linear algebra
techniques, but here we are doing the same thing using on-line, adaptive techniques.

Another unsupervised learning paradigm is competitive learning. The idea of competitive learning is
that the output PEs compete to be on all the time (winner-take-all). This is accomplished by
creating inhibitory connections among the output PEs. Competitive learning networks cluster the
input patterns, and can therefore be used in data reduction through vector quantization. One can
describe competitive learning as a sort of Hebbian learning applied to the output node that wins the
competition among all the output nodes. First, only one of the output units can be active at a given
time (called the winner), which is defined as the PE that has the largest summed input. If the
weights to each PE are normalized, then this choice takes the winner as the unit closest to the

input vector x in the norm sense, i.e.

 174

where means the winning PE. For the winning PE, the weights are updated as

which displaces the weight vector towards the input pattern (inputs are assumed normalized).
Several other distance metrics can also be used, and the Euclidean seems the one that is more
robust. These types of networks have been applied successfully to vector quantization schemes,
since they can search the code books in parallel.

The problem with competitive learning is that the same unit may always win the competition. One
way to handle this problem is to create a second competitive mechanism, where each unit keeps
track of how many times it wins the competition. The units that win the competition too often are
penalized. This second competition is called conscience. To implement conscience each PE must
count how often it wins the competition by

where is one or zero. The constant β is normally small (0.001). The current bias for the unit is
computed as

where 1/N measures the equal firing rate for an N PE net. γ is normally large (for -1/+1 normalized

data γ should be 1). The value of is subtracted from the distance function that selects the
winner. This gives the ability to use all the PEs, but distorts the a priori probability of the classes.

Feature mapping is closely related to competitive learning networks. In feature mapping the output
units are arranged in a geometric configuration (normally a 2D space). The goal is to map a
multidimensional vector onto this 2D space while preserving neighborhoods. This can be achieved
with an extension of competitive learning, where PEs in a neighborhood of the winning PE also
have their weights updated according to the distance to the winning PE. The update rules read,

where

 175

is a neighborhood function that decays like a Gaussian, and the variance and learning rate are
made time varying to speed up the convergence.

Support Vector Machines
Support Vector Machines

The support vector machine (SVM) in NeuroSolutions is a new kind of classifier that is motivated by
two concepts. First, transforming data into a high-dimensional space can transform complex
problems (with complex decision surfaces) into simpler problems that can use linear discriminant
functions. Second, SVMs are motivated by the concept of training and using only those inputs that
are near the decision surface since they provide the most information about the classification.

The first step in a SVM is transforming the data into a high-dimensional space. In NeuroSolutions
this is done using a Radial Basis Function (RBF) network that places a gaussian at each data
sample. Thus, the feature space becomes as large as the number of samples. The RBF, however,
uses backpropagation to train a linear combination of the gaussians to produce the final result. The
SVM in NeuroSolutions, however, uses the idea of large margin classifiers for training. This
decouples the capacity of the classifier from the input space and at the same time provides good
generalization. This is an ideal combination for classification.
The learning algorithm is based on the Adatron algorithm extended to the RBF network. The
Adatron algorithm can be easily extended to the RBF network by substituting the inner product of
patterns in the input space by the kernel function, leading to the following quadratic optimization
problem:

We can then define

 176

and choose a common starting multiplier (e.g. αi =0.1), learning rate η, and a small threshold (e.g.,
t = 0.01).

While M>t, we choose a pattern xi and calculate an update ∆αi = ?(1?g(xi)) and perform the update

After adaptation only some of the αi are different from zero (called the support vectors). They
correspond to the samples that are closest to the boundary between classes. This algorithm is
called the kernel Adatron and can adapt an RBF to have an optimal margin. This algorithm can be
considered the "on-line" version of the quadratic optimization approach utilized for SVMs, and it can
find the same solutions as Vapnik's original algorithm for SVMs. Notice that it is easy to implement
the kernel Adatron algorithm since g(xi) can be computed locally to each multiplier, provided that
the desired response is available in the input file. In fact, the expression for g(xi) resembles the
multiplication of an error with an activation, so it can be included in the framework of neural network
learning. The Adatron algorithm essentially prunes the RBF network of Figure 5-12 so that its
output for testing is given by

The typical SVM built by the NeuralBuilder is shown below. The first three components implement
the expansion of the dimensionality by having a gaussian for each input. The second three
components implement the large margin classifier that trains the parameters of the above
equations.

 177

Dynamic Networks
Dynamic Networks

Dynamic networks are a very important class of neural network topologies that are able to process
time varying signals. They can be viewed as a nonlinear extension of adaptive linear filters, or an
extension of static neural networks to time varying inputs. As such they fill an increasingly important
niche in neural network applications and deserve special treatment in this introduction to neural
computation. NeuroSolutions was developed from the start with dynamic neural network
applications in mind.

A dynamic neural network is a static neural network with an extended memory mechanism, which
is able to store past values of the input signal. In many applications (system identification,
classification of patterns in time, nonlinear prediction) memory is important for allowing decisions
based on input behavior over a period of time. A static classifier makes decisions based on the
present input only; it can therefore not perform functions that involve knowledge about the history of
the input signal.

In neural networks, the most common memory structures are linear filters. In the time delay neural
network (TDNN) the memory is a tap delay line, i.e. a set of memory locations that store the past of
the input [Waibel]. Self-recurrent connections (feeding the output of a PE to the input) have also
been used as memory, and these units are called context units [Elman, Jordan].

The gamma memory (see figure below) is a structure that cascades self-recurrent connections
[deVries and Principe]. It is therefore a structure with local feedback, that extends the context unit
with more versatile storage, and accepts the tap delay line as a special case (µ=1).

The gamma memory. gi(t) are inputs to the next layer PEs.

µ is an adaptive parameter that controls the depth of the memory. This structure has a memory
depth of K/µ, where K is the number of taps in the cascade. Its resolution is µ [deVries and
Principe]. Since this topology is recurrent, a form of temporal learning must be used to adapt the
gamma parameter µ (i.e. either real time recurrent learning or backpropagation through time). The
advantage of this structure in dynamic networks is that we can, with a predefined number of taps,
provide a controllable memory. And since the network adapts the gamma parameter to minimize
the output mean square error, the best compromise depth/resolution is achieved.

 178

The gamma memory can be applied to the input (focused gamma memory), to the hidden PEs or to
the output PEs. In each case it will store the activations of the respective PEs and use their past
values to compute the net output. A dynamic neural network with the gamma memory is called the
gamma neural model. The gamma neural model can be applied to classification of time varying
patterns, signal detection, prediction of chaotic time series, and identification of nonlinear systems.

Famous Neural Topologies
Famous Neural Topologies

Perceptron

Multilayer Perceptron

Madaline

Radial Basis Function Networks

Associative Memories

Jordan/Elman Networks

Hopfield Network

Principal Component Analysis Networks

Kohonen Self-Organizing Maps (SOFM)

Adaptive Resonance Theory (ART)

Fukushima

Time Lagged Recurrent Networks

Perceptron

The perceptron was probably the first successful neurocomputer (Rosenblatt 1957). Rosenblatt
constructed the MARK I for binary image classification. The perceptron is nothing but a feedforward
neural network with no hidden units. Its information processing abilities are limited. It can only
discriminate among linearly separable classes, i.e. classes that could be separated by hyperplanes.
The appeal of the perceptron was Rosenblatt’s proof that it is trainable (for linearly separable
classes) in a finite number of steps. The Perceptron learning rule is very simple:

Present a pattern. If the output is the desired output, do nothing. If the response is wrong, from the units that
are active, change their weights towards the desired response. Repeat the process until all the units have
acceptable outputs.

The delta rule (simplified backpropagation) can also be applied to the perceptron, but perceptron
learning is faster and more stable if the patterns are linearly separable. Even today (more than 30
years later), the perceptron and its learning rule have appeal. Recently the perceptron learning rule
was revisited to provide acceptable results even when the patterns were not linearly separable. We
can implement a perceptron as a special case (no hidden layer) of a multilayer perceptron.

 179

Multilayer Perceptron

The multilayer perceptron (MLP) is one of the most widely implemented neural network topologies.
The article by Lippman is probably one of the best references for the computational capabilities of
MLPs. Generally speaking, for static pattern classification, the MLP with two hidden layers is a
universal pattern classifier. In other words, the discriminant functions can take any shape, as
required by the input data clusters. Moreover, when the weights are properly normalized and the
output classes are normalized to 0/1, the MLP achieves the performance of the maximum a
posteriori receiver, which is optimal from a classification point of view [Makhoul]. In terms of
mapping abilities, the MLP is believed to be capable of approximating arbitrary functions. This has
been important in the study of nonlinear dynamics [Lapedes and Farber], and other function
mapping problems.

MLPs are normally trained with the backpropagation algorithm [Rumelhart et al]. In fact the
renewed interest in ANNs was in part triggered by the existence of backpropagation. The LMS
learning algorithm proposed by Widrow can not be extended to hidden PEs, since we do not know
the desired signal there. The backpropagation rule propagates the errors through the network and
allows adaptation of the hidden PEs.

Two important characteristics of the multilayer perceptron are: its nonlinear processing elements
(PEs) which have a nonlinearity that must be smooth (the logistic function and the hyperbolic
tangent are the most widely used); and their massive interconnectivity (i.e. any element of a given
layer feeds all the elements of the next layer).

The multilayer perceptron is trained with error correction learning, which means that the desired
response for the system must be known. In pattern recognition this is normally the case, since we
have our input data labeled, i.e. we know which data belongs to which experiment.

Error correction learning works in the following way: From the system response at PE i at iteration

n, (n), and the desired response (n) for a given input pattern an instantaneous error (n) is
defined by

Using the theory of gradient descent learning, each weight in the network can be adapted by
correcting the present value of the weight with a term that is proportional to the present input and
error at the weight, i.e.

The local error (n) can be directly computed from (n) at the output PE or can be computed as a
weighted sum of errors at the internal PEs. The constant η is called the step size. This procedure is
called the backpropagation algorithm.

Backpropagation computes the sensitivity of a cost functional with respect to each weight in the
network, and updates each weight proportional to the sensitivity. The beauty of the procedure is
that it can be implemented with local information and requires just a few multiplications per weight,
which is very efficient. Because this is a gradient descent procedure, it only uses the local

 180

information so can be caught in local minima. Moreover, the procedure is inherently noisy since we
are using a poor estimate of the gradient, causing slow convergence.

Momentum learning is an improvement to the straight gradient descent in the sense that a memory
term (the past increment to the weight) is used to speed up and stabilize convergence. In
momentum learning the equation to update the weights becomes

where α is the momentum. Normally α should be set between 0.1 and 0.9.

Training can be implemented in two ways: Either we present a pattern and adapt the weights (on-
line training), or we present all the patterns in the input file (an epoch), accumulate the weight
updates, and then update the weights with the average weight update. This is called batch learning.
They are theoretically equivalent, but the former sometimes has advantages in tough problems
(many similar input -output pairs).

To start backpropagation, we need to load an initial value for each weight (normally a small random
value), and proceed until some stopping criterion is met. The three most common are: to cap the
number of iterations, to threshold the output mean square error, or to use cross validation. Cross
validation is the more powerful of the three since it stops the training at the point of best
generalization (i.e. the performance in the test set) is obtained. To implement cross validation one
must put aside a small part of the training data (10%) and use it to see how the trained network is
doing (e.g. every 100 training epochs, test the net with a validation set). When the performance
starts to degrade in the validation set, training should be stopped.

Checking the progress of learning is fundamental in any iterative training procedure. The learning
curve (how the mean square error evolves with the training iteration) is such a quantity. We can
judge the difficulty of the task, and how to control the learning parameters from the learning curve.
When the learning curve is flat, the step size should be increased to speed up learning. On the
other hand, when the learning curve oscillates up and down the step size should be decreased. In
the extreme, the error can go steadily up, showing that learning is unstable. At this point the
network should be reset. When the learning curve stabilizes after many iterations at an error level
that is not acceptable, it is time to rethink the network topology (more hidden PEs or more hidden
layers, or a different topology altogether) or the training procedure (other more sophisticated
gradient search techniques).

We present below a set of heuristics that will help decrease the training times and, in general,
produce better performance.

� Normalize your training data.

� Use the tanh nonlinearity instead of the logistic function.

� Normalize the desired signal to be just below the output nonlinearity rail voltages (i.e. if you use the tanh, use
desired signals of +/- 0.9 instead of +/- 1).

� Set the step size higher towards the input (i.e. for a one hidden layer MLP, set the step size at 0.05 in the
synapse between the input and hidden layer, and 0.01 in the synapse between the hidden and output layer).

� Initialize the net’s weights in the linear region of the nonlinearity (divide the standard deviation of the random
noise source by the fan-in of each PE).

� Use more sophisticated learning methods (quick prop or delta bar delta).

 181

� Always have more training patterns than weights. You can expect the performance of your MLP in the test set
to be limited by the relation N>W/ε, where N is the number of training epochs, W the number of weights and ε
the performance error. You should train until the mean square error is less than ε/2.

Madaline

Madaline is an acronym for multiple adalines, the ADAptive LINear Element proposed by Widrow
[Widrow and Hopf]. The adaline is nothing but a linear combiner of static information, which is not
very powerful. However, when extended to time signals, the adaline becomes an adaptive filter of
the finite impulse response class. This type of filter was studied earlier by Wiener (1949). Widrow’s
contribution was the learning rule for training the adaptive filter. Instead of numerically solving the
equations to obtain the optimal value of the weights (the Wiener-Hopf solution), Widrow proposed a
very simple rule based on gradient descent learning (the least mean square rule LMS). The
previous adaptive theory was essentially statistical (it required expected value operators), but
Widrow took the actual value of the product of the error at each unit and its input as a rough
estimate of the gradient. It turns out that this estimate is noisy, but unbiased, so the number of
iterations over the data average the estimate and make it approach the true value.

The adaptive linear combiner with the LMS rule is one of the most widely used structures in
adaptive signal processing [Widrow and Stearns]. Its applications range from echo cancellation, to
line equalization, spectral estimator, beam former in adaptive antennas, noise canceller, and
adaptive controller. The adaline is missing one of the key ingredients for our definition of neural
networks (nonlinearity at the processing element), but it possesses the other two (distributed and
adaptive).

Radial Basis Function Networks

Radial basis functions networks have a very strong mathematical foundation rooted in
regularization theory for solving ill-conditioned problems. Suppose that we want to find the map that
transforms input samples into a desired classification. Due to the fact that we only have a few
samples, and that they can be noisy, the problem of finding this map may be very difficult
(mathematicians call it ill-posed). We want to solve the mapping by decreasing the error between
the network output and the desired response, but we want to also include an added constraint
relevant to our problem. Normally this constraint is smoothness.

One can show that such networks can be constructed in the following way (see figure below): Bring
every input component (p) to a layer of hidden nodes. Each node in the hidden layer is a p
multivariate Gaussian function

of mean (each data point) and variance . These functions are called radial basis functions.
Finally, linearly weight the output of the hidden nodes to obtain

 182

The problem with this solution is that it may lead to a very large hidden layer (the number of
samples of your training set).

Radial Basis Function (RBF) network

We will approximate this solution by reducing the number of PEs in the hidden layer, but cleverly
position them over the input space regions, i.e. where we have more input samples. This means
that we have to estimate the positions of each radial basis function and its variance (width), as well
as compute the linear weights .
Estimation of the centers and widths

The most widely used method of estimating the centers and widths is to use an unsupervised
technique called the k-nearest neighbor rule. The input space is first discretized into k clusters and
the size of each is obtained from the structure of the input data. The centers of the clusters give the
centers of the RBFs, while the distance between the clusters provide the width of the Gaussians.
The definition of the width is nontrivial. NeuroSolutions uses competitive learning to compute the
centers and widths. It sets each width proportional to the distance between the center and its
nearest neighbor. Conscience can be used to make sure that all the RBF centers are brought into
the data clusters. However, conscience also brings the problem of confining the centers too close
together. Scheduling of the conscience may be necessary for a good coverage of the data clusters.
Computing the Output Weights

The output weights in turn are obtained through supervised learning. The error correction learning
described in the multilayer perceptron section is normally used, but this problem is easier because
the output unit is normally linear, so convergence is faster. In practical cases, an MLP can be
superior to the linear network, because it may take advantage of nonlinearly separable data
clusters produced by too few RBFs.

Associative Memories

 183

Steinbuch was a cognitive scientist and one of the pioneering researchers in distributed
computation. His interests were in associative memories, i.e. devices that could learn associations
among dissimilar binary objects. He implemented the learnmatrix, where a set of binary inputs is
fed to a matrix of resistors, producing a set of binary outputs. The outputs are 1 if the sum of the
inputs is above a given threshold, zero otherwise. The weights (which were binary) were updated
by using several very simple rules based on Hebbian learning. But the interesting thing is that the
asymptotic capacity of this network is rather high and easy to determine (I= [Willshaw]).

The linear associative memory was proposed by several researchers [Anderson, Kohonen]. It is a
very simple device with one layer of linear units that maps N inputs (a point in N dimensional
space) onto M outputs (a point in M dimensional space). In terms of signal processing, this network
does nothing but a projection operation of a vector in N dimensional space to a vector in M
dimensional space.

This projection is achieved by the weight matrix. The weight matrix can be computed analytically: it
is the product of the output with the pseudo inverse of the input [Kohonen]. In terms of linear
algebra, what we are doing is computing the outer product of the input vector with the output
vector. This solution can be approximated by Hebbian learning and the approximation is quite good
if the input patterns are orthogonal. Widrow’s LMS rule can also be used to compute a good
approximation of W even for the case of non-orthogonal patterns [Hecht-Nielsen].

Jordan/Elman Networks

The theory of neural networks with context units can be analyzed mathematically only for the case
of linear PEs. In this case the context unit is nothing but a very simple lowpass filter. A lowpass
filter creates an output that is a weighted (average) value of some of its more recent past inputs. In
the case of the Jordan context unit, the output is obtained by summing the past values multiplied by
the scalar as shown in the figure below.

Context unit response

Notice that an impulse event x(n) (i.e. x(0)=1, x(n)=0 for n>0) that appears at time n=0, will
disappear at n=1. However, the output of the context unit is t1 at n=1, t2 at n=2, etc. This is the
reason these context units are called memory units, because they "remember" past events. t
should be less than 1, otherwise the context unit response gets progressively larger (unstable).

The Jordan network and the Elman network combine past values of the context units with the
present inputs to obtain the present net output. The input to the context unit is copied from the
network layer, but the outputs of the context unit are incorporated in the net through adaptive
weights. NeuroSolutions uses straight backpropagation to adapt all the network weights. In the
NeuralBuilder, the context unit time constant is pre-selected by the user. One issue in these nets is
that the weighting over time is kind of inflexible since we can only control the time constant (i.e. the
exponential decay). Moreover, a small change in t is reflected in a large change in the weighting
(due to the exponential relationship between time constant and amplitude). In general, we do not
know how large the memory depth should be, so this makes the choice of t problematic, without a

 184

mechanism to adapt it. See time lagged recurrent nets for alternative neural models that have
adaptive memory depth.

The Neural Wizard provides four choices for the source of the feedback to the context units (the
input, the 1st hidden layer, the 2nd hidden layer, or the output). In linear systems the use of the past
of the input signal creates what is called the moving average (MA) models. They represent well
signals that have a spectrum with sharp valleys and broad peaks. The use of the past of the output
creates what is called the autoregressive (AR) models. These models represent well signals that
have broad valleys and sharp spectral peaks. In the case of nonlinear systems, such as neural
nets, these two topologies become nonlinear (NMA and NAR respectively). The Jordan net is a
restricted case of an NAR model, while the configuration with context units fed by the input layer
are a restricted case of NMA. Elman’s net does not have a counterpart in linear system theory. As
you probably could gather from this simple discussion, the supported topologies have different
processing power, but the question of which one performs best for a given problem is left to
experimentation.

Hopfield Network

The Hopfield network is a recurrent neural network with no hidden units, where the weights are
symmetric (). The PE is an adder followed by a threshold nonlinearity. The model can be
extended to continuous units [Hopfield]. The processing elements are updated randomly, one at a
time, with equal probability (synchronous update is also possible). The condition of symmetric
weights is fundamental for studying the information capabilities of this network. It turns out that
when this condition is fulfilled the neurodynamics are stable in the sense of Lyapunov, which
means that the state of the system approaches an equilibrium point. With this condition Hopfield
was able to explain to the rest of the world what the neural network is doing when an input is
presented. The input puts the system in a point in its state space, and then the network dynamics
(created by the recurrent connections) will necessarily relax the system to the nearest equilibrium
point (point P1 in the figure below).

Relaxation to the nearest fixed point

Now if the equilibrium points were pre-selected (for instance by hardcoding the weights), then the
system could work as an associative memory. The final state would be the one closest (in state

 185

space) to that particular input. We could then classify the input or recall it using content
addressable properties. In fact, such a system is highly robust to noise, also displaying pattern
completion properties. Very possibly, biological memory is based on identical principles. The
structure of the hippocampus is very similar to the wiring of a Hopfield net (outputs of one unit fed
to all the others). In a Hopfield net if one asks where the memory is, the answer has to be in the set
of weights. The Hopfield net, therefore, implements a nonlinear associative memory, which is
known to have some of the features of human memory; (e.g. highly distributed, fault tolerance,
graceful degradation, and finite capacity).

Most Hopefield net applications are in optimization, where a mapping of the energy function to the
cost function of the user’s problem must be established and the weights pre-computed. The
weights in the Hopfield network can be computed using Hebbian learning, which guarantees a
stable network. Recurrent backpropagation can also be used to compute the weights, but in this
case, there is no guarantee that the weights are symmetric (hence the system may be unstable).
NeuroSolutions can implement the Hopfield net and train it with fixed-point learning or Hebbian
learning.

The "brain state in a box" [Anderson] can be considered as a special case of the Hopfield network
where the state of the system is confined to the unit hypercube, and the system attractors are the
vertices of the cube. This network has been successfully used for categorization of the inputs.

Principal Component Analysis Networks

The fundamental problem in pattern recognition is to define data features that are important for the
classification (feature extraction). One wishes to transform our input samples into a new space (the
feature space) where the information about the samples is retained, but the dimensionality is
reduced. This will make the classification job much easier.

Principal component analysis (PCA) also called Karhunen-Loeve transform of Singular Value
Decomposition (SVD) is such a technique. PCA finds an orthogonal set of directions in the input
space and provides a way of finding the projections into these directions in an ordered fashion. The
first principal component is the one that has the largest projection (we can think that the projection
is the shadow of our data cluster in each direction). The orthogonal directions are called the
eigenvectors of the correlation matrix of the input vector, and the projections the corresponding
eigenvalues.

Since PCA orders the projections, we can reduce the dimensionality by truncating the projections to
a given order. The reconstruction error is equal to the sum of the projections (eigenvalues) left out.
The features in the projection space become the eigenvalues. Note that this projection space is
linear.

PCA is normally done by analytically solving an eigenvalue problem of the input correlation
function. However, Sanger and Oja demonstrated (see Unsupervised Learning) that PCA can be
accomplished by a single layer linear neural network trained with a modified Hebbian learning rule.

Let us consider the network shown in the figure below. Notice that the network has p inputs (we
assume that our samples have p components) and m<p linear output PEs. The output is given by

To train the weights, we will use the following modified Hebbian rule

 186

where η is the step size.

PCA network

What is interesting in this network is that we are computing the eigenvectors of the correlation
function of the input without ever computing the correlation function. Sanger showed that this
learning procedure converges to the correct solution, i.e. the weights of the PCA network approach
the first m principal components of the input data matrix. The outputs are therefore related to the
eigenvalues and can be used as input to another neural networks for classification.

PCA networks can be used for data compression, providing the best m linear features. They can
also be used for data reduction in conjunction with multilayer perceptron classifiers. In this case,
however, the separability of the classes is not always guaranteed. If the data clusters are
sufficiently separated, yes, but if the classes are on top of each other, the PCA will get the largest
projections, but the separability can be in some of the other projections. Another problem with
linear PCA networks is outlying data points. Outliers will distort the estimation of the eigenvectors
and create skewed data projections. Nonlinear networks are better able to handle this case.

The importance of PCA analysis is that the number of inputs for the MLP classifier can be reduced
a lot, which positively impacts the number of required training patterns, and the training times of the
classifier.

Kohonen Self-Organizing Maps (SOFM)

As was stated previously, one of the most important issues in pattern recognition is feature
extraction. Since this is such a crucial step, different techniques may provide a better fit to our
problem. An alternative to the PCA concept is the self-organizing feature map.

The ideas of SOFM are rooted in competitive learning networks. These nets are one layer nets with
linear PEs but use a competitive learning rule. In such nets there is one and only one winning PE
for every input pattern (i.e. the PE whose weights are closest to the input pattern). In competitive

 187

nets, only the weights of the winning node get updated. Kohonen proposed a slight modification of
this principle with tremendous implications. Instead of updating only the winning PE, in SOFM nets
the neighboring PE weights are also updated with a smaller step size. This means that in the
learning process (topological) neighborhood relationships are created in which the spatial locations
correspond to features of the input data. In fact one can show that the data points that are similar in
input space are mapped to small neighborhoods in Kohonen’s SOFM layer. Our brain has several
known topographic maps (visual and auditory cortex).

The SOFM layer can be a one or two dimensional lattice, and the size of the net provides the
resolution for the lattice. The SOFM algorithm is as follows:

Initialize the weights with small different random values for symmetry breaking.

For each input data find the winning PE using a minimum distance rule, i.e.

For the winning PE, update its weights and those in its neighborhood Λ(n) by

Note that both the neighborhood and the learning rate are dependent on the iteration, i.e. they are
adaptive. Kohonen suggests the following Gaussian neighborhood

where is the winning PE and |rj-rj0| is the spatial distance from the winning node to the j-th PE.
The adaptive standard deviation controls the size of the neighborhood through iterations. The
neighborhood should start as the full output space and decrease to zero (i.e. only the winning PE),
according to

where and are constants. The step size η(n) should also be made adaptive. In the
beginning the step size should be large, but decrease progressively to zero, according to

 188

where and are also problem dependent constants.

The idea of these adaptive constants is to guarantee, in the early stages of learning, plasticity and
recruitment of units to form local neighborhoods and, in the later stages of learning, stability and
fine-tuning of the map. These issues are very difficult to study theoretically, so heuristics have to be
included in the definition of these values.

Once the SOFM stabilizes, its output can be fed to an MLP to classify the neighborhoods. Note that
in so doing we have accomplished two things: first, the input space dimensionality has been
reduced and second, the neighborhood relation will make the learning of the MLP easier and faster
because input data is now structured.

Adaptive Resonance Theory (ART)

Adaptive resonance theory proposes to solve the stability-plasticity dilemma present in competitive
learning. Grossberg and co-workers [Grossberg, Carpenter] add a new parameter (vigilance
parameter) that controls the degree of similarity between stored patterns and the current input.
When the input is sufficiently dissimilar to the stored patterns, a new unit is created in the network
for the input. There are two ART models, one for binary patterns and one for continuous valued
patterns. This is a highly sophisticated network that achieves good performance, but the network
parameters need to be well tuned. It is not supported in NeuroSolutions.

Fukushima

Fukushima [Fukushima] proposed the Neocognitron, a hierarchical network for image processing
that achieves rotation, scale, translation and distortion invariance up to a certain degree. The
principle of a Fukushima network is a pyramid of two layer networks (one, feature extractor and the
other, position readjusting) with specific connections that create feature detectors at increasing
space scales. The feature detector layer is a competitive layer with neighborhoods where the input
features are recognized. It is not supported in NeuroSolutions

Time Lagged Recurrent Networks

TLRNs with the memory layer confined to the input can also be thought of as input preprocessors.
But now the problem is representation of the information in time instead of the information among
the input patterns, as in the PCA network. When we have a signal in time (such as a time series of
financial data, or a signal coming from a sensor monitoring an industrial process) we do not know a
priori where, in time, the relevant information is. Processing of the signal can be used here in a
general sense, and can be substituted for prediction, identification of dynamics, or classification.

A brute force approach is to use a long time window. But this method does not work in practice
because it creates very large networks that are difficult or impossible to train (particularly if the data
is noisy). TLRNs are therefore a very good alternative to this brute force approach. The other class
of models that have adaptive memory are the recurrent neural networks. However, these nets are
very difficult to train and require more advanced knowledge of neural network theory.

 189

NeuroSolutions is prepared to run these models, but they were not considered for the
NeuralBuilder.

The most studied TLRN network is the gamma model. The gamma model is characterized by a
memory structure that is a cascade of leaky integrators, i.e. an extension of the context unit of the
Jordan and Elman nets (see figure below).

Connectionist memory structures, and the frequency domain location of the pole

The signal at the taps of the gamma memory can be represented by

 190

Note that the signal at tap k is a smoothed version of the input, which holds the voltage of a past
event, creating a memory. When an impulse is presented in the input at time zero, the response of
the different taps is shown in the on-line documentation for the NeuralBuilder.

Note that the point in time where the response has a peak is approximately given by k/µ, where µ
is the feedback parameter. This means that the neural net can control the depth of the memory by
changing the value of the feedback parameter, instead of changing the number of inputs. The
parameter µ can be adapted using gradient descent procedures just like the other parameters in
the neural network. But since this parameter is recursive, a more powerful learning rule needs to be
applied. NeuroSolutions uses backpropagation through time (BPTT) to do this adaptation (see
Constraining the Learning Dynamics).

Memories can be appended to any layer in the network, producing very sophisticated neural
topologies very useful for time series prediction and system identification and temporal pattern
recognition (see figure below).

Use of gamma kernels in an MLP architecture

Instead of the gamma memory there are other memory structures that recently have been applied
with some advantages. One of these is the Laguarre memory, based on the Laguarre functions.
The Laguarre functions are an orthogonal set of functions that are built from a lowpass filter
followed by a cascade of allpass functions.

This family of functions constitutes an orthogonal span of the gamma space, so they have the
same properties as the gamma memories, but they may display faster convergence for some
problems. The equation for the Laguarre functions is

Notice that this gives a recursion equation of the form

 191

where u(n) is the input signal.

Tutorials
Tutorials Chapter

NeuroSolutions

NeuroDimension, Incorporated.

Gainesville, Florida

Purpose

This chapter is a collection of hands-on examples. Our purpose is to explain the core concepts of
NeuroSolutions by showing them to you. You will be guided through the construction of network
topologies at increasing levels of difficulty. Upon completion, you are expected to be able to
construct similar topologies by analogy.

Running NeuroSolutions

Windows 3.1, 3.11, NT

In the Program Manager of Windows, there are two icons within the program group labeled
NeuroSolutions. The question mark represents the on-line help for the program. This can be

launched separately or from within NeuroSolutions. The cluster represents the
NeuroSolutions program. Double-click on this icon or click the following shortcut to run
NeuroSolutions.
Windows 95

In the Start Menu of Windows 95, there are two icons within the folder labeled NeuroSolutions. The
book represents the on-line help for the program. This can be launched separately or from within

 192

NeuroSolutions. The icon represents the NeuroSolutions program. Double-click on this icon to
begin or click the following shortcut to run NeuroSolutions.

The NeuroSolutions MainWindow will appear in the center of the display. The Inspector window will
also appear in the lower right corner of your display; this is where you will configure all
NeuroSolutions components.

A good way to get started with NeuroSolutions is to run through the various demos. The demos can
be accessed by selecting Utilities/Run Demo from the MainMenu bar. This contains a list of demos,
each of which is similar to one of the breadboards constructed in the following examples. It is
recommended that you refer to these breadboards for ideas on solving your particular problem. By
taking the time to work through the following examples, a much better understanding of the
concepts behind NeuroSolutions will be obtained.

NeuroSolutions after program launch

Signal Generator Example
Signal Generator Example

 193

Purpose - This example creates a simple system for generating composite waveforms. The
purpose of this example is to illustrate how components are interconnected, data is injected into the
network, data is probed within the network and how the simulation is controlled.

Components Introduced - Axon, MaleConnector, FemaleConnector, FunctionGenerator,
MegaScope, DataStorage and StaticControl.

Concepts Introduced - Connecting components, palettes, breadboards, the Inspector, stacking
components, component selection, access points, probing data, data buffers, data flow and cut &
paste.

STEPS

Construction Rules

Stamping Components

On-line Help

Connectors

Selecting and Configuring a Component

Arranging Icons

Connecting Components

The Cursor

Component Compatibility

Bringing in the Function Generators

Stacking Components

Accessing the Component Hierarchy

Access Points

Displaying the Output Waveform

Opening the Display Window

Controlling Data Flow

Configuring the Controller

Running the Signal Generator Example

Things to Try with the Signal Generator

What You have Learned from the Signal Generator Example

Construction Rules

 194

When you run NeuroSolutions, the MainWindow has a blank area called a breadboard where the
user constructs neural networks. The border of the MainWindow can be populated with
components, which are organized in groups called Palettes. A palette contains a family of related
components. Components are selected from a palette and stamped onto the breadboard. The
Palettes Menu contains a list of all families of components available in NeuroSolutions. When you
click on a given family, the corresponding palette is opened, and you can dock it onto the
breadboard border. Select "Axon" from the Palettes Menu. The Axon palette is now on the screen.

It can be docked by dragging it to the border of the MainWindow and releasing the mouse. You can
organize the palettes any way you want.

Stamping Components

Put the cursor over the palette and wait a few seconds. You should see a small window pop up with
the name of a component in it. This is called a "tool tip" and you can use it to determine which
component you are selecting from the palette. Slide the cursor over each button on the palette until

the tool tip shows "Axon" and click on it. Notice that the cursor becomes a stamp when
you place it over the breadboard. If you click again anywhere in the breadboard an Axon

 will be copied to that location. This operation is called component stamping. You can
stamp more than one Axon or bring new components to the breadboard in the same way. If you
stamp a component using the right mouse button, you will remain is stamping mode. To return to

selection mode, you must select the selection cursor icon located on the top border of the
main window. If you stamp a component using the left mouse button, the cursor automatically
returns to selection mode.

On-line Help

It should be noted again that complete descriptions of all components are contained within the on-
line help. The easiest way to access the help for a given component is to click on that component

with the Help cursor . The Help cursor is located on the tool bar. Just click on it and then move
the mouse over the component you want to get help, clicking on the component’s icon. Move your
cursor over to the Axon and single-click to bring up the on-line help for the Axon.

Connectors

Let’s take a closer look at the Axon icon. Notice that there is a double diamond contact point on its
left (the FemaleConnector), and a single diamond contact on its right (the
MaleConnector).

 195

Selecting and Configuring a Component

If you single-click on the Axon’s icon, the Inspector window (see figure below) in the lower right
corner will show the information pertaining to this component, and the component is itself
highlighted by a rectangular border. This will also be referred to as selecting a component. If the
inspector window is not visible, then select View/Inspector from NeuroSolutions Main Menu. Notice
that the Axon was created with a single neuron, or Processing Element (PE), as one of its default
parameters. The user can modify the number of neurons by simply typing a number in the Rows or
Cols edit cell of the Processing Elements area. Normally the number is entered in the Rows edit
cell since your networks are structured by layers, but you can organize the layers also in a matrix
form (2D). The total number of elements will be the product of the Rows and Cols entries. The area
called DataFlow configures the Axon to stop data flow or enable transfer of information to other
Axons connected to it. Normally both switches are activated. If you disable the data flow by clicking

off the "On" switch, notice that the Axon Icon changed to a CrackedAxon , meaning
that the data flow was interrupted at that axon. The switch "Turn ON after RESET" will configure
the Axon back to its normal dataflow mode after reset commands are given during the simulation.

Axon Inspector

Arranging Icons

Stamp two more Axons on the breadboard such that you have three axons placed as shown in the
figure below. The two on the left will be inputs and the one on the left will be an output. You can
move the icons around on the breadboard, once you have stamped them. Just press the mouse
button and drag the component to the new position. Notice that the cursor changes from the arrow
to a move cursor .

 196

System with two inputs and one output

Connecting Components

Select the MaleConnector of one of the input Axons, drag it over the FemaleConnector of
the output Axon, and release the mouse button. Notice that three connections have been
established between the input and output Axons.

An alternate way to connect components is to select a component, then click with the right mouse
button on the component to connect to. The three connection lines will be automatically
established.

The Cursor

Notice that while you were performing the drag operation, the mouse arrow changed to a move
cursor , meaning that you can drop the MaleConnector on any unoccupied portion of the
breadboard. If you place the cursor over the component, you will see that the cursor becomes a
crossed circle , meaning that you can not drop the MaleConnector in that place.

Component Compatibility

Three lines were drawn from the input Axon to corresponding points on the output Axon. This
means that there is compatibility between the two components.

Also notice that the output Axon created a new (second) FemaleConnector . It will always do
this so that a new input can always be brought into the Axon. The signals from multiple inputs are
accumulated (added together) by the Axon. Also notice that a new MaleConnector was created
to replace the one just used. This gives the Axon the ability to feed multiple components. Drag the
MaleConnector of the second input Axon to the newly created FemaleConnector of the output
Axon. Notice again that three lines are created from the input Axon to the output Axon. All three
Axons are now interconnected and should resemble the System with Two Input and One Output
figure.

Go to the Axon inspector and change the size of the output element to 3 by typing this value into
the Rows edit cell. Notice that the lines connecting both input Axons to the output Axon collapsed in
the MaleConnector (see figure below). This along with an Info panel provides a visual indication
that there is an incompatibility of dimension between the Axons. Return the number of Processing
Elements to 1and you will see the connection being reestablished.

 197

Attempted connection among Axons of differing dimensions

Bringing in the Function Generators

Now that the network topology is established, you will connect a function generator to the input
Axons. Select Palettes/Input from the Palettes menu and dock it on the MainWindow border. Stamp

the FunctionGenerator icon onto one of the input Axons.

Input Family Palette

Stacking Components

Notice that the cursor turns to the stamp only over the Axons. This means that the
FunctionGenerator can not be dropped directly onto the breadboard, but only over accepting
components. The FunctionGenerator will attach to one of the corners of the Axon. If you select the
FunctionGenerator, its inspector will be shown.

 198

FunctionGenerator inspector

For each PE in the Axon, you can choose the type of signal, along with its frequency, amplitude,
sampling rate, offset and phase shift. Click on the button showing the sinewave and type 20 in the
Samples/Cycle edit cell. A sinewave of 20 samples per cycle was just programmed.

Accessing the Component Hierarchy

At the top of the Inspector you will find several tabs. Each tab represents another page of
parameters that can be configured for this component. This allows you to change the other
attributes of the FunctionGenerator. The attributes you are viewing are specific to the class
FunctionGenerator. By selecting the Stream tab, you will see the attributes that pertain to a class
called Stream, from which FunctionGenerator was derived. Notice that it is currently configured to
Accumulate Data on the Network, i.e. it will add the signal from the FunctionGenerator to the
accumulated input of the Axon. The option Overwrite data will discard the accumulated input and
replace it with the injected signal. Since the Axon has no other input, this setting is not important for
this example. Notice also that the generated data can be normalized and that it can also be saved
to disk.

Now select the Access tab to view the attributes that configure how the FunctionGenerator
communicates with the component. In particular this tells you about the data format and the access
points available for the component the Function Generator is stacked on.

 199

Access Property Page of the FunctionGenerator

Access Points

Now, where is the sine wave that you created going to be injected? The Axon has several access
points that can be visualized by selecting the input axon and then clicking on the Access tab in the
inspector (see Access Property Page of the FunctionGenerator figure). Select PreActivity, which
means that the signal will be injected before the transfer function of the component is applied. You
may have noticed that the FunctionGenerator icon moved from the right of the input Axon to the
left. Since Axon’s transfer function is the identity map, it makes no difference whether the signal is
injected before or after the component is activated.

Repeat this process of bringing a signal generator to the second Axon, except select a square
wave of 80 Samples/Cycle.

Displaying the Output Waveform

Select Palettes/Probes from the main menu, and dock the probes palette. Select the DataStorage

 from the probes palette and stamp it over the output Axon. Notice that once again the arrow

will turn to a stamp only over the Axon. Select the MegaScope from the probes palette and
stamp it on the DataStorage. These two components work together. The DataStorage is a circular
buffer that will collect samples of data to be visualized by the other component, the MegaScope. If
you single-click on the DataStorage component, the inspector will show the DataStorage inspector.
It should contain the size of the buffer along with how often its contents will be reported to the
component stacked on top of it (in this case the MegaScope). Verify the Buffer Size is set to 100
and change the Message Every edit cell to 90. When the system runs, the MegaScope’s window
will be updated after every 90 samples.

Probes Palette

 200

Select the DataStorage and check which access point the DataStorage is attached to by clicking on
the Access tab of the inspector. The Access Menu should be set to Activity, which is the output of
the element.

Opening the Display Window

Now double-click on the MegaScope component. The MegaScope inspector is shown and a
resizable window opens. This window displays the samples captured in the data buffer from the
access point of the component being probed. Due to the speed of the computer the changing data
will appear animated. Notice that the MegaScope inspector resembles the controls of a
multichannel oscilloscope. You can control the vertical scale and the horizontal and vertical offsets
of each channel independently or in tandem. If you click on the MegascopeSweep tab, you can
control the sweep rate of the traces (in samples per division). If you click on the Display tab you can
change the trace color of each channel, and also control the display background (grid, lines, or
none). The window is sized by dragging the lower right corner.

Controlling Data Flow

The final component that you need is the StaticControl . Every simulation will require one
and only one StaticControl component. This component exists on the Controls palette. Stamp the
StaticControl icon, the icon with one large yellow dial, from the palette to the breadboard. Notice
that it can exist anywhere on the breadboard (once the icon reaches the breadboard, the arrow
turns to a stamp). Single-clicking on the StaticControl icon brings up the Activation inspector, and
double-clicking brings up a StaticControl panel.

Configuring the Controller

The Controller controls the firing of data through the components on the breadboard, from left to
right. Using a square wave of 80 samples per period, one possible way to present this data to the
network is to consider each sample as an exemplar. To present at least an entire period, set the
Exemplars/Epoch to 100. Entering 500 in the Epochs/Experiment edit cell will repeatedly present
the 100 exemplars to the network 500 times.

 201

ActivationControl inspector

The StaticControl panel has 5 buttons. The 1st button toggles between Run and Stop and is used to
initiate or stop the simulation. The Reset button resets the experiment by zeroing all counters, the
activations, and reloading the weights with random values. The Jog button just jogs the
component's weights. The Exemplar button allows you to single step the simulations. Whereas, the
Epoch button presents an entire epoch upon each click. Notice also that there are counters under
the exemplar and epoch buttons.

Running the Signal Generator Example

Click on the Run Button of the StaticControl panel. Notice the MegaScope is displaying the addition
of the square and sine waves. The Epochs counter in the StaticControl panel will show you the
number of epochs that have elapsed. You have just run your first simulation—a rather simplistic
simulation but be patient. You can go back to the FunctionGenerator and change the waveforms
and view the effect on the MegaScope. Every time you want to make a modification in the system,
simply press Stop, modify the component and press Run again. An error will sound if you try to
make a modification while the simulation is running. You should get familiar with the controls of the
MegaScope. It is recommended that you adjust the controls and view the affect of the modifications
in the MegaScope window. (see the figure below for the completed network configuration or load
the file EX1.NSB)

 202

Signal generator simulation

Things to Try with the Signal Generator

Disconnecting Components

Take one of the input Axon’s MaleConnectors and remove it from the output Axon by dropping it
over the middle of the output Axon. Notice that the connection between the Axon components
disappeared, i.e. they were disconnected. An alternate way to disconnect components is to select

the MaleConnector and then click on the scissors icon on the tool bar. The scissors will
always remove the selected component from the breadboard. Reestablish the connection by
dragging the MaleConnector of the input Axon to the output FemaleConnector.
Cables

If you drop a MaleConnector directly on the breadboard, lines will be established from the Axon to
that point. You can create cables linking the Axons in this way. Every time you drag the
MaleConnector while holding the shift key, a new section of the cable will be created. This is very
handy when building recurrent neural networks. You can modify the cable path by first selecting the
MaleConnector of the cable. This will display all of the points used to define the cable. Dragging

 203

intermediate points of the cable will redefine the cable’s path. Note that all components included in
the Axon palette obey these simple rules of interconnection.

Forming a connection using cables

Remove one of the Axons by clicking on it’s icon (this selects the component) and clicking on the
scissors icon. Instead of stamping both Axons and both FunctionGenerators from the palettes, you
can construct just one Axon/FunctionGenerator combination and then copy it to get a second set.

Select the Axon to be copied, click on the copy button on the toolbar, click on an empty spot

on the breadboard, and click on the paste button . A new copy is formed on the breadboard.
Notice that the FunctionGenerator was also copied. Copying a component will also copy all
components that are stacked on top of it. More important, you see that the parameter settings
correspond to the ones you had selected for the original Axon and not the default values.

There is another way to create a composite signal generator. Throw away one of the input Axons
(by selecting it and cutting), bring from the Input palette another FunctionGenerator and drop it on
top of the one residing on the Axon. Using the FunctionGenerator inspector, you will see that under
Access the Active Access Point is set to StackedAccess, i.e. both FunctionGenerators are sharing
the same access point. This circuit will perform as the one previously constructed.

Try saving the breadboard by selecting File/Save from the NeuroSolutions MainMenu, or clicking

on the disk icon . A Save panel will then allow you to give a name to the breadboard, and will
save it to a file. The breadboard can now be re-opened by selecting File/Open from the MainMenu,
or simply clicking on the open icon from the tool bar. The breadboard is ready to run; press run on
the StaticControl window.

What You have Learned from the Signal Generator Example

You have learned the basic rules for connecting and disconnecting components of the Axon class.
You have also learned how to modify the dimension of Axons (i.e., their number of PEs) and
hopefully you were able to appreciate the inspector, since it encapsulates all information regarding
the selected component on the breadboard.

You were able to inject data into the network by means of FunctionGenerators attached to Axon
access points. You were also able to view the output of the system by attaching a
MegaScope/DataStorage to the output Axon. You learned that some components have several
access points for both injecting and retrieving data. Finally, you learned how to use the
StaticControl component to set up the parameters of the experiment. It is recommended that you
refer to the Concepts chapter if any portion of this example was unclear.

 204

Combination of Data Sources Example
Combination of Data Sources Example

Purpose - Combination of information is fundamental in neurocomputing. By feeding data into a
series of weights, NeuroSolutions implements virtually all models used in neurocomputing.
NeuroSolutions combines (linearly or nonlinearly) independent data sources or several delayed
versions of the same source. This example demonstrates the construction of such topologies.

Components Introduced - ThresholdAxon, FullSynapse, TanhAxon, MatrixEditor, MatrixViewer,
File.

Concepts Introduced - Nonlinear elements, McCulloch-Pitts neuron, weight inspection and
manipulation, probing data, file input.

STEPS

Constructing a McCulloch-Pitts Processing Element

Preparing Files for Input into NeuroSolutions

Things to Try with the Combination of Data Sources Example

What You have Learned from the Combination of Data Sources Example

Constructing a McCulloch-Pitts Processing Element

Select File/New from the Main Menu. Go to the Axon palette and stamp an Axon and a
ThresholdAxon to the breadboard. Drop the ThresholdAxon to the right of the Axon. The
ThresholdAxon component corresponds to a nonlinear element that clips the values of its input at
+/- 1. This element creates an output that is a logic value as used in digital computers (-1 is
normally the zero voltage).

Synapse Palette

From the Synapse palette, select and stamp the FullSynapse (the one with lines connecting all the
points) to the breadboard between the two other components (see figure below). The FullSynapse

implements full connectivity between two axons. The FullSynapse provides the

 205

scalar values (combination weights) that multiply each input. Select the Axon and enter 2 in the
Processing Element form cell of the inspector. This creates two processing elements in the input
layer. Connect the Axon to the FullSynapse by dragging the MaleConnector of the Axon to the
FemaleConnector of the FullSynapse. Then connect the MaleConnector of the FullSynapse to the
FemaleConnector of the ThresholdAxon. This structure (FullSynapse followed by the
ThresholdAxon) implements a McCulloch-Pitts processing element (neuron) with two inputs. Go to
the Soma property page of the inspector to verify that the FullSynapse has two weights.

Implementation of a McCulloch-Pitts neuron

Go to the Probes palette, select and stamp a MatrixEditor to the FullSynapse, and place it at
the WeightsAccess point. Double-click on the MatrixEditor icon and a row vector with two values
will appear. This MatrixEditor window allows us to observe, and change the network weights. For
this example, enter 1 in each form cell of the window. Now select the FullSynapse and display it’s
inspector. Under the Soma tab, click on the Fix switch. This will keep the weight values unchanged
during the full simulation, even when the Randomize button on the StaticControl is pressed. You
have to do a similar thing to the bias (i.e., free parameter, weight) of the ThresholdAxon. Place the
MatrixEditor over this component, select the Weights Access in the inspector, and enter the value -
1.2 in the MatrixEditor window. Also set the Fix button of the ThresholdAxon in the corresponding
inspector. Remove the MatrixEditor from the network. What you have done can be translated as
the following: the data input to the Axon will be multiplied by 1, added in the ThresholdAxon, and
internally compared with the threshold. If the bias (weight) of the ThresholdAxon is set at -1.2, the
threshold will be 1.2. If the input to the ThresholdAxon is larger than this value, the output will be 1.
If smaller, the output will be -1.

Preparing Files for Input into NeuroSolutions

The last thing to do in this example is to prepare the input files that will contain the input patterns.
For this simple case, you will use the ASCII column format. Using the Windows NotePad Editor

 (click here to run), create a file with the format shown in the figure below. The four lines
will have the numbers specifying the coordinates of the input points (two per line).

 206

An ASCII input file

When you store an ASCII file for NeuroSolutions, name it with the extension ".ASC". Save the file
in your home directory and call it "XOR_IN.ASC". Next establish the link between NeuroSolutions

and these files. From the Input palette, select and stamp a File component to the input Axon,
and select it to show the corresponding inspector. Click on the Add button and an Add panel will
appear on the screen. Find the "XOR_IN.ASC" file using the browser and double-click on the file
name. This name will be copied to the inspector. Click the Translate button to convert the ASCII
characters to a data stream. The inspector will provide statistics regarding the length of the file (4
exemplars) and the type of data under the Stream tab. Now from the Access level, select the
access point to be Pre-Activity, since you want this file to be the input to the network.

In order to run the input data through the McCulloch-Pitts processing element you need to select
and stamp a StaticControl component to the breadboard. Select the StaticControl to show its
inspector and enter 4 in the exemplar/epoch cell. This is done because the XOR problem has four
exemplars. Notice that each exemplar feeds two channels. Before you simulate this network, think
about how you want to visualize the results. To view the input and the output values use the

MatrixViewer .

From the Probes palette, stamp the MatrixViewer on the input Axon. Double click on the icon to
open the corresponding window. In the inspector set the Stacked Access, such that you can
observe the data that is input to the network. Stamp another copy of the MatrixViewer to the
ThresholdAxon, double click to open the window, and set the access point to Activity, i.e. the output
of the network.

 207

FileInput inspector

Now you are ready to run the example. In the StaticControl window, click on the Exemplar button.
This will bring in the data one exemplar at a time. Observe the MatrixViewer windows. You should
see them change for every click on the Exemplar button. The relation should implement an AND
function, i.e. the output is one only when both inputs are one. (see the Implementation of a
McCulloch-Pitts Neuron figure for network configuration or load file EX2_AND.NSB)

Things to Try with the Combination of Data Sources Example

By changing the threshold of the ThresholdAxon, the OR function can be implemented. Set the bias
(weight) at -0.8, and verify that in fact this is true. Now with an OR function and an AND function,
you can combine them and implement any function of two variables, as is well known in logic
design. It is a good exercise to create a circuit that will implement the XOR function. You will need
three ThresholdAxons. The first will implement a logic function that implements the statement ‘the
response is one only when the first input is one and the second input is zero’. In the OR function it
is just necessary to change the weight of the second input to -1. The second implements the
statement ‘the response is one only when the second variable is one and the first is zero’. The XOR
can be constructed by the OR of these two outputs. Notice that there are no adaptive weights in
these networks. One configuration for this network can be seen by loading file EX2_XOR.NSB.

Instead of using the MatrixViewers, the BarChart can also be used. The BarChart displays
data amplitude as the length of a bar, so it is a very appealing qualitative display of information. If
you click on the BarChart component, in the inspector you will find that you can control how often
the data is displayed. This is a very important feature to save time during the simulations, since the
display of information steals time from the simulations. Most of the time you want to observe the
information once per epoch, so the DisplayEvery form field should contain a number equal to the
number of exemplars per epoch plus one (to visualize the next pattern of the next epoch).

A similar system can be constructed substituting the ThresholdAxon by the TanhAxon. The
advantage of the TanhAxon as you will see in the next example is that the nonlinearity is
differentiable, so one can adapt the weights. The same construction rules apply to the linear
combination of inputs, i.e. when the output processing element is the Axon or the BiasAxon.
However, in these cases the system will be linear and provide only a weighted sum of inputs.

 208

What You have Learned from the Combination of Data Sources
Example

You have learned how to construct nonlinear and linear weighting of input data. This is a
fundamental piece of neurocomputing. You have also learned how to visualize and manipulate
network parameters with the MatrixEditor. You have linked for the first time NeuroSolutions with the
computer file system by means of the File component.

The Perceptron and Multilayer Perceptron
Perceptron and Multilayer Perceptron Example

Purpose - In this example you will construct your first adaptive network—the perceptron. You will
repeat the AND function, but now the network will learn how to select the weights and the bias of
the components by itself. This will be accomplished using backpropagation, one of the most useful
learning rules. Later you will construct a network to learn the XOR problem.

Components Introduced - SigmoidAxon, L2Criterion, BackTanhAxon, BackSigmoidAxon,
BackFullSynapse, BackAxon, BackStaticControl, Momentum, BackCriteriaControl, Quickprop.

Concepts Introduced - Cost function (mean square error), backpropagation of error, dual network
(backprop plane), gradient search (weight updating), automatic creation of the backprop plane,
learning paradigms, divergence, hidden layers, broadcasting of parameter changes.

STEPS

Perceptron Topology

Constructing the Learning Dynamics of a Perceptron

Alternate Procedure for Constructing the Learning Dynamics of a Perceptron

Selecting the Learning Paradigm

Running the Perceptron

MLP Construction

Running the MLP

Things to Try with the Perceptron and Multilayer Perceptron Example

What You have Learned from the Perceptron and Multilayer Perceptron Example

Perceptron Topology

The perceptron is one of the most famous neural network topologies (see Perceptron). Its major
difference with respect to the McCulloch-Pitts model seen in the previous example is the use of
smooth nonlinearities and adaptive weights. So this is the first adaptive system that you have
encountered. Here you will construct the perceptron using the SigmoidAxon.

 209

With a new breadboard, stamp from the Axon Palette one Axon for the input, a FullSynapse, and

the SigmoidAxon , which implements a smooth nonlinearity also called the logistic
map. Interconnect all the elements as before. Select the number of processing elements in the
Axon as two.

ErrorCriteria Palette

Select Palette/ErrorCriteria from the Main Menu. Go to the ErrorCriteria palette and choose the
L2Criterion. This cost function implements the mean square error—the most widely used error

metric. Now place the L2Criterion to the right of the SigmoidAxon, then make the
connection between them. The L2Criterion will compare the desired response with the network
input, compute the error power and give it to other components that handle error backpropagation.

From the Probes palette, select and stamp a MatrixViewer on the L2Criterion and set the access
point to Average Cost. Double-clicking on the MatrixViewer will open up a window. Since you are
probing the L2Criterion at its average cost access point, this window will display the learning curve,
i.e. how the mean square error evolves during learning. The MatrixEditor probe could also be used,
but it would slow the simulations since it allows editing at every epoch.

The perceptron with the L2criterion attached

Constructing the Learning Dynamics of a Perceptron

There are two basic ways to create the learning dynamics. Start out by docking the Backprop
palette. Each of these components is a dual of a component on the Axon and Synapse palettes.
The reason for this can be found in the theory of learning dynamics (see Backprop Family). When
backpropagation trains a neural network, the error can be thought of as being injected at the output
of the network, and propagated through a dual network of the original topology. The dual topology
has the same weights but switches splitting nodes with summing junctions.

 210

Backprop palette

A closer look at the Backprop palette shows that there are two icons with bell shaped curves. One
is the BackTanhAxon that corresponds to the hyperbolic tangent nonlinearity, and the other is the
BackSigmoidAxon corresponding to the logistic function. All Backprop components will be stacked
on top of their activation duals. Bring in the BackAxon, the BackSigmoidAxon, and repeat the
process for the BackFullSynapse. Notice that lines are automatically drawn between the BackAxon
and the BackFullSynapse. By adding the BackCriteriaControl, you have created a network capable
of learning. The error can now flow from the output to every component in the network, allowing the
program to compute local error gradients.

Addition of the backprop plane to propagate the error

There are several ways that the activation and error can be combined to compute the weight
updates. Therefore, you must specify what type of gradient search you want by selecting a

component from the GradientSearch palette. There is the Step (straight LMS), the

Momentum (LMS with momentum, the most widely used in neural computing), the

Quickprop (Fahlman’s quick prop) and the DeltaBarDelta (adaptive step sizes).

You have to place one of these gradient procedures on every activity component that contains
adaptive weights.

 211

Momentum inspector

In the perceptron example, the only elements that have adaptive weights are the FullSynapse and
the SigmoidAxon (a bias term), so you need to drag the Momentum to these two components.
From the Momentum inspector, enter a momentum of 0.9 and set the step size to 1.

Alternate Procedure for Constructing the Learning Dynamics of a
Perceptron

Before moving on, consider a second alternative to the construction of backprop plane or of
learning dynamics. Since there is a tight relationship between the original topology and the
backpropagation topology used for learning, the learning network is unequivocally defined by the
original topology (there is a duality between the two). Therefore, NeuroSolutions can
AUTOMATICALLY construct the learning network. This facility is included in the BackStaticControl
component.

From the Controls palette, you will recognize the BackStaticControl as the red dial component.
After stamping a StaticControl on the breadboard, select the BackStaticControl from the palette and
stamp it over the StaticControl.

At the bottom of the BackStaticControl inspector, you can find the Backpropagation Plane box.
There are two buttons—one that adds the backprop plane and one that removes the backprop
plane. You also have the ability to select on the scroll panel the class of gradient search that you
want using the pull down menu. Verify that this is set to Momentum. Now press the Remove button
and observe that the backprop plane that you constructed disappears from the breadboard.

By pressing the Add button, the backprop plane is automatically constructed for us. Since the
original topology had weights in the FullSynapse and SigmoidAxon, two new GradientSearches
were created. Since they are new components, you still need to set the Step Size and the
Momentum values in the corresponding inspector. This facility of NeuroSolutions is very powerful.
By decoupling the learning dynamics from the original topology, several important goals are
simultaneously achieved. First, the learning becomes extremely fast because you are giving each
element the ability to learn (see Learning Dynamics). This leads to very efficient and compact code.
Second, the weights can be easily frozen for testing by freeing the learning plane. This speeds up
the simulations tremendously once the network has learned.

 212

BackStaticControl inspector

Selecting the Learning Paradigm

There is still one aspect that needs to be selected before the network is able to learn a task. The
learning paradigm defines how the data is fired through the network, and when learning takes
place. These aspects are controlled by the network controllers; the StaticControl and the
BackStaticControl work in tandem to propagate the data back and forth through the network. Note

that NeuroSolutions has two sets of controllers, one with two dials and another with three

dials . The two dial controllers are static, while the three dial controllers are dynamic.
Here you will be using the two-dial controller also called the BackStaticControl.

The activation is computed in the forward pass and the error is computed in the backward pass.
Then the Momentum updates the weights based on the instantaneous error gradient. For this
problem, the number of Exemplars/Update is set to 1, meaning that weights are updated after the
presentation of each pattern.

Finally you have to set the Exemplars/Epoch at 4 (since you have four patterns in the training set),
and enter 500 in the Epoch/Experiment cell (i.e. training will stop after 500 passes over the training
set).

If you were to select the dynamic controller (3 dial) the System Dynamics could be set to Static,
Trajectory or Fixed-Point. Using static will mimic the static controller, while the other two will
backpropagate the errors over time (see Constraining the Learning Dynamics). In other words, the
weights are updated based on gradient information obtained over several samples for each
exemplar. As before, the activations are computed in the forward path until the Samples/Exemplar
is reached. Errors are then computed by driving the system backward for the number of samples
entered as the Samples/Exemplar for the BackpropControl. In this way, the gradient is computed
over time and the weights are updated based on the composite gradient. Since the network in this
example is feedforward, this would be equivalent to batch learning with LMS. Notice that the
gradient computed by this method is the average gradient, which has some benefit when the input
data is noisy.

Now you are ready to deal with the input and desired responses. Since you want to learn the AND
function of two variables, the file created in the previous example can be used as input. Now create
a file containing the desired response for the network. The figure below shows the desired
response file.

 213

An ASCII desired response file

Note that the inputs and desired data must be aligned in order for the network to learn the desired
task. You have to stamp a File component on the input Axon (Pre-Activity Access point), and
another File component on the L2Criterion for the desired response (Desired Access point).

Construction of the Perceptron Example

Running the Perceptron

In order to analyze the performance of the network, select and stamp a MegaScope/DataStorage
over the MatrixViewer that has access to the average cost. Configure the buffer size to 100 and
report the error every sample. This will show the learning curve. Now you are ready to start the
simulation. Click on the run button of the StaticControl and the simulation will start. Note that the
error starts large, but then decreases steadily to a very small value (<0.01) meaning that the
network learned the task.

It is interesting to verify the weights found after learning the AND task. Select and stamp a
MatrixViewer on the FullSynapse, and select the weight Access. You will see that both weights are
large and positive, and the bias of the SigmoidAxon is large and negative, just like you expect after
running the previous example. (see Construction of the Perceptron Example figure for network
configuration or load the file EX3_AND.NSB)

 214

MLP Construction

The perceptron is able to find arbitrary linear discriminant functions in pattern space. However,
there are a lot of important problems that require more sophisticated discriminant functions. The
XOR is well known in neural network circles as an example of a problem that requires a nonlinear
discriminant function. Therefore, a network with at least one hidden layer is required to solve the
XOR problem. Here you will construct a one-hidden-layer network, an example of a multilayer
perceptron (MLP). The inputs will be the same as the last example and the desired response will be
based on the table below.

Definition of the XOR problem

Start by using the perceptron breadboard. You will be stamping on another FullSynapse, and
another SigmoidAxon before the L2Criterion (see figure below). You will have to break the
connection between the SigmoidAxon and the L2Criterion. (by dragging the connected male
connector of the SigmoidAxon over the center of the L2Criterion and dropping it), and rearrange the
components to make room for a hidden layer. Connect the components as shown in the figure
below. Create the new backpropagation plane by pressing the Add button in the BackpropControl
inspector. Notice that there are Momentums created for the SigmoidAxons and FullSynapses.

Construction of the MLP Example

Now you need to decide on the size of the layers and a few other parameters. Assign two
Processing Elements to the SigmoidAxon representing the hidden layer. Now you need to select
the learning rates. Notice that there are several components that have learning parameters and you
would like to be able to set them all at once. You can do this easily by broadcasting the changes of

 215

one component to similar components. Select one of the Momentums, and while pressing the shift
key click on the other Momentums. They will be all selected. Use a Step Size of 1 and a
Momentum of 0.9. Verify that these parameters were broadcast to the other Momentums by
clicking on each component and observing its corresponding inspector. You will keep the learning
in batch mode.

The last thing to do in this example is to prepare the "desired" file, which will contain the patterns
for the desired signal according to the table above. You have to create a file called
XOR_DES.ASC, as shown in the "out" column of the table above and link it to the File placed over
the L2Criterion. The first step is to remove the previous file, and add the new one, using the same
procedure as explained in the Combination of Data Sources example. Before running the example,
you should determine what it is that you want to probe. As usual, you should monitor the output
mean square error just to make sure that the network is converging. Stamp a MatrixViewer on the
L2Criterion. You should also bring a MegaScope/DataStorage to the input axon and stamp it on the
Activity point. This way you can verify that the data is firing in the appropriate order. Configure the
DataStorage to Message Every 10 samples.

Running the MLP

Double-click on the MegaScope. You will see that you have two channels, since the input has two
channels. You may want to move the Channel 1 signal so that it doesn’t overlap the Channel 2
signal. This can be accomplished by using the Vertical offset slider or the Autoset Channels button.
Open the StaticControl panel. If you click on the Exemplar button several times, you should see two
waveforms being displayed—one that looks like a triangular wave and the other more like a square
wave (you may need to adjust the Vertical Scale and Samples/division to match the display shown
in the figure below). By looking at the XOR table, you can interpret the alternating 0’s and 1’s in
each column as being square waves of different frequencies. You may want to adjust the settings
of the MegaScope to magnify the waveforms. Verify that the input is being correctly read. You can
now move the MegaScope/DataStorage to the output Axon to observe the output of the network
through the learning process. Run the network and observe that in the beginning the MegaScope at
the output will display a wave that is irregular, but that it will converge to a periodic square wave. At
the same time, the error will decrease to almost zero. The network will most often learn the XOR
problem in less than 150 iterations (depending on the initial conditions). The network may have to
be jogged several times if it appears to have settled in a local minima. An example of a network
solution for this problem using an MLP can be seen by loading file EX3_XORS.NSB.

 216

Training a MLP to learn the XOR problem

Things to Try with the Perceptron and Multilayer Perceptron Example

Move the MegaScope/DataStorage to the left FullSynapse and select the Weight access point,
such that you can track the weights through learning. Now randomize the weights and run the
network again. Observe that the weight tracks are constant in the beginning, but that there is a
quick inflection and both weight tracks go in opposite directions. This is the most general behavior
of weights for networks that learn this problem, but other solutions are possible depending upon the
initial conditions.

 217

Tracking the values of the weights during training

If one wants to smooth out the learning curve, you can use batch learning. Batch learning adapts
the weights after the presentation and calculation of the gradients for the full training set (four
patterns). You can implement batch learning by going to the BackStaticControl Inspector and
selecting the Batch radio button. Reset the network and run it again. You will see that now the
learning curve is very smooth, which shows the steady decrease of the error through learning.

You can also see the effect of different gradient update rules on the learning speed. Choose
Quickprop and repeat the experiment. Choose the Step and repeat the experiment. The idea is to
compare the speed of adaptation of each rule.

What You have Learned from the Perceptron and Multilayer
Perceptron Example

You were able to create a system that was able to adapt its weights to approximate a desired
signal. To do this, it had to be able to determine the error between the output and the desired
signal. By attaching an L2Criterion to the output and attaching a desired signal to the L2Criterion,
the system had the error criteria it needed. This error had to be backpropagated through the
network to determine error gradients. This gradient was computed and the weights were updated
by attaching a Momentum to the FullSynapse. After running the system, you observed that it was
able to learn the AND table with no difficulty.

You were able to create the backprop plane automatically using the BackStaticControl. This can
save you the several steps required to stamp each of the backprop components individually. You
also learned a little more about the probing capabilities of NeuroSolutions. The MatrixViewer is
similar to the MatrixEditor except that it runs faster because it does not give you the ability to
modify the data.

You have also constructed an MLP with the ability to solve a problem that is not linearly separable.
You did this by using nonlinear processing elements (SigmoidAxons) for the hidden and output
layers of the network. You were able to give the network the problem (the input and the
corresponding desired output) by creating ASCII text files and linking them in to the system (by
means of the File component).

 218

You also learned how to broadcast the parameter changes of one component to other components
on the breadboard by choosing the appropriate scope of the broadcast; this feature can be a real
time-saver.

Associator Example
Associator Example

Purpose - The purpose of this example is to provide an easy introduction to the use of hetero-
association, and to show the speed of NeuroSolutions.

Components Introduced - ArbitrarySynapse, ImageViewer, Noise.

Concepts Introduced - Hetero-association in distributed systems, the use of images in
simulations, testing systems for immunity to noise.

STEPS

Building the Associator

Things to Try with the Associator

What you have Learned from the Associator Example

Building the Associator

In this example you will be building a simple linear associative memory, trained with gradient
descent learning. The task is to associate the images of three people (48x48) with their
corresponding initials (30x7). The images are provided with the package. This example also shows
the efficiency of the NeuroSolutions code, as you will see the training happen in front of your eyes.

Linear associative memories are probably one of the oldest forms of artificial neural networks. Their
advantage is that they can be understood mathematically (since they are linear systems), they are
easy and fast to train, but they are not immune to noise. Please see Associative Memories for a
review of linear associative memories. Normally, linear associative memories are either trained with
Hebbian learning or computed using the outer-product. But more recently, it has been shown that
they can also be trained with gradient descent learning when the desired signal is known. This
method has an advantage in that the training approaches the minimum norm solution.

 219

Construction of a linear associative memory

From the Axon palette stamp an Axon component and from the synapse palette an

ArbitrarySynapse , and from the error palette an L2Criterion. For training you will be
using Bitmap images as input. Within the NeuroSolutions directory, there is a file called
JCSPICT.BMP. This file contains three 48x48 images, so the input Axon must be configured with
48 Rows and 48 Cols, which is 2,304 Processing Elements (PEs). The desired output is also a
Bitmap file (JCSTEXT.BMP) containing three 30x7 images of the respective initials.

ArbitrarySynapse inspector

Therefore, the L2Criterion must be configured with 7 Rows and 30 Cols, which is 210 PEs. Notice
that a FullSynapse would have 483,840 weights—this would be an overkill to associate three image
pairs. This is the reason you elected to solve this problem with the ArbitrarySynapse.

When created, this element has no connections established, so the user must specify which
connections need to be made. Going to the ArbitrarySynapse inspector, notice there are two
columns of numbered radio buttons. They correspond to the input and output PEs of the axons. For
your case, since the input Axon was created with 2,304 processing elements, there are that many
cells on the left. On the right you have 210 PEs. The user has the ability to arbitrarily connect the
elements. The procedure is very simple. In manual mode (the default), the user simply clicks the
radio buttons with the mouse and the elements will be highlighted. By clicking the Connect button,
connections will be established. Alternatively, the user can select Random Connections, Near
Connections or Sparse Connections in the Autoset Connections box and specify the number of
connections to be automatically made. This feature is important for large networks, like the one you
are simulating now. You can start the connections from the left or the right. You would like to
connect from the left. Select connect from the left (click on the "->" radio button), enter 2
connections, then click the Random radio button (this will take a couple of minutes to process). You
may not see a lot of connections but remember that you are just looking at a small window. Moving
one of the scrollers will show only how many connections are specified in the two windows, not the
total. If you want to know the total number of connections, just click on the Soma tab and verify the
number of weights (it should be close to 4600, but probably a few less due to duplications made in

 220

the randomization process). As you will see, this is more than enough to associate the pairs of
patterns given.

Now go to the Input palette, stamp a File component onto the input Axon, and attach it to the Pre-
Activity Access point. In the Combination of Data Sources example, you used the File component
to input ASCII data into your network. This component also accepts Bitmap image data (8 bits,
without alpha channels). From the File list box of the File inspector, the user can manipulate files or
translators. A translator is a program that reads data from one of the accepted formats to a stream,
which is the format that NeuroSolutions processes. Presently there are translators for ASCII(.ASC),
ASCII- Column Format, Binary and Bitmap (.BMP) files. Data can be read from several files, and
the data types can be mixed.

FileInput inspector

To open the image data file, click on the Add button and select JCSPICT.BMP from the Open
panel. The name will be copied to the FileInput inspector. In order to translate it to a stream, click
the Translate button. Notice that the inspector tells you the number of samples in the file in the
Stream level. You also have the ability to Customize the file. Normalize the data (between the
values of Lower and Upper), or to extract a Segment (using Offset and Duration). By not
normalizing, the translator has converted the pixels of the three images into a stream of 6912
floating point values ranging from 0 (black) to 1 (white). Now perform the same procedure using the
file JCSTEXT.BMP and attaching it to the Desired Access point of the L2Criterion.

To complete the example, you need to stamp a MatrixViewer on the Average Cost Access of the

L2Criterion to create an MSE probe. Also needed are two ImageViewers , one to the input
Axon’s Activity Access point and the other to the Pre-Activity Access point of the L2Criterion. From
the ImageViewer inspector, set to Display Every sample. You would also like the normalization to
be Automatic because it will guarantee the correct gray (or color) scale. You will also need to set
the parameters for the second ImageViewer in the same way. Double click on these ImageViewers
to open their windows.

 221

ImageViewer inspector

You are now ready to stamp the StaticControl and the BackStaticControl. Use the StaticControl
Inspector to enter 3 for the Exemplars/Epoch (the number of image pairs), and set the
Epochs/Experiment to 30. From the BackStaticControl inspector, set the Exemplars/Update to 3
(batch learning), then Allocate the backpropagation plane. Do not forget to select a Step Size (0.08)
and a Momentum (0.5) for the Momentum. You are ready to run the experiment.

Viewing the association made between two images

Open the StaticControl window and press the run button. You should see three images presented
in succession—each will correspond to an image with the person’s first name. In the beginning the
names are unrecognizable, but after 30 iterations, you will be able to recognize the names. Notice
that the mean square error decreases very fast. You can stop the simulation and single step
through the exemplars to see the hetero-associations. It is remarkable how fast the network trains
4588 weights. This gives you a feel for the amount of time this environment takes to solve large
problems. (see Construction of a Linear Associative Memory figure for network configuration or
load file EX4.NSB)

 222

Things to Try with the Associator

One obvious thing to try is to go back to the ArbitrarySynapse and test other possible wiring
combinations to see when the wiring density fails. Another interesting aspect is the weak noise
immunity of this type of memory. Since it is a linear system, a small amount of noise may disturb

the associations. You can verify this by stamping a Noise component from the Input palette
on the File attached to the input Axon.

Noise inspector

From the Noise inspector you can control the Variance and Mean of the noise source, and you can
also have the option to add the noise source to the existing signal (accumulate), or overwrite it (i.e.
disconnect the other signal source and replace it with just noise). Select Accumulate Data on
Network from the Stream tab.

Choose a small Variance of 0.3 (make sure that it is set to Change All Channels) and set the Step
Size to 0 such that the weights will remain fixed. By single-stepping through the iterations, you will
see that the images of the faces are still somewhat recognizable. You will also see that the system
is still able to make the associations. The reason is that 3500 weights provide enough redundancy
to overcome the noise. Now try decreasing the number of weights, but not so much that the wiring
density fails. Re-train the network and re-test with the noise. Was the system more susceptible to
the noise? Why?

What you have Learned from the Associator Example

You were able to build a system that could associate a set of large images with a set of much
smaller images. You did this by implementing a simple linear associative memory and trained it
with gradient descent learning. Since the system only required a fraction of the weights of a
FullSynapse, you instead used the ArbitrarySynapse with random connections. You were able to
input the images into the system using the bmp translator of the File component. While running the
system you were able to view the input image and its corresponding output image with the
ImageViewer probe. You were also introduced to the UniformNoise component and how it can be
used to test your system for immunity to noise.

 223

Filtering Example
Filtering Example

Purpose - Adaptive filtering is still today the largest application area for adaptive systems. The
basic structure of an adaptive filter is that of ADALINE networks as proposed by Widrow. The basic
difference is that you need to combine the input data with its previous values, so a delay line is
needed. Here you will learn how to construct and adapt linear adaptive filters.

Components Introduced - TDNNAxon, BackTDNNAxon, SpectralTransform.

Concepts Introduced - Tap delay line, adaptive filtering, divergence, spectral transformation of
data (FFT).

STEPS

Constructing A Linear Filter

Things to Try with the Linear Filter

Adaptive Network Construction

Running the Adaptive Network

Things to Try with the Adaptive Network

What You have Learned from the Filter Example

Constructing A Linear Filter

Select File/New from the Main Menu. Go to the MemoryAxon palette and stamp the TDNNAxon

 onto the breadboard. This component corresponds to a tap delay line, the
fundamental element of all finite impulse response digital (FIR) filters. Select this new component to
bring up the TDNNAxon inspector. Enter 5 as the number of taps; this means that you are creating
a structure with 4 delays.

From the Synapse palette, stamp the FullSynapse to the breadboard. The FullSynapse will provide
the filter weights. Connect the TDNNAxon to the FullSynapse by dragging the MaleConnector of
the TDNNAxon to the FemaleConnector of the FullSynapse. From the Axon palette, stamp an Axon
to the right of the FullSynapse and connect the FullSynapse to this new Axon. This structure
implements a FIR filter. Click the Soma tab of the FullSynapse inspector to verify that it has 5
weights.

 224

Implementation of a Linear Filter

Now go to the Input palette and stack two FunctionGenerators on the Pre-Activity point of the
TDNNAxon. Select a sinewave of 8 Samples/Cycle on one FunctionGenerator and a sinewave of
20 Samples/Cycle on the other.

Next go to the Probes palette and stamp a MegaScope/DataStorage on the output Axon, placing it
on the Activity access point. Select a StaticControl from the Controls palette and stamp it on the
breadboard, set the Exemplars/Epoch to 100, and verify that the Epochs/Experiment is set to 500.
Run the network. The waveform in the MegaScope will probably appear complex. The reason is
that the sum of input sinusoids is being filtered by a random set of weights.

Go to the Probes palette, stamp a MatrixEditor to the FullSynapse, and place it at the Weight
access point. Double-click on the MatrixEditor icon and a row vector with 5 values will appear. This
MatrixEditor window allows us to observe, and change the filter weights. While running the network,
click the Jog button of the StaticControl window. You should see the values in the MatrixEditor
change and the waveform on the MegaScope should also change.

Say you want to produce a specified frequency response by implementing a simple bandstop filter.
Stop the simulation and enter in the Matrix Editor the values 1,0,0,0,1. This implements the filter

which is known to have zeros at ?/4, ??/4, 5?/4, and 7?/4. Therefore, an 8 samples per cycle
sinewave will be totally attenuated by this filter. In fact, you should see a perfect sinewave at the
output that corresponds to the 20 samples per cycle sinewave generator.

 225

Running the Linear Filter

If you randomize the weights again, the output waveshape will change as well as the weights
displayed by the MatrixEditor. Don’t worry if you have no experience with filters, just run the
example to get its "feel" (see figure above for network configuration or load file EX5.NSB).

Things to Try with the Linear Filter

You have been introduced to the concept of component stacking, in which a component stacked
below forwards all of its data to the component stacked on top of it. MegaScopes have the ability to
forward a segment of data to a component stacked above. Select another MegaScope (without the
DataStorage) from the Probes palette, and stamp it on top of the existing MegaScope, and bring up
its inspector. Click on the Access tab of the inspector and set the access point to Selection.
Double-click on this MegaScope to open its window.

Now you need to select the data segment to be forwarded to the second MegaScope. First click on
the MegaScope window (the one stacked on the DataStorage) to select it. Then use the mouse to
select the beginning point of the segment of interest on the display window. Drag the mouse
(keeping the left mouse button pressed) either to the left or to the right until the end of the segment
you want. When you release the left mouse button, the signal within the highlighted area will be
displayed on the second MegaScope. Adjust the top MegaScope so that the signal occupies the

 226

entire display. When you run the simulation again, you should see the top MegaScope mirroring the
selected segment of the bottom MegaScope.

This exercise may not seem that interesting, but you will find that this ability to select segments of
data for further processing and/or probing is a powerful feature that you will likely find very useful.
For instance, you will later be introduced to a component that will perform a Fast Fourier Transform
(FFT) on the data. Using a MegaScope, you are able to select a portion the signal (i.e. how many
periods) from which to construct the FFT. Notice also that the more windows open the slower the
simulations run. So a compromise between simulation speed and visualization tools is needed.

Adaptive Network Construction

You will use the same network but now you will let the weights adapt according to a given desired
response. From the ErrorCriteria palette, choose the L2Criterion—the most widely used error
metric. Now place the L2Criterion to the right of the output Axon, then make the connection
between them. From the Probes palette, select the MatrixViewer and stamp it on the L2Criterion
and set the access point to Average Cost.

Attaching the L2Criterion to the output

Now select the BackStaticControl and stamp it over the StaticControl. Use the BackStaticControl
Inspector to add the backpropagation components. Select the On-Line radio button from within the
BackStaticControl Inspector. From within the Static Control Inspector, set the Exemplars/Epoch to
80. Set the Step Size to .1 in the Momentum Inspector. Within the DataStorage Inspector, set the
Message Every form cell to 80. Make a copy of the 20 samples/cycle input FunctionGenerator and
place it over the L2Criterion. Now select the access point to be Desired access. Effectively, you are
telling the ADALINE to output a signal that is equal to a sine with 20 samples per cycle. This
adaptive system will then try to approximate the filter that you hand-coded for the previous
example.

Running the Adaptive Network

 227

Running the example

Now open the StaticControl window and press the Run button. In the MatrixEditor you can observe
the weights being modified. The numbers are also changing in the MatrixViewer, showing the
average mean square error. The waveform on the MegaScope changes at a much slower rate. The
buffer is only reporting data to the MegaScope every 80 samples. Press the Stop button on the
StaticControl inspector to stop the simulation.

Close the MatrixEditor window (click the square on the upper-left corner of the window), and run
the simulation again. Have you noticed the change in speed? A faster simulation is obtained. The
waveform in the scope is being displayed much more frequently. Notice that the waveform
approaches a sinewave. You may have to click the run button a few times before you obtain a
perfect sinewave. When the waveform looks like a sinewave, stop the simulation and open the
MatrixEditor. Now you can observe the weights that the network "discovered" to construct the
bandstop filter (i.e. a network that will cancel a sinusoidal component). Notice that you have simply
given the desired signal to the net and it found the coefficients using the rules of learning
(minimization of the mean square error). The values found through learning are different from the
ones you hand coded in the previous example. For this problem, many solutions exist. (see figure
above for configuration or load file EX5_A.NSB)

Things to Try with the Adaptive Network

Now select the Momentum component, change the Step Size to .3, randomize the weights, and run
the network. What happened? The waveform becomes very complex and the values in the mean

 228

square error window become extremely large. Stop the simulation. The step size was selected too
large and the iterations are simply diverging (i.e. the operating point of the network departs further
and further from the optimal solution).

Select a new Step Size of 0.1 in the Momentum Inspector. Now go back to the Probes palette,
select a second MegaScope/DataStorage, and place it over the MatrixViewer attached to the
L2Criterion (the MSE probe). Verify that the access point of the DataStorage is Stacked access (i.e.
it is reading the value reported by the MatrixViewer). Have the buffer message after every 10
samples. You have constructed a probe that will display the learning curve for this network.

Randomize the weights and run the simulation again. What do you see? The MegaScope
connected to the MatrixViewer is showing a very complex waveform—the instantaneous error
through iteration. Notice that the largest value of the waveform is steadily decreasing. After 5
epochs (400 exemplars) the MegaScope connected to the output is displaying a waveform very
close to a sinewave, and the error is decreasing to zero very fast. After 15 epochs (1200
exemplars) the network basically learned the task. Randomize the weights again and re-run the
network just to see the effect of the initialization on the speed of adaptation.

Now let the system learn this task with batch learning. From the BackStaticControl inspector, select
the Batch radio button. This means that you are using 80 exemplars to learn (the setting of the
Exemplars/Epoch form cell in the StaticControl Inspector). Also, select a new Step Size of .5 in the
Momentum Inspector.

Randomize the weights and run the simulation. What happened? Notice that now the learning
curve is much smoother than with the on-line system, decreasing steadily to zero. Also notice that
the system basically learns the task in 150 epochs. But don’t forget that in each epoch has the
gradient has the contribution of 80 samples. Another aspect that must be stressed is that the
simulation with batch learning is more efficient. In the way that the code is implemented, the
activations and errors are being stored in memory, and the switching between forward and
backward task is less frequent. This will be addressed in later sections.

The final test with this example is to show a little more of the phenomenal probing abilities of the

package. From the Probes palette, stamp the SpectralTransform over the MegaScope on the
output Axon (we will call this the output MegaScope). Stamp another MegaScope on top of this
component. This MegaScope will enable us to visualize the spectrum of the network’s output
WHILE the network is learning. Just double click on this MegaScope to open its corresponding
window.

 229

Using the SpectralTransform to obtain FFT data

The SpectralTransform averages several FFTs for the data stored in the component stacked below
(the DataStorage stacked below the output MegaScope) and sends this transformed data to the
component(s) stacked above (the new MegaScope). In order for the SpectralTransform to access
the output of the MegaScope, a region of the display must be selected. This is done by clicking and
then dragging the mouse cursor across the screen of the MegaScope display (see figure above).

Click once on the SpectralTransform to access the corresponding inspector. Set the Window Size
to 30, the Number of Segments to 2, and verify that the Size of FFT is set to 128 and the
Percentage Overlap is set to 50.

In order to select the appropriate scale for the SpectralTransform, go to the StaticControl window,
reset the weights, and press the Exemplar button twice. This will fire two exemplars through the
network, and will produce one update of the SpectralTransform. Select the MegaScope attached to
the SpectralTransform to bring up the MegaScope controls in the inspector. Since you are
displaying the FFT’s magnitude, you know that it will always be positive. You can therefore place
the zero line on the bottom of the MegaScope’s window (using the vertical position control). You
can also change the vertical scale such that the spectral peak fills two-thirds of the screen.

Now run the simulation and observe what happens. This provides a complete display of the
network performance. You should observe the learning curve, the instantaneous MSE, the output
of the network and its spectrum. All of this will be updated while the network is learning. Of course

 230

simulations become a little slower this way, but the insight obtained with this arrangement of probes
is often worth the performance penalty.

Notice that the SpectralTransform is very sensitive to the accuracy of the output. The MSE is
already very low, but the MegaScope still displays a predominant second harmonic stating that the
learning is not yet complete. After approximately 500 epochs, the spectrum consistently displays a
single peak and you can say that learning is complete. (see figure above for network configuration
or load file EX5_FFT.NSB)

What You have Learned from the Filter Example

In this example you have learned more fundamentals of interconnecting elements. By making the
appropriate connection, you were able to feed the taps of the TDNNAxon to the weights of the
FullSynapse. You were able to manipulate the values of those weights by randomizing them, or by
setting them manually with the MatrixEditor. This manipulation of the weights defined the frequency
response of the filter.

You also have learned how to automatically adapt the filter weights by providing a cost function and
a desired signal. The constructed network worked as an adaptive interference chancellor, widely
used in communications and instrumentation. You have seen that you can adapt the coefficients
on-line or in batch mode, and that if you are not careful the adaptation may diverge.

You have also learned how to compute and display Fast Fourier Transforms with NeuroSolutions.
This is very important for engineering applications.

Recurrent Neural Network Example
Recurrent Neural Network Example

Purpose - In this example you will learn how to construct a recurrent neural network. You will then
train this network to learn the exclusive-or problem.

Components Introduced - DeltaTransmitter.

Concepts Introduced - Delay operators, feedback loops, fixed point learning algorithms, network
stability, probing for appropriate learning, dynamic relaxation.

STEPS

Creating the Recurrent Topology

Fixed Point Learning

Running the Recurrent Network

Things to Try with the Recurrent Network

What You have Learned from the Recurrent Network Example

Creating the Recurrent Topology

 231

The network components used for recurrent neural networks are not different from the feedforward
topologies that you have encountered thus far, so you can expect to find Axons and Synapses as
before. The topology is characterized by feedback loops that go from the processing elements to
themselves and to other processing elements. The first thing to realize is that the feedback loops
must include some form of delay to implement a realistic network. This is due to the fact that there
is no instantaneous transmission of information in dynamic systems.

Construction of the recurrent neural network

The figure above shows a recurrent topology to solve the XOR problem. Start by stamping an Input
Axon, which should be configured with 2 processing elements to accommodate the two inputs.
Create a new layer using a SigmoidAxon containing 2 PEs and a FullSynapse to connect it with the
input layer. It is necessary to feed the outputs of this layer to itself to create the recurrence
connections. You should use a FullSynapse to receive the output of the layer and feed it back to
the same layer. Notice that in order to make these connections, either a cable is used or straight
connections can be made (by dragging the male connector from the SigmoidAxon to the
FullSynapse, and dragging the male of the FullSynapse back to the SigmoidAxon input). When you
close the connection an error panel will pop-up warning us that an infinite loop was detected. In
order to construct an acceptable topology, you have to delay the output of the SigmoidAxon since it
is being fed back to itself. This is done by going to the FullSynapse inspector, switching to the
Synapse tab, and entering 1 as the exponent of the Delay box. Now a delay of 1 time step has
been created between the output and input of the SigmoidAxon. Also notice that a visual feedback
of this operation—the FullSynapse now displays a to symbolize the delay.

The resulting network consists of only 2 PEs, which are fully connected back onto themselves. To
train this network for the XOR problem, you have to assign the PEs to an output. This output will
then be fed to an L2Criterion to compute an error. Stamp an ArbitrarySynapse and an L2Criterion
to the right of the SigmoidAxon. Connect these components to the network. Select the
ArbitrarySynapse to view its inspector. Use the ArbitrarySynapse to bring the output of the
SigmoidAxon to an L2Criterion. Notice that the purpose of this connection is to select which
processing elements to choose for the output. Select PE #0 and PE #1 as the output elements.
From the ArbitrarySynapse inspector, click on the radio button 0 and 1 at the left, 0 at the right, and
click Connect. These connections should not be adaptive. In order to establish connections with a
fixed weight, drop a MatrixEditor on this ArbitrarySynapse, choose the weights access and enter a
1 in each of its cells. Next select the ArbitrarySynapse to view it’s inspector, and in the Soma tab
click on the Fix button in the weights box (we are telling the program to fix these values, so when
you randomize the weights the connections will remain at 1).

 232

To provide the input and desired response you can use two FileInput components with the input
and output files created for the XOR problem. These should be stamped respectively at the input
Axon and at the L2Criterion. You are now ready to establish the training protocol of fixed-point
learning.

Fixed Point Learning

Fixed-point learning is an extension of static backpropagation that is used to embed fixed points
into recurrent systems. See the Constraining the learning Dynamics for details. There are several
steps involved in fixed-point learning. First, there is the forward propagation of the activations. This
has to be done for a certain number of time steps, since the network has its own dynamics (this is
called the relaxation period). After the net stabilizes, an error can be computed at the output in the
normal way. Then the error is propagated backward through the dual network, and once again it
must be fed several times to allow the network to relax. After relaxation, the error at each PE can
be multiplied by the relaxed activation to update the weights.

As per this explanation, you have to select the relaxation time both in the forward and

backpropagation planes. Stamp a DynamicControl on the breadboard and then a

BackDynamicControl over the DynamicControl. Select the Fixed Point radio button in
the DynamicControl Inspector. Notice that within the DynamicControl Inspector there are 3 form
cells: the Epochs/Experiment, the Exemplars/Epoch and the Samples/Exemplar. You should select
respectively 1000, 4 (since you have 4 patterns for the XOR), and 10. This means that each
sample will be repeatedly presented to the network 10 times to let the output relax.

DynamicControl inspector

This parameter is crucial for stable learning. If the network is not relaxed enough, the output
activation will not be the steady state value and will produce an erroneous error estimate. A
MegaScope/DataStorage should be used here on the SigmoidAxon to help set and monitor the
relaxation period through learning. A more efficient method will be presented later using the
transmitters.

Now you have to do a similar thing for the BackDynamicControl. From the BackDynamicControl
inspector, observe the Samples/Exemplar and the Exemplars/Update. You should match the
Samples/Exemplar of the forward plane and select the Exemplars/Update to 4 for this XOR
problem.

 233

While here, you should also allocate the backprop plane by selecting Momentum and clicking the
Add button. The gradient search can be selected by typing the appropriate method or simply using
the default. Notice that all the components with adaptive weights will be provided with a backprop
component and a gradient search component. Since the weight of the output ArbitrarySynapse
should not be adapted, remove the corresponding Momentum from the breadboard.

Now add the probes needed to monitor the learning. If probing was important for the static
networks, it is now ESSENTIAL. In our opinion, one of the reasons recurrent systems are not as
popular as static systems is the difficulty of the learning dynamics. With probing, a lot of the
guesswork can be taken away by simply visualizing the appropriate variables. With learning, all of
the information is carried to the backprop plane (the errors), so place a MegaScope/DataStorage
on the BackSigmoidAxon and choose the Activity point. This probe will monitor the errors during
learning. Use a MatrixViewer as a mean square error probe. Note that since the network is
recurrent, you can expect transient behavior between the different input patterns.

Now select the Learning Rate. Start with a large Step Size of 0.5 and a Momentum of 0.8. Turn off
normalization.

Running the Recurrent Network

You are now ready to run the example. Open the MegaScopes, the MatrixViewer, and run the
network. The MSE error starts large (~.4) and quickly should approach ~ 0.25. This problem has a
plateau around this value of MSE (the linear solution). The problem is to get over this part of the
performance surface. If a smaller step size or momentum is selected, very probably the adaptation
will be caught in the local minimum. On the other hand, these two parameters are too large towards
the end of adaptation. Therefore, the user must stop the training and drastically reduce both the
step size and the momentum after the knee. It is recommended to interrupt the learning just after
the MSE drops below 0.2, and reduce the Learning Rate at this point to 0.05 Step Size and 0.1
Momentum. It should be pointed out that this inherent ability to have real time monitoring of
parameters is a distinctive advantage of NeuroSolutions. Furthermore, you will learn how to use
transmitters to automate these changes in learning rates. (see Construction of the Recurrent
Neural Network figure for network configuration or load file EX6.NSB)

Before continuing the simulation, an important concept relating to the relaxation of the network
needs to be mentioned. In the beginning of learning, the network relaxes almost immediately as
can be observed by the flat top and bottom of the error signal waveforms. Towards the end of
learning, you will notice that the backpropagated error has longer and longer transients. It is
therefore necessary to increase the relaxation time to ensure that the transients die away before
the comparison with the desired signal is done.

 234

Probing the state of the system after learning

When you observed the MegaScopes on the initial run, you should have seen that initially the
output signal did not resemble the desired response. To verify this, just go to the desired signal file

to see the sequence of values you entered. Alternatively, use a DataStorageTransmitter to
project the desired response of the forward activation MegaScope. If you are not yet familiar with
this component, you will learn about it in later sections. Now that you have reached the plateau and
have modified the parameters, continue the simulation. The MSE should decrease steadily and you
should see a square wave, which does resemble the desired signal such that the length of the
pulse is the relaxation time that you chose.

Some extra comments are pertinent at this time. First, training a recurrent system is not trivial and
requires appropriate tools like the ones provided in NeuroSolutions. Don’t give up if the network
seems to get stuck in a local minimum. Try increasing the momentum, but be prepared for "picky"
training and a lot of instabilities (i.e. the network will blow up frequently). When this occurs, you will
need to reset the network. Resetting clears all storage locations (activations) and randomizes the
weights. Note that randomization of the weights alone is not sufficient, since in a recurrent system
the output depends on the initial state of the activations. Finely tuned, the network learns in less
than 800-1000 steps. Remember that each training pattern is presented repeatedly to the net
during relaxation, so training time is longer than for a multi-layer perceptron (MLP).

 235

Notice in the figure above that the amplitude of the backpropagated error signal observed using the
MegaScope becomes larger towards the end of adaptation (this is normally, but not necessarily
observed). Also notice the large values of the weights. This is one feature of recurrent systems
(due to the feedback connections, the output error can be small but internally the backpropagated
error can be large), and it is one of the reasons they are more difficult to adapt. Notice that the error
is not as small as the one achieved with a static system, the reason being the dynamic behavior of
the net output (i.e. the transients). What you gain with a recurrent system is the insensitivity it has
towards input noise. You observed a disadvantage of the system as it nears adaptation; the
network weights become large requiring the step size to be reduced proportionally.

Things to Try with the Recurrent Network

This is the perfect example to introduce the transmitter family. The transmitters are a class of
objects that test for a particular condition and perform global communications within a breadboard.
Transmitters have a lot of potential applications, but here they will be used to control the relaxation
time (i.e. the number of samples/exemplar) of the network in the forward and backward planes.
Above you had to control the relaxation time conservatively, by imposing a fixed relaxation period.
But the relaxation can be controlled by measuring the differential between two consecutive
iterations. When the difference is smaller than a given threshold you can assume that the system
stabilized. This produces an enormous savings in training time for a recurrent system. Now you can
include the transmitters in your recurrent system.

Using transmitters to dynamically control the relaxation period

Dock the Transmitters palette, and select the DeltaTransmitter . The idea is to place one
DeltaTransmitter in the forward plane to monitor the network output and to notify the breadboard
controller when to stop firing. To accomplish this, attach it to the Pre-Activity access point of the
L2Criterion.

From the Transmitter tab of the DeltaTransmitter inspector, select DynamicControl within the
Receivers box and double-click on end samples within the Actions box. The selection should be
preceded by a C, denoting that the connection has been made. You have configured the
DeltaTransmitter so that after every sample, it will check to see if the change (delta) in activation

 236

crosses a threshold and inform the DynamicControl if it does. When this happens, the
DynamicControl will go to the next exemplar, just as if the specified fixed Relaxation Period was
reached. It should also be noted that the Relaxation Period is now the maximum number of
iterations performed on a single exemplar. Try setting it to 500 for this experiment, and notice that it
never requires all 500 samples to relax.

Switching to the ThresholdTransmitter level of the inspector, observe that you can control the
threshold value, the direction of the threshold crossing (up or down), and if you are interested in All,
One or a Mean of activations. For this application, you will select a Threshold of 0.001 in the down
direction (the "<" symbol). You can also control the smoothing; i.e. instead of working with
instantaneous values (small beta) you can average with an exponential decay of beta.

DeltaTransmitter inspector

In order to control the backward relaxation, you need to place another DeltaTransmitter at the
output of the backpropagation plane to broadcast a message to the BackpropControl when its
threshold is reached. Notice that the output of the backprop plane is the far left processing element
(the BackAxon). This DeltaTransmitter should be configured the same as the first one, except that
the receiver is the BackDynamicControl.

 237

You are ready to use the DeltaTransmitters to train the recurrent net. Starting with the large step
sizes, notice that the training goes much faster. The MegaScope shows that the length of the
pulses becomes much shorter, meaning that the network relaxes very fast because the differential
increment of 0.01 is reached very quickly. You should interrupt the training when the MSE drops
below 0.2 to decrease the Step Size to 0.05 and Momentum to 0.1. Continue training and you will
observe that the relaxation time increases quite a bit towards the end of training, meaning that the
net requires more iterations to reach the steady state. With the transmitters, relax the network only
as much as needed to achieve the incremental condition. However, notice that to achieve a MSE
on the order of 0.08, you will have to set the threshold at 1.e-6 or less, otherwise the network does
not relax sufficiently, possibly resulting in instability.

Distorted input to the XOR problem

Configuration for testing generalization

Another thing to test is the generalization ability of this network. Recall that one of the advantages
of recurrent systems is their ability to handle noise very well. In order to experiment with this
characteristic, distort the input signal by adding a noise source to the input (see figure above). Then
set the learning rates to zero (in the trained network), and pass the distorted XOR data through the
net. It is clear that the network is able to reproduce the XOR output for these distorted inputs. You

 238

may want to try this same experiment for the perceptron that you constructed earlier so that you
can compare the two network topologies.

What You have Learned from the Recurrent Network Example

In this example, you were exposed to the concept of recurrent networks, and you learned how to
train one to solve the XOR problem using fixed point learning. Fixed-point learning is an extension
of backpropagation for recurrent networks. You were able to setup the controllers for fixed point
learning, and you learned the importance of probing to appropriately train recurrent systems.

You were also exposed to the DeltaTransmitter, which allowed you to dynamically adapt the
relaxation period based on the incremental difference in the activations. This allowed you to run the
network more efficiently, since you were not forced to make a conservative estimate on the number
of iterations needed to relax. At the end, you were able to verify the noise immunity of this recurrent
system.

Frequency Doubler Example
Frequency Doubler Example

Purpose - The purpose of the frequency doubler example is to introduce the topic of trajectory
learning, so useful in the recognition of time varying patterns such as speech recognition, adaptive
controls, and time series prediction. Here you will learn how to design and train a dynamic network
to double the frequency of a sinewave.

Components Introduced - GammaAxon, LaguarreAxon, BiasAxon, StateSpaceProbe,
DataStorageTransmitter, IntegratorAxon.

Concepts Introduced - Trajectory learning, dynamic neural networks, comparison of memory
structures.

STEPS

Creating the Frequency Doubler Network

Configuration of the Trajectory

Running the Frequency Doubler Network

Using the Gamma Model to Double the Frequency

Visualizing the State Space

Things to Try with the Frequency Doubler Network

What You have Learned from the Frequency Doubler Example

Creating the Frequency Doubler Network

 239

Trajectory learning is another variant of backpropagation useful in problems that require solutions
based on gradient information over time. Note that fixed-point learning does not fit this definition
because the learning system is trained to recognize a set of fixed patterns. But there are cases
where the neural network must capture information from patterns that exist over time. In fact this is
the great majority of problems in engineering (speech recognition, adaptive controls), in finance
(time series prediction), and in military and biomedical applications (event detectors and pattern
classifiers). You will see that static neural networks must be extended to dynamic networks, i.e.
have short-term memory structures which capture the information of time patterns. Time Lagged
Recurrent Networks and Constraining the Learning Dynamics should be read to understand the
basic concepts of memory structures and trajectory learning.

Construction of the frequency doubler

The network that you will create is a single layer perceptron, but the input will be a memory
structure instead of the more conventional static processing element. From the MemoryAxon
palette, one can find several types of memory structures. Two examples are the TDNNAxon

 (tap delay line), and the GammaAxon . Each one of these elements
delay the signals that are fed at their input. They provide an output for each of the delay elements
as well as an output for the input signal. Therefore, they are systems with one input to many (k)
outputs.

Memory depth is a parameter that specifies how far into the past the memory system reaches. You
can think of it as the length of a window that extends to the past. For the delay line, the memory
depth can be defined by entering the number of Taps and the delay between each tap (Tap Delay)
in the corresponding inspector. The product of these two quantities produces the length of the
memory window (in samples). Note that the order of the memory is number of taps minus one.

Start by stamping on a new breadboard a TDNNAxon, a FullSynapse, a TanhAxon, a second

FullSynapse, a BiasAxon (this is simply a linear component which adds a bias to the
signal), and a L2Criterion. Interconnect these components as shown in the figure above. This
topology, called a focused TDNN, produces the following result. The input signal is delayed in the
memory layer such that the present sample of the input and delayed versions of the input are used
by the hidden layer PEs to create the appropriate mappings. Even if the input signal is time varying,
the input memory layer will store a segment of the input and use it effectively to solve the problem
at hand. This is unlike the MLP where only the present information is used in the mappings. In a
sense, the memory structures turn a time varying classification problem into a static one.

 240

One of the issues is to determine the memory depth (how far into the past is the information
relevant for your application?). In this case, the definition of the memory depth is simple because
you want to duplicate the frequency of a sinewave. Therefore, you have to give to the dynamic net
a number of samples that corresponds roughly to one fourth the period of the slower wave (at
least), such that the net "sees" the doubling of frequency. To solve this problem, the net has to
combine the input samples in the window and produce new values that match the double of the
frequency, all of which is done over time (i.e. the samples keep on changing). Frequency doubling
of a sinewave is intrinsically a nonlinear problem that no linear system can solve.

Now stamp two FunctionGenerators, one on the input (TDNNAxon Pre-Activity access) and the
other to the L2Criterion to be used as the desired signal. Select the input to be a sinewave of 40
Samples/Cycle and the desired output to be a sinewave of 20 Samples/Cycle. From the
TDNNAxon inspector, enter a memory depth of 10 Taps and a Tap Delay of 1. The hidden layer
(TanhAxon) should have 2 PEs. Stamp a DynamicControl on the breadboard and a
BackDynamicControl on the DynamicControl. Now Allocate the backprop plane and start with an
initial estimate of the learning rate to be 0.4 for the normalized Step Size and 0.5 for the
Momentum. Stamp two MegaScopes/DataStorages to verify the performance of the network—one
on the input and the other on the output (set them to Message Every 80 samples, so that the
display of the waveforms is steady). Stamp an MSE probe (MatrixViewer) on the output to monitor
the learning.

Configuration of the Trajectory

The goal of the trajectory configuration is to use the information of an input section and train the
classifier to minimize the fitting error between the network output and the desired trajectory. Notice
that to solve this problem, the network needs information along time. For this problem, you need to
accumulate the gradient information during at least one period of the slowest wave. You will elect to
accumulate over two periods (80 samples) and backpropagate the errors 70 (the trajectory length
minus the memory depth) samples in the past. You propose this length to avoid feeding in
erroneous values associated with the initial conditions. Learning becomes more stable with this
selection.

After selecting the DynamicControl, select Trajectory within the System Dynamics box, enter 80 as
the number of Samples/Exemplar, and 1,000 as the number of Epochs/Experiment. This means
that you have only two periods of the sinewave that will be repeatedly used for learning. Since the
sinewave is periodic, the number of Exemplars/Epoch can be set to 1. Otherwise, this number
would be associated with the length of the input data (divided by the Samples/Exemplar used). You
have to go to the BackDynamicControl to establish how far into the past to propagate the errors. As
explained above, you will select 70 for the Samples/Exemplar and 1 for the Exemplars/Update,
meaning that you will update the weights every time you backpropagate the error through time.
(see Construction of the Frequency Doubler figure for network configuration or load file EX7.NSB)

Running the Frequency Doubler Network

Be sure to open the MegaScopes and calibrate them. Within 200 iterations the network should
learn this task. At first the output waveform looks distorted, but then the second peak
corresponding to the doubling of frequency appears and the display stabilizes. The errors decrease
to very small values, showing that the task has been learned.

It is recommended that you try changing the memory size. If you decrease it too much the doubling
of frequency will not be complete. If you increase it, the task is learned a little faster with respect to
the number of iterations, but the actual processing time increases since there are more weights to
compute. Try decreasing the number of Taps to 5 and increasing the Tap Delay to 2. What this
does is cut the number of free parameters (weights) in half, but you still span the same segment of
the signal (with only half of the resolution). You may think that the net will not learn the task with 5
taps, but you will see that what counts most in temporal signal processing with dynamic neural nets
is the memory depth (which is still 10). By running the simulation again, you will see that the net

 241

again learns the doubling of the frequency. If the time window size is not properly adjusted, you
may end up with a very powerful multi-layer net (one with lots of PEs) which may still not be able to
learn the task.

In order to help in the determination of the more appropriate memory depth, the gamma memory
was introduced in neural computation. It is a memory structure that is more versatile than the tap
delay line, since it is recursive. This means that during learning, the network can change one
parameter (the gamma parameter) to adapt the memory depth. So, with the gamma memory, there
are less problems associated with the choice of the memory size, since the net is able to adapt the
compromise of memory depth and memory resolution.

Using the Gamma Model to Double the Frequency

Now substitute the TDNNAxon with the GammaAxon and assign it 5 Taps with a Tap
Delay of 1. Remember to also attach a BackGammaAxon and a Momentum, since the
GammaAxon has one parameter that is adaptive (the gamma parameter). Re-attach the
FunctionGenerator and stamp the MegaScope/DataStorage on the WeightsAccess point of the
GammaAxon. You will be observing the adaptation of the gamma parameter during learning, so
change the Buffer Size of the DataStorage to 250 and have it Message Every 4 iterations. The
gamma parameter requires a slower adaptation rate (it is a recursive parameter), so configure the
corresponding Momentum to have a Step Size of 0.1 and a Momentum of 0.5.

Run the experiment. Notice that the gamma parameter always starts at 1 (you may have to
autoscale the MegaScope with the first few iterations). For this value, the gamma memory defaults
to the tap delay line of the same number of taps. So you are starting with the previous case which
was difficult to learn. Notice that during adaptation the gamma parameter decreases, meaning that
longer memory depths are being searched (memory depth = number of taps / gamma parameter).
When the gamma parameter stabilizes (at around 0.5), notice that the output MegaScope displays
the expected waveform with double the original frequency. This means that the task was solved by
the static classifier attached to the gamma memory structure, just after the correct memory depth
was reached.

Now make the problem even harder. Reduce the number of taps to 3. Notice that to provide the
same memory depth the gamma parameter must even go to smaller values. Resume the training
without randomizing the weights. You will find out that the problem is still solvable, and that the
gamma parameter reduces to an even smaller value (~0.3). This versatility of the gamma
memory—having the ability to choose an appropriate compromise memory depth/resolution for a
given memory size—has been shown to be very important in dynamic modeling with neural
networks.

 242

Tracking the gamma coefficient with 5 and then 3 taps

Another interesting question to ask: How is this network solving the task? This question is
answered by stamping a MegaScope/DataStorage on the hidden layer to monitor the activations of
the hidden nodes. Reset the net (we suggest going back to 5 taps in the GammaAxon such that
learning is a little more stable and faster). By watching the MegaScope, you can analyze the
approach the system takes toward solving the problem. As shown in the figure below, there is more
than one variation of the solution that the system can come up with. Basically, each of the hidden
units saturate the input (creating the flat peaks or troughs) at a phase shift of 90 degrees from each
other. The role of the output unit (which has been selected as linear to utilize the full dynamic range
of the output) is simply to ADD these two contributions. A remarkably simple solution for such a
difficult problem.

 243

Activations of the two hidden layer PEs after learning (two runs)

Visualizing the State Space

You will now introduce a different way of looking at the waveforms by using the StateSpaceProbe

. This probe is particularly valuable in dynamic system analysis, because it provides a way to
visualize the evolution of the state of the system that is producing the output waveform.

In state space, the axes are the amplitude of the signal and its derivatives. You will restrict your
display to 3-D (the amplitude, the first derivative, and the second derivative). For instance, a
sinewave in state space corresponds to a circle. Now the interesting question: How does the state
of the neural network change while it learns to double the frequency of the input?

Go to the Probes palette, stamp a StateSpaceProbe, and place it over the output MegaScope at
the Selection Access point. This means that the segment of data that you select from the
MegaScope (by dragging the mouse across the window) will be passed to the StateSpaceProbe.
Select the entire contents of the window as the data segment (be sure to calibrate the MegaScope
to display the entire segment stored in the DataStorage).

StateSpaceProbe inspector

 244

Select the StateSpaceProbe to show its inspector. At the StateSpaceProbe tab, select a
Displacement of 5 so that the display will go 5 steps back to estimate the first derivative and 10
steps back to estimate the second. Set the History (the number of points displayed in the plot) to be
40 so that one period of the input signal can be visualized.

The3DProbe level of the StateSpaceProbe inspector

Notice that you can control the vertical rotation of the display by the left slider, the horizontal
rotation by the bottom slider, and the proximity (relative angle of view) by the right slider. From the
3DProbe level of the inspector, the controls for the 3D display will appear. Controls for zoom and
offset are also provided such that you can center the display within the cube. The cube is just there
to provide a 3-D perspective, and can be turned off (with the Show Cube toggle switch). There is
also an autoscale option (whose use is recommended), and a Uniform Scale switch, which can be
used to ensure that each axis is calibrated using the same scale.

The Reset button returns the parameters to the default setup and the adjacent pull-down menu
simply configures what to display: Dots which plot the samples, Lines which linearly interpolate the
samples, or Both. Both is the more effective setting most of the time because it gives a sense of the
trajectory and the location of the actual values.

 245

Using the StateSpaceProbe to monitor the state trajectory

Using the StateSpaceProbe, you can now visualize what happens to the state of the system while it
learns to double the frequency. In the beginning, the trajectory is just an ellipse that corresponds to
the original frequency. During learning, the state space starts to describe a more complex
trajectory. Towards the end, you should witness the folding of the ellipsoid such that a second
ellipsoid is formed and overlaps the original. The visualization of the intermediate states gives us a
much better appreciation for the nonlinear effects that the system needs to discover in order to
solve the problem. An example of the state space probe can be seen by loading file
EX7_STSP.NSB.

Things to Try with the Frequency Doubler Network

One of the interesting questions to ask about this example is how well does the neural network
generalize? In order to answer this question, you must train the net and then change the input
frequency to a different value and see if the output is the double of the input signal frequency.

The best way to do this is to go to the BackpropControl, Free the backplane, and then just discard
the BackDynamicControl. The weights will now be fixed to their trained values. In order to make the
comparison between the input and output frequencies, you can use a component from the

transmitter family again. Go to the Transmitters palette and stamp the DataStorageTransmitter
on the input FunctionGenerator, and single-click to bring up the inspector. Note that all of the

DataStorage components on the breadboard are displayed as Receivers. Single-click on one
and see which one is highlighted. Select the one attached to the output, go to the Actions box, and
double-click on Attach to Buffer. A C will show up to indicate that the connection was made. Now
the output MegaScope will display BOTH the input and the output waveforms.

 246

Viewing both the input and output using the DataStorageTransmitter

You are now ready to do comparisons. With a network properly trained, you should be able to go
from 10 up to 100 Samples/Period and obtain a fairly good doubling of the frequency. This shows
the generalization ability of this network. Of course, if you choose a square wave the method
breaks down, simply because the relation between the data samples is very different. If you try a
triangular wave, you will verify that the network is still able to double the frequency, but as you
might expect, the corners will be rounded. It is recommended that you substitute the GammaAxon

by the LaguarreAxon and repeat the experiment. The Laguarre tends to be a little
faster than the Gamma kernel.

It is also interesting to contrast this solution of the frequency doubler (using the input memory plane
of a delay line) with a solution that instead, uses the memory by recurrency. One experiment is to
substitute the input memory layer with context units creating a Jordan net.

 247

A frequency doubler using recurrent hidden units

The figure above shows another possible configuration for solving the frequency doubling problem,
but using "context units" that hold the values of the input units (Elman’s architecture). Use an
IntegratorAxon for the context units which integrates the input signals, and a TanhAxon as the
hidden layer with 2 PEs. At the input use an Axon with a single input. Use a FullSynapse to bring
the output of each context unit to each hidden unit. The breadboard is shown in the figure above.
The parameters of the trajectory learning should be as before, except that now you should use the
same value for Samples/Exemplar for both the DynamicControl and BackDynamicControl (since a
memory depth does not apply anymore).

This is a recurrent net, but you will not adapt the time constant of the context unit nor the
connections of the input to the context units. Fix the time constant at 0.8. In order to keep this
value, you should discard the gradient descent that will automatically be placed on the component
when the backplane is allocated. Also select Fixed within the weights box under the Soma tab of
the inspector. In this way, static backpropagation can be used. Choose the initial Step Size to be
1.0 and Momentum to be 0.6 for all Momentums. Learning progresses very fast. Looking at the
MegaScope you will see that one of the parts of the sinewave is already there, but the other half
appears very quickly. In the StateSpaceProbe you see that the double ellipsoid is still not present.

It is interesting to compare this solution with the gamma memory. Note that here the memory
necessary to learn the problem is given by the context units, because they integrate the past. See
figure above for configuration or load EX7_RECU.NSB.

Actual output vs. desired output for the recurrent frequency doubler

What You have Learned from the Frequency Doubler Example

The system you created was one that should have provided an introduction to trajectory learning. It
was able to take a sinewave as input and produce a sinewave, which was doubled in frequency—
not a trivial problem. At first, this was done using a tap delay line. You found that the system could
still learn the problem after you reduced the number of taps, but kept the memory depth the same.
You then substituted in a gamma delay line, which allowed you to use still fewer taps. You also
constructed a system with context units, which replaced the memory structures of the delay lines
with recurrent connections to provide memory. You found that this approach was well suited to
solve this problem.

 248

You were introduced to a few more components of NeuroSolutions. The StateSpaceProbe is a
useful tool in dynamic systems, because it allows you to visualize the evolution of the system state
in 3D. The DataStorageTransmitter is a useful tool for probing in that it allows you to transmit a
signal from a remote component to a probe. The context units are important components for
learning in time.

Unsupervised Learning Example
Unsupervised Learning Example

Purpose - The purpose of this example is to discuss and present the unsupervised learning
paradigms available in NeuroSolutions. You will present the Hebbian (including the normalized
versions), the Sanger’s and the Oja’s rules. You will see that unsupervised learning has the appeal
of preprocessing and feature extraction.

Components Introduced - OjasFull, SangersFull, HebbianFull.

Concepts Introduced - Unsupervised learning topologies (straight Hebbian, anti-Hebbian, Oja’s
rule, and Sanger’s rule).

STEPS

Introduction to Unsupervised Learning

Noise Reduction with Oja's or Sanger's Learning

Things to Try with the Unsupervised Network

What You have Learned from the Unsupervised Learning Example

Introduction to Unsupervised Learning

Unsupervised learning is particularly well suited to perform feature extraction. There are a lot of
problems where you do not know a priori the desired signal, nor what are the most important
features of a given signal. This happens in compression, in signal and noise separation, and in
feature extraction problems.

Unsupervised learning networks are normally very simple topologies that utilize the idea of
correlation between input and output to process signals. It turns out that correlation can be easily
implemented in a neural network through Hebbian learning. Most of the unsupervised learning
rules, in one way or another, are based on Hebbian learning.

Hebbian learning has a slight problem of producing unbounded network weights (weights that keep
increasing with each iteration). To compensate for this, you can either normalize the input data, clip
the weights, or normalize the weights. The last idea is the more general, so extensions to the
Hebbian learning (Oja’s rule or Sanger’s rule) are the recommended learning rules.

In Hebbian type learning, the weights are modified according to the product of the input and output
at the weight, implying that there is no desired signal. Hence, it is not necessary to propagate the
signal forward and the error backward, as in gradient descent learning. In terms of network
construction, these networks are normally very simple in that they consist of a single layer of
components.

 249

NeuroSolutions provides five Hebbian type learning rules: straight Hebbian, anti-Hebbian, forced
Hebbian, Oja’s rule, and Sanger’s rule. Please read the Unsupervised Learning topic to learn more
about them.

Unsupervised palette

Noise Reduction with Oja's or Sanger's Learning

There are many types of applications that try to reduce the amount of noise in a signal. This can be
accomplished through linear filtering if the noise and signal spectra do not overlap. Utilize the idea
of principal components to extract the signal from noise.

If the signal is viewed as a vector, the principal components are basically the directions of the
signal vector in signal space. Broadband noise totally fills in the signal space, so it has components
in every direction. The signal normally exists in a subspace of lower dimension. Hence, if it is
possible to project the signal plus noise on the subspace built from the principal components of the
signal, then less noise power will be present and the signal will be less distorted.

This simple geometric projection can be achieved with Oja’s or Sanger’s rule applied to a single
layer of linear components, simply because these two learning rules extract the principal
components of the input signal. This means that the weight vectors of the network are the principal
components, and the outputs are the projection of the input along these directions.

The figure below depicts the example that you will be building with NeuroSolutions. The network
has a single layer of linear units (built from the Axon and an Ojas). You will be using a
FunctionGenerator as your input, but since these unsupervised rules are static, you will need a
TDNNAxon at the input layer. Therefore, the memory unit will transform the time signals into static
patterns of a length equal to the size of the memory. Stamp a TDNNAxon on a new breadboard.

Construction of an unsupervised system using Oja’s rule

Select a memory of 10 Taps. The output will have a single PE. Stamp an Axon to the right of the
TDNNAxon. The input to this network will be a sinewave of 20 Samples/Cycle added to uniformly
distributed noise. Stamp a Function component on the Pre-Activity access of the TDNNAxon.
Select a Noise component from the Input palette, stamp it over the FunctionGenerator and verify
that the Variance is set to 1.

 250

In order to train this network, open and dock the Unsupervised palette. Stamp an OjasFull

 component on the breadboard and connect it according to the figure above.
Unsupervised components are very similar to the FullSynapse. Each contains a matrix of weights
that will be trained as input is presented. From the Ojas inspector, you will configure the Step Size
(learning rate) to be 0.01.

Unsupervised components differ from the supervised learning components in the data flow. You
only need to fire the data forward through the network, since there is no error to learn from.
Therefore, you only need to stamp the StaticControl on the breadboard. Each time a sample is fired
through the network, the learning rule will update the weights.

This network will then clean the noise added to the sinewave. Stamp a StaticControl, then select
10,000 Epochs/Experiment, and run the experiment. Observing the MegaScope, you will see the
output of the net showing a sinewave almost immediately. Compare it to the input by using a
DataStorageTransmitter to display the input of the network on the existing MegaScope. In view of
the information that is being supplied, it is remarkable that the system can extract that portion which
is consistent to produce a sinewave which is so clean (see figure above for the network
configuration or load file EX8.NSB).

Comparison of noisy input with filtered output

Things to Try with the Unsupervised Network

You should increase the noise Variance (try using 3) and you will see that the shape of the
sinewave is hardly recognizable. Decrease the learning rate (0.001) to improve the signal to noise
ratio. Let the system learn for 15,000 iterations. You should find that it is still able to extract a signal
that resembles a sinewave.

 251

You can also stamp a SangersFull component to train the net. The results will be
indistinguishable from the one explained.

Try another interesting experiment. Bring a HebbianFull component to replace the
Ojas and set the Step Size to 0.001. Bring the Variance of the noise back down to 1. Replace the
output MegaScope/DataStorage with a MegaScope/SpectralTransform/DataStorage, and configure
the SpectralTransform as follows: Size of FFT = 128, Percentage Overlap = 50, Number of
Segments = 3, Window Size = 50. Run the experiment for 2000 epochs and monitor the FFT data
on the MegaScope. As mentioned earlier, the weights of the Hebbian model are unbounded and
you should have witnessed this phenomenon. Reset the network and run it again, but for only 350
epochs. As shown in the figure below, the spike indicates that it was able to extract the 20 samples
per cycle frequency of the input sinewave.

FFT analysis of the Hebbian network

Now try a negative Step Size (-0.001). This is what is called the anti-Hebbian rule. What do you
expect to happen? Hebbian learning extracts the correlation between signal presentations. Anti-
Hebbian will do the opposite, i.e. it will find what is less common among the signal presentations
(decorrelate the inputs). In other words, it is choosing the direction in space where there is no
signal component. In this case, it will extract the white noise. Run the network for 750 epochs and
you should see that the spike will disappear, but the noise is still present. An example of the FFT
Probe can be seen by loading file EX8_HEBB.NSB.

 252

What You have Learned from the Unsupervised Learning Example

You have been introduced to four of the five Hebbian type learning rules provided by
NeuroSolutions. Using Oja’s or Sanger’s rule, you were able to construct a simple network which
could filter out much of the noise from a distorted sinewave. By analyzing the FFT using Hebbian
learning, you were able to see the extraction of the sinewave. You were then able to extract the
noise (which eliminated the sinewave) using the anti-Hebbian model. You also verified the
unbounded nature of the weights using the straight Hebbian rule.

Principle Component Analysis Example
Principal Component Analysis Example

Purpose - You will show that Sanger’s and Oja’s perform principal component analysis. To verify
the extraction of the principle components, you will re-combine the extracted signals to approximate
the original input.

Components Introduced - OjasFull, SangersFull.

Concepts Introduced - Principal component analysis, forced Hebbian learning.

STEPS

Introduction to Principal Component Analysis

Running the PCA Network

Things to Try with the PCA Network

What You have Learned from the Principal Component Analysis Example

Introduction to Principal Component Analysis

You will now perform principal component analysis on a complex waveform using Sanger’s and
Oja’s rules. In this respect, Sanger’s is better because it always outputs the components in order.

The problem is to input a square wave to a one layer linear network with several outputs, train it
with Sanger ‘s rule and observe the waveforms at the outputs. As you may know, a square wave is
built from the addition of multiple sinewaves at the harmonics of the fundamental frequency,
properly weighted and shifted. The Fourier series computes this decomposition.

Sanger’s and Oja’s networks can also provide a very similar decomposition. During learning, the
weights will find the orthogonal directions (eigenvectors) associated with the square wave. The
outputs will then be the projections on these directions. For a square wave, you can expect to find
an infinite number of directions (infinite harmonics). For each frequency, you can expect to find two
sinusoidal components that are orthogonal (just like the sine and the cosine).

Running the PCA Network

 253

Starting from the Unsupervised Learning example, discard the Noise, increase the size of the
TDNNAxon to have 30 Taps (once again to have a stable "view" of the input), drop the Ojas and
replace it with a Sangers, and enlarge the output Axon to have 6 PEs. Configure the Step Size to
0.001, just to make sure that learning is accurate (it will be a bit slower). Change your input signal
from a sine wave to a square wave of 20 Samples/Cycle. (see figure below for network
configuration or load file EX9.NSB)

Configuration of PCA network

Observing the output MegaScope (run the network a few iterations and then autoscale), you will
see that after training the output units will show pairs of sinusoids of the fundamental frequency and
their odd harmonics. As expected, the sinusoids of a given frequency are orthogonal (when one
reaches the peak the other goes through zero). Notice that there is an intrinsic ordering to the
decomposition. The first two units give the slower components, followed by the next higher
frequency, etc. You will not get this feature with Oja’s. It is remarkable that this network performed
principal component analysis (sometimes also called singular value decomposition or Karhunen
Loeve transforms) just using the correlation information, but you can expect this from the theory.
The only difference with respect to the theoretical methods is that the amplitudes of the waves
(which are associated through the power with the eigenvalues) are not estimated correctly.

Probing the activations to verify the principal component extraction

 254

Things to Try with the PCA Network

Substitute the Sangers with the Ojas and verify that the principal components are not ordered. An
interesting aspect can be found by adding all the six outputs using a FullSynapse and an Axon and
plotting the result with another MegaScope. Fix the amplitude of this FullSynapse by dropping the
MatrixEditor and entering 1 into every weight. Run the network again (without randomizing). If the
amplitudes were right, the resulting wave should approximate the initial square wave built from
three harmonics. You can play with the multiplicative constants to see if you get a square wave.

What You have Learned from the Principal Component Analysis
Example

You were able to verify that both the Sanger’s and Oja’s rules can be used to extract the principle
components from a complex waveform such as a square wave. The advantage of the Sanger’s
model is that it produces components in order, where Oja’s does not. You were able to verify that
these components could be re-combined to approximate the original signal. You tried this first by
straight addition of the signals, but since the amplitudes of the principal components produced are
not accurate, the result did not resemble a square wave.

Competitive Learning Example
Competitive Learning Example

Purpose - You will introduce the principles of competitive learning by creating a system that is able
to represent centers of clusters.

Components Introduced - StandardFull, ConscienceFull, ScatterPlot.

Concepts Introduced - The purpose of competitive learning, interpretation of scatter data.

STEPS

Introduction to Competitive Learning

Constructing the Competitive Network

Things to Try with the Competitive Network

What You have Learned from the Competitive Learning Example

Introduction to Competitive Learning

Competitive learning is a rather important unsupervised learning method. It enables the adaptive
system to cluster input data into classes. There are a lot of engineering applications related to
clustering, such as vector quantization and classification. In classification, one may want to divide
the input data set into clusters and use their centers to represent the different classes. Competitive
learning provides exactly this functionality. The user must decide how many classes the data has,

 255

then the learning rule will adapt the weights such that they represent the center of mass for each of
the classes. Another application is vector quantization. By defining each class as simply the center
of a cluster, you can perform data reduction (a lot of different signal values can be reduced to the
value of their centers). This technique has been applied to speech compression (code books).
NeuroSolutions contains two competitive learning laws, the standard competitive and the
normalized competitive.

In this example, you will create two classes of 2D data such that you can visualize the clouds of
input as well as the values of the weights. After adaptation, these weights should represent the
centers of mass of each of the clusters.

Constructing the Competitive Network

From the Axon palette, stamp two Axons. Now go to the Unsupervised palette and stamp a

StandardFull and connect them as shown in the figure below. Configure both the
input and output Axons to have 2 PEs, and enter a Step Size of 0.01 in the StandardFull inspector.
The inspector also allows the selection of the metric. Competitive learning uses a metric to decide
the distance between the input and the weight vector. You can choose from a DotProduct
(measures an angle distance), a Box car (measures distances on a grid) and the Euclidean (the
normal distance between two points). The Euclidean is the most common distance measure, but
competitive normally is computed with the dot product. In the Standard inspector you can also
select the learning rates.

In order to visualize the data, you will use a ScatterPlot combined with DataStorage from the
Probes palette. Stamp it over the input Axon and select the Activity Access point. Since you also
want to visualize the values of the weights, select a DataStorageTransmitter from the Transmitters
palette and stamp it over the Standard (on the Weight access point). Now link the
DataStorageTransmitter to the DataStorage of the ScatterPlot.

Construction of the competitive learning example

The figure below shows the inspector of the ScatterPlot. The ScatterPlot can display scatter plots
for multiple inputs (channels). The scatter will always be plotted in 2D (i.e. the x versus the y axis),
but the number of possible combinations depends on the number of channels that are being
received from its DataStorage. Therefore, the user must have a way to select any possible input-
output pair in terms of the x and y axis.

 256

ScatterPlot inspector

Using the Y Channel slider, you can select which channel (processing element or weight) will be
plotted as the y coordinate. Likewise, the X Channel slider is used to select which channel to plot
on the x axis for the given Y Channel. In this case you will have 2 channels from the input (the input
PEs) and 4 channels from the output (the weights)— a total of 6 possible (x,y) pairs. Verify that
there are 6 channels available on the sliders. What you would like to do is to plot the inputs
(channels 0 and 1) as an x, y scatter, and the weights connected to a given output PE (channels 2
thru 5) as the other two x, y scatters.

To define the x,y pairs to plot, start at Y Channel 0 (corresponding to PE 0 of the input). You first
need to determine if you want this channel plotted on the y axis. You do, so make the display
Visible (radio button) and choose the color black (click on the set color button under the Display tab
to bring up the Colors panel). You would like this channel to be plotted against PE 1 of the input, so
select X Channel 1. Y Channel 0 is now defined. Move to Y Channel 1 and make the display not
Visible (we already have channel 1 plotted on the x axis). Repeat the process for the remaining four
channels (the weights). Channel 2 should be plotted against Channel 3 (the two weights connected
to output PE 0) and displayed in red. Using purple as the display color, repeat for Channels 4 and 5
(the two weights connected to output PE 1). Enter the Size of the dots to be 2. In summary, you will
be seeing the input as black dots and the weights connected to the output PEs as red and purple
dots. Go to the DataStorage inspector and choose a Buffer Size of 100 and have it Message Every
25.

As for the input, you need to create two clusters of points. One possible way is to use one
FunctionGenerator and a UniformNoise. If you apply to the two input PEs two square waves of 2
Samples/Cycle, with Amplitudes of 1.5 and an Offset of 0, you will be creating alternating pairs of
points (1.5, 1.5) and (-1.5, -1.5). Stamp a FunctionGenerator (which is multichannel) and a
UniformNoise from the Input palette and stack them in the Pre-Activity access point of the input
Axon. From the inspector of the FunctionGenerator, set the Channel to 0, and configure the signal
as described above. Configure Channel 1 the same. If you add small Variance (choose 0.5) noise
to both channels, you will be disturbing these amplitudes slightly. Since the noise is unpredictable,
you will be creating two clusters of points centered at (1.5, 1.5) and (-1.5, -1.5).

Now stamp a StaticControl, enter 100 Exemplars/Epoch, and run the example. You will see the two
scatters of input points in black. At the very beginning, you should see two lines of red and purple
dots moving towards the centers of each cluster, forming two centers of mass. If you randomize the
weights by clicking Reset on the StaticControl window (you can do this while it is running), you will
display the transformation again.

 257

Using ScatterPlot to animate the clustering

When the weights are randomized, the state of the system could be set to anywhere in this space.
With the competitive learning rule, the weights are immediately moved towards the centers of mass
of the clusters. (see figure above for network configuration or load file EX10.NSB)

Things to Try with the Competitive Network

 258

Try setting the Phase of one of the FunctionGenerators to 180. What do you expect to happen?
Run the network again (without randomizing) and you should discover that the clusters are now
moved to the other two quadrants and that the centers were still found.

You can see the effect of a bad selection of the initial number of clusters by selecting 3 output PEs.
Since you have only two clusters of points, the third output unit will have its weights put half way
between the other two, giving an erroneous result (you could interpret it as meaning that there are
three clusters of data).

Now enter an offset of 2 in the FunctionGenerator. (You will have to autoscale the ScatterPlot to
see both clusters.) Notice that the clusters now are not symmetrical with respect to the origin. Try to
run the competitive network again. What do you find? The weights no longer go to the centers of
the clusters. This is due to the dot product metric selected in the competitive. You can still solve the
problem if you select Euclidean in the competitive level of the inspector of the competitive
component. An alternative to solve this new problem is to use a new component, the

ConscienceFull . Select this component from the Unsupervised palette and use it to
replace the StandardFull. The Conscience is a mechanism that keeps track of the number of times
that a PE wins the competition. It is a competitive mechanism of its own. The two parameters in the
ConscienceFull Inspector are beta (small value 0.001) and gamma (normally between 1 and 20).
Try to solve the problem again, with the ConscienceFull component, and see that it can be solved
easily.

Another interesting experiment is to take out the competitive learning rule and substitute it with the
Sanger’s rule that you covered in the Principal Components Analysis example. Set the step size to
0.1. You should keep the input exactly as is. The purpose is to show how a change in the learning
rule affects the information extracted from the same input. Can you foresee what will happen?

Competitive learning gave us the centers of the clusters. Sanger’s provides the principal directions
for the data sets (principal components). Therefore, the weights of the FullSynapse should now
seek a point on the unit circle (since the input is normalized) in the direction of the principal axis of
the data clusters. These are the directions where the data projections are the largest. For this case,
these can be obtained by drawing a line between the centers of the clusters and its perpendicular
(the bisectors of the quadrants).

Keep the same learning rate and the same ScatterPlot settings. By running the example, you will
see the larger dots representing the weights move towards the first quadrant bisector and the fourth
quadrant bisector, as expected.

 259

Principal components displayed with the ScatterPlot

If you randomize the weights during learning, you will see the weights jump to a random position
and then track to the previous locations. By stopping the simulation and switching to the
FunctionGenerator inspector, you can change the parameters of the waveforms. By choosing the
triangular wave, you will find that the clusters of points move to the second and fourth quadrant.
Immediately after, the synaptic weights will travel to the first and fourth quadrants.

What You have Learned from the Competitive Learning Example

 260

You were able to construct a system that could take two clusters of data and find their centers of
mass. You did this using the standard competitive learning rule, which updated the weights to
represent the centers. You were able to visualize the learning process by plotting the input data
and the centers using the ScatterPlot. You also saw the importance of selecting an appropriate
number of clusters; otherwise the system may not perform well.

Kohonen Self Organizing Feature Map (SOFM)
Example
Kohonen Self Organizing Feature Map (SOFM) Example

Purpose - Kohonen self-organizing map is a very important component in self-organization
because it preserves topological neighborhoods from the input space to the output space (neural
field).

Components Introduced - LineKohonen, DiamondKohonen, SquareKohonen,
WinnerTakeAllAxon, LinearScheduler.

Concepts Introduced - SOFM and scheduling of learning parameters.

STEPS

Introduction to SOFM Example

SOFM Network Construction

Running the SOFM Network

Things to Try with the SOFM Network

What you have Learned from the Kohonen SOFM Example

Introduction to SOFM Example

This example will build a self-organizing feature map (SOFM) from a 2D space into a 2D space.
The input is a cloud of samples that are organized in a circle around the origin. The idea is to
create a SOFM that will adequately represent this cloud of points in input space. The SOFM
discretizes the input probability density function. Notice that you are going to do this with several
different types of neighborhoods, and just a few PEs.

SOFM Network Construction

Start with an Axon, a LineKohonen and a WinnerTakeAllAxon as
shown in the figure below. Set the number of PEs in the Axon to 2. The LineKohonenFull Synapse
creates a line of PEs. The WinnerTakeAllAxon is a component that wins the competition in the

 261

layer (maximum or minimum value depending on the metric); i.e. only one PE in the layer will be
active at all times. Create a WinnerTakeAllAxon with 25 elements.

LineKohonen SOFM network

The LineKohonenFull component has several parameters to be set. The first is the neighborhood,
which normally is set at between 100% and 70% of the linear size of the layer. Here set it to 5
(100%). The next tab is the conscience where you have to select the value of beta (small ~ 0.001)
and gamma (large ~1 and 20). The next choice is the type of matrix used, which should select as
dot Product. Finally you should set the learning rate of the competitive component (0.002).

As input data, stamp a File component on the input Axon and use the CIRCLE.ASC data file, which
will create 8 points around a circle. The cloud of points will be produced by adding uniform noise on
top of these points. So stamp a Noise component on top of the File component and set the
variance to 0.1 and the mean to 0. To display the data stamp a DataStorage/ScatterPlot on the
input Axon. Also, stamp a DataStorageTransmitter on the weights access point of the
LineKohonenFull and connect it to the DataStorage under the ScatterPlot to visualize the weights
on the LineKohonen component.

Running the SOFM Network

Stamp a StaticControl, set the Epochs/Experiment to 1000, set the Exemplars/Epoch to 8, and run
the example. (You will need to autoscale the ScatterPlot to see all the points.) Notice that the
weights of the PE will start approximating the cloud of points, but fail to reach their final values. This
is due to the fixed size of the neighborhood. So use a LinearScheduler to decrease the size of
the neighborhood from the initial value to a neighborhood of 1.

Another aspect that will be introduced in this example is how to schedule a component parameter.
This function is implemented by the Schedule family. There are three schedulers, the
LinearScheduler, the ExpScheduler , and the LogScheduler . As the names indicate, they
decrease or increase the parameter linearly, exponentially or logarithmically. Notice that the icons
graphically display these three types by the shape of the curve.

Select a LinearScheduler from the Schedule palette and drop it on the upper part of the
LineKohonen. If you go to the inspector, and choose Access you will see that there are two access
points of interest, the neighborhood radius and the step size. You should use the neighborhood
radius. If you go to the schedule tab of the inspector, note that the control area will allow you to
define the start and stop of the scheduling in number of epochs, and the parameter beta, the rate of
increase (decrease). Since this is a LinearScheduler, to decrease the neighborhood use a negative
constant. Notice also that the constraints area of the inspector has a minimum and a maximum.
These are the extreme values that the parameter can take during scheduling. Since your
neighborhood starts at 5 and goes to one, these should be the values used for maximum and
minimum respectively. Note that the value of beta should be such as to decrease the maximum

 262

value to the minimum in the number of epochs selected (i.e., beta = -0.0025). Put a MatrixViewer
on top of the scheduler just to visualize the neighborhood parameter. Running the example again,
you will see that the number of points in the display split when the neighborhood parameter passes
through integer values, creating a much better approximation of the cloud of points.

Things to Try with the SOFM Network

You can change the neighborhood from LineKohonenFull to DiamondKohonen (4

nearest neighbors) or SquareKohonen (8 nearest neighbors). You will find out that
the splitting of neighborhoods is much more readily apparent. Experiment with the size of the
original neighborhood. If the original neighborhood is large, learning will be much slower, but all
weights are brought to the cloud of points. Smaller neighborhoods make learning faster, but you
loose some PEs. An example of using the SquareKohonenFull can be seen by loading file
EX11.NSB. The example in this file also illustrates some of the versatile customizing features of the
ScatterPlot probe in NeuroSolutions.

What you have Learned from the Kohonen SOFM Example

You have learned what the self organizing map is, and how to create one. There are a few
parameters that need to be defined in the Kohonen components. For a more in depth treatment,
see Kohonen Self-Organizing Maps. You also learned how to schedule parameters, like for
instance the neighborhood using the LinearScheduler.

Character Recognition Example
Character Recognition Example

Purpose - The purpose of this example is to show how non-conventional neural models can be
easily simulated in NeuroSolutions. You will construct a counterpropagation network, which will
integrate the unsupervised and supervised learning paradigms.

Components Introduced - SangersFull, ImageViewer, Noise, HebbianFull.

Concepts Introduced - Integration of supervised and unsupervised learning models.

STEPS

Introduction to Character Recognition Example

Constructing the Counterpropagation Network

 263

Running the Counterpropagation Network

Things to Try with the Counterpropagation Network

What You have Learned from the Character Recognition Example

Introduction to Character Recognition Example

In this example you will simulate a network that will learn how to classify images (8x8) of the 10
digits. If you used the images without any preprocessing, you would have to construct a very large
net. This would make the recognition very sensitive to any distortions or noise in the images.
Instead, you will perform principal component analysis on the input with a Sanger’s network (see
Principal Component Analysis example), then classify the principal components with a multilayer
perceptron. The ease with which these more advanced topics can be simulated in NeuroSolutions
shows the power of the environment and the applicability of the neural network principles built into
the package.

Constructing the Counterpropagation Network

The mechanics of building this network are very similar to those of the Principal Component
Analysis example. Without going into the details of the construction, simply copy the breadboard
shown in the figure below. At the input is an Axon with 64 inputs (8 Rows and 8 Cols) feeding the
unsupervised learning layer (using a Sangers). This layer then reduces the input such that the next
Axon has only 8 PEs. The activations of these PEs provide the projections of the input onto the 8
principal components. These activations now feed the hidden layer of an MLP (a SigmoidAxon with
15 PEs) which is then trained with backpropagation using the L2Criterion (10 PEs—one for each
character).

Construction of the character recognition example

Note that the backpropagation plane does not need to span back to the input Axon, since the first
layer is trained with unsupervised learning, which does not require the backpropagation of errors.
Theoretically, you know that the two learning paradigms can co-exist. Nonetheless, it is remarkable
that the simple simulation principle of breaking down global dynamics into local rules of interaction
can implement such a complex neural system so effortlessly.

Since this is a character recognition problem, it bests to use the ImageViewer probe
extensively. They should be used to visualize the input image, the principal components, and the
output. Select the ImageViewer attached at the input. It is recommended that you have it Display
Every 11 so it will always display a new image, but not to slow down the simulation too much. You

 264

should also verify that the Normalization of the gray levels (or color) is set to Automatic. Notice that
the colors (or gray levels) at the output are meaningless except for white, which represents the
class.

Now you need to configure the learning dynamics. For the SangersUnsupervised, set the Step Size
to be 0.002. This may be too small of a value, but it ensures that there are no instabilities between
the two learning modes. As for the learning rate of the MLP, set a Step Size of 0.01 and a
Momentum of 0.7. Again, these may be too small, but remember that there is no point of learning a
principal component that is not stable. For this reason, the learning of the MLP should be slower or
at an equivalent speed of the Sanger’s.

Finally, inject an input and a desired output into the system. From the Examples/Data directory of
NeuroSolutions, select the file CHAR.ASC as your input. For principal component analysis the
input data must be normalized between -1 and 1. This is done by using Data Normalization section
in the Stream tab of the File inspector. Switch on the Normalize switch and type a -1 and a 1 into
the Lower and Upper forms respectively. As the desired signal, use the file TARGET.ASC from the
same directory. After you have Translated the files, double-click on each of them to view their
contents. (see figure above for the network configuration or load file EX12.NSB)

Running the Counterpropagation Network

Select the StaticControl and enter 10 for the number of Exemplars/Epoch. From the
BackpropControl inspector, enter 10 as the Exemplars/Update. Click on one of the ImageViewer
windows to load the grayscale palette and then run the network.

Monitoring the learning of the character recognition example

 265

You will see the patterns being flashed through the network and the mean square error decreasing.
After 400 epochs, the ImageViewer at the output of the net should be displaying an upward
scrolling white bar, meaning that the highest activation corresponds to the desired pattern. Training
can continue (try 800 epochs) until basically all the outputs are dark except the desired one,
proving that the net has learned the task well.

This example shows how a robust pre-processing sub-system can decrease the size of the nets
required to learn a large task. It also has the added advantage of creating a system that is fairly
immune to noise.

Things to Try with the Counterpropagation Network

An interesting experiment is to stop the learning and add noise to the input. Just stack a Noise

component from the Input palette on the File component at the input. Set the Variance (of all
channels) to 0.2. Now set the learning on the Sanger’s to 0, Free the backprop plane, and discard
the BackStaticControl. Now run the net again with the frozen weights. You will not be able to
recognize many of the characters due to the noise, but notice that the white bar is still scrolling as it
did before, meaning that there is enough information within the principal components to still
accurately classify the patterns.

Testing the classification ability of the system by using a noisy input

 266

Another thing to try is to use forced Hebbian learning instead of the MLP. Set the Step Size of the
SangersFull to 0.002 and remove the Noise. You also need to convert the second Axon to a
TanhAxon to ensure that the data fed to the second layer is normalized to -1/1. Now replace the

FullSynapse with a HebbianFull and place a copy of the input signal (the File
component) on top of it. This will produce forced Hebbian learning, as was demonstrated in the
Principal Component Analysis example. Replace the L2Criterion with an Axon of 64 PEs. Copy the
ImageViewer at the input and attach it to the output Axon. Now you have a full unsupervised
learning system that will basically learn the same task. The learning rate for the Hebbian must be
very slow (0.005). You will also find that the training time is much longer and that the learning is not
as effective as the MLP. (see figure below for the configuration or load file EX12_HEB.NSB)

Using solely unsupervised learning for the classification

What You have Learned from the Character Recognition Example

This example attempted to demonstrate that NeuroSolutions gives tremendous flexibility, namely
the inclusion of supervised and unsupervised learning components within the same network. The
unsupervised network worked as a feature extractor, which provided robustness to noise. It also
enabled a drastic reduction of the size of the net required to learn the problem. You found that by
strictly using unsupervised learning, the system was not as efficient.

Pattern Recognition Example
Pattern Recognition Example

Purpose - This example will show how NeuroSolutions is able to mix unsupervised and supervised
learning schemes training each part of the network separately.

Components Introduced - GaussianAxon, ThresholdTransmitter, LinearScheduler, SoftMaxAxon,
ConscienceFull.

Concepts Introduced - Coordination of unsupervised and supervised learning.

STEPS

 267

Introduction to Pattern Recognition Example

Constructing the Pattern Recognition Network

Running the Pattern Recognition Network

What you have Learned from the Pattern Recognition Example

Introduction to Pattern Recognition Example

In pattern recognition, feature extraction is a decisive step, because when done properly reduces
drastically the size of the input space and keeps the separability of the data clusters. The problem
is that feature extraction is more an art than a science, so several alternate procedures should be
tested to see which one best fits your needs.

The general idea is to utilize a preprocessor before the classifier. Here you will use a radial basis
function network for the preprocessing stage, but the following networks could also be used for
preprocessing:

� Principal Component Analysis Networks

� Kohonen Self-Organizing Networks

The major step that the integration of the preprocessor brings is how to train the overall system.
Most of the times the preprocessor is trained with unsupervised learning (competitive or Hebbian)
to self-organize and discover features, while the back-end classifier requires supervised training. It
will be a waste to train both systems at the same time as you did in the Introduction to Character
Recognition example for the following reason: until the features are stable, the classifier will be
learning the wrong thing. You can choose the learning rates of the classifier much slower than
those of the feature extractor, but the point is that in terms of computation you are training both
systems, but one of them will not have stable information.

In order to guarantee efficient learning, NeuroSolutions enables the training of the front-end system
independently of the back-end classifier. The orchestration of the training is the objective of this
example.

Constructing the Pattern Recognition Network

Here you are going to get deeper into the configuration of components. Instead of training BOTH
the preprocessor and the classifier at the same time as in the Introduction to Character Recognition
example, you are going to schedule the learning into two stages.

In order to do this, you have to break the data flow in the forward plane to avoid sending activations
to the classifier. You are also going to tell the BackStaticControl to wait for a specified number of
epochs before starting firing of the backprop plane. Someone has to count the number of epochs
and automatically piece together the forward plane at the pre-specified moment. These steps are
accomplished in the following way.

First, construct the network shown in the figure below (note that the cracked axon should be a

GaussianAxon). Select the GaussianAxon and at the Axon tab of its inspector, click

 268

off the data flow ON and Turn ON after RESET switches. Notice that the Axon will crack (as shown
in the figure below) meaning that the dataflow is interrupted. Also, in the Transfer Function tab, set
the number of PE’s to 3.

Now click on the BackStaticControl to access its inspector. Click off the two switches Learning and
Learn after RESET. This means that when you press the reset switch supervised learning will not
start automatically. Notice that the red double dial was transformed to a single gray dial to
demonstrate that its functionality has been changed.

Construction of the pattern recognition network

Now that these features are disabled, something must turn them on at the right time. Towards that

goal, you will use a ThresholdTransmitter . Select the ThresholdTransmitter above the
StaticController and open its corresponding inspector. Set the threshold to 10, and click the greater
than (>) switch. This means that when the controller epoch counts pass 10 the
ThresholdTransmitter will broadcast a command. The problem is who is going to listen?

If you go to the Transmitter tab of the ThresholdTransmitter inspector, you will find a list of possible
receivers of the message. First select the GaussianAxon as the receiver (note that the components
are listed in the order in which they were pasted on the breadboard). After clicking on it, the action
list will display the possible actions. Select the setFireNext action. If this action says (FALSE) you
will need to set it to true by typing TRUE in the Parameter form cell and pressing the set button.
Now, enable this action by double clicking the setFireNext(TRUE) line. Notice that a "C" will appear
meaning that a connection was made. Now, when the ThresholdTransmitter fires, the Axon will turn
on data flow and the right side of the topology (the classifier) will be able to learn. Select the
assignCenters() and assignVariance() actions and double click them to connect them also. This will
assign the centers and the variance of the GaussianAxon based on the weights when the
ThresholdTransmitter fires.

Now select the ConscienceFull as the receiver. Double click the action setLearning(FALSE). This
will stop the learning in the preprocessor section when the ThresholdTransmitter fires. You also
need to enable the backpropagation learning for the classifier section when the
ThresholdTransmitter fires. To do this, select the BackStaticControl as the receiver and double click
the setLearning(TRUE) action.

 269

Transmitter Inspector

Next, you need to schedule the learning rate of the ConscienceFull component. It
should be decreased linearly. Click on the LinearScheduler above the ConscienceFull
component to open its inspector. Within the Access tab, select the Unsupervised Step Size as the
access point. Going back to the schedule tab, you should set the start epoch to 1 and the end
epoch to 10 in this case, since the unsupervised run was set above at 10 iterations.

You still have to tell the scheduler how you want to schedule the parameter. In this case you want
to decrease the learning rate, so beta should be a negative value. How negative depends on the
annealing rate that you want. The right side of the inspector displays two constraint values, a
minimum and a maximum. In this case the maximum should be chosen equal to the initial setting of
the ConscienceFull learning rate (use .01). The minimum constraint is the smallest learning rate
that you want for this application (use .001). Now beta can be easily computed, because it should
decrease the step size from the maximum to the minimum in 10 iterations. The value of beta can
be approximated, since the bounds are always met. Data that can be used for training this network
are located in files FAULT.ASC for the input file and FAULTT.ASC for the desired file.

Running the Pattern Recognition Network

Now you are ready to run the pattern recognition network. Before pressing the run button, notice
that the dataflow is interrupted by the cracked axon after the ConscienceFull, i.e. you will train the
RBF preprocessor for 10 iterations alone, and then the classifier for another 40 iterations (for
Epochs/Experiment = 50).

Notice that the scheduler value starts at 0.01 and decreases linearly. Notice also that the cost is at
zero (for the first 10 Epochs), signaling that the classifier is not learning. When the epoch counter
passes over 10, the cracked Axon is reconstructed into a GaussianAxon, and the MSE starts
changing. Notice how much slower the epoch counter becomes. This is the reason you
implemented all these features, to make the simulations much more efficient.

If you stamp and open a Hinton over the ConscienceFull, you will find that during the first 10
iterations the weights are changing, fast at first, then very slowly since the learning rates are being
decreased be the LinearScheduler. After 10 iterations, the Hinton diagram will become unchanged,
signaling that the weights quit adapting.

 270

The procedure just described also applies to a PCA network and a Kohonen SOFM Network. You
should try these networks to have a feel for how they behave (see Construction of the Pattern
Recognition Network figure for the configuration or load the file EX13.NSB).

What you have Learned from the Pattern Recognition Example

In this example you have learned a very important lesson on how to combine data flow for
unsupervised and supervised learning. The synchronization aspects that were described in this
example are very valuable to design sophisticated simulations.

Time Series Prediction Example
Time Series Prediction Example

Purpose - The purpose of this example is to show how artificial neural networks can be used to
predict chaotic time series. To show this, you will construct a time lagged recurrent net (TLRN) that
will be designed to predict the next point (or the next few points ahead) of a time series.

Components Introduced - LinearAxon, LaguarreAxon.

Concepts Introduced - Performing dynamic modeling with time lagged recurrent neural (TLRN)
networks.

STEPS

Introduction to Time Series Prediction Example

Constructing the TLRN Network

Running the TLRN Network

What You have Learned from the Time Series Prediction Example

Introduction to Time Series Prediction Example

Dynamic modeling is the process of identifying the system that produced a time series, assumed to
be created by a dynamically system. You will be using a time series produced by the Mackey-Glass
system, having a delay of 30. This system is mildly chaotic for this choice of delay (largest
Lyapunov exponent of 0.02 bits/sec).

Our goal is to predict the Mackey-Glass system using a time lagged recurrent neural network. A
time lagged recurrent network has the static PEs substituted by PEs with short term memories,
such as the gamma, the Laguarre or the tap delay line.

How can you construct and train such an ANN system? The core idea is that you should train the
ANN as a nonlinear predictor, i.e. the input is delayed by L samples before being presented to the
net, and the input signal without delays becomes the desired response. Since it is best to match a
time series, and as long as the network is recurrent, you should use trajectory learning as your
learning paradigm. For the case of prediction with a net using TDNNAxon (tap delay line) memory
structures, trajectory learning is equivalent to static backpropagation in batch mode (the batch is

 271

the length of the trajectory), but as soon as you have a net that is recurrent, this equivalency no
longer holds.

Constructing the TLRN Network

Stamp a LaguarreAxon for the input, a TanhAxon, another LaguarreAxon, a

LinearAxon , and two FullSynapse components and connect them as shown in the
figure below. Note that the Laguarre is a local recurrent memory structure. Set the number of taps
of the LaguarreAxon at the input to 4. Set the number of taps of the LaguarreAxon in the hidden
layer to 2. Set the number of PEs of the TanhAxon to 8 (thus, you must also set the number of
Rows of the hidden layer LaguarreAxon to 8). You will use the L2Criterion and Trajectory learning
as the gradient descent paradigm (using a Normalized Step Size of 0.5 and Momentum Rate of 0.7
except for the Momentum components above the two BackLaguarreAxons for which you should
use a Step Size of .05 and a Momentum Rate of .1). Stamp a DynamicControl and use a trajectory
(Samples/Exemplar in the DynamicControl) of 50 samples and set the Exemplars/Epoch to 6. Set
the back trajectory (Samples/Exemplar in the BackDynamicControl) to 50 samples. The gradients
will be updated at each exemplar (verify that the Exemplars/Update is set to 1). Now stamp two File
components and use the file MG300.ASC as both the input and the desired signal. This is a well-
known chaotic time series. Offset the desired signal file by three samples, which can be
accomplished by pressing the customize button in file property page of the File inspector. This will
show a panel where you should click the segment switch on, enter 3 in the offset, and enter 300 as
the duration. This same procedure should be done with the input file, except use 0 offset and 300
duration. Set the Normalize switch for both the input and desired signal and enter -1 and 1 for the
Lower and Upper values of the normalization range, respectively.

Construction of the prediction network

 272

Finally, bring a MegaScope/DataStorage to the network output (the Activity access point of the
LinearAxon), place a DataStorageTransmitter on both File components, and have them transmit to
the DataStorage. From the DataStorage inspector, configure a Buffer Size of 300 samples, which
will Message Every 300 samples. You will also want to stamp a MatrixViewer on the Average Cost
access point of the L2Criterion to monitor the MSE (see figure above for the configuration or load
file EX14.NSB)

Running the TLRN Network

Shortly after running the network, you will see that the net output resembles the desired signal very
closely. It is informative to watch the net output "mold" to the desired signal. First the gross shape
is fitted, and then the learning concentrates on the finer (higher frequency) detail.

Mackey-Glass input, output, and desired after training

What You have Learned from the Time Series Prediction Example

You constructed an ANN, which was able to predict a chaotic time series. You did this using a
TLRN network with Laguarre memories. Notice that the memory can be placed anywhere in the
network structure. In this example it was placed at the input and the hidden PEs.

Neural Network Components
Components

NeuroSolutions

NeuroDimension, Incorporated.

Gainesville, Florida

 273

Purpose

This chapter provides a detailed description of each component available in NeuroSolutions.

Engine Family

Ancestor: ImageView Family

All NeuroSolutions components will belong to the Engine family. Being an Engine provides
communication and control of inspectors and animation windows. The Engine inspector provides
the ability to have the component's animation window opened after the component is unarchived,
and the ability to fix components to their superengine.

User Interaction:

Inspector

Macro Actions

Activation Family
Axon Family

Axon

Family: Axon Family

Superclass: Soma

Backprop Dual: BackAxon

Description:

 274

The Axon simply performs an identity map between its input and output activity. The Axon is the
first member of the Axon family, and all subsequent members will subclass its functionality.
Furthermore, each subclass will use the above icon with a graph of their activation function
superimposed on top.

Activation Function:

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

 Macro Actions

 See Also

BiasAxon

Family: Axon Family

Superclass: Axon

Backprop Dual: BackBiasAxon

Description:

The BiasAxon simply provides a bias term, which may be adapted. Most nonlinear axons are
subclasses of this component in order to inherit this bias characteristic.

 275

Activation Function:

Note: The Weights access point of the BiasAxon provides access to the Bias vector (in the
above equation).

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

 See Also

CombinerAxon

Family: Axon Family

Superclass: Axon

Backprop Dual: BackCombinerAxon

Description:
The CombinerAxon multiplies each neuron from the top half of the Axon with the corresponding
neuron from the bottom half of the Axon and overwrites the activity of the top neuron with this

 276

product. This Axon has twice as many inputs as it has outputs. This component is normally used
within the neural-fuzzy architecture built by the NeuralBuilder.

Activation Function:

where N is equal to the number of input PEs and i < N/2.

User Interaction:

Inspector

Drag and Drop

Access Points

GaussianAxon

Family: Axon Family

Superclass: LinearAxon

Backprop Dual: None

Description:

The GaussianAxon implements a radial basis function layer. There is a significant difference
between the GaussianAxon and other members of the Axon family. The GaussianAxon only
responds significantly to a local area of the input space (where the peak of the Gaussian is
located). It is therefore considered to be a local function approximator. The center of the Gaussian
is controlled using the bias weight inherited from the BiasAxon, and its width using the β parameter
inherited from the LinearAxon.

Activation Function:

 277

Note: The Weights access point of the GaussianAxon provides access to the Bias vector (in the
above equation). These weights control the locations of the centers of the Gaussian functions.

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

Macro Actions

LinearAxon

Family: Axon Family

Superclass: BiasAxon

Backprop Dual: BackLinearAxon

Description:

The LinearAxon implements a linear axon with slope and offset control. It is therefore more
powerful than the BiasAxon (because it implements an affine transform). The bias is inherited from
the BiasAxon and can be adapted, but the slope is controlled by an additional parameter β, which
is not adaptive.

Activation Function:

 278

Note: The Weights access point of the LinearAxon provides access to the Bias vector (in the
above equation).

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

Macro Actions

LinearSigmoidAxon

Family: Axon Family

Superclass: LinearAxon

Backprop Dual: BackSigmoidAxon

Description:

The LinearSigmoidAxon substitutes the intermediate portion of the sigmoid by a line of slope β,
making it a piecewise linear approximation of the sigmoid. This PE has an input-output map that is
discontinuous, so it is not recommended for learning. However, when used with the
BackSigmoidAxon it can learn. This component is more computationally efficient that the
SigmoidAxon (it is much easier to compute the map).

Activation Function:

 279

where is the scaled and offset activity inherited from the LinearAxon.

Note: The Weights access point of the LinearSigmoidAxon provides access to the Bias vector (
in the above equation).

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

LinearTanhAxon

Family: Axon Family

Superclass: LinearAxon

Backprop Dual: BackTanhAxon

Description:

The LinearTanhAxon substitutes the intermediate portion of the tanh by a line of slope β, making it
a piecewise linear approximation of the tanh. This PE has an input-output map that is
discontinuous, so it is not recommended for learning. However, when used with the BackTanhAxon

 280

it can learn. This component is more computationally efficient that the TanhAxon (it is much easier
to compute the map).

Activation Function:

where is the scaled and offset activity inherited from the LinearAxon.

Note: The Weights access point of the LinearTanhAxon provides access to the Bias vector (in
the above equation).

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

NormalizedAxon

Family: Axon Family

Superclass: Axon

Backprop Dual: BackNormalizedAxon

 281

Description:
The NormalizedSigmoidAxon divides each neuron by the sum of the inputs. This component is
normally used within the neural-fuzzy architecture built by the NeuralBuilder.

Activation Function:

User Interaction:

Inspector

Drag and Drop

Access Points

NormalizedSigmoidAxon

Family: Axon Family

Superclass: SigmoidAxon

Backprop Dual: BackNormalizedSigmoidAxon

Description:
The NormalizedSigmoidAxon applies a scaled and biased sigmoid function to each neuron in the
layer. The scaling factor and bias are inherited from the SigmoidAxon. In addition, each neuron is
scaled by the ratio of the neuron's input to the sum of the inputs. This component is normally used
within the neural-fuzzy architecture built by the NeuralBuilder.

Activation Function:

 282

where is the activation function inherited from the SigmoidAxon.

User Interaction:

Inspector

Drag and Drop

Access Points

SigmoidAxon

Family: Axon Family

Superclass: LinearAxon

Backprop Dual: BackSigmoidAxon

Description:

The SigmoidAxon applies a scaled and biased sigmoid function to each neuron in the layer. The
scaling factor and bias are inherited from the LinearAxon. The range of values for each neuron in
the layer is between 0 and 1. Such nonlinear elements provide a network with the ability to make
soft decisions.

Activation Function:

 283

where is the scaled and offset activity inherited from the LinearAxon.

Note: The Weights access point of the SigmoidAxon provides access to the Bias vector (in the
above equation).

User Interaction:

Inspector

Drag and Drop

Access Points

Example

DLL Implementation

SoftMaxAxon

Family: Axon Family

Superclass: LinearAxon

Description:

The SoftMaxAxon is a component used to interpret the output of the neural net as a probability. In
order for a set of numbers to constitute a probability density function, their sum must equal one.

Often the output of a neural network produces a similarity measure. In order to convert this
similarity measure to a probability, the SoftMaxAxon is used at the output of the network.

Activation Function:

 284

where is the scaled and offset activity inherited from the LinearAxon.

Note: The Weights access point of the SoftMaxAxon provides access to the Bias vector (in the
above equation).

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

TanhAxon

Family: Axon Family

Superclass: LinearAxon

Backprop Dual: BackTanhAxon

Description:

The TanhAxon applies a bias and tanh function to each neuron in the layer. This will squash the
range of each neuron in the layer to between -1 and 1. Such nonlinear elements provide a network
with the ability to make soft decisions.

Activation Function:

 285

where is the scaled and offset activity inherited from the LinearAxon.

Note: The Weights access point of the TanhAxon provides access to the Bias vector (in the
above equation).

User Interaction:

Inspector

Drag and Drop

Access Points

Example

DLL Implementation

ThresholdAxon

Family: Axon Family

Superclass: BiasAxon

Description:

The ThresholdAxon will output a 1 if the input plus bias are positive and -1 otherwise. Such
nonlinear elements provide a network with the ability to implement hard decision functions.

Activation Function:

 286

where is the offset activity inherited from the BiasAxon.

Note: The Weights access point of the ThresholdAxon provides access to the Bias vector (in the
above equation).

User Interaction:

Inspector

Drag and Drop

Access Points

Example

DLL Implementation

WinnerTakeAllAxon

Family: Axon Family

Superclass: Axon

Description:

The winner-take-all is a special type of Axon that ensures that only one PE is active at all times (the
winner). So the output of all the PEs of that layer are compared, and the one that is largest (or
smallest) wins the competition.

Activation Function:

 287

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

Macro Actions

Access Points

Axon Family Access Points

Family: Axon Family

Access points allow simulation components that are not part of the neural network topology to
probe and/or alter data flowing through the network. All members of the Axon family share a
standard functional form. The sub-system block diagram given in Axon Family depicted this
functionality. Access to data flowing through any axon is provided at the following three access
points,

Pre-Activity Access:

Attaches the Access component to the vector sum just prior to applying the activation function
. It is important to realize that this access point does not correspond to any physical

storage within the simulation. In other words, data may be injected or probed as activity flows

 288

through the network, but is then immediately lost. Trying to alter the pre-activity out of sync with the
network data flow will actually alter the data storage for Activity Access.

Activity Access:

Attaches the Access component to the vector of activity immediately after the function map

Weights Access:

All adaptive weights within the axon are reported by attaching to Weight Access. This data may be
reported in vector or matrix form, depending on how the axon stores it. If a component does not
have any weights, this access point will not appear in the inspector.

Winning PE Access (WinnerTakeAllAxon only):

With a "winner-take-all" output of a Self-Organizing Map (SOM), the winning PE gets a value of
1 and all the others get a value of 0. This access point provides the numeric value of the winning
PE.

 See Also

DLL Implementation

Axon DLL Implementation

Component: Axon

Protocol: PerformAxon

Description:

The Axon component does not modify the data fed into the processing elements (PEs).

Code:

void performAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer

 289

)
{

}

BiasAxon DLL Implementation

Component: BiasAxon

Protocol: PerformBiasAxon

Description:

The BiasAxon component adds a bias term to each processing element (PE). The bias vector
contains the bias term for each PE and can be thought of as the Axon’s adaptable weights.

Code:

void performBiasAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++)
 data[i] += bias[i];
}

GaussianAxon DLL Implementation

 290

Component: GaussianAxon

Protocol: PerformLinearAxon

Description:

The GaussianAxon applies a gaussian function to each neuron in the layer. The bias vector
determines the center of the gaussian for each PE, and the beta term determines the width of the
gaussian for all PEs. The range of values for each neuron in the layer is between 0 and 1.

Code:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 data[i] += bias[i];
 data[i] = (NSFloat)exp(-beta*data[i]*data[i]);
 }
}

LinearAxon DLL Implementation

Component: LinearAxon

Protocol: PerformLinearAxon

Description:

 291

The LinearAxon component adds to the functionality of the BiasAxon by adding a beta term that is
the same for all processing elements (PEs). This scalar specifies the slope of the linear transfer
function.

Code:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++)
 data[i] = beta*data[i] + bias[i];
}

LinearSigmoidAxon DLL Implementation

Component: LinearSigmoidAxon

Protocol: PerformLinearAxon

Description:

The implementation for the LinearSigmoidAxon is the same as that of the LinearAxon except that
the transfer function is clipped at 0 and 1.

Code:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector

 292

 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 data[i] = beta*data[i] + bias[i];
 if (data[i] < 0.0f)
 data[i] = 0.0f;
 else
 if (data[i] > 1.0f)
 data[i] = 1.0f;
 }
}

LinearTanhAxon DLL Implementation

Component: LinearTanhAxon

Protocol: PerformLinearAxon

Description:

The implementation for the LinearTanhAxon is the same as that of the LinearAxon except that the
transfer function is clipped at -1 and 1.

Code:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 data[i] = beta*data[i] + bias[i];

 293

 if (data[i] < -1.0f)
 data[i] = -1.0f;
 else
 if (data[i] > 1.0f)
 data[i] = 1.0f;
 }
}

SigmoidAxon DLL Implementation

Component: SigmoidAxon

Protocol: PerformLinearAxon

Description:

The SigmoidAxon applies a scaled and biased sigmoid function to each neuron in the layer. The
range of values for each neuron in the layer is between 0 and 1.

Code:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++)
 data[i] = 1.0f / (1.0f + (NSFloat)exp(-(beta*data[i] +
bias[i])));
}

SoftMaxAxon DLL Implementation

 294

Component: SoftMaxAxon

Protocol: PerformLinearAxon

Description:

The SoftMaxAxon is a component used to interpret the output of the neural net as a probability,
such that the sum of the outputs is equal to one. Unlike the WinnerTakeAllAxon, this component
outputs positive values for the non-maximum PEs. The beta term determines how hard or soft the
max function is. A high beta corresponds to a harder max; meaning that the PE with the highest
value is accentuated compared to the other PEs. The bias vector has no effect on this component.
The range of values for each neuron in the layer is between 0 and 1.

Code:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;
 NSFloat sum=(NSFloat)0.0;

 for (i=0; i<length; i++) {
 data[i] = beta*data[i];
 sum += data[i] = (NSFloat)exp(data[i]);
 }
 for (i=0; i<length; i++)
 data[i] /= sum;
}

TanhAxon DLL Implementation

 295

Component: TanhAxon

Protocol: PerformLinearAxon

Description:

The TanhAxon applies a scaled and biased hyperbolic tangent function to each neuron in the layer.
The range of values for each neuron in the layer is between -1 and 1.

Code:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++)
 data[i] = (NSFloat)tanh(beta*data[i] + bias[i]);
}

ThresholdAxon DLL Implementation

Component: ThresholdAxon

Protocol: PerformBiasAxon

Description:

The ThresholdAxon component uses the bias term of each processing element (PE) as a
threshold. If the value of a given PE is less than or equal to its corresponding threshold, then this
value is set to -1. Otherwise, the PE’s value is set to 1.

 296

Code:

void performBiasAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 data[i] += bias[i];
 data[i] = data[i] > 0? (NSFloat)1.0: (NSFloat)-1.0;
 }
}

WinnerTakeAllAxon DLL Implementation

Component: WinnerTakeAllAxon

Protocol: PerformAxon

Description:

The WinnerTakeAllAxon component determines the processing element (PE) with the highest
value and declares it as the winner. It then sets the value of the winning PE to 1 and the rest to 0.

Code:

void performAxon(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 register int i, length=rows*cols, winner=0;

 297

 for (i=1; i<length; i++)
 if (data[i] > data[winner])
 winner = i;
 for (i=0; i<length; i++)
 data[i] = (NSFloat)0.0;
 data[winner] = (NSFloat)1.0;
}

Examples

Axon Example

Component: Axon

The Axon’s activation function is the identity map. It is normally used just as a storage unit. Recall
however, that all axons have a summing junction at their input and a node junction at their output.
The Axon will often be used purely to accumulate/distribute vectors of activity to/from other network
components.

The figure below illustrates the output of an Axon with a ramp function as the input. The ramp in
this example provides a sweep of 100 points from [-1,1). Notice that the output is equal to the input
as expected. To experiment with this example, load the breadboard AxonExample.nsb.

 298

BiasAxon Example

Component: BiasAxon

The BiasAxon will typically be used at the network's output, or as a superclass of most nonlinear
axons. There are very few applications requiring the BiasAxon class, rather than a subclass, to be
instantiated and used directly.

The figure below illustrates the output of a BiasAxon with a ramp function as the input. The ramp in
this example provides a sweep of 100 points from [-1,1). The Bias has been set to .5 by stamping a
MatrixEditor on the Weights access point of the BiasAxon and entering .5 (see figure below).
Increasing the Bias has the affect of shifting the output up while decreasing the Bias has the affect
of shifting the output down. Notice that the output is equal to the input plus the Bias as expected.
To experiment with this example, load the breadboard BiasAxonExample.nsb.

 299

GaussianAxon Example

Component: GaussianAxon

The GaussianAxon is at the core of the network topology called Radial Basis Function (RBF). It has
been shown that with a sufficient number of PEs, the RBF outputs can be linearly combined to
produce any input-output map.

The figure below illustrates the output of a GaussianAxon with a ramp function as the input. The
ramp in this example provides a sweep of 100 points from [-1,1). The Bias has been set to -.25 by
stamping a MatrixEditor on the Weights access point of the GaussianAxon and entering -.25 (see
figure below). Increasing the Bias has the affect of shifting the center of the Gaussian function to
the left while decreasing the Bias has the affect of shifting the center of the Gaussian function to
the right. The width of the Gaussian function is controlled through the choice of Beta within the
Transfer Function property page of the GaussianAxon Inspector. Increasing Beta decreases the
width and vice versa. Notice that the output is a Gaussian function as expected. To experiment with
this example, load the breadboard GaussianAxonExample.nsb.

 300

LinearAxon Example

Component: LinearAxon

The figure below illustrates the output of a LinearAxon with a ramp function as the input. The ramp
in this example provides a sweep of 100 points from [-1,1). The Bias has been set to 1 by stamping
a MatrixEditor on the Weights access point of the LinearAxon and entering 1 (see figure below).
Increasing the Bias has the affect of shifting the output up while decreasing the Bias has the affect
of shifting the output down. The scale factor can be controlled through the choice of Beta within the
Transfer Function property page of the LinearAxon Inspector. Increasing Beta increases the slope
of the output and vice versa. Notice that the output is a scaled and shifted version of the input as
expected. To experiment with this example, load the breadboard LinearAxonExample.nsb.

 301

LinearSigmoidAxon Example

Component: LinearSigmoidAxon

The figure below illustrates the output of a LinearSigmoidAxon with a ramp function as the input.
The ramp in this example provides a sweep of 100 points from [-2,2). The Bias has been set to 0 by
stamping a MatrixEditor on the Weights access point of the LinearSigmoidAxon and entering 0 (see
figure below). Increasing the Bias has the affect of shifting the knee of the output to the left while
decreasing the Bias has the affect of shifting the knee of the output to the right. The slope of the
linear region can be controlled through the choice of Beta within the Transfer Function property
page of the LinearSigmoidAxon Inspector. Increasing Beta increases the slope of the linear region
and vice versa. Of course, increasing Beta also decreases the range of the inputs that the PE can
accept without saturating and vice versa. To experiment with this example, load the breadboard
LinearSigmoidAxonExample.nsb.

 302

LinearTanhAxon Example

Component: LinearTanhAxon

The figure below illustrates the output of a LinearTanhAxon with a ramp function as the input. The
ramp in this example provides a sweep of 100 points from [-3,3). The Bias has been set to 1 by
stamping a MatrixEditor on the Weights access point of the LinearTanhAxon and entering 1 (see
figure below). Increasing the Bias has the affect of shifting the knee of the output to the left while
decreasing the Bias has the affect of shifting the knee of the output to the right. The slope of the
linear region can be controlled through the choice of Beta within the Transfer Function property
page of the LinearTanhAxon Inspector. Increasing Beta increases the slope of the linear region and
vice versa. Of course, increasing Beta also decreases the range of the inputs that the PE can
accept without saturating and vice versa. To experiment with this example, load the breadboard
LinearTanhAxonExample.nsb.

 303

SigmoidAxon Example

Component: SigmoidAxon

The SigmoidAxon will typically be used as hidden and output layers in MLP topologies. If used in
the output layer, it is important to verify that the desired signal is normalized to between 0 and 1.

The figure below illustrates the output of a SigmoidAxon with a ramp function as the input. The
ramp in this example provides a sweep of 100 points from [-6,6). The Bias has been set to 1.5 by
stamping a MatrixEditor on the Weights access point of the SigmoidAxon and entering 1.5 (see
figure below). Increasing the Bias has the affect of shifting the knee of the output to the left while
decreasing the Bias has the affect of shifting the knee of the output to the right. The slope of the
linear region can be controlled through the choice of Beta within the Transfer Function property
page of the SigmoidAxon Inspector. Increasing Beta increases the slope of the linear region and
vice versa. Of course, increasing Beta also decreases the range of the inputs that the PE can
accept without saturating and vice versa. To experiment with this example, load the breadboard
SigmoidAxonExample.nsb.

 304

SoftMaxAxon Example

Component: SoftMaxAxon

The SoftMaxAxon component should be used as the output of any MLP to allow interpretation of
the output as a probability, as normally is the case in classification.

The figure below illustrates the 3 outputs (grouped at the top of the MegaScope) of a SoftMaxAxon
(3 PEs) with a sine function, a triangle function, and a ramp function as the inputs (grouped at the
bottom of the MegaScope). Notice that at any point in time, the 3 outputs sum to one that is
required for each of the outputs to be interpreted as a probability. To experiment with this example,
load the breadboard SoftMaxAxonExample.nsb.

 305

TanhAxon Example

Component: TanhAxon

The TanhAxon will typically be used as hidden and output layers in MLP topologies. If used in the
output layer, it is important to verify that the desired signal is normalized to between -1 and 1.

The figure below illustrates the output of a TanhAxon with a ramp function as the input. The ramp in
this example provides a sweep of 100 points from [-6,6). The Bias has been set to -1.5 by stamping
a MatrixEditor on the Weights access point of the TanhAxon and entering -1.5 (see figure below).
Increasing the Bias has the affect of shifting the knee of the output to the left while decreasing the
Bias has the affect of shifting the knee of the output to the right. The slope of the linear region can
be controlled through the choice of Beta within the Transfer Function property page of the
TanhAxon Inspector. Increasing Beta increases the slope of the linear region and vice versa. Of
course, increasing Beta also decreases the range of the inputs that the PE can accept without

 306

saturating and vice versa. To experiment with this example, load the breadboard
TanhAxonExample.nsb.

ThresholdAxon Example

Component: ThresholdAxon

The ThresholdAxon will typically be used as hidden layers in non-adaptive (hardwired) topologies
such as the Hopfield net and McCulloch-Pitts models.

The figure below illustrates the output of a ThresholdAxon with a ramp function as the input. The
ramp in this example provides a sweep of 100 points from [-1,1). The Bias has been set to .5 by
stamping a MatrixEditor on the Weights access point of the ThresholdAxon and entering .5 (see
figure below). Increasing the Bias has the affect of shifting the knee of the output to the left while
decreasing the Bias has the affect of shifting the knee of the output to the right. With the Bias set to
.5 as in the figure below, this means that any input less than -.5 will be output as -1 and any input

 307

greater than -.5 will be output as 1. This is illustrated on the MegaScope in the figure below. To
experiment with this example, load the breadboard ThresholdAxonExample.nsb.

WinnerTakeAllAxon Example

Component: WinnerTakeAllAxon

The WinnerTakeAllAxon simulates natural selection and is normally used to create the output of a
Kohonen network. It can also be used as a gating function.

The figure below illustrates the 3 outputs (grouped at the top of the MegaScope) of a
WinnerTakeAllAxon (3 PEs) with a sine function, a triangle function, and a ramp function as the
inputs (grouped at the bottom of the MegaScope). Notice that when the sine function is maximum,
the corresponding output (shown in black) is 1. The same principle holds for the triangle function
and the ramp function. Within the Winner property page of the WinnerTakeAllAxon inspector, the

 308

user can choose whether the maximum value or the minimum value wins. To experiment with this
example, load the breadboard WinnerTakeAllAxonExample.nsb.

Macro Actions

Axon

Axon Macro Actions
Overview Superclass Macro Actions

Action Description
cols The number of columns of PE’s for the Axon.

fireNext Returns the current "Data Flow ON" setting

fireNextOnReset Returns the current "Turn Data Flow ON after RESET" setting

rows The number of rows of PE’s for the Axon.

setCols Sets the number of columns of PE’s for the Axon.

setDimensions Sets the number of rows and columns of PE’s for the Axon.

setFireNext Sets the "Data Flow ON" setting.

 309

setFireNextOnReset Sets the "Turn Data Flow ON after RESET" setting.

setRows Sets the number of rows of PE’s for the axon.

setRows
Overview Macro Actions

Syntax

componentName.setRows(rows)

Parameters Type Description
return void

componentName Name defined on the engine property page.

rows int Number of rows of PE’s for the Axon (see "Rows" within the Axon Inspector).

cols
Overview Macro Action

Syntax

componentName.cols()

Parameters Type Description
return int Number of columns of PE’s for the Axon (see "Cols" within the Axon Inspector).

componentName Name defined on the engine property page.

fireNext
Overview Macro Actions

Syntax

componentName.fireNext()

Parameters Type Description
return BOOL When TRUE, data flows through the axon (see "Data Flow On" within the Axon
Inspector).

componentName Name defined on the engine property page.

 310

fireNextOnReset
Overview Macro Actions

Syntax

componentName.fireNextOnReset()

Parameters Type Description
return BOOL When TRUE, data flow resumes after the network is reset (see "Turn Data Flow
On After Reset" within the Axon Inspector).

componentName Name defined on the engine property page.

rows
Overview Macro Actions

Syntax

componentName.rows()

Parameters Type Description
return int Number of rows of PE’s for the Axon (see "Rows" within the Axon Inspector).

componentName Name defined on the engine property page.

setCols
Overview Macro Actions

Syntax

componentName.setCols(cols)

Parameters Type Description
return void

componentName Name defined on the engine property page.

cols int The number of columns of PE’s for the Axon (see "Cols" within the Axon
Inspector).

setDimensions
Overview Macro Actions

 311

Syntax

componentName.setDimensions(rows, cols)

Parameters Type Description
return void

componentName Name defined on the engine property page.

rows int Number of rows of PE’s for the Axon (see "Rows" within the Axon Inspector).
cols int The number of columns of PE’s for the Axon (see "Cols" within the Axon
Inspector).

setFireNext
Overview Macro Actions

Syntax

componentName.setFireNext(fireNext)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fireNext BOOL When TRUE, data flows through the axon (see "Data Flow On" within the Axon
Inspector).

setFireNextOnReset
Overview Macro Actions

Syntax

componentName.setFireNextOnReset(fireNextOnReset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fireNextOnReset BOOL When TRUE, data flow resumes after the network is reset (see "Data
Flow Turn On After Reset" within the Axon Inspector).

 312

Gaussian Axon

GaussianAxon Macro Actions
Overview Superclass Macro Actions

Action Description
assignCenters Sets the centers (weights) of the Axon’s PEs from the FullSynapse that is feeding
it.

assignVariance Sets the widths of the Axon’s PEs from the FullSynapse that is feeding it.

neighbors Returns the nearest neighbors setting (P).

setEngineData Sets the gaussian widths (β) for each of the axon's processing elements.

setNeighbors Sets the nearest neighbors setting (P).

assignCenters
Overview Macro Actions

Syntax

componentName.assignCenters()

Parameters Type Description
return void

componentName Name defined on the engine property page.

assignVariance
Overview Macro Actions

Syntax

componentName.assignVariance()

Parameters Type Description
return void

componentName Name defined on the engine property page.

neighbors
Overview Macro Actions

Syntax

componentName.neighbors()

Parameters Type Description

 313

return int Number of nearest neighbors for computation of variance (see "P" within the
GaussianAxon Inspector).

componentName Name defined on the engine property page.

setEngineData
Overview Macro Actions

Syntax

componentName.setEngineData(data)

Parameters Type Description
return void

componentName Name defined on the engine property page.

data variant An array of single-precision floating point values that contains the gaussian
widths (β) for each of the axon's processing elements (see "Variance" within the GaussianAxon
Inspector).

setNeighbors
Overview Macro Actions

Syntax

componentName.setNeighbors(neighbors)

Parameters Type Description
return void

componentName Name defined on the engine property page.

neighbors int Number of nearest neighbors for computation of variance (see "P"
within the GaussianAxon Inspector).

Linear Axon

LinearAxon Macro Actions
Overview Superclass Macro Actions

Action Description
beta Returns the Beta value.

setBeta Sets the Beta value.

setWeightMean Sets the Bias Mean value.

setWeightVariance Sets the Bias Variance value.

 314

weightMean Returns the Bias Mean value.

weightVariance Returns the Bias Variance value.

beta
Overview Macro Actions

Syntax

componentName.beta()

Parameters Type Description
return float The slope of the nonlinearities for all PE’s (see "Beta" within the
TransferFunction Inspector).

componentName Name defined on the engine property page.

setBeta
Overview Macro Actions

Syntax

componentName.setBeta(beta)

Parameters Type Description
return void

componentName Name defined on the engine property page.

beta float The slope of the nonlinearities for all PE’s (see "Beta" within the
TransferFunction Inspector).

setWeightMean
Overview Macro Actions

Syntax

componentName.setWeightMean(weightMean)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightMean float The mean of the bias values when the weights are randomized (see
"Bias Mean" within the TransferFunction Inspector).

 315

setWeightVariance
Overview Macro Actions

Syntax

componentName.setWeightVariance(weightVariance)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightVariance float The variance of the bias values when the weights are randomized (see
"Bias Variance" within the TransferFunction Inspector).

weightMean
Overview Macro Actions

Syntax

componentName.weightMean()

Parameters Type Description
return float The mean of the bias values when the weights are randomized (see "Bias Mean"
within the TransferFunction Inspector).

componentName Name defined on the engine property page.

weightVariance
OverviewMacro Actions

Syntax

componentName.weightVariance()

Parameters Type Description
return float The variance of the bias values when the weights are randomized (see "Bias
Variance" within the TransferFunction Inspector).

componentName Name defined on the engine property page.

Winner Take All Axon

WinnerTakeAllAxon Macro Actions
Overview Superclass Macro Actions

Action Description
maxWinner Returns TRUE if PE with maximum value is the winner, or FALSE if PE with

 316

minimum value is the winner.

setMaxWinner Sets the maxWinner setting above.

maxWinner
Overview Macro Actions

Syntax

componentName.maxWinner()

Parameters Type Description
return BOOL When TRUE, the neuron with the largest value is the winner of the competition
(see "Maximum/Minimum Value is Winner" within the WinnerTakeAllAxon Inspector).

componentName Name defined on the engine property page.

setMaxWinner
Overview Macro Actions

Syntax

componentName.setMaxWinner(maxWinner)

Parameters Type Description
return void

componentName Name defined on the engine property page.

maxWinner BOOL When TRUE, the neuron with the largest value is the winner of the
competition (see "Maximum/Minimum Value is Winner" within the WinnerTakeAllAxon Inspector).

Inspectors

Axon Inspector

Family: Axon Family

Superclass Inspector: Soma Family Inspector

 317

Component Configuration:

Rows (SetRows(int))

Used to specify the number of rows of PE’s this axon contains. The total number of PE’s for an
axon is Rows*Cols.
Cols (SetCols(int))

Used to specify the number of columns of PE’s this axon contains. The total number of PE’s for an
axon is Rows*Cols.
Data Flow On

Used to switch the data flowing through the axon on or off. This feature is useful when using
networks that have both an unsupervised stage and a supervised stage. The data flow of the
supervised input is turned off during the unsupervised stage to optimize the computational speed.
Data Flow Turn On After Reset

Used to turn the data flow back on after the network has been reset.

 See Also

GaussianAxon Inspector

Component: GaussianAxon

Superclass Inspector: Transfer Function Family Inspector

 318

Component Configuration:

This component is primarily used in conjunction with a component from the Competitive family
using unsupervised learning. See the Radial Basis Function (RBF) section of the NeuralBuilder
documentation for a description of how this component is implemented.

Centers

Each weight of the GaussianAxon is used to tune the center of its corresponding Gaussian transfer
function. The Center button sets all of the weights based on the following rule:

where w(ij) is a weight from the Synapse component that feeds the GaussianAxon. Note that this
rule is dependent on the metric used by the Synapse. The FullSynapse component uses the Dot
Product metric, while the Competitive components can use any one of the three metrics.

The individual weights can also be adjusted manually by attaching a MatrixEditor to the Weights
access point of the GaussianAxon.

Variance

 319

The GaussianAxon has a width parameter (β) for each PE. This parameter is used to specify the
variance (i.e., the width) of the Gaussian transfer function for the given PE. The Variance button
sets all of the PE widths based on the following formula:

where the Synapse weight w(kj) is one of the P nearest neighbors to the weight w(ij).

The individual widths can also be adjusted manually by attaching a MatrixEditor to the Widths
access point of the GaussianAxon.

P (SetP(int))

This parameter sets the number of nearest neighbors that are averaged together when computing
the variance of the Gaussian transfer functions (see above). If this is set low and there are clusters
of centers that are relatively close together, then the resulting widths will often be too small (filtering
out important data). If P is set high, then many of the neighbors will be averaged together and the
resulting widths may be too high (blending the Gaussians together).

Normalize (SetNormalize(Bool))

This switch determines whether the output is normalized. If the output is normalized, then the sum
of all the activations is equal to one. This can be useful for Generalized Regression and
Probabilistic networks.

WinnerTakeAllAxon Inspector

Component: WinnerTakeAllAxon

Superclass Inspector: Axon Inspector

 320

Component Configuration:
Maximum/Minimum Value is Winner

These radio buttons allow you to choose whether the winning neuron of the competition is the one
with the largest value or the one with the smallest value.

Engine Inspector

Superclass Inspector: None

Component Configuration:
Component Name

This string is used to uniquely identify the components, which is required by the macro language.

 321

Fix Name

When this switch is on, the component’s name will not be modified by NeuroSolutions.
Keep Window Active

When this switch is on, the window associated with this component will stay open even if the "Hide
Windows" command is issued (see Control Menu & Toolbar Commands).
Fix to Superengine

When this switch is on, the component may not be dragged from where it sits on the breadboard.
Use DLL

Turning this switch on will attempt to link the selected DLL, thus overriding the functionality of the
base component with that defined by the selected DLL. When this switch is off, the selected DLL is
ignored. The DLL is selected using the New or Load buttons.
Load

This button will display a file selection panel, from which a DLL is selected. The file may be the DLL
itself, or the corresponding source file (with a .c or .cpp extension). Note that the DLL will only be
active when the Use DLL switch is on.
Edit

This button will open an editor containing the source code for the selected DLL. From there, the
code may be modified and saved for the next Compile. Note that the editor used is specified by
associating the .c or .cpp file extension with it. See the Windows documentation for more
information on associating files to applications.
Compile

This button will update the selected DLL by compiling the corresponding source code. Note that the
directory containing the command line compiler (nmake.exe) must be included in the search path.
See the Windows documentation for information on setting the Path environment variable.
New

This button brings up a panel for entering the name of a new DLL. From there, the source code for
the selected component is copied to the appropriate work directory under the new name. The
functionality of the default DLL will, in most cases, be the same as the base component. To modify
this functionality you must first Edit the source code and then Compile the DLL. Note that the DLL
will only be active when the Use DLL switch is on.
Debug

This feature is used to run the DLL through the development environment in order to debug it. The
first thing this button does is create a makefile for the DLL and copies it to the "DLLTest" directory.
This project is then compiled in "debug" mode and the release version of the DLL is replaced by the
debug version. Next, the development environment is launched and the running instance of
NeuroSolutions is linked into the debugger. Now you can set breakpoints within the DLL source
code and run the network. Note that when you stop the debugger then you are also quitting
NeuroSolutions.

Save state variables

Some neural components have internal states the affect their input/output map. By saving the state
variables with the breadboard, the results will be repeatable between identical experiments. The
components that have state variables include: BackContextAxon, BackTDNNAxon, ContextAxon,
Momentum, Quickprop, Step, Synapse, and TDNNAxon.

 322

 See Also

Soma Family Inspector

Superclass Inspector: Engine Inspector

Component Configuration:
Inputs

This cell reports the number of PEs within the Axon that are attached to the Synapse's input. This
value cannot be modified.
Outputs

This cell reports the number of PEs within the Axon attached to the Synapse's output. This value
cannot be modified.
Weights

This text reports the number of weights within the Activation component. For Axon components, the
weights are referred to as the biases (one for each PE). The number of weights within a
FullSynapse is equal to Inputs*Outputs.
Save

This switch forces the weights to be saved whenever the breadboard is saved. Note that this switch
only corresponds to the weights of this component and not the entire breadboard. To change this
setting for the entire network, first select all Activation components (by holding down the Shift key
while selecting).
Fix

 323

When this switch is on, the adaptive weights for the component are frozen during the randomization
process. However, the weights may still be adapted by an attached GradientSearch component.
Use Weights From

This is used for weight sharing. When this switch is on, the adaptive weights for the component are
obtained from another Axon or Synapse of the same dimensions. If a GradientSearch component is
attached, then it will adapt the weights in addition to the adaptation made by the GradientSearch
component attached to the Axon or Synapse who own the weights.
Range

When the component’s weights are randomized or jogged, the randomization range is based on the
value specified within this cell. Note that the weights can be set manually by attaching a
MatrixEditor to the Weights access point.
Mean

When the component’s weights are randomized, the randomization mean is based on the value
specified within this cell. Note that this is the same parameter specified within the Transfer Function
Family Inspector property page.
Jog

This button randomizes each weight of the component using its current value as the mean and the
range specified within the Range cell (see above).
Randomize

This button randomizes each weight of the component using the mean specified within the Mean
cell and the range specified within the Range cell (see above).

Transfer Function Inspector

Superclass Inspector: Axon Inspector

 324

Component Configuration
PE’s

This cell can be used to alter the total number of PEs for the component.
Beta (SetBeta(float))

The cell is used to specify the slope (?) of the nonlinearities for all PEs. Refer to the activation
function of the particular Axon component for the specifics of its use.
Bias Mean

When the network is randomized, the biases are randomized based on a mean and a variance.
This cell specifies the mean of the randomization. Note that the biases can be set manually by
attaching a MatrixEditor to the Weights access point.
Bias Variance

When the network is randomized, the biases are randomized based on a mean and a variance.
This cell specifies the variance of the randomization and is the same parameter that appears within
the Soma property page. Note that the biases can be set manually by attaching a MatrixEditor to
the Weights access point.

Drag and Drop

Axon Family Drag and Drop

Axons are base components on the breadboard. This means that they must be dropped directly
onto an empty breadboard location.

 See Also

MemoryAxon Family

ContextAxon

Family: MemoryAxon Family

Superclass: LinearAxon

Backprop Dual: BackContextAxon

 325

Description:

The ContextAxon integrates with a time constant the activity received by each PE in the layer. This
operation implements a (non-normalized) feedback from the scaled output of the PE to its input.
The ContextAxon is very similar to the IntegratorAxon, except that in this family the activity can
have instantaneous jumps, which will taper off according to the defined time constant. The gain
factor β is inherited from the LinearAxon. The time constant is implemented by the Axon’s weight
vector, i.e. τ = . This allows each PE to have its own time constant, each of which can be
adapted.

Activation Function:

Note: The Weights access point of the ContextAxon provides access to the time constant vector
(in the above equation).

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

GammaAxon

Family: MemoryAxon Family

Superclass: TDNNAxon

Backprop Dual: BackGammaAxon

 326

Description:

The GammaAxon provides a recursive memory of the input signals past. Note that the axon
receives a vector of inputs, therefore the GammaAxon implements a vector memory structure. The
memory depth is equal to K/µ, where K is the number of taps and µ is the Gamma coefficient. The
Gamma coefficient is implemented by the axon’s weight vector, i.e. τ = . This allows each PE to
have its own coefficient, each of which can be adapted. The delay between taps, τ, is an
adjustable parameter of the component.

Tap Activation Function:

Note: The Weights access point of the GammaAxon provides access to the Gamma coefficient
vector (in the above equation).

User Interaction:

Drag and Drop

Inspector

Access Point

Example

DLL Implementation

IntegratorAxon

Family: MemoryAxon Family

Superclass: ContextAxon

Backprop Dual: BackIntegratorAxon

 327

Description:

The IntegratorAxon integrates with a time constant the activity received by each PE in the layer.
This operation implements a normalized feedback from the scaled output of the PE to its input. The
IntegratorAxon is very similar to the ContextAxon, except that in this family the activity cannot have
instantaneous jumps. The gain factor β is inherited from the LinearAxon. The time constant is
implemented by the axons weight vector, i.e. τ = . This allows each PE to have its own time
constant, each of which can be adapted.

Activation Function:

Note: The Weights access point of the IntegratorAxon provides access to the time constant vector
(in the above equation).

User Interaction:

Drag and Drop

Inspector

Access Points

Example

DLL Implementation

LaguarreAxon

Family: MemoryAxon Family

Superclass: TDNNAxon

Backprop Dual: BackLaguarreAxon

 328

Description:

The LaguarreAxon memory structure is built from a low-pass filter with a pole at z = (1-µ), followed
by a cascade of K all-pass functions. This provides a recursive memory of the input signal’s past.
Notice that the axon receives a vector of inputs, therefore the LaguarreAxon implements a vector
memory structure. The memory depth is equal to K/µ, where K is the number of taps and is the
Laguarre coefficient. The Laguarre coefficient is implemented by the axon’s weight vector, i.e. µ =

. This allows each PE to have its own coefficient, each of which can be adapted. The delay
between taps, τ, is an adjustable parameter of the component.

Tap Activation Function:

Note: The Weights access point of the LaguarreAxon provides access to the Laguarre coefficient
vector (in the above equation).

User Interaction:

Drag and Drop

Inspector

Access Point

Example

DLL Implementation

SigmoidContextAxon

Family: MemoryAxon Family

Superclass: ContextAxon

 329

Backprop Dual: BackSigmoidContextAxon

Description:

The SigmoidContextAxon is very similar to the ContextAxon, except that the transfer function of
each PE is a sigmoid (i.e., saturates at 0 and 1) and the feedback is taken from this output.

Tap Activation Function:

The input data is transformed by a SigmoidAxon followed by a ContextAxon.

Note: The Weights access point of the SigmoidContextAxon provides access to the time constant
vector. There is no Bias as in the SigmoidAxon.

User Interaction:

Drag and Drop

Inspector

Access Point

Example

DLL Implementation

SigmoidIntegratorAxon

Family: MemoryAxon Family

Superclass: IntegratorAxon

Backprop Dual: BackSigmoidIntegratorAxon

Description:

The SigmoidIntegratorAxon implements the self-feedback of the SigmoidAxon. So it is a nonlinear
integrator, because its output activity saturates at 0 or 1.

 330

Tap Activation Function:

The input data is transformed by a SigmoidAxon followed by an IntegratorAxon.

Note: The Weights access point of the SigmoidIntegratorAxon provides access to the time constant
vector. There is no Bias as in the SigmoidAxon.

User Interaction:

Drag and Drop

Inspector

Access Point

Example

DLL Implementation

TanhContextAxon

Family: MemoryAxon Family

Superclass: ContextAxon

Backprop Dual: BackTanhContextAxon

Description:

Description: The TanhContextAxon is very similar to the ContextAxon, except that the feedback is
taken from the output of tanh PE, i.e. it will saturate at +/- 1.

Tap Activation Function:

The input data is transformed by a ContextAxon followed by a TanhAxon.

 331

Note: The Weights access point of the TanhContextAxon provides access to the time constant
vector. There is no Bias as in the TanhAxon.

User Interaction:

Drag and Drop

Inspector

Access Point

Example

DLL Implementation

TanhIntegratorAxon

Family: MemoryAxon Family

Superclass: TDNNAxon

Backprop Dual: BackTanhIntegratorAxon

Description:

The TanhIntegratorAxon implements the self-feedback of the TanhAxon. So it is a nonlinear
integrator, because its output activity saturates at +/- 1.

Tap Activation Function:

The input data is transformed by an IntegratorAxon followed by a TanhAxon.

Note: The Weights access point of the TanhIntegratorAxon provides access to the time constant
vector. There is no Bias as in the TanhAxon.

User Interaction:

 332

Drag and Drop

Inspector

Access Point

Example

DLL Implementation

TDNNAxon

Family: MemoryAxon Family

Superclass: Axon

Backprop Dual: BackTDNNAxon

Description:

The TDNNAxon is a multi-channel tapped delay line memory structure. The number of sample
delays between each tap, defined by τ, may be varied, allowing memory depth and the number of
taps to be decoupled. This forms a local memory whose length (depth) is equal to the number of
taps minus 1, times the tap delay, times the sampling period. Notice that the axon receives a vector
of inputs, therefore the TDNNAxon implements multiple tapped delay line (TDL) memory structures.

Tap Activation Function:

User Interaction:

Drag and Drop

Inspector

Access Points

Example

 333

DLL Implementation

Macro Actions

DLL Implementation

ContextAxon DLL Implementation

Component: ContextAxon

Protocol: PerformContextAxon

Description:

The ContextAxon integrates the activity received by each PE in the layer using an adaptable time
constant. Each PE within the data vector is computed by adding the product of the PE’s time
constant and the activity of the PE at the previous time step to the current activity. This sum is then
multiplied by a user-defined scaling factor.

Code:

void performContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta // Linear scaling factor (user-defined)
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++)
 data[i] = beta * (data[i] + tau[i] * delayedData[i]);
}

GammaAxon DLL Implementation

 334

Component: GammaAxon

Protocol: PerformGammaAxon

Description:

The GammaAxon is a multi-channel tapped delay line with a Gamma memory structure. With a
straight tapped delay line (TDNNAxon), each memory tap (PE) within the data vector is computed
by simply copying the value from the previous tap of the delayedData vector. With the
GammaAxon, a given tap within data vector is computed by taking a fraction (gamma) of the value
from the previous tap of the delayedData vector and adding it with a fraction (1-gamma) of the
same tap. The first PE of each channel (tap[0]) is simply the channel’s input and is not modified.

Code:

void performGammaAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 int taps // Number of memory taps
 NSFloat *gamma // Pointer to vector of gamma coefficients
)
{
 register int i,j,k,length=rows*cols;

 for (i=0; i<length; i++)
 for (j=1; j<taps; j++) {
 k = i + j*length;
 data[k] = gamma[i]*delayedData[k-length] + (1-
gamma[i])*delayedData[k];
 }
}

IntegratorAxon DLL Implementation

 335

Component: IntegratorAxon

Protocol: PerformContextAxon

Description:

The IntegratorAxon is very similar to the BackLaguarreAxon DLL Implementation, except that the
feedback connection is normalized. Each PE within the data vector is computed by adding the
product of the PE’s time constant and the activity of the PE at the previous time step to the product
of current activity times 1 minus the time constant. This sum is then multiplied by a user-defined
scaling factor.

Code:

void performContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta // Linear scaling factor (user-defined)
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++)
 data[i] = (NSFloat)(beta * ((1.0-tau[i])*data[i] +
tau[i]*delayedData[i]));
}

LaguarreAxon DLL Implementation

Component: LaguarreAxon

Protocol: PerformGammaAxon

 336

Description:

The LaguarreAxon is a multi-channel tapped delay line similar to the GammaAxon. The difference
is that this algorithm provides an orthogonal span of the memory space.

Code:

void performGammaAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 int taps // Number of memory taps
 NSFloat *gamma // Pointer to vector of gamma coefficients
)
{
 register int i,j,k,length=rows*cols;

 for (i=0; i<length; i++) {
 NSFloat gain = (NSFloat)pow(1-pow(gamma[i], 2), 0.5);
 for (j=1; j<taps; j++) {
 k = i + j*length;
 data[k] = delayedData[k-length] +
gamma[i]*delayedData[k];
 if (j==1)
 data[k] *= gain;
 else
 data[k] -= gamma[i]*data[k-length];
 }
 }
}

SigmoidContextAxon DLL Implementation

Component: SigmoidContextAxon

Protocol: PerformContextAxon

Description:

 337

The SigmoidContextAxon is very similar to the ContextAxon, except that the transfer function of
each PE is a sigmoid (i.e., saturates at 0 and 1) and the feedback is taken from this output.

Code:

void performContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta // Linear scaling factor (user-defined)
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 data[i] = beta * (data[i] + tau[i] * delayedData[i]);
 data[i] = (NSFloat)(1.0/(1.0+exp(-data[i])));
 }
}

SigmoidIntegratorAxon DLL Implementation

Component: SigmoidIntegratorAxon

Protocol: PerformContextAxon

Description:

The SigmoidIntegratorAxon is very similar to the IntegratorAxon, except that the transfer function of
each PE is a sigmoid (i.e., saturates at 0 and 1) and the feedback is taken from this output.

Code:

void performContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer

 338

 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta // Linear scaling factor (user-defined)
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 data[i] = beta * ((1-tau[i])*data[i] +
tau[i]*delayedData[i]);
 data[i] = 1/(1+(NSFloat)exp(-data[i]));
 }
}

TanhContextAxon DLL Implementation

Component: TanhContextAxon

Protocol: PerformContextAxon

Description:

The TanhContextAxon is very similar to the ContextAxon, except that the transfer function of each
PE is a hyperbolic tangent (i.e., saturates at -1 and 1) and the feedback is taken from this output.

Code:

void performContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta // Linear scaling factor (user-defined)
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++)

 339

 data[i] = (NSFloat)tanh(beta * (data[i] + tau[i] *
delayedData[i]));
}

TanhIntegratorAxon DLL Implementation

Component: TanhIntegratorAxon

Protocol: PerformContextAxon

Description:

The TanhIntegratorAxon is very similar to the IntegratorAxon, except that the transfer function of
each PE is a hyperbolic tangent (i.e., saturates at -1 and 1) and the feedback is taken from this
output.

Code:

void performContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta // Linear scaling factor (user-defined)
)
{
 for (i=0; i<length; i++)
 data[i] = (NSFloat)tanh(beta * ((1-tau[i])*data[i] +
tau[i]*delayedData[i]));
}

TDNNAxon DLL Implementation

 340

Component: TDNNAxon

Protocol: PerformTDNNAxon

Description:

The TDNNAxon is a multi-channel tapped delay line memory structure. For each memory tap (PE)
within the data vector, the value is copied from the previous tap of the delayedData vector. The first
PE of each channel (tap[0]) is simply the channel’s input and is not modified.

Code:

void performTDNNAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 int taps // Number of memory taps
)
{
 register int i,j,k,length=rows*cols;

 for (i=0; i<length; i++)
 for (j=1; j<taps; j++) {
 k = i + j*length;
 data[k] = delayedData[k-length];
 }
}

Examples

IntegratorAxon Example

Component: IntegratorAxon

 341

The IntegratorAxon can be used as a context unit in Jordan or Elman nets. Its function is to
integrate the past activity. It can also be used as an integrator PE at the output of a net.

The figure below illustrates the impulse response (the output for an impulse at the input) of the
IntegratorAxon. The red curve on the MegaScope is the input impulse, whereas the black and blue
curves illustrate the IntegratorAxon output with time constants of .7 and .5 respectively. The time
constant can be accessed by stamping a matrix editor on the Weights access point of the
IntegratorAxon (as shown in the figure below) or it can be accessed directly on the Feedback
property page of the IntegratorAxon inspector. Notice that increasing the time constant has the
affect of increasing the memory depth. To experiment with this example, load the breadboard
IntegratorAxonExample.nsb.

TanhIntegratorAxon Example

Component: TanhIntegratorAxon

 342

The TanhIntegratorAxon can be used as a context unit in Jordan or Elman nets. Its function is to
integrate the past activity. It can also be used as an integrator PE at the output of a net. A signal
fed into a TanhIntegratorAxon is processed by an IntegratorAxon followed by a TanhAxon. Note
that the Weights access point of the TanhIntegratorAxon provides access to the Time Constant (not
the Bias as with the TanhAxon).

The figure below illustrates the impulse response (the output for an impulse at the input) of the
TanhIntegratorAxon. The red curve on the MegaScope is the input impulse, whereas the black and
blue curves illustrate the TanhIntegratorAxon output with time constants of .7 and .5 respectively.
The time constant can be accessed by stamping a matrix editor on the Weights access point of the
TanhIntegratorAxon (as shown in the figure below) or it can be accessed directly on the Feedback
property page of the TanhIntegratorAxon inspector. Notice that increasing the time constant has
the affect of increasing the memory depth. To experiment with this example, load the breadboard
TanhIntegratorAxonExample.nsb.

SigmoidIntegratorAxon Example

 343

Component: SigmoidIntegratorAxon

The SigmoidIntegratorAxon can be used as a context unit in Jordan or Elman nets. Its function is to
integrate the past activity. It can also be used as an integrator PE at the output of a net. A signal
fed into a SigmoidIntegratorAxon is processed by a SigmoidAxon followed by an IntegratorAxon.
Note that the Weights access point of the SigmoidIntegratorAxon provides access to the Time
Constant (not the Bias as with the SigmoidAxon). To experiment with this example, load the
breadboard SigmoidIntegratorAxonExample.nsb.

 344

ContextAxon Example

Component: ContextAxon

The ContextAxon is normally used in Jordan or Elman nets.

The figure below illustrates the impulse response (the output for an impulse at the input) of the
ContextAxon. The red curve on the MegaScope is the input impulse, whereas the black and blue
curves illustrate the ContextAxon output with time constants of .9 and .6 respectively. The time
constant can be accessed by stamping a matrix editor on the Weights access point of the
ContextAxon (as shown in the figure below) or it can be accessed directly on the Feedback
property page of the ContextAxon inspector. Notice that increasing the time constant has the affect
of increasing the memory depth. To experiment with this example, load the breadboard
ContextAxonExample.nsb.

 345

SigmoidContextAxon Example

Component: SigmoidContextAxon

The SigmoidContextAxon is normally used in Jordan or Elman nets. A signal fed into a
SigmoidContextAxon is processed by a SigmoidAxon followed by a ContextAxon. Note that the
Weights access point of the SigmoidContextAxon provides access to the Time Constant (not the
Bias as with the SigmoidAxon). To experiment with this example, load the breadboard
SigmoidContextAxonExample.nsb.

 346

TanhContextAxon Example

Component: TanhContextAxon

The TanhContextAxon is normally used in Jordan or Elman nets. A signal fed into a
TanhContextAxon is processed by a ContextAxon followed by a TanhAxon. Note that the Weights
access point of the TanhContextAxon provides access to the Time Constant (not the Bias as with
the TanhAxon).

The figure below illustrates the impulse response (the output for an impulse at the input) of the
TanhContextAxon. The red curve on the MegaScope is the input impulse, whereas the black and
blue curves illustrate the TanhContextAxon output with time constants of .9 and .6 respectively.
The time constant can be accessed by stamping a matrix editor on the Weights access point of the
TanhContextAxon (as shown in the figure below) or it can be accessed directly on the Feedback
property page of the TanhContextAxon inspector. Notice that increasing the time constant has the
affect of increasing the memory depth. To experiment with this example, load the breadboard
TanhContextAxonExample.nsb.

 347

GammaAxon Example

Component: GammaAxon

The GammaAxon is typically used as an input layer when processing temporal sequences. This
allows the temporal signal to be presented directly to the network without preprocessing or
segmentation. The GammaAxon finds the best compromise between time resolution vs. memory
depth for the application. When used with Axon, the GammaAxon extends the Adaline to a
recursive adaptive linear filter.

The figure below illustrates the impulse response (the output for an impulse at the input) of each of
the taps of a 5 tap GammaAxon. Notice that the output of the first tap (black) is just an impulse.
This is because the input and the first tap are directly connected. In general, the point in time where
the response has a peak is approximately given by k/? where ? is the Gamma Coefficient and k is
the tap number (note that the directly connected first tap is number 0). In this example ? has been
set to .5 by stamping a MatrixEditor on the Weights access point of the GammaAxon and entering
.5 (see figure below). Thus, the depth of the memory can be controlled by adjusting the value of ?

 348

(i.e. increasing ? decreases the memory depth and vice versa). To experiment with this example,
load the breadboard GammaAxonExample.nsb.

LaguarreAxon Example

Component: LaguarreAxon

The LaguarreAxon is typically used as an input layer when processing temporal sequences. This
allows the temporal signal to be presented directly to the network without preprocessing or
segmentation.

The figure below illustrates the impulse response (the output for an impulse at the input) of each of
the taps of a 5 tap LaguarreAxon. Notice that the output of the first tap (black) is just an impulse.
This is because the input and the first tap are directly connected. In general, the point in time where

 349

the response has a peak is approximately given by k/? where ? is the Laguarre Coefficient and k is
the tap number (note that the directly connected first tap is number 0). In this example ? has been
set to .5 by stamping a MatrixEditor on the Weights access point of the LaguarreAxon and entering
.5 (see figure below). Thus, the depth of the memory can be controlled by adjusting the value of ?
(i.e. increasing ? decreases the memory depth and vice versa). To experiment with this example,
load the breadboard LaguarreAxonExample.nsb.

TDNNAxon Example

Component: TDNNAxon

Like any axon, the TDNNAxon can be placed anywhere within the network topology to provide local
memory. The TDNNAxon also serves as the superclass for a number of infinite impulse response
(IIR) memory structures. When used in conjunction with a FullSynapse, the TDNNAxon forms a
linear multivariate adaptive Finite Impulse Response (FIR) filter. In the digital signal processing
literature this system is called the FIR adaptive filter, so important in echo cancellation and line

 350

equalization. It is important to remember that this multivariate FIR filter can also be made adaptive,
so NeuroSolutions can also implement adaptive linear filter simulations.

The figure below shows the output of each of the taps of a 3 tap TDNNAxon, with a triangle
function as the input. The input is also set up to display on the MegaScope but it is completely
covered by the by the output of the first tap (red) since the first tap and the input are directly
connected. The second and third taps are simply time-delayed versions of the input as shown in
the figure. The length of the tap delay can be set within the TDNN property page of the TDNNAxon
inspector. To experiment with this example, load the breadboard TDNNAxonExample.nsb.

Inspectors

TDNNAxon Inspector

Family: MemoryAxon Family

Superclass Inspector: Axon Inspector

 351

Component Configuration:
Taps (SetTaps(int))

The TDNNAxon attaches a tapped delay line (TDL) to each PE in its input vector. This cell sets the
number of taps for each of these TDLs.
Tap Delay (SetTapDelay(int))

This cell is used to specify the delay (number of samples) between successive taps in the TDLs.
Rows (SetRows(int))

Used to specify the number of rows of PE’s this axon contains. The total number of PE’s for an
axon is Rows*Cols.
Cols (SetCols(int))

Used to specify the number of columns of PE’s this axon contains. The total number of PE’s for an
axon is Rows*Cols.
Output

This cell reports the total number of outputs that the TDNNAxon generates. This will be the number
of PE’s times the number of taps. Note that a component attached to the output does not
distinguish between the output taps and the PE’s; they are all treated as PE’s.

Feedback Inspector

Superclass Inspector: Axon Inspector

 352

Component Configuration:
PE’s

This cell may be used to change the number of PE’s for this component. This parameter is also
defined within the Axon Inspector
PE Gain

This cell specifies the PE gain, β? This term is primarily used to adjust the saturation for the
SigmoidContextAxon, SigmoidIntegratorAxon, TanhContextAxon, and TanhIntegratorAxon. See the
component reference for the use of β within the activation function
Time Constant (SetTimeConstant(float))

This cell specifies the default time constant ? for each PE. Each time constant can be individually
specified by attaching a MatrixEditor to the Weights access point of the Axon. See the component
reference for the use of ? within the activation function.

Macro Actions

TDNN Axon

TDNNAxon Macro Actions
Overview Superclass Macro Actions

Action Description
setTapDelay Sets the Tap Delay setting.

setTaps Sets the number of taps.

tapDelay Returns the Tap Delay setting.

taps Returns the number of taps.

 353

setTapDelay
Overview Macro Actions

Syntax

componentName.setTapDelay(tapDelay)

Parameters Type Description
return void

componentName Name defined on the engine property page.

tapDelay int The delay (number of samples) between successive taps in the TDLs
(see "Tap Delay" within the TDNNAxon Inspector).

setTaps
Overview Macro Actions

Syntax

componentName.setTaps(taps)

Parameters Type Description
return void

componentName Name defined on the engine property page.

taps int The number of taps for each tapped delay line (TDL) (see "Taps" within the
TDNNAxon Inspector).

tapDelay
Overview Macro Actions

Syntax

componentName.tapDelay()

Parameters Type Description
return int The delay (number of samples) between successive taps in the TDLs (see "Tap
Delay" within the TDNNAxon Inspector).

componentName Name defined on the engine property page.

taps
Overview Macro Actions

Syntax

componentName.taps()

 354

Parameters Type Description
return int The number of taps for each tapped delay line (TDL) (see "Taps" within the
TDNNAxon Inspector).

componentName Name defined on the engine property page.

FuzzyAxon Family

BellFuzzyAxon

Family: FuzzyAxon Family

Superclass: Axon

Description:

The BellFuzzyAxon is a type of FuzzyAxon that uses a bell-shaped curve as its membership
function. Each membership function takes 3 parameters, which are stored in the weight vector of
the BellFuzzyAxon.

Membership Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

 355

GaussianFuzzyAxon

Family: FuzzyAxon Family

Superclass: Axon

Description:

The GaussianFuzzyAxon is a type of FuzzyAxon that uses a gaussian-shaped curve as its
membership function. Each membership function takes 2 parameters, which are stored in the
weight vector of the GaussianFuzzyAxon.

Membership Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

DLL Implementation

GaussianFuzzyAxon DLL Implementation

 356

Component: GaussianFuzzyAxon

Protocol: PerformFuzzyAxon

Description:

The GaussianFuzzyAxon applies a number of gaussian-shaped membership functions to each
input neuron.

Code:

void performFuzzyAxon(
 DLLData *instance,// Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of processing
elements
 // (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the
layer
 NSFloat *param, // Pointer to the layer of parameters
for the MFs
 int paramIndex, // Index into the param array
 int PEIndex, // Index into the processing
elements of the Axon
 // (the data array)
 NSFloat *returnVal // Value to return after applying the MF
)
{
 int baseIndex = paramIndex * 2;
 NSFloat c = *(param + baseIndex);
 NSFloat sigma = *(param + baseIndex + 1);
 if (sigma == 0.0f)
 *returnVal = 0.0f;
 else {
 NSFloat exp_fraction = (*(data + PEIndex) - c) / sigma;
 NSFloat exp_final = (NSFloat) (pow ((double)exp_fraction,
(double)2.0) / (double)-2.0);
 *returnVal = (NSFloat)exp(exp_final);
 }
}

 357

BellFuzzyAxon DLL Implementation

Component: BellFuzzyAxon

Protocol: PerformFuzzyAxon

Description:

The BellFuzzyAxon applies a number of bell-shaped membership functions to each input neuron.

Code:

void performFuzzyAxon(
 DLLData *instance,// Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of processing
elements
 // (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the
layer
 NSFloat *param, // Pointer to the layer of parameters
for the MFs
 int paramIndex, // Index into the param array
 int PEIndex, // Index into the processing
elements of the Axon
 // (the data array)
 NSFloat *returnVal // Value to return after applying the MF
)
{
 int baseIndex = paramIndex * 3;
 NSFloat a = *(param + baseIndex);
 NSFloat b = *(param + baseIndex + 1);
 NSFloat c = *(param + baseIndex + 2);
 if (a == 0.0f)
 *returnVal = 0.0f;
 else {
 NSFloat tmp1 = (*(data + PEIndex) - c) / a;
 NSFloat tmp2 = tmp1 == 0.0f ? 0.0f : (NSFloat)pow(pow(tmp1,
2.0), b);
 *returnVal = (1 / (1 + tmp2));
 }

 358

}

Inspectors

FuzzyAxon Inspector

Components: BellFuzzyAxon; GaussianFuzzyAxon

Superclass Inspector: Axon Family Inspector

Component Configuration:

This component is primarily used as part of the CANFIS neural model built by the NeuralBuilder.
See the NeuralBuilder documentation for instructions on building this model.

Membership Functions per Input

Each input processing element of the FuzzyAxon has a number of fuzzy membership functions
assigned to it. This edit cell is used to specify this number. Note that the number of outputs
reported within the Soma inspector will match the number of membership functions per input
specified.

Synapse Family

ArbitrarySynapse

 359

Family: Synapse Family

Superclass: Synapse

Description:

The ArbitrarySynapse provides an arbitrarily connected linear map between its input and output
axons. Since each axon contains a vector of processing elements (PEs), the ArbitrarySynapse is
capable of connecting any PE in the input axon to an arbitrary PE in the output axon. The
connections can be either established manually or automatically to form common interconnection
patterns.

Activation Function:

The ArbitrarySynapse does not have a predefined activation function. We know that the map is
linear, but the interconnections are arbitrarily defined by the user.

Note: The Weights access point will provide the connection weights in vector form.

User Interaction:

Drag and Drop

Inspector

Access Points

Macro Actions

CombinerSynapse

Family: Synapse Family

Superclass: Synapse

 360

Description:
The CombinerSynapse is used to establish a one-to-one connection between all N PEs of the Axon
at the input with N PEs of the Axon at the output, in sequential order. The CombinerSynapse
inspector is used to specify the PE of the output Axon to use as the first connection (the one that is
connected to the PE 0 of the input Axon). This component is normally used within the neural-fuzzy
architecture built by the NeuralBuilder.

Activation Function:

The activation function will be the same as the FullSynapse, except the weights associated with
non-existent connections would be 0.

Note: The Weights access point will provide the connection weights in vector form.

User Interaction:

Drag and Drop

Inspector

Access Points

ContractorSynapse

Family: Synapse Family

Superclass: Synapse

Description:

The ContractorSynapse provides a connection mapping between an Axon at its input and an Axon
of smaller dimension at its output. The number of PEs of the input Axon should be an even multiple
of the number of PEs at the output Axon. This component is normally used within the neural-fuzzy
architecture built by the NeuralBuilder.

There are two connection sequences to choose from. The following shows an example of the two
sequences for a ContractorSynapse with six inputs and three outputs:

Sequence 1: I0-O0, I3-O1, I1-O1, I4-O1, I2-O2, I5-O2

Sequence 2: I0-O0, I0-O1, I2-O1, I3-O1, I4-O2, I5-O2

 361

where In-Om indicates a connection between input n and output m

Activation Function:

The activation function will be the same as the FullSynapse, except the weights associated with
non-existent connections would be 0.

Note: The Weights access point will provide the connection weights in vector form.

User Interaction:

Drag and Drop

Inspector

Access Points

ExpanderSynapse

Family: Synapse Family

Superclass: Synapse

Description:

The ExpanderSynapse provides a connection mapping between an Axon at its input and an Axon
of larger dimension at its output. The number of PEs of the output Axon should be an even multiple
of the number of PEs at the input Axon. This component is normally used within the neural-fuzzy
architecture built by the NeuralBuilder.

There are two connection sequences to choose from. The following shows an example of the two
sequences for an ExpanderSynapse with three inputs and six outputs:

Sequence 1: I0-O0, I0-O3, I1-O1, I1-O4, I2-O2, I2-O5

Sequence 2: I0-O0, I0-O1, I1-O2, I1-O3, I2-O4, I2-O5

where In-Om indicates a connection between input n and output m

 362

Activation Function:

The activation function will be the same as the FullSynapse, except the weights associated with
non-existent connections would be 0.

Note: The Weights access point will provide the connection weights in vector form.

User Interaction:

Drag and Drop

Inspector

Access Points

ModularSynapse

Family: Synapse Family

Superclass: Synapse

Description:

The ModularSynapse breaks up the neurons of the Axon at its input into equal sized groups, or
modules. The neurons of the Axon at the output are also divided into the same number of groups,
although the number of neurons per group may be different depending on the number of PEs of the
Axon. This Synapse then provides a full interconnection between the corresponding modules of the
two Axons. The number of modules is specified within the ModularSynapse inspector. This
component is normally used within the neural-fuzzy architecture built by the NeuralBuilder.

Activation Function:

The activation function will be the same as the FullSynapse, except the weights associated with
non-existent connections would be 0.

Note: The Weights access point will provide the connection weights in vector form.

 363

User Interaction:

Drag and Drop

Inspector

Access Points

FullSynapse

Family: Synapse Family

Superclass: Synapse

Backprop Dual: BackFullSynapse

Description:

The FullSynapse provides a fully connected linear map between its input and output axons. Since
each axon represents a vector of PEs, the FullSynapse simply performs a matrix multiplication. For
each PE in its output axon, the FullSynapse accumulates a weighted sum of activations from all
neurons in its input axons.

Activation Function:

Note: The Weights access point will provide the connection weights in vector form.

User Interaction:

Drag and Drop

Inspector

 364

Access Points

DLL Implementation

SVMOutputSynapse

Family: Synapse Family

Superclass: FullSynapse

Backprop Dual: BackFullSynapse

Description:

This component is used to implement the "Large Margin Classifier" segment of the Support Vector
Machine model.

User Interaction:

Drag and Drop

Inspector

Access Points

Synapse

Family: Synapse Family

Superclass: Soma

 365

Backprop Dual: BackSynapse

Description:

The Synapse applies an identity map between its input and output axons. Since this map is one to
one, the axons must have the same number of processing elements. The Synapse is the first
member of the Synapse family, and all subsequent members will subclass its functionality.

Activation Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

 Macro Actions

 See Also

Access Points

Synapse Family Access Points

Family: Synapse Family

Access points allow simulation components that are not part of the neural network topology to
probe and/or alter data flowing through the network. All members of the Synapse family share a
standard functional form. The sub-system block diagram given in diagram depicted this
functionality. Access to data flowing through any synapse is provided at the following two access
points,

 366

Activity Access:

Attaches the NSAccess component to the input axon's activity vector just prior to applying the delay
and activation function . It is important to realize that the data reported by this access
point actually belongs to the input axon, possibly delayed in time.

Weight Access:

All adaptive weights within the synapse are reported by attaching to Weight Access. This data may
be reported in vector or matrix form, depending on how the synapse stores it.

 See Also

DLL Implementation

FullSynapse DLL Implementation

Component: FullSynapse

Protocol: PerformFullSynapse

Description:

The FullSynapse component is similar to the Synapse except that the FullSynapse implements a
fully-connected linear map from its input to its output, while the Synapse implements only a one-to-
one mapping. This mapping requires a matrix of weights, which is adaptable by the Gradient
Search components. For each PE in its output axon, the FullSynapse accumulates a weighted sum
of activations from all neuron in its input axon.

Code:

 367

void performFullSynapse(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
 NSFloat *weights // Pointer to the fully-connected weight matrix
)
{
 int i, j,
 inCount=inRows*inCols,
 outCount=outRows*outCols;

 for (i=0; i<outCount; i++)
 for (j=0; j<inCount; j++)
 output[i] += W(i,j)*input[j];
}

Synapse DLL Implementation

Component: Synapse

Protocol: PerformSynapse

Description:

The Synapse component simply takes each PE from the Axon feeding the Synapse’s input and
adds its activity to the corresponding PE of the Axon at the Synapse’s output. The delay between
the input and output is defined by the user within the Synapse Inspector (see Synapse Family).
Note that the activity is accumulated at the output for the case of a summing junction (i.e.,
connection that is fed by multiple Synapses) at the output Axon. Also note that if there is a different
number of input PEs than output PEs, then the extra ones are ignored.

Code:

void performSynapse(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer

 368

 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
)
{
 int i,
 inCount=inRows*inCols,
 outCount=outRows*outCols,
 count = inCount<outCount? inCount: outCount;

 for (i=0; i<count; i++)
 output[i] += input[i];
}

Drag and Drop

Synapse Family Drag and Drop

Synapses are base components on the breadboard. This means that they must be dropped directly
onto an empty breadboard location.

 See Also

Inspectors

ArbitrarySynapse Inspector

Component: ArbitrarySynapse

Superclass Inspector: Synapse Inspector

 369

Component Configuration:
Connections Radio Buttons

The Radio Buttons, which appear on the right half of the inspector, are used to individually select
connections between neurons. Each Button is associated with one neuron, the left buttons
corresponding to the neurons at the input and the right buttons corresponding to the neurons at the
output. Any number of neurons from either side may be selected at once. The connections are
made once the Connect button is clicked on.
Connection Sliders

The left and right Sliders may be used to scroll through the visible input and output neurons,
respectively. As each input neuron comes into view, any connections it may have with the visible
output neurons will be displayed. The up and down Buttons associated with each of the Sliders
allows neurons to be scrolled one at a time. If the Sliders or Buttons turn gray, that means they are
disabled and not used during this mode. This could happen if the number of corresponding
neurons is less than six, or if the Scroll Fix Switch is on.
Scroll Fix

This Switch places the Sliders into fixed mode. In this mode each input neuron will be lined up with
its corresponding output neuron. This will apply as long as there are sufficient input or output
neurons to match. Once these have run out, the smaller of the two will remain stationary.
Near, Sparse, Random, Manual

These Radio Buttons are used in conjunction with the Connections cell. Specifying the desired
number of connections and then pressing Near, Sparse, or Random will automatically implement
the following connection schemes.

Near - tries to make connections to the Nth nearest neurons in the opposing layer.

Sparse - tries to evenly distribute N connections over the opposing layer.

Random - randomly makes N connections to neurons in the opposing layer.

 370

Once the connection scheme has been chosen, the connections will change under the following
conditions: 1) the number of Connections is changed by typing a new number in the Connections
cell, or 2) the number of neurons in either the input or output layer are changed, or 3) the
component is loaded from a saved breadboard. Note that the third condition can be avoided (i.e.,
the individual connections will be stored with the breadboard instead of regenerated) by selecting
the Manual radio button after the automated connections have been made (but before saving the
breadboard).

Pressing the Manual button will allow arbitrarily selected connections to be made. Arbitrary
"adding" or "pruning" of connections may be done at any time as long as the Manual Button is
highlighted. This works by selecting the input and output neurons, then clicking either the Connect
or Remove button.
Connections

This cell is used to indicate how many connections should be made from each neuron when using
the automatic connection schemes (See above description).
From Left, From Right

These radio buttons are used to determine which direction the automatic connection schemes
should use when computing which neurons to connect from and to.
Connect

This button is used to make connections between arbitrarily selected neurons. When this button is
pressed, every highlighted input neuron will be connected to every highlighted output neuron.
Clear

Pressing this button will remove all connections.
Remove

This button is used to remove connections between neurons. When this button is pressed, every
highlighted input neuron will be disconnected from each of the highlighted output neurons.

CombinerSynapse Inspector

Component: CombinerSynapse

Superclass Inspector: Synapse Inspector

 371

Component Configuration:
Starting PE

This specifies the PE of the Axon at the output to use as the first connection (the one that is
connected to the PE 0 of the input Axon). The remaining connections are then made in sequential
order (e.g., input PE 1 connects to output PE "Starting+1").

ContractorSynapse Inspector

Component: ContractorSynapse

Superclass Inspector: Synapse Inspector

Component Configuration:
Connection Sequence

 372

These Radio Buttons are used to specify the connection mapping between the input and output
PEs of the ExpanderSynapse. The button labeled "123123123" corresponds to the Sequence 1
example given within the ContractorSynapse component definition page and the button labeled
"111222333" corresponds to the Sequence 2 example.

ExpanderSynapse Inspector

Component: ExpanderSynapse

Superclass Inspector: Synapse Inspector

Component Configuration:
Connection Sequence

These Radio Buttons are used to specify the connection mapping between the input and output
PEs of the ExpanderSynapse. The button labeled "123123123" corresponds to the Sequence 1
example given within the ExpanderSynapse component definition page and the button labeled
"111222333" corresponds to the Sequence 2 example.

ModularSynapse Inspector

Component: ModularSynapse

Superclass Inspector: Synapse Inspector

 373

Component Configuration:
Modules

This specifies the number of groups to break up the Axons' neurons into. The ModularSynapse
component then provides a full interconnection between the neurons of the corresponding
modules.

Synapse Inspector

Family: Synapse Family

Superclass Inspector: Engine Inspector

Component Configuration:
Delay

 374

A synapse applies an arbitrary activation function to the activity of an axon at its input, and passes
the result to an axon at its output. The activation function can be applied to the input axon's current
activity, or its activity at any previous instant in time. The Delay cell allows the user to connect the
synapse to delayed versions of the input axon's activity. All recurrent connections on a breadboard
will require at least one synapse with a delay greater than zero.
Inputs

This cell reports the number of PEs within the Axon attached to the Synapse's input. This value
cannot be modified from this location.
Outputs

This cell reports the number of PEs within the Axon attached to the Synapse's output. This value
cannot be modified from this location.

 See Also

Macro Actions

ArbitrarySynapse

ArbitrarySynapse Macro Actions
Overview Superclass Macro Actions

Action Description
autoconnect Returns the autoconnect setting (Near, Sparse, Random, or Manual).

disconnectAll Removes all connections between neurons.

forward Returns the connection direction setting (left to right or right to left).

nConnections Returns the number of connections setting.

removeConnections Removes connections between neurons.

setAutoconnect Sets the autoconnect setting (Near, Sparse, Random, or Manual).

setForward Sets the connection direction setting (left to right or right to left).

setNConnections Sets the number of connections setting.

toggleInputNeuron Selects/deselects specific input neurons to be used in the next
connection.

toggleOutputNeuron Selects/deselects specific output neurons to be used in the next
connection.

autoconnect
Overview Macro Actions

 375

Syntax

componentName.autoconnect()

Parameters Type Description
return int Current autoconnect setting (see "Near, Sparse, Random, Manual" within the
ArbitrarySynapse Inspector).
 0 = Near
 1 = Sparse
 2 = Random
 3 = Manual

componentName Name defined on the engine property page.

disconnectAll
Overview Macro Actions

Syntax

componentName.disconnectAll()

Parameters Type Description
return void

componentName Name defined on the engine property page.

forward
Overview Macro Actions

Syntax

componentName.forward()

Parameters Type Description
return BOOL True if current direction setting is from left to right (see "From Left, From Right"
within the ArbitrarySynapse Inspector).

componentName Name defined on the engine property page.

nConnections
Overview Macro Actions

 376

Syntax

componentName.nConnections()

Parameters Type Description
return int The current number of connections from each neuron (see "Connections" within
the ArbitrarySynapse Inspector).

componentName Name defined on the engine property page.

removeConnections
Overview Macro Actions

Syntax

componentName.removeConnections()

Parameters Type Description
return void

componentName Name defined on the engine property page.

setAutoconnect
Overview Macro Actions

Syntax

componentName.setAutoconnect(autoconnect)

Parameters Type Description
return void

componentName Name defined on the engine property page.

autoconnect int New autoconnect setting (see "Near, Sparse, Random, Manual" within
the ArbitrarySynapse Inspector).
 0 = Near
 1 = Sparse
 2 = Random
 3 = Manual

 377

setForward
Overview Macro Actions

Syntax

componentName.setForward(forward)

Parameters Type Description
return void

componentName Name defined on the engine property page.

forward BOOL True if new direction setting is from left to right (see "From Left, From Right"
within the ArbitrarySynapse Inspector).

setNConnections
Overview Macro Actions

Syntax

componentName.setNConnections(nConnections)

Parameters Type Description
return void

componentName Name defined on the engine property page.

nConnections int The current number of connections from each neuron (see
"Connections" within the ArbitrarySynapse Inspector).

toggleInputNeuron
Overview Macro Actions

Syntax

componentName.toggleInputNeuron(neuronPos)

Parameters Type Description
return void

componentName Name defined on the engine property page.

neuronPos int Index of the input neuron to be selected/deselected for the next
connection (see "Connections Radio Buttons" within the ArbitrarySynapse Inspector).

toggleOutputNeuron
Overview Macro Actions

 378

Syntax

componentName.toggleOutputNeuron(neuronPos)

Parameters Type Description
return void

componentName Name defined on the engine property page.

neuronPos int Index of the output neuron to be selected/deselected for the next
connection (see "Connections Radio Buttons" within the ArbitrarySynapse Inspector).

FullSynapse

Synapse

Synapse Macro Actions
Overview Superclass Macro Actions

Action Description
delay Returns the Delay setting.

inputConnector Returns the name of the Axon attached to the Synapse's input.

outputConnector Returns the name of the Axon attached to the Synapse's output.

setDelay Sets the Delay setting.

delay
Overview Macro Actions

Syntax

componentName.delay()

Parameters Type Description
return int The Synapse’s delay in samples (see "Delay" within the Synapse Inspector).

componentName Name defined on the engine property page.

inputConnector
Overview Macro Actions

Syntax

componentName.inputConnector()

 379

Parameters Type Description
return string The name of the Axon attached to the Synapse's input.

componentName Name defined on the engine property page.

outputConnector
Overview Macro Actions

Syntax

componentName.outputConnector()

Parameters Type Description
return string The name of the Axon attached to the Synapse's output.

componentName Name defined on the engine property page.

setDelay
Overview Macro Actions

Syntax

componentName.setDelay(delay)

Parameters Type Description
return void

componentName Name defined on the engine property page.

delay int The Synapse’s delay in samples (see "Delay" within the Synapse Inspector).

Macro Actions

Soma

Soma Macro Actions
Overview Superclass Macro Actions

Action Description
networkJog Randomizes each weight of the component using its current value as the mean
and the variance specified within the Variance cell.

networkRandomize Randomizes each weight of the component using the mean specified
within the Mean cell and the variance specified within the Variance cell.

setEngineData Sets the soma's weights.

setWeightMean Sets the Mean value for the weight randomization.

 380

setWeightsFixed Sets the Fix Weights setting.

setWeightsSave Sets the Save Weights setting.

setWeightVariance Sets the Variance value for the weight randomization.

weightMean Returns the Mean value for the weight randomization.

weightsFixed Returns the Fix Weights setting.

weightsSave Returns the Save Weights setting.

weightVariance Returns the Variance value for the weight randomization.

networkJog
Overview Macro Actions

Syntax

componentName.networkJog()

Parameters Type Description
return void

componentName Name defined on the engine property page.

networkRandomize
Overview Macro Actions

Syntax

componentName.networkRandomize()

Parameters Type Description
return void

componentName Name defined on the engine property page.

setEngineData
Overview Macro Actions

Syntax

componentName.setEngineData(data)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 381

data variant An array of single-precision floating point values that contains the soma's
weights.

setWeightsFixed
Overview Macro Actions

Syntax

componentName.setWeightsFixed(weightsFixed)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightsFixed BOOL When TRUE, the adaptive weights for the component are frozen during
the randomization process (see "Fix Weights" within the Soma Family Inspector).

setWeightMean
Overview Macro Actions

Syntax

componentName.setWeightMean(weightMean)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightMean float The randomization mean for the component weights (see "Mean" within
the Soma Family Inspector).

setWeightsSave
Overview Macro Actions

Syntax

componentName.setWeightsSave(weightsSave)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightSave BOOL When TRUE, the weights will be saved when the breadboard is saved
(see "Save" within the Soma Family Inspector).

 382

setWeightVariance
Overview Macro Actions

Syntax

componentName.setWeightVariance(weightVariance)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightVariance float The randomization variance for the component weights (see "Variance"
within the Soma Family Inspector).

weightsFixed
Overview Macro Actions

Syntax

componentName.weightsFixed()

Parameters Type Description
return BOOL When TRUE, the adaptive weights for the component are frozen during the
randomization process (see "Fix Weights" within the Soma Family Inspector).

componentName Name defined on the engine property page.

weightMean
Overview Macro Actions

Syntax

componentName.weightMean()

Parameters Type Description
return float The randomization mean for the component weights (see "Mean" within the
Soma Family Inspector).

componentName Name defined on the engine property page.

weightsSave
Overview Macro Actions

Syntax

componentName.weightsSave()

 383

Parameters Type Description
return BOOL When TRUE, the weights will be saved when the breadboard is saved (see
"Save" within the Soma Family Inspector).

componentName Name defined on the engine property page.

weightVariance
Overview Macro Actions

Syntax

componentName.weightVariance()

Parameters Type Description
return float The randomization variance for the component weights (see "Variance" within
the Soma Family Inspector).

componentName Name defined on the engine property page.

Backprop Family
BackAxon Family

BackAxon

Family: BackAxon Family

Superclass: Axon

Activation Dual: Axon

Sensitivity Function:

 384

Gradient Function:

No weights

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackBiasAxon

Family: BackAxon Family

Superclass: BiasAxon

Activation Dual: BiasAxon

Sensitivity Function:

Gradient Function:

 385

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackCombinerAxon

Family: BackAxon Family

Superclass: BackAxon

Activation Dual: CombinerAxon

Sensitivity Function:

where i < N/2, and

where i >= N/2.

Gradient Function:

No weights to update.

User Interaction:

Drag and Drop

Inspector

 386

Access Points

DLL Implementation

BackLinearAxon

Family: BackAxon Family

Superclass: BackBiasAxon

Activation Dual: LinearAxon

Description:

The BackLinearAxon is the companion component for the LinearAxon that implements learning. It
basically allows for the adaptation of the bias weight. The slope can be scheduled or user modified.

Sensitivity Function:

Gradient Function:

User Interaction:

Drag and Drop

Inspector

Access Points

 387

DLL Implementation

Macro Actions

BackNormalizedAxon

Family: BackAxon Family

Superclass: BackAxon

Activation Dual: NormalizedAxon

Sensitivity Function:

Gradient Function:

No weights to update.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackNormalizedSigmoidAxon

 388

Family: BackAxon Family

Superclass: BackSigmoidAxon

Activation Dual: NormalizedSigmoidAxon

Sensitivity Function:

where is the sensitivity function of the BackSigmoidAxon.

Gradient Function:

Same as the BackSigmoidAxon.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackSigmoidAxon

 389

Family: BackAxon Family

Superclass: BackLinearAxon

Activation Duals: SigmoidAxon, LinearSigmoidAxon

Sensitivity Function:

 where O is the Nonlinearity Derivative Offset .

Gradient Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackTanhAxon

 390

Family: BackAxon Family

Superclass: BackLinearAxon

Activation Duals: TanhAxon, LinearTanhAxon

Sensitivity Function:

 where O is the Nonlinearity Derivative Offset .

Gradient Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackCriteriaControl

Family: BackAxon Family

Superclass: BackAxon

Activation Dual: ErrorCriteria Family

 391

Description:

The BackCriteriaControl is designed to stack on top of any member of the ErrorCriteria family, and
communicate with the Backprop components to perform backpropagation.

User Interaction:

Drag and Drop

Inspector

Access Points

BackBellFuzzyAxon

Family: BackAxon Family

Superclass: BackAxon

Activation Dual: BellFuzzyAxon

Description:

The BackBellFuzzyAxon is the companion component for the BellFuzzyAxon that implements
learning. It basically allows for the adaptation of the three parameters of each of the membership
functions.

Sensitivity Function:

Gradient Function:

 392

where wi = weight (MF parameter)

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackGaussianFuzzyAxon

Family: BackAxon Family

Superclass: BackAxon

Activation Dual: GaussianFuzzyAxon

 393

Description:

The BackGaussianFuzzyAxon is the companion component for the GaussianFuzzyAxon that
implements learning. It basically allows for the adaptation of the two parameters of each of the
membership functions.

Sensitivity Function:

Gradient Function:

where wi = weight (MF parameter)

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Access Points

BackAxon Family Access Points

Family:BackAxon Family

 394

Pre-Activity Gradients Access:

Attaches the Access component to the vector sum just prior to applying the activation function
. It is important to realize that this access point does not correspond to any physical

storage within the simulation. In other words, data may be injected or probed as activity flows
through the network, but is then immediately lost. Trying to alter the pre-activity out of sync with the
network data flow will actually alter the data storage for Activity Access.

Activity Gradients Access:

Attaches the Access component to the vector of activity immediately after the function map
.

Weights Gradients Access:

All adaptive weights within the axon are reported by attaching to Weight Access. This data may be
reported in vector or matrix form, depending on how the axon stores it. If a component does not
have any weights, this access point will not appear in the inspector.

DLL Implementation

BackAxon DLL Implementation

Component: BackAxon

Protocol: PerformBackAxon

Description:

Since the Axon component does not modify the data fed into the processing elements (PEs), the
BackAxon component does not modify the sensitivity vector. The Axon component does not have
any adaptable weights, so there is no gradient vector to compute.

Code:

void performBackAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error // Pointer to the sensitivity vector
)
{

 395

}

BackBiasAxon DLL Implementation

Component: BackBiasAxon

Protocol: PerformBackBiasAxon

Description:

Since the partial of the BiasAxon’s cost with respect to its activity is 1, the sensitivity vector is not
modified. The partial of the BiasAxon’s cost with respect to its weight vector is used to compute the
gradient vector. This vector is simply an accumulation of the error.

Code:

void performBackBiasAxon(
 DLLData *instance, // Pointer to instance data
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error // Pointer to the sensitivity vector
 NSFloat *gradient // Pointer to the bias gradient vector
)
{
 int i, length=rows*cols;

 if (gradient)
 for (i=0; i<length; i++)
 gradient[i] += error[i];
}

BackLinearAxon DLL Implementation

 396

Component: BackLinearAxon

Protocol: PerformBackLinearAxon

Description:

The partial of the LinearAxon’s cost with respect to its activity is the sensitivity from the previous
layer times beta. The partial of the LinearAxon’s cost with respect to its weight vector is used to
compute the gradient vector. As with the BiasAxon, this vector is simply an accumulation of the
error.

Code:

void performBackLinearAxon(
 DLLData *instance, // Pointer to instance data
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error // Pointer to the sensitivity vector
 NSFloat *gradient // Pointer to the bias gradient vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] *= beta;
 if (gradient)
 gradient[i] += error[i];
 }
}

BackSigmoidAxon DLL Implementation

Component: BackSigmoidAxon

Protocol: PerformBackLinearAxon

Description:

 397

The partial of the SigmoidAxon’s cost with respect to its activity is used to compute the sensitivity
vector. The partial of the SigmoidAxon’s cost with respect to its weight vector is used to compute
the gradient vector. As with the BiasAxon, this vector is simply an accumulation of the error.

Code:

void performBackLinearAxon(
 DLLData *instance, // Pointer to instance data
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error // Pointer to the sensitivity vector
 NSFloat *gradient // Pointer to the bias gradient vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] *= beta*(data[i]*(1.0f-data[i]) + 0.1f);
 if (gradient)
 gradient[i] += error[i];
 }
}

BackTanhAxon DLL Implementation

Component: BackTanhAxon

Protocol: PerformBackLinearAxon

Description:

The partial of the TanhAxon’s cost with respect to its activity is used to compute the sensitivity
vector. The partial of the TanhAxon’s cost with respect to its weight vector is used to compute the
gradient vector. As with the BiasAxon, this vector is simply an accumulation of the error.

Code:

void performBackLinearAxon(
 DLLData *instance, // Pointer to instance data

 398

 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error // Pointer to the sensitivity vector
 NSFloat *gradient // Pointer to the bias gradient vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] *= beta*(1.0f - data[i]*data[i] + 0.1f);
 if (gradient)
 gradient[i] += error[i];
 }
}

BackBellFuzzyAxon DLL Implementation

Component: BackBellFuzzyAxon

Protocol: PerformBackFuzzyAxon

Description:
The BellFuzzyAxon has three parameters for each membership function. This function computes
the partial of each of those parameters with respect to the input value corresponding to the winning
membership function.

Code:

void performBackFuzzyAxon(
 DLLData *instance, // Pointer to instance data (may be
NULL)
 DLLData *dualInstance,// Pointer to forward axon’s instance
data
 // (may be NULL)
 NSFloat *data, // Pointer to the layer of
processing
 // elements (PEs)
 int rows, // Number of rows of PEs in the
layer
 int cols, // Number of columns of PEs in

 399

the layer
 NSFloat *error, // Pointer to the sensitivity
vector
 NSFloat *param, // Pointer to the layer of
parameters for the
 // MFs
 int paramIndex, // Index of the MF parameter
 int winnerIndex, // Index of the winning MF
 NSFloat winnerVal, // Value of the winning Input
 NSFloat *returnVal // Return value
)
{
 NSFloat b;
 NSFloat c;
 NSFloat tmp1;
 NSFloat tmp2;
 NSFloat denom;
 NSFloat a = *(param + winnerIndex);
 if (a == 0.0f)
 *returnVal = 0.0f;
 b = *(param + winnerIndex + 1);
 c = *(param + winnerIndex + 2);
 tmp1 = (winnerVal - c)/a;
 tmp2 = tmp1 == 0 ? 0 : (NSFloat)pow(pow(tmp1, 2.0), b);
 denom = (1 + tmp2)*(1 + tmp2);
 if (paramIndex == winnerIndex)
 *returnVal = (2*b*tmp2/(a*denom));
 if (paramIndex == (winnerIndex + 1)) {
 if (tmp1 == 0)
 *returnVal = 0.0f;
 else
 *returnVal = ((NSFloat)-log(tmp1*tmp1)*tmp2/denom);
 }
 if (paramIndex == (winnerIndex + 2)) {
 if (winnerVal == c)
 *returnVal = 0.0f;
 else
 *returnVal = (2*b*tmp2/((winnerVal - c)*(denom)));
 }
}

BackGaussianFuzzyAxon DLL Implementation

 400

Component: BackGaussianFuzzyAxon

Protocol: PerformBackFuzzyAxon

Description:
The GaussianFuzzyAxon has two parameters for each membership function. This function
computes the partial of each of those parameters with respect to the input value corresponding to
the winning membership function.

Code:

void performBackFuzzyAxon(
 DLLData *instance, // Pointer to instance data (may be
NULL)
 DLLData *dualInstance,// Pointer to forward axon’s instance
data
 // (may be NULL)
 NSFloat *data, // Pointer to the layer of
processing
 // elements (PEs)
 int rows, // Number of rows of PEs in the
layer
 int cols, // Number of columns of PEs in
the layer
 NSFloat *error, // Pointer to the sensitivity
vector
 NSFloat *param, // Pointer to the layer of
parameters for the
 // MFs
 int paramIndex, // Index of the MF parameter
 int winnerIndex, // Index of the winning MF
 NSFloat winnerVal, // Value of the winning Input
 NSFloat *returnVal // Return value
)
{
 NSFloat c = *(param + winnerIndex);
 NSFloat sigma = *(param + winnerIndex + 1);
 if (sigma == 0.0f)
 *returnVal = 0.0f;
 else {
 NSFloat exp_fraction = (winnerVal - c) / sigma;
 NSFloat exp_final = (NSFloat)(pow (exp_fraction, 2.0) / -
2.0);
 NSFloat fwrd_activation = (NSFloat)exp (exp_final);
 if (paramIndex == winnerIndex)
 {
 NSFloat deriv_fwrd = (NSFloat)((winnerVal - c) / pow
(sigma, 2.0));
 *returnVal = fwrd_activation * deriv_fwrd;
 }
 if (paramIndex == (winnerIndex + 1)) {

 401

 NSFloat deriv_fwrd = (NSFloat)(pow ((winnerVal - c),
2.0) / pow (sigma, 3.0));
 *returnVal = fwrd_activation * deriv_fwrd;
 }
 }
}

Inspectors

BackLinearAxon Inspector

Component: BackLinearAxon

Superclass Inspector: Axon Inspector

Component Configuration:
Nonlinearity Derivative Offset

This offset is added to computed sensitivities in order to avoid a zero error, which could result in a
flat learning curve.

Macro Actions

Back Linear Axon

BackLinearAxon Macro Actions
Overview Superclass Macro Actions

Action Description

 402

offset Returns the nonlinearity derivative offset.

setOffset Sets the nonlinearity derivative offset.

offset
Overview Macro Actions

Syntax

componentName.offset()

Parameters Type Description
return float The nonlinearity derivative offset (see the BackLinearAxon Inspector).

componentName Name defined on the engine property page.

setOffset
Overview Macro Actions

Syntax

componentName.setOffset(offset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

offset float The nonlinearity derivative offset (see the BackLinearAxon Inspector).

BackMemoryAxon Family

BackContextAxon

Family: BackAxon Family

 403

Superclass: BackLinearAxon

Activation Dual: ContextAxon

Sensitivity Function:

Gradient Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackGammaAxon

Family: BackAxon Family

Superclass: BackTDNNAxon

Activation Dual: GammaAxon

Tap Sensitivity Function:

 404

Gradient Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackLaguarreAxon

Family: BackAxon Family

Superclass: BackTDNNAxon

Activation Dual: LaguarreAxon

Tap Sensitivity Function:

 405

Gradient Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackIntegratorAxon

Family: BackAxon Family

Superclass: BackContextAxon

Activation Dual: IntegratorAxon

Sensitivity Function:

Gradient Function:

 406

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackSigmoidContextAxon

Family: BackAxon Family

Superclass: BackContextAxon

Activation Dual: SigmoidContextAxon

Sensitivity Function:

See BackSigmoidAxon and BackContextAxon

Gradient Function:

See BackContextAxon

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

 407

BackSigmoidIntegratorAxon

Family: BackAxon Family

Superclass: BackIntegratorAxon

Activation Dual: SigmoidIntegratorAxon

Sensitivity Function:

See BackSigmoidAxon and BackIntegratorAxon

Gradient Function:

See BackIntegratorAxon

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackTanhContextAxon

Family: BackAxon Family

 408

Superclass: BackContextAxon

Activation Dual: TanhContextAxon

Sensitivity Function:

See BackTanhAxon and BackContextAxon

Gradient Function:

See BackContextAxon

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackTanhIntegratorAxon

Family: BackAxon Family

Superclass: BackIntegratorAxon

Activation Dual: TanhIntegratorAxon

Sensitivity Function:

See BackTanhAxon and BackIntegratorAxon

Gradient Function:

 409

See BackIntegratorAxon

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackTDNNAxon

Family: BackAxon Family

Superclass: BackAxon

Activation Dual: TDNNAxon

Tap Sensitivity Function:

Gradient Function:

No weights

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

 410

DLL Implementation

BackContextAxon DLL Implementation

Component: BackContextAxon

Protocol: PerformBackContextAxon

Description:

The gradient information is computed to update the time constants and the sensitivity vector is
computed for the backpropagation.

Code:

void performBackContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 NSFloat *data, // Pointer to the layer of PEs
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta, // Linear scaling factor (user-defined)
 NSFloat *gradient // Pointer to the tau gradient vector
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] = beta*(data[i] + tau[i]*delayedError[i]);
 if (gradient)
 gradient[i] += delayedError[i]*beta*data[i];
 }
}

BackGammaAxon DLL Implementation

 411

Component: BackGammaAxon

Protocol: PerformBackGammaAxon

Description:

The gradient information is computed to update the gamma coefficients and the sensitivity vector is
computed for the backpropagation.

Code:

void performBackGammaAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 int taps, // Number of memory taps (user-defined)
 NSFloat *data // Pointer to the layers of (PEs)
 NSFloat *gamma, // Pointer to vector of gamma coefficients
 NSFloat *gradient // Pointer to the gamma gradient vector
)
{
 register int i,j,k,length=rows*cols;

 for (i=0; i<length; i++)
 for (j=1; j<taps; j++) {
 k = i + j*length;
 error[k-length] += gamma[i]*delayedError[k];
 error[k] += (1.0f-gamma[i])*delayedError[k];
 if (gradient)
 gradient[i] += delayedError[k]*(data[k-
length]-data[k]);
 }
}

BackIntegratorAxon DLL Implementation

 412

Component: BackIntegratorAxon

Protocol: PerformBackContextAxon

Description:

The gradient information is computed to update the time constants and the sensitivity vector is
computed for the backpropagation.

Code:

void performBackContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 NSFloat *data, // Pointer to the layer of PEs
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta, // Linear scaling factor (user-defined)
 NSFloat *gradient // Pointer to the tau gradient vector
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] = beta*((1.0f-tau[i])*data[i] +
tau[i]*delayedError[i]);
 if (gradient)
 gradient[i] += delayedError[i]*beta*data[i];
 }
}

BackLaguarreAxon DLL Implementation

 413

Component: BackLaguarreAxon

Protocol: PerformBackGammaAxon DLL Protocol

Description:

The gradient information is computed to update the gamma coefficients and the sensitivity vector is
computed for the backpropagation.

Code:

void performBackGammaAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 int taps, // Number of memory taps (user-defined)
 NSFloat *data // Pointer to the layers of (PEs)
 NSFloat *gamma, // Pointer to vector of gamma coefficients
 NSFloat *gradient // Pointer to the gamma gradient vector
)
{
register int i,j,k,length=rows*cols;
 NSFloat gain;

 for (i=0; i<length; i++) {
 gain = (NSFloat)pow(1-pow(gamma[i], 2.0f), 0.5f);
 for (j=1; j<taps; j++) {
 k = i + j*length;
 error[k-length] += delayedError[k];
 error[k] += gamma[i]*delayedError[k];
 if (gradient)
 gradient[i] += delayedError[k]*data[k];
 if (j==1)
 error[k] *= gain;
 else {
 error[k-length] -= gamma[i]*error[k];
 if (gradient)
 gradient[i] -= error[k]*data[k-length];
 }
 }
 }
}

 414

BackSigmoidContextAxon DLL Implementation

Component: BackSigmoidContextAxon

Protocol: PerformBackContextAxon

Description:

The gradient information is computed to update the time constants and the sensitivity vector is
computed for the backpropagation.

Code:

void performBackContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 NSFloat *data, // Pointer to the layer of PEs
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta, // Linear scaling factor (user-defined)
 NSFloat *gradient // Pointer to the tau gradient vector
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] *= data[i]*(1.0f-data[i]) + 0.1f;
 error[i] = beta*(data[i] + tau[i]*delayedError[i]);
 if (gradient)
 gradient[i] += delayedError[i]*beta*data[i];
 }
}

BackSigmoidIntegratorAxon DLL Implementation

 415

Component: BackSigmoidIntegratorAxon

Protocol: PerformBackContextAxon

Description:

The gradient information is computed to update the time constants and the sensitivity vector is
computed for the backpropagation.

Code:

void performBackContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 NSFloat *data, // Pointer to the layer of PEs
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta, // Linear scaling factor (user-defined)
 NSFloat *gradient // Pointer to the tau gradient vector
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] *= data[i]*(1.0f-data[i]) + 0.1f;
 error[i] = beta*((1.0f-tau[i])*data[i] +
tau[i]*delayedError[i]);
 if (gradient)
 gradient[i] += delayedError[i]*beta*data[i];
 }
}

BackTanhContextAxon DLL Implementation

 416

Component: BackTanhContextAxon

Protocol: PerformBackContextAxon

Description:

The gradient information is computed to update the time constants and the sensitivity vector is
computed for the backpropagation.

Code:

void performBackContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 NSFloat *data, // Pointer to the layer of PEs
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta, // Linear scaling factor (user-defined)
 NSFloat *gradient // Pointer to the tau gradient vector
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] *= 1.0f - data[i]*data[i] + 0.1f;
 error[i] = beta*(data[i] + tau[i]*delayedError[i]);
 if (gradient)
 gradient[i] += delayedError[i]*beta*data[i];
 }
}

BackTanhIntegratorAxon DLL Implementation

Component: BackTanhIntegratorAxon

 417

Protocol: PerformBackContextAxon

Description:

The gradient information is computed to update the time constants and the sensitivity vector is
computed for the backpropagation.

Code:

void performBackContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 NSFloat *data, // Pointer to the layer of PEs
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta, // Linear scaling factor (user-defined)
 NSFloat *gradient // Pointer to the tau gradient vector
)
{
 int i, length=rows*cols;

 for (i=0; i<length; i++) {
 error[i] *= 1.0f - error[i]*error[i] + 0.1f;
 error[i] = beta*((1.0f-tau[i])*error[i] +
tau[i]*delayedError[i]);
 if (gradient)
 gradient[i] += delayedError[i]*beta*data[i];
 }
}

BackTDNNAxon DLL Implementation

Component: BackTDNNAxon

Protocol: PerformBackTDNNAxon

Description:

 418

Since the TDNNAxon has no adaptable weights, there is no gradient information to compute. The
sensitivity vector is computed by taking the backpropagated error from each PE and adding the
delayedError from the next tap.

Code:

void performBackTDNNAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity
vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 int taps, // Number of memory taps (user-defined)
 NSFloat *data // Pointer to the layers of (PEs)
)
{
 register int i,j,k,length=rows*cols;

 for (i=0; i<length; i++)
 for (j=1; j<taps; j++) {
 k = i + j*length;
 error[k-length] += delayedError[k];
 }
}

BackSynapse Family

BackArbitrarySynapse

Family: BackSynapse Family

Superclass: BackSynapse

Activation Dual: ArbitrarySynapse

Sensitivity Function and Gradient Function:

There is no pre-specified map for the ArbitrarySynapse. This component will backpropagate the
sensitivities and gradients for any user defined connections within its dual component.

 419

User Interaction:

Drag and Drop

Inspector

Access Points

BackFullSynapse

Family: BackSynapse Family

Superclass: BackSynapse

Activation Dual: FullSynapse

Sensitivity Function:

Gradient Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

BackSynapse

 420

Family: BackSynapse Family

Superclass: Synapse

Activation Dual: Synapse

Sensitivity Function:

Gradient Function:

No weights

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

DLL Implementation

BackFullSynapse DLL Implementation

Component: BackFullSynapse

 421

Protocol: PerformBackFullSynapse

Description:

The gradient of the weight going from the jth PE of the input BackAxon to the ith PE of the output
BackAxon is the product of the error at the ith PE of the input BackAxon and the activity of the jth
PE of the output BackAxon’s activation dual component.

The error at the ith PE of the output BackAxon is the sum of the products of each weight connected
to that PE and the corresponding error at the input BackAxon. Note that the input and output are
reversed from the activation dual (i.e., the Synapse).

Code:

void performBackFullSynapse(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *errorIn, // Pointer to the input error layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs at the input
 NSFloat *errorOut, // Pointer to the output error layer
 int outRows, // Number of rows of PEs in the output
layer
 int outCols, // Number of columns of PEs at the output
 NSFloat *input // Pointer to output PEs of forward synapse
 NSFloat *weights, // Pointer to fully-connected weight matrix
 NSFloat *gradients // Pointer to the weight gradient matrix
)
{
 int i, j,
 inCount=inRows*inCols,
 outCount=outRows*outCols;

 for (i=0; i<outCount; i++)
 for (j=0; j<inCount; j++) {
 errorOut[i] += W(j,i)*errorIn[j];
 if (gradients)
 Wg(j,i) += errorIn[j]*input[i];
 }
}

BackSynapse DLL Implementation

 422

Component: BackSynapse

Protocol: PerformBackSynapse

Description:

Since the Synapse component has no adaptable weights, there is no gradient information
computed. The sensitivity vector is computed by taking the error from the previous backprop layer
and adding it to the error at the next backprop layer. Note that the error is accumulated at the
output for the case of a splitting node (i.e., connection that feeds multiple Synapses) at the Axon
that feeds the activation dual component (i.e., the Synapse).

The delay between the output and input is defined by the user within the inspector of the activation
dual (see Back Synapse Family). Note that the input and output are reversed from the activation
dual (i.e., the Synapse).

Code:

void performBackSynapse(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *errorIn, // Pointer to the input error layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs at the input
 NSFloat *errorOut, // Pointer to the output error layer
 int outRows, // Number of rows of PEs in the output
layer
 int outCols, // Number of columns of PEs at the output
 NSFloat *input // Pointer to output PEs of forward synapse
)
{
 int i,
 inCount=inRows*inCols,
 outCount=outRows*outCols,
 count=inCount<outCount? inCount: outCount;

 for (i=0; i<count; i++)
 errorOut[i] += errorIn[i];
}

Drag and Drop

Backprop Family Drag and Drop

Each member of the Backprop family was custom developed to perform backpropagation for a
component in the Activation family. There is a one-to-one association between members of the
Backprop family and the adaptive Activation components. The Activation component associated
with any Backprop member will be referred to as its Activation dual. Each member of the
Backprop family must be dropped directly on its activation dual, or a subclass of its dual.

 423

 See Also

Controls Family
StaticControl

Family: Controls Family

Superclass: Control

Description:

The StaticControl implements data flow for static backpropagation. It expects a static input and a
static desired response, from which an error is obtained. The error is propagated through the dual
system (backprop plane).

The user-defined options are limited to the number of patterns in the training set (exemplars/epoch)
and the number of training cycles (epochs/experiment). The Control Toolbar contains controls to
start/stop the simulation, reset the network (randomize the weights and clear the activations), and
jog the weights (alter them by a small random value). The user can also single-step through the
presentation of patterns either one exemplar at a time or one epoch at a time using the Static
property page.

The StaticControl allows a Cross Validation data set to flow through a network during learning,
without affecting the updating of the weights.

User Interaction:

Drag and Drop

Inspector

Toolbar

Window

Access Points

Macro Actions

 424

 See Also

Schedule Family

BackStaticControl

Family: Controls Family

Superclass: Control

Description:

The BackStaticControl component is used in conjunction with the StaticControl component. Static
backpropagation assumes that the output of a network is strictly a function of its present input (i.e.,
the network topology is static). In this case, the gradients and sensitivities are only dependent on
the error and activations from the current time step. Note that static backpropagation can be used
with temporal problems when using components with internal memory taps (e.g., TDNNAxon).

The user specifies the number of patterns to be presented to the network before a weight update is
computed. If the weights are updated after every exemplar (exemplars/update = 1), then this is
termed on-line learning. If the weights are update after every epoch (exemplars/update =
exemplars/epoch), then this is termed batch learning.

This component also has a facility for automatically constructing or removing the learning dynamics
(the backprop and gradient search planes) from the network. This provides an efficient means of
switching a network between testing and training modes.

User Interaction:

Drag and Drop

Inspector

Macro Actions

 See Also

DynamicControl

 425

Family: Controls Family

Superclass: Control

Description:

The DynamicControl component is responsible for synchronizing the presentation of data to a
neural network. The activation of all network simulations are divided into experiments, epochs,
exemplars and forward samples. The DynamicControl component is capable of controlling both
static and dynamic network topologies and is an extension of the StaticControl component.

The outputs of a static network are only a function of its inputs and states at the current instant in
time. This relationship can be depicted by the following equation:

y(t) = f(i(t), x(t), w)

where y(t) are the network's outputs, i(t) are inputs, x(t) are internal nodes and w are its weights.

The outputs of a dynamic network can be a function of its inputs and internal states at the present
time step, as well as its states at any past instant in time. This is illustrated by:

y(t) = f(i(t), x(t), x(t-1), ... , x(t-T), w)

The term forward samples refers to the individual pieces of temporal information. An exemplar is a
complete pattern of samples. The temporal dimension of an exemplar is defined by the number of
samples/exemplar. Note that the temporal dimension of a static network is one. An epoch refers to
the set of all exemplars to be presented during the training of a network. A neural network
experiment consists of the repeated presentation of an epoch to the network until it has sufficiently
trained.

Like the StaticControl, the DynamicControl allows a Cross Validation data set to flow through a
network during learning, without affecting the updating of the weights.

User Interaction:

Drag and Drop

Inspector

Toolbar

Macro Actions

 426

 See Also

BackDynamicControl

Family: Controls Family

Superclass: Control

Description:

The BackDynamicControl and BackStaticControl components are responsible for the
synchronization of components implementing the backpropagation learning rule (i.e., the
backpropagation plane). There are two distinct synchronization paradigms for backpropagation.
Synchronization refers to the way in which the network processes sensitivity (error) data. The
ActivationControl family divides simulations into experiments, epochs, exemplars and forward
samples. The BackDynamicControl further defines a simulation by the number of backward
samples per exemplar and the number of exemplars per update. As with the static case, the
exemplars/update specifies how many times this process is repeated before the weight gradients
are applied to the weights. Backpropagation can either be synchronized in Static, Trajectory or
Fixed Point modes.

Static backpropagation requires that the samples/exemplar of both the DynamicControl and the
BackDynamicControl be set to one. See the reference for BackStaticControl for a description of
static backpropagation.

Training a network in Trajectory mode assumes that each exemplar has a temporal dimension
defined by its forward samples (period), and that there exists some desired response for the
network's output over this period. The network is first run forward in time over the entire period,
during which an error is determined between the network's output and the desired response. Then
the network is run backwards for a prescribed number of samples (defined by the
samples/exemplar of the BackDynamicControl) to compute the gradients and sensitivities. This
forward/backward pass is considered a single exemplar.

Fixed Point mode assumes that each exemplar represents a static pattern that is to be embedded
as a fixed point of a recurrent network. Here the terms forward samples and backward samples can
be thought of as the forward relaxation period and backward relaxation period, respectively. All
inputs are held constant while the network is repeatedly fired during its forward relaxation period,
specified by the samples/exemplar of the DynamicControl component. Note that there are no
guarantees that the forward activity of the network will relax to a fixed point, or even relax at all.
After the network has relaxed, an error is determined and held as constant input to the
backpropagation layer. Similarly, the error is backpropagated through the backprop plane for its
backward relaxation period, specified by the samples/exemplar of the BackDynamicControl. This
forward/backward relaxation is considered to be one exemplar.

User Interaction:

Drag and Drop

Inspector

 427

Macro Actions

 See Also

GeneticControl

Family: Controls Family

Superclass: Control

Description:

The GeneticControl component implements a genetic algorithm to optimize one or more
parameters within the neural network. The most common parameters to optimize are the input
columns, the number of hidden PEs, number of memory taps, and the learning rates. Many other
network parameters are available for optimization.

Genetic Algorithms are general-purpose search algorithms based upon the principles of evolution
observed in nature. Genetic algorithms combine selection, crossover, and mutation operators with
the goal of finding the best solution to a problem. They search for this optimal solution until a
specified termination criterion is met. In NeuroSolutions the criteria used to evaluate the fitness of
each potential solution is the lowest cost achieved during the training run.

The solution to a problem is called a chromosome. A chromosome is made up of a collection of
genes, which are simply the neural network parameters to be optimized. A genetic algorithm
creates an initial population (a collection of chromosomes) and then evaluates this population by
training a neural network for each chromosome. It then evolves the population through multiple
generations (using the genetic operators discussed above) in the search for the best network
parameters.

User Interaction:

Drag and Drop

Inspector

Window

 428

Access Points

StaticControl Access Points

Family: Activation Control Family

Epochs:
This access point reports the number of epochs that have been run during a given simulation. This
number may be used to transmit messages at various points during leaning.

Exemplars:

This access point reports the number of exemplars that have been run during the current epoch.
This number may be used to transmit messages at various points during leaning.

GeneticControl Access Points

Family: Activation Control Family

Best Fitness:
Reports the fitness of the chromosome with the lowest value. In other words, this is the lowest
Average Cost reported by the ErrorCriterion since the beginning of the genetic run.

Average Fitness:

Reports the average fitness of all of the chromosomes in the current population. Note that the
fitness is the Average Cost reported by the ErrorCriterion.

SD Fitness:

Reports the standard deviation fitness of all of the chromosomes in the current population. Note
that the fitness is the Average Cost reported by the ErrorCriterion.

Worst Fitness:

Reports the fitness of the chromosome with the highest value. Note that the fitness is the Average
Cost reported by the Error Criterion.

Generations:

Reports the generation number. Note that this value is also reported within the Simulation Progress
window.

Drag and Drop

Controls Drag and Drop

 429

Components: StaticControl, DynamicControl, GeneticControl

All network simulations will require one, and only one of either the StaticControl or
DynamicControl component on the breadboard. This component may be places anywhere within
the breadboard. The GeneticControl must be stamped on top of either a BackStaticControl or
BackDynamicControl component.

 See Also

Inspectors

Exemplar Weighting Inspector

Component: BackStaticControl

Superclass Inspector: Engine Inspector

Component Configuration:
Weight the Gradients

When this switch is set, the gradients are weighted for each exemplar based on the coefficients
stored in the weighting file.
Weight the Reported Cost

 430

When this switch is set, the computation of the reported cost is weighted for each exemplar based
on the coefficients stored in the weighting file.
Weighting File

Opens a file dialog box to select the path of the exemplar weighting file. This file should contain one
row for each exemplar of the training set. Each row contains a single floating point value
representing the weighting coefficient for the exemplar. The higher the value, the more the error for
the exemplar changes the gradient and/or cost (1.0 is the default).
Assign Weights to File

Computes the default weights for the weighting file based on the following formula:

Wi = y/(x*Zi)

where Zi = # of exemplars for output class i

Wi = weight for output class i

x = # of classes

y = # of exemplars

This function only works properly when the outputs are unary encoded (i.e., each output class is
represented by a unique output PE).
Edit

Opens the weighting file using the default text editor.

Progress Display Inspector

Components: StaticControl, DynamicControl

Superclass Inspector: Engine Inspector

 431

Component Configuration:
Update Every

Specifies how often to update the display of the Simulation Progress Window.
Seconds

When this switch is set, the Simulation Progress Window is updated every x seconds, where x is
defined within the Update Every edit cell. This setting will not work properly when the simulation is
run from an external application such as NeuroSolutions for Excel.
Epochs

When this switch is set, the Simulation Progress Window is updated after every x epochs of
simulation, where x is defined within the Update Every edit cell. It is recommended that you use this
setting when the simulation is run from an external application such as NeuroSolutions for Excel.
Show Exemplars

When this switch is set, the exemplar counter is displayed below the epoch counter within the
Simulation Progress Window.
Force Window on Top

When this switch is set, the Simulation Progress Window is always displayed on top of the other
windows.
Open

This button opens the Simulation Progress Window.
Close

This button closes the Simulation Progress Window.

Weights Inspector

Components: Static Control

 432

Dynamic Control

Superclass Inspector: Auto Macros Inspector

Component Configuration:
Load

Clicking this button will bring up an open panel for specifying a NeuroSolutions Weights File, then
import all adaptive network parameters from this file. This allows a convenient interface with which
to import trained network weights, or to initialize the network with a user-defined set of weights. See
the Save Weights section below for a definition of the file layout. Note that if the "Use Current File"
switch is set, the open panel is bypassed and the current file is used.

The dimensions of the current topology are stored and are automatically recovered when the
weights are loaded. Therefore, the component interconnections for the loading and saved
topologies must agree, but the dimensions (e.g. the number of PEs) can differ.
Save

Clicking this button will bring up a save panel for specifying a NeuroSolutions Weights File, then
export all adaptive network parameters to this file. This allows a convenient interface with which to
extract trained network weights to be used by another application, or to save the weights of several
trials and keep the best results. Note that if the "Use Current File as Base Name" switch is set, the
save panel is bypassed and the current file is used.
Edit

This button is used to edit the current Weights File. The program used to view the file is determined
based on the file’s extension and application associated with that extension defined within
Windows. Click here for instructions on associating an editor with a file extension.
Use Current File

If you click this switch and there is no file defined, a file save dialog box will appear for you to select
the file to use for future weight saves. Once this switch is set, all file saves will use this file (or a
slight variant if "Auto Increment" is selected). When both the "Save Best" switch and the "Use
Current File" switches are set, the path of the best weights file is the same as the path specified for
the normal weights file except it will have a ".bst" extension instead of ".nsw".
Auto Increment

 433

When this switch is turned on, a counter is incremented each time the weights are loaded or saved.
This counter is appended onto the base file name defined (see above). Note the "Use Current File"
switch must be set in order for this switch to be enabled.
Zero on Reset

This switch specifies whether or not the file name counter (see above) will be set to zero when the
network is reset. Note that the "Use Name" switch must be set in order for this switch to be
enabled.
Save Best

This switch specifies that the best weights (the weights that produced the lowest error) are
automatically saved during training. This switch is tied to the "Save Best" switch of the ErrorCriteria
inspector – see this page for all of the configuration options of this feature.
Load Best on Test

If this switch is set and there is an ErrorCriteria component on the breadboard and the Learning
switch of the Static page of the inspector is turned off (the default for the Testing set), then the best
weights stored during training are automatically loaded just before the network is run.
Use Seed

When this switch is set, the randomization of the weights is seeded the same each time, allowing
you to start with the same initial conditions for multiple experiments.
Seed

This is the value used to seed the weight randomization when the "Use Seed" switch is set.

 See Also

StaticControl Inspector

Components: Static Control

Dynamic Control

Superclass Inspector: Termination Inspector

 434

Component Configuration:
Epochs / Run (SetEpochs(int))

This cell specifies the maximum number of epochs to run (i.e., training cycles) before the simulation
stops. Note that the simulation can also be stopped manually with the Control Toolbar, or
automatically using one or more Transmitters.
Exemplars / Epoch

This cell specifies the number of exemplars that comprise one epoch of data (i.e., the number of
patterns in the training set). This value is automatically determined from the exemplars reported by
the File components and cannot be modified by the user.
Epochs / Cross Val.

This cell specifies the number of training epochs between each cross validation epoch. The higher
this number, the less often the network is tested.
Learning

This switch enables/disables the learning for the entire network (for the active data set). It does this
by setting the Learning switch of the BackpropControl component and any Unsupervised
components. Note that when the learning is disabled, the weights are not randomized when the
network is reset (see Control Toolbar).
Active Data Set

This cell is used to select the currently active data set. The available data sets are detemined from
the File components on the breadboard.
Cross Validation Data Set

This cell is used to select the data set that is used for the Cross Validation portion of the simulation.
The available data sets are detemined from the File components on the breadboard. If "None" is
selected then cross validation is not performed.
Epoch

Runs the simulation for a duration of one epoch.
Exemplar

 435

Runs the simulation for a duration of one exemplar.
Perform

Performs the Sensitivity Analysis operation.
Dither

The amount that the inputs are dithered during the Sensitivity Analysis operation.

 See Also

Termination Inspector

Components: Static Control

Dynamic Control

Superclass Inspector: Weights Inspector

Component Configuration:
Terminate after (setTerminateWOImprovement(bool))

In general, the error of the cross validation set will initially drop with the error of the training set.
Once the network begins to "memorize" the training set, the cross validation error will begin to rise.
When this switch is set, the training will stop if the cross validation error has not reached a new low
value within the specified number of epochs. It is important to note that the weights can
automatically be saved at the point of lowest cross validation error even if the simulation stops
many epochs afterwards. See the Weights page of the inspector for more information.
Epochs w/o improvement in cross val. Error (setMaxEpochsWoImprovement(int))

This cell specifies the number of epochs to let the network run without improvement in the cross
validation error, as described above.

 436

DynamicControl Inspector

Component: DynamicControl

Superclass Inspector: Iterative Prediction Inspector

Component Configuration:
Samples / Exemplar (SetSamples(int))

The term forward samples refers to the individual pieces of temporal information. An exemplar is a
complete pattern of samples. The temporal dimension of an exemplar is defined by this cell. Note
that this value is 1 for static networks.
Static

This radio button forces the number of samples/exemplar to be 1. Note that this is equivalent to
using the StaticControl component.
Fixed Point

This radio button sets the network synchronization to be in fixed point mode. See the
DynamicControl reference for an explanation of this mode.
Trajectory

This radio button sets the network synchronization to be in trajectory mode. See the
DynamicControl reference for an explanation of this mode.
Zero state between exemplars

 437

When this switch is turned on and an exemplar has completed, all components that store internal
states (e.g., MemoryAxons, delayed Synapses) will have those states set to zero before the next
exemplar.
Zero state between epochs

When this switch is turned on and an epoch has completed, all components that store internal
states (e.g., MemoryAxons, delayed Synapses) will have those states set to zero before the next
epoch.

 See Also

Iterative Prediction Inspector

Component: DynamicControl

Superclass Inspector: Static Inspector

Component Configuration:
Enable (setEnableIP(bool))

Enables interative prediction mode. Interative prediction is a process by which the first input sample
of each trajectory is read from the network input and the remaining input samples of the trajectory
are obtained from the network output. Note that if teacher forcing is enabled (see the Teacher page
of the BackDynamicControl inspector) then the number of input samples read from the network
input may vary.
Trajectory Length (setSamples(int))

The length of the prediction trajectory in samples. This value determines the number of exemplars
per epoch (# of exemplars = # samples in file - trajectory length + 1). Note that any change made to
the Trajectory Length field will be reflected in the Samples/Exemplar field of the Dynamic page of
the inspector.
Input Data Source (setInputDataSourceName(string))

 438

The component name of the Input component used for the network input. Note that a component's
name can be found within the Engine page of its inspector.
Desired Data Source (setDesiredDataSourceName(string))

The component name of the Input component used for the desired output of the network. Note that
a components name can be found within the Engine page of its inspector.
Output Axon (setOutputAxonName(string))

The component name of the Axon component used for the network output. Note that a components
name can be found within the Engine page of its inspector.

Backpropagation Inspector (Dynamic)

Component: BackDynamicControl

Superclass Inspector: Teacher Forcing Inspector

Component Configuration:
Samples/Exemplar

Training for an exemplar in Trajectory mode requires that the network first be run forward in time for
the number of samples specified by the samples/exemplar of the DynamicControl Inspector. An
error is determined between the network's output and the desired response. Then the network is
run backwards for a prescribed number of samples to compute the gradients and sensitivities. This
number of backpropagation samples is defined within this cell.

For Fixed Point mode the terms forward samples and backward samples can be thought of as the
forward relaxation period and backward relaxation period, respectively. All inputs are held constant
while the network is repeatedly fired during its forward relaxation period, specified by the
samples/exemplar of the DynamicControl Inspector. After the network has relaxed, an error is
determined and held as constant input to the backpropagation layer. Similarly, the error is

 439

backpropagated through the backprop plane for its backward relaxation period, specified by the
value within this cell.

Note than the value within this cell cannot exceed the samples/exemplar of the DynamicControl
Inspector.
On-Line, Batch, Custom (SetMode(int))

See BackStaticControl Inspector
Exemplars/Update (SetExemplars(int))

See BackStaticControl Inspector
Learning (Turn learning on(); Turn learning off(); Toggle learning())

See BackStaticControl Inspector
Learn after RESET

See BackStaticControl Inspector
Gradient Search

See BackStaticControl Inspector
Add (AddBackprop())

See BackStaticControl Inspector
Remove Button (RemoveBackprop())

See BackStaticControl Inspector
Free All Backprop Components

See BackStaticControl Inspector
(Force Learning())

See BackStaticControl Inspector

 See Also

Teacher Forcing Inspector

Component: BackDynamicControl

Superclass Inspector: Exemplar Weighting Inspector

 440

Component Configuration:
Enable (setEnableTF(bool))

Enables teacher forcing mode. Teacher forcing is a variation of iterative prediction in which the first
N samples of each trajectory are read from the network input (i.e., "forced") and the remaining N-T
input samples are obtained from the network output, where T is the trajectory length. Note that
iterative prediction must be enabled (see the prediction page of the DynamicControl inspector) in
order to enable teacher forcing. It is also important to note that teacher forcing only pertains to the
Active Data Set (see the Static page of the DynamicControl inspector) and the Learning switch
must be on in order for it to be enabled.

Initial (setTfInitialPercent(float))

The initial percentage of trajectory samples which are forced.
Decrease per Epoch (setTfDecreasePercent(float))

The amount to decrease the percentage of forced samples after each epoch, provided that the
resulting percentage is not less than the Minimum (see below).
Minimum (setTfMinimumPercent(float))

The minimum percentage of trajectory samples which are forced.
Current

This reports the current level of forcing both in terms of the number of samples (N) and the
percentage of the trajectory. The percentage starts at the Initial percentage (when the network is
created and after a reset) then decreases by the specified amount after each epoch until the
Minimum is reached.

BackStaticControl Inspector (Static)

Component: BackStaticControl

Superclass Inspector: Exemplar Weighting Inspector

 441

Component Configuration:
On-Line, Batch, Custom (SetMode(int))

These radio buttons specify the supervised learning mode. On-line learning updates the weights
after the presentation of each exemplar (pattern). Batch learning updates the weights after the
presentation of all exemplars (i.e., after each epoch). Custom enables you to modify the value
within the Exemplars/Update cell (see below).
Exemplars/Update (SetExemplars(int))

This cell specifies how many exemplars are presented between weight updates. This value can
only be modified when the Custom radio button is set (see above). Note that for On-Line learning
this cell is forced to 1 and for Batch learning this value is forced to the number of Exemplars/Epoch
from then StaticControl Inspector .
Learning (Turn learning on(); Turn learning off(); Toggle learning())

When this switch is turned on, the BackStaticControl will communicate with the GradientSearch
components to update the network’s weights. When this switch is turned off, the GradientSearch
components are disabled. This is most often used to synchronize the training of hybrid
supervised/unsupervised networks. It can also be used to freeze the network weights during a
testing phase.

This switch will be turned on when the network is reset provided the Learn after RESET switch is
turned on (see below). For standard supervised learning, both the Learn and the Learn after
RESET switches should be turned on. If you want to start the learning phase in the unsupervised
mode, click off both switches. Note that when the learning is off, the icon changes from a double
red dial to a single gray dial. The learning mode can be switched during the simulation using one or
more Transmitters.
Learn after RESET

This switch specifies whether the Learn switch (see above) is turned on or off when the network is
reset. This is used to specify the initial training mode of the network (supervised or unsupervised).
Gradient Search

This pull down menu is used to select the type of GradientSearch components to create when the
Add button is clicked (see below). Note that the parameters (i.e., learning rates) of these
components will be set to default values; they will not contain the settings from any previous

 442

GradientSearch components. In order to change the learning procedure for an existing network,
click the Remove button, select the Gradient Search procedure, and click the Add button.
Add (AddBackprop())

When this button is clicked, a Backprop and GradientSearch component will be attached to each
Activation component that has adaptable weights. Each Backprop component is automatically
selected to be the dual of the corresponding Activation component. The type of GradientSearch
components is specified with the Gradient Search pull down menu (see above). Note that this
function only adds these components if none exist; you must Remove (see below) the old Backprop
and GradientSearch components before adding new ones.
Remove (RemoveBackprop())

When this button is clicked, all Backprop and GradientSearch components will be removed from
the breadboard. This will freeze the network weights, but still allow you to monitor the network
error.
Free All Backprop Components

In addition to the components removed by the Remove button, this button will remove the
ErrorCriterion and the BackStaticControl component. This will freeze the network weights and
eliminate the overhead of the error computation.
(Force Learning())

This transmitter action requires that the Learning switch be turned off. When this message is
received, the Learning is turned on, the error of the current exemplar is backpropagated, and the
learning is turned back off. By attaching a ThresholdTransmitter to the Cost access point of the
ErrorCriteria component, this message can be sent when the error for a given exemplar is above a
certain threshold. This way, only those patterns that the network has not yet sufficiently learned will
be used to update the weights. This can significantly speed the convergence.

Recall that the number of Exemplars/Update specifies how often the GradientSearch components
update their weights. It may be important to note that the exemplar count is only incremented when
the error is backpropagated. Therefore, forced learning may take several epochs of training before
the weights are updated, even though the learning is set to batch mode.

 See Also

Code Generation Inspector

Components: StaticControl, DynamicControl

Superclass Inspector: Progress Display Inspector

 443

Component Configuration:

This property page is used to generate, compile and run C++ source code for the current
breadboard.
Target

Sets the target platform by selecting a library definition file (".nsl" extension) from a file selection
panel. This will copy the appropriate header (".h" extension), library (".lib" extension), and makefile
(".mak" extension) to the directory of the active project. Note that libraries for platforms other than
Windows are sold separately and may be obtained by Contacting NeuroDimension
Project Name

Displays the name of the currently active project. This is used to name the source file (".cpp"
extension), weight file (".nsw" extension) and executable file (".exe" extension). The current project
is switched by clicking on either the Open or New button.
Load Weights before Run

When this flag is set, the generated code will include instructions for loading the weights from the
weight file ("ProjectName.nsw") before running the simulation, allowing you to continue training
from a previously saved state. These weights could be from a previous run of the C++ project (see
Save Weights after Run below), or they could be from a previous run of the NeuroSolutions
breadboard (see Save Weights within the StaticControl Inspector).
Save Weights after Run

When this flag is set, the generated code will include instructions for saving the weights to the
weight file ("ProjectName.nsw") after running the simulation. These weights could be used by a
future run of the C++ project (see above), or they could be loaded into the NeuroSolutions
breadboard (see Load Weights within the StaticControl Inspector
Generate

Clicking this button generates the C++ source code for the current state of the breadboard and
saves it to the source file ("ProjectName.cpp"). Once the code is generated, press the Compile
button and then the Run button to test the generated code. If the code does not perform as
expected, press the Debug button to load the project into the C++ development environment.
Compile

 444

Clicking this button compiles the C++ source code and saves the result to the executable file
("ProjectName.exe"). Note that the directory containing the command line compiler ("nmake.exe")
must be included in the search path. See the Windows documentation for information on the Path
environment variable.
Run

Clicking this button runs the executable file ("ProjectName.exe") within a DOS window. The data
from the probes will be displayed if they are configured to write to the standard output (seeAccess
inspector).
Edit

Clicking this button opens an editor window and loads the C++ source file ("ProjectName.cpp").
From here you can modify the generated code, save the file, and then Compile and Run the
project. Note that the ".cpp" file extension must be associated with an editor application for this to
work. See the Windows documentation for more information on associating files to applications.
Open

Sets the current project by selecting an existing source file (".cpp" extension) from a file selection
panel. Note that the Generate button will overwrite this file with the source code for the current
breadboard.
New

Sets the current project by creating a new source file (".cpp" extension) from a file selection panel.
This will automatically Generate the code for the existing breadboard and save it to the new source
file ("ProjectName.cpp").
Debug

This launches the development environment and loads the makefile for the current project. From
there, you will need to build a debug version of the project. Presently, this integration is only
available for the MS Visual C++ 4.0 and 5.0 compilers.

Auto Macros Inspector

Components: StaticControl, DynamicControl

Superclass Inspector: Code Generation Inspector

 445

Component Configuration:
Open

Displays a file selection panel to specify the macro that will be run automatically when the
breadboard is opened.
Close

Displays a file selection panel to specify the macro that will be run automatically when the
breadboard is closed.
Reset

Displays a file selection panel to specify the macro that will be run automatically when the network
is Reset.
Post-Run

Displays a file selection panel to specify the macro that will be run automatically when the
simulation has been Paused or run to completion.

GeneticControl Inspector

Component: GeneticControl

Superclass Inspector: Genetic Operators Inspector

 446

Component Configuration:
Generational

This is a type of genetic algorithm in which the entire population is replaced with each iteration.
This is the traditional method of progression for a genetic algorithm and has been proven to work
well for a wide variety of problems. It tends to be a little slower than Steady State progression (see
below), but it tends to do a better job avoiding local minima.
Steady State

This is a type of genetic algorithm in which only the worst member of the population gets replaced
with each iteration. This method of progression tends to arrive at a good solution faster than
generational progression. However, this increased performance also increases the chance of
getting trapped in local minima.
Population Size

The number of chromosomes to use in a population. This determines the number of times that the
network will be trained for each generation.
Minimize Training Cost

When this radio button is selected the Average Cost of the training set is used as the fitness criteria
that the genetic algorithm tries to minimize.
Minimize Cross Validation Cost

When this radio button is selected the Average Cost of the cross validation set is used as the
fitness criteria that the genetic algorithm tries to minimize. This is the recommended setting if a
cross validation set is used.
Enable Optimization

This switch turns genetic optimization on and off. The parameters that are to be optimized are
specified within the Genetic Parameters inspector pages of the network components. The
exception to this is the File component, which uses the Column Translator Customize panel to
specify the inputs to be optimized.
Load Best Parameters

If a genetic training run stops because one of its termination criterion are met (see the Genetic
Termination page) the genetically optimized parameters which produced the lowest cost are
automatically loaded into their respective component inspector pages. If you stop the network

 447

manually with the Pause button, the parameters are left to those of the training run for the current
chromosome. Click this button if you want to load the best parameters into the component’s
inspector pages. Note that if the Save Best switch is set (see below) the weights that produced the
lowest error are automatically loaded in with the best parameters.
Save Best Weights

When this switch is set, the weights of the network are saved whenever the cost is lower than the
previous best training run. These best weights are associated with the set of parameters used to
produce this lowest cost. When the best parameters are loaded, the best weights are loaded as
well.
Randomization Seed

By default, the random values used for the genetic algorithm will be different for each genetic
training run. However, there are times when one may want to use the same random values
between different runs. If this is the case, then check this check box and set the randomization
seed to any integer between 0 and 10,000,000.

Genetic Operators Inspector

Component: GeneticControl

Superclass Inspector: Genetic Termination Inspector

Component Configuration:
Selection

Selection is a genetic operator that chooses a chromosome from the current generation’s
population for inclusion in the next generation’s population. Before making it into the next
generation’s population, selected chromosomes may undergo crossover and/or mutation
(depending upon the probability of crossover and mutation) in which case the offspring
chromosome(s) are actually the ones that make it into the next generation’s population. There are
five selection operators to choose from:

 448

• Roulette - The chance of a chromosome getting selected is proportional to its fitness (or rank).
This is where the idea of survival of the fittest comes into play. There is also the option to specify
whether the chance of being selected is based on fitness or on rank.

• Tournament - Uses roulette selection N times (the "Tournament Size") to produce a tournament
subset of chromosomes. The best chromosome in this subset is then chosen as the selected
chromosome. This method of selection applies addition selective pressure over plain roulette
selection. There is also the option to specify whether the chance of being selected is based on
fitness or on rank.

• Top Percent - Randomly selects a chromosome from the top N percent (the "Percentage") of the
population.

• Best - Selects the best chromosome (as determined by the lowest cost of the training run). If there
are two or more chromosomes with the same best cost, one of them is chosen randomly.

• Random - Randomly selects a chromosome from the population.

Crossover

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a
new chromosome (offspring). The idea behind crossover is that the new chromosome may be
better than both of the parents if it takes the best characteristics from each of the parents.
Crossover occurs during evolution according to the Crossover Probability. This probability should
usually be set fairly high (0.9 is a good first choice). There are five crossover operators to choose
from:

• One Point - Randomly selects a crossover point within a chromosome then interchanges the two
parent chromosomes at this point to produce two new offspring. Consider the following two
parents that have been selected for crossover. The "|" symbol indicates the randomly chosen
crossover point.

Parent 1: 11001|010

Parent 2: 00100|111

After interchanging the parent chromosomes at the crossover point, the following offspring are
produced:

Offspring1: 11001|111

Offspring2: 00100|010

• Two Point - Randomly selects two crossover points within a chromosome then interchanges the
two parent chromosomes between these points to produce two new offspring. Consider the
following two parents that have been selected for crossover. The "|" symbols indicate the
randomly chosen crossover points.

Parent 1: 110|010|10

Parent 2: 001|001|11

After interchanging the parent chromosomes at the crossover point, the following offspring are
produced:

Offspring1: 110|001|10

Offspring2: 001|010|11

• Uniform - Decides (with the probability defined by the "Mixing Ratio") which parent will contribute
each of the gene values in the offspring chromosomes. This allows the parent chromosomes to be

 449

mixed at the gene level rather than the segment level (as with one and two point crossover). For
some problems, this additional flexibility outweighs the disadvantage of destroying building blocks.
Consider the following two parents which have been selected for crossover:

Parent 1: 11001010

Parent 2: 00100111

If the mixing ratio is 0.5, approximately half of the genes in the offspring will come from parent 1
and the other half will come from parent 2. Below is a possible set of offspring after uniform
crossover:

Note: The subscripts indicate which parent the gene came from.

• Arithmetic - Linearly combines two parent chromosome vectors to produce two new offspring
according to the following equations:

Offspring1 = a * Parent1 + (1- a) * Parent2

Offspring2 = (1 – a) * Parent1 + a * Parent2

where a is a random weighting factor (chosen before each crossover operation). If the
chromosomes contain any integer genes, these genes are rounded after the linear combination
operation. If the chromosome contains any binary genes, uniform crossover is performed on these
genes since arithmetic crossover does not apply. Consider the following two parents (each
consisting of four float genes) that have been selected for crossover:

Parent 1: (0.3)(1.4)(0.2)(7.4)

Parent 2: (0.5)(4.5)(0.1)(5.6)

If a = 0.7, the following two offspring would be produced:

Offspring1: (0.36)(2.33)(0.17)(6.86)

Offspring2: (0.402)(2.981)(0.149)(6.842)

• Heuristic - uses the fitness values of the two parent chromosomes to determine the direction of the
search. The offspring are created according to the following equations:

Offspring1 = BestParent + r * (BestParent – WorstParent)

Offspring2 = BestParent

where r is a random number between 0 and 1. It is possible that Offspring1 will not be feasible.
This can happen if r is chosen such that one or more of its genes fall outside of the allowable
upper or lower bounds. For this reason, heuristic crossover has a parameter (n) for the number of
times to try and find an r that results in a feasible chromosome. If a feasible chromosome is not
produced after n tries, the WorstParent is returned as Offspring1. If the chromosomes contain any
integer genes, these genes are rounded after the heuristic crossover operation. If the
chromosome contains any binary genes, uniform crossover is performed on these genes since
heuristic crossover does not apply.

Mutation Probability

Mutation is a genetic operator that alters one ore more gene values in a chromosome from its initial
state. This can result in entirely new gene values being added to the gene pool. With these new
gene values, the genetic algorithm may be able to arrive at a better solution than was previously
possible. Mutation is an important part of the genetic search as it helps to prevent the population
from stagnating at any local optima. Mutation occurs during evolution according to the probability

 450

defined in this cell. This probability should usually be set fairly low (0.01 is a good first choice). If it
is set too high, the search will turn into a primitive random search. Note that the mutation type is
defined within the Genetic Parameters inspector page for the components with parameters to be
optimized.

Genetic Termination Inspector

Component: GeneticControl

Superclass Inspector: Engine Inspector

Description:

A genetic training run will run until the user stops the network with the Pause button, or until one of
the three termination criteria described below are met. When the network terminates due to one of
these criterion, the best parameters (those that produced the lowest cost) are automatically loaded
into the network. See the GeneticControl page if you want to manually load in the best network
parameters.

Component Configuration:
Maximum Generations

This cell specifies the maximum number of generations that will be run until the simulation is
stopped.
Termination Type

You may choose one of these four termination methods or "None".

• Fitness Threshold - Stops the evolution when the best fitness in the current population becomes
less than the fitness "Threshold" and the objective is set to minimize the fitness.

• Fitness Convergence - Stops the evolution when the fitness is deemed as converged. Two filters
of different lengths are used to smooth the best fitness across the generations. When the

 451

smoothed best fitness from the long filter is less than the "Threshold" percentage away from the
smoothed best fitness from the short filter, the fitness is deemed as converged and the evolution
terminates. Both filters are defined by the following equations:

y(0) = 0.9 * f(0); if the objective is set to maximize, or

y(0) = 1.1 * f(0); if the objective is set to minimize

y(n) = (1- b) f(n) + b y(n - 1)

where n is the generation number, y(n) is the filter output, y(n-1) is the previous filter output, and
f(n) is the best cost. The only difference between the short and long filters is the coefficient b. As
can be seen from the equations above, the higher the b, the more that the past values are
averaged in. The short filter uses b = 0.3 and the long filter uses b = 0.9.

• Population Convergence - Stops the evolution when the population is deemed as converged. The
population is deemed as converged when the average fitness across the current population is
less than the "Threshold" percentage away from the best fitness of the current population.

• Gene Convergence - Stops the evolution when the "Percentage" of the genes that make up a
chromosome are deemed as converged. A gene is deemed as converged when the average
value of that gene across all of the chromosomes in the current population is less than the
"Threshold" percentage away from the maximum gene value across the chromosomes.

Elapsed Time

Stops the evolution when the elapsed genetic training time exceeds the number of "Minutes"
specified. Note that the training is not stopped until the evaluation of the current generation has
completed.

Windows

Simulation Progress Window

This window displays a status bar indicating the progress of the simulation. If the status bar is
completely filled in, then the experiment has run to completion and the network must either be
Reset, the counters must be Zeroed, or the Epochs/Run must be increased.
Epoch

 452

Display of the current epoch count.
Exemplar

Display of the current exemplar count. If this is not displayed then switch the "Show Exemplars"
setting within the Progress Display Inspector .
Sample

Display of the current sample count (DynamicControl only).
Elapsed Time

Display of the total time (H::MM::SS) that the simulation has run.
Time Remaining

Display of the estimated time remaining (H::MM::SS) until the maximum number of epochs (or
generations) is reached.
Generation

When genetic optimization is enabled (see the GeneticControl inspector) this will show the current
generation number of the genetic training.

 See Also

Optimization Log Window

During genetic optimization, the values of the user-specified neural network parameters are set
before each training pass based on the contents of the current chromosome. This window displays
each of the optimized parameter settings for each training pass, along with the fitness (the best
average cost of the training).

 453

Macro Actions

Back Dynamic Control

BackDynamicControl Macro Actions
Overview Superclass Macro Actions

Action Description
backpropOffset Returns the Samples/Exemplar setting.

setBackpropOffset Sets the Samples/Exemplar setting.

backpropOffset
Overview Macro Actions

Syntax

componentName.backpropOffset()

Parameters Type Description
return int The number of backpropagation samples to be run for each epoch (see
"Samples/Exemplar" within the BackDynamicControl Inspector).

componentName Name defined on the engine property page.

setBackpropOffset
Overview Macro Actions

Syntax

componentName.setBackpropOffset(backpropOffset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

backpropOffset int The number of backpropagation samples to be run for each epoch (see
"Samples/Exemplar" within the BackDynamicControl Inspector).

Back Static Control

BackStaticControl Macro Actions
Overview Superclass Macro Actions

Action Description
allocateBackpropPlane The Backprop and GradientSearch components are attached to each
Activation component that has adaptable weights (see "Add" within the BackStaticControl

 454

Inspector).

batch Returns the Batch learning mode setting.

costWeightingActive Returns the "Weight the Reported Cost" setting.

custom Returns the Custom learning mode setting.

freeALL Removes all ErrorCriterion, BackStaticControl, Backprop, and GradientSearch
components from the breadboard (see "Free All Backprop Components" within the
BackStaticControl Inspector).

freeBackpropPlane Removes all Backprop and GradientSearch components from the
breadboard (see "Remove" within the BackStaticControl Inspector).

gradientClass Returns the class name of the GradientSearch components that are added when
the allocateBackpropPlane function is called (see above).

gradientWeightingActive Returns the "Weight the Gradients" setting.

learning Returns FALSE if the GradientSearch components are disabled.

learningOnReset Returns the "Learning after RESET" setting.

setBatch Sets the learning mode to Batch.

setCostWeightingActive Sets the "Weight the Reported Cost" setting.

setCustom Sets the learning mode to Custom.

setForceLearning Sets the Learning to on, backpropagates the error of the current
exemplar, and then turns off the Learning.

setGradientClass Allows the user to select GradientSearch components from a pull down menu
and then add or remove them from the project.

setGradientClassName Sets the class name of the GradientSearch components that are added
when the allocateBackpropPlane function is called (see above).

setGradientWeightingActive Sets the "Weight the Gradients" setting.

setLearning Set to FALSE to disable the GradientSearch components.

setLearningOnReset Sets the "Learning after RESET" setting.

setUpdateEvery Sets the Exemplar/Update setting.

setWeightingFilePath Sets the path of the exemplar weighting file.

updateEvery Returns the Exemplar/Update setting.

 455

weightingFilePath Returns the path of the exemplar weighting file.

allocateBackpropPlane
Overview Macro Actions

Syntax

componentName.allocateBackpropPlane()

Parameters Type Description
return void

componentName Name defined on the engine property page.

batch
Overview Macro Actions

Syntax

componentName.batch()

Parameters Type Description
return BOOL TRUE for Batch learning mode (see "On-line, Batch, Custom" within the
BackStaticControl Inspector).

componentName Name defined on the engine property page.

costWeightingActive
Overview*HIDB_NBackStaticControl Macro Actions*BackStaticControl_Macro_Actions

Syntax

componentName.costWeightingActive()

Parameters Type Description
return BOOL TRUE when cost weighting is active (see "Weight the Reported Cost" within the
Exemplar Weighting Inspector).

componentName Name defined on the engine property page.

custom
Overview*HIDB_NBackStaticControl Macro Actions*BackStaticControl_Macro_Actions

Syntax

 456

componentName.custom()

Parameters Type Description
return BOOL TRUE for Custom learning mode (see "On-line, Batch, Custom" within the
BackStaticControl Inspector).

componentName Name defined on the engine property page.

freeALL
Overview Macro Actions

Syntax

componentName.freeAll()

Parameters Type Description
return void

componentName Name defined on the engine property page.

freeBackpropPlane
Overview Macro Actions

Syntax

componentName.freeBackpropPlane()

Parameters Type Description
return void

componentName Name defined on the engine property page.

gradientClass
Overview Macro Actions

Syntax

componentName.gradientClass()

Parameters Type Description
return String The class name of the GradientSearch components to be added (see the
"Gradient Search" pull down menu within the BackStaticControl Inspector).

componentName Name defined on the engine property page.

gradientWeightingActive
Overview Macro Actions

Syntax

 457

componentName.gradientWeightingActive()

Parameters Type Description
return BOOL TRUE if gradient weighting is active (see the "Weight the Gradients" switch of the
Exemplar Weighting Inspector).

componentName Name defined on the engine property page.

learning
Overview Macro Actions

Syntax

componentName.learning()

Parameters Type Description
return BOOL TRUE if the GradientSearch components are enabled (see "Learning" within the
BackStaticControl Inspector).

componentName Name defined on the engine property page.

learningOnReset
Overview Macro Actions

Syntax

componentName.learningOnReset()

Parameters Type Description
return BOOL TRUE sets the learning flag to TRUE when the network is reset (see "Learning
after RESET" within the BackStaticControl Inspector).

componentName Name defined on the engine property page.

setBatch
Overview Macro Actions

Syntax

componentName.setBatch(batch)

Parameters Type Description
return void

componentName Name defined on the engine property page.

batch BOOL TRUE for batch learning mode (see "On-line, Batch, Custom" within the
BackStaticControl Inspector).

 458

setCostWeightingActive
Overview Macro Actions

Syntax

componentName.setCostWeightingActive(costWeightingActive)

Parameters Type Description
return void

componentName Name defined on the engine property page.

costWeightingActive BOOL TRUE when cost weighting is active (see "Weight the Reported
Cost" within the Exemplar Weighting Inspector).

setCustom
Overview Macro Actions

Syntax

componentName.setCustom(custom)

Parameters Type Description
return void

componentName Name defined on the engine property page.

custom BOOL TRUE for custom learning mode (see "On-line, Batch, Custom" within the
BackStaticControl Inspector).

setForceLearning
Overview Macro Actions

Syntax

componentName.setForceLearning(forceLearning)

Parameters Type Description
return BOOL TRUE sets the Learning to on, backpropagates the error of the current exemplar,
and then turns off the Learning.

componentName Name defined on the engine property page.

setGradientClass
Overview Macro Actions

Syntax

 459

componentName.setGradientClass(gradientClass)

Parameters Type Description
return void

componentName Name defined on the engine property page.

gradientClass When selected, allows the user to select GradientSearch components
from a pull down menu and then add or remove them from the project (see "Gradient Search"
within the BackStaticControl Inspector).

setGradientClassName
Overview Macro Actions

Syntax

componentName.setGradientClassName(gradientClassName)

Parameters Type Description
return string The class name of the GradientSearch components to be added (see the
"Gradient Search" pull down menu within the BackStaticControl Inspector).

componentName Name defined on the engine property page.

setGradientWeightingActive
Overview Macro Actions

Syntax

componentName.setGradientWeightingActive(gradientWeightingActive)

Parameters Type Description
return void

componentName Name defined on the engine property page.

gradientWeightingActive BOOL TRUE if gradient weighting is active (see the "Weight the
Gradients" switch of the Exemplar Weighting Inspector).

setLearning
Overview Macro Actions

Syntax

componentName.setLearning(learning)

Parameters Type Description
return void

 460

componentName Name defined on the engine property page.

learning BOOL TRUE if the GradientSearch components are enabled (see "Learning" within the
BackStaticControl Inspector).

setLearningOnReset
Overview Macro Actions

Syntax

componentName.setLearningOnReset(learningOnReset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

learningOnReset BOOL TRUE sets the learning flag to TRUE when the network is reset
(see "Learning after RESET" within the BackStaticControl Inspector).

setUpdateEvery
Overview Macro Actions

Syntax

componentName.setUpdateEvery(updateEvery)

Parameters Type Description
return void

componentName Name defined on the engine property page.

updateEvery int The number of exemplars presented between weight updates (see
"Exemplars/Update" within the BackStaticControl Inspector).
.

setWeightingFilePath
Overview Macro Actions

Syntax

componentName.setWeightingFilePath(weightingFilePath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightingFilePath String The path of the weighting file (see the "Weighting File" button
within the Exemplar Weighting Inspector).

 461

updateEvery
Overview Macro Actions

Syntax

componentName.updateEvery()

Parameters Type Description
return int The number of exemplars presented between weight updates (see
"Exemplars/Update" within the BackStaticControl Inspector).

componentName Name defined on the engine property page.

weightingFilePath
Overview Macro Actions

Syntax

componentName.weightingFilePath()

Parameters Type Description
return String The path of the weighting file (see the "Weighting File" button within the
Exemplar Weighting Inspector).

componentName Name defined on the engine property page.

Dynamic Control

DynamicControl Macro Actions
Overview Superclass Macro Actions

Action Description
fixedPointMode Returns TRUE if activation mode is set to "Fixed Point".

samples Returns the "Samples/Exemplar" setting.

setFixedPointMode Set to TRUE to change activation mode to "Fixed Point".

setSamples Sets the "Samples/Exemplar" setting.

setZeroState Sets the "Zero state between exemplars" setting.

setZeroStateEpoch Sets the "Zero state between epochs" setting.

zeroState Returns the "Zero state between exemplars" setting.

zeroStateEpoch Returns the "Zero state between epochs" setting.

 462

fixedPointMode
Overview Macro Actions

Syntax

componentName.fixedPointMode()

Parameters Type Description
return BOOL TRUE if activation mode is Fixed Point, FALSE is activation mode is Trajectory
(see "Fixed Point" within the DynamicControl Inspector).

componentName Name defined on the engine property page.

samples
Overview Macro Actions

Syntax

componentName.samples()

Parameters Type Description
return int The temporal dimension of an exemplar (see "Samples/Exemplar" within the
DynamicControl Inspector).

componentName Name defined on the engine property page.

setFixedPointMode
Overview Macro Actions

Syntax

componentName.setFixedPointMode(fixedPointMode)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fixedPointMode BOOL TRUE if activation mode is Fixed Point, FALSE is activation mode is
Trajectory (see "Fixed Point" within the DynamicControl Inspector).

setSamples
Overview Macro Actions

Syntax

componentName.setSamples(samples)

Parameters Type Description
return void

 463

componentName Name defined on the engine property page.

samples int The temporal dimension of an exemplar (see "Samples/Exemplar"
within the DynamicControl Inspector).

setZeroState
Overview Macro Actions

Syntax

componentName.setZeroState(zeroState)

Parameters Type Description
return void

componentName Name defined on the engine property page.

zeroState BOOL If TRUE, then all components storing internal states (e.g.,
MemoryAxons, delayed Synapses) will be set to zero prior to the next exemplar (see "Zero state
between exemplars" within the DynamicControl Inspector).

setZeroStateEpoch
Overview Macro Actions

Syntax

componentName.setZeroStateEpoch(zeroState)

Parameters Type Description
return void

componentName Name defined on the engine property page.

zeroState BOOL If TRUE, then all components storing internal states (e.g.,
MemoryAxons, delayed Synapses) will be set to zero prior to the next epoch (see "Zero state
between epochs" within the DynamicControl Inspector).

zeroState
Overview Macro Actions

Syntax

componentName.zeroState()

Parameters Type Description
return BOOL If TRUE, then all components storing internal states (e.g., MemoryAxons,
delayed Synapses) will be set to zero prior to the next exemplar (see "Zero state between
exemplars" within the DynamicControl Inspector).

 464

componentName Name defined on the engine property page.

zeroStateEpoch
Overview Macro Actions

Syntax

componentName.zeroStateEpoch()

Parameters Type Description
return BOOL If TRUE, then all components storing internal states (e.g., MemoryAxons,
delayed Synapses) will be set to zero prior to the next epoch (see "Zero state between epoch"
within the DynamicControl Inspector).

componentName Name defined on the engine property page.

Static Control

StaticControl Macro Actions
Overview Superclass Macro Actions

Action Description
activeDataSet Returns the "Active Data Set" name.

autoIncrement Returns the "Auto Increment" setting.

closeMacro Returns the path of the macro that is run when the breadboard is closed.

codeGenProjectPath Returns the path of the generated source code (*.cpp) file.

codeGenTargetPath Returns the path of the library definition (*.nsl) file.

compileSourceCode Compiles the C++ source code and saves the result to the executable
file ("ProjectName.exe").

debugSourceCode Launches the development environment and loads the makefile for the
current project from which the user can build a debug version of the project.

dither Sets the "Dither" setting used by the sensitivity analysis
function.

dualName Returns the name of the attached backprop control
component.

elapsedTimeInSeconds Returns the amount of time (in seconds) the simulation has been run.

epochCounter Returns the number of epochs the simulation has been run.

 465

epochs Returns the "Epochs/Run" setting.

epochsPerTest Returns the "Epochs/Cross Val." setting.

executableFilePath Returns the path of the executable file ("ProjectName.exe") for the code
generation project.

exemplarCounter Returns the number of exemplars the simulation has been run.

exemplars Returns the "Exemplars/Epoch" setting.

forceWindowOnTop Returns the "Force Window on Top" setting.

jogNetworkWeights Alters the weights by a small random value.

learning Returns the state of learning for the entire network (enabled or disabled).

loadWeights Imports all adaptive network parameters from the specified weights file.

openMacro Returns the path of the macro that is automatically run when the breadboard is
opened.

pauseNetwork Halts the simultation.

postRunMacro Returns the path of the macro that is automatically run when the simulation
concludes.

preRunMacro Returns the path of the macro that is automatically run when the network is reset.

randomizeNetworkWeights Randomizes the network weights.

resetNetwork Randomizes the network weights, zeroes the counters and clears the activations.

runCompiledCode Runs the executable file ("ProjectName.exe") within a DOS window.

runNetwork Starts the simulation.

runSensitivity Performs the sensitivity analysis function.

saveWeights Exports all adaptive network parameters to the specified weights file.

setActiveDataSet Sets the "Active Data Set" name.

setAutoIncrement Sets the "Auto Increment" setting.

setCloseMacro Sets the path of the macro that is run when the breadboard is closed.

setCodeGenProjectPath Sets the path of the generated source code (*.cpp) file.

setCodeGenTargetPath Sets the path of the library definition (*.nsl) file.

 466

setDither Sets the "Dither" setting used by the sensitivity analysis function.

setEpochCounter Sets the current epoch of the experiment.

setEpochs Sets the "Epochs/Run" setting.

setEpochsPerTest Sets the "Epochs/Cross Val." Setting.

setExemplarCounter Sets the current exemplar of the experiment.

setExemplars Sets the "Exemplars/Epoch" setting.

setForceWindowOnTop Sets the "Force Window on Top" setting.

setLearning Sets the state of learning for the entire network (enabled or disabled).

setOpenMacro Sets the path of the macro that is automatically run when the breadboard is
opened.

setPostRunMacro Sets the path of the macro that is automatically run when the simulation
concludes.

setPreRunMacro Sets the path of the macro that is automatically run when the network is reset.

setShowExemplars Sets the "Show Exemplars" setting.

setUpdateDisplayByEpoch Set to TRUE to update the progress display based on epochs,
and FALSE to update based on seconds.

setUpdateDisplayEvery Sets the "Update every" setting.

setUseName Sets the "Use Current File as Base Name" setting.

setXValDataSet Sets the data set used for the Cross Validation portion of the simulation.

setZeroOnReset Sets the "Zero on Reset" setting for the weights file name counter.

showExemplars Returns the "Show Exemplars" setting.

stepEpoch Runs the simulation for a duration of one epoch.

stepExemplar Runs the simulation for a duration of one exemplar.

updateDisplayByEpoch Runs the simulation for a duration of one epoch.

updateDisplayEvery Returns the "Update every" setting.

useName Returns the "Use Current File as Base Name" setting.

xValDataSet Returns the data set used for the Cross Validation portion of the simulation.

 467

zeroOnReset Returns the "Zero on Reset" setting for the weights file name counter.

activeDataSet
Overview Macro Actions

Syntax

componentName.activeDataSet()

Parameters Type Description
return string The name of the active data set (see "Active Data Set" within the StaticControl
Inspector).

componentName Name defined on the engine property page.

autoIncrement
Overview Macro Actions

Syntax

componentName.autoIncrement()

Parameters Type Description
return BOOL TRUE if the name counter is incremented each time the weights are loaded or
saved (see the Weights Inspector).

componentName Name defined on the engine property page.

closeMacro
Overview Macro Actions

Syntax

componentName.closeMacro()

Parameters Type Description
return string The path of the macro that is run when the breadboard is closed (see the Auto
Macros Inspector).

componentName Name defined on the engine property page.

codeGenProjectPath
Overview Macro Actions

Syntax

componentName.codeGenProjectPath()

Parameters Type Description

 468

return String The path of the generated source code (*.cpp) file (see "Project" within the Code
Generation Inspector).

componentName Name defined on the engine property page.

codeGenTargetPath
Overview Macro Actions

Syntax

componentName.codeGenTargetPath()

Parameters Type Description
return String The path of the library definition (*.nsl) file (see "Target" within the Code
Generation Inspector).

componentName Name defined on the engine property page.

compileSourceCode
Overview Macro Actions

Syntax

componentName.compileSourceCode()

Parameters Type Description
return void

componentName Name defined on the engine property page.

debugSourceCode
Overview Macro Actions

Syntax

componentName.debugSourceCode()

Parameters Type Description
return void

componentName Name defined on the engine property page.

dither
Overview Macro Actions

Syntax

 469

componentName.dither()

Parameters Type Description
return float The dither value used to perform the sensitivity analysis function (see the Static
Inspector).

componentName Name defined on the engine property page.

dualName
Overview Macro Actions

Syntax

componentName.dualName()

Parameters Type Description
return string The name of the attached backprop control component.

componentName Name defined on the engine property page.

elapsedTimeInSeconds
Overview Macro Actions

Syntax

componentName.elapsedTimeInSeconds()

Parameters Type Description
return int The number of seconds that the simulation has been running.

componentName Name defined on the engine property page.

epochCounter
Overview Macro Actions

Syntax

componentName.epochCounter()

Parameters Type Description
return int The number of epochs that the simulation has completed (see the Simulation
Progress Window).

componentName Name defined on the engine property page.

epochs
Overview Macro Actions

 470

Syntax

componentName.epochs()

Parameters Type Description
return int The maximum number of epochs to run before the simulation stops (see
"Epochs/Run" within the Static Inspector).

componentName Name defined on the engine property page.

epochsPerTest
Overview Macro Actions

Syntax

componentName.epochsPerTest()

Parameters Type Description
return int The number of epochs between each cross validation cycle (see "Epochs/Cross
Val" within the the Static Inspector).

componentName Name defined on the engine property page.

executableFilePath
Overview Macro Actions

Syntax

componentName.executableFilePath()

Parameters Type Description
return string The path of the executable file ("ProjectName.exe") for the code generation
project.

componentName Name defined on the engine property page.

exemplarCounter
Overview Macro Actions

Syntax

componentName.exemplarCounter()

Parameters Type Description
return int The number of exemplars that the simulation has completed in the current epoch
(see the Simulation Progress Window).

componentName Name defined on the engine property page.

exemplars
Overview Macro Actions

 471

Syntax

componentName.exemplars()

Parameters Type Description
return int The number of exemplars that comprise one epoch of the data set (see
"Exemplars/Epoch" within the StaticControl Inspector).

componentName Name defined on the engine property page.

forceWindowOnTop
Overview Macro Actions

Syntax

componentName.forceWindowOnTop()

Parameters Type Description
return BOOL TRUE if the Simulation Progress Window is forced on top.

componentName Name defined on the engine property page.

learning
Overview Macro Actions

Syntax

componentName.learning()

Parameters Type Description
return BOOL TRUE if learning is enabled for the entire network (see "Learning" within the
StaticControl Inpsector).

componentName Name defined on the engine property page.

jogNetworkWeights
Overview Macro Actions

Syntax

componentName.jogNetworkWeights()

Parameters Type Description
return void

componentName Name defined on the engine property page.

loadWeights
Overview Macro Actions

 472

Syntax

componentName.loadWeights(weightsPath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightsPath string Path of the weights file to load (see the Weights Inspector). If the path is
blank and the "useName" flag is set, then the current file path is used.

openMacro
Overview Macro Actions

Syntax

componentName.openMacro()

Parameters Type Description
return string The path of the macro that is run when the breadboard is opened (see the Auto
Macros Inspector).

componentName Name defined on the engine property page.

pauseNetwork
Overview Macro Actions

Syntax

componentName.pauseNetwork()

Parameters Type Description
return void

componentName Name defined on the engine property page.

postRunMacro
Overview Macro Actions

Syntax

componentName.postRunMacro()

Parameters Type Description
return string The path of the macro that is run when the simulation concludes (see the Auto
Macros Inspector).

 473

componentName Name defined on the engine property page.

preRunMacro
Overview Macro Actions

Syntax

componentName.preRunMacro()

Parameters Type Description
return string The path of the macro that is run when the network is reset (see the Auto Macros
Inspector).

componentName Name defined on the engine property page.

randomizeNetworkWeights
Overview Macro Actions

Syntax

componentName.randomizeNetworkWeights()

Parameters Type Description
return void

componentName Name defined on the engine property page.

resetNetwork
Overview Macro Actions

Syntax

componentName.resetNetwork()

Parameters Type Description
return void

componentName Name defined on the engine property page.

runCompiledCode
Overview Macro Actions

Syntax

componentName.runCompiledCode()

Parameters Type Description
return void

 474

componentName Name defined on the engine property page.

runNetwork
Overview Macro Actions

Syntax

componentName.runNetwork()

Parameters Type Description
return void

componentName Name defined on the engine property page.

runSensitivity
Overview Macro Actions

Syntax

componentName.runSensitivity()

Parameters Type Description
return void

componentName Name defined on the engine property page.

saveWeights
Overview Macro Actions

Syntax

componentName.saveWeights(weightsPath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

weightsPath string Path of the weights file to save (see the Weights Inspector). If the path
is blank and the "useName" flag is set, then the current file path is used.

setActiveDataSet
Overview Macro Actions

 475

Syntax

componentName.setActiveDataSet(activeDataSet)

Parameters Type Description
return void

componentName Name defined on the engine property page.

activeDataSet string The name of the active data set (see "Active Data Set" within the
StaticControl Inspector).

setAutoIncrement
Overview Macro Actions

Syntax

componentName.setAutoIncrement(autoIncrement)

Parameters Type Description
return void

componentName Name defined on the engine property page.

autoIncrement BOOL TRUE if the name counter is incremented each time the weights are
loaded or saved (see the Weights Inspector).

setCloseMacro
Overview Macro Actions

Syntax

componentName.setCloseMacro(closeMacro)

Parameters Type Description
return void

componentName Name defined on the engine property page.

closeMacro string The path of the macro that is run when the breadboard is closed (see
the Auto Macros Inspector).

setCodeGenProjectPath
Overview Macro Actions

Syntax

componentName.setCodeGenProjectPath(codeGenProjectPath)

Parameters Type Description

 476

return void

componentName Name defined on the engine property page.

codeGenProjectPath String The path of the generated source code (*.cpp) file (see
"Project" within the Code Generation Inspector).

setCodeGenTargetPath
Overview Macro Actions

Syntax

componentName.setCodeGenTargetPath(codeGenTargetPath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

codeGenTargetPath String The path of the library definition (*.nsl) file (see "Target" within
the Code Generation Inspector).

setDither
Overview Macro Actions

Syntax

componentName.setDither(dither)

Parameters Type Description
return Float The dither value used to perform the sensitivity analysis function (see the Static
Inspector).

componentName Name defined on the engine property page.

setEpochCounter
Overview Macro Actions

Syntax

componentName.setEpochCounter(epochCounter)

Parameters Type Description
return void

componentName Name defined on the engine property page.

epochCounter int The epoch number that the simulation will start at (see the Simulation

 477

Progress Window).

setEpochs
Overview Macro Actions

Syntax

componentName.setEpochs(epoch)

Parameters Type Description
return void

componentName Name defined on the engine property page.

epochs int The maximum number of epochs to run (i.e., training cycles) before the
simulation stops (see "Epochs/Run" within the StaticControl Inspector).

setEpochsPerTest
Overview Macro Actions

Syntax

componentName.setEpochsPerTest(epochsPerTest)

Parameters Type Description
return void

componentName Name defined on the engine property page.

epochsPerTest int The number of epochs between each cross validation cycle (see
"Epochs/Cross Val" within the the Static Inspector).

setExemplarCounter
Overview Macro Actions

Syntax

componentName.setExemplarCounter(exemplarCounter)

Parameters Type Description
return void

componentName Name defined on the engine property page.

exemplarCounter int The exemplar number that the simulation will start at (see the
Simulation Progress Window).

 478

setExemplars
Overview Macro Actions

Syntax

componentName.setExemplars(exemplars)

Parameters Type Description
return void

componentName Name defined on the engine property page.

exemplars int The number of exemplars that comprise one epoch of the data set (see
"Exemplars/Epoch" within the StaticControl Inspector).

setForceWindowOnTop
Overview Macro Actions

Syntax

componentName.setForceWindowOnTop(forceWindowOnTop)

Parameters Type Description
return void

componentName Name defined on the engine property page.

forceWindowOnTop BOOL TRUE if the Simulation Progress Window is forced on top.

setLearning
Overview Macro Actions

Syntax

componentName.setLearning(learning)

Parameters Type Description
return void

componentName Name defined on the engine property page.

learning BOOL TRUE if learning is enabled for the entire network (see "Learning" within the
StaticControl Inpsector).

setOpenMacro
Overview Macro Actions

Syntax

componentName.setOpenMacro(openMacro)

 479

Parameters Type Description
return void

componentName Name defined on the engine property page.

openMacro string The path of the macro that is run when the breadboard is opened (see
the Auto Macros Inspector).

setPostRunMacro
Overview Macro Actions

Syntax

componentName.setPostRunMacro(postRunMacro)

Parameters Type Description
return void

componentName Name defined on the engine property page.

postRunMacro string The path of the macro that is run when the simulation concludes (see
the Auto Macros Inspector).

setPreRunMacro
Overview Macro Actions

Syntax

componentName.setPreRunMacro(preRunMacro)

Parameters Type Description
return void

componentName Name defined on the engine property page.

preRunMacro string The path of the macro that is run when network is reset (see the Auto
Macros Inspector).

setShowExemplars
Overview Macro Actions

Syntax

componentName.setShowExemplars(showExemplars)

Parameters Type Description
return void

componentName Name defined on the engine property page.

showExemplars BOOL TRUE if the exemplars are displayed in the Simulation Progress
Window.

 480

setUpdateDisplayByEpoch
Overview Macro Actions

Syntax

componentName.setUpdateDisplayByEpoch(updateDisplayByEpoch)

Parameters Type Description
return void

componentName Name defined on the engine property page.

updateDisplayByEpoch BOOL TRUE if the display of the Simulation Progress Window is
updated based on the number of epochs since the last display (see the Progress Display Inspector
).

setUpdateDisplayEvery
Overview Macro Actions

Syntax

componentName.setUpdateDisplayEvery(updateDisplayEvery)

Parameters Type Description
return void

componentName Name defined on the engine property page.

updateDisplayEvery int The value used to specify how often the Simulation Progress
Window is updated (see the Progress Display Inspector).

setUseName
Overview Macro Actions

Syntax

componentName.setUseName(useName)

Parameters Type Description
return void

componentName Name defined on the engine property page.

useName BOOL Sets the base name for the auto-saving of the weights file (see "Use
Name" within the Weights Inspector).

setXValDataSet
Overview Macro Actions

 481

Syntax

componentName.setXValDataSet(xValDataSet)

Parameters Type Description
return void

componentName Name defined on the engine property page.

xValDataSet string The name of the cross validation data set (see "Cross Validation Data
Set" within the StaticControl Inspector).

setZeroOnReset
Overview Macro Actions

Syntax

componentName.setZeroOnReset(zeroOnReset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

zeroOnReset BOOL TRUE if the file name counter is zeroed when the network is reset (see
"Zero" within the Weights Inspector).

showExemplars
Overview Macro Actions

Syntax

componentName.showExemplars()

Parameters Type Description
return BOOL TRUE if the exemplars are displayed in the Simulation Progress Window).

componentName Name defined on the engine property page.

stepEpoch
Overview Macro Actions

Syntax

componentName.stepEpoch()

Parameters Type Description
return void

componentName Name defined on the engine property page.

 482

stepExemplar
Overview Macro Actions

Syntax

componentName.stepExemplar()

Parameters Type Description
return void

componentName Name defined on the engine property page.

stopNetwork
Overview Macro Actions

Syntax

componentName.stopNetwork()

Parameters Type Description
return void

componentName Name defined on the engine property page.

updateDisplayByEpoch
Overview Macro Actions

Syntax

componentName.updateDisplayByEpoch()

Parameters Type Description
return BOOL TRUE if the display of the Simulation Progress Window is updated based on the
number of epochs since the last display (see the Progress Display Inspector).

componentName Name defined on the engine property page.

updateDisplayEvery
Overview Macro Actions

Syntax

componentName.updateDisplayEvery()

Parameters Type Description
return int The value used to specify how often the Simulation Progress Window is updated
(see the Progress Display Inspector).

componentName Name defined on the engine property page.

 483

useName
Overview Macro Actions

Syntax

componentName.useName()

Parameters Type Description
return BOOL Sets the base name for the auto-saving of the weights file (see "Use Name"
within the Weights Inspector).

componentName Name defined on the engine property page.

xValDataSet
Overview Macro Actions

Syntax

componentName.xValDataSet()

Parameters Type Description
return string The name of the cross validation data set (see "Cross Validation Data Set" within
the StaticControl Inspector).

componentName Name defined on the engine property page.

zeroOnReset
Overview Macro Actions

Syntax

componentName.zeroOnReset()

Parameters Type Description
return BOOL TRUE if the file name counter is zeroed when the network is reset (see "Zero"
within the Weights Inspector).

componentName Name defined on the engine property page.

 484

ErrorCriteria Family
L1Criterion

Family: ErrorCriteria Family

Superclass: NS Criterion Engine

Description:

The L1CriterionEngine implements the absolute value cost function. This criterion is mostly applied
to networks processing binary data. The error reported to the supervised learning procedure will
simply be the sign of the difference between the network's output and desired response.

Cost Function:

Error Function:

User Interaction:

Drag and Drop

Inspector

Access points

DLL Implementation

 485

L2Criterion

Family: ErrorCriteria Family

Superclass: CriterionEngine

Description:

The L2Criterion implements the quadratic cost function. This is by far the most applied cost function
in adaptive systems. The error reported to the supervised learning procedure is simply the squared
Euclidean distance between the network's output and the desired response.

Cost Function:

Error Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

 486

L2TemporalCriterion

Family: ErrorCriteria Family

Superclass: CriterionEngine

Description:

The L2TemporalCriterion is a variant of the L2Criterion that can weight different aspects of
temporal (time-series) data differently. Descriptions of the various weighting factors are described
within the L2TemporalCriterion Inspector.

Cost Function:

where w is the weighting factor.

Error Function:

User Interaction:

Drag and Drop

Inspector

Access Points

 487

LpCriterion

Family: ErrorCriteria Family

Superclass: CriterionEngine

Description:

The LpCriterion is similar to the L2Criterion, except that the order of the cost function is determined
by the user-defined constant, p.

Cost Function:

Error Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

LinfinityCriterion

 488

Family: ErrorCriteria Family

Superclass: CriterionEngine

Description:

The LinfinityCriterion is actually an approximation to the Linfinity norm. Instead of globally
searching the output of a network for its maximum error, the LinfinityCriterion locally emphasizes
large errors in each output. This is done by applying the tan function to the clipped error reported
by the L2Criterion class.

Cost Function:

Error Function:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

SVML2Criterion

 489

Family: ErrorCriteria Family

Superclass: L2Criterion

Description:

This component is used to implement the "Large Margin Classifier" segment of the Support Vector
Machine model.

Cost Function:

User Interaction:

Drag and Drop

Inspector

Access Points

Access Points

ErrorCriteria Access Points

Family: ErrorCriteria Family

Superclass Access Points: Axon Family Access Points

Pre-Activity Access:

Attaches the Access component to the network output vector (y). Note that this is the same as
attaching to the Activity access point of the output Axon.

Desired Signal Access:

 490

Attaches an input Access component to the desired response vector (d). This access point is the
only means for providing the ErrorCriteria component with its desired input. Typically network input
components such as the Function or File will be attached here.

Activity Access:

Attaches the Access component to the network error vector (d-y).

Cost Access:

This access point reports one half of the cost of the network's output ((d-y)2) instantaneously with
each input. Only output Access components should be attached here.

Average Cost Access:

This access point reports one half of the average cost of the network's output ((d-y)2) since the last
weight update or epoch (depending on the ErrorCriteria Inspector property page settings). Only
output Access components should be attached here.

Raw Sensitivity Access:

Produces a matrix of values containing the raw Sensitivity information for each input/output
combination.

Sensitivity Access:

Produces a matrix of values containing the Sensitivity information for each input/output
combination, computed as a percentage such that the sum of all sensitivity values for a particular
output totals 100.

Overall Sensitivity Access:

Produces a vector of values containing the Sensitivity information for each input, averaged across
all of the outputs and computed as a percentage such that the sum of all sensitivity values totals
100.

Confusion Matrix (Totals) Access:

Produces a confusion matrix in which each cell contains the raw number of exemplars classified for
the corresponding combination of desired and actual outputs.

Confusion Matrix (Percentages) Access:

Produces a confusion matrix in which each cell contains the percentage of exemplars classified for
the corresponding combination of desired and actual outputs, relative to the total number of
exemplars for the given desired output class.

Correlation Access:

This access point reports the correlation coefficients for each network output.

ROC Access:

This access point reports the Receiver Operating Characteristic (ROC) matrix for a given output
channel.

Performance Measures Access:

This access point reports six different performance measures of the network for the given data set.

 491

 See Also

DLL Implementation

L1Criterion DLL Implementation

Component: L1Criterion

Protocol: PerformCriterion

Description:

The L1CriterionEngine implements the absolute value cost function. The error reported to the
supervised learning procedure (costDerivative) is simply the sign of the difference between the
network's output and desired response, for each output PE. The cost returned is the accumulation
of the absolute differences between the output and the desired response, for all output PEs.

Code:

NSFloat performCriterion(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *costDerivative, // Pointer to output sensitivity vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *output, // Pointer to output layer of the network
 NSFloat *desired // Pointer to desired output vector
)
{
 int i,length=rows*cols;
 NSFloat cost=0.0f;

 for (i=0; i<length; i++) {
 costDerivative[i] = desired[i] - output[i] >= 0? (NSFloat)-
1.0 : (NSFloat)1.0;
 cost += (NSFloat)fabs(desired[i] - output[i]);
 }
 return cost;
}

 492

L2Criterion DLL Implementation

Component: L2Criterion

Protocol: PerformCriterion

Description:

The L2CriterionEngine implements the quadratic cost function. The error reported to the supervised
learning procedure (costDerivative) is simply the squared Euclidean distance between the net
work's output and the desired response, for each output PE. The cost returned is the accumulation
of the squared error, for all output PEs.

Code:

NSFloat performCriterion(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *costDerivative, // Pointer to output sensitivity vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *output, // Pointer to output layer of the network
 NSFloat *desired // Pointer to desired output vector
)
{
 int i,length=rows*cols;
 NSFloat cost=0.0f;

 for (i=0; i<length; i++) {
 costDerivative[i] = desired[i] - output[i];
 cost += costDerivative[i]*costDerivative[i];
 }
 return cost;
}

LinfinityCriterion DLL Implementation

 493

Component: LinfinityCriterion

Protocol: PerformCriterion

Description:

The LinfinityCriterionEngine implements an approximation to the Linfinity norm cost function. The
error reported to the supervised learning procedure (costDerivative) is simply the hyperbolic
tangent of the difference between the network's output and desired response, for each output PE.
This results in a local emphasis on large errors. The cost returned is the accumulation of the error,
for all output PEs.

Code:

NSFloat performCriterion(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *costDerivative, // Pointer to output sensitivity vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *output, // Pointer to output layer of the network
 NSFloat *desired // Pointer to desired output vector
)
{
 int i,length=rows*cols;
 NSFloat cost=0.0f;

 for (i=0; i<length; i++) {
 costDerivative[i] = (NSFloat)tan(desired[i] - output[i]);
 cost += (NSFloat)fabs(costDerivative[i]);
 }
 return cost;
}

DeltaBarDelta DLL Implementation

Component: DeltaBarDelta

Protocol: PerformDeltaBarDelta

 494

Description:

The implementation of the DeltaBarDelta component computes the step size for each of the
weights based on the gradient from the backprop component, a smoothed version of the gradient
(smoothedGradient), and three constants (beta, kappa, and zeta) defined by the user within the
DeltaBarDelta inspector. This function is responsible for updating both the step and
smoothedGradient vectors. Note that the updating of the weights uses the standard Momentum
rule, and is performed by the component itself.

Code:

void performDeltaBarDelta(
 DLLData *instance, // Pointer to instance data
 NSFloat *step, // Pointer to vector of learning rates
 int length, // Length of learning rate vector
 NSFloat *smoothedGradient, // Smoothed gradient vector
 NSFloat *gradient, // Gradient vector from backprop comp.
 NSFloat beta, // Multiplicative constant
 NSFloat kappa, // Additive constant
 NSFloat zeta // Smoothing factor
)
{
 register int i;

 for (i=0; i<length; i++) {
 if (smoothedGradient[i]*gradient[i] > 0)
 step[i] += kappa;
 else
 if (smoothedGradient[i]*gradient[i] < 0)
 step[i] -= beta*step[i];
 smoothedGradient[i] = (1-zeta)*gradient[i] +
zeta*smoothedGradient[i];
 }
}

Drag and Drop

ErrorCriteria Drag and Drop

ErrorCriteria are members of the Axon family, therefore they may also be dropped anywhere on a
breadboard. However, members of the ErrorCriteria family must be connected to the output of the
network. If the network has more than one output and more than one desired response, then there
will be multiple ErrorCriteria.

 See Also

 495

Inspectors

ErrorCriteria Inspector

Family: ErrorCriteria Family

Superclass Inspector: Axon Inspector

Component Configuration:
Average Cost for

The number of weight updates or epochs, as defined by the network controller, per cost report.
The individual cost estimates of each update/epoch are averaged over this period.
Weight Updates

Specifies the weight update as the metric for the cost report (default).
Epochs

Specifies the epoch as the metric for the cost report. This is useful for when you have the network
weights, but still want to report the average cost using the trained network.
Save Best

Saves the set of weights with the lowest average cost to the Weights File "xxx.bst", where xxx is
the name of the current breadboard. The weight file can instead be assigned within the Weights
Inspector and it can be configured to increment the file name each time the file is saved. The saved
weight file can then be loaded from the Weights Inspector. Note that the current breadboard must
be assigned to a file (using Save As) before this feature can be activated.
Sampling Every

Specifies how often to check the error to see if it dropped below the Saved error. If the learning
curve is very erratic, then this value should be low to avoid missing a set of weights with low error.
If the error continually decreases, then this value should be higher so that there is less time spent
writing the weights to disk. Note that the error is checked when the network is stopped regardless
of this parameter setting.

 496

On Increase

Saves the weights only when the error of the current sampling is higher than the previous sampling,
but still lower than the error from the previous save. In other words, the system only saves the
weights as an increase in error is detected. This is often more efficient because the weights are
only saved at the valleys of the learning curve.
Training

Saves the best weights based on the error of the training set.
Cross Validation

Saves the best weights based on the error of the cross validation set.
Saved error

Reports the error of the set of saved weights.
Confusion Threshold

When there is only one network output and there is a probe attached to one of the confusion matrix
access points, this edit cell allows you to specify the threshold to use to differentiate between the
two classes represented by the single output.
ROC Channel

The ROC matrix (produced by attaching a probe to the ROC access point) can only display the
detections and false alarms for a singe output at a time. This edit cell allows you to specifiy which
output PE to use.
ROC Thresholds

The ROC matrix (produced by attaching a probe to the ROC access point) consists of one row for
each threshold generated. The thresholds are equally partitioned across the data range specified
by the normalized data range of the input component (see the Stream inspector). The edit cell
specifies the number of thresholds generated within the data range.

L2TemporalCriterion Inspector

Family: ErrorCriteria Family

Superclass Inspector: ErrorCriteria Inspector

 497

Component Configuration:
Recency of Observation

This criterion weights the error of the exemplars at the end of the data series more heavily than
those at the beginning of the data series. This is useful when predicting time series in which the
conditions may be changing over time, such as predictions based on long-term historical data. The
amount of weighting is determined by the Discount Rate.
Direction of Change

This criterion weights the error of the exemplars whose output is the opposite sign of the desired
output more heavily than those whose signs match. This is useful for applications such as trading,
when being on the right side of the trade is the most important. There is one weighting specified for
exemplars with outputs in the Right Direction and another weighting for exemplars with outputs in
the Wrong Direction.
Magnitude of Change

This criterion weights the error of the exemplars whose output is far from the desired output more
heavily than those with an output and desired output that are close. This is useful for learning
infrequent data that has a desired value that is not the same as most of the desired values.
However, this may result in less accuracy overall. There is one weighting specified for exemplars
with outputs with a Large Change from the desired output and another weighting for exemplars with
outputs with a Small Change from the desired output.
Data Pre-Differenced

Check this box if the output data is a measurement of the difference between the current exemplar
and the previous exemplar.
Discount Rate

This parameter is used when the Recency of Observation box is checked. The higher this value,
the more weight is given to the errors produced by the recent data (the data at the end of the
series).
Right Direction

This parameter is used when the Direction of Change box is checked. The higher this value, the
more weight is given to the errors produced by the output having the same sign as the desired
output.
Wrong Direction

 498

This parameter is used when the Direction of Change box is checked. The higher this value, the
more weight is given to the errors produced by the output having the opposite sign as the desired
output.
Large Change

This parameter is used when the Magnitude of Change box is checked. The higher this value, the
more weight is given to the errors produced by exemplars in which the difference between the
output and the desired output is large.
Small Change

This parameter is used when the Magnitude of Change box is checked. The higher this value, the
more weight is given to the errors produced by exemplars in which the difference between the
output and the desired output is small.

Macro Actions

Criterion

Criterion Macro Actions
Overview Superclass Macro Actions

Action Description
autoSave Returns the "Save Best" setting.

averageOverUpdates Returns TRUE when the "Weight Update" is the metric for the cost
reporting, otherwise "Epochs" is the metric.

bestCost Returns the "Saved error" setting.

checkCostEvery Returns the "Sampling Every" setting.

onIncrease Returns the Auto-save weights "On Increase" setting.

reportEvery Returns "Average cost for" setting.

setAutoSave Sets the "Save Best" setting.

setAverageOverUpdates Set to TRUE when the "Weight Update" is the metric for the cost
reporting, otherwise "Epochs" is the metric.

setBestCost Sets the "Saved error" setting.

setCheckCostEvery Sets the "Sampling Every" setting.

setOnIncrease Sets the Auto-save weights "On Increase" setting.

setReportEvery Sets "Average cost for" setting.

setTrainTest Sets to TRUE to auto-save on the "Training" set, or FALSE to auto-save on the
"Cross Validation" set.

 499

trainTest Returns TRUE to auto-save on the "Training" set, or FALSE to auto-save on the
"Cross Validation" set.

autoSave
Overview Macro Actions

Syntax

componentName.autosave()

Parameters Type Description
return BOOL When TRUE, the weights with the lowest average cost are saved (see "Save
Best" within the ErrorCriteria Inspector).

componentName Name defined on the engine property page.

averageOverUpdates
Overview Macro Actions

Syntax

componentName.averageOverUpdates()

Parameters Type Description
return BOOL When TRUE, the weight update is the metric for the cost report (see "Weight
Update" within the ErrorCriteria Inspector). Otherwise, the epoch is used as the metric.

componentName Name defined on the engine property page.

bestCost
Overview Macro Actions

Syntax

componentName.bestCost()

Parameters Type Description
return float The lowest cost that has been achieved (see "Saved Error" within the
ErrorCriteria Inspector).

componentName Name defined on the engine property page.

checkCostEvery
Overview Macro Actions

Syntax

 500

componentName.checkCostEvery()

Parameters Type Description
return int How often the error is sampled to see if it has dropped below the Saved error
(see "Sampling Every" within the ErrorCriteria Inspector).

componentName Name defined on the engine property page.

onIncrease
Overview Macro Actions

Syntax

componentName.onIncrease()

Parameters Type Description
return BOOL When TRUE, the weights are saved when an increase in error is detected (see
"On Increase" within the ErrorCriteria Inspector).

componentName Name defined on the engine property page.

reportEvery
Overview Macro Actions

Syntax

componentName.reportEvery()

Parameters Type Description
return int How often the cost is averaged (see "Average Cost for" within the ErrorCriteria
Inspector).

componentName Name defined on the engine property page.

setAutoSave
Overview Macro Actions

Syntax

componentName.setAutoSave(autoSave)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 501

autoSave BOOL When TRUE, the weights with the lowest average cost are saved (see
"Save Best" within the ErrorCriteria Inspector).

setAverageOverUpdates
Overview Macro Actions

Syntax

componentName.setAverageOverUpdates(averageOverUpdates)

Parameters Type Description
return void

componentName Name defined on the engine property page.

averageOverUpdates BOOL When TRUE, the weight update is the metric for the cost report
(see "Weight Update" within the ErrorCriteria Inspector). Otherwise, the epoch is used as the
metric.

setBestCost
Overview Macro Actions

Syntax

componentName.setBestCost(bestCost)

Parameters Type Description
return void

componentName Name defined on the engine property page.

bestCost float The lowest cost that has been achieved (see "Saved Error" within the
ErrorCriteria Inspector).

setCheckCostEvery
Overview Macro Actions

Syntax

componentName.setCheckCostEvery(checkCostEvery)

Parameters Type Description
return void

componentName Name defined on the engine property page.

checkCostEvery int How often the error is sampled to see if it has dropped below the Saved
error (see "Sampling Every" within the ErrorCriteria Inspector).

 502

setOnIncrease
Overview Macro Actions

Syntax

componentName.setOnIncrease(onIncrease)

Parameters Type Description
return void

componentName Name defined on the engine property page.

onIncrease BOOL When TRUE, the weights are saved when an increase in error is
detected (see "On Increase" within the ErrorCriteria Inspector).

setReportEvery
Overview Macro Actions

Syntax

componentName.setReportEvery(reportEvery)

Parameters Type Description
return void

componentName Name defined on the engine property page.

reportEvery int How often the cost is averaged (see "Average Cost for" within the
ErrorCriteria Inspector).

setTrainTest
Overview Macro Actions

Syntax

componentName.setTrainTest(trainTest)

Parameters Type Description
return void

componentName Name defined on the engine property page.

trainTest BOOL When TRUE, the auto-save will be performed on the "Training" set (see
"Training" within the ErrorCriteria Inspector). Otherwise, the auto-save will be performed on the
"Cross Validation" set.

 503

trainTest
Overview Macro Actions

Syntax

componentName.trainTest()

Parameters Type Description
return BOOL When TRUE, the auto-save will be performed on the "Training" set (see
"Training" within the ErrorCriteria Inspector). Otherwise, the auto-save will be performed on the
"Cross Validation" set.

componentName Name defined on the engine property page.

GradientSearch Family
ConjugateGradient

Family: GradientSearch Family

Superclass: GradientEngine

Description:

NeuroSolutions ConjugateGradient gradient descent component uses the "scaled conjugate
gradient" learning algorithm. It is a member of a class of learning algorithms called "second order
methods".

Standard gradient descent algorithms (like "step" and "momentum") use only the local
approximation of the slope of the performance surface (error versus weights) to determine the best
direction to move the weights in order to lower the error. Second order methods use or approximate
second derivatives (the curvature instead of just the slope) of the performance surface to determine
the weight update. If the performance surface is quadratic (which is only true in general for linear
systems), then using a second order method can find the exact minimum in one step. In nonlinear
systems like neural networks, you will generally still need multiple steps. Each step, however, will
typically lower the error much more than a standard gradient descent step.
The problem with second order methods is that they require many more computations for each
weight update. An algorithm that makes many poor decisions may perform better on average than
a much slower algorithm that makes very good decisions.

Weight Update Equations:

The conjugate gradient method is an excellent tradeoff between speed of computation and
performance. The conjugate gradient method can move to the minimum of a N-dimensional

 504

quadratic function in N steps. By always updating the weights in a direction that is conjugate to all
past movements in the gradient, you can avoid all of the zig-zagging of 1st order gradient descent
methods. At each step, you determine a new conjugate direction and move to the minimum error
along this direction. Then you compute a new conjugate direction and do the same. If the
performance surface is quadratic, information from the Hessian can determine the exact position of
the minimum along each direction, but for nonquadratic surfaces, a line search is typically used. In
theory, there are only N conjugate directions in a space of N dimensions, so the algorithm is reset
each N iterations. The advantage of conjugate gradient method is that you don’t need to store,
compute, or invert the Hessian matrix (which requires many calculations and a lot of storage for
large numbers of weights). The equations are:

where w are the weights, p is the current direction of weight movement, g is the gradient (backprop
information), β is a parameter that determines how much of the past direction is mixed with the
gradient to form the new conjugate direction. The equation for α is a line search to find the
minimum MSE along the direction p. The line search in the conjugate gradient method is critical to
finding the right direction to move next. If the line search is inaccurate, then the algorithm may
become brittle. This means that you may have to spend up to 30 iterations to find the appropriate
step size.
The Scaled Conjugate Gradient method (SCG) is the method used by NeuroSolutions and it avoids
the line search procedure. One key advantage of the SCG algorithm is that it has no real
parameters. The algorithm is based on computing Hd where d is a vector. The Hessian times a
vector can be efficiently computed in O(W) operations and contains only W elements. To ensure
that the Hessian is positive definite, an offset is added to the Hessian, H+λI. The formula for the
step size α as in the conjugate gradient is:

where p is the direction vector and g is the gradient vector as in the CG method. The parameter λ
varies from iteration to iteration – when λ is high, the learning rate is small (the Hessian cannot be
trusted), and when it is low the learning rate is large.

Doing a first order approximation, we can write:

 505

which means that you can replace the Hessian calculations with one additional evaluation of the
gradients (backprop pass). The parameter λ must be set to ensure that the H+λI is positive definite
so that the denominator of α will always be positive. If the value of the denominator is negative, we

increase λ by a value λ so that it will be positive. Additionally, we adjust λ based upon how
closely the current point in the performance surface approximates a quadratic – if the performance
surface is far from quadratic, we should increase λ resulting in a smaller step size. The value ∆ is
used to determine "closeness to quadratic" and is estimated via:

If ∆ is less than zero, the change in the MSE will rise and the algorithm says to not change the
weights (in my experience, however, it seems to work better if you do change the weights). If ∆ is
less than .25 you multiply λ by 4, if it is greater than .75 (very quadratic) you multiply λ by .5.

This algorithm requires a number of global scalar computations. All matrix calculations can be done
locally (parallel). It also requires one backprop pass to compute E’(w+sp) and one forward pass to
compute E(w+αp). Conjugate Gradient learning in NeuroSolutions requires that the network learn
in batch mode. In general, each Conjugate Gradient batch weight update will take twice as long as
a standard batch weight update (using step or momentum gradient search).

User Interaction:

Drag and Drop

DeltaBarDelta

Family: GradientSearch Family

Superclass: Step

Description:

Delta-Bar-Delta is an adaptive step-size procedure for searching a performance surface. The step
size and momentum are adapted according to the previous values of the error at the PE. If the
current and past weight updates are both of the same sign, it increases the learning rate linearly.
The reasoning is that if the weight is being moved in the same direction to decrease the error, then
it will get there faster with a larger step size. If the updates have different signs, this is an indication

 506

that the weight has been moved too far. When this happens, the learning rate decreases
geometrically to avoid divergence.

Step Size Update Equation:

where:

κ= Additive constant

β= Multiplicative constant

λ= Smoothing factor

Weight Update Equation:

See Momentum

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Macro Actions

Momentum

 507

Family: GradientSearch Family

Superclass: Step

Description:

Step components try to find the bottom of a performance surface by taking steps in the direction
estimated by the attached backprop component. Network learning can be very slow if the step size
is small, and can oscillate or diverge if it is chosen too large. To further complicate matters, a step
size that works well for one location in weight space may be unstable in another.

The Momentum provides the gradient descent with some inertia, so that it tends to move along a
direction that is the average estimate for down. The amount of inertia (i.e., how much of the past to
average over) is dictated by the momentum parameter, ρ. The higher the momentum, the more it
smoothes the gradient estimate and the less effect a single change in the gradient has on the
weight change. The major benefit is the added ability to break out of local minima that a Step
component might otherwise get caught in. Note that oscillations may occur if the momentum is set
too high.

The momentum parameter is the same for all weights of the attached component. An access point
has been provided for the step size and momentum allowing access for adaptive and scheduled
learning rate procedures.

Weight Update Equation:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Macro Actions

Quickprop

 508

Family: GradientSearch Family

Superclass: Momentum

Description:

The Quickprop implements Fahlman's quickprop algorithm. It is a gradient search procedure that
has been shown to be very fast in a multitude of problems. It basically uses information about the
second order derivative of the performance surface to accelerate the search.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Step

Family: GradientSearch Family

Superclass: GradientEngine

Description:

Gradient descent learning rules, e.g. backpropagation and real time recurrent learning, provide first
order gradient information about the network's performance surface. In other words, they estimate
which way is up. The most straightforward way of reaching the bottom (the minima) given which
way is up, is to move in the opposite direction. With this scenario, the only variable is the step size,
i.e. how far should it move before obtaining another directional estimate. If the steps are too small,
then it will take too long to get there. If the steps are too large, then it may overshoot the bottom,
causing it to rattle or even diverge.

 509

The Step uses this procedure to adapt the weights of the Activation component that it is stacked
on. The Step’s inspector allows the user to set a default step size for all weights within the
Activation component. The step sizes of individual weights can be specified by attaching at
MatrixEditor to the Learning Rate access point and modifying the default values. This access point
can be used to adapt and/or schedule the step sizes during the simulation.

Weight Update Equation:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Macro Actions

 See Also

SVMStep

Family: GradientSearch Family

Superclass: Step

Description:

This component is used to implement the "Large Margin Classifier" segment of the Support Vector
Machine model.

 510

User Interaction:

Drag and Drop

Inspector

Access Points

Momentum Access Points

Component: Momentum

Superclass Access Points: Step Access Points

Momentum Access:

The Momentum Access provides a static access point to individually set the momentum of each
weight, or to adaptively change the learning rates.

Delta Gradient Access:

The Delta Gradient Access provides a static access point to individually view the delta gradient of
each weight.

Quickprop Access Points

Component: Quickprop

Superclass Access Points: DeltaBarDelta

Local Sensitivity Delta Access:

The Local Sensitivity Access reports the current state sensitivity minus the last state sensitivity
used by the quickprop algorithm.

Step Access Points

Family: Step

Superclass Access Points: None

Learning Rate:

The Step Access provides a static access point to individually set the step size of each weight, or to
adaptively change the learning rates.

 511

 See Also

DLL Implementation

Momentum DLL Implementation

Component: Momentum

Protocol: PerformMomentum

Description:

The implementation of the Momentum component is similar to that of the Step component, except
that there is the addition of a momentum term and a vector containing the previous weight change
(delta). The delta for a given weight is computed by taking product of the momentum rate and the
weight’s previous delta and adding it to the product of the step size and the weight’s gradient. Note
that this function is responsible for updating the delta vector as well as the weights vector.

Code:

void performMomentum(
 DLLData *instance, // Pointer to instance data
 NSFloat *weights, // Pointer to the vector of weights
 int length, // Length of the weight vector
 NSFloat *gradient, // Pointer to vector of gradients
 NSFloat *step, // Pointer to the learning rate/s
 BOOL individual // Indicates whether there is one learning
rate
 // for all weights (FALSE), or each weight has
 // its own learning rate (TRUE)
 NSFloat *delta, // Last weight Update
 NSFloat momentum // Momentum rate for all weights
)
{
 register int i;

 for (i=0; i<length; i++)
 weights[i] += delta[i] = momentum*delta[i] +
step[individual?i:0]*gradient[i];
}

 512

Quickprop DLL Implementation

Component: Quickprop

Protocol: PerformQuickprop

Description:

The implementation of the Quickprop component is similar to that of the Momentum component,
except that the momentum rate is unique to each weight. This vector is computed from the gradient
information from the previous (lastGradient) and current (gradient) weight updates. The absolute
value of the individual momentum terms is limited by the defaultMomentum defined by the user
within the inspector. Note that this vector could have been allocated as local storage, but it is
passed as a parameter for efficiency reasons. This function is responsible for updating the
lastGradient vector as well as the delta and weights vectors.

Code:

void performQuickprop(
 DLLData *instance, // Pointer to instance data
 NSFloat *weights, // Pointer to the vector of weights
 int length, // Length of the weight vector
 NSFloat *gradient, // Pointer to vector of gradients
 NSFloat *step, // Pointer to the learning rate/s
 BOOL individual // Indicates whether there is one
learning
 // rate for all weights (FALSE), or each
 // weight has its own learning rate
(TRUE)
 NSFloat *delta, // Last weight Update
 NSFloat defaultMomentum, // Max momentum rate for all weights
 NSFloat *momentum, // Individual momentum rate for each
weight
 NSFloat *lastGradient // Previous weight gradient vector
)
{
 register int i;

 for (i=0; i<length; i++) {
 momentum[i] = gradient[i]/(lastGradient[i] - gradient[i]);
 if (momentum[i] > defaultMomentum)
 momentum[i] = defaultMomentum;
 if (momentum[i] < -defaultMomentum)
 momentum[i] = -defaultMomentum;

 513

 delta[i] = momentum[i]*delta[i] +
lastGradient[i]*(gradient[i]<0?0:step[individual?i:0]*gradient[i]);
 weights[i] += delta[i];
 lastGradient[i] = gradient[i];
 }
}

Step DLL Implementation

Component: Step

Protocol: PerformStep

Description:

The Step component simply increments each weight by its corresponding gradient times a step
size. Note that the step size can either be specific to a particular weight or it can be the same for all
weights.

Code:

void performStep(
 DLLData *instance, // Pointer to instance data
 NSFloat *weights, // Pointer to the vector of weights
 int length, // Length of the weight vector
 NSFloat *gradient, // Pointer to vector of gradients
 NSFloat *step, // Pointer to the learning rate/s
 BOOL individual // Indicates whether there is one learning
rate
 // for all weights (FALSE), or each weight has
 // its own learning rate (TRUE)
)
{
 register int i;

 if (!individual)
 for (i=0; i<length; i++)
 weights[i] += step[individual?i:0] * gradient[i];
}

 514

Drag and Drop

GradientSearch Drag and Drop

Neural network topologies are constructed by dropping components from the Activation family
directly onto the breadboard. Gradient descent learning dynamics are attached by dropping
gradient descent components, e.g. components from the Backprop family, on top of their
respective dual Activation component. The GradientSearch components are then dropped directly
on top of these gradient descent components. In other words, three layers are required for
networks using gradient descent learning. Each gradient descent learning family will have a
controller within the Control family, e.g. the StaticBackpropControl component. Each controller is
capable of automatically generating the gradient descent and GradientSearch layers once the
Activation layer has been constructed.

 See Also

Inspectors

DeltaBarDelta Inspector

Component: DeltaBarDelta

Superclass Inspector: NSEngineInspector

Component Configuration:
Additive (SetAdditive(float))

 515

This cell is used to specify the additive constant (κ), specified within the DeltaBarDelta component
reference.
Multiplicative (SetMult(float))

This cell is used to specify the multiplicative constant (β), specified within the DeltaBarDelta
component reference.
Smoothing (SetSmoothing(float))

This cell is used to specify the smoothing factor (ζ), specified within the DeltaBarDelta component
reference.

Momentum Inspector

Component: Momentum

Superclass Inspector: Engine Inspector

Component Configuration:
Step Size (SetStepSize(float))

This cell sets the default step size for all weights within the Activation component. If the step size is
adjusted during an experiment through an adaptive or scheduled procedure, then it will be reset to
this default value each time the weights are randomized. Note that the individual step sizes can be
modified by setting the Individual switch (see below), attaching a MatrixEditor to the Momentum
component, and editing the values within the display window of the probe.
Normalized

When this switch is turned on, the step size is normalized by dividing the number entered in the
Step Size cell (see above) by the number of exemplars/update (see BackStaticControl).
Individual

When this switch is turned on, the step sizes can be set individually by attaching a MatrixEditor to
the Momentum component and editing the values within the display window of the probe. Note that

 516

when this switch is set the step sizes are not restored to their default value when the network is
reset.
Momentum Rate (SetMomentum(float))

This cell sets the default momentum for all weights within the Activation component. If the
momentum is altered during an experiment through an adaptive or scheduled procedure, then it will
be reset to this default value whenever the weights of the Momentum component are randomized.
Up

Raises the step sizes of all Gradient Search components on the breadboard by the percentage
specified within the cell.
Down

Lowers the step sizes of all Gradient Search components on the breadboard by the percentage
specified within the cell.
Decay Weights

The idea in weight elimination is to create a driving force that will attempt to decrease all the
weights to zero during adaptation. If the input-output map requires some large weights, learning will
keep bumping up the important weights, but the ones that are not important will be driven to zero,
thus reducing the number of free parameters in the network. This idea is called weight decay.
When this switch is set, weight decay is enabled such that the product of the current weight and the
Decay Rate (see below) is subtracted from the weight adaptation formula for the Momentum
component.
Decay Rate

This cell specifies the decay rate to use in the weight decay algorithm described above.

Step Inspector

Component: Step

Superclass Inspector: Engine Inspector

 517

Component Configuration:
Step Size (SetStepSize(float))

This cell sets the default step size for all weights within the Activation component. If the step size is
adjusted during an experiment through an adaptive or scheduled procedure, then it will be reset to
this default value each time the weights are randomized. Note that the individual step sizes can be
modified by setting the Individual switch (see below), attaching a MatrixEditor to the Step
component, and editing the values within the display window of the probe.
Normalized

When this switch is turned on, the step size is normalized by dividing the number entered in the
Step Size cell (see above) by the number of exemplars/update (see BackStaticControl).
Individual

When this switch is turned on, the step sizes can be set individually by attaching a MatrixEditor to
the Step component and editing the values within the display window of the probe. Note that when
this switch is set the step sizes are not restored to their default value when the network is reset.
Up

Bumps up the step sizes of all Gradient Search components on the breadboard by the percentage
specified within the cell.
Down

Bumps down the step sizes of all Gradient Search components on the breadboard by the
percentage specified within the cell.
Decay Weights

The idea in weight elimination is to create a driving force that will attempt to decrease all the
weights to zero during adaptation. If the input-output map requires some large weights, learning will
keep bumping up the important weights, but the ones that are not important will be driven to zero,
thus reducing the number of free parameters in the network. This idea is called weight decay.
When this switch is set, weight decay is enabled such that the product of the current weight and the
Decay Rate (see below) is subtracted from the weight adaptation formula for the Step component.
Decay Rate

This cell specifies the decay rate to use in the weight decay algorithm described above.

Macro Actions

Delta Bar Delta

DeltaBarDelta Macro Actions
Overview Superclass Macro Actions

Action Description

beta Returns the multiplicative constant (β).

kappa Returns the additive constant (κ).

 518

setBeta Sets the multiplicative constant (β).

setKappa Sets the additive constant (κ).

setZeta Sets the smoothing factor (ζ).

zeta Returns the smoothing factor (ζ).

beta
Overview Macro Actions

Syntax

componentName.beta()

Parameters Type Description

return float The multiplicative constant (β), specified within the DeltaBarDelta component
reference (see "Multiplicative" within the DeltaBarDelta Inspector).

componentName Name defined on the engine property page.

kappa
Overview Macro Actions

Syntax

componentName.kappa()

Parameters Type Description

return float The additive constant (κ), specified within the DeltaBarDelta component
reference (see "Additive" within the DeltaBarDelta Inspector).

componentName Name defined on the engine property page.

setBeta
Overview Macro Actions

Syntax

componentName.setBeta(beta)

Parameters Type Description
return void

 519

componentName Name defined on the engine property page.

beta float The multiplicative constant (β), specified within the DeltaBarDelta component
reference (see "Multiplicative" within the DeltaBarDelta Inspector).

setKappa
Overview Macro Actions

Syntax

componentName.setKappa(kappa)

Parameters Type Description
return void

componentName Name defined on the engine property page.

kappa float The additive constant (κ), specified within the DeltaBarDelta component
reference (see "Additive" within the DeltaBarDelta Inspector).

setZeta
Overview Macro Actions

Syntax

componentName.setZeta(zeta)

Parameters Type Description
return void

componentName Name defined on the engine property page.

zeta float The smoothing factor (ζ), specified within the DeltaBarDelta component
reference (see "Smoothing" within the DeltaBarDelta Inspector).

zeta
Overview Macro Actions

Syntax

componentName.zeta()

Parameters Type Description

return float The smoothing factor (ζ), specified within the DeltaBarDelta component
reference (see "Smoothing" within the DeltaBarDelta Inspector).

componentName Name defined on the engine property page.

 520

Momentum

Momentum Macro Actions
Overview Superclass Macro Actions

Action Description
momentumRate Returns the momentum setting.

setMomentumRate Sets the momentum setting.

momentumRate
Overview Macro Actions

Syntax

componentName.momentumRate()

Parameters Type Description
return float The default momentum for all weights within the Activation component (see
"Momentum Rate" within the Momentum Inspector).

componentName Name defined on the engine property page.

setMomentumRate
Overview Macro Actions

Syntax

componentName.setMomentumRate(momentumRate)

Parameters Type Description
return void

componentName Name defined on the engine property page.

momentumRate float The default momentum for all weights within the Activation component
(see "Momentum Rate" within the Momentum Inspector).

Step

Step Macro Actions
Overview Superclass Macro Actions

Action Description
broadcastBumpStep Bumps the step size of all Gradient Search components on the
breadboard up or down by a percentage.

 521

bumpStep Bumps the step size up or down by a percentage.

individualSteps Returns the "Individual" setting.

normalized Returns the "Normalize" setting.

setIndividualSteps Sets the "Individual" setting.

setNormalized Sets the "Normalize" setting.

setStepSize Sets the step size setting.

stepSize Returns the step size setting.

broadcastBumpStep
Overview Macro Actions

Syntax

componentName.broadcastBumpStep(percentage)

Parameters Type Description
return void

componentName Name defined on the engine property page.

percentage float Percentage to change the step size for all the GradientSearch
components (see "Up" and "Down" within the Step Inspector).

bumpStep
Overview Macro Actions

Syntax

componentName.bumpStep(percentage)

Parameters Type Description
return void

componentName Name defined on the engine property page.

percentage float Percentage to change the step size (see "Up" and "Down" within the
Step Inspector).

individualSteps
Overview Macro Actions

 522

Syntax

componentName.individualSteps()

Parameters Type Description
return BOOL TRUE if the step sizes can be set individually for each weight (see "Individual"
within the Step Inspector).

componentName Name defined on the engine property page.

normalized
Overview Macro Actions

Syntax

componentName.normalized()

Parameters Type Description
return BOOL TRUE if the step size is divided by the number of exemplars/update (see
"Normalized" within the Step Inspector).

componentName Name defined on the engine property page.

setIndividualSteps
Overview Macro Actions

Syntax

componentName.setIndividualSteps(individualSteps)

Parameters Type Description
return void

componentName Name defined on the engine property page.

individualSteps BOOL TRUE if the step sizes can be set individually for each weight (see
"Individual" within the Step Inspector).

setNormalized
Overview Macro Actions

Syntax

componentName.setNormalized(normalized)

Parameters Type Description
return void

 523

componentName Name defined on the engine property page.

normalized BOOL TRUE if the step size is divided by the number of exemplars/update
(see "Normalized" within the Step Inspector).

setStepSize
Overview Macro Actions

Syntax

componentName.setStepSize(stepSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

stepSize float The default step size for all weights within the Activation component
(see "Step Size" within the Step Inspector).

stepSize
Overview Macro Actions

Syntax

componentName.stepSize()

Parameters Type Description
return float The default step size for all weights within the Activation component (see "Step
Size" within the Step Inspector).

componentName Name defined on the engine property page.

Input Family
Access

Ancestor: Engine Family

The purpose the Access family is to allow its members to access data provided by components
through access points. This family uses an inspector to show which access points are available and
provides a means for selecting one.

 524

User Interaction:

Access Points

Access inspector

Macro Actions

Function

Family: Input Family

Superclass: MultiChannelStream

Description:

The Function component is used to create a variety of waveforms that can be used as input for
neural networks. These inputs include impulses, square waves, sine waves, triangle waves,
sawtooth waves, and user-defined functions via Dynamic Link Libraries (DLLs). The signals are
specified by their amplitude, frequency, offset, and phase shift.

Function is a multi-channel component that can produce a different waveform for each neuron. The
number of channels is dictated by the size (the number of PEs) of the network component that is
being accessed. Each channel can have different amplitude, offset, and phase shift. However, all
channels of a given function component must have the same frequency. If different frequencies are
desired for different channels, the Function components may be stacked on top of each other such
that each provides a unique input frequency.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Macro Actions

Noise

 525

Family: Input Family

Superclass: MultiChannelStream

Description:

The Noise component is used to inject random noise sources into an attached component. This
component is most often used to test a network’s sensitivity to noise. The noise sources can have a
uniform or a Gaussian distribution, or a user-defined distribution via a Dynamic Link Library (DLL).
The noise signals are specified by their mean and variance.

Noise is a multi-channel component that can produce a different noise source for each neuron. The
number of channels is dictated by the size (the number of PEs) of the network component that is
being accessed. Each channel can have different mean and variance, as well as a different
distribution.

The stream of noise data (of a user-defined size) is usually generated once and recycled
throughout the simulations. There is an option for the data to be continually regenerated so that the
noise is more random.

Noise Functions:

Uniform:

Gaussian:

where

x = a pseudo-random random floating point value between 0 and 1

σ = is the square root of the variance

µ = is the mean

User Interaction:

Drag and Drop

Inspector

DLL Implementation

 526

Macro Actions

DLLInput

Family: Input Family

Superclass: MultiChannelStream

Description:

The DLLInput component is used to inject data into the network from a DLL. This is similar to using
the DLL capability of the Function component, except that this data is not cyclical. One important
use for this feature is to retrieve input data from external hardware (such as a analog-to-digital
converter) by including the data acquisition code within the performInput function call.

DLLInput is a multi-channel component. The number of channels is dictated by the size (the
number of PEs) of the network component that is being accessed. Each call to the performInput
function requires that the implementation generate one sample of data for each channel.

User Interaction:

Drag and Drop

Access Points

DLL Implementation

DLLPreprocessor

Family: Input Family

Superclass: MultiChannelStream

Description:

The DLLPreprocessor component is used to preprocess the data sent from the component stacked
on the Preprocessor access point. It requires that a DLL be loaded within the Engine property page

 527

of the component’s inspector. The DLL retrieves the data one sample at a time and passes the
processed data to the component attached below.

User Interaction:

Drag and Drop

Access Points

DLL Implementation

OLEInput

Family: Input Family

Superclass: MultiChannelStream

Description:

The OLEInput component is used to inject data into the network from an external program using
the Object Linking and Embedding (OLE) protocol. To send data to the component you need to
pass a variant array of floating point values to the sendDataToEngine function.

OLEInput is a multi-channel component. The number of channels is dictated by the size (the
number of PEs) of the network component that is being accessed. The number of elements in the
array passed to the sendDataToEngine function should be equal to the number of PEs times the
number of input samples (exemplars).

User Interaction:

Drag and Drop

Access Points

Macro Actions

File

File

 528

Family: Input Family

Superclass: MultiChannelStream

Description:

The File component reads data from the computer’s file system. Presently there is support for
ASCII, column-formatted ASCII, binary, and bitmap file formats (see the Associate File panel).
Multiple files of mixed type can be translated simultaneously within the same File component.
There are also provisions for normalization and segmentation of input files.

Column-formatted ASCII is the most commonly used, since it is directly exportable from
commercial spreadsheet programs. Each column of a column-formatted ASCII file represents one
channel of data (i.e., input into one PE). The first line (row) of the file contains the column headings,
and the remaining lines contain the samples of data. The data elements can be either numeric or
symbolic. There is a facility to automatically convert symbolic data to numeric data (see Column-
Formatted ASCII Translator).

The remaining three file types are simply read as a sequential stream of floating-point values. Non-
formatted ASCII files contain numeric value separated by delimeters (see ASCII Translator). Any
non-numeric values are simply ignored. Bitmap files can be either 16-color or 256-color. Each pixel
of the image is converted to a value from 0 to 1, based on its intensity level. Binary files contain raw
data, such that each 4-byte segment contains a floating-point value. Many numerical software
packages export their data to this type of format.

The translation process for large ASCII files may be very time consuming. For this reason, each
translated data stream is automatically stored in the same directory as the breadboard as a binary
pattern file (.nsp). This way, the file(s) only need to be re-translated when the data set or
component configuration has changed.

Each unique data set within a File component has its own data stream. The data is read from the
stream of the currently active data set and sequentially fed to the PEs of the component stacked
below. A data set that is translated to a stream that has 100 data elements could be used to feed
10 samples to a 10-PE axon, or 20 samples to a 5-PE axon. Note that it could also feed 9 samples
to an 11-PE axon, but that the last data element would be discarded.

The File component can be configured to normalize the data based on a set of normalization
coefficients. These coefficients consist of an amplitude and an offset term for each channel of the
File component, and they can be generated automatically or read from a previously generated
and/or modified Normalization File.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Macro Actions

 529

Translators

ASCII Translator

This translator reads all numeric data from an ASCII file and ignores all non-numeric information.
The numeric data must be separated by any of the delimiters listed below and may be in floating
point, scientific, or integer format.

Delimiters:

ASCII Char

-------- -------

9 <tab>

10 <line break>

32 <space>

34 "

44 ,

58 :

59 ;

96 `

There are also several other less common ASCII characters that are also interpreted as delimeters:

0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 127, 128, 129, 141, 142, 143, 144, 157, 158, 160

 See Also

Binary Translator

This translator reads files that are in a standard binary format. This format specifies that each
floating point value is stored within 4 bytes of the file. This is the same format used by the pattern
files (*.nsp) generated for each data set of the file (see File).

 530

 See Also

Bitmap Translator

This translator reads a 16-color, 256-color or 24-bit bitmap and translates the image into a stream
of intensity values (i.e., gray levels) ranging from 0 to 1. These values are obtained by averaging
the RGB values from each of the pixels and dividing by 255 (the maximum RGB value).

 See Also

Column-Formatted ASCII Translator

Each column of a column-formatted ASCII file represents one channel of data (i.e., input into one
PE). The first line (row) of the file should contain the column headings, and not actual data. Each
group of delimiters (see ASCII Translator) indicates a break in the columns. In order for the
program to detect the correct number of columns, the column headings must not contain any
delimiters.

The remaining lines contain the individual samples of data. The data elements (values) are
separated by delimiters. The number of data elements for each line must match the number of
column headings from the first line. The data elements can be either numeric or symbolic.

When there are multiple data files within the same File component using the Column-Formatted
ASCII Translator, the column selections apply to all of these files. For this reason, the column
headings of the included columns must match across all files and be arranged in the same order. If
NeuroSolutions detects that the ordering of the included columns differs between the files, then an
option will be given to run a utility that will match the column ordering for you.

The translator handles symbolic columns by reading the symbol definitions from the symbol
translation file (*.nss), stored in the same directory as the breadboard. This file can be
automatically generated from the columns that have been declared as symbolic (see Column
Translator Customize). This file is generated by extracting the symbols from all of the data files
associated with the Column-Formatted ASCII Translator. The format of the symbol translation file is
as follows:

Symb1 N1 Val1 Val2 . . . ValN1 Head1 Head2 . . .

Symb2 N2 Val1 Val2 . . . ValN2 Head1 Head2 . . .

: : : : : : :

: : : : : : :

SymbM NM Val1 Val2 . . . ValNM Head1 Head2 . . .

#Labels

Head1 N1 Symb1 Symb2 . . . SymbN1

Head2 N2 Symb1 Symb2 . . . SymbN2

 531

: : : : :

: : : : :

Variable Definition

Symb The symbol being defined. Note that the symbols must not contain any
delimiters.

N The number of columns (channels) that the heading(s) expand into. Note that if
the encoding scheme is unary then the number of expanded columns is simply
the number of unique symbols contained within the particular column of the file.

Val The actual value to be fed to the particular input channel. There should be one
value defined for each of the N expansion columns.

Head The column heading read from the input file. Note that when the symbol
translation file is generated automatically, there is only one heading defined for
any given symbol. However, by appending additional headings onto the end of
the line, you will give the symbol the same definition for each of the headings
listed. The main limitation is that the number of expansion columns (N) must be
the same for all headings listed under a particular symbol definition.

Labels This section is presently only used by the NeuralBuilder to specify the labeling
of the probes.

Below is a sample symbol translation file. This file was generated from the sample data file
"Sleep2.asc" by selecting the last two columns as symbolic data and performing a Unary encoding.

 532

 See Also

DLL Translator

The DLL translator uses a user-defined dynamic link library (DLL) to translate either a text or binary
file into a data stream. The DLL is specified within the Engine property page of the File inspector.
Note that the DLL must be loaded in order to use the DLL translator.

 See Also

Translator Customize

This panel used to customize the way in which the translator translates the selected file. All
translators have the ability to extract a segment of the file’s data.

Segment

When this switch is turned on, the first Offset exemplars are skipped, the next Duration exemplars
are read from the file, and the remaining exemplars are skipped.
Offset

This cell is used to specify the number of exemplars to skip before reading the first exemplar.
Duration

This cell is used to specify the number of exemplars of the segment.

Column Translator Customize

This panel used to customize the way in which the Column-Formatted ASCII Translator translates
the selected file. Like all other translators, this has the ability to extract a segment of the file’s data.
It also provides a facility for selecting columns for inclusion to, or exclusion from, the translation

 533

process. Included columns may be tagged as either numeric or symbolic data. Symbolic columns
require the use of a symbol translation file.

Column Selection

This list contains all of the column headings extracted from the first line of the ASCII file. Each
column can either be tagged as Numeric, Symbol or Skip. The tags can be toggled by double-
clicking on the items.

Numeric indicates that all data elements in the column are valid floating point or integer values and
that the column is to be included in the translation. Skip indicates that the column is to be excluded
from the translation.

Symbol indicates that each data element in the column is a string, which may or may not be
numeric. When the file is translated, symbol columns are replaced by numeric representations of
the symbols contained within the symbol translation file (*.nss). This file can be automatically
generated or read from a previously generated file. This ASCII text file can be modified by the user
to customize the symbol translation process.
Numeric

 534

This button is used to set the tags of the selected item(s) from the Column Selection list to
Numeric. Numeric indicates that all data elements in the column are valid floating point or integer
values and that the column is to be included in the translation.
Symbol

This button is used to set the tags of the selected item(s) from the Column Selection list to Symbol.
Symbol indicates that each data element in the column is a string, which may or may not be
numeric. When the file is translated, symbol columns are replaced by numeric representations of
the symbols contained within the symbol translation file (*.nss).
Skip

This button is used to set the tags of the selected item(s) from the Column Selection list to Skip.
Skip indicates that the column is to be excluded from the translation.
GA

There are times when you are not sure whether or not an input column provides useful information
to the network. By tagging a set of inputs as "GA", a genetic algorithm will try various permutations
of includes and skips among these inputs in an attempt to produce the lowest error. Once the
optimization training run is complete and the best parameters are loaded into the network, the
column list will reflect which genetically optimized input columns were included. Note that the
GeneticControl component must have optimization enabled (see the GeneticControl inspector)
before the selected inputs will be optimized on the next training run.
File Name

This button brings up a panel to enter the file name (including the extension) of the symbol
translation file that is generated or read on translation. This ASCII file contains the definitions for
each unique symbol contained within the tagged columns of all data files using the Column-
Formatted ASCII Translator). Note that there must be at least one column tagged as Symbol in
order for this button to be enabled.
Read Only

If there is at least one column tagged as Symbol, then this switch specifies how the symbol file is
used. If the switch is off (the default), the symbol file is generated when the Customize panel is
closed, or after the associated data files are modified. If the switch is on, the symbols are read from
an existing symbol file during translation (see Column-Formatted ASCII Translator).
Unary

This encoding scheme adds an additional channel for each unique symbol found in the column.
Each expanded channel of a given symbol column represents one symbol; a 1 indicating the
symbol is present and a 0 indicating the symbol is absent. In other words, each exemplar will have
one channel set to 1 and the remaining columns will be set to 0. Note that this switch is only
enabled when the Read Only switch is off and there is at least one column tagged as Symbol.
Binary

This encoding scheme adds log N (base 2) channels, where N is the number of unique symbols
found in the column. Each symbol is represented by a unique binary number. Note that this switch
is only enabled when the Read Only switch is off and there is at least one column tagged as
Symbol.
View

This button is used to view the current state of the symbol translation file (see Column-Formatted
ASCII Translator). The program used to view the file is determined based on the file’s extension
and application associated with that extension defined within Windows. Click here for instructions
on associating an editor with a file extension.

 535

Generate

This button generates the symbol translation file based on the columns tagged as Symbol and will
overwrite the existing file if it exists. If the symbol file has not been generated by the time the
Customize panel is closed, then the file is generated automatically. Note that this switch is only
enabled when the Read Only switch is off and there is at least one column tagged as Symbol.
Segment

See Translator Customize
Offset

See Translator Customize
Duration

See Translator Customize

 See Also

DLL Implementation

File DLL Implementation

Component: File

Protocol: PerformFile

Description:

The File component contains four base translators: 1) ASCII, 2) Column-formatted ASCII, 3) binary,
and 4) bitmap. The DLL capability of the File component allows you to write your own translator.
The default functionality of the DLL translator is a very basic ASCII translator. It will read a file
containing only space-delimited numbers.

Code:

BOOL performFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 FILE *file, // Pointer to the opened file
 NSFloat *sample // Location to place next sample
)

 536

{
 if (fscanf(file, "%f", sample) != EOF)
 return TRUE;
 fclose(file);
 return FALSE;
}

FILE *openFile(DLLData *instance, const char *filePath)
{
 return fopen(filePath, "r");
}

Inspectors

File Inspector

Component: File

Superclass Inspector: Data Sets

This page displays the list of data files used to generate the input streams. Each data file has an
associated translator and data set. The translator specifies the format of the data file and the data
set specifies what the data is to be used for (e.g., training, testing, cross validation). When multiple
data files are assigned to the same data set, the files are concatenated together to generate the
data set’s stream.

Component Configuration:
Add

 537

This button displays a file selection panel for adding a file to the list. The Associate File panel is
then displayed for you to specifiy the translator and data set to associate with the file. Each unique
data set added will have an associated pattern file (.nsp) that contains the raw data stream.
Remove

This button removes the currently selected file from the file list.
Replace

This button displays a file selection panel for replacing the currently selected file from the list.
Associate

This button displays the Associate File panel. This panel is used to associate a translator and a
data set with the selected data file. The file list displays the current associations.
Customize

This button displays a panel used to customize the way in which the translator translates the
selected file. Some translators have different parameter settings than others (see the Translator
Customize and Column Translator Customize panels). All translators have the ability to extract a
segment of the file’s data.
View

This button is used to view the selected file. The program used to view the file is determined based
on the file’s extension and application associated with that extension defined within Windows. Click
here for instructions on associating an editor with a file extension.

 See Also

Data Sets Inspector

Component: File

Superclass Inspector: Stream

 538

This page displays the list of data sets used to generate the Normalization File and the number of
exemplars read from the active data set. The normalization coefficients will be computed across all
data sets by default. To use multiple data sets for the normalization coefficients, hold down the
Control key or Shift key while selecting the items from the list.

Component Configuration:
Generate Normalization File

If the File component is configured to normalize the data (see the Stream Inspector), then this
switch specifies how the Normalization File is used. If the switch is on (the default), the
normalization file is generated when the File component performs a translation. If the switch is off,
the normalization coefficients are read from an existing normalization file during translation.
Norm. File

This button brings up a panel to enter the file name (including the extension) of the Normalization
File that is generated or read on translation (see above). Note that the Normalize switch (see the
Stream Inspector) must be switched on in order for this button to be enabled.
View

This button is used to view the current state of the Normalization File. The program used to view
the file is determined based on the file’s extension and application associated with that extension
defined within Windows. Click here for instructions on associating an editor with a file extension.
Translate

This button translates the files for the active data set and generates the corresponding data stream.
Once the file has been translated, the number of exemplars are displayed.

File Macro Actions

File Macro Actions
Overview Superclass Macro Actions

Action Description

 539

activeDataSet Returns the selected "Active Data Set".

activeFileName Returns the name of the currently selected file in the File List.

activeFilePath Returns the full path of the currently selected file in the File List.

activeTranslatorName Returns the translator name of the currently selected file in the File List.

addFile Adds a file to the File List.

associateActiveFile Associates a translator and a data set with the currently selected file in
the File List.

beginCustomizeOfActiveFile This function is called before any changes are made to the
parameters within the Translator Customize and Column Translator Customize panels.

binaryEncodingForSymbols Returns TRUE if the "Encoding Scheme" is set to "Binary" and
FALSE if it is set to "Unary".

columnCountForActiveFile Returns the number of selected columns within the active file.

columnTagForActiveFile Returns a code based on how the specified column is tagged (0 =
"Skip", 1 = "Numeric", 2 = "Symbol").

customizeActiveFile Displays either the Translator Customize or Column Translator
Customize panel depending on the translator used for the active file.

dataSetCount Returns the number of unique data sets within the File List.

dataSetForActiveFile Returns the data set of the file selected within the File List.

dataSetNameAt Returns the data set at the specified index, where 0 <= index < dataSetCount.

dataSetUsedForNormalization TRUE if the specified data set is used to calculate the
normalization coefficients.

durationForActiveFile Returns the "Duration" setting for the currently selected file in the File
List.

endCustomizeOfActiveFile This function is called after any changes are made to the
parameters within the Translator Customize and Column Translator Customize panels.

expandedColumnCountForActiveFile Returns the number of selected columns, plus the
number of additional columns added for symbolic data, within the active file.

fileCount Returns the number of files listed with the File List.

filePathAt Returns the full file path of a file in the File List, specified by an index number,
where 0 <= index < fileCount.

generateSymbolFile Generates a symbol file based on the columns tagged as "Symbol".

 540

matchPEsWithColumns Sets the number of rows of the attached Axon component to match that
of the number of selected columns.

normalizationFileName Returns the name of the "Normalization File" (with extension).

normalizationFilePath Returns the full path of the "Normalization File".

normalizationFileReadOnly Returns the "Read Only" setting.

numericForActiveFile Returns TRUE if the specified column of the active file is tagged as
"Numeric".

offsetForActiveFile Returns the "Offset" setting for the currently selected file in the File List.

removeActiveFile Removes the currently selected file from the file list.

removeAllFiles Removes all files from the file list.

segmentForActiveFile Returns the "Segment" setting for the currently selected file in the File
List.

setActiveDataSet Sets the "Active Data Set" selection.

setActiveFileNameAndDataSet Selects the active file in the File List given the file's name and
data set.

setActiveFilePath Selects the active file in the File List given the file's path.

setActiveTranslatorName Associates the specified translator with the active file.

setBinaryEncodingForSymbols Set to TRUE to set the "Encoding Scheme" to "Binary" and
FALSE to set it to "Unary".

setColumnTagForActiveFile Tags the specified column (0 = "Skip", 1 = "Numeric", 2 =
"Symbol").

setDataSetForActiveFile Sets the data set of the file selected within the File List.

setDataSetUsedForNormalization TRUE if the specified data set is used to calculate the
normalization coefficients.

setDurationForActiveFile Sets the "Duration" setting for the currently selected file in the File List.

setNormalizationFilePath Sets the full path of the "Normalization File".

setNormalizationFileReadOnly Sets the "Read Only" setting.

setNumericForActiveFile Tags the specified columns of the active file as "Numeric".

setOffsetForActiveFile Sets the "Offset" setting for the active file.

setSegmentForActiveFile Sets the "Segment" setting for the currently selected file in the File List.

 541

setSkipForActiveFile Tags the specified columns of the active file as "Skip".

setSymbolFilePath Sets the path of the "Symbol Expansion" file.

setSymbolFileReadOnly Sets the "Read Only" setting of the "Symbol Expansion" file.

setSymbolForActiveFile Tags the specified columns of the active file as "Symbol".

setUseDefaultTranslatorForActiveFile TRUE sets the "Set as default for all files of type" setting,
and FALSE set the "Set only for file" setting.

skipForActiveFile Returns TRUE if the specified column of the active file is tagged as "Skip".

symbolFileName Returns the name (with extension) of the "Symbol Expansion" file.

symbolFilePath Returns the path of the "Symbol Expansion" file.

symbolFileReadOnly Returns the "Read Only" setting of the "Symbol Expansion" file.

symbolForActiveFile Returns TRUE if the specified column of the active file is tagged as
"Symbol".

toggleColumnForActiveFile Toggles the column setting for the active file from "Skip" to
"Numeric" to "Symbol".

translate Translates the files for the active data set and generates the corresponding data
stream.

translateIfNeeded Performs the translate operation only if the data files have changed
since the last translation.

translatorCount Returns the number of available translators.

translatorNameAt Returns the translator at the specified index, where 0 <= index <
translatorCount.

useDefaultTranslatorForActiveFile Returns TRUE if the "Set as default for all files of type" setting
is active, and FALSE if the "Set only for file" setting is active.

verifiedSamples Performs a translation if needed and returns the number of samples in the active
data set.

activeDataSet
Overview Macro Actions

Syntax

componentName. activeDataSet()

Parameters Type Description

 542

return string The data set used when a "translate" operation is performed (see "Translate"
within the Data Set Inspector).

componentName Name defined on the engine property page.

activeFileName
Overview Macro Actions

Syntax

componentName. activeFileName()

Parameters Type Description
return string The name of the currently selected file in the File List (see the File Inspector).

componentName Name defined on the engine property page.

activeFilePath
Overview Macro Actions

Syntax

componentName. activeFilePath()

Parameters Type Description
return string The path of the currently selected file in the File List (see the File Inspector).

componentName Name defined on the engine property page.

activeTranslatorName
Overview Macro Actions

Syntax

componentName. activeTranslatorName()

Parameters Type Description
return string The translator name of the currently selected file in the File List (see the
Associate File panel).

componentName Name defined on the engine property page.

addFile
Overview Macro Actions

Syntax

 543

componentName. addFile(path, dialogMode)

Parameters Type Description
return BOOL TRUE if the operation completed successfully.

componentName Name defined on the engine property page.

path string The full path of the file to add to the File List (see "Add" within the File Inspector).

dialogMode BOOL TRUE to display error and warning messages and FALSE to supress
them.

associateActiveFile
Overview Macro Actions

Syntax

componentName. associateActiveFile()

Parameters Type Description
return BOOL Returns TRUE if the association was made and FALSE if the user cancelled the
operation.

componentName Name defined on the engine property page.

beginCustomizeOfActiveFile
Overview Macro Actions

Syntax

componentName. beginCustomizeOfActiveFile()

Parameters Type Description
return void

componentName Name defined on the engine property page.

binaryEncodingForSymbols
Overview Macro Actions

Syntax

componentName. binaryEncodingForSymbols()

Parameters Type Description
return BOOL TRUE uses an encoding scheme that adds log N (base 2) channels, where N is

 544

the number of unique symbols found in the column. FALSE uses a unary encoding scheme that
adds N channels (see "Encoding Scheme" within the Column Translator Customize panel).

componentName Name defined on the engine property page.

columnCountForActiveFile
Overview Macro Actions

Syntax

componentName. columnCountForActiveFile()

Parameters Type Description
return int The number of selected columns within the active file.

componentName Name defined on the engine property page.

columnTagForActiveFile
Overview Macro Actions

Syntax

componentName. columnTagForActiveFile(index)

Parameters Type Description
return int The code based on how the specified column is tagged (0 = "Skip", 1 =
"Numeric", 2 = "Symbol").

componentName Name defined on the engine property page.

index int The column index (0 <= index < columnCountForActiveFile).

customizeActiveFile
Overview Macro Actions

Syntax

componentName. customizeActiveFile(aString)

Parameters Type Description
return string

componentName Name defined on the engine property page.

aString string The window title for the customize panel (blank to use the default title).

 545

dataSetCount
Overview Macro Actions

Syntax

componentName. dataSetCount()

Parameters Type Description
return int The number of unique data sets defined (see the Data Set Inspector).

componentName Name defined on the engine property page.

dataSetForActiveFile
Overview Macro Actions

Syntax

componentName. dataSetForActiveFile()

Parameters Type Description
return string The data set of the file selected within the File List (see the File Inspector).

componentName Name defined on the engine property page.

dataSetNameAt
Overview Macro Actions

Syntax

componentName. dataSetNameAt(index)

Parameters Type Description
return string The data set at the specified index (see the Data Set Inspector).

componentName Name defined on the engine property page.

index int The index of the data set list (0 <= index < dataSetCount).

dataSetUsedForNormalization
Overview Macro Actions

Syntax

componentName. dataSetUsedForNormalization(dataset)

Parameters Type Description
return BOOL TRUE if the specified dataset has been selected to be included in the calculation
of the normalization coefficients (see the Data Set Inspector).

 546

componentName Name defined on the engine property page.

dataset string The data set name.

durationForActiveFile
Overview Macro Actions

Syntax

componentName. durationForActiveFile()

Parameters Type Description
return int The number of samples of the segment (see "Duration" within the Translator
Customize and Column Translator Customize panels).

componentName Name defined on the engine property page.

endCustomizeOfActiveFile
Overview Macro Actions

Syntax

componentName. endCustomizeOfActiveFile()

Parameters Type Description
return BOOL TRUE if the customization operation was successful.

componentName Name defined on the engine property page.

expandedColumnCountForActiveFile
Overview Macro Actions

Syntax

componentName. expandedColumnCountForActiveFile()

Parameters Type Description
return int The number of selected columns, plus the number of additional columns added
for symbolic data, within the active file.

componentName Name defined on the engine property page.

fileCount
Overview Macro Actions

Syntax

 547

componentName. fileCount()

Parameters Type Description
return int The number of files listed with the File List (see the File Inspector).

componentName Name defined on the engine property page.

filePathAt
Overview Macro Actions

Syntax

componentName. filePathAt(index)

Parameters Type Description
return string The path of the specified file within the File List (see the File Inspector).

componentName Name defined on the engine property page.

index int The index of the file within the File List (0<= index < fileCount).

generateSymbolFile
Overview Macro Actions

Syntax

componentName. generateSymbolFile()

Parameters Type Description
return void

componentName Name defined on the engine property page.

matchPEsWithColumns
Overview Macro Actions

Syntax

componentName. matchPEsWithColumns()

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalizationFileName
Overview Macro Actions

 548

Syntax

componentName. normalizationFileName()

Parameters Type Description
return string The name (with extension) of the file that stores the normalization coefficients
(see "Generate Normalization File" within the Data Set Inspector).

componentName Name defined on the engine property page.

normalizationFilePath
Overview Macro Actions

Syntax

componentName. normalizationFilePath()

Parameters Type Description
return string The full path of the file that stores the normalization coefficients (see "Generate
Normalization File" within the Data Set Inspector).

componentName Name defined on the engine property page.

normalizationFileReadOnly
Overview Macro Actions

Syntax

componentName. normalizationFileReadOnly()

Parameters Type Description
return BOOL FALSE if the normalization file is to be generated from the current data (see
"Generate Normalization File" within the Data Set Inspector).

componentName Name defined on the engine property page.

numericForActiveFile
Overview Macro Actions

Syntax

componentName. numericForActiveFile(index)

Parameters Type Description
return BOOL TRUE if the specified column of the active file is tagged as "Numeric" (see the
Column Translator Customize panel).

componentName Name defined on the engine property page.

index int The column index of the active file (0 <= index < columnCount).

 549

offsetForActiveFile
Overview Macro Actions

Syntax

componentName. offsetForActiveFile()

Parameters Type Description
return int The number of samples to offset the segment (see "Offset" within the Translator
Customize and Column Translator Customize panels).

componentName Name defined on the engine property page.

removeActiveFile
Overview Macro Actions

Syntax

componentName. removeActiveFile()

Parameters Type Description
return void

componentName Name defined on the engine property page.

removeAllFiles
Overview Macro Actions

Syntax

componentName. removeAllFiles()

Parameters Type Description
return void

componentName Name defined on the engine property page.

segmentForActiveFile
Overview Macro Actions

Syntax

componentName. segmentForActiveFile()

Parameters Type Description

 550

return BOOL TRUE if the active file is segmented (see "Segment" within the Translator
Customize and Column Translator Customize panels).

componentName Name defined on the engine property page.

setActiveDataSet
Overview Macro Actions

Syntax

componentName. setActiveDataSet(activeDataSet)

Parameters Type Description
return void

componentName Name defined on the engine property page.

activeDataSet string The data set used when a "translate" operation is performed (see
"Translate" within the Data Set Inspector).

setActiveFileNameAndDataSet
Overview Macro Actions

Syntax

componentName. setActiveFileNameAndDataSet(name, dataSet)

Parameters Type Description
return void

componentName Name defined on the engine property page.

name string The name of the file to select from the File List (see the File Inspector).

dataSet string The data set of the file to select from the File List (see the File Inspector).

setActiveFilePath
Overview Macro Actions

Syntax

componentName. setActiveFilePath(activeFilePath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 551

activeFilePath string The path of the currently selected file in the File List (see the File
Inspector).

setActiveTranslatorName
Overview Macro Actions

Syntax

componentName. setActiveTranslatorName(activeTranslatorName)

Parameters Type Description
return void

componentName Name defined on the engine property page.

activeTranslatorName string The translator name of the currently selected file in the File List
(see the Associate File panel).

setBinaryEncodingForSymbols
Overview Macro Actions

Syntax

componentName. setBinaryEncodingForSymbols(binaryEncodingForSymbols)

Parameters Type Description
return void

componentName Name defined on the engine property page.

binaryEncodingForSymbols BOOL TRUE uses an encoding scheme that adds log N
(base 2) channels, where N is the number of unique symbols found in the column. FALSE uses a
unary encoding scheme that adds N channels (see "Encoding Scheme" within the Column
Translator Customize panel).

setColumnTagForActiveFile
Overview Macro Actions

Syntax

componentName. setColumnTagForActiveFile(beginIndex, endIndex, tag)

Parameters Type Description
return void

componentName Name defined on the engine property page.

beginIndex int The first column of the block to tag (0 <= beginIndex < columnCount).

 552

endIndex int The last column of the block to tag (0 <= endIndex < columnCount).

tag int A code indicating how to tag the block of columns (0 = "Skip", 1 = "Numeric", 2 =
"Symbol" – see the Column Translator Customize panel).

setDataSetForActiveFile
Overview Macro Actions

Syntax

componentName. setDataSetForActiveFile(dataSet)

Parameters Type Description
return void

componentName Name defined on the engine property page.

dataSet string The data set to associate with the active file (see the Associate File panel).

setDataSetUsedForNormalization
Overview Macro Actions

Syntax

componentName. setDataSetUsedForNormalization(dataSet, aBool)

Parameters Type Description
return void

componentName Name defined on the engine property page.

dataSet string The name of the data set to include/exclude from the normalization calculation
(see the Data Set Inspector).

aBool BOOL TRUE includes the file and FALSE excludes the file.

setDurationForActiveFile
Overview Macro Actions

Syntax

componentName. setDurationForActiveFile(duration)

Parameters Type Description
return void

componentName Name defined on the engine property page.

durationint The number of samples of the segment (see "Duration" within the Translator

 553

Customize and Column Translator Customize panels).

setNormalizationFilePath
Overview Macro Actions

Syntax

componentName. setNormalizationFilePath(normalizationFilePath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalizationFilePath string The full path of the file that stores the normalization coefficients
(see "Generate Normalization File" within the Data Set Inspector).

setNormalizationFileReadOnly
Overview Macro Actions

Syntax

componentName. setNormalizationFileReadOnly(normalizationFileReadOnly)

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalizationFileReadOnly BOOL FALSE if the normalization file is to be generated from
the current data (see "Generate Normalization File" within the Data Set Inspector).

setNumericForActiveFile
Overview Macro Actions

Syntax

componentName. setNumericForActiveFile(beginIndex, endIndex)

Parameters Type Description
return void

componentName Name defined on the engine property page.

beginIndex int The column index of the first column of the block to tag as "Numeric" (0
<= beginIndex < columnCount – see the Column Translator Customize panel).

endIndex int The column index of the last column of the block to tag as "Numeric" (0
<= endIndex < columnCount – see the Column Translator Customize panel).

 554

setOffsetForActiveFile
Overview Macro Actions

Syntax

componentName. setOffsetForActiveFile(offsetForActiveFile)

Parameters Type Description
return void

componentName Name defined on the engine property page.

offsetForActiveFile int The number of samples to offset the segment (see "Offset"
within the Translator Customize and Column Translator Customize panels).

setSegmentForActiveFile
Overview Macro Actions

Syntax

componentName. setSegmentForActiveFile(segmentForActiveFile)

Parameters Type Description
return void

componentName Name defined on the engine property page.

segmentForActiveFile BOOL TRUE if the active file is segmented (see "Segment" within the
Translator Customize and Column Translator Customize panels).

setSkipForActiveFile
Overview Macro Actions

Syntax

componentName. setSkipForActiveFile(beginIndex, endIndex)

Parameters Type Description
return void

componentName Name defined on the engine property page.

beginIndex int The column index of the first column of the block to tag as "Skip" (0 <=
beginIndex < columnCount – see the Column Translator Customize panel).

endIndex int The column index of the last column of the block to tag as "Skip" (0 <=
endIndex < columnCount – see the Column Translator Customize panel).

 555

setSymbolFilePath
Overview Macro Actions

Syntax

componentName. setSymbolFilePath(symbolFilePath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

symbolFilePath string The path of the file used to store the symbol translation table (see "File
Name" with the Column Translator Customize panel).

setSymbolFileReadOnly
Overview Macro Actions

Syntax

componentName. setSymbolFileReadOnly(symbolFileReadOnly)

Parameters Type Description
return void

componentName Name defined on the engine property page.

symbolFileReadOnly BOOL FALSE if the symbol file is to be generated from the current
data (see "Read Only" within the Column Translator Customize panel).

setSymbolForActiveFile
Overview Macro Actions

Syntax

componentName. setSymbolForActiveFile(beginIndex, endIndex)

Parameters Type Description
return void

componentName Name defined on the engine property page.

beginIndex int The column index of the first column of the block to tag as "Symbol" (0
<= beginIndex < columnCount – see the Column Translator Customize panel).

endIndex int The column index of the last column of the block to tag as " Symbol" (0
<= endIndex < columnCount – see the Column Translator Customize panel).

 556

setUseDefaultTranslatorForActiveFile
Overview Macro Actions

Syntax

componentName. setUseDefaultTranslatorForActiveFile(aBool)

Parameters Type Description
return void

componentName Name defined on the engine property page.

aBool BOOL TRUE sets the selected translator as the default translator for all files of the
selected extension, and FALSE uses the selected translator only for the active file (see "Set as
default for all files" and "Set only for file" within the Associate File panel).

skipForActiveFile
Overview Macro Actions

Syntax

componentName. skipForActiveFile(index)

Parameters Type Description
return BOOL TRUE if the specified column of the active file is tagged as "Skip" (see the
Column Translator Customize panel).

componentName Name defined on the engine property page.

index int The column index of the active file (0 <= index < columnCount).

symbolFileName
Overview Macro Actions

Syntax

componentName. symbolFileName()

Parameters Type Description
return BOOL The name (with extension) of the file used to store the symbol translation table
(see "File Name" with the Column Translator Customize panel).

componentName Name defined on the engine property page.

symbolFilePath
Overview Macro Actions

Syntax

 557

componentName. symbolFilePath()

Parameters Type Description
return string The path of the file used to store the symbol translation table (see "File Name"
with the Column Translator Customize panel).

componentName Name defined on the engine property page.

symbolFileReadOnly
Overview Macro Actions

Syntax

componentName. symbolFileReadOnly()

Parameters Type Description
return BOOL FALSE if the symbol file is to be generated from the current data (see "Read
Only" within the Column Translator Customize panel).

componentName Name defined on the engine property page.

symbolForActiveFile
Overview Macro Actions

Syntax

componentName. symbolForActiveFile(index)

Parameters Type Description
return BOOL TRUE if the specified column of the active file is tagged as "Symbol" (see the
Column Translator Customize panel).

componentName Name defined on the engine property page.

index int The column index of the active file (0 <= index < columnCount).

toggleColumnForActiveFile
Overview Macro Actions

Syntax

componentName. toggleColumnForActiveFile()

Parameters Type Description
return void

componentName Name defined on the engine property page.

 558

beginIndex int The column index of the first column of the block to toggle the selection
from "Skip" to "Numeric" to "Symbol" (0 <= beginIndex < columnCount – see the Column Translator
Customize panel).

endIndex int The column index of the last column of the block to toggle the selection
from "Skip" to "Numeric" to "Symbol" (0 <= endIndex < columnCount – see the Column Translator
Customize panel).

translate
Overview Macro Actions

Syntax

componentName. translate()

Parameters Type Description
return void

componentName Name defined on the engine property page.

translateIfNeeded
Overview Macro Actions

Syntax

componentName. translateIfNeeded()

Parameters Type Description
return void

componentName Name defined on the engine property page.

translatorCount
Overview Macro Actions

Syntax

componentName. translatorCount()

Parameters Type Description
return int The number of available translators

componentName Name defined on the engine property page.

translatorNameAt
Overview Macro Actions

Syntax

 559

componentName. translatorNameAt(index)

Parameters Type Description
return string The translator at the specified index (see the Associate File panel).

componentName Name defined on the engine property page.

index int The index of the translator list (0 <= index < translatorCount).

useDefaultTranslatorForActiveFile
Overview Macro Actions

Syntax

componentName. useDefaultTranslatorForActiveFile()

Parameters Type Description
return BOOL TRUE indicates that the selected translator is used as the default translator for all
files of the selected extension, and FALSE indicates that the selected translator is used only for the
active file (see "Set as default for all files" and "Set only for file" within the Associate File panel).

componentName Name defined on the engine property page.

verifiedSamples
Overview Macro Actions

Syntax

componentName. verifiedSamples()

Parameters Type Description
return int The number of samples in the active data set.

componentName Name defined on the engine property page.

Access Points

Preprocessor Access Points

Family: Access Family

Superclass Access Points: Access Points

 560

Preprocessor Input:

Members of the Access family that are stacked on a preprocessor component will report a
Preprocessor Input access point. The component attached to this access point feeds its data to the
preprocessor, which in turn processes the data and feeds the component attached below.

 See Also

Access Access Points

Family: Access Family

Superclass Access Points: None

Stacked Access:

Members of the NSAccess family stack on components that report an access point. NSAccess
members themselves report an access point called Stacked Access. The stacked access point
allows more than one NSAccess component to access data at the same access point. Therefore
the user can stack other NSAccess components on top of this one.

DLL Implementation

Function DLL Implementation

Component: Function

Protocol: PerformFunction

Description:

The base Function component has five built-in waveforms. The default waveform for New DLLs of
this type is the sinewave. The perform function simply returns the sine of the angle x.

Code:

NSFloat performFunction(
 DLLData *instance, // Pointer to instance data (may be NULL)

 561

 NSFloat x // Current angle in radians
)
{
 return (NSFloat)sin(x);
}

Noise DLL Implementation

Component: Noise

Protocol: PerformNoise

Description:

The base Noise component has two built-in waveforms. The default distribution for New DLLs of
this type is uniform. The perform function simply generates a random number given the mean and
variance.

Code:

NSFloat performNoise(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat variance, // Variance set within components inspector
 NSFloat mean // Mean set within components inspector
)
{
 return
((NSFloat)sqrt(3*variance)*(NSFloat)(((NSFloat)rand()/RAND_MAX)-
0.5)+mean);
}

DLLInput DLL Implementation

Component: DLLInput

Protocol: PerformInput

 562

Description:

The DLLInput component is used to inject data into the network from a DLL. This is similar to using
the DLL capability of the Function component, except that this data is not cyclical. One important
use for this feature is to retrieve input data from external hardware (such as an analog-to-digital
converter) by including the data acquisition code within the performInput function call.

The default implementation of this DLL simply fills the input buffer with zeros.

Code:

void performInput(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 int i,j;
 for (i=0; i<rows; i++)
 for (j=0; j<cols; j++)
 data[i][j] = 0.0f; // You define your own input
source.
}

DLLPreprocessor & DLLPostprocessor DLL Implementation

Components: DLLPreprocessor, DLLPostprocessor

Protocol: PerformPrePost

Description:

The DLLPreprocessor and DLLPreprocessor components use the same protocol because their
functionality is very similar. The DLLPreprocessor is an input component that processes the input
data (using the Preprocessor access point) and injects it into the network. Conversely, the
DLLPostprocessor is a probe that processes data coming out of the network before sending it to
another probe (using the Postprocessor access point).

The default implementation of these DLLs simply copies the data coming in to the data going out.

Code:

 563

BOOL performPrePost(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input // Pointer to the input data
 NSFloat *output, // Pointer to the output data
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 int i, length=rows*cols;
 for (i=0; i<length; i++)
 output[i] += input[i];
 return TRUE; // Return whether to inject this sample or
 // to call performPrePost with another sample
}

Drag and Drop

Access Drag and Drop

Components in the Access family will extract, inspect, or inject data reported by components via
access points. There are two basic forms of access points, static and temporal. An access point
may also be restricted to injecting of extracting data. The user however, is sheltered from these
complexities. When an Access component is dragged over top of another component, the mouse
cursor will change from a "not" sign to a stamp if the component will be accepted.

To find out what access points a component reports, reference its on-line help. Each component
that has access points will have a section describing them.

Input Drag and Drop

The members of the Input family are designed to inject data into the network via component
access points. These components can be dropped on any network component with an available
static input access point. The members of this family can also be stacked, allowing accumulated
input from multiple sources. Alternatively, stacking allows a probe to monitor the injected data.

Inspectors

Function Inspector

Component: Function

Superclass Inspector: Access inspector

 564

Component Configuration:
Amplitude FormCell (SetAmplitude(float))

This cell is used to specify the amplitude of the generated signal.
Offset (SetOffset(float))

This cell is used to specify the offset of the generated signal.
Phase (SetPhase(int))

This cell is used to specify the phase shift (in degrees) of the generated signal.
Waveform (SetFunction(int))

These six buttons are used to select the waveform of the generated signal. The five base functions
are the Sine, Square, Triangle, Sawtooth, and Impulse. The sixth button uses the loaded DLL
defined within the Engine property page of the inspector (see Customizing a Function). This button
is inactive if no DLL is loaded.
Apply to Current Channel

When the Channel Properties of the Function component are changed, those changes apply to all
channels by default. When this radio button is selected, only the properties for a single channel are
modified. This channel is specified using the Current Channel cell or slider.
Thru Channel

When this radio button is selected, the Channel Properties for a range of channels can be modified
at once. The default range is all channels. This range can be modified using the Current Channel
and Thru Channel cells or sliders.
Samples/Cycle

Each channel consists of one period (i.e., cycle) of its respective function. This cell specifies how
many samples are generated for each channel. The total stream length is then the number of
Channels times the number of Samples/Channel. Note that this parameter always applies to all
channels, unlike the parameters within the Channel Properties box.
Frequency (SetFrequency(float))

 565

This cell is used to compute the Samples/Cycle based on the Sampling Rate. Note that
Samples/Cycle = Sampling Rate / Frequency.
Sampling Rate

This cell is used to compute the Frequency based on the Samples/Cycle. Note that Frequency =
Sampling Rate / (Samples/Cycle).

Noise Inspector

Component: Noise

Superclass Inspector: Stream

Component Configuration
Mean (SetMean(float))

This cell specifies the mean of the noise that is generated. See the Noise reference for the use of
the mean within the noise generation functions.
Variance (SetVariance(float))

This cell specifies the variance of the noise that is generated. See the Noise reference for the use
of the variance within the noise generation functions.
Uniform, Gaussian, DLL (SetGaussian(bool))

The first two buttons (marked with a "U" and "G") are used to select between a uniform distribution
and a Gaussian distribution for the generated noise. See the Noise reference for the equations of
these noise generation functions. The third button (marked with a "DLL") uses the loaded DLL
defined within the Engine property page of the inspector (see Customizing a Noise). This button is
inactive if no DLL is loaded.
Apply to Current Channel

 566

When the Channel Properties of the Noise component are changed, those changes apply to all
channels by default. When this radio button is selected, only the properties for a single channel are
modified. This channel is specified using the Current Channel cell or slider.
Thru Channel

When this radio button is selected, the Channel Properties for a range of channels can be modified
at once. The default range is all channels. This range can be modified using the Current Channel
and Thru Channel cells or sliders.
Samples/Channel

This cell specifies how many samples of noise are generated for each channel. The total stream
length is then the number of Channels times the number of Samples/Channel. Note that this
parameter always applies to all channels, unlike the parameters within the Channel Properties box.
Regenerate

The default setting for this switch is off, meaning that the generated noise stream will be continually
recycled as it is fed through the network. By turning this switch on, the Noise component will re-
generate new random numbers each time the end of the noise stream has been reached. This
assures a more random distribution but it is less efficient.

Stream Inspector

Family: Input Family

Superclass Inspector: Access inspector

Component Configuration:
Exemplars

This text reports the number of exemplars contained within the stream generated by the Input
Family component. Note that this value is dependent on the number of Channels (Exemplars =
Stream Length/Channels).
Channels

 567

This is the number of channels (i.e., PEs) reported by the component attached below.
Current Exemplar

This text reports the exemplar that is to be read next from the stream. Note that for efficiency
reasons, this display is only updated when the inspector is switched to this property page.
Stream Length

This text reports the length of the stream (i.e., the number of floating point values) generated by the
Input Family component.
Reset

This button resets the stream to start reading from the beginning. Note that the stream is also reset
every time the network is reset.
On, Off (SetOn(bool))

These radio buttons are used to turn the stream on or off. This is useful for when you want to
temporarily stop the data flow without having to remove the Input component.
Overwrite / Accumulate (SetOverwrite(bool))

These radio buttons specify whether or not the stream data is to overwrite the data within the
access point of the attached component. If not, the stream data is added to (i.e., accumulated with)
the accessed data. This is useful for stacking several inputs onto one access point.
Save As

This button displays a file selection panel, which is used to specify a file name for saving the
stream in binary format. This is most useful for large ASCII files where the translation process may
be very time consuming. Once the file is translated, the stream can be saved to a separate binary
file and used in place of the ASCII file. Binary files are processed much more efficiently than ASCII
files.
Normalize

This switch is used to turn the data normalization on or off. When using a File component, the
normalization coefficients (amplitude and offset) for each channel are contained within the specified
Normalization File.
By Channel

A series of numbers is normalized by first detecting the minimum and maximum values from the
selected Data Sets. The resulting scale and offset is then applied to all data elements of the series.
When this switch is turned on, each channel is an independent series with its own scaling and
offset factor calculated from the channel’s minimum and maximum values. When this switch is
turned off, the entire stream is the series and all numbers are normalized using the scaling and
offset calculated from the stream’s minimum and maximum values. Note that this switch is only
enabled when normalization is active and the Generate switch from the File Inspector is set
(applies only to the File component).
Lower, Upper

These cells define the upper and lower bounds of the normalization. Once the stream is
normalized, all data elements from the selected Data Sets will fall within this range. Note that this
switch is only enabled when the normalization is active and the Generate switch from the File
Inspector is set (applies only to the File component).
Scale

 568

This switch is used to turn the data scaling on or off. The scaling is defined for the entire stream
using the Amplitude and Offset cells (see below).
Amplitude, Offset

These cells define the amplitude and offset of the scaling operation. When scaling is active, these
cells are enabled so that the user can specify these parameters. When normalization is active,
these cells cannot be modified. Instead, they report the offset and scaling that were applied to
generate the normalized stream (unless the normalization is By Channel).

Access Inspector

Superclass Inspector: Engine Inspector

Component Configuration:
Available Access Points

 569

The list on the left half of the inspector contains all available access points for the component
attached below. The highlighted item is the access point that this component is currently attached
to. To change the access point, simply single click on the item in the list.
Rows

This cell contains the number of rows that is reported by the access point of the attached
component. This value can only be modified from the inspector of that component.
Cols

This cell contains the number of columns that is reported by the access point of the attached
component. This value can only be modified from the inspector of that component.
Auto Window

When this switch is set, the component’s display window automatically hides itself whenever the
Access Data Set (see below) is not the Active Data Set (see Static Inspector).
Access Data Set

Access components can display (and/or modify) the data of a single data set, "All" data sets, or the
"Active" data set (specified from the Static Inspector). Normally the Probe components are
configured to display the data for the active data set and the File components are configured to
inject the data for all data sets. When a cross validation set is used, then an additional set of probe
components can be added and configured to access only the cross validation data.
ASCII

This option is only applicable to the Probe and File components that are included within a Code
Generation User Interface project. For probes, this specifies that the data passed through this
component is written to an ASCII file. For inputs, this specifies that the input data is read from an
ASCII file. Note that this input file is automatically created by NeuroSolutions when the source code
is generated.
Binary

This option is only applicable to the Probe and Input components that are included within a Code
Generation User Interface project. For probes, this specifies that the data passed through this
component is written to a binary file. For inputs, this specifies that the input data is read from a
binary file. Note that this input file is automatically created by NeuroSolutions when the source code
is generated.
Stdio

This option is only applicable to the Probe components that are included within a Code Generation
User Interface project. This specifies that the data passed through this component is sent to the
standard output, which is normally a DOS shell.
Function

This option is only applicable to the Probe and Input components that are included within a Code
Generation User Interface project. For probes, this specifies that its data is sent to a function
instead of a file or the standard I/O. For each exemplar of output, a pointer to the output data is
passed as a parameter within the function call. For inputs, this specifies that each exemplar of input
data is retrieved by calling a function, instead of reading from a file. The implementation of the
function computes and/or retrieves the data and stores it to the floating point array passed as a
parameter.

This option applies only to the Probe and Input components that are included within a Code
Generation User Interface project. For probes, this specifies that its data is sent to a function. For
each exemplar of output, a pointer to the output data is passed as a parameter within the function
call. For inputs, this specifies that each exemplar of input data is retrieved by calling a function. The

 570

function computes and/or retrieves the data and stores it to the floating point array passed as a
parameter.
Generated Code Normalizes the Data

This option is only applicable to the Input components that are included within a Code Generation
User Interface project. When this switch is set and "ASCII" is selected, the generated data file will
not be normalized and the generated code will perform the normalization as the data is read. When
this switch is set and "Function" is selected the data that is defined by the user-defined function will
be normalized by the generated code after the function returns. Note that this switch is only
enabled if the "Normalize" switch is turned on from the Stream Inspector and the Code Generation
File Format is either "ASCII" or "Function".
Normalize the Data File

This option is only applicable to the Input components that are included within a Code Generation
User Interface project. This switch specifies that the generated file will contain normalized data.
This is always true for "Binary" files, so this switch is only enabled for "ASCII" files. Note that the
switch is only enabled if the "Normalize" switch is turned on from the Stream Inspector.
Denormalize

This option is only applicable to the Probe components that are included within a Code Generation
User Interface project. This switch specifies that the data passed through this component is
denormalized before it is written to the file or sent to the function. Note that the "Denormalize from
Normalization File" switch of the Probe Inspector must be on for this switch to be enabled.

Associate File

This panel is used to map a data file to one of the file translators provided and to select the data set
that the data belongs to. Select a translator by single-clicking on an item within the Available
Translators list and select the data set by single-clicking on an item within the Data Sets list.

 571

Set as default for all files

When this button is set and the OK button is pressed, all input files with the same extension will use
the selected translator for reading their data.

Set only for file

When this button is set and the OK button is pressed, only the selected file will use the selected
translator for reading its data.

New

The default data sets are Testing, Training and Cross Validation. You may define your own data set
by pressing this button and entering the data set name.

Translators:

ASCII Translator

Binary Translator

Bitmap Translator

Column-Formatted ASCII Translator

DLL Translator

 572

 See Also

Macro Actions

Access

Access Macro Actions
Overview Superclass Macro Actions

Action Description
accessDataSet Returns the "Access Data Set" setting.

accessedComponent Returns name of the component whose data is being accessed.

activeAccessPoint Returns the access point that the component is attached to.

autoWindow Returns the "Auto-Window" setting.

codeNormalizesData Returns the "Generated Code Normalizes the Data" setting for File
components or the "Denormalize" setting for Probe components.

flashFileMode Returns the "Code Generation File Format" setting (0=ASCII, 1=Binary, 2=Stdio,
3=Function).

normalizeDataFile Returns the "Normalize the Data File" setting.

setAccessDataSet Sets the "Access Data Set" setting.

setActiveAccessPoint Sets the access point that the component is attached to.

setAutoWindow Sets the "Auto-Window" setting.

setCodeNormalizesData Sets the "Generated Code Normalizes the Data" setting for File
components or the "Denormalize" setting for Probe components.

setFlashFileMode Sets the "Code Generation File Format" setting (0=ASCII, 1=Binary,
2=Stdio, 3=Function).

setNormalizeDataFile Sets the "Normalize the Data File" setting.

accessDataSet
Overview Macro Actions

Syntax

componentName. accessDataSet()

Parameters Type Description
return string The name of the data set to display and/or modify, or "All" for all data sets (see
"Access Data Set" within the Access Inspector).

 573

componentName Name defined on the engine property page.

accessedComponent
Overview Macro Actions

Syntax

componentName. accessedComponent()

Parameters Type Description
return string The name of the component whose data is being accessed.

componentName Name defined on the engine property page.

activeAccessPoint
Overview Macro Actions

Syntax

componentName. activeAccessPoint()

Parameters Type Description
return string The access point that the component is attached to (see "Available Access
Points" within the Access Inspector).

componentName Name defined on the engine property page.

autoWindow
Overview Macro Actions

Syntax

componentName. autoWindow()

Parameters Type Description
return BOOL When TRUE, the component’s display window automatically hides itself
whenever the accessDataSet is not the active data set (see "Auto Window" within the Access
Inspector).

componentName Name defined on the engine property page.

codeNormalizesData
Overview Macro Actions

Syntax

componentName. codeNormalizesData()

 574

Parameters Type Description
return BOOL When TRUE and the component is a File, the generated data file will not be
normalized and the generated code will perform the normalization as the data is read (see
"Generated Code Normalizes the Data" within the Access Inspector). When TRUE and the
component is a Probe, the data passed through the access point is denormalized before it is written
to the file or sent to the function (see "Denormalize" within the Access Inspector).

componentName Name defined on the engine property page.

flashFileMode
Overview Macro Actions

Syntax

componentName. flashFileMode()

Parameters Type Description
return int The file format that is used by the generated code when writing/reading the data
(0=ASCII, 1=Binary, 2=Stdio, 3=Function -- see "Binary", "ASCII", "Stdio", and "Function" within the
Access Inspector).

componentName Name defined on the engine property page.

normalizeDataFile
Overview Macro Actions

Syntax

componentName. normalizeDataFile()

Parameters Type Description
return BOOL When TRUE, the generated file will contain normalized data (see "Normalize the
Data File" within the Access Inspector).

componentName Name defined on the engine property page.

setAccessDataSet
Overview Macro Actions

Syntax

componentName. setAccessDataSet(accessDataSet)

Parameters Type Description
return void

componentName Name defined on the engine property page.

accessDataSet string The name of the data set to display and/or modify, or "All" for all data

 575

sets (see "Access Data Set" within the Access Inspector).

setActiveAccessPoint
Overview Macro Actions

Syntax

componentName. setActiveAccessPoint(activeAccessPoint)

Parameters Type Description
return void

componentName Name defined on the engine property page.

activeAccessPoint string The access point that the component is attached to (see
"Available Access Points" within the Access Inspector).

setAutoWindow
Overview Macro Actions

Syntax

componentName. setAutoWindow(autoWindow)

Parameters Type Description
return void

componentName Name defined on the engine property page.

autoWindow BOOL When TRUE, the component’s display window automatically hides itself
whenever the accessDataSet is not the active data set (see "Auto Window" within the Access
Inspector).

setCodeNormalizesData
Overview Macro Actions

Syntax

componentName. setCodeNormalizesData(normalize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalize BOOL When TRUE and the component is a File, the generated data file will
not be normalized and the generated code will perform the normalization as the data is read (see
"Generated Code Normalizes the Data" within the Access Inspector). When TRUE and the
component is a Probe, the data passed through the access point is denormalized before it is written
to the file or sent to the function (see "Denormalize" within the Access Inspector).

 576

setFlashFileMode
Overview Macro Actions

Syntax

componentName. setFlashFileMode(flashFileMode)

Parameters Type Description
return void

componentName Name defined on the engine property page.

flashFileMode int The file format that is used by the generated code when writing/reading
the data (0=ASCII, 1=Binary, 2=Stdio, 3=Function -- see "Binary", "ASCII", "Stdio", and "Function"
within the Access Inspector).

setNormalizeDataFile
Overview Macro Actions

Syntax

componentName. setNormalizeDataFile(normalize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalize BOOL When TRUE, the generated file will contain normalized data (see
"Normalize the Data File" within the Access Inspector).

Function

Function Macro Actions
Overview Superclass Macro Actions

Action Description
amplitude Returns the "Amplitude" parameter.

offset Returns the "Offset" parameter.

phaseShift Returns the "Phase" parameter.

setAmplitude Sets the "Amplitude" parameter.

setOffset Sets the "Offset" parameter.

 577

setPhaseShift Sets the "Phase" parameter.

amplitude
Overview Macro Actions

Syntax

componentName. amplitude()

Parameters Type Description
return float The amplitude of the generated signal (see "Amplitude Form Cell" within the
Function Inspector).

componentName Name defined on the engine property page.

offset
Overview Macro Actions

Syntax

componentName. offset()

Parameters Type Description
return float The offset of the generated signal (see "Offset" within the Function Inspector).

componentName Name defined on the engine property page.

phaseShift
Overview Macro Actions

Syntax

componentName. phaseShift()

Parameters Type Description
return float The phase shift (in degrees) of the generated signal (see "Phase" within the
Function Inspector).

componentName Name defined on the engine property page.

setAmplitude
Overview Macro Actions

Syntax

 578

componentName. setAmplitude(amplitude)

Parameters Type Description
return void

componentName Name defined on the engine property page.

amplitude float The amplitude of the generated signal (see "Amplitude Form Cell" within
the Function Inspector).

setOffset
Overview Macro Actions

Syntax

componentName. setOffset(offset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

offset float The offset of the generated signal (see "Offset" within the Function Inspector).

setPhaseShift
Overview Macro Actions

Syntax

componentName. setPhaseShift(phaseShift)

Parameters Type Description
return void

componentName Name defined on the engine property page.

phaseShift float The phase shift (in degrees) of the generated signal (see "Phase" within
the Function Inspector).

Noise

Noise Macro Actions
Overview Superclass Macro Actions

Action Description
mean Returns the "Mean" parameter.

regenerateData Returns the "Regenerate" setting.

 579

setMean Sets the "Mean" parameter.

setRegenerateData Sets the "Regenerate" setting.

setVariance Sets the "Variance" parameter.

variance Returns the "Variance" parameter.

mean
Overview Macro Actions

Syntax

componentName. mean()

Parameters Type Description
return float The mean of the noise that is generated (see "Mean" within the Noise Inspector).

componentName Name defined on the engine property page.

regenerateData
Overview Macro Actions

Syntax

componentName. regenerateData()

Parameters Type Description
return BOOL TRUE will re-generate random numbers at the end of each noise stream (see
"Regenerate" within the Noise Inspector).

componentName Name defined on the engine property page.

setMean
Overview Macro Actions

Syntax

componentName. setMean(mean)

Parameters Type Description
return void

componentName Name defined on the engine property page.

mean float The mean of the noise that is generated (see "Mean" within the Noise Inspector).

 580

setRegenerateData
Overview Macro Actions

Syntax

componentName. setRegenerateData(regenerateData)

Parameters Type Description
return void

componentName Name defined on the engine property page.

regenerateData BOOL TRUE will re-generate random numbers at the end of each noise stream
(see "Regenerate" within the Noise Inspector).

setVariance
Overview Macro Actions

Syntax

componentName. setVariance(variance)

Parameters Type Description
return void

componentName Name defined on the engine property page.

variance float The variance of the noise that is generated (see "Variance" within the
Noise Inspector).

variance
Overview Macro Actions

Syntax

componentName. variance()

Parameters Type Description
return float The variance of the noise that is generated (see "Variance" within the Noise
Inspector).

componentName Name defined on the engine property page.

Multi Channel Stream

MultiChannelStream Macro Actions
Overview Superclass Macro Actions

Action Description

 581

activeChannel Returns the "Current Channel" parameter.

amplitudeForChannel Returns the normalization amplitude for the specified channel.

broadcast Returns TRUE if the "Thru Channel" radio button is set and FALSE if the "Apply
to Current Channel" radio button is set.

channels Returns the number of data channels.

dataSource Returns the name of the data source for the active channel ("NGaussianNoise",
"NUniformNoise", "NDLLNoise", "NSinWaveFunction", "NSquareWaveFunction",
"NTriangleWaveFunction", "NSawtoothFunction", "NImpulseFunction", or "NDLLFunction").

endChannel Returns the "Thru Channel" parameter.

incrementActiveChannel Increments the "Current Channel" parameter by the specified amount.

incrementEndChannel Increments the "Thru Channel" parameter by the specified amount.

inject Returns TRUE if the data injection is set to "Accumulate" and FALSE if it is set to
"Overwrite".

lowerBound Returns the "Lower" bound parameter of the data normalization.

networkReset Resets the IO stream.

normalize Returns the "Normalize" setting.

normalizeByChannel Returns the "By Channel" setting.

offsetForChannel Returns the normalization offset for the specified channel.

resetAll Resets all input components on the breadboard.

samples Returns the number of "Samples/Channel" (Noise) or the "Samples/Cycle"
(Function).

saveStream Saves the stream as a binary to file to specified path.

scale Returns the "Scale" setting.

setActiveChannel Sets the "Current Channel" parameter.

setAmplitude Sets the "Amplitude" setting for the active channel.

setBroadcast Set to TRUE to set the "Thru Channel" radio button and FALSE to set the "Apply
to Current Channel" radio button.

setDataSource Sets the name of the data source for the active channel ("NGaussianNoise",
"NUniformNoise", "NDLLNoise", "NSinWaveFunction", "NSquareWaveFunction",
"NTriangleWaveFunction", "NSawtoothFunction", "NImpulseFunction", or "NDLLFunction").

 582

setEndChannel Sets the "Thru Channel" parameter.

setInject Set to TRUE for the data injection to be set to "Accumulate" and FALSE if it is to
be set to "Overwrite".

setLowerBound Sets the "Lower" bound parameter of the data normalization.

setNormalize Sets the "Normalize" setting.

setNormalizeByChannel Sets the "By Channel" setting.

setOffset Sets the "Offset" setting for the active channel.

setSamples Sets the number of "Samples/Channel" (Noise) or the "Samples/Cycle"
(Function).

setScale Sets the "Scale" setting.

setStreamOn TRUE sets the stream "On" and FALSE sets the stream "Off".

setUpperBound Sets the "Upper" bound parameter of the data normalization.

streamOn Returns TRUE if the stream is "On" and FALSE if the stream is "Off".

upperBound Returns the "Upper" bound parameter of the data normalization.

activeChannel
Overview Macro Actions

Syntax

componentName. activeChannel()

Parameters Type Description
return int The first channel of the specified range used to change the channel parameters
(see "Apply to Current Channel" within the Function Inspector or Noise Inspector).

componentName Name defined on the engine property page.

amplitudeForChannel
Overview Macro Actions

Syntax

componentName. amplitudeForChannel(index)

Parameters Type Description
return float The normalization amplitude (stored in the Normalization File) for the specified
channel, or the amplitude of the scaling operation (see "Amplitude/Offset" within the Stream

 583

Inspector).

componentName Name defined on the engine property page.

index int The channel index (0 <= index < channels).

broadcast
Overview Macro Actions

Syntax

componentName. broadcast()

Parameters Type Description
return BOOL TRUE if the changes to the channel setting are made to a block of channels and
FALSE if they are only to be made to the active channel (see "Apply to Current Channel" and "Thru
Channel" within the Function Inspector or Noise Inspector).

componentName Name defined on the engine property page.

channels
Overview Macro Actions

Syntax

componentName. channels()

Parameters Type Description
return int The number of data channels.

componentName Name defined on the engine property page.

dataSource
Overview Macro Actions

Syntax

componentName. dataSource()

Parameters Type Description
return string The name of the data source for the active channel ("NGaussianNoise",
"NUniformNoise", "NDLLNoise", "NSinWaveFunction", "NSquareWaveFunction",
"NTriangleWaveFunction", "NSawtoothFunction", "NImpulseFunction", or "NDLLFunction" – see
the function/noise buttons within the Function Inspector or Noise Inspector).

componentName Name defined on the engine property page.

 584

endChannel
Overview Macro Actions

Syntax

componentName. endChannel()

Parameters Type Description
return int The last channel of the specified range used to change the channel parameters
(see "Apply to Current Channel" within the Function Inspector or Noise Inspector).

componentName Name defined on the engine property page.

incrementActiveChannel
Overview Macro Actions

Syntax

componentName. incrementActiveChannel(increment)

Parameters Type Description
return void

componentName Name defined on the engine property page.

increment int The amount to increment the activeChannel by.

incrementEndChannel
Overview Macro Actions

Syntax

componentName. incrementEndChannel(increment)

Parameters Type Description
return void

componentName Name defined on the engine property page.

increment int The amount to increment the endChannel by.

inject
Overview Macro Actions

Syntax

componentName. inject()

 585

Parameters Type Description
return BOOL TRUE to accumulate the injected data on the stream and FALSE to overwrite it
(see "Overwrite" and "Accumulate" within the Stream Inspector).

componentName Name defined on the engine property page.

lowerBound
Overview Macro Actions

Syntax

componentName. lowerBound()

Parameters Type Description
return float The lower bound of the normalization calculation (see "Lower" within the Stream
Inspector).

componentName Name defined on the engine property page.

networkReset
Overview Macro Actions

Syntax

componentName. networkReset()

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalize
Overview Macro Actions

Syntax

componentName. normalize()

Parameters Type Description
return BOOL TRUE if normalization is active (see "Normalize" within the Stream Inspector).

componentName Name defined on the engine property page.

normalizeByChannel
Overview Macro Actions

 586

Syntax

componentName. normalizeByChannel()

Parameters Type Description
return BOOL TRUE if the normalization is calculated for each individual channel and FALSE if
it is calculated across all channels (see "By Channel" within the Stream Inspector).

componentName Name defined on the engine property page.

offsetForChannel
Overview Macro Actions

Syntax

componentName. offsetForChannel(index)

Parameters Type Description
return int The normalization offset (stored in the Normalization File) for the specified
channel, or the offset of the scaling operation (see "Amplitude/Offset" within the Stream Inspector).

componentName Name defined on the engine property page.

index int The channel index (0 <= index < channels).

resetAll
Overview Macro Actions

Syntax

componentName. resetAll()

Parameters Type Description
return void

componentName Name defined on the engine property page.

samples
Overview Macro Actions

Syntax

componentName. samples()

Parameters Type Description
return int The number of samples that defines the Function or Noise component (see

 587

"Samples/Channel" within the Noise Inspector or "Samples/Cycle" within the Function Inspector).

componentName Name defined on the engine property page.

saveStream
Overview Macro Actions

Syntax

componentName. saveStream(path)

Parameters Type Description
return void

componentName Name defined on the engine property page.

path string The full path of the file to save the binary stream to.

scale
Overview Macro Actions

Syntax

componentName. scale()

Parameters Type Description
return BOOL TRUE if scaling is active (see "Scale" within the Stream Inspector).

componentName Name defined on the engine property page.

setActiveChannel
Overview Macro Actions

Syntax

componentName. setActiveChannel(activeChannel)

Parameters Type Description
return void

componentName Name defined on the engine property page.

activeChannel int The first channel of the specified range used to change the channel
parameters (see "Apply to Current Channel" within the Function Inspector or Noise Inspector).

 588

setAmplitude
Overview Macro Actions

Syntax

componentName. setAmplitude(amplitude)

Parameters Type Description
return void

componentName Name defined on the engine property page.

amplitude float The amplitude of the scaling operation (see "Amplitude/Offset" within
the Stream Inspector).

setBroadcast
Overview Macro Actions

Syntax

componentName. setBroadcast(broadcast)

Parameters Type Description
return void

componentName Name defined on the engine property page.

broadcast BOOL TRUE if the changes to the channel setting are made to a block of
channels and FALSE if they are only to be made to the active channel (see "Apply to Current
Channel" and "Thru Channel" within the Function Inspector or Noise Inspector).

setDataSource
Overview Macro Actions

Syntax

componentName. setDataSource(dataSource)

Parameters Type Description
return void

componentName Name defined on the engine property page.

dataSource string The name of the data source for the active channel ("NGaussianNoise",
"NUniformNoise", "NDLLNoise", "NSinWaveFunction", "NSquareWaveFunction",
"NTriangleWaveFunction", "NSawtoothFunction", "NImpulseFunction", or "NDLLFunction" – see
the function/noise buttons within the Function Inspector or Noise Inspector).

setEndChannel
Overview Macro Actions

 589

Syntax

componentName. setEndChannel(endChannel)

Parameters Type Description
return void

componentName Name defined on the engine property page.

endChannel int The last channel of the specified range used to change the channel
parameters (see "Apply to Current Channel" within the Function Inspector or Noise Inspector).

setInject
Overview Macro Actions

Syntax

componentName. setInject(inject)

Parameters Type Description
return void

componentName Name defined on the engine property page.

inject BOOL TRUE to accumulate the injected data on the stream and FALSE to overwrite it
(see "Overwrite" and "Accumulate" within the Stream Inspector).

setLowerBound
Overview Macro Actions

Syntax

componentName. setLowerBound(lowerBound)

Parameters Type Description
return void

componentName Name defined on the engine property page.

lowerBound float The lower bound of the normalization calculation (see "Lower" within the
Stream Inspector).

setNormalize
Overview Macro Actions

Syntax

componentName. setNormalize(normalize)

Parameters Type Description

 590

return void

componentName Name defined on the engine property page.

normalize BOOL TRUE if normalization is active (see "Normalize" within the Stream
Inspector).

setNormalizeByChannel
Overview Macro Actions

Syntax

componentName. setNormalizeByChannel(normalizeByChannel)

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalizeByChannel BOOL TRUE if the normalization is calculated for each individual
channel and FALSE if it is calculated across all channels (see "By Channel" within the Stream
Inspector).

setOffset
Overview Macro Actions

Syntax

componentName. setOffset(offset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

offset float The offset of the scaling operation (see "Amplitude/Offset" within the Stream
Inspector).

setSamples
Overview Macro Actions

Syntax

componentName. setSamples(samples)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 591

samples int The number of samples that defines the Function or Noise component
(see "Samples/Channel" within the Noise Inspector or "Samples/Cycle" within the Function
Inspector).

setScale
Overview Macro Actions

Syntax

componentName. setScale(scale)

Parameters Type Description
return void

componentName Name defined on the engine property page.

scale BOOL TRUE if scaling is active (see "Scale" within the Stream Inspector).

setStreamOn
Overview Macro Actions

Syntax

componentName. setStreamOn(streamOn)

Parameters Type Description
return void

componentName Name defined on the engine property page.

streamOn BOOL TRUE if the stream is turned on (see "On, Off" within the Stream
Inspector).

setUpperBound
Overview Macro Actions

Syntax

componentName. setUpperBound(upperBound)

Parameters Type Description
return void

componentName Name defined on the engine property page.

upperBound float The upper bound of the normalization calculation (see "Upper" within
the Stream Inspector).

 592

streamOn
Overview Macro Actions

Syntax

componentName. streamOn()

Parameters Type Description
return BOOL TRUE if the stream is turned on (see "On, Off" within the Stream Inspector).

componentName Name defined on the engine property page.

upperBound
Overview Macro Actions

Syntax

componentName. upperBound()

Parameters Type Description
return float The upper bound of the normalization calculation (see "Upper" within the Stream
Inspector).

componentName Name defined on the engine property page.

OLE Input

OLEInput Macro Actions
Overview Superclass Macro Actions

Action Description
setEngineData Sets the input data to be injected into the network.

setNormalizationFilePath Sets the path of the file containing the normalization coeffiecients.

setEngineData
Overview Macro Actions

Syntax

componentName.setEngineData(data)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 593

data variant An array of single-precision floating point values that contains the input data to
be injected into the network.

setNormalizationFilePath
Overview Macro Actions

Syntax

componentName.setNormalizationFilePath(normalizationFilePath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalizationFilePath string The path of the file containing the normalization coeffiecients.
Once this function is called with a valid normalization file the component is automatically configured
to normalize the incoming data before injecting it into the network. If this function is not called then
the data is not altered before being injected.

Probe Family
StaticProbe Family

StaticProbe Family

Ancestor: Probe Family

The StaticProbe family is a collection of components that are used to observe instantaneous data
at the various access points of the components.

Members:

BarChart

DataGraph

DataWriter

DataStorage

DLLPostprocessor

Hinton

ImageViewer

MatrixEditor

 594

MatrixViewer

BarChart

Family: StaticProbe Family

Superclass: NSProbe

Description:

The BarChart probe creates a view for observing numeric data as a series of horizontal bars. The
length of the bars is proportional to the magnitude of the data being probed. The scale used to
display the bars may be changed manually, or automatically. Each bar can be labeled for clarity.

BarCharts are useful for classification problems that have a reasonably small (less than 25) number
of outputs. By attaching one to the system output and another to the desired output, one can
compare the longest bar of the two probes to see if they match for each exemplar.

Every time that data passes through the component attached below, the BarChart can refresh its
display to reflect this data. This can consume a large percentage of the processing cycles used for
the simulation. For this reason, there is a parameter used to specify how often the display is
refreshed.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

DLL Implementation

Macro Actions

 See Also

DataGraph

 595

Family: StaticProbe Family

Superclass: NSProbe

Description:

The DataGraph displays temporal data as a set of signal traces -- values (vertical axis) over time
(horizontal axis). It is similar in functionality to the MegaScope, except it is much easier to use and
includes labels on the X and Y axes so that you can get a better quantitative perspective on the
probed data. It is important to note that even though this displays temporal data, it is still a static
probe, meaning that it does not need to be stacked on top of a DataStorage component.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

DLL Implementation

DataWriter

Family: StaticProbe Family

Superclass: NSProbe

Description:

The DataWriter provides a means to collect static data from network components during the
simulations. This component displays the data using an editable window. Moreover, this data may
then be edited and/or saved into ASCII or binary file. The DataWriter is useful in situations where
one wants to save simulation data for further analysis or for report generation (by cutting and
pasting in other documents).

Data can be written to a file using the DataWriter in one of two ways. The first approach is to
specify the file name and type (ASCII or binary) before the simulation is run. As data is fired

 596

through the access point of the component attached below, it is simultaneously written to the
specified file. Note that the display window does not need to be opened for the data to be collected.

The second approach is to first run the simulation with the display window open. This text window
displays the data as it is being fired through the attached component. Once the simulation is
complete, the contents of the display window can be edited (if needed), then the file name is
specified and window’s text is saved in ASCII format.

Note that there is a limit to the amount of data that can be stored within the display window, thus
limiting the size of file that can be generated by this second approach. The size of the file
generated by the first approach is limited only by the amount of available disk space on the
computer system.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

DLL Implementation

Macro Actions

DataStorage

Family: StaticProbe Family

Superclass: NSProbe

Description:

Data flows through network simulations one sample at a time. Several probes display a sequence
of data samples over time. Rather than requiring each of these TemporalProbes to store and
maintain data, the DataStorage component was developed.

The DataStorage component collects data from an access point of the component attached below
and stores it in a circular buffer. A circular buffer of size n stores the most recent n samples of data.
The size of the buffer is user-defined. This buffer is accessible to members of the TemporalProbe
family by means of the Buffered Activity access point. A TemporalProbe uses this buffer to display
the data over time.

 597

The DataStorage component periodically sends a message to the components stacked above so
that they can re-process the data or refresh their displays. How often this message is sent is
specified within the DataStorage component. Note that if this message is sent too often, then the
attached probes will consume a high percentage of the processing cycles of the simulation.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Macro Actions

 See Also

Hinton

Family: StaticProbe Family

Superclass: NSProbe

Description:

The Hinton probe creates a view for observing numeric data as a matrix of squares. The size of the
squares is proportional to the magnitude (the absolute value) of the data being probed. Positive
values are displayed as solid squares while negative values are displayed as outlined squares. The
scale used to display the squares may be changed manually, or automatically.

This probe is often used to display a weight matrix. Its design makes it easy to detect patterns and
symmetries in the data.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

 598

DLL Implementation

 See Also

ImageViewer

Family: StaticProbe Family

Superclass: NSProbe

Description:

The ImageViewer component provides the ability to display static data reported by a network
component as a 256-level gray-scale image. The dimensions of the component attached below
dictate the dimensions of the image. The range of floating-point values within the probed data can
be specified or automatically computed. The data is normalized based on this range and used to
compute the intensity levels of the individual pixels.

An image shown in the display window can be saved as a bitmap (.bmp) file.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

DLL Implementation

Macro Actions

MatrixEditor

 599

Family: StaticProbe Family

Superclass: NSProbe

Description:

The MatrixEditor is similar to the MatrixViewer in that it can be used to observe static data as a
numerical matrix. However, this component also allows the user to modify the data at the attached
access point. Any modifications will be reflected in the simulation.

There are two consequences to this ability. First, the MatrixEditor slows down the simulations
because it allows for user input. The MatrixViewer should be used for cases when the data only
needs to be observed and not modified. Second, this probe allows for direct user interaction with
the network simulations at any stage. This concept is very powerful, but can also be dangerous if
unintended changes are made. Caution is recommended when using this probe, since it has the
ability to overwrite previous values.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

DLL Implementation

 See Also

MatrixViewer

Family: StaticProbe Family

Superclass: NSProbe

Description:

The MatrixViewer is used to observe instantaneous data as a numerical matrix. The dimensions of
matrix is dictated by the dimensions of the component stacked below. The data may not be
manipulated in any way. If editing is desired, the MatrixEditor should be used. Note that the

 600

MatrixViewer does not slow down the simulations as much as the MatrixEditor, since it only
displays the data.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

DLL Implementation

 See Also

DLLPostprocessor

Family: StaticProbe Family

Superclass: NSProbe

Description:

The DLLPostprocessor component is used to process the data sent from the component stacked
below, and send the processed data to the component attached above using the Postprocessor
access point. This is a static probe, meaning that it processes the data of the attached component
one sample at a time. It is implemented using DLLs, thus requiring that a DLL be loaded within the
Engine Inspector property page of the DLLPostprocessor inspector.

User Interaction:

Drag and Drop

Access Points

DLL Implementation

 601

Access Points

DataStorage Access Points

Component: DataStorage

Superclass: Probe

Buffered Activity Access:

This is an access point which is created by the DataStorage class which allow Temporal Probes to
display a block of data. This block of data is collected and stored in a circular buffer for each
iteration of the simulation. The user defines the size of this buffer. The buffer can be multi-channel
depending upon the number of processing elements of the network component.

 See Also

Postprocessor Access Points

Family: Access Family

Superclass Access Points: Access Points

Postprocessor Output:

Members of the Access family that are stacked on a postprocessor component will report a
Postprocessor Output access point. A component attached to this access point retrieves processed
data from a postprocessor component attached to the network.

 See Also

DLL Implementation

Static Probe DLL Implementation

Component: StaticProbe Family

Protocol: PerformOutput

Description:

 602

The static probes are used to display instantaneous network data. DLLs can be used with these
components to implement customized display routines or to send the output data to other
processes/applications.

Each call to performOutput contains the next exemplar of data accessed by the probe. The default
implementation of this DLL simply copies each element of the data buffer to the local variable
myOutput. The return value of TRUE indicates that the display of the base probe component
should remain active.

Code:

performOutput(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 int i,j;
 NSFloat myOutput;

 for (i=0; i<rows; i++)
 for (j=0; j<cols; j++)
 myOutput = data(i,j); // You define your own
output source.
 // Return whether or not the output component should still work
 return TRUE;
}

Drag and Drop

Static Probe Family Drag and Drop

The Static Probe Family was designed to examine instantaneous data that are presented by
network components. Hence, any network component that has an instantaneous access point
accepts a probe from the Static Probe family. Members of this family can be dropped on any of
these components.

 See Also

Inspectors

BarChart Inspector

Component: BarChart

Superclass Inspector: Label Inspector

 603

Component Configuration
Bar Size

Specifies the height of the bars in the BarChart window. This can be used to increase the number
of bars shown in the same vertical space. This number may be set to any integer equal to 5 or
greater.

DataGraph Inspector

Component: DataGraph

Superclass Inspector: Label Inspector

Component Configuration:

 604

Buffer Size

The buffer size form cell sets the size of a circular buffer where samples of data are stored over
time to be displayed in the window. While there is no limit to the size of this buffer, be aware that
memory will be allocated from the system to store the data. This number can be any integer
greater than one. Note that when the X-axis is set to "Epochs", "Exemplars" or "Samples", this cell
is grayed out and the value is set automatically based on the size of the data set or the settings of
the controller.
Refresh Every

Specifies how often to update the display with the latest data.
Channel Visible

All channels of data are displayed by default. To remove a channel from the display, select the
channel number in the edit cell and uncheck the Visible switch.
Attach Data

This pull down menu contains a list of the other Label probes on the breadboard. When one of
these probes is selected, the data from that probe is displayed in the DataGraph window along with
the data probed directly by the DataGraph. This is useful for displaying the network output and the
desired output in the same graph.
Show Grid

Displays horizontal and vertical gridlines on the graph.
X-Axis

There are several options available for specifying the X-axis of the graph:

� Epochs – This is commonly used for probing the error curve, in which the X-axis corresponds to the epoch
number. When this option is selected the Buffer Size is automatically set to the maximum number of epochs
specified within the StaticControl inspector.

� Exemplars – This is commonly used for probing the output, in which the X-axis corresponds to the exemplar
number of the current epoch. When this option is selected the Buffer Size is automatically set to the number of
exemplars per epoch shown within the StaticControl inspector.

� Samples – This is commonly used for dynamic networks, in which there are multiple samples per exemplar. The
X-axis corresponds to the sample number of the current epoch. When this option is selected the Buffer Size is
automatically set to the number of samples per exemplar times the number of exemplars per epoch specified
within the StaticControl inspector and the DynamicControl inspector.

� Generations – This is commonly used for probing the error curve during a genetic training run, in which the X-
axis corresponds to the generation number. When this option is selected the Buffer Size must be specified
manually.

� Custom – This is commonly used for probing the cross validation set. The X-axis is an internal counter that is
not tied to a counter on the controller. When this option is selected the Buffer Size must be specified manually.

Reset At

This option is only applicable when using a Custom X-axis. When the X-axis counter reaches the
value specified in this cell, then the counter is reset to 1.
Minimum X

Specifies the left-most data point on the graph. This value can also be set using the zoom feature
of the DataGraph window.
Window

 605

Specifies the window size, or the number of data points to display on the graph beginning with the
Minimum. This value can also be set using the zoom feature of the DataGraph window.
Auto-adjust

This option automatically adjusts the scale of the Y-axis to fit the data being probed.
Show Zero

When the auto-adjust is active, this option specifies that 0 always be included in the Y-axis even if it
is not part of the displayed data.
Minimum Y

Specifies the bottom of the Y-axis. This parameter is only available when the Auto-adjust switch is
turned off.
Maximum Y

Specifies the top of the Y-axis. This parameter is only available when the Auto-adjust switch is
turned off.

DataWriter Inspector

Component: DataWriter

Superclass Inspector: Label Inspector

Component Configuration:
Clear Contents

Clears the present edit buffer contents.
Clear Before Run

 606

Specifies whether or not the edit buffer is cleared each time a network simulation is run.
Input Enabled

Enables/disables the writing of the accessed data to the edit buffer.
Buffer Size

Sets the maximum number of data points that can be stored in the edit window at any given time.
Note that the display window will simply ignore the new data once the buffer is full.
Font Size

Sets the point size of the font used in the edit window.
Scientific Notation

Displays and outputs the data using scientific notation.
Transpose Matrix

Most Axons are configured to be a one-dimensional vector with N rows and 1 column. However,
you will most often want to display each exemplar of data as a single row, so that each PE is
represented by a column of values. Setting this switch transposes the display matrix for this
purpose.
Save Text to File

Opens a Save panel to select a file name. Once a name is selected, the ASCII text contained within
the data buffer is written to this file.
Dump Raw Data to File

Opens a Save panel to select a file name. Once the name is selected and the switch is set, all data
that passes through the attached access point is written to this file. This file may be of type ASCII
or binary.
Set

Opens a Save panel to change the file used to store the probed data.
ASCII

Set the output file to be of type ASCII.
Binary

Set the output file to be of type binary.
Attach Data From

When a probe component name is selected from this combo-box, the data from that component is
appended to the data from the DataWriter. This is normally used to display/write the output of the
network side-by-side with the desired output. There are three requirements for activating this
combo-box: 1) the DataWriter must be accessing the Desired Signal of an ErrorCriterion
component, 2) the number of columns of the ErrorCriterion must be equal to 1, and 3) the
"Transpose Matrix" option must be selected (see above).

DataStorage Inspector

 607

Component: DataStorage

Superclass Inspector: Probe inspector

Component Configuration:
Buffer Size

The buffer size form cell sets the size of a circular buffer where samples of data are stored for other
components to examine. While there is no limit to the size of this buffer, be aware that memory will
be allocated from the system to store the data. This number can be any integer greater than zero.
Message Every

The data storage class will send a message to all probes that are attached to it's Temporal Access
point telling them that the data samples contained in the DataStorage are available. The periodicity
of this message is controlled by the number entered in the Message Every form cell. Setting this
value is very important for creating "animations" of the data as it changes. This value will make
attached probes respond to the changes in the data only as often as desired. Since the probes
tend to slow the computational process, it is helpful to increase the value of Message Every so that
the probes respond less frequently. It accepts any integer greater than or equal to one.

Hinton Inspector

Component: Hinton

Superclass Inspector: Label Inspector

 608

Component Configuration:
Square Size

Specifies the maximum size of the squares in the Hinton window. This can be used to increase the
number of squares shown in the same space. This number may be set to any integer equal to 5 or
greater.

ImageViewer Inspector

Component: ImageViewer

Superclass Inspector: Probe inspector

Component Configuration:
TotalPixels

 609

Reports how many data points are available in the network component for display as a bit map. We
will refer to these data points as pixels.
Load image palette before run

Loads the gray-scale palette just before the simulation begins. This guarantees that the image will
display correctly, but the components on the breadboard may change to gray during the simulation.
Restore NS palette after run

Loads the NeuroSolutions color palette just after the simulation stops. This will restore the
components to their original colors, but the displayed image may become distorted.
Save Bitmap

This button allows the image shown by the ImageViewer to be saved as a BMP file.

Label Inspector

Superclass Inspector: Probe inspector

Component Configuration:
Active Neuron

These controls are used to select a particular row or column of neurons. The probes that are
derived from this class have windows that display data in row and column format with labels down
the side and across the top.
Row and Column

Use this control to choose between viewing the information regarding the probes rows or columns.
Text

 610

Displays the label that corresponds to the Active Neuron. The Active Neuron is set using the Active
Neuron slider/field and the Row and Column radio buttons as described above. The labels may
only be changed if the Enable Label Editing switch is set.
Show Labels

This switch enables the user to view, or remove, the labels in the probe window.

Enable Label Editing

This switch determines if user definable labels should be used in place of the computer generated
ones. Be careful when using this feature on probe windows that are displaying very large amounts
of data. When this switch is enabled, memory is allocated for each row and column showing in the
probe window.
Autosizing

This switch controls the autosizing feature of the probes that are derived from this class. By
changing the size of the probes window, the maximum number of rows and columns can more
easily be displayed. This window will change size whenever the number of neurons being probed
changes.
Label Size

This form cell determines how much space should be allocated for the row labels. Choosing this
number too small could place the probes main view over the labels, making them impossible to
read. This number is in pixels and can be any positive integer.
Font Size

This control allows the user to change the font size of the labels. Sometimes the font size of the
data shown in the probe window of this class can be changed as well.
Load Labels from File Component

This button will load the column headings from the selected File component into the label cells of
the probe. Note that the Enable Label Editing switch must be switched on to enable this button.
Name

Selects the name of the File component that contains the column headings corresponding to the
probed data. Note that the File must use the Column-Formatted ASCII Translator in order to extract
the column headings.

Windows

BarChart Window

Component: BarChart

Superclass: TemporalProbe

 611

Description:

The BarChart view has the ability to resize and the contents of the view will automatically redraw
and rescale to fit. The bars shown in the window represent the magnitude of the values being
probed. There is one horizontal bar for each neuron.

DataGraph Window

Component: DataGraph

Superclass: NSProbe

Description:

The DataGraph window allows the plotting of multi-channel variables over time. It has a feature
built in that allows you to zoom in on the data. Just press the mouse button at the left of the desired
region and drag the mouse (with the button pressed) towards the right until the end of the desired
selection. To undo the zoom, simply right-click on the graph. Note that you can manually perform

 612

the zoom and unzoom operations by changing the "Min" and "Window" parameters within the
inspector.

DataWriter Window

Component: DataWriter

Superclass: NSProbe

Description:

The DataWriter view is a full-fledged Editor Window, and as such it has the ability to be edited.
Once the data has been collected, its contents may be cut, and pasted as desired. Also, additional
text may be added for comments. Since this view may be saved as rich text, any font style and
size may be used.

Hinton Window

Component: Hinton

 613

Superclass: TemporalProbe

Description

The Hinton view has the ability to resize and the contents of the view will automatically redraw and
rescale to fit. The squares shown in the window represent the magnitude of the values being
probed. There is one square for each neuron.

ImageViewer Window

Component: ImageViewer

Superclass: NSProbe

Description:

 614

The ImageViewer view has the ability to be resized and the contents of the view will automatically
redraw and rescale to fit. The image shown in the view can be saved as a BMP file.

MatrixEditor Window

Component: MatrixEditor

Superclass: NSProbe

Description:

Each Cell in the MatrixEditor view can be selected and. The changes will affect the corresponding
parameters in the network component being probed.

Let us assume that in this case the network component is a FullSynapse, and the MatrixEditor was
attached to the Weights access point. So we are displaying the weight matrix between two layers.

Row i show the weights connected to the i-th output processing element. Column j show the
weights connected to the j-th input processing element. So this conforms to the traditional
assignment used in neural networks.

MatrixViewer Window

Component: MatrixViewer

Superclass: NSProbe

 615

Description:

The MatrixViewer view has the ability to resize and the contents of the view will automatically
redraw and rescale to fit. The contents of the view can not be changed. The font of the view may
be changed by highlighting the text and using the font Panel.

Let us assume that in this case the network component is a FullSynapse, and the MatrixEditor
access point was the Weights access point. So we are displaying the weight matrix between two
layers.

Row i show the weights connected to the i-th output processing element. Column j show the
weights connected to the j-th input processing element. So this conforms to the traditional
assignment used in neural networks.

Macro Actions

Bar Chart

BarChart Macro Actions
Overview Superclass Macro Actions

Action Description
barSize Returns the "Bar Size" setting.

setBarSize Sets the "Bar Size" setting.

barSize
Overview Macro Actions

Syntax

componentName.barSize()

Parameters Type Description
return int The height of the bars in the BarChart window (see "Bar Size" within the
BarChart Inspector).

componentName Name defined on the engine property page.

 616

setBarSize
Overview Macro Actions

Syntax

componentName.setBarSize(barSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

barSize int The height of the bars in the BarChart window (see "Bar Size" within the
BarChart Inspector).

Data Writer

DataWriter Macro Actions
Overview Superclass Macro Actions

Action Description
bufferSize Returns the "Buffer Size" setting.

clear Clears the contents of the edit buffer.

clearBeforeRun Returns the "Clear Before Run" setting.

dumpFile Returns the "Dump Raw Data to File" setting.

filePath Returns the path of the dump file.

fileType Returns the file type of the dump file (0=Binary, 1=ASCII).

fontSize Returns the "Font Size" setting.

inputEnabled Returns the "Input Enabled" setting.

mergeProbeName Returns the "Attach Data From" setting.

saveText Saves the ASCII text contained within the data buffer to the specified file.

scientificNotation Returns the "Scientific Notation" setting.

setBufferSize Sets the "Buffer Size" setting.

setClearBeforeRun Sets the "Clear Before Run" setting.

setDumpFile Sets the "Dump Raw Data to File" setting.

 617

setFilePath Sets the path of the dump file.

setFileType Sets the file type of the dump file (0=Binary, 1=ASCII).

SetFontSize Sets the "Font Size" setting.

setInputEnabled Sets the "Input Enabled" setting.

setMergeProbeName Sets the "Attach Data From" setting.

setScientificNotation Sets the "Scientific Notation" setting.

setTranspose Sets the "Transpose" setting.

transpose Returns the "Transpose" setting.

bufferSize
Overview Macro Actions

Syntax

componentName.bufferSize()

Parameters Type Description
return int The maximum number of data points that can be stored in the edit window at any
given time (see "Buffer Size" within the DataWriter Inspector).

componentName Name defined on the engine property page.

clear
Overview Macro Actions

Syntax

componentName.clear()

Parameters Type Description
return void

componentName Name defined on the engine property page.

clearBeforeRun
Overview Macro Actions

Syntax

componentName.clearBeforeRun()

 618

Parameters Type Description
return BOOL When TRUE, the edit buffer is cleared each time a network simulation is run (see
"Clear Before Run" within the DataWriter Inspector).

componentName Name defined on the engine property page.

dumpFile
Overview Macro Actions

Syntax

componentName.dumpFile()

Parameters Type Description
return BOOL When TRUE, all data that passes through the attached access point is written to
the file path (see "Dump Raw Data to File" within the DataWriter Inspector).

componentName Name defined on the engine property page.

filePath
Overview Macro Actions

Syntax

componentName.filePath()

Parameters Type Description
return string The path of the dump file (see "Save Text to File" and "Dump Raw Data to File"
within the DataWriter Inspector).

componentName Name defined on the engine property page.

fileType
Overview Macro Actions

Syntax

componentName.fileType()

Parameters Type Description
return int The file type of the dump file (0=Binary, 1=ASCII – see "Binary" and "ASCII'
within the DataWriter Inspector).

componentName Name defined on the engine property page.

fontSize
Overview Macro Actions

 619

Syntax

componentName.fontSize()

Parameters Type Description
return int The point size of the font used in the edit window (see "Font Size" within the
DataWriter Inspector).

componentName Name defined on the engine property page.

inputEnabled
Overview Macro Actions

Syntax

componentName.inputEnabled()

Parameters Type Description
return BOOL When TRUE, the accessed data is written to the edit buffer (see "Input Enabled"
within the DataWriter Inspector).

componentName Name defined on the engine property page.

mergeProbeName
Overview Macro Actions

Syntax

componentName.mergeProbeName()

Parameters Type Description
return string The component name of the probe that is attaching its data to the DataWriter
(see "Attach Data From" within the DataWriter Inspector).

componentName Name defined on the engine property page.

saveText
Overview Macro Actions

Syntax

componentName.saveText(filePath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

filePath string The ASCII text contained within the data buffer is written to this file (see "Save
Text to File" within the DataWriter Inspector).

 620

scientificNotation
Overview Macro Actions

Syntax

componentName.scientificNotation()

Parameters Type Description
return BOOL When TRUE, the data is displayed and/or written in scientific notation (see
"Scientific Notation" within the DataWriter Inspector).

componentName Name defined on the engine property page.

setBufferSize
Overview Macro Actions

Syntax

componentName.setBufferSize(bufferSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

bufferSize int The maximum number of data points that can be stored in the edit
window at any given time (see "Buffer Size" within the DataWriter Inspector).

setClearBeforeRun
Overview Macro Actions

Syntax

componentName.setClearBeforeRun(clearBeforeRun)

Parameters Type Description
return void

componentName Name defined on the engine property page.

clearBeforeRun BOOL When TRUE, the edit buffer is cleared each time a network simulation is
run (see "Clear Before Run" within the DataWriter Inspector).

setDumpFile
Overview Macro Actions

Syntax

componentName.setDumpFile(dumpFile)

 621

Parameters Type Description
return void

componentName Name defined on the engine property page.

dumpFile BOOL When TRUE, all data that passes through the attached access point is
written to the file path (see "Dump Raw Data to File" within the DataWriter Inspector).

setFilePath
Overview Macro Actions

Syntax

componentName.setFilePath(filePath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

filePath string The path of the dump file (see "Save Text to File" and "Dump Raw Data to File"
within the DataWriter Inspector).

setFileType
Overview Macro Actions

Syntax

componentName.setFileType(fileType)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fileType int The file type of the dump file (0=Binary, 1=ASCII – see "Binary" and "ASCII'
within the DataWriter Inspector).

setFontSize
Overview Macro Actions

Syntax

componentName.setFontSize(fontSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 622

fontSize int The point size of the font used in the edit window (see "Font Size" within the
DataWriter Inspector).

setInputEnabled
Overview Macro Actions

Syntax

componentName.setInputEnabled(inputEnabled)

Parameters Type Description
return void

componentName Name defined on the engine property page.

inputEnabled BOOL When TRUE, the accessed data is written to the edit buffer (see "Input
Enabled" within the DataWriter Inspector).

setMergeProbeName
Overview Macro Actions

Syntax

componentName.setMergeProbeName(nameString)

Parameters Type Description
return void

componentName Name defined on the engine property page.

nameString string The component name of the probe that is attaching its data to the
DataWriter (see "Attach Data From" within the DataWriter Inspector).

setScientificNotation
Overview Macro Actions

Syntax

componentName.setScientificNotation(scientificNotation)

Parameters Type Description
return void

componentName Name defined on the engine property page.

scientificNotation BOOL When TRUE, the data is displayed and/or written in scientific
notation (see "Scientific Notation" within the DataWriter Inspector).

 623

setTranspose
Overview Macro Actions

Syntax

componentName.setTranspose(transpose)

Parameters Type Description
return void

componentName Name defined on the engine property page.

transpose BOOL When TRUE, the rows and columns are interchanged such that each
PE is represented by a column of values in the display window (see "Transpose Matrix" within the
DataWriter Inspector).

transpose
Overview Macro Actions

Syntax

componentName.transpose()

Parameters Type Description
return BOOL When TRUE, the rows and columns are interchanged such that each PE is
represented by a column of values in the display window (see "Transpose Matrix" within the
DataWriter Inspector).

componentName Name defined on the engine property page.

Data Storage

DataStorage Macro Actions
Overview Superclass Macro Actions

Action Description
bufferLength Returns the "Buffer Size" setting.

messageEvery Returns the "Message Every" setting.

setBufferLength Sets the "Buffer Size" setting.

setMessageEvery Sets the "Message Every" setting.

bufferLength
Overview Macro Actions

 624

Syntax

componentName.bufferLength()

Parameters Type Description
return int The size of the circular buffer in samples (see "Buffer Size" within the
DataStorage Inspector).

componentName Name defined on the engine property page.

messageEvery
Overview Macro Actions

Syntax

componentName.messageEvery()

Parameters Type Description
return int The periodicity at which the attached probes are notified that the data samples
contained in the DataStorage are available (see "Message Every" within the DataStorage
Inspector).

componentName Name defined on the engine property page.

setBufferLength
Overview Macro Actions

Syntax

componentName.setBufferLength(bufferLength)

Parameters Type Description
return void

componentName Name defined on the engine property page.

bufferLength int The size of the circular buffer in samples (see "Buffer Size" within the
DataStorage Inspector).

setMessageEvery
Overview Macro Actions

Syntax

componentName.setMesageEvery(messageEvery)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 625

messageEvery int The periodicity at which the attached probes are notified that the data
samples contained in the DataStorage are available (see "Message Every" within the DataStorage
Inspector).

Hinton

Hinton Macro Actions
Overview Superclass Macro Actions

Action Description
setSquareSize Sets the "Square Size" setting.

squareSize Returns the "Square Size" setting.

setSquareSize
Overview Macro Actions

Syntax

componentName.setSquareSize(sqareSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

squareSize int The maximum size of the squares in the probe window (see "Square
Size" within the Hinton Inspector).

squareSize
Overview Macro Actions

Syntax

componentName.squareSize()

Parameters Type Description
return int The maximum size of the squares in the probe window (see "Square Size" within
the Hinton Inspector).

componentName Name defined on the engine property page.

Image Viewer

ImageViewer Macro Actions
Overview Superclass Macro Actions

 626

Action Description
loadPaletteBeforeRun Returns the "Load image palette before run" setting.

restorePaletteAfterRun Returns the "Restore NS palette after run" setting.

saveImageToBitmap Saves the image shown in the display window to the specified BMP file.

setLoadPaletteBeforeRun Sets the "Load image palette before run" setting.

setRestorePaletteAfterRun Sets the "Restore NS palette after run" setting.

loadPaletteBeforeRun
Overview Macro Actions

Syntax

componentName.loadPaletteBeforeRun()

Parameters Type Description
return BOOL When TRUE, the gray-scale palette is loaded just before the simulation begins in
an effort to guarantee that the image will display correctly (see "Load image palette before run"
within the ImageViewer Inspector).

componentName Name defined on the engine property page.

restorePaletteAfterRun
Overview Macro Actions

Syntax

componentName.restorePaletteAfterRun()

Parameters Type Description
return BOOL When TRUE, the original NeuroSolutions palette will be restored at the
completion of the simulation (see "Restore NS palette after run" within the ImageViewer Inspector).

componentName Name defined on the engine property page.

saveImageToBitmap
Overview Macro Actions

Syntax

componentName.saveImageToBitmap(filePath)

Parameters Type Description
return void Saves the image shown by the ImageViewer as a BMP file (see "Save Bitmap"
within the ImageViewer Inspector).

 627

componentName Name defined on the engine property page.

filePath string Saves the image shown by the ImageViewer to this BMP file (see "Save Bitmap"
within the ImageViewer Inspector).

setLoadPaletteBeforeRun
Overview Macro Actions

Syntax

componentName.setLoadPaletteBeforeRun(loadPaletteBeforeRun)

Parameters Type Description
return void

componentName Name defined on the engine property page.

loadPaletteBeforeRun BOOL When TRUE, the gray-scale palette is loaded just before the
simulation begins in an effort to guarantee that the image will display correctly (see "Load image
palette before run" within the ImageViewer Inspector).

setRestorePaletteAfterRun
Overview Macro Actions

Syntax

componentName.setRestorePaletteAfterRun(restorePaletteAfterRun)

Parameters Type Description
return void

componentName Name defined on the engine property page.

restorePaletteAfterRun BOOL When TRUE, the original NeuroSolutions palette will be
restored at the completion of the simulation (see "Restore NS palette after run" within the
ImageViewer Inspector).

Label

Label Macro Actions
Overview Superclass Macro Actions

Action Description
accessRows Returns TRUE if the "Rows" radio button is set and FALSE if the "Cols" radio
button is set.

activeNeuron Returns the "Active Neuron" setting.

 628

autosizing Returns the "Autosize" setting.

decrementNeuron Decreases the "Active Neuron" setting by one.

enableLabels Returns the "Enable Label Editing" setting.

fileForColumnHeadings Returns the "Auto Label Name" setting.

fontHeight Returns the "Font Size" setting.

incrementNeuron Increases the "Active Neuron" setting by one.

label Returns the label "Text" that corresponds to the active neuron.

labelSize Returns the "Size" setting.

loadColumnHeadings Loads the column headings from the File component specifed by
fileForColumnHeadings.

setAccessRows Set to TRUE to set the "Rows" radio button and "FALSE" to set the "Cols" radio
button.

setActiveNeuron Sets the "Active Neuron" setting.

setAutosizing Sets the "Autosize" setting.

setEnableLabels Sets the "Enable Label Editing" setting.

setFileForColumnHeadings Sets the "Auto Label Name" setting.

setFontHeight Sets the "Font Size" setting.

setLabel Sets the label "Text" that corresponds to the active neuron.

setLabelSize Sets the "Size" setting.

setShowLabels Sets the "Show Labels" setting.

setWantsColumn Set to TRUE to force the probe to allow editing of the column labels.

showLabels Returns the "Show Labels" setting.

wantsColumn Returns TRUE if the probe is forced to allow editing of the column labels.

accessRows
Overview Macro Actions

Syntax

 629

componentName.accessRows()

Parameters Type Description
return BOOL TRUE if the active neuron pertains to the probe window's row and FALSE if it
pertains to the window's column (see "Active Neuron" and "Row and Column" within the Label
Inspector).

componentName Name defined on the engine property page.

activeNeuron
Overview Macro Actions

Syntax

componentName.activeNeuron()

Parameters Type Description
return int The row or column which is being viewed/modified (see "Active Neuron" within
the Label Inspector).

componentName Name defined on the engine property page.

autosizing
Overview Macro Actions

Syntax

componentName.autosizing()

Parameters Type Description
return BOOL When TRUE, the maximum number of rows and columns is more easily be
displayed by changing the size of the probe's window (see "Autosizing" within the Label Inspector).

componentName Name defined on the engine property page.

decrementNeuron
Overview Macro Actions

Syntax

componentName.decrementNeuron()

Parameters Type Description
return void

componentName Name defined on the engine property page.

enableLabels
Overview Macro Actions

 630

Syntax

componentName.enableLabels()

Parameters Type Description
return BOOL When TRUE, the labels are user definable as opposed to computer generated
(see "Enable Label Editing" within the Label Inspector).

componentName Name defined on the engine property page.

fileForColumnHeadings
Overview Macro Actions

Syntax

componentName.fileForColumnHeadings()

Parameters Type Description
return string The name of the File component that contains the column headings
corresponding to the probed data (see "Name" within the Label Inspector).

componentName Name defined on the engine property page.

fontHeight
Overview Macro Actions

Syntax

componentName.fontHeight()

Parameters Type Description
return int The font height of the labels (see "Font Size" within the Label Inspector).

componentName Name defined on the engine property page.

incrementNeuron
Overview Macro Actions

Syntax

componentName.incrementNeuron()

Parameters Type Description
return void

componentName Name defined on the engine property page.

label
Overview Macro Actions

 631

Syntax

componentName.label()

Parameters Type Description
return string The label text corresponding to the Active Neuron (see "Text" within the Label
Inspector).

componentName Name defined on the engine property page.

labelSize
Overview Macro Actions

Syntax

componentName.labelSize()

Parameters Type Description
return int The amount of space allocated for the row labels (see "Label Size" within the
Label Inspector).

componentName Name defined on the engine property page.

loadColumnHeadings
Overview Macro Actions

Syntax

componentName.loadColumnHeadings()

Parameters Type Description
return void

componentName Name defined on the engine property page.

setAccessRows
Overview Macro Actions

Syntax

componentName.setAccessRows(accessRows)

Parameters Type Description
return void

componentName Name defined on the engine property page.

accessRows BOOL TRUE if the active neuron pertains to the probe window's row and
FALSE if it pertains to the window's column (see "Active Neuron" and "Row and Column" within the
Label Inspector).

 632

setActiveNeuron
Overview Macro Actions

Syntax

componentName.setActiveNeuron(activeNeuron)

Parameters Type Description
return void

componentName Name defined on the engine property page.

activeNeuron int The row or column which is being viewed/modified (see "Active Neuron"
within the Label Inspector).

setAutosizing
Overview Macro Actions

Syntax

componentName.setAutosizing(autosizing)

Parameters Type Description
return void

componentName Name defined on the engine property page.

autosizing BOOL When TRUE, the maximum number of rows and columns is more easily
be displayed by changing the size of the probe's window (see "Autosizing" within the Label
Inspector).

setEnableLabels
Overview Macro Actions

Syntax

componentName.setEnableLabels(enableLabels)

Parameters Type Description
return void

componentName Name defined on the engine property page.

enableLabels BOOL When TRUE, the labels are user definable as opposed to computer
generated (see "Enable Label Editing" within the Label Inspector).

setFileForColumnHeadings
Overview Macro Actions

 633

Syntax

componentName.setFileForColumnHeadings(fileForColumnHeadings)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fileForColumnHeadings string The name of the File component that contains the column
headings corresponding to the probed data (see "Name" within the Label Inspector).

setFontHeight
Overview Macro Actions

Syntax

componentName.setFontHeight(fontHeight)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fontHeight int The font height of the labels (see "Font Size" within the Label
Inspector).

setLabel
Overview Macro Actions

Syntax

componentName.setLabel(label)

Parameters Type Description
return void

componentName Name defined on the engine property page.

label string The label text corresponding to the Active Neuron (see "Text" within the Label
Inspector).

setLabelSize
Overview Macro Actions

Syntax

componentName.setLabelSize(labelSize)

 634

Parameters Type Description
return void

componentName Name defined on the engine property page.

labelSize int The amount of space allocated for the row labels (see "Label Size"
within the Label Inspector).

setShowLabels
Overview Macro Actions

Syntax

componentName.setShowLabels(showLabels)

Parameters Type Description
return void

componentName Name defined on the engine property page.

showLabels BOOL When TRUE, the labels are displayed in the probe window (see "Show
Labels" within the Label Inspector).

setWantsColumn
Overview Macro Actions

Syntax

componentName.setWantsColumn(wantsColumn)

Parameters Type Description
return void

componentName Name defined on the engine property page.

wantsColumn BOOL When TRUE, the probe is forced to allow editing of the column labels.

showLabels
Overview Macro Actions

Syntax

componentName.showLabels(labels)

Parameters Type Description
return BOOL When TRUE, the labels are displayed in the probe window (see "Show Labels"
within the Label Inspector).

componentName Name defined on the engine property page.

 635

wantsColumn
Overview Macro Actions

Syntax

componentName.wantsColumn()

Parameters Type Description
return BOOL Forces the probe to allow editing of column labels.

componentName Name defined on the engine property page.

TemporalProbe Family

TemporalProbe Family

Ancestor: Probe Family

The TemporalProbe family is a collection of components for observing data that has been collected
from a network component over a number of simulation iterations. This enables the TemporalProbe
components to process or display data over time. TemporalProbes require that they be attached to
a component having a temporal access point.

Members:

MegaScope

ScatterPlot

3DProbe Family

Transformer Family

User Interface:

 Macro Actions

MegaScope

 636

Family: TemporalProbe Family

Superclass: TemporalProbe

Description:

The MegaScope probe is a fully functional multi-channel oscilloscope. It has the ability to display
temporal data as a set of signal traces -- values (vertical axis) over time (horizontal axis). These
traces can be manipulated in a variety of ways (e.g., amplitude and time scales, position, and
color).

The length (number of samples) within each trace is specified by the size of the buffer within the
attached temporal access point. The refresh rate of the display is specified by the DataStorage
component used to collect the network data.

Other TemporalProbes may attach to the Selection access point of the MegaScope to access a
segment of the displayed data. This segment is specified by selecting (highlighting) a portion of the
display window.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

Macro Actions

ScatterPlot

Family: TemporalProbe Family

Superclass: TemporalProbe

Description:

The ScatterPlot is a probe that takes the data from a temporal access point and plots one channel’s
data against the data of one of the other channels. Multiple pairs of channels can be specified. The
data from each pair is used as the X and Y coordinates of a two-dimensional graph. Since the
points are displayed over a number of samples (i.e., across time), the data is represented as a
scatter plot.

User Interaction:

 637

Drag and Drop

Inspector

Window

Macro Actions

Access Points

MegaScope Access Points

Component: MegaScope

Superclass: TemporalProbe

Selection Access:

This is an access point to a region of data that has selected (highlighted) in the MegaScope view.
The data that passes through this selected region will be passed to any component connected to
this access point.

Drag and Drop

Temporal Probe Drag and Drop

The Temporal Probe Family was designed to examine data that has been collected for a period of
time. This data block is presented as a temporal access point. The primary component that is
responsible for data collection is DataStorage. Any component in this family must be placed on a
DataStorage or another TemporalProbe.

Inspectors

Scope Inspector

Component: MegaScope

Superclass Inspector: Sweep Inspector

 638

Component Configuration:
Channel

The number of channels (or traces) is determined by the size of the data at the point being probed.
Each element found at a probe point counts as 1 channel.

The "active" channel refers to the channel that appears in the channel form cell. Any adjustments
made using the Channel Settings functions will affect only the channel which is "active." (except
when the "Change All Channels" switch is set.)

The channel may be selected by one of three methods. Clicking on the left or right arrow button
will decrement or increment the active channel one at a time. The channel slider may be used to
scan through all the possible channels. Finally, a specific channel number may be entered directly
into the channel form cell.

Once the "active" channel has been selected, the inspector will display the specific settings for that
channel.
Change All Channels

This switch allows all the channels parameters to be set concurrently. When this switch is set,
adjusting any of the "Channel Settings" will affect all channels.
Autoset Channels

Clicking on the autoset channels button will cause several operations to be performed on the
settings of the visible channels (see Visible switch). These operations include scaling, positioning,
and setting the color. If the Auto Set on Change Switch is set this Button will automatically be
activated any time the number of channels being accessed changes.
Vertical Scale

The vertical scale may be set using one of two different methods. The first method requires the
use of the combination of the vertical scale button matrix and slider. The button matrix will change
the vertical scale by the factor of ten indicated. A fraction of these values can be additionally set
with the slider. When using this method the form cell will report the exact value of vertical scale.
The second method is to type the desired value into the form cell. The slider and button matrix will
automatically be set accordingly.
Auto

 639

Clicking on this button will automatically set the vertical scaling so that the active trace will vertically
fill the view.
Vertical Offset

The vertical offset may be set in one of two ways. First, the slider may be used to move the trace.
Using this method the trace may only be moved from the top of the view to the bottom of the view.
The vertical offset form cell will display the offset in the correct units specified by the vertical scale.
The other way to set the vertical offset is by typing the offset directly into the vertical offset form
cell. The offset should be entered in terms of the scale currently being used. For example, if the
scale is set to10/div and 10 is entered into the vertical offset form cell, the trace will be shifted up
one division.
Horizontal Offset

The horizontal offset is set in the same fashion as the vertical offset. The only difference is that
here the samples/division are used to compute the value in the horizontal offset form cell.

Sweep Inspector

Component: MegaScope

Superclass Inspector: Display Inspector

Component Configuration:
Samples/Division

The number of samples per division is a control of the time scale. It sets the number of samples in
each of the ten time divisions across the horizontal axis. These divisions can be seen by displaying
lines or a grid (see Grid Pull Down Menu).

The samples per division may be set using one of two different methods. The first method requires
the use of the combination of the samples/div button matrix and slider. The button matrix will
change the samples/div by the factor of ten indicated. A fraction of these values can be additionally
set with the slider. When using this method the form cell will report the exact value of samples/div.
The other way to set the samples/div is to type the desired value into the form cell. The slider and
button matrix will automatically be set accordingly.

 640

The number of samples per division is a control of the time scale. It sets the number of samples in
each of the ten time divisions across the horizontal axis. These divisions can be seen by displaying
lines or a grid.

ScatterPlot Inspector

Component: ScatterPlot

Superclass Inspector: Display Inspector

Component Configuration:
Y Channel

These controls are used to display the settings for the channels used as the Y axis. One can use
either the slider, the increment/decrement buttons or enter a value. The value of the Y channel is
an integer that must fall within the range of the total number of channels present at the access
point.
Y Channel Settings

This box will perform selections based on the Y channel selected above. These selections refer to
which channel is used for the X-axis, and the visibility/color/size of the corresponding point. The
scatter plot is intrinsically a 2-D plot, so these controls assume a pair of channels, given that you
selected the Y.
X Channel

These controls are used to set which channel will be used for the x-axis when plotting against the
channel shown as the Y Channel. The control of the X Channel is the same as the explained
above for the Y axis. The X Channel may be set to any of the possible channels including the
current Y Channel. In this case, a 45 degree scatter will be obtained (x,y components are the
same).
Dot Size

 641

Each point in the scatter plot will be shown using a square of width "size." Changing this value will
change the width of the squares and automatically redisplay the plot. Enter integer values between
1 and 20.
Change All Channels

When this switch is set, any changes made to the parameters of the Y channel will effect all Y
channels.
Autoset Channels

Pushing this button will cause the following to occur:

1) Every odd channel will be plotted against the next even channel (assuming it exists).

2) Every even channel's visibility will be set to off.

This configuration is considered to be the most likely usage for the ScatterPlot given a 2-D input
space.
X Scale

The Max and Min are used to define the range of the x-axis used for the scatter plot. The user
types in the required values. This field also shows the Max and Min values displayed.
Y Scale

The Max and Min are used to define the range of the y-axis used for the scatter plot. The user
types in the required values. This field also shows the Max and Min values displayed.
Autoscale

Pressing this button will automatically set the Max and Min values for both the x-axis and y-axis
such that all the points contained in the visible traces will fit within the bounds of the display.

StateSpaceProbe Inspector

Component: StateSpaceProbe

Superclass Inspector: 3DProbe Inspector

 642

Component Configuration:
Displacement

The displacement is used to select ?, i.e. how far apart the samples used to create the input matrix
are taken from the original signal. This value may be any integer greater than zero. Low values
tend to create a state space plot that is elongated along the first quadrant bisector. Too large a
value of displacement destroys the organization of the data.
History

The history is used to determine how many samples will be shown in the display. This value may
be any integer greater than zero. Normally it is related to the size of the buffer or features in the
data that one wants to observe (such as periodicity’s).

3DProbe Inspector

Component: StateSpaceProbe

Superclass Inspector: Display Inspector

Component Configuration:
Zoom

The zoom sliders scale the image when projecting it in the 3DProbe. Each dimension may be
adjusted separately. Pressing the reset button will return these values to the defaults.
Offset

The offset sliders create an offset when projecting the image in the 3DProbe. Each dimension may
be adjusted separately. Pressing the reset button will return these values to the defaults.

∆

 643

The ? slider allows control of the apparent viewing angle of the image within 3D probes. This
occurs because the ∆ slider mimics the change of view with distance in the real world.
Uniform Scale

The Uniform Scale switch, when set, will create a uniform scale on all X, Y, and Z dimensions. This
is done so that the image contained within the 3D probes will not be distorted by varying scale.
Show Cube

The Show Cube switch, when set, will show a cube along the axis. This is known to increase the
3D effect of the display.
Autoscale

The Autoscale switch, when set, will scale the X, Y, and Z dimensions independently so that the
image will fill the cube.
Reset

The reset button will return all sliders to the default positions.
Lines/Dots/Both

The Lines/Dots/Both menu allows three different ways of viewing the data. The image may be
viewed by connecting the data samples with lines, drawing dots on the location of the data sample
in space, or both.
Projection Matrix

The Projection Matrix shows the values of ??????and???used to project the 3 dimensional data
onto the screen. The user can enter a selection directly into these fields.

Windows

MegaScope Window

Component: MegaScope

Superclass: TemporalProbe

 644

Description:

The MegaScope view allows the plotting of multi-channel variables over time. The MegaScope
view accepts further selection of a portion of the plotted data, which is accomplished with the
mouse. Just press the mouse button at the left of the desired region and drag the mouse (with the
button pressed) towards the right until the end of the desired selection.

The data in this region can be accessed by other probes. All data that passes through this region
will automatically be forwarded to attached temporal probes. The Slider and Buttons at the bottom
of the view allow the unseen data to be scrolled to the visible region.

ScatterPlot Window

Component: ScatterPlot

Superclass: TemporalProbe

 645

Description

The ScatterPlot view has the ability to resize and the contents of the view will automatically redraw
and rescale to fit. The cross hairs shown in the view represent the x and y axes. The point at
which they meet is (0,0).

StateSpaceProbe Window

Component: StateSpaceProbe

 646

Description:

The StateSpaceProbe uses the above window to display its data. This window is opened by
double-clicking on the StateSpaceProbe icon.

Φ Slider

The Φ slider (horizontal slider) allows the image in the StateSpaceProbe window to be rotated
around the horizontal axis. The image may be rotated 90 degrees in either direction.

Θ Slider

The Θ slider (vertical slider) allows the image in StateSpaceProbe window to be rotated around the
vertical axis. The image may be rotated 180 degrees in either direction.

Macro Actions

Mega Scope

MegaScope Macro Actions
Overview Superclass Macro Actions

Action Description
amplitude Returns the "Vertical Scale" setting.

autoscaleChannel Automatically adjusts scale setting.

autoSetUpChannels Automatically adjusts the MegaScope settings so that all of the traces
can be viewed at once.

horizontalPos Returns the value of the "Horizontal Offset" scroller.

horizontalPosSamples Returns the value of the "Horizontal Offset" edit cell.

multiplier Returns the "Vertical Scale" setting.

scale Returns the exponent of the "Vertical Scale" setting (3=1000, 2=100, 1=10, 0=1, -1=0.1, -
2=0.01, -3=0.001).

setAmplitude Sets the "Vertical Scale" setting and automatically adjusts the scale.

setHorizontalPos Sets the value of the "Horizontal Offset" scroller.

setHorizontalPosSamples Sets the value of the "Horizontal Offset" edit cell.

setMultiplier Sets the "Vertical Scale" setting.

setScale Sets the exponent of the "Vertical Scale" setting (3=1000, 2=100, 1=10, 0=1, -
1=0.1, -2=0.01, -3=0.001).

 647

setSweepMult Sets the sweep multiplier ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale]).

setSweepRate Sets the "Samples/Division" setting (sweep rate).

setSweepScale Sets the sweep scale ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale]).

setVerticalPos Sets the "Vertical Offset" scroller value.

setVerticalPosVolts Sets the "Vertical Offset" edit cell value.

sweepMult Returns the sweep multiplier (Sample/Division = [sweep multiplier] * 10 ^ [sweep
scale]).

sweepRate Returns the "Samples/Division" setting (sweep rate).

sweepScale Returns the sweep scale ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale]).

verticalPos Returns the "Vertical Offset" scroller value.

verticalPosVolts Returns the "Vertical Offset" edit cell value.

amplitude
Overview Macro Actions

Syntax

componentName.amplitude()

Parameters Type Description
return float The vertical scaling factor (see "Vertical Scale" of the Scope Inspector).

componentName Name defined on the engine property page.

autoscaleChannel
Overview Macro Actions

Syntax

componentName.autoscaleChannel()

Parameters Type Description
return void

componentName Name defined on the engine property page.

 648

autoSetUpChannels
Overview Macro Actions

Syntax

componentName.autoSetUpChannels()

Parameters Type Description
return void

componentName Name defined on the engine property page.

horizontalPos
Overview Macro Actions

Syntax

componentName.horizontalPos()

Parameters Type Description
return float The position of the scroller used to adjust the horizontal offset (see "Horizontal
Offset" within the Scope Inspector).

componentName Name defined on the engine property page.

horizontalPosSamples
Overview Macro Actions

Syntax

componentName.horizontalPosSamples()

Parameters Type Description
return float The value of the edit cell used to set the horizontal offset (see "Horizontal Offset"
within the Scope Inspector).

componentName Name defined on the engine property page.

multiplier
Overview Macro Actions

Syntax

componentName.multiplier()

Parameters Type Description
return float The vertical scaling factor (see "Vertical Scale" within the Scope Inspector).

 649

componentName Name defined on the engine property page.

scale
Overview Macro Actions

Syntax

componentName.scale()

Parameters Type Description
return int The exponent of the vertical scaling factor (3=1000, 2=100, 1=10, 0=1, -1=0.1, -
2=0.01, -3=0.001 – see "Vertical Scale" within the Scope Inspector).

componentName Name defined on the engine property page.

setAmplitude
Overview Macro Actions

Syntax

componentName.setAmplitude(amplitude)

Parameters Type Description
return void

componentName Name defined on the engine property page.

amplitude float The vertical scaling factor (see "Vertical Scale" of the Scope Inspector).

setHorizontalPos
Overview Macro Actions

Syntax

componentName.setHorizontalPos(horizontalPos)

Parameters Type Description
return void

componentName Name defined on the engine property page.

horizontalPos float The position of the scroller used to adjust the horizontal offset (see
"Horizontal Offset" within the Scope Inspector).

setHorizontalPosSamples
Overview Macro Actions

Syntax

 650

componentName.setHorizontalPosSamples(horizontalPosSamples)

Parameters Type Description
return float

componentName Name defined on the engine property page.

HorizontalPosSamples float The value of the edit cell used to set the horizontal offset (see
"Horizontal Offset" within the Scope Inspector).

setMultiplier
Overview Macro Actions

Syntax

componentName.setMultiplier(multiplier)

Parameters Type Description
return void

componentName Name defined on the engine property page.

multiplier float The vertical scaling factor (see "Vertical Scale" within the Scope
Inspector).

setScale
Overview Macro Actions

Syntax

componentName.setScale(scale)

Parameters Type Description
return void

componentName Name defined on the engine property page.

scale int The exponent of the vertical scaling factor (3=1000, 2=100, 1=10, 0=1, -1=0.1, -
2=0.01, -3=0.001 – see "Vertical Scale" within the Scope Inspector).

setSweepMult
Overview Macro Actions

Syntax

componentName.setSweepMult(sweepMult)

Parameters Type Description

 651

return void

componentName Name defined on the engine property page.

sweepMult float The sweep multiplier ([sweep rate] = [sweep multiplier] * 10 ^ [sweep
scale] – see "Samples/Division" with the Sweep Inspector).

setSweepRate
Overview Macro Actions

Syntax

componentName.setSweepRate(sweepRate)

Parameters Type Description
return void

componentName Name defined on the engine property page.

sweepRate float The sweep rate ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] –
see "Samples/Division" with the Sweep Inspector).

setSweepScale
Overview Macro Actions

Syntax

componentName.setSweepScale(sweepScale)

Parameters Type Description
return void

componentName Name defined on the engine property page.

sweepScale int The sweep scale ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale]
– see "Samples/Division" with the Sweep Inspector).

setVerticalPos
Overview Macro Actions

Syntax

componentName.setVerticalPos(verticalPos)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 652

verticalPos float The position of the scroller used to adjust the vertical offset (see
"Vertical Offset" within the Scope Inspector).

setVerticalPosVolts
Overview Macro Actions

Syntax

componentName.setVerticalPosVolts(verticalPosVolts)

Parameters Type Description
return void

componentName Name defined on the engine property page.

verticalPosVolts float The value of the edit cell used to define the vertical offset (see "Vertical
Offset" within the Scope Inspector).

sweepMult
Overview Macro Actions

Syntax

componentName.sweepMult()

Parameters Type Description
return float The sweep multiplier ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] – see
"Samples/Division" with the Sweep Inspector).

componentName Name defined on the engine property page.

sweepRate
Overview Macro Actions

Syntax

componentName.sweepRate()

Parameters Type Description
return float The sweep rate ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] – see
"Samples/Division" with the Sweep Inspector).

componentName Name defined on the engine property page.

sweepScale
Overview Macro Actions

 653

Syntax

componentName.sweepScale()

Parameters Type Description
return int The sweep scale ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] – see
"Samples/Division" with the Sweep Inspector).

componentName Name defined on the engine property page.

verticalPos
Overview Macro Actions

Syntax

componentName.verticalPos()

Parameters Type Description
return float The position of the scroller used to adjust the vertical offset (see "Vertical Offset"
within the Scope Inspector).

componentName Name defined on the engine property page.

verticalPosVolts
Overview Macro Actions

Syntax

componentName.verticalPosVolts()

Parameters Type Description
return float The value of the edit cell used to define the vertical offset (see "Vertical Offset"
within the Scope Inspector).

componentName Name defined on the engine property page.

Scatter Plot

ScatterPlot Macro Actions
Overview Superclass Macro Actions

Action Description
autoSetUpChannels Automatically sets every odd channel to be plotted against the next
even channel (assuming it exists), and every even channel’s visibility will be set to off (see "Autoset
Channels" within the ScatterPlot Inspector).

decrementXChannel Decreases the "X Channel" setting by one (see "X Channel" within the
ScatterPlot Inspector).

 654

dotSize Returns the "Dot Size" setting.

incrementXChannel Increases the "X Channel" setting by one (see "X Channel" within the
ScatterPlot Inspector).

performAutoscale Sets the Max and Min values for both the x-axis and y-axis such that all
the points contained in the visible traces will fit within the bounds of the display (see "Autoscale"
within the ScatterPlot Inspector).

setDotSize Sets the "Dot Size" setting.

setXChannel Sets the "X Channel" setting.

setXMaxScale Sets the "X Max" setting.

setXMinScale Sets the "X Min" setting.

setYMaxScale Sets the "Y Max" setting.

setYMinScale Sets the "Y Min" setting.

xChannel Returns the "X Channel" setting.

xMaxScale Returns the "X Max" setting.

xMinScale Returns the "X Min" setting.

yMaxScale Returns the "Y Max" setting.

yMinScale Returns the "Y Min" setting.

autoSetUpChannels
Overview Macro Actions

Syntax

componentName.autoSetUpChannels()

Parameters Type Description
return void

componentName Name defined on the engine property page.

decrementXChannel
Overview Macro Actions

 655

Syntax

componentName. decrementXChannel()

Parameters Type Description
return void

componentName Name defined on the engine property page.

dotSize
Overview Macro Actions

Syntax

componentName. dotSize()

Parameters Type Description
return int The width of the squares in the display window (see "Dot Size" within the
ScatterPlot Inspector).

componentName Name defined on the engine property page.

incrementXChannel
Overview Macro Actions

Syntax

componentName. incrementXChannel()

Parameters Type Description
return void

componentName Name defined on the engine property page.

performAutoscale
Overview Macro Actions

Syntax

componentName. performAutoscale()

Parameters Type Description
return void

componentName Name defined on the engine property page.

 656

setDotSize
Overview Macro Actions

Syntax

componentName. setDotSize(dotSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

dotSize int The width of the squares in the display window (see "Dot Size" within the
ScatterPlot Inspector).

setXChannel
Overview Macro Actions

Syntax

componentName. setXChannel(xChannel)

Parameters Type Description
return void

componentName Name defined on the engine property page.

xChannel int The channel that will be used for the x-axis when plotting against the
channel shown as the "Y Channel" (see "X Channel" within the ScatterPlot Inspector).

setXMaxScale
Overview Macro Actions

Syntax

componentName. setXMaxScale(xMaxScale)

Parameters Type Description
return void

componentName Name defined on the engine property page.

xMaxScale float The maximum value used to define the range of the x-axis on the
scatter plot (see "X Scale" within the ScatterPlot Inspector).

setXMinScale
Overview Macro Actions

Syntax

 657

componentName. setXMinScale(xMinScale)

Parameters Type Description
return void

componentName Name defined on the engine property page.

xMinScale float The minimum value used to define the range of the x-axis on the scatter
plot (see "X Scale" within the ScatterPlot Inspector).

setYMaxScale
Overview Macro Actions

Syntax

componentName. setYMaxScale(yMaxScale)

Parameters Type Description
return void

componentName Name defined on the engine property page.

yMaxScale float The maximum value used to define the range of the y-axis on the
scatter plot (see "Y Scale" within the ScatterPlot Inspector).

setYMinScale
Overview Macro Actions

Syntax

componentName. setYMinScale(yMinScale)

Parameters Type Description
return void

componentName Name defined on the engine property page.

yMinScale float The minimum value used to define the range of the y-axis on the scatter
plot (see "Y Scale" within the ScatterPlot Inspector).

xChannel
Overview Macro Actions

Syntax

componentName.xChannel()

Parameters Type Description
return int The channel that will be used for the x-axis when plotting against the channel

 658

shown as the "Y Channel" (see "X Channel" within the ScatterPlot Inspector).

componentName Name defined on the engine property page.

xMaxScale
Overview Macro Actions

Syntax

componentName. xMaxScale()

Parameters Type Description
return float The maximum value used to define the range of the x-axis on the scatter plot
(see "X Scale" within the ScatterPlot Inspector).

componentName Name defined on the engine property page.

xMinScale
Overview Macro Actions

Syntax

componentName. xMinScale()

Parameters Type Description
return float The minimum value used to define the range of the x-axis on the scatter plot (see
"X Scale" within the ScatterPlot Inspector).

componentName Name defined on the engine property page.

yMaxScale
Overview Macro Actions

Syntax

componentName. yMaxScale()

Parameters Type Description
return float The maximum value used to define the range of the x-axis on the scatter plot
(see "X Scale" within the ScatterPlot Inspector).

componentName Name defined on the engine property page.

yMinScale
Overview Macro Actions

 659

Syntax

componentName. yMinScale()

Parameters Type Description
return float The minimum value used to define the range of the y-axis on the scatter plot (see
"Y Scale" within the ScatterPlot Inspector).

componentName Name defined on the engine property page.

Temporal Probe

TemporalProbe Macro Actions
Overview Superclass Macro Actions

Action Description
activeChannel Returns the "Channel" setting.

autoSetUpChannels Automatically sets the scaling, positioning, color settings (see "Autoset
Channels" within the Display Inspector).

broadcast Returns the "Change All Channels" setting.

decrementChannel Decreases the "Channel" setting by one (see "Channel" within the
Display Inspector).

grid Returns the "Grid" setting (0="None", 1="Lines", 2="Grid").

incrementChannel Increases the "Channel" setting by one (see "Channel" within the
Display Inspector).

setActiveChannel Sets the "Channel" setting.

setBroadcast Sets the "Change All Channels" setting.

setColor Sets the "Color" setting (Hex value 0x00bbggrr).

setGrid Sets the "Grid" setting (0="None", 1="Lines", 2="Grid")..

setVisible Sets the "Visible" setting.

visible Returns the "Visible" setting.

activeChannel
Overview Macro Actions

Syntax

componentName. activeChannel()

 660

Parameters Type Description
return int The current channel used by the "Channel Settings" (see "Channel" within the
Display Inspector).

componentName Name defined on the engine property page.

autoSetUpChannels
Overview Macro Actions

Syntax

componentName. autoSetUpChannels()

Parameters Type Description
return void

componentName Name defined on the engine property page.

broadcast
Overview Macro Actions

Syntax

componentName. broadcast()

Parameters Type Description
return BOOL TRUE if the changes made to the current channel are also made to all channels
(see "Autoset Channels" within the Display Inspector).

componentName Name defined on the engine property page.

decrementChannel
Overview Macro Actions

Syntax

componentName. decrementChannel()

Parameters Type Description
return void

componentName Name defined on the engine property page.

grid
Overview Macro Actions

 661

Syntax

componentName. grid()

Parameters Type Description
return int Specifies whether or not the view is segmented into 10 equal divisions
(0="None", 1="Lines", 2="Grid" – see "Grid" within the Display Inspector).

componentName Name defined on the engine property page.

incrementChannel
Overview Macro Actions

Syntax

componentName. incrementChannel()

Parameters Type Description
return void

componentName Name defined on the engine property page.

setActiveChannel
Overview Macro Actions

Syntax

componentName. setActiveChannel(activeChannel)

Parameters Type Description
return void

componentName Name defined on the engine property page.

activeChannel int The current channel used by the "Channel Settings" (see "Channel"
within the Display Inspector).

setBroadcast
Overview Macro Actions

Syntax

componentName. setBroadcast(broadcast)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 662

broadcast BOOL TRUE if the changes made to the current channel are also made to all
channels (see "Autoset Channels" within the Display Inspector).

setColor
Overview Macro Actions

Syntax

componentName. setColor(color)

Parameters Type Description
return void

componentName Name defined on the engine property page.

color int value has the following hexadecimal form: 0x00bbggrr. The low-order byte
contains a value for the relative intensity of red; the second byte contains a value for green; and the
third byte contains a value for blue. The high-order byte must be zero. The maximum value for a
single byte is 0xFF.

setGrid
Overview Macro Actions

Syntax

componentName. setGrid(grid)

Parameters Type Description
return void

componentName Name defined on the engine property page.

grid int Specifies whether or not the view is segmented into 10 equal divisions
(0="None", 1="Lines", 2="Grid" – see "Grid" within the Display Inspector).

setVisible
Overview Macro Actions

Syntax

componentName. setVisible(visible)

Parameters Type Description
return void

componentName Name defined on the engine property page.

visible int TRUE if the trace for the activeChannel is visible (see "Visible" within the Display
Inspector).

 663

visible
Overview Macro Actions

Syntax

componentName. visible()

Parameters Type Description
return int TRUE if the trace for the activeChannel is visible (see "Visible" within the Display
Inspector).

componentName Name defined on the engine property page.

3DProbe Family

3DProbe Family

Ancestor: TemporalProbe Family

The 3DProbe family is a collection of components for observing the data in a given network as a
three dimensional projection. The members of the family determine the way in which the data is
projected. Members of the 3DProbe family have the ability to rotate and scale the projection. The
points can be plotted using dots, connected lines, or both.

Members:

StateSpaceProbe

User Interaction:

 Macro Actions

StateSpaceProbe

Family: 3DProbe Family

Superclass: 3DProbe

 664

Description:

The StateSpaceProbe provides a 3D state space representation of a sequence x based on the
matrix given below. This matrix is created using the history, n, of input data at some displacement,
τ. The output of this matrix is displayed using the abilities inherited from 3DProbe.

 aij = x0 x? x2?

 x1 x1+? x1+2?

 . . .

 . . .

 xn-2? xn-? xn

A state space trajectory represents a 3-D plot of the time evolution of the state of the system that
generated the data. Here the generated data is that contained within the attached temporal access
point. The StateSpaceProbe displays the signal against approximations of its first and second
derivatives. This tool is very useful for dynamic system analysis.

User Interaction:

Drag and Drop

Inspector

Window

Access Points

Macro Actions

Macro Actions

3D Probe

3DProbe Macro Actions
Overview Superclass Macro Actions

Action Description
amplitude Returns the "Amplitude" setting.

autoscale Returns the "Autoscale" setting.

distance Returns the "Delta" setting.

offset Returns the "Offset" setting for the specified axis.

 665

phi Returns the "Phi setting.

reset Returns all dimension values to their original, default positions.

setAmplitude Sets the "Amplitude" setting.

setAutoscale Sets the "Autoscale" setting.

setDistance Sets the "Delta" setting.

setOffset Sets the "Offset" setting for the specified axis.

setPhi Sets the "Phi setting.

setShowCube Sets the "Show Cube" setting.

setShowDots Set to TRUE for the "Dots" or "Both" settings.

setShowLines Set to TRUE for the "Lines" or "Both" settings.

setSquareCube Sets the "Uniform Scale" setting.

setTheta Sets the "Theta" setting.

showCube Returns the "Show Cube" setting.

showDots Returns TRUE for the "Dots" or "Both" settings.

showLines Returns TRUE for the "Lines" or "Both" settings.

squareCube Returns the "Uniform Scale" setting.

theta Returns the "Theta" setting.

amplitude
Overview Macro Actions

Syntax

componentName.amplitude(axis)

Parameters Type Description
return float Amplitude of the scaling function (see "Zoom" within the 3DProbe Inspector).

componentName Name defined on the engine property page.

 666

Axis int Axis to query (X=0, Y=1, Z=2).

autoscale
Overview Macro Actions

Syntax

componentName.autoscale()

Parameters Type Description
return BOOL When TRUE, the X, Y, and Z dimensions will scale independently so that the
image will fill the cube (see "Autoscale" within the 3DProbe Inspector).

componentName Name defined on the engine property page.

distance
Overview Macro Actions

Syntax

componentName.distance()

Parameters Type Description
return float The apparent viewing angle of the image (see "Delta" within the 3DProbe
Inspector).

componentName Name defined on the engine property page.

offset
Overview Macro Actions

Syntax

componentName.offset()

Parameters Type Description
return float Offset of the scaling function (see " Offset" within the 3DProbe Inspector).

componentName Name defined on the engine property page.

Axis int Axis to query (X=0, Y=1, Z=2).

phi
Overview Macro Actions

Syntax

 667

componentName.phi()

Parameters Type Description
return float Parameter used to project the 3 dimensional data onto the screen (see
"Projection Matrix" within the 3DProbe Inspector).

componentName Name defined on the engine property page.

reset
Overview Macro Actions

Syntax

componentName.reset()

Parameters Type Description
return void

componentName Name defined on the engine property page.

setAmplitude
Overview Macro Actions

Syntax

componentName.setAmplitude(amplitude,axis)

Parameters Type Description
return void

componentName Name defined on the engine property page.

amplitude float Amplitude of the scaling function (see "Zoom" within the 3DProbe
Inspector).

Axis int Axis to change (X=0, Y=1, Z=2).

setAutoscale
Overview Macro Actions

Syntax

componentName.setAutoscale(autoscale)

Parameters Type Description
return void

componentName Name defined on the engine property page.

autoscale BOOL When TRUE, the X, Y, and Z dimensions will scale independently so

 668

that the image will fill the cube (see "Autoscale" within the 3DProbe Inspector).

setPhi
Overview Macro Actions

Syntax

componentName.setPhi(phi)

Parameters Type Description
return void

componentName Name defined on the engine property page.

phi float Parameter used to project the 3 dimensional data onto the screen (see
"Projection Matrix" within the 3DProbe Inspector).

setShowCube
Overview Macro Actions

Syntax

componentName.setShowCube(showCube)

Parameters Type Description
return void

componentName Name defined on the engine property page.

showCube BOOL When TRUE, a cube will be displayed along the axis (see "Show Cube"
within the 3DProbe Inspector).

setShowDots
Overview Macro Actions

Syntax

componentName.setShowDots(showDots)

Parameters Type Description
return void

componentName Name defined on the engine property page.

showDots BOOL When TRUE, the location of the data samples in space are displayed
through a series of dots (see "Lines/Dots/Both" within the 3DProbe Inspector).

setShowLines
Overview Macro Actions

 669

Syntax

componentName.setShowLines(showLines)

Parameters Type Description
return void

componentName Name defined on the engine property page.

showLines BOOL When TRUE, the location of the data samples in space are displayed
through a series of lines connecting the points (see "Lines/Dots/Both" within the 3DProbe
Inspector).

setSquareCube
Overview Macro Actions

Syntax

componentName.setSquareCube(squareCube)

Parameters Type Description
return void

componentName Name defined on the engine property page.

squareCube BOOL When TRUE, the image within the 3D probes will not be distorted by
varying scale (see "Uniform Scale" within the 3DProbe Inspector).

setTheta
Overview Macro Actions

Syntax

componentName.setTheta(theta)

Parameters Type Description
return void

componentName Name defined on the engine property page.

theta float Parameter used to project the 3 dimensional data onto the screen (see
"Projection Matrix" within the 3DProbe Inspector).

showCube
Overview Macro Actions

Syntax

componentName.showCube()

 670

Parameters Type Description
return BOOL When TRUE, a cube will be displayed along the axis (see "Show Cube" within
the 3DProbe Inspector).

componentName Name defined on the engine property page.

showDots
Overview Macro Actions

Syntax

componentName.showDots()

Parameters Type Description
return BOOL When TRUE, the location of the data samples in space are displayed through a
series of dots (see "Lines/Dots/Both" within the 3DProbe Inspector).

componentName Name defined on the engine property page.

showLines
Overview Macro Actions

Syntax

componentName.showLines()

Parameters Type Description
return BOOL When TRUE, the location of the data samples in space are displayed through a
series of lines connecting the points (see "Lines/Dots/Both" within the 3DProbe Inspector).

componentName Name defined on the engine property page.

squareCube
Overview Macro Actions

Syntax

componentName.squareCube()

Parameters Type Description
return BOOL When TRUE, the image within the 3D probes will not be distorted by varying
scale (see "Uniform Scale" within the 3DProbe Inspector).

componentName Name defined on the engine property page.

theta
Overview Macro Actions

 671

Syntax

componentName.theta()

Parameters Type Description
return float Parameter used to project the 3 dimensional data onto the screen (see
"Projection Matrix" within the 3DProbe Inspector).

componentName Name defined on the engine property page.

setDistance
Overview Macro Actions

Syntax

componentName.setDistance(distance)

Parameters Type Description
return void

componentName Name defined on the engine property page.

distance float The apparent viewing angle of the image (see "Delta" within the
3DProbe Inspector).

setOffset
Overview Macro Actions

Syntax

componentName.setOffset(offset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

amplitude float Offset of the scaling function (see "Offset" within the 3DProbe
Inspector).

Axis int Axis to change (X=0, Y=1, Z=2).

State Space Probe

StateSpaceProbe Macro Actions
Overview Superclass Macro Actions

Action Description
displacement Returns the "Displacement" setting.

 672

history Returns the "History" setting.

setDisplacement Sets the "Displacement" setting.

setHistory Sets the "History" setting.

displacement
Overview Macro Actions

Syntax

componentName. displacement()

Parameters Type Description

return int The displacement τ, i.e. how far apart the samples used to create the input
matrix are taken from the original signal (see "Displacement" within the StateSpaceProbe
Inspector).

componentName Name defined on the engine property page.

history
Overview Macro Actions

Syntax

componentName. history()

Parameters Type Description
return int The number of samples that will be shown in the display (see "History" within the
StateSpaceProbe Inspector).

componentName Name defined on the engine property page.

setDisplacement
Overview Macro Actions

Syntax

componentName. setDisplacement(displacement)

Parameters Type Description
return void

componentName Name defined on the engine property page.

displacement int The displacement τ, i.e. how far apart the samples used to create the

 673

input matrix are taken from the original signal (see "Displacement" within the StateSpaceProbe
Inspector).

setHistory
Overview Macro Actions

Syntax

componentName. setHistory(history)

Parameters Type Description
return void

componentName Name defined on the engine property page.

history int The number of samples that will be shown in the display (see "History" within the
StateSpaceProbe Inspector).

Drag and Drop

Inspectors

Probe Inspector

Superclass Inspector: Access Inspector

 674

Component Configuration
Min

The minimum data value that will be displayed. All data values smaller than this will be displayed as
the minimum.
Max

The maximum data value that will be displayed. All data values larger than this will be displayed as
the maximum.
Automatic

This feature will set the min and max values using the minimum and maximum values for all
neurons being probed. It is suggested that this switch be used to establish initial values and then it
should be switched off. Leaving it on during training could create confusion in the interpretation of
the data being displayed and it may also slow down the simulation.
Denormalize from Normalization File

Applies the inverse scale and offset for each channel from the selected normalization file (see the
Data Sets Inspector). This is most often used to display/write the network output in the same units
as the desired output.
Browse

Displays an Open panel to select the file that contains the normalization coefficients used for the
denormalization (see above).
Display Every

The update rate of the Probe may be user controlled so that it will occur once every so many
samples. This cell allows this number to be set to any integer greater than or equal to one.
Window Title

The text that appears on the top bar of the probe window.
Fix

 675

When this switch is set, the title of the probe window can be fixed to a user-specified string (see
"Window Title" above).

Macro Actions

Access

Probe

Probe Macro Actions
Overview Superclass Macro Actions

Action Description
autoNormalize Returns the "Automatic" setting.

dataLength Returns the number of rows of formatted data.

dataWidth Returns the number of columns of formatted data.

denormalizeFromFile Returns the "Denormalize from Normalization File" setting.

displayEvery Returns the "Display Every" setting.

fixWindowTitle Returns the "Fix Window Title" setting.

getProbeData Returns the probe data as a variant array.

maxNormValue Returns the "View Range Max" setting.

minNormValue Returns the "View Range Min" setting.

normalizationFilePath Returns the normalization file path used for the denormalization.

setAutoNormalize Sets the "Automatic" setting.

setDenormalizeFromFile Sets the "Denormalize from Normalization File" setting

setDisplayEvery Sets the "Display Every" setting.

setFixWindowTitle Sets the "Fix Window Title" setting.

setMaxNormValue Sets the "View Range Max" setting.

setMinNormValue Sets the "View Range Min" setting.

SetNormalizationFilePath Sets the normalization file path used for the denormalization.

setWindowTitle Sets the title of the probe window.

 676

tileWindow Sizes and positions the probe window based on the position parameters given.

tileWindowBelow Sizes and positions the probe window based on the position parameters given
and the name of the probe to be placed below.

tileWindowNextTo

 Sizes and positions the probe window based on the position parameters
given and the name of the probe to be placed next to.

windowTitle Returns the title of the probe window.

autoNormalize
Overview Macro Actions

Syntax

componentName.autoNormalize()

Parameters Type Description
return BOOL When TRUE, the min and max values are automatically determined from the
data being probed (see "Automatic" within the Probe Inspector).

componentName Name defined on the engine property page.

dataLength
Overview Macro Actions

Syntax

componentName.dataLength()

Parameters Type Description
return int The number of rows of formatted data.

componentName Name defined on the engine property page.

dataWidth
Overview Macro Actions

Syntax

componentName.dataWidth()

Parameters Type Description

 677

return int The number of columns of formatted data.

componentName Name defined on the engine property page.

denormalizeFromFile
Overview Macro Actions

Syntax

componentName.denormalizeFromFile()

Parameters Type Description
return BOOL When TRUE, the inverse scale and offset is applied to each channel based on
the normalization file (see "Denormalize from Normalization File" within the Probe Inspector).

componentName Name defined on the engine property page.

displayEvery
Overview Macro Actions

Syntax

componentName.displayEvery()

Parameters Type Description
return int The update rate of the probe (see "Display Every" within the Probe Inspector).

componentName Name defined on the engine property page.

fixWindowTitle
Overview Macro Actions

Syntax

componentName.fixWindowTitle()

Parameters Type Description
return BOOL When TRUE, the title of the probe window can be fixed to a user-specified string
(see "Fix" within the Probe Inspector).

componentName Name defined on the engine property page.

getProbeData
Overview Macro Actions

Syntax

componentName.getProbeData()

Parameters Type Description
return variant Variant array of floating point values containing the data being probed. For static

 678

probes, the dimensions of the array are dataWidth by dataLength. For the DataStorage component,
the dimensions of the array are dataWidth by dataLength by bufferLength.

componentName Name defined on the engine property page.

maxNormValue
Overview Macro Actions

Syntax

componentName.maxNormValue()

Parameters Type Description
return float The maximum data value that will be displayed (see "Max" within the Probe
Inspector).

componentName Name defined on the engine property page.

minNormValue
Overview Macro Actions

Syntax

componentName.minNormValue()

Parameters Type Description
return float The minimum data value that will be displayed (see "Min" within the Probe
Inspector).

componentName Name defined on the engine property page.

normalizationFilePath
Overview Macro Actions

Syntax

componentName.normalizationFilePath()

Parameters Type Description
return string The path of the normalization file used for denormalization (see "Denormalize
from Normalization File" within the Probe Inspector).

componentName Name defined on the engine property page.

setAutoNormalize
Overview Macro Actions

 679

Syntax

componentName.setAutoNormalize(autoNormalize)

Parameters Type Description
return void

componentName Name defined on the engine property page .

autoNormalize BOOL When TRUE, the min and max values are automatically determined
from the data being probed (see "Automatic" within the Probe Inspector).

setDenormalizeFromFile
Overview Macro Actions

Syntax

componentName.setDenormalizeFromFile(denormalizeFromFile)

Parameters Type Description
return void

componentName Name defined on the engine property page.

denormalizeFromFile BOOL When TRUE, the inverse scale and offset is applied to each
channel based on the normalization file (see "Denormalize from Normalization File" within the
Probe Inspector).

setDisplayEvery
Overview Macro Actions

Syntax

componentName.setDisplayEvery(displayEvery)

Parameters Type Description
return void

componentName Name defined on the engine property page.

displayEvery int The update rate of the probe (see "Display Every" within the Probe
Inspector).

setFixWindowTitle
Overview Macro Actions

Syntax

 680

componentName.setFixWindowTitle(fixWindowTitle)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fixWindowTitle BOOL When TRUE, the title of the probe window can be fixed to a user-
specified string (see "Fix" within the Probe Inspector).

setMaxNormValue
Overview Macro Actions

Syntax

componentName.setMaxNormValue(maxNormValue)

Parameters Type Description
return void

componentName Name defined on the engine property page.

maxNormValue float The maximum data value that will be displayed (see "Max" within the
Probe Inspector).

setMinNormValue
Overview Macro Actions

Syntax

componentName.setMinNormValue(minNormValue)

Parameters Type Description
return void

componentName Name defined on the engine property page.

minNormValue float The minimum data value that will be displayed (see "Min" within the
Probe Inspector).

setNormalizationFilePath
Overview Macro Actions

Syntax

componentName.setNormalizationFilePath(normalizationFilePath)

 681

Parameters Type Description
return void

componentName Name defined on the engine property page.

normalizationFilePath string The path of the normalization file used for denormalization (see
"Denormalize from Normalization File" within the Probe Inspector).

setWindowTitle
Overview Macro Actions

Syntax

componentName.setWindowTitle(windowTitle)

Parameters Type Description
return void

componentName Name defined on the engine property page.

windowTitle String The title of the probe window (see "Window Title" of the Probe Inspector
page).

tileWindow
Overview Macro Actions

Syntax

componentName.tileWindow(probeNumHoriz, totalProbesHoriz, probeNumVert,
totalProbesVert)

Parameters Type Description
return void

componentName Name defined on the engine property page.

probeNumHoriz int The horizontal position of the probe window. This value can be between
1 (the left side of the screen) and totalProbesHoriz (the right side of the screen).

totalProbesHoriz int The inverse horizontal width of the probe window. A value of 1
would be the width of the entire screen, 2 would be 1/2 of the screen width, 3 would be 1/3 of the
screen width, etc.

probeNumVert int The vertical position of the probe window. This value can be between 1
(the top of the screen) and totalProbesVert (the bottom of the screen).

totalProbesVert int The inverse vertical height of the probe window. A value of 1 would be
the height of the entire screen, 2 would be 1/2 of the screen height, 3 would be 1/3 of the screen
height, etc.

 682

tileWindowBelow
Overview Macro Actions

Syntax

componentName.tileWindowBelow(aboveName, probeNum, totalProbes, height)

Parameters Type Description
return void

componentName Name defined on the engine property page.

aboveName string Name of the probe whose window will be directly above this probe
window.

probeNum int The horizontal position of the probe window. This value can be between
1 (the left side of the screen) and totalProbesHoriz (the right side of the screen).

totalProbes int The inverse horizontal width of the probe window. A value of 1 would be
the width of the entire screen, 2 would be 1/2 of the screen width, 3 would be 1/3 of the screen
width, etc.

height int The height as a percentage of the horizontal width. A value of 100 will produce a
square window, a value of 200 will produce a rectangular window that is twice as high as it is wide,
and a value of 0 will use a default height.

tileWindowNextTo
Overview Macro Actions

Syntax

componentName.tileWindowNextTo(nextName, probeNum, totalProbes, height)

Parameters Type Description
return void

componentName Name defined on the engine property page.

nextName string Name of the probe whose window will be directly to the left of this probe
window.

probeNum int The horizontal position of the probe window. This value can be between
1 (the left side of the screen) and totalProbesHoriz (the right side of the screen).

totalProbes int The inverse horizontal width of the probe window. A value of 1 would be
the width of the entire screen, 2 would be 1/2 of the screen width, 3 would be 1/3 of the screen
width, etc.

height int The height as a percentage of the horizontal width. A value of 100 will produce a
square window, a value of 200 will produce a rectangular window that is twice as high as it is wide,
and a value of 0 will use a default height.

 683

windowTitle
Overview Macro Actions

Syntax

componentName.windowTitle()

Parameters Type Description
return String The title of the probe window (see "Window Title" of the Probe Inspector page).

componentName Name defined on the engine property page.

Transformer Family
Transformer Family

Ancestor: TemporalProbe Family

The Transformer family is a collection of components that transform temporal data. The data may
be transformed into any format. An example of a transform is a periodogram (a spectral estimator
based on the Fast Fourier Transform). The results of the transformations are presented as a
temporal access point to attached components. The dimensionality of the data at this access point
is completely defined by the specific Transformer component.

The actual segment of data used for the transformation is contained within the temporal access
point of the component attached below. If the Transformer is attached to a MegaScope (at the
Selection access point), then the segment of data is specified by the selection made within the
MegaScope’s display window.

Members:

SpectralTransform

Transformer

SpectralTransform

Family: Transformer Family

 684

Superclass: Transformer

Description:

The SpectralTransform is used to compute periodograms from temporal data. These
periodograms are generated using an averaging of windowed Fast Fourier Transforms (FFT's). The
FFT is computed based on a number of parameters (e.g., FFT size, window size, percentage
overlap and number of segments). This component is normally used in conjunction with a
MegaScope by attaching to its Selection access point to access a segment of the displayed data.
This segment is specified by selecting (highlighting) a portion of the MegaScope’s display window.

The problem of spectral estimation is the resolution/stability dilemma. One needs more (averaged)
segments to improve the variance of the estimator (which improves with N, the number of
segments being averaged). But when doing this for the same spectral resolution (number of points
of the FFT) there is a need for more data samples. If there is not enough data, you may need to
overlap the segments and/or augment (pad) each data window with zeros. You may have to settle
for a worse spectral estimate by decreasing either the FFT size or number of segments.

User Interaction:

Drag and Drop

Inspector

Access Points

Macro Actions

Transformer

Family: Transformer Family

Superclass: Transformer

Description:

The Transformer is a temporal probe that receives a copy of the buffered data sent from the
component stacked below, and transforms this data. This transformed data is then used by the
component attached to its Transform access point. It is implemented using DLLs, thus requiring
that a DLL be loaded within the Engine Inspector property page of the Transformer inspector.

User Interaction:

Drag and Drop

Access Points

 685

DLL Implementation

Access Points

Transformer Access Points

Component: Transformer

Superclass: TemporalProbe

Transform Access:

This access point is created by all subclasses of the transformer class. It presents the result of the
conversion performed by subclasses on temporal data. The dimensions of this access point are
completely determined by the subclass.

 See Also

DLL Implementation

Transformer DLL Implementation

Component: Transformer

Protocol: PerformTransform

Description:

The Transformer component is used to transform the data sent from the component stacked below,
and send the transformed data to the component attached above using the Transform access
point. This is a temporal probe meaning that it processes the data stored within the attached
DataStorage.

The default DLL implementation of this component simply transforms all of the data to zeros.

Code:

BOOL performTransform(

 686

 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the buffered data
 int length, // Length of the buffer to be transformed
 int channel // Current channel number
)
{
 int i;

 for (i=0; i<length; i++)
 data[i] = 0.0f; // transform the data here
 // Return whether or not to display this channel
 return TRUE;
}

Inspectors

SpectralTransform Inspector

Component: SpectralTransform

Superclass Inspector: Display Inspector

Component Configuration:
FFT Size

The FFT Size may be set to any power of 2 greater than 2 and less than or equal to 4096. If a
value that is not a power of 2 is entered into the form cell, the next largest power of 2 will be used.
If the amount of data specified by the window size is smaller than the FFT size, zero padding will
be used to get the appropriate number of points (power of 2).
Overlap

 687

This value is used to determine how much the position of successive windows of data will overlap.
This is commonly set to 50% for periodograms. This may be any integer greater than zero and less
than or equal to100.
Segments

The number of segments determines how many windows of data can be taken from the given data.
This will be determined by the total size of the data, the overlap, and the size of the window used.
This number may be an integer greater than zero.
Window Size

The window size determines how many samples are used for each segment of the periodogram.
This number may be any integer greater than zero and less than or equal to the size of the data
being probed.
Output

This menu allows the user to choose between linear data or logarithmic data for the FFT output.
Window

This menu allows the user to choose which type of windowing function should be applied to the
data before transformation to the frequency domain. Typically the Hamming window is used to
reduce ringing in the frequency domain.

Display Inspector

Component: TemporalProbe Family

Superclass Inspector: Access Inspector

Component Configuration:
Channel

 688

The number of channels (or traces) is determined by the size of the data at the point being probed.
Each neuron found at an access point counts as 1 channel.

The "active" channel refers to the channel that appears in the channel form cell. Any adjustments
made using the Channel Settings functions will affect only the channel which is "active." (except
when the "Change All Channels" switch is set)

The channel may be selected by one of three methods. Clicking on the left or right arrow button
will decrement or increment the active channel one at a time. The channel slider may be used to
scan through all the possible channels. Finally, a specific channel number may be entered directly
into the channel form cell.

Once the "active" channel has been selected, the inspector will display the specific settings for that
channel.
Change All Channels

This switch allows all the channels parameters to be set concurrently. When this switch is set,
adjusting any of the "Channel Settings" will affect all channels.
Autoset Channels

Clicking on the autoset channels button will cause several operations to be performed on the
settings of the visible channels. These operations include scaling, positioning, and setting the
color.

Each of the visible channels is scaled and positioned so that each can be observed while not
interfering with the others. The color of each channel is also set uniquely.
Grid

The None/Lines/Grid pull down menu allows the view to be segmented into 10 equal divisions.
These divisions are used by the scaling and position to determine a relative placement of the data.
Visible

This is a switch (toggle) that makes the current channel appear in the view.
Set Color

The color may be set by activating the color panel and choosing a color. To activate the color panel
click once on the Set Color button. When the color panel appears, select the color of your
preference. The color of the view will change accordingly.
Window Title

The text that appears on the top bar of the probe window.
Fix

When this switch is set, the title of the probe window can be fixed to a user-specified string (see
"Window Title" above).

 689

Drag and Drop

Macro Actions

Spectral Transform

SpectralTransform Macro Actions
Overview Superclass Macro Actions

Action Description
fftSize Returns the "FFT Size" setting.

linear Returns TRUE if the output is "Linear", FALSE if the output is "Log".

overlap Returns the "Percentage Overlap" setting.

segments Returns the "Number of Segments" setting.

setFFTSize Sets the "FFT Size" setting.

setLinear Set to TRUE if the output is "Linear", FALSE if the output is "Log".

setOverlap Sets the "Percentage Overlap" setting.

setSegments Sets the "Number of Segments" setting.

setWindowSize Sets the "Window Size" setting.

windowSize Returns the "Window Size" setting.

fftSize
Overview Macro Actions

Syntax

componentName. fftSize()

Parameters Type Description
return int This value may be any power of 2 greater than 2 and less than or equal to 4096
(see "FFT Size" within the SpectralTransform Inspector).

componentName Name defined on the engine property page.

linear
Overview Macro Actions

Syntax

 690

componentName. linear()

Parameters Type Description
return BOOL TRUE if the output is "Linear and FALSE if the output is "Log" (see "Output"
within the SpectralTransform Inspector).

componentName Name defined on the engine property page.

overlap
Overview Macro Actions

Syntax

componentName. overlap()

Parameters Type Description
return int The value used to determine how much the position of successive windows of
data will overlap (see "Overlap" within the SpectralTransform Inspector).

componentName Name defined on the engine property page.

segments
Overview Macro Actions

Syntax

componentName. segments()

Parameters Type Description
return int The number of windows of data that can be taken from the probed data (see
"Segments" within the SpectralTransform Inspector).

componentName Name defined on the engine property page.

setFFTSize
Overview Macro Actions

Syntax

componentName. setFFTSize(fftSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fftSize int This value may be any power of 2 greater than 2 and less than or equal to 4096.
If the value is not a power of 2, the next largest power of 2 will be used (see "FFT Size" within the

 691

SpectralTransform Inspector).

setLinear
Overview Macro Actions

Syntax

componentName. setLinear(linear)

Parameters Type Description
return void

componentName Name defined on the engine property page.

linear BOOL TRUE if the output is "Linear and FALSE if the output is "Log" (see "Output"
within the SpectralTransform Inspector).

setOverlap
Overview Macro Actions

Syntax

componentName. setOverlap(overlap)

Parameters Type Description
return void

componentName Name defined on the engine property page.

overlap int The value used to determine how much the position of successive windows of
data will overlap (see "Overlap" within the SpectralTransform Inspector).

setSegments
Overview Macro Actions

Syntax

componentName. setSegments(segments)

Parameters Type Description
return void

componentName Name defined on the engine property page.

segments int The number of windows of data that can be taken from the probed data
(see "Segments" within the SpectralTransform Inspector).

 692

setWindowSize
Overview Macro Actions

Syntax

componentName. setWindowSize(windowSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

windowSize int The number of samples are used for each segment of the periodogram
(see "Window Size" within the SpectralTransform Inspector).

windowSize
Overview Macro Actions

Syntax

componentName. windowSize()

Parameters Type Description
return int The number of samples are used for each segment of the periodogram (see
"Window Size" within the SpectralTransform Inspector).

componentName Name defined on the engine property page.

Access

Schedule Family
ExpScheduler

Family: Schedule Family

Superclass: NSSchedule

Description:

 693

The ExpScheduler receives a parameter and modifies it exponentially (either using an increasing or
decreasing value) during a predetermined number of epochs. It has a maximum and minimum
constraint that will be met at all times during the scheduling operation.

Schedule Equation:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

 See Also

LinearScheduler

Family: Schedule Family

Superclass: NSSchedule

Description:

The linear scheduler receives a parameter and modifies it linearly (increase or decrease) during a
predetermined number of epochs. It has a maximum and minimum constraint that will be met at all
times during the scheduling operation.

Schedule Equation:

 694

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

 See Also

LogScheduler

Family: Schedule Family

Superclass: NSSchedule

Description:

The LogScheduler receives a parameter and modifies it logarithmically (either using an increasing
or decreasing value) during a predetermined number of epochs. It has a maximum and minimum
constraint that will be met at all times during the scheduling operation.

Schedule Equation:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

 695

 See Also

DLL Implementation

ExpScheduler DLL Implementation

Component: ExpScheduler

Protocol: PerformScheduler

Description:

This function is called after each epoch that has scheduling active (specified by the user within the
Scheduler inspector). It simply multiplies each PE within data by beta and copies the result back
into data. Note that the component itself handles the clipping if the data exceeds the boundaries
specified by the user.

Code:

BOOL performScheduler(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data to be scheduled
 int length, // Number of elements in scheduled data vector
 NSFloat beta // Scheduler parameter (specified by user)
)
{
 int i;

 for (i=0; i<length; i++)
 data[i] = beta*data[i];
}

LinearScheduler DLL Implementation

 696

Component: LinearScheduler

Protocol: PerformScheduler

Description:

This function is called after each epoch that has scheduling active (specified by the user within the
Scheduler inspector). It simply increments each PE within data by beta. Note that the component
itself handles the clipping if the data exceeds the boundaries specified by the user.

Code:

BOOL performScheduler(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data to be scheduled
 int length, // Number of elements in scheduled data vector
 NSFloat beta // Scheduler parameter (specified by user)
)
{
 int i;

 for (i=0; i<length; i++)
 data[i] += beta;
}

LogScheduler DLL Implementation

Component: LogScheduler

Protocol: PerformScheduler

Description:

This function is called after each epoch that has scheduling active (specified by the user within the
Scheduler inspector). It simply decrements each PE within data by beta over data. Note that the
component itself handles the clipping if the data exceeds the boundaries specified by the user.

Code:

BOOL performScheduler(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data to be scheduled

 697

 int length, // Number of elements in scheduled data vector
 NSFloat beta // Scheduler parameter (specified by user)
)
{
 int i;

 for (i=0; i<length; i++)
 data[i] -= beta / data[i];
}

Inspectors

Schedule Inspector

Family: Schedule Family

Superclass Inspector: Access inspector

Component Configuration:
Start at Epoch (SetStartAt(int))

This cell is used to specify when the scheduling is to begin based on the epoch count.
Until Epoch (SetUntil(int))

This cell is used to specify when the scheduling is to end based on the epoch count.
Beta (SetBeta(float))

This cell is used to specify β. This parameter determines the rate of change of the scheduled
variable. The schedule equation of the component reference defines how this parameter is used to
compute the variable’s current value based on its previous value.
Minimum (SetMin(float))

 698

The cell specifies the minimum value at which the scheduled variable will be set.
Maximum (SetMax(float))

The cell specifies the maximum value at which the scheduled variable will be set.

Drag and Drop

Access Points

Macro Actions

Scheduler

Scheduler Macro Actions
Overview Superclass Macro Actions

Action Description
beta Returns the "Beta" (β) setting.

maximum Returns the "Maximum" setting.

minimum Returns the "Minimum" setting.

setBeta Sets Returns the "Beta" (β) setting.

setMaximum Sets the "Maximum" setting.

setMinimum Sets the "Minimum" setting.

setStart Sets the "Start at Epoch" setting.

setStop Sets the "Until Epoch" setting.

start Returns the "Start at Epoch" setting.

stop Returns the "Until Epoch" setting.

beta
Overview Macro Actions

Syntax

componentName. beta()

Parameters Type Description
return float The rate of change of the scheduled variable, or β (see "Beta" within the
Schedule Inspector).

componentName Name defined on the engine property page.

 699

maximum
Overview Macro Actions

Syntax

componentName. maximum()

Parameters Type Description
return float The maximum value at which the scheduled variable will be set (see "Maximum"
within the Schedule Inspector).

componentName Name defined on the engine property page.

minimum
Overview Macro Actions

Syntax

componentName. minimum()

Parameters Type Description
return float The minimum value at which the scheduled variable will be set (see "Minimum"
within the Schedule Inspector).

componentName Name defined on the engine property page.

setBeta
Overview Macro Actions

Syntax

componentName. setBeta(beta)

Parameters Type Description
return void

componentName Name defined on the engine property page.

beta float The rate of change of the scheduled variable, or β (see "Beta" within the
Schedule Inspector).

setMaximum
Overview Macro Actions

Syntax

componentName. setMaximum(maximum)

 700

Parameters Type Description
return void

componentName Name defined on the engine property page.

maximum float The maximum value at which the scheduled variable will be set (see
"Maximum" within the Schedule Inspector).

setMinimum
Overview Macro Actions

Syntax

componentName. setMinimum(minimum)

Parameters Type Description
return void

componentName Name defined on the engine property page.

minimum float The minimum value at which the scheduled variable will be set (see
"Minimum" within the Schedule Inspector).

setStart
Overview Macro Actions

Syntax

componentName. setStart(start)

Parameters Type Description
return void

componentName Name defined on the engine property page.

start int The number of epochs to run before the scheduling begins (see "Start at Epoch"
within the Schedule Inspector).

setStop
Overview Macro Actions

Syntax

componentName. setStop(stop)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 701

stop int The number of epochs to run before the scheduling ends (see "Until Epoch"
within the Schedule Inspector).

start
Overview Macro Actions

Syntax

componentName. start()

Parameters Type Description
return int The number of epochs to run before the scheduling begins (see "Start at Epoch"
within the Schedule Inspector).

componentName Name defined on the engine property page.

stop
Overview Macro Actions

Syntax

componentName. stop()

Parameters Type Description
return int The number of epochs to run before the scheduling ends (see "Until Epoch"
within the Schedule Inspector).

componentName Name defined on the engine property page.

Access

Transmitter Family
ControlTransmitter Family

ControlTransmitter Family

Ancestor: Transmitter Family

The ControlTransmitter family provides the ability to transmit control messages to components on
the breadboard. Members of the ControlTransmitter family monitor the data at the access point of
the attached component. When the data meets the set of conditions specified by the
ControlTransmitter, it will send one or more control messages to one or more components on the
breadboard.

 702

The action taken for a particular message is determined by the receiving components. This enables
a component to have an outside source control its actions during an experiment.

Members:

ThresholdTransmitter

DeltaTransmitter

DeltaTransmitter

Family: ControlTransmitter Family

Superclass: ThresholdTransmitter

Description:

The DeltaTransmitter sends control messages to other network components on the breadboard
based on the change in the data of the attached component from one iteration to the next. The
control messages are sent when the change in the data between successive iterations crosses a
specified threshold. There are several ways to specify this boundary based on the type and value
of the threshold and the filtering performed on the accessed data. The threshold can be specified to
move (i.e., incremented, decremented, or scaled by a constant) each time the boundary is crossed.

User Interaction:

Drag and Drop

Inspector

Access Points

ThresholdTransmitter

Family: ControlTransmitter Family

Superclass: Transmitter

 703

Description:

The ThresholdTransmitter sends control messages to other network components on the
breadboard based on the data of the attached component. The control messages are sent when
the data crosses a specified threshold. There are several ways to specify this boundary based on
the type and value of the threshold and the filtering performed on the accessed data. The threshold
can be specified to move (i.e., incremented, decremented, or scaled by a constant) each time the
boundary is crossed.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Macro Actions

Access Points

ThresholdTransmitter Access Points

Component: ThresholdTransmitter

Superclass: Access Points

Weighted Average Access:

The Weighted Average Access reports the output of the smoothing filter used to estimate the point
at which the threshold is crossed. The smoothing filter is constructed using parameters defined in
the ThresholdTransmitter Inspector

Threshold Access:

This provides access to the value of threshold used to initiate message transmission. This value
may be adapted during training by using a Scheduler.

 See Also

DLL Implementation

ThresholdTransmitter DLL Implementation

 704

Component: ThresholdTransmitter

Protocol: PerformThresholdTransmitter

Description:

The ThresholdTransmitter sends control messages to other network compo nents on the
breadboard based on the data of the attached component. The con trol messages are sent when
the function below returns a YES. This function scans through the data and returns a YES if the
data has crossed the threshold specifications contained within the last three parameters.
Otherwise, the function returns a NO.

Code:

BOOL performThresholdTransmitter(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data at the access point
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat threshold, // Threshold specified by user
 BOOL lessThan, // Less than/greater than state (user-
specified)
 int type // Threshold type, 0=All 1=One 2=Average
)
{
 int length=rows*cols;

 switch (type) {
 case 0:
 if (lessThan)
 return allLessThan(data,length,threshold);
 return !oneLessThan(data,length,threshold);
 break;
 case 1:
 if (lessThan)
 return oneLessThan(data,length,threshold);
 return !allLessThan(data,length,threshold);
 break;
 case 2:
 if (lessThan)
 return averageLessThan(data,length,threshold);
 return !averageLessThan(data,length,threshold);
 break;
 }
 return NO;
}

BOOL oneLessThan(NSFloat *data, int length, NSFloat threshold)
{

 705

 register int i;

 for (i=0; i<length; i++)
 if (data[i] < threshold)
 return YES;
 return NO;
}

BOOL allLessThan(NSFloat *data, int length, NSFloat threshold)
{
 register int i;

 for (i=0; i<length; i++)
 if (data[i] > threshold)
 return NO;
 return YES;
}

BOOL averageLessThan(NSFloat *data, int length, NSFloat threshold)
{
 register int i;
 register NSFloat average = (NSFloat)0.0;

 for (i=0; i<length; i++)
 average += data[i];
 return (average /= length) < threshold;
}

Inspectors

ThresholdTransmitter Inspector

Component: ThresholdTransmitter

Superclass Inspector: Transmitter Inspector

 706

Component Configuration:
All, One, Mean (SetElements(int))

This radio button specifies whether All elements, One element, or the Mean element of the
attached access point are used to determine if the threshold has been crossed.
Add To

When this radio button is set and the specified threshold has been crossed, then the value within
the Threshold Adjustment cell will be added to the current threshold to produce a new threshold.
This provides the facility for defining multiple thresholds at once.
Mult By (SetAdjustment(float))

When this radio button is set and the specified threshold has been crossed, then the value within
the Threshold Adjustment cell will be multiplied by the current Threshold to produce a new
Threshold. This provides the facility for defining multiple Thresholds at once.
Threshold Adjustment (SetAdjustment(float))

When the specified threshold has been crossed, then the value within this cell will be multiplied by
or added to (depending on the radio buttons described above) the current Threshold to produce a
new Threshold. This provides the facility for defining multiple Thresholds at once.
Beta (SetBeta(float))

When this cell contains a value that is greater than 0 (but less than one), a filtering operation is
used to smooth (i.e., average) the data being monitored. The higher the β, the more that the past
values are averaged in. The smoothing function is defined as:

y(n+1) = (1- β)x(n) + β y(n)

For the ThresholdTransmitter, x(n) is defined as the current data at the access point of the attached
component. For the DeltaTransmitter, x(n) is defined as the difference between the current data at
the access point and the data from the previous sample.
Initial (SetInitial(float))

 707

This cell specifies y(0), the initial value of the filtering operation (see above).
<, > (SetLessThan(bool))

These radio buttons specify whether the crossing occurs when the data is greater than or less than
the Threshold value.
Abs (SetAbs(bool))

When this switch is on, the threshold is based on the absolute value of the data.
Threshold (SetThreshold(float))

This cell is used to specify the initial value of the threshold. This value may change during the
course of the simulation using the Threshold Adjustment parameters described above.

Macro Actions

Threshold Transmitter

ThresholdTransmitter Macro Actions
Overview Superclass Macro Actions

Action Description
absoluteValue Returns the "Abs." setting.

beta Returns the "Beta" setting.

initialValue Returns the "Initial Value" setting.

lessThan Returns TRUE if the crossing occurs when the data is less than the Threshold
value and FALSE if the crossing occurs when the data is greater than the Threshold value.

multBy Returns TRUE if the "Mult. By" switch is on and FALSE if the "Add To" switch is on.

setAbsoluteValue Sets the "Abs." setting.

setBeta Sets the "Beta" setting.

setInitialValue Sets the "Initial Value" setting.

setLessThan Set to TRUE if the crossing occurs when the data is less than the Threshold
value and FALSE if the crossing occurs when the data is greater than the Threshold value.

setMultBy Set to TRUE to turn the "Mult. By" switch on and FALSE to turn the "Add To"
switch on.

setThreshold Sets the "Threshold" setting.

setThresholdDecay Sets the "Threshold Adjustment" setting.

setThresholdType Sets the "Elements of Vector" setting (0 = "All", 1 = "One", 2 =
"Average").

threshold Returns the "Threshold" setting.

 708

thresholdDecay Returns the "Threshold Adjustment" setting.

thresholdType Returns the "Elements of Vector" setting (0 = "All", 1 = "One", 2 = "Average").

absoluteValue
Overview Macro Actions

Syntax

componentName. absoluteValue()

Parameters Type Description
return BOOL TRUE if the threshold is based on the absolute value of the data (see "Abs."
within the ThresholdTransmitter Inspector).

componentName Name defined on the engine property page.

beta
Overview Macro Actions

Syntax

componentName. beta()

Parameters Type Description
return float The smoothing factor of the filtering operation (see "Beta" within the
ThresholdTransmitter Inspector).

componentName Name defined on the engine property page.

initialValue
Overview Macro Actions

Syntax

componentName. initialValue()

Parameters Type Description
return float Specifies y(0), the initial value of the filtering operation (see "Initial Value" within
the ThresholdTransmitter Inspector).

componentName Name defined on the engine property page.

lessThan
Overview Macro Actions

 709

Syntax

componentName. lessThan()

Parameters Type Description
return int TRUE specifies that crossing occurs when the data is less than the Threshold
value and FALSE specifies that crossing occurs when the data is greater than the Threshold value
(see "<,>" within the ThresholdTransmitter Inspector).

componentName Name defined on the engine property page.

multBy
Overview Macro Actions

Syntax

componentName. multBy()

Parameters Type Description
return BOOL When TRUE and the specified threshold has been crossed, then the Threshold
Adjustment value will be multiplied by the current Threshold to produce a new Threshold. When
FALSE and the specified threshold has been crossed, then the Threshold Adjustment value will be
added to the current Threshold to produce a new Threshold. (see "Mult By" and "Add to" within the
ThresholdTransmitter Inspector).

componentName Name defined on the engine property page.

setAbsoluteValue
Overview Macro Actions

Syntax

componentName. setAbsoluteValue(absoluteValue)

Parameters Type Description
return void

componentName Name defined on the engine property page.

absoluteValue BOOL TRUE if the threshold is based on the absolute value of the data (see
"Abs." within the ThresholdTransmitter Inspector).

setBeta
Overview Macro Actions

Syntax

componentName. setBeta(beta)

 710

Parameters Type Description
return void

componentName Name defined on the engine property page.

beta float The smoothing factor of the filtering operation (see "Beta" within the
ThresholdTransmitter Inspector).

setInitialValue
Overview Macro Actions

Syntax

componentName. setInitialValue(initialValue)

Parameters Type Description
return void

componentName Name defined on the engine property page.

initialValue float Specifies y(0), the initial value of the filtering operation (see "Initial
Value" within the ThresholdTransmitter Inspector).

setLessThan
Overview Macro Actions

Syntax

componentName. setLessThan(lessThan)

Parameters Type Description
return void

componentName Name defined on the engine property page.

lessThan int TRUE specifies that crossing occurs when the data is less than the
Threshold value and FALSE specifies that crossing occurs when the data is greater than the
Threshold value (see "<,>" within the ThresholdTransmitter Inspector).

setMultBy
Overview Macro Actions

Syntax

componentName. setMultBy(multBy)

Parameters Type Description
return void

 711

componentName Name defined on the engine property page.

multBy BOOL When TRUE and the specified threshold has been crossed, then the Threshold
Adjustment value will be multiplied by the current Threshold to produce a new Threshold. When
FALSE and the specified threshold has been crossed, then the Threshold Adjustment value will be
added to the current Threshold to produce a new Threshold. (see "Mult By" and "Add to" within the
ThresholdTransmitter Inspector).

setThreshold
Overview Macro Actions

Syntax

componentName. setThreshold(threshold)

Parameters Type Description
return void

componentName Name defined on the engine property page.

threshold float The threshold value (see "Threshold" within the ThresholdTransmitter
Inspector).

setThresholdDecay
Overview Macro Actions

Syntax

componentName. setThresholdDecay(thresholdDecay)

Parameters Type Description
return void

componentName Name defined on the engine property page.

thresholdDecay float The amount to muliply by or add to the Threshold value when the
threshold has been crossed (see "Threshold Adjustment" within the ThresholdTransmitter
Inspector).

setThresholdType
Overview Macro Actions

Syntax

componentName. setThresholdType(thresholdType)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 712

thresholdType int Specifies whether All elements, One element, or the Mean element of
the attached access point are used to determine if the threshold has been crossed (0 = "All", 1 =
"One", 2 = "Average" -- see "All, One, Mean" within the ThresholdTransmitter Inspector).

threshold
Overview Macro Actions

Syntax

componentName. threshold()

Parameters Type Description
return float The threshold value (see "Threshold" within the ThresholdTransmitter Inspector).

componentName Name defined on the engine property page.

thresholdDecay
Overview Macro Actions

Syntax

componentName. thresholdDecay()

Parameters Type Description
return float The amount to muliply by or add to the Threshold value when the threshold has
been crossed (see "Threshold Adjustment" within the ThresholdTransmitter Inspector).

componentName Name defined on the engine property page.

thresholdType
Overview Macro Actions

Syntax

componentName. thresholdType()

Parameters Type Description
return int Specifies whether All elements, One element, or the Mean element of the
attached access point are used to determine if the threshold has been crossed (0 = "All", 1 = "One",
2 = "Average" -- see "All, One, Mean" within the ThresholdTransmitter Inspector).

componentName Name defined on the engine property page.

 713

DataTransmitters Family

DataTransmitter Family

Ancestor: Transmitter Family

DataTransmitters provide a means of globally transmitting data between various network access
points. This is most often used as a means of displaying data from separate network locations
within the same probe window.

Members:

DataStorageTransmitter

DataStorageTransmitter

Family: DataTransmitter Family

Superclass: Transmitter

Description:

The DataStorageTransmitter acts as a remote data collector for one or more DataStorage
components. A single DataStorage component can collect data from a number of
DataStorageTransmitters placed anywhere on the breadboard. This feature is useful when
comparing the signals of various points of the network by displaying all of the data within the same
probe window.

As the DataStorageTransmitter accesses the data of its attached component, this data is
transmitted to the DataStorage components. Each DataStorage component uses this transmitted
data as if it were obtained from additional channels of its attached component.

Note that there is a limitation to the use of the DataStorageTransmitter. A DataStorageTransmitter
will not work properly if a DataStorage component is accessing its data at a different interval than
that which the DataStorageTransmitter is receiving.

User Interaction:

Drag and Drop

Inspector

Access Points

 714

Inspectors

Transmitter Inspector

Family: Transmitter Family

Superclass Inspector: Access inspector

Component Configuration:
Receivers List

This list contains all possible receiver components that exist on the breadboard. To select a
receiver, simply single-click on the corresponding item in the list. If the selected receiver has any
actions (messages) which can be sent by this transmitter they will be listed in the Actions Browser.
Note that the receiver components connected to the transmitter are marked with an asterisk ('*').
Actions List

This list contains all possible actions (messages) that can be sent to the selected component in the
Receivers List (see above). To select which action messages are to be sent, simply double-click on
the corresponding items in the Actions List. A "C" should appear to the left of the selected actions.
This indicates that a connection from the transmitter to the receiver has been made. To disconnect
an action, double-click on an item marked with a "C". Note that only one connection can be made
for a specific receiver. To send multiple actions to the same receiver component you need to use
multiple transmitters.
Parameter

This cell is used to specify a parameter for those actions that require a value. This value may be a
floating point number, (i.e. 34.5322 or -3.21e5) an integer number, (i.e. 1322, -5, -132) or a boolean
(i.e. TRUE or FALSE). The parameter’s type is determined by the message. The value from the
Parameter cell is copied to the parameter of the selected action when the Set button is clicked.
Set

The value from the Parameter cell is copied to the parameter of the selected action when this
button is clicked.

 715

Drag and Drop

Access Points

Transmitter Macro Actions

Transmitter Macro Actions
Overview Superclass Macro Actions

Action Description
toggleConnection Connects or disconnects the specified action of the specified
component.

setParameter Sets a parameter for those actions that require a value.

toggleConnection
Overview Macro Actions

Syntax

componentName. toggleConnection(name, action)

Parameters Type Description
return BOOL TRUE if the action is connected upon completion and FALSE if it is not.

componentName Name defined on the engine property page.

name string The name of the component to connect to (see "Receivers List" within the
Transmitter Inspector).

action string The action (function name) to connect to (see "Actions List" within the
Transmitter Inspector).

setParameter
Overview Macro Actions

Syntax

componentName. setParameter(name, action, parameter)

Parameters Type Description
return void

componentName Name defined on the engine property page.

name string The name of the component to connect to (see "Receivers List" within the
Transmitter Inspector).

action string The action (function name) to connect to (see "Actions List" within the

 716

Transmitter Inspector).

parameter string The parameter associated with the specified component and action (see
"Parameter" within the Transmitter Inspector).

Unsupervised Family
HebbianFull

Family: Unsupervised Family

Superclass: NSUnsupervised

Description:

Hebbian learning adjusts a synapse's weights such that its output reflects its familiarity with an
input. The more probable an input, the larger the output will become, at least on average.
Unfortunately, plain Hebbian learning continually strengthens its weights without bound (unless the
input data is properly normalized). There are only a few applications for plain Hebbian learning;
however, almost every unsupervised and competitive learning procedure can be considered
Hebbian in nature.

The HebbianFull component adapts its weights according to either the plain Hebbian or forced
Hebbian learning rules. In forced Hebbian, the output of the component is substituted by a desired
response for the purpose of weight update. The desired response is accepted via an access point.
Forced Hebbian learning is clearly not an unsupervised routine, but in the context of data flow and
control it fits nicely into the unsupervised family. This type of learning has been applied to
heteroassociation.

Anti-Hebbian learning is simply Hebbian with a negative step size, h. It is interesting to note that the
least mean squares (LMS) adaptation procedure, which is commonly used in engineering, is simply
the sum of anti-Hebbian and forced Hebbian learning.

Weight Update Function:
Plain Hebbian:

 717

Forced Hebbian:

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

OjasFull

Family: Unsupervised Family

Superclass: NSUnsupervised

Description:

Oja's unsupervised learning is simply a procedure for plain Hebbian learning with constrained
weight vector growth. This procedure adds a weight decay proportional to the output squared. Oja's
rule finds a unit weight vector that maximizes the mean square output. For zero mean data this is
equivalent to principal component analysis.

Weight Update Function:

 718

where xj is the input, yi is the output, O is the set of all output indices, wij the weight and h the step
size.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

SangersFull

Family: Unsupervised Family

Superclass: NSUnsupervised

Description:

Sanger's unsupervised learning is simply a procedure for plain Hebbian learning with constrained
weight vector growth. This learning procedure is known to perform principal component analysis.
Furthermore, the principal components are extracted in order, with respect to the output unit
ordering.

Weight Update Function:

User Interaction:

Drag and Drop

Inspector

 719

Access Points

DLL Implementation

SVMInputSynapse

Family: Unsupervised Family

Superclass: NSUnsupervised

Description:

This component is used to implement the "RBF Dimensionality Expansion" segment of the Support
Vector Machine model.

User Interaction:

Drag and Drop

Inspector

Access Points

Competitive Family

StandardFull

Family: Competitive Family

Superclass: NSCompetitive

 720

Description:

The StandardFull is a component that implements competitive learning. The weights of a single
winning neuron will be moved towards the input.

Weight Update Function:

i* = maxi (yi)

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

ConscienceFull

Family: Competitive Family

Superclass: Standard

Description:

The ConscienceFull is a special type of competitive learning that keeps track of how often the
outputs win the competition with the goal of equilibrating the winnings (i.e., each unit in a set of N
will win the competition 1/N on average). This implements a second level of competition among the
elements to determine which PE is going to be updated. It avoids the common occurrence in
competitive learning that one element (or a subset) may always win the competition.

Weight Update Function:

 721

where b is a bias vector created by the conscience mechanism. The bias for each output is
computed based upon the output’s frequency of winning,

Here Γ is a parameter on the inspector that controls the amount of bias to apply, K is the number of

outputs, and is the output’s frequency of winning. Running frequency estimates are
given by,

where β is a smoothing parameter also set by the component’s inspector.

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Macro Actions

Access Points

ConscienceFull Access Points

Component: ConscienceFull

Superclass: Unsupervised Access Points

Bias Access:

This Access point the bias that each processing element has against it’s winning the competition.

Frequency Access:

The current estimate of how often each PE is winning the competition.

 722

DLL Implementation

Competitive DLL Implementation

Components: StandardFull, ConscienceFull

Protocol: PerformCompetitive

Description:

The StandardFull and ConscienceFull components implement competitive learning. The
ConscienceFull component differs from the StandardFull in that the former adds a bias (i.e., a
"conscience") to the competition with the goal of equilibrating the winnings. Note that this second
level of competition is performed by the ConscienceFull component to determine the winner, and is
not part of code below. This code updates the weights that are connected to the winning output PE.

Code:

void performCompetitive(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output
layer
 NSFloat *weights // Pointer to the fully-connected weight
matrix
 NSFloat step // Learning rate
 int winner // Index of winning PE
)
{
 int i,
 inCount=inRows*inCols,
 outCount=outRows*outCols;

 for (i=0; i<inCount; i++)
 W(winner,i) += step*(input[i] - W(winner,i));
}

 723

Inspectors

Conscience Inspector

Component: ConscienceFull

Superclass Inspector: Competitive Inspector

Component Configuration:
Beta (SetBeta(float))

This cell specifies the smoothing parameter, β. See the ConscienceFull reference for its use within
the winning index function.
Gamma (SetGamma(float))

This cell specifies the bias term, ?. See the ConscienceFull reference for its use within the winning
index function.

Competitive Inspector

Superclass Inspector: Rate Inspector

 724

Component Configuration:
Metric

This pull-down menu is used to select the distance metric used by the competitive algorithm. See
the Competitive Family reference for a summary of the available metrics.

Macro Actions

Competitive Full

CompetitiveFull Macro Actions
Overview Superclass Macro Actions

Action Description
setMetric Sets the "Metric" setting.

metric Returns the "Metric" setting.

metric
Overview Macro Actions

Syntax

componentName. metric()

Parameters Type Description
return int The distance metric used by the competitive algorithm (0 = " Dot Product", 1 = "
Euclidean", 2 = " Box Car" -- see "Metric" within the Competitive Inspector).

componentName Name defined on the engine property page.

setMetric
Overview Macro Actions

 725

Syntax

componentName. setMetric(metric)

Parameters Type Description
return void

componentName Name defined on the engine property page.

metric int The distance metric used by the competitive algorithm (0 = " Dot Product", 1 = "
Euclidean", 2 = " Box Car" -- see "Metric" within the Competitive Inspector).

Conscience Full

ConscienceFull Macro Actions
Overview Superclass Macro Actions

Action Description

beta Returns the smoothing parameter, β.

gamma Returns the bias term, γ.

setBeta Sets the smoothing parameter, β.

setGamma Sets the bias term, γ.

beta
Overview Macro Actions

Syntax

componentName. beta()

Parameters Type Description

return float The smoothing parameter, β (see "Beta" within the ConscienceFull Inspector).

componentName Name defined on the engine property page.

gamma
Overview Macro Actions

Syntax

componentName. gamma()

 726

Parameters Type Description

return float The bias term, γ (see "Gamma" within the ConscienceFull Inspector).

componentName Name defined on the engine property page.

setBeta
Overview Macro Actions

Syntax

componentName. setBeta(beta)

Parameters Type Description
return void

componentName Name defined on the engine property page.

beta float The smoothing parameter, β (see "Beta" within the ConscienceFull Inspector).

setGamma
Overview Macro Actions

Syntax

componentName. setGamma(gamma)

Parameters Type Description
return void

componentName Name defined on the engine property page.

gamma float The bias term, γ (see "Gamma" within the ConscienceFull Inspector).

Kohonen Family

DiamondKohonen

 727

Family: Kohonen Family

Superclass: NSConscience

Description:

The DiamondKohonen implements a 2D self-organizing feature map (SOFM) with a diamond
neighborhood. The dimensions of the map are dictated by the rows and columns of the axon that
the DiamondKohonen feeds. The neighborhood size is selected from the component’s inspector.

Neighborhood Figure (Size=2):

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

LineKohonen

Family: Kohonen Family

Superclass: NSConscience

Description:

 728

The LineKohonen implements a 1D self-organizing feature map (SOFM) with a linear
neighborhood. The dimensions of the map are dictated by the rows and columns of the axon that
the LineKohonen feeds. Since this neighborhood is linear, the axons PEs are interpreted as one
long vector of length rows*columns. The neighborhood size is selected from the component’s
inspector.

Neighborhood Figure (Size=2):

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

SquareKohonen

Family: Kohonen Family

Superclass: NSConscience

Description:

The SquareKohonen implements a 2D self-organizing feature map (SOFM) with a square
neighborhood. The dimensions of the map are dictated by the rows and columns of the axon that
the SquareKohonen feeds. The neighborhood size is selected from the component’s inspector.

Neighborhood Figure (Size=2):

 729

User Interaction:

Drag and Drop

Inspector

Access Points

DLL Implementation

Access Points

Kohonen Access Points

Family: Kohonen Family

Superclass: ConscienceFull Access Points

Neighborhood Radius Access:

The size of the Neighborhood currently being used. This value may be adapted during training by
using a Scheduler.

Component Plane Access:

This access point allows you to view only the weights from a single input (from the multi-
dimensional input vector) to all the PEs, in order to see how that input varies from cluster to cluster.
For example, if there are regions in the Self-Organizing Map (SOM) where the weights for a
particular input are very high, then we can say that all the inputs clustered in that PE have a high
value for that input. If all of the values for a particular input are approximately the same, then this
particular input has no influence on the clustering. Note that the plane number is selected from the
Kohonen inspector page.

Frequency Access:
When evaluating the clustering in a Self-Organizing Map (SOM) it is important to understand the
mapping done. Typically, the number of SOM PEs is much larger than the number of clusters
expected. This allows multiple PEs to capture one logical cluster. What you expect to see in the
SOM map is groups of PEs representing a single cluster of the input. The question is how to
determine where the clusters are in your SOM. This access point provides a histogram of win
frequencies, which gives information to help determine the clustering.

You can think of the SOM as stretching its 2-D grid of PEs over the range of inputs (input space).
Inside a cluster, the PEs will be close together since all the inputs in that area are similar. Often
times you will have "dead PEs" that will get left in "empty" areas of the input space because they do
not win any competitions. By finding these dead PEs, you can locate the borders of the clustering
inside your SOM.

 730

Unified Distance Access:
Another way to determine the clustering in a Self-Organizing Map (SOM) is by looking at the
distance between PE cluster centers. The weights from the input to each PE gives the PE cluster
centers of the SOM. Inside a cluster of inputs, SOM PEs will be close to each other. Between SOM
PEs the SOM map will have to stretch its PEs to map from one input cluster to the next. By finding
large distances between neighboring PEs we should be able to find where inputs are clustered in
the SOM. Large distances imply an input cluster boundary. Remember, in a square SOM, there are
distances from one PE to each of its 8 neighbors.

This access point produces the distance from each PE to its neighbors. Looking for large distances
(light values on an ImageViewer probe, or large black squares on a Hinton probe) shows input
cluster boundaries.

Quantization Metric Access:
This access point produces the average quantization error, which measures the "goodness" of fit of
a clustering algorithm. It is the average distance between each input and the winning PE. If the
quantization error is large, then the winning PE is not a good representation of the input. If it is
small, then the input is very close to the winning PE. Remember, that by increasing the number of
PEs you will almost always get lower quantization errors even though the clustering may logically
not be much better. Also, changing the input will affect the best quantization error possible. The
quantization error is best for comparing the clustering capabilities between multiple trainings of the
same Self-Organizing Map (SOM) on the same input.

 See Also

DLL Implementation

DiamondKohonen DLL Implementation

Component: DiamondKohonen

Protocol: PerformKohonen

Description:

The DiamondKohonen component implements a 2D self-organizing feature map (SOFM) with a
diamond neighborhood. The dimensions of the map are dictated by the dimensions of the axon that
the LineKohonen feeds (outRows and outCols). The neighborhood size is defined by the user
within the component’s inspector.

Code:

 731

void performKohonen(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output
layer
 NSFloat *weights // Pointer to the fully-connected weight
matrix
 NSFloat step // Learning rate
 int winningRow, // Index of winning row
 int winningCol, // Index of winning column
 int size // Size of the neighborhood
)
{
 int i,j,k,
 inCount = inRows*inCols,
 startRow = winningRow - size,
 stopRow = winningRow + size,
 startCol = winningCol - size,
 stopCol = winningCol + size;

 if (startRow < 0)
 startRow = 0;
 if (stopRow >= outRows)
 stopRow = outRows-1;
 if (startCol < 0)
 startCol = 0;
 if (stopCol >= outCols)
 stopCol = outCols-1;
 for (i=startRow; i<stopRow; i++)
 for (j=startCol; j<stopCol; j++)
 if (abs(i-winningRow) + abs(j-winningCol) <= size)
 for (k=0; k<inCount; k++)
 W(j+i*outCols,k) += step*(input[k] -
W(j+i*outCols,k));
}

LineKohonen DLL Implementation

 732

Component: LineKohonen

Protocol: PerformKohonen

Description:

The LineKohonen component implements a 1D self-organizing feature map (SOFM) with a linear
neighborhood. The dimensions of the map are dictated by the vector length (outRows*outCols) of
the axon that the LineKohonen feeds. The neighborhood size is defined by the user within the
component’s inspector.

Code:

void performKohonen(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output
layer
 NSFloat *weights // Pointer to the fully-connected weight
matrix
 NSFloat step // Learning rate
 int winningRow, // Index of winning row
 int winningCol, // Index of winning column
 int size // Size of the neighborhood
)
{
 int i,j,
 inCount = inRows*inCols,
 outCount = outRows * outCols,
 winner = winningCol + winningRow*outCols,
 start = winner - size,
 stop = winner + size;

 if (start < 0)
 start = 0;
 if (stop >= outCount)
 stop = outCount-1;
 for (i=start; i<=stop; i++)
 for (j=0; j<inCount; j++)
 W(i,j) += step*(input[j] - W(i,j));
}

SquareKohonen DLL Implementation

 733

Component: SquareKohonen

Protocol: PerformKohonen

Description:

The SquareKohonen component implements a 2D self-organizing feature map (SOFM) with a
square neighborhood. The dimensions of the map are dictated by the dimensions of the axon that
the LineKohonen feeds (outRows and outCols). The neighborhood size is defined by the user
within the component’s inspector.

Code:

void performKohonen(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output
layer
 NSFloat *weights // Pointer to the fully-connected weight
matrix
 NSFloat step // Learning rate
 int winningRow, // Index of winning row
 int winningCol, // Index of winning column
 int size // Size of the neighborhood
)
{
 int i,j,k,
 inCount = inRows*inCols,
 startRow = winningRow - size,
 stopRow = winningRow + size,
 startCol = winningCol - size,
 stopCol = winningCol + size;

 if (startRow < 0)
 startRow = 0;
 if (stopRow >= outRows)
 stopRow = outRows-1;
 if (startCol < 0)

 734

 startCol = 0;
 if (stopCol >= outCols)
 stopCol = outCols-1;
 for (i=startRow; i<=stopRow; i++)
 for (j=startCol; j<=stopCol; j++)
 for (k=0; k<inCount; k++)
 W(j+i*outCols,k) += step*(input[k] -
W(j+i*outCols,k));
}

Inspectors

Kohonen Inspector

Superclass Inspector: Conscience Inspector

Component Configuration:
Neighborhood (SetNeighborhood(int))

This cell specifies the size of the spatial neighborhood used by the Kohonen algorithm. See the
Neighborhood Figure section of the component reference for its use of this parameter.
Beta (SetBeta(float))

See Conscience Inspector
Gamma (SetGamma(float))

See Conscience Inspector
Component Plane (setComponentPlane(int))

Used to select the plane displayed by the probe attached to the Component Plane access point.

 735

Macro Actions

Kohonen Full

KohonenFull Macro Actions
Overview Superclass Macro Actions

Action Description
neighborhood Returns the "Neighborhood" setting.

setNeighborhood Sets the "Neighborhood" setting.

neighborhood
Overview Macro Actions

Syntax

componentName. neighborhood()

Parameters Type Description
return int The size of the spatial neighborhood used by the Kohonen algorithm (see
"Neighborhood" within the Kohonen Inspector).

componentName Name defined on the engine property page.

setNeighborhood
Overview Macro Actions

Syntax

componentName. setNeighborhood(neighborhood)

Parameters Type Description
return void

componentName Name defined on the engine property page.

neighborhood int The size of the spatial neighborhood used by the Kohonen algorithm
(see "Neighborhood" within the Kohonen Inspector).

Access Points

Unsupervised Access Points

Family: Unsupervised Family

Superclass: None

 736

Activity Access:

Attaches the Access component to the vector of activity immediately after the function map

Weights Access:

All adaptive weights within the axon are reported by attaching to Weight Access. This data may be
reported in vector or matrix form, depending on how the axon stores it. If a component does not
have any weights, this access point will not appear in the inspector.

Unsupervised Step Size:

This Access point reports the step size being used by the Unsupervised component. This value
may be adapted during training by using a Scheduler.

Forced Access:

This access point is used to input a desired response to an unsupervised component. It is currently
only implemented for the Hebbian and StandardFull components. For the Hebbian component, the
learning rule becomes Forced Hebbian. For the StandardFull component, the learning rule
becomes Learning Vector Quantization (LVQ), if the desired signal is the class labels of the
clusters.

 See Also

HebbianFull Access Points

Component: HebbianFull

Superclass: Unsupervised Access Points

Forced Access:

This Access point allows a desired response to be input to the Hebbian component, transforming
the learning rule to Forced Hebbian.

DLL Implementation

HebbianFull DLL Implementation

 737

Component: HebbianFull

Protocol: PerformUnsupervised

Description:

The HebbianFull component implements Plain Hebbian and Forced Hebbian learning. Each weight
of the fully-connected matrix is adjusted by adding the product of the activity at the output PE, the
activity at the input PE, and the step size.

Code:

void performUnsupervised(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
 NSFloat *weights // Pointer to the fully-connected weight matrix
 NSFloat step // Learning rate
)
{
 int i, j,
 inCount=inRows*inCols,
 outCount=outRows*outCols;

 for (j=0; j<inCount; j++)
 for (i=0; i<outCount; i++)
 W(i,j) += step*input[j]*output[i];
}

OjasFull DLL Implementation

Component: OjasFull

Protocol: PerformUnsupervised

 738

Description:

OjasFull implements plain Hebbian learning with constrained weight vector growth. This procedure
adds a weight decay proportional to the output squared. The implementation is similar to that of the
DLL Implementation component, except that each input PE term used to compute the weight
change is reduced by the sum of products of the output PEs and the weights connected to the
given input.

Code:

void performUnsupervised(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
 NSFloat *weights // Pointer to the fully-connected weight matrix
 NSFloat step // Learning rate
)
{
 int i, j,
 inCount=inRows*inCols,
 outCount=outRows*outCols;
 NSFloat partialSum;

 for (j=0; j<inCount; j++) {
 partialSum = (NSFloat)0;
 for (i=0; i<outCount; i++)
 partialSum += output[i] * W(i,j);
 for (i=0; i<outCount; i++)
 W(i,j) += step*output[i]*(input[j] - partialSum);
 }
}

SangersFull DLL Implementation

Component: SangersFull

Protocol: PerformUnsupervised

 739

Description:

SangersFull implements principal component analysis. It does this with a plain Hebbian weight
update rule while constraining the growth of the weight vector, similar to the DLL Implementation
component. The difference is that the range of the summation has changed, resulting in an
ordering of the principal components.

Code:

void performUnsupervised(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
 NSFloat *weights // Pointer to the fully-connected weight matrix
 NSFloat step // Learning rate
)
 int i, j,
 inCount=inRows*inCols,
 outCount=outRows*outCols;
 NSFloat partialSum;

 for (j=0; j<inCount; j++) {
 partialSum = (NSFloat)0;
 for (i=0; i<outCount; i++) {
 partialSum += output[i] * W(i,j);
 W(i,j) += step*output[i]*(input[j] - partialSum);
 }
 }
}

Drag and Drop

Unsupervised Drag and Drop

All components in the Unsupervised family must be dropped directly on a component from the
Synapse family. The unsupervised component will then be positioned in the upper left corner of
the synapse.

 See Also

 740

Inspectors

Rate Inspector

Superclass Inspector: Synapse Inspector

Component Configuration:
Step Size (SetStepSize(float))

This cell is used to specify the step size parameter, η. See the component reference for its use
within the weight update function.
Learning (Turn learning on(); Turn learning off(); Toggle learning())

When this switch is turned on, the weights of this unsupervised component will be adapted. When
this switch is turned off, the weights are frozen. This is most often used to synchronize the training
of hybrid supervised/unsupervised networks.

This switch will be turned on when the network is reset provided the Learn after RESET switch is
turned on (see below). For standard unsupervised learning, both the Learn and the Learn after
RESET switches should be turned on. Note that when the learning is off, the icon changes to that
of the FullSynapse to indicate the freezing of the weights. The learning mode can be switched
during the simulation using one or more Transmitters.
Learn after RESET

This switch specifies whether the Learn switch (see above) is turned on or off when the network is
reset.
Normalize Weights

This switch is only active for the HebbianFull, OjasFull, and SangersFull components. If activated,
then each weight vector in the weight matrix is normalized to have an L2 norm of unity after each
weight update. It is most commonly used with the OjasFull and SangersFull components, with a
negative learning rate, to compute the smallest principal component.
Store Hopefield Weights

 741

This button works only with the HebbianFull component with a desired signal at the forced access
point. It is used to calculate, in a single pass, the weights of a Hopefield net.

SVMInputSynapse Inspector

Superclass Inspector: Step Inspector

Component Configuration:

The output vector y is a measure of the distance between the input and the output neurons’ weight
vectors. This distance is dependent on the particular metric chosen:
Dot Product

Euclidean

Macro Actions

Unsupervised Full

UnsupervisedFull Macro Actions
Overview Superclass Macro Actions

Action Description
learning Returns the "Learning" setting.

 742

learningOnReset Returns the "Learning on Reset" setting.

setLearning Sets the "Learning" setting.

setLearningOnReset Sets the "Learning on Reset" setting.

setStepSize Sets the "Step Size" parameter, η.

stepSize Returns the "Step Size" parameter, η.

learning
Overview Macro Actions

Syntax

componentName. learning()

Parameters Type Description
return BOOL TRUE if the weights of the unsupervised component are adapted (see "Learning"
within the Learning Rate Inspector).

componentName Name defined on the engine property page.

learningOnReset
Overview Macro Actions

Syntax

componentName. learningOnReset()

Parameters Type Description
return BOOL TRUE forces the Learn switch on when the network is reset (see "Learn after
RESET" within the Learning Rate Inspector).

componentName Name defined on the engine property page.

setLearning
Overview Macro Actions

Syntax

componentName. setLearning(learning)

Parameters Type Description

 743

return void

componentName Name defined on the engine property page.

learning BOOL TRUE if the weights of the unsupervised component are adapted (see "Learning"
within the Learning Rate Inspector).

setLearningOnReset
Overview Macro Actions

Syntax

componentName. setLearningOnReset(learningOnReset)

Parameters Type Description
return void

componentName Name defined on the engine property page.

learningOnReset BOOL TRUE forces the Learn switch on when the network is reset
(see "Learn after RESET" within the Learning Rate Inspector).

setStepSize
Overview Macro Actions

Syntax

componentName. setStepSize(stepSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

stepSize float The step size parameter, η (see "Step Size" within the Learning Rate
Inspector).

stepSize
Overview Macro Actions

Syntax

componentName. stepSize()

Parameters Type Description

return float The step size parameter, η (see "Step Size" within the Learning Rate Inspector).

componentName Name defined on the engine property page.

 744

Inspectors
Genetic Parameters Inspector

Superclass Inspector: None

Description:

This inspector is used to select which component parameters are to be optimized using a genetic
algorithm. Note that this page is only shown if there is GeneticControl component stamped on the
breadboard.

Component Configuration:
Parameter List

This list box contains all of the component’s parameters that can be genetically optimized.
Checking the box next to a parameter name specifies that it will be optimized during the next
genetic run. Note that the GeneticControl component must have optimization enabled (see the
GeneticControl inspector) before the selected parameters will be optimized on the next training run.
Lower Bound

This cell is displayed when a parameter is checked and selected from the Parameter List. It is used
to specify the lowest value that the genetic algorithm can set the optimized parameter to.
Upper Bound

This cell is displayed when a parameter is checked and selected from the Parameter List. It is used
to specify the highest value that the genetic algorithm can set the optimized parameter to.
Mutation Type

 745

Mutation is a genetic operator that alters one or more gene values in a chromosome from its initial
state. This can result in entirely new gene values being added to the gene pool. With these new
gene values, the genetic algorithm may be able to arrive at a better solution than was previously
possible. Mutation is an important part of the genetic search as it helps to prevent the population
from stagnating at any local optima. Mutation occurs during evolution according to a user-definable
mutation probability, set within the Genetic Operators inspector page. There are four different
mutation operators (types) available:

• Uniform - Replaces the value of the chosen gene with a uniform random value selected between
the user-specified upper and lower bounds for that gene.

• Boundary - Replaces the value of the chosen gene with either the upper or lower bound for that
gene (chosen randomly).

• Gaussian - Adds a unit Gaussian distributed random value to the chosen gene. The new gene
value is clipped if it falls outside of the user-specified lower or upper bounds for that gene.

• Non-Uniform - Increases the probability that the amount of the mutation will be close to 0 as the
generation number increases. This mutation operator keeps the population from stagnating in the
early stages of the evolution, then allows the genetic algorithm to fine tune the solution in the later
stages of evolution. The chosen gene is mutated according to the following equations:

Engine Macro Actions
Engine Macro Actions

Overview Superclass Macro Actions

Action Description
activateDLL Sets the "Use DLL" setting.

baseEngineOnDocument Returns the name of the component within the stack that is stamped
directly on the breadboard.

bottom Returns the vertical position of the bottom edge of the component icon.

className Returns the class name of the object.

 746

closeEngineWindow Closes the window associated with the component (e.g., the display
window of a probe).

connectTo Establishes a connection to the specified component on the breadboard.

delete Deletes the component.

dllActive Returns the "Use DLL" setting.

dllName Returns the name (excluding extension) of the DLL associated with the component.

dllPath Returns the full file path of the DLL associated with the component.

engineAtAccessPoint Returns the name of the component attached to the specified access
point.

fixName Returns the "Fix Name" setting.

fixToSuperengine Returns the "Fix to superengine" setting.

isDescendant Returns TRUE if the specified component is directly or indirectly attached below.

isKindOf Returns TRUE if the component is a member of the specified class or is a
member of a sub-class of the specified class.

isMemberOf Returns TRUE if the component is a member of the specified class.

isOfLevel Returns TRUE if the component is a member of the specified level.

isSubengine Returns TRUE if the specified component is directly or indirectly attached above.

keepWindowActive Returns the "Keep Window Active" setting.

left Returns the horizontal position of the left edge of the component icon.

moveBy Moves the component icon by the specified x and y offsets.

moveEngineWindow Moves the component's associated window to the specified location on
the screen.

moveOn Detaches the component from its existing location and re-attaches it to the
specified component.

moveTo Moves the component icon to the specified location on the breadboard.

name Returns the "Component Name".

openEngineWindow Opens the window associated with the component (e.g., the display
window of a probe).

right Returns the horizontal position of the right edge of the component icon.

 747

setDLLName Sets the name of the DLL to associate with the component. The directory is
specifed within the Options Window.

setFixName Sets the "Fix Name" setting.

setFixToSuperengine Sets the "Fix to superengine" setting.

setKeepWindowActive Sets the "Keep window active" setting.

setName Sets the "Component name" setting.

sizeEngineWindow Sets the height and width of the window associated with the component.

subengines Returns a variant array containing the names of all components attached on top
of the component.

top Returns the vertical position of the top edge of the component icon.

activateDLL
Overview Macro Actions

Syntax

componentName. activateDLL(setSwitch, perform)

Parameters Type Description
return void

componentName Name defined on the engine property page.

setSwitch BOOL TRUE to turn the "Use DLL" switch on and FALSE to turn the switch off
(see " Use DLL" within the Engine Inspector).

perform BOOL TRUE to perform the load/unload operation at the time the switch is set. This is
normally set to TRUE.

baseEngineOnDocument
Overview Macro Actions

Syntax

componentName. baseEngineOnDocument()

 748

Parameters Type Description
return string The name of the component within the stack that is stamped directly on the
breadboard.

componentName Name defined on the engine property page.

bottom
Overview Macro Actions

Syntax

componentName. bottom()

Parameters Type Description
return int The vertical position of the bottom edge of the component icon

componentName Name defined on the engine property page.

className
Overview Macro Actions

Syntax

componentName. className()

Parameters Type Description
return string The class name of the object.

componentName Name defined on the engine property page.

closeEngineWindow
Overview Macro Actions

Syntax

componentName. closeEngineWindow()

Parameters Type Description
return void

componentName Name defined on the engine property page.

connectTo
Overview Macro Actions

 749

Syntax

componentName. connectTo(name)

Parameters Type Description
return void

componentName Name defined on the engine property page.

name string The name of the component to connect to.

delete
Overview Macro Actions

Syntax

componentName. delete()

Parameters Type Description
return void

componentName Name defined on the engine property page.

dllActive
Overview Macro Actions

Syntax

componentName. dllActive()

Parameters Type Description
return BOOL TRUE if the associated DLL is being used (see " Use DLL" within the Engine
Inspector).

componentName Name defined on the engine property page.

dllName
Overview Macro Actions

Syntax

componentName. dllName()

Parameters Type Description
return string The name (excluding extension) of the DLL associated with the component.

componentName Name defined on the engine property page.

 750

dllPath
Overview Macro Actions

Syntax

componentName. dllPath()

Parameters Type Description
return string The full path of the DLL associated with the component.

componentName Name defined on the engine property page.

engineAtAccessPoint
Overview Macro Actions

Syntax

componentName. engineAtAccessPoint(access)

Parameters Type Description
return string The name of the component attached to the specified access point.

componentName Name defined on the engine property page.

access string The name of the access point.

fixToSuperengine
Overview Macro Actions

Syntax

componentName. fixToSuperengine()

Parameters Type Description
return BOOL TRUE if the component cannot be moved from the attached component (see "Fix
to Superengine" within the Engine Inspector).

componentName Name defined on the engine property page.

fixName
Overview Macro Actions

Syntax

 751

componentName. fixName()

Parameters Type Description
return BOOL TRUE if the component's cannot be modified automatically by NeuroSolutions
(see "Fix Name" within the Engine Inspector).

componentName Name defined on the engine property page.

isDescendant
Overview Macro Actions

Syntax

componentName. isDescendant(name)

Parameters Type Description
return BOOL TRUE if the specified component is directly or indirectly attached below.

componentName Name defined on the engine property page.

name string The component name.

isKindOf
Overview Macro Actions

Syntax

componentName. isKindOf(class)

Parameters Type Description
return BOOL TRUE if the component is a member of the specified class or is a member of a
sub-class of the specified class.

componentName Name defined on the engine property page.

class string The class name.

isMemberOf
Overview Macro Actions

Syntax

componentName. isMemberOf(class)

Parameters Type Description

 752

return BOOL TRUE if the component is a member of the specified class.

componentName Name defined on the engine property page.

class string The class name.

isMemberOf
Overview Macro Actions

Syntax

componentName. isOfLevel(level)

Parameters Type Description
return BOOL TRUE if the component is a member of the specified level.

componentName Name defined on the engine property page.

level string The component level. Possible values are: "Activity", "Backprop", "Control" and
"Gradient".

isSubengine
Overview Macro Actions

Syntax

componentName. isSubengine(name)

Parameters Type Description
return BOOL TRUE if the specified component is directly or indirectly attached above.

componentName Name defined on the engine property page.

name string The component name.

keepWindowActive
Overview Macro Actions

Syntax

componentName. keepWindowActive()

Parameters Type Description
return BOOL TRUE if the window associated with this component will stay open (see "Keep
window active" within the Engine Inspector).

 753

componentName Name defined on the engine property page.

left
Overview Macro Actions

Syntax

componentName. left()

Parameters Type Description
return int The horizontal position of the left edge of the component icon.

componentName Name defined on the engine property page.

moveBy
Overview Macro Actions

Syntax

componentName. moveBy(x, y)

Parameters Type Description
return void

componentName Name defined on the engine property page.

x int The horizontal offset to move the component icon by.

y int The vertical offset to move the component icon by.

moveEngineWindow
Overview Macro Actions

Syntax

componentName. moveEngineWindow(x, y)

Parameters Type Description
return void

componentName Name defined on the engine property page.

x int The new horizontal location of the left edge of the window associated with the

 754

component.

y int The new vertical location of the top edge of the window associated with the
component.

moveOn
Overview Macro Actions

Syntax

componentName. moveOn(name)

Parameters Type Description
return void

componentName Name defined on the engine property page.

name string The name of the component to attach to.

moveTo
Overview Macro Actions

Syntax

componentName. moveTo(x, y)

Parameters Type Description
return void

componentName Name defined on the engine property page.

x int The new horizontal location of the left edge of the component icon.

y int The new vertical location of the top edge of the component icon.

name
Overview Macro Actions

Syntax

componentName. name()

Parameters Type Description
return string The name of the component (see "Component name" within the Engine Inspector
).

componentName Name defined on the engine property page.

 755

openEngineWindow
Overview Macro Actions

Syntax

componentName. openEngineWindow()

Parameters Type Description
return void

componentName Name defined on the engine property page.

right
Overview Macro Actions

Syntax

componentName. right()

Parameters Type Description
return int The horizontal position of the right edge of the component icon.

componentName Name defined on the engine property page.

setDLLName
Overview Macro Actions

Syntax

componentName. setDLLName(dllName, dllPath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

dllName string The name (without extension) of the DLL associated with the component.

dllPath string The full path of the DLL associated with the component.

setFixName
Overview Macro Actions

Syntax

 756

componentName. setFixName(fixName)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fixName BOOL TRUE if the component's cannot be modified automatically by NeuroSolutions
(see "Fix Name" within the Engine Inspector).

setFixToSuperengine
Overview Macro Actions

Syntax

componentName. setFixToSuperengine(fixToSuperengine)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fixToSuperengine BOOL TRUE if the component cannot be moved from the attached
component (see "Fix to Superengine" within the Engine Inspector).

setKeepWindowActive
Overview Macro Actions

Syntax

componentName. setKeepWindowActive(keepWindowActive)

Parameters Type Description
return void

componentName Name defined on the engine property page.

keepWindowActive BOOL TRUE if the window associated with this component will stay
open (see "Keep window active" within the Engine Inspector).

setName
Overview Macro Actions

Syntax

componentName. setName(name)

Parameters Type Description

 757

return void

componentName Name defined on the engine property page.

name string The name of the component (see "Component name" within the Engine Inspector
).

sizeEngineWindow
Overview Macro Actions

Syntax

componentName. sizeEngineWindow(cx, cy)

Parameters Type Description
return void

componentName Name defined on the engine property page.

cx int The new width of the window associated with the component.

cy int The new height of the window associated with the component.

subengines
Overview Macro Actions

Syntax

componentName. subengines()

Parameters Type Description
return variant An array containing the names of all components attached on top of the
component.

componentName Name defined on the engine property page.

top
Overview Macro Actions

Syntax

componentName. top()

Parameters Type Description
return int The vertical position of the top edge of the component icon.

 758

componentName Name defined on the engine property page.

Dialog Components
DialogEngine Family
DialogEngine Family

DialogEngine family palette.

Ancestor: Engine Family

This family allows you to enhance a breadboard with user interface components. These
components can be used to build presentations, demonstrations, or a high-level interface for the
end users of the network.

Members:

MacroEngine Family

ArrowEngine

ArrowEngine

Family: MacroEngine Family

Superclass: NEngine

Description:

 759

This component acts as a pointing device and is mainly used for demonstration purposes.

User Interaction:

Drag and Drop

Inspector

MacroEngine Family

MacroEngine Family

Ancestor: DialogEngine Family

Each of these components can have a macro associated with them. The component can be
configured to run the macro whenever the user single-clicks on it. The associated macro can also
be triggered using a Transmitter and the "runMacro" action.

Most NeuroSolutions components are selected by single-clicking on them. By default, the
MacroEngine components are configured to either run a macro or switch to edit mode after a
single-click. To select a MacroEngine component when it is in this state, select the region around
the component by pressing the mouse button while pointing at the upper left corner, dragging it
down to the lower right corner, and releasing (see Logic of the Interface).

Members:

TextBoxEngine

ButtonEngine

EditEngine

User Interface:

 Macro Action

 See Also

TextBoxEngine

 760

Family: MacroEngine Family

Superclass: NEditEngine

Description:

This component is used to place descriptive text on the breadboard, often for demonstration
purposes. The border around the text can be modified, as well as the background color.

User Interaction:

Drag and Drop

Inspector

ButtonEngine

Family: MacroEngine Family

Superclass: NEditEngine

Description:

This component is a button that is normally associated with a macro. By default, the macro is run
when the user single-clicks on the button.

User Interaction:

Drag and Drop

Inspector

 761

EditEngine

Family: MacroEngine Family

Superclass: NMacroEngine

Description:

This component is an edit cell that allows the user to enter in a value. The value entered can be
obtained by calling the ‘text()’ macro function of the EditEngine component.

User Interaction:

Drag and Drop

Inspector

Macro Actions

Drag and Drop

MacroEngine Family Drag and Drop

MacroEngines are base components on the breadboard. This means that they must be dropped
directly onto an empty breadboard location.

Inspectors

Text Box Inspector

Superclass Inspector: Edit Inspector

 762

Component Configuration:
Border

Selects the type of border drawn around the text box.
Transparent

Sets the background of the text box to be transparent.
Color

Opens a color selection panel and sets the background of the text box to the selected color.

Edit Inspector

Superclass Inspector: Macro Inspector

 763

Component Configuration:
Height

The height of the edit area.
Width

The width of the edit area.
Left

Sets the text to be left justified within the edit area.
Center

Sets the text to be centered within the edit area.
Right

Sets the text to be right justified within the edit area.
Autosize

Sizes the edit area based to the size of the text. As the text is edited, the window resizes with each
keystroke.
Padding

Sets the amount of spacing between the text and the edit area border.
Bold

Sets the font to be bold.
Italic

Sets the font to be italic.
Underlined

Sets the font to be underlined.
Size

Sets the font size.
Color

Opens a color selection panel and sets the text to the selected color.

Macro Inspector

Superclass Inspector: Engine Inspector

 764

Component Configuration:
Browse

Displays a file selection panel for setting the macro to associate with this object. The associated
macro is run whenever this object is clicked on (provided that the "Run" switch is set – see below).
Edit

Displays the MacroWizard_Debug_Page for the associated macro.
Select

When this switch is set, the component is selected when it is clicked on. To select the component
when this switch is not set, select the region around the component (see Logic of the Interface).
Run

When this switch is set, the associated macro is run when the component is clicked on.
Edit

When this switch is set, the edit mode is activated when the component is clicked on.

Macro Actions

Edit Engine

EditEngine Macro Actions
Overview Superclass Macro Actions

Action Description
autosize Returns the "Edit Area Autosize" setting.

bold Returns the "Font Bold" setting.

 765

borderType Returns the "Border" setting (0=None, 5=Raised, 6=Etched Edge, 9=Bumped
Edge, 10=Sunken).

editModeEnabled Returns the "Edit Mode Enabled" setting.

fontSize Returns the "Font Size" setting.

height Returns the "Edit Area Height" setting.

italic Returns the "Font Italic" setting.

padding Returns the "Edit Area Padding" setting.

position Returns the position setting for the text within the edit area (0=Left, 1=Center, 2=Right).

setAutosize Sets the "Edit Area Autosize" setting.

setBackgroundColor Sets the "Background Color" setting.

setBold Sets the "Font Bold" setting.

setBorderType Sets the "Border" setting (0=None, 5=Raised, 6=Etched Edge, 9=Bumped Edge,
10=Sunken).

setColor Sets the "Font Color" setting.

setEditModeEnabled Sets the "Edit Mode Enabled" setting.

setFontSize Sets the "Font Size" setting.

setHeight Sets the "Edit Area Height" setting.

setItalic Sets the "Font Italic" setting.

setPadding Sets the "Edit Area Padding" setting.

setPosition Sets the position setting for the text within the edit area (0=Left, 1=Center,
2=Right).

setText Sets the text to be placed within the edit box.

setTextFromFile Allows the user to read the text to be placed within the text box from an ASCII
text file.

setTransparent Sets the "Background Transparent" setting.

setUnderlined Sets the "Font Underlined" setting.

setWidth Sets the "Edit Area Width" setting.

sizeToFit Sizes the edit area based on the size of the text.

 766

Text Returns the edit box text.

transparent Returns the "Background Transparent" setting.

underlined Returns the "Font Underlined" setting.

width Returns the "Edit Area Width" setting.

autosize
Overview Macro Actions

Syntax

componentName. autosize()

Parameters Type Description
return BOOL When TRUE, the edit box size automatically adjusts based on the amount of text
(see "Autosize" within the EditEngine Inspector).

componentName Name defined on the engine property page.

bold
Overview Macro Actions

Syntax

componentName. bold()

Parameters Type Description
return BOOL When TRUE, the font type is bold (see "Bold" within the EditEngine Inspector).

componentName Name defined on the engine property page.

borderType
Overview Macro Actions

Syntax

componentName. borderType()

Parameters Type Description
return int The border type of a text box (0=None, 5=Raised, 6=Etched Edge, 9=Bumped
Edge, 10=Sunken -- see "Border" within the TextBoxEngine Inspector).

componentName Name defined on the engine property page.

 767

editModeEnabled
Overview Macro Actions

Syntax

componentName. editModeEnabled()

Parameters Type Description
return BOOL When TRUE, the text of the edit box may be edited (see "Edit Mode Enabled"
within the EditEngine Inspector).

componentName Name defined on the engine property page.

fontSize
Overview Macro Actions

Syntax

componentName. fontSize()

Parameters Type Description
return int The point size of the font (see "Size" within the EditEngine Inspector).

componentName Name defined on the engine property page.

height
Overview Macro Actions

Syntax

componentName. height()

Parameters Type Description
return int The height of the edit area (see "Height" within the EditEngine Inspector).

componentName Name defined on the engine property page.

italic
Overview Macro Actions

Syntax

componentName. italic()

Parameters Type Description

 768

return BOOL When TRUE, the font type is italic (see "Italic" within the EditEngine Inspector).

componentName Name defined on the engine property page.

padding
Overview Macro Actions

Syntax

componentName. padding()

Parameters Type Description
return int The amount of spacing between the text and the edit area border (see "Padding"
within the EditEngine Inspector).

componentName Name defined on the engine property page.

position
Overview Macro Actions

Syntax

componentName. position()

Parameters Type Description
return int The position of the text within the edit area (0=Left, 1=Center, 2=Right -- see
"Left", "Center", and "Right" within the EditEngine Inspector).

componentName Name defined on the engine property page.

setAutosize
Overview Macro Actions

Syntax

componentName. setAutosize(autosize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

autosize BOOL When TRUE, the edit box size automatically adjusts based on the
amount of text (see "Autosize" within the EditEngine Inspector).

setBackgroundColor
Overview Macro Actions

 769

Syntax

componentName. setBackgroundColor(red, green, blue)

Parameters Type Description
return void

componentName Name defined on the engine property page.

red int The amount of red (0 to 255) in the background color of the text box (see "Color"
within the TextBoxEngine Inspector).
green int The amount of green (0 to 255) in the background color of the text box (see
"Color" within the TextBoxEngine Inspector).
blue int The amount of blue (0 to 255) in the background color of the text box (see
"Color" within the TextBoxEngine Inspector).

setBold
Overview Macro Actions

Syntax

componentName. setBold(bold)

Parameters Type Description
return void

componentName Name defined on the engine property page.

bold BOOL When TRUE, the font type is bold (see "Bold" within the EditEngine Inspector).

setBorderType
Overview Macro Actions

Syntax

componentName. setBorderType(borderType)

Parameters Type Description
return void

componentName Name defined on the engine property page.

borderType int The border type of a text box (0=None, 5=Raised, 6=Etched Edge,
9=Bumped Edge, 10=Sunken -- see "Border" within the TextBoxEngine Inspector).

setColor
Overview Macro Actions

 770

Syntax

componentName. setColor(red, green, blue)

Parameters Type Description
return void

componentName Name defined on the engine property page.

red int The amount of red (0 to 255) in the font color of the text (see "Color" within the
EditEngine Inspector).
green int The amount of green (0 to 255) in the font color of the text (see "Color" within the
EditEngine Inspector).
blue int The amount of blue (0 to 255) in the font color of the text (see "Color" within the
EditEngine Inspector).

setEditModeEnabled
Overview Macro Actions

Syntax

componentName. setEditModeEnabled(editModeEnabled)

Parameters Type Description
return void

componentName Name defined on the engine property page.

editModeEnabled BOOL When TRUE, the text of the edit box may be edited (see "Edit
Mode Enabled" within the EditEngine Inspector).

setFontSize
Overview Macro Actions

Syntax

componentName. setFontSize(fontSize)

Parameters Type Description
return void

componentName Name defined on the engine property page.

fontSize int The point size of the font (see "Size" within the EditEngine Inspector).

setHeight
Overview Macro Actions

Syntax

 771

componentName. setHeight(height)

Parameters Type Description
return void

componentName Name defined on the engine property page.

height int The height of the edit area (see "Height" within the EditEngine Inspector).

setItalic
Overview Macro Actions

Syntax

componentName. setItalic(italic)

Parameters Type Description
return void

componentName Name defined on the engine property page.

italic BOOL When TRUE, the font type is italic (see "Italic" within the EditEngine Inspector).

setPadding
Overview Macro Actions

Syntax

componentName. setPadding(padding)

Parameters Type Description
return void

componentName Name defined on the engine property page.

padding int The amount of spacing between the text and the edit area border (see "Padding"
within the EditEngine Inspector).

setPosition
Overview Macro Actions

Syntax

componentName. setPosition(position)

Parameters Type Description
return void

 772

componentName Name defined on the engine property page.

position int The position of the text within the edit area (0=Left, 1=Center, 2=Right -- see
"Left", "Center", and "Right" within the EditEngine Inspector).

setText
Overview Macro Actions

Syntax

componentName. setText(text)

Parameters Type Description
return void

componentName Name defined on the engine property page.

text string The text to be placed within the edit box.

setTextFromFile
Overview Macro Actions

Syntax

componentName. setTextFromFile(path, index)

Parameters Type Description
return void

componentName Name defined on the engine property page.

path string The full path name of the ASCII file that contains the edit box text.
index int The index indicating which string to extract. The strings are delimited by a '#'
immediately followed by the name of the EditEngine component that will use the text. For example,
an index of 3 will find the string following the fourth (because it is zero-based) occurance of #name
where name is the engine name found within the Engine Inspector.

setTransparent
Overview Macro Actions

Syntax

componentName. setTransparent(transparent)

Parameters Type Description
return void

componentName Name defined on the engine property page.

 773

transparent BOOL When TRUE, the background color of the text box is transparent (see
"Transparent" within the TextBoxEngine Inspector).

setUnderlined
Overview Macro Actions

Syntax

componentName. setUnderlined(underlined)

Parameters Type Description
return void

componentName Name defined on the engine property page.

underlined BOOL When TRUE, the font type is underlined (see "Underlined" within the
EditEngine Inspector).

setWidth
Overview Macro Actions

Syntax

componentName. setWidth(width)

Parameters Type Description
return void

componentName Name defined on the engine property page.

width int The width of the edit area (see "Width" within the EditEngine Inspector).

sizeToFit
Overview Macro Actions

Syntax

componentName. sizeToFit()

Parameters Type Description
return void

componentName Name defined on the engine property page.

text
Overview Macro Actions

 774

Syntax

componentName. text()

Parameters Type Description
return string The text to be placed within the text box.

componentName Name defined on the engine property page.

transparent
Overview Macro Actions

Syntax

componentName. transparent()

Parameters Type Description
return BOOL When TRUE, the background color of the text box is transparent (see
"Transparent" within the TextBoxEngine Inspector).

componentName Name defined on the engine property page.

underlined
Overview Macro Actions

Syntax

componentName. underlined()

Parameters Type Description
return BOOL When TRUE, the font type is underlined (see "Underlined" within the EditEngine
Inspector).

componentName Name defined on the engine property page.

width
Overview Macro Actions

Syntax

componentName. width()

Parameters Type Description
return int The width of the edit area (see "Width" within the EditEngine Inspector).

componentName Name defined on the engine property page.

 775

Macro Engine

MacroEngine Macro Actions
Overview Superclass Macro Actions

Action Description
macroAction Returns the "On single-click" setting (0="Select", 1="Run", 2="Edit").

macroPath Returns the full file path of the macro associated with the dialog component.

runMacro Runs the macro specified by macroPath.

setMacroAction Sets the "On single-click" setting (0="Select", 1="Run", 2="Edit").

setMacroPath Sets the full file path of the macro associated with the dialog component.

macroAction
Overview Macro Actions

Syntax

componentName. macroAction()

Parameters Type Description
return int The action to be taken when the dialog component is clicked on (0="Select",
1="Run", 2="Edit" -- see "On single-click" within the MacroEngine Inspector).

componentName Name defined on the engine property page.

macroPath
Overview Macro Actions

Syntax

componentName. macroPath()

Parameters Type Description
return string The full file path of the macro associated with the dialog component (see "Macro
Path" within the MacroEngine Inspector).

componentName Name defined on the engine property page.

runMacro
Overview Macro Actions

Syntax

 776

componentName. runMacro()

Parameters Type Description
return void

componentName Name defined on the engine property page.

setMacroAction
Overview Macro Actions

Syntax

componentName. setMacroAction(macroAction)

Parameters Type Description
return void

componentName Name defined on the engine property page.

macroAction int The action to be taken when the dialog component is clicked on
(0="Select", 1="Run", 2="Edit" -- see "On single-click" within the MacroEngine Inspector).

setMacroPath
Overview Macro Actions

Syntax

componentName. setMacroPath(macroPath)

Parameters Type Description
return void

componentName Name defined on the engine property page.

macroPath string The full file path of the macro associated with the dialog component
(see "Macro Path" within the MacroEngine Inspector).

Drag and Drop

ArrowEngine Drag and Drop

ArrowEngines are unique in that they can stamp on top of an existing component, or they can be
dropped directly onto an empty breadboard location.

 777

The Theory
The Theory

NeuroSolutions

NeuroDimension, Incorporated.

Gainesville, Florida

Purpose

The purpose of this chapter is to present the theoretical contributions of NeuroSolutions for the
simulation of artificial neural networks. We will discuss how the global network dynamics and the
learning dynamics are broken down into local rules of interaction. We also show the equations
implemented at the processing level for activation and error backpropagation, and how they are
encapsulated in objects. Finally, we show how the objects communicate with each other in planes
of activation and how orchestration of the data flow implements the learning paradigms.

Contributions to the Theory of Neural Networks

NeuroSolutions was designed based on the principle of local rules of interactions among simple
neural components. This is one of the principles generally accepted in biological neural networks,
but very seldom do artificial simulations effectively explore the idea. Moreover, it was necessary to
formulate the equation based neural network theory into this new formalism.

Another contribution to the theory of neural computation is the division of neural networks into
functional blocks. NeuroSolutions builds neural networks from families of components, and
implements simulations using planes of activations and a data flow concept. The families of
components naturally translate the parameters needed to configure neural networks and learning
paradigms. This is a crucial aspect in the integration of the user interface with the simulation code.
The planes of activation implement, for ultimate efficiency, both the neural network dynamics and
the learning dynamics.

Due to its object-oriented nature, NeuroSolutions specifies what components do and how
components interact with each other, rather than specifying rigid implementation of functions as in
conventional programming. Therefore a simulation environment of unparalleled versatility and
power has been achieved. This part of the manual presents, in sufficient detail, the contributions.

Introduction to the Theory Chapter

 778

The simulation of artificial neural networks (ANNs) is an increasingly important research area. This
is due to the demanding computer bandwidth of ANN implementations coupled with the need to
experimentally test topologies and parameters. This compensates, in part, a lack of thorough
theoretical characterization of ANNs. The need to address real world applications implies a
requirement for simulating very large networks. The simulation environments must not only be fast
and efficient, but also user friendly and upgradeable, enabling thorough experimental validation.
With the computational bandwidth requirements, brute force implementation can give unrealistic
computation times, even using supercomputers. Careful planning and fine-tuning of the code has
been a necessity for ANN implementations in digital computers.

At first we looked at the problem from a mere engineering perspective, i.e. to find what
computational models were most natural for an efficient implementation of ANN topologies. Our
conclusion is that an object-oriented programming paradigm conforms to topologies made up of
aggregates of similar elements instantiated as many times as necessary. Along the way we found
out that object-oriented concepts provide an alternate and equivalent description of ANN paradigms
much more appropriate for simulating ANN topologies.

An ANN model is described by a set of dynamic equations. Being adaptive systems, ANNs require
a second set of dynamic equations for learning. Although these equations translate the potential
and concepts of the theoretical model very well, they suffer from a key shortcoming. ANNs are
implemented in digital computers or other hardware through topologies. A given ANN model may
produce several topologies. For each topology the equation-based description applies, but at the
expense of brute force calculations and exaggerated storage requirements.

Consider the multilayer perceptron (MLP) [Lippman, 1987] and Hopfield network [Hopfield, 1982].
As topologies, they differ substantially (one is feedforward while the other is recurrent), but they are
two implementations for the additive model (in the sense of Grossberg [Grossberg, 1983]).
Therefore, if a useful implementation for the additive model is developed in a digital computer, it
can implement an MLP and a Hopfield network indiscriminately (or any other recurrent topology).
The implementations, however, will be very inefficient since, in the MLP, the feedback connections
are set at zero, while the connections in recurrent networks are normally sparse. The same
argument applies to learning dynamics, i.e. gradient descent learning for these two networks.
Furthermore, when implementing the learning rules one ends up with two distinctly different
learning procedures, since the MLP is static and the Hopfield network is recurrent.

This example may be generalized to show that learning equations are specific to topologies and
becomes obvious when the transpose network is used to propagate errors and compute gradients
(one of the leading contributions from neural network theory to gradient descent learning). It may
seem that for the sake of efficiency we are restricted to customized simulation environments, with
code specifically written for each network topology and learning paradigm. But we think otherwise,
and NeuroSolutions is a "living proof" of such beliefs.

The major goal of this document is to present a simulation environment for neural networks which
consists of a mixture of feedforward and recurrent sub-networks, trained with static
backpropagation, fixed point learning, or backpropagation through time (BPTT). In our opinion, the
equation based modeling, so widespread in ANNs, has an alternate and equivalent formulation,
which we call object-oriented modeling, and which is far more natural for computer, based
simulations of ANNs. Object-oriented modeling is achieved by the execution of an ordered
sequence of formal procedures. At present, we utilize digital computers as the engines for object-
oriented modeling. This equivalence is predicated on the well known but often overlooked fact that
ANN interactions are BOTH local to space (finite elemental topologies) and to time neighborhoods
(finite data operators), which we refer to as being local in time and in space. The equation-based
modeling does not explore this natural fact, but object-oriented modeling does. Neural network
behavior can be easily encoded into local dynamic rules of interaction. These elementary rules are
simply replicated across the network. In this sense the ANN with its learning rules operates as a
cellular automaton or a lattice in time and space.

A lattice in mathematics is a partially ordered set (with some constraints [Birkhoff, 1948]). Here we
will be using the term to represent an ensemble of ordered computations that can be mapped to
sites in a graph. Some of these sites may also require ordered computations in time (such as linear
filtering operations), so the overall simulation structure is a coupled lattice.

 779

Equation-based Modeling

Every neural network researcher has been faced with the problem of translating equations that
describe ANN dynamics to computer programs that implement the network topology. The synthetic
power and formalism embedded in a mathematical expression is hard to beat, and has been
extensively used for characterizing the global dynamics of neural models. Until the advent of
computers, mathematics was the most utilized formal descriptive system. We should remember,
however, that computer languages are also formal systems and possess the same properties.

A computer algorithm describes a relationship as precisely as a mathematical formula. The
problem is one of choosing the representation that best suits our needs. We do not dispute that at
the modeling level, equations are the best way to translate global dynamic properties of the
interactions. But does this extrapolate to implementations, i.e. to neural network simulations? Let
us examine this point in more detail using the additive model as an example [Amari, 1972,
Grossberg, 1973]. In modeling, dynamics are described by coupled sets of first order nonlinear
differential equations of the form,

where is the systems state vector, is a dynamic map, is an external input,

 represents internal system parameters and is a desired trajectory for the
system’s state. A neural model is adopted by selecting a distributed set of dynamic mapping

functions for the system’s state vector. For the additive model, we have,

where is the time constant of the ith processing element and is its input-output
transfer function.

In a block diagram this can be illustrated as the block additive model in the figure below (all
quantities are vectors). Although this model is very general, notice that the activation at node i only
depends explicitly on the present input. This feature is undesirable for a large class of problems
such as the classification of time varying signals (speech, control, and prediction). One way of
modifying the additive model is to substitute the multiplications by convolutions in time

 780

This model has been called the convolution model [deVries and Principe, 1992], and allows the
ANN activations to depend explicitly upon the past of the input signal and/or model states. The
convolution is a linear operation, so conceptually one can picture the neural activations being
stored into a general linear filter, which unfortunately has a growing number of coefficients.

Gamma neural model as a prewired additive model

The convolution model can be approximated by fixed order structures [deVries and Principe, 1992].
They showed that the gamma neural model,

for sufficiently large K can approximate the convolution model as close as necessary. These
equations can be easily extended to discrete time [deVries and Principe, 1992]. Special cases of
this recursive memory structure are the tapped delay line for µ =1 (utilized in the time domain
neural network- TDNN, [Lang et al, 1990]), and context unit for K=1 [Jordan, 1986].

A neural network is an implementation of a neural model. Normally a topology is assigned by
choosing specific forms of the weight matrix (i.e. fully populated weight matrices give rise to
recurrent nets, and when all the weights with i?j are zero, feedforward nets).

The learning dynamics in the N-dimensional dynamic system of the equation above also involves
translating equations to network topologies, although some papers have been written with the word

 781

"general" in the title [Thrun and Smieja, 1991]. When present, the vector is used to represent
the target values for the desired output. In this framework, learning consists of adjusting the weight
values such that the desired output is obtained. Notice that this output can be a function of time, or
a constant value.

When the goal is to match a desired response, a metric must be established in the error, i.e. the
difference between the desired and actual output. This problem has been extensively studied in
adaptive signal processing [Haykin, 1991] and optimal control [Bryson and Ho, 1975]. The standard
metric chosen is the L2 norm (mean square error), and the method normally used to minimize this
error is gradient descent. In gradient descent learning, network coefficients are updated according
to the formula,

where E is an error functional, and η is the learning rate.

In order to proceed we must know more about the problem under different learning methods (static
backpropagation [Rumelhart et al, 1986], fixed point learning [Pineda, Almeida, 1987],
backpropagation through time [Werbos, 1990], and real time recurrent learning [William and Zipser,
1989). For one thing, the error is a function of the network output, which is coupled directly to the
network topology. The desired signal can be a constant (fixed point) or time varying (a trajectory).
This implies two possibilities: either the network is feedforward and the desired signal and network
inputs are static, in which case the gradient computations are independent of time; or the network
is recurrent and/or the desired signal is time dependent in which case the gradient computation
becomes time dependent. Normally in the ANN literature, these cases are divided into the learning
methods mentioned above. A detailed discussion of the methods is outside the scope of this work.
What we want to stress is the following facts: First, the network topology affects the equations that
compute the gradients. Second, in all these methods, the gradient can be computed with local
information, both spatially and temporally.

Let us summarize what we have reviewed. In the figure below (left half) we show diagrammatically
how the analysis progressed, from the model to the topology (network), to the learning system. The
network is a special implementation of the model. Since learning uses the network it will also
become a special case for each topology. For this reason we believe that if a new topology
encapsulates a unique feature of the neural model, it will always require a special set of equations
to describe it.

 782

Equation vs. object-oriented based methodology

Also in the figure above (right half) we present an alternate route that we call object-oriented
modeling. Due to the fact that interactions are local, let us first capture the simplest dynamic
interactions at the processing element level, which we called the elemental neural dynamics. From
the elemental neural dynamics we can glue together elemental topologies, or full-blown neural
networks. The elemental dynamics will define local rules of interaction relating the processing of
neural activity. Additional rules of interaction will have to be defined which allow these elemental
topologies to exist in a data flow machine.

These rules of interaction will be solving the equations that we have seen for ANN models, but in
object-oriented modeling we do not need to write them explicitly. This is the main difference
between the two approaches. Our point is that once the quantitative and theoretical aspects of
neural modeling are understood, we do not need to go back to the equations every time we
implement an ANN simulation. We can construct topologies and, for efficiency, fully utilize the local
structure of the networks. The number of elementary dynamics required by this method to simulate
all topologies for a neural model turned out to be small, and different neural models will decompose
into the same elementary dynamics [Lefebvre and Principe, 1993]. A final comment relates to the
coding of this scheme in a computer language. Notice that we propose building networks by placing
together similar elements. This is the software equivalent of building electronic circuits. Therefore,
an object oriented paradigm where a hierarchy of classes recursively encapsulate standard rules of
interaction makes perfect sense. Network topologies will be constructed by simply interconnecting
a small number of instantiated classes. The user can simply arrange neural elements on
breadboards.

Object-oriented Modeling of Neural Networks
Object-oriented Modeling of Neural Networks

The first step in object-oriented modeling of ANNs is to characterize an abstract set of elements
which constitute arbitrary neural functions and which standardize rules for local interaction.
Therefore we must analyze what is the most general element that one may wish to construct. The
fundamental element in artificial neural networks is the processing element (PE) based on the

 783

abstraction of the biological neuron proposed by McCulloch and Pitts. The PE used in neural
networks has two primary responsibilities: it receives a sum of weighted input activations, and then
passes the accumulated activity through a nonlinear instantaneous mapping to produce its output.
A neural network can be viewed as a coupled lattice of PEs, i.e. an ordered set of computations.

We define the Axon class which receives the activity from other network elements, implements a
nonlinear mapping to its own activity (usually a sigmoid) and holds the resulting activation for other
elements to acquire. Since artificial neural networks are so highly interconnected, we will consider
for efficiency each Axon to consist of a vector of functionally identical PEs. In other words, there will
be a vector of activity associated with each Axon, and our rules of local interaction are
mathematically expressed in vector notation (all capitals refer to vectors). The standard local
interaction defined by the Axon class can be represented as,

where is the input , is a set of weights for the Axon’s activity (i.e. biases) and

 is an arbitrary mapping (usually nonlinear).

A second class of elements called Synapse will take the activity presented by an Axon, apply
another mapping (usually the linear weighted sum) and present the result to another Axon. A
Synapse is the element that performs linking between lattice sites, and will be represented by a
labeled arrow on diagrams. For now we will assume the linear mapping required in additive models
when representing the standard interaction defined by the Synapse class,

where and are the respective Axon activity vectors, is a set of

weights for the Synapse class (normally the network weights) and is an arbitrary
mapping (usually linear).

All neural elements implemented in NeuroSolutions will belong to either the Axon or Synapse class.
For practical reasons we will define the Soma class as representing all neural elements and the
ordering of the computations. Thus Axon and Synapse are both subclasses of Soma. We have
seen that Axon and Synapse implement the basic McCulloch and Pitts neuron defining rules for
computing and passing local activity. As an illustration, the Static ANNs section addresses the
construction of a static network, the multilayer perceptron, with our basic elements.

Details Behind Object-Oriented Modeling of Neural Networks:

Static ANNs

Dynamic ANNs

Learning Dynamics

 784

Error Criterion

Gradient Search Methodology

Implications for ANN Simulations

Ideal Simulation Environments

Static ANNs

A MLP is a layered feedforward network belonging to the additive model (see additive model
equation). The equation in discrete time that defines this topology can be re-written for each PE,
yielding

where there are PEs in layer l. If we examine this equation we see two elementary mappings. A
linear map between adjacent layers (represented by the weight matrix W), and a nonlinear map
(represented by the nonlinearity σ ()) between activity received and activity stored at a single layer.
Notice that the form of these maps exactly fit those defined by Axon and Synapse. Implementing
the maps for Axon and Synapse as,

where = and is a fully populated matrix of weights, provides all of the
elementary dynamics required to construct any MLP. The figure below illustrates the lattice
arrangement for a one hidden layer MLP. Note that in this figure we are representing vector
quantities.

 785

MLP on a spatial lattice

Our goal was to implement an MLP, however the elementary dynamics given by the equation
above are all that is needed to simulate all topologies within the additive neural model. Learning will
be discussed for the more general case of dynamic networks.

Dynamic ANNs

The object-oriented modeling class structure that we have just presented must be enhanced to
accommodate interactions that exist in time. Recall that static ANNs must be extended with short
term memory mechanisms for many applications.

This constitutes the most general additive model, substituting multiplications with a convolution
operation. In order to implement memory elements we will give Soma the responsibility for storing
an Axon’s activity over time. In other words, Soma will add a third dimension to the spatial lattice
figure. The third dimension arises from temporally coupling spatial planes. The ordering of the
computations can be geometrically viewed in a lattice of PEs according to the following rules. The
lattice will exist in three dimensions with two spatial axes (x and y) lying within the plane of the
paper, and one temporal axis going into the page. The present time is at the top of the stack of

planes, and each following plane is delayed by one sample (we will use to denote a delay of
one sample). This is the reason we prefer to view our neural network as a coupled lattice (in time
and in space).

The standard local interaction defined by the Axon class will remain the same with an added
restriction that its nonlinear mapping be instantaneous. This can be represented for each
processing element as the mapping

where the index i runs over the number of processing elements of the Axon (see figure below). The
Soma class may have temporally coupled the Axon to other PEs in the lattice, but the Axon itself
will have no access to them.

 786

The mapping for the PE of the Axon class

The Synapse class will now take the activity presented by one of the coupled PEs for an Axon,
apply its linear mapping and present the result to an Axon in the present temporal plane, i.e. the
front face of the lattice. This interaction can be represented as,

where d is a delay that represents which temporal plane the Synapse attaches to (see figure
below). For each processing element of the Synapse we will have the mapping

The mapping for the PE of the Synapse Class

Recall that Axon and Synapse are both subclasses of Soma. Since Soma performed temporal
coupling of the Axon, it can provide Synapse with access to coupled sites. It is important to realize
that the temporal coupling performed by Soma is inherent to all network elements and it is hidden
from each one of them. Axon and Synapse have no explicit understanding of time. Axon performs a
mapping from a node on the lattice to that same node, while Synapse performs its mapping from a
node on the lattice to another node on the lattice. As far as Axon and Synapse are concerned,
these mappings are between static nodes.

 787

As an illustration, lets implement the focused gamma neural network using this coupled lattice. A
focused gamma network is a topology that has a gamma memory structure in the input layer
(storing traces of the input signal) followed by an MLP [Principe et al, 1992]. If we examine the
gamma neural model equation, we see that the gamma neural model is simply an additive model
with gamma memory structures inserted for arbitrary states. Let us take a closer look at a discrete
version of the gamma memory structure,

Within this equation we see two delayed synaptic maps, one between adjacent memory states (
is a function of activation at the previous time) and one recurrently feeding each memory
state onto itself (is a function of at the previous time). However both of these maps follow
the same elementary form given by,

where is a vector of coefficients. In other words, this Synapse will apply a bijective (one-to-
one and onto) linear map between Axon sites in the lattice. We can immediately construct the

lattice for a focused gamma network as in the figure below. In this figure, (t) is the input, (t)

represents the hidden layer and (t) is the network output.

Notice that the recursive nature of the gamma memory could in principle require an extension of
the instantaneous mapping properties of the Axon class. In the proposed distribution of dynamics
the Axon has no knowledge of temporal information, the Soma is responsible for handling time.

 788

Focused gamma network on coupled lattice

This simple trick allows each elementary map to be applied over spatial and/or temporal
displacements without modification; i.e. all elements are implemented as if they were instantaneous
mappers. An Axon will fire when all contributions from the present and delayed inputs are received.
This implies that all sites in the delayed spatial planes will fire immediately at each increment in
time.

We just presented two examples of topologies belonging to the additive model. In so doing we have
defined ALL the operators that are needed to build ANY topology conforming to the additive model
dynamics. This can be demonstrated in general for most neural models and mathematically proven
using the formalism of graph theory [Lefebvre, 1992], but probably a more insightful discussion
would be to relate this to other areas where similar procedures are used.

For instance in electronics, with capacitors, resistors, inductors and amplifiers, one can build any
linear filter by topologically arranging the elements. The same has been accomplished through
object-oriented modeling for artificial neural networks. We now have a library of elements that can
construct any ANN topology belonging to the additive model. Our examples have not explicitly
addressed globally recurrent networks, so as a final example lets consider the most general (linear
for simplicity) feedback model. The multivariate state variable model is probably the most widely
used description for recurrent systems,

where is the system’s state vector, is its input and is the output.
Notice that because of linearity, the only mapping used by this model is that of our fully connected

Synapse. If we create as instances of the fully connected
Synapse class, then the figure below will implement this state variable description. The state
variable description given above can be considered a specific topology belonging to the additive
model, where (this is the reason the Axon is not utilized).

We have accomplished an alternate description of ANNs as aggregates of McCulloch and Pitts
processing elements living in an ordered space of computations (the coupled lattice). This
description is equivalent to the equation-based description and is much more appropriate for
computer implementations. Notice that we can mix static and recurrent elements in a network
without the hassle of simulating global dynamic equations.

 789

State variable implementation on a coupled lattice

As we are about to see, when learning dynamics are addressed with the same object-oriented
framework we can derive learning rules directly from the elementary neural dynamics. We can
therefore mix static and recurrent components in a network and simulate without ever deriving
network learning equations. However it should be noted that object-oriented based modeling will
not provide information about global issues such as stability, descriptive power, etc., thus equation
based models cannot be ignored.

Learning Dynamics

Learning dynamics are easily understood if one recalls the contribution of neural network research
to gradient descent methods, namely the use of a transpose system to backpropagate errors. The
transpose (or dual) network is simply a network where the input and output are interchanged,
nodes are substituted by summing junctions and summing junctions by nodes. For the Axon class
the corresponding transpose will be called the BackAxon and its mapping is shown in the figure
below.

BackAxon map

 790

For the Synapse class the transpose element is called the BackSynapse and its mapping is shown
in the figure below. You should compare these figures to the ones for the Axon mapping and the
Synapse mapping to see the transpose relationship.

BackSynapse map

The error is fed into the transpose system, and the propagating activities correspond to the error
gradient with respect to activities of the forward network which will be denoted by,

Proof that activities in the transpose system correspond to follow directly from application of
the chain rule for ordered partial derivatives backwards through all nodes of the forward system
[Werbos, 1990] or from system theoretic concepts [Almeida, 1987]. The chain rule is given by,

where i indexes space and t indexes time. Notice that the gradient at node i can be computed by
adding a direct contribution from the gradient at each internal node with the sum of indirect
contributions flowing to that node. Therefore, one can always compute the gradient at each node in
the lattice by information available in the neighboring nodes.

Gradient descent learning will require two tasks for each of our elementary dynamics: each must
add their effect to the error gradient being propagated, which we call its sensitivity function (this can
be described by the transpose system), and each must use that gradient to determine the effect its
internal coefficient had on the error, which we call the gradient function (this is what is used for
weight update). Therefore deriving learning rules for the elementary dynamic maps requires two
applications of the chain rule, one from the map’s output to its input (sensitivity function) and one
from its output to its coefficients (gradient function). For the BackAxon we get,

 791

for its sensitivity function and

for the gradient function. While the fully connected Synapse gives us,

for the sensitivity function and

for the gradient function.

These local learning equations provide everything that is needed to train any topology for the
gamma neural model, which is equivalent in descriptive power to the convolution additive model.
These are the elementary dynamics required; they can now be recursively combined, forming a
hierarchy of increasingly specialized elemental topologies. Since all the methods of gradient
descent learning (except RTRL) can utilize the transpose network they can be implemented with
the elements created. The case of RTRL is slightly different since it computes the gradient using a
"brute force" approach, i.e. a direct computation of each partial derivative. This corresponds to
modeling dynamics associated with sensitivity equations. But these dynamics are also created from
an application of the chain rule for ordered partial derivatives and thus can also be described
through similar object-oriented modeling.

 792

There are several important benefits to this approach that we have tried to illustrate through these
examples. First, learning was derived directly from the elementary maps (of the Axon and Synapse
classes). Therefore, once you have arranged elements on the lattice, the learning dynamics can be
implemented by simply reversing the direction of data flow and replacing each elementary dynamic
with its learning equivalent.

Backpropagation network on coupled lattice

The figure above illustrates the transpose network for the focused gamma network figure. Notice
that time runs backwards in this network. This process of constructing the learning network can be
automated by the simulation environment, thus the user simply constructs the feedforward network
without ever having to address learning.

When modeling is based on equations, one generally wants to characterize the dynamics for a
broad class of systems. But, when implementing the individual systems, these models are
constrained by assigning a specific topology. In object-oriented modeling one always assigns only
those elemental maps which are required, thus the implementations are always efficient.

Error Criterion

Another aspect that should be emphasized in the proposed object-oriented modeling is that as long
as gradient descent is used, only the output errors injected into the network depend upon the error
criterion. The output error depends intrinsically on the cost function used, but the criterion does not
say how errors are propagated inside the net. Our method therefore uncouples error propagation
inside the net from the error criterion. This is very important because the network elements used for
learning do not change with a change in criterion (e.g. mean square error to Kulback Liebler, Lp
norms, etc.). The elements only know how to map input signals to output signals, independent of
the methods used to create these signals. This is due to the separation of functions achieved
through local rules of interaction.

Conceptually, variants of this implementation can lead to other types of learning such as
reinforcement learning [Sutton] and the local rules of interaction fit naturally unsupervised learning
methods.

 793

Gradient Search Methodology

Another aspect crucial to neural network learning is the choice of gradient search methodology.
The theory of gradient descent learning (a method of unconstrained optimization) is full of
strategies to search a performance surface. Basically, they all revolve around the idea of how to
use the gradient information to compute the weight update. Backpropagation directly utilizes the
product of the error and the input activation at the processing element to compute the weight
update. But in neural networks, several methods have been proposed to speed up backpropagation
and undoubtedly many more will be devised in the future.

NeuroSolutions encapsulates gradient search methodology in a plane - the gradient search plane -
which also corresponds to a family of components. Presently, we have only implemented the most
common search methods, such as simple gradient, momentum learning, and Fahlman’s quickprop
[Fahlman]. But other first order methods such as conjugate gradient and pseudo second order
methods such the diagonal approximations to the Hebbian [LeCun] can be easily implemented.

Implications for ANN Simulations

Effectively, the ANN and learning dynamics exist in two parallel, disjoint planes, the forward plane
and the backpropagation plane. They use the same elements, and their topology is related by the
adjoining theorem. The user specifies only the forward topology, because this topology
unequivocally defines the backpropagation plane (the adjoining network).

Moreover, the two planes are uncoupled throughout the network. They only become coupled
externally at the output by the error criterion. The error criterion injects into the backpropagation
plane the composite error determined by the instantaneous error (difference between the desired
signal and the network output). The error criterion therefore has the role of supervisor between the
two planes.

In order to adapt the weights, a method of computing the weight update is needed. We saw that
this is the role of the gradient search components.

These facts lead to a very appealing representation of elements in our simulation model. Each
learning neural network can be thought of as a juxtaposition of three independent planes, the
activation (forward) plane, the learning (backward) plane, and the gradient search plane with the
first two coupled through the error criterion (see figure below).

We believe that this natural division of functionality derived from an in-depth analysis of neural
network theory, provides unparalleled power for neural network simulations. It makes neural
network construction conceptually easy and basically does not impose unnecessary constraints.

 794

Organization of learning by functional planes

It also makes simulations very efficient, since after the network is trained, the backprop plane can
be taken out of the network, speeding up testing, without needing to construct another network with
the trained weights. Moreover, we do not specify what the neural networks are that the user can
construct as most of the other packages do.

We give the user the RULES and ELEMENTS to construct neural networks. Most programming
styles have to define by extension what the program can do. This is reasonable for packages with a
specific goal, but limits the power of applications such as simulation environments, where the user
must have the freedom to experiment unseen combinations of components and methods.

Our approach, of breaking down the global network dynamics into local rules of interaction, was the
crucial step for the flexibility and power of NeuroSolutions. We further utilized an object-oriented
methodology to define the rules of interaction and to construct families of components. This is the
equivalent of a definition by comprehension, which leads to a much more efficient and powerful
simulation environment.
How general is this structure?

The amazing thing regarding the breaking down of global dynamics into local rules of interaction is
that it uncovered several important principles for neural network simulations. We refer here to the
generality achieved in learning.

The conventional approach in equation based modeling is the derivation of new learning rules for
each neural network. For instance, the simple incorporation of a recurrent processing element into
the hidden layer of a feedforward topology implies the derivation of new learning equations. While
static backpropagation was applicable without the recurrent processing element, when the
recurrent element is incorporated in the hidden layer, the learning of the weights in the first layer is
no longer static, so new learning equations (based on RTRL or BPTT) must be derived. This is not
only a time consuming process, but leads to inefficient implementations.

What we verified in our object-oriented modeling approach is that the local rules of interaction are
ALWAYS the same whether static or recurrent networks are used. This also applies to the learning
rules. Static backpropagation, recurrent backpropagation (also called fixed-point learning), or
backpropagation through time are implemented with the same local rules of interaction. What
differs is the data flow control in each case. After some thinking, this is obvious, since all of these
learning paradigms are based on the delta rule, i.e. the gradient is computed by multiplying locally
at the PE level the activation at the PE and the error that is propagated back (affected by the
derivative of the nonlinearity at the operating point).

 795

In static backpropagation, only the present time activation and error are used, so learning
progresses by alternating toward propagation of the activations and backward propagating of the
instantaneous errors.

In recurrent backpropagation, activations are fed forward UNTIL a fixed value is achieved. Only
then is the error computed and propagated backwards. Again, the error activations must be stable
before the delta rule is applied, so relaxation of the error is also needed. But once these two
conditions are met, the delta rule is used at the PE level to adapt the weights.

In backpropagation through time, the goal is to compute the gradient over the trajectory. Since the
gradient decomposes over time, this can be achieved by computing instantaneous gradients at
each component and summing the effect over time. So during BPTT the activation is sent through
the net and each PE stores its activation locally for the entire length of the trajectory. At each step
the network output is also computed and stored. At the end of the trajectory the errors are
generated at the output and a vector of errors is input to the transpose networks. The local error
activation is then multiplied to the corresponding activation obtained in the feedforward flow, and
the delta rule applied at the component level. The net weight update is composed of instantaneous
weight updates.

Therefore, in NeuroSolutions these three procedures became one in terms of local rules of
interaction (the delta rule). This does not depend on whether the network is static or recurrent.
What differs is the firing of activation and errors through the network, a global data control issue.

Another remarkable feature of the local rules of interaction is that supervised and unsupervised
learning rules can be INTERMIXED anywhere in the network. These mixed learning rules have only
now attracted the attention of neural researchers.

Ideal Simulation Environments

Let us now consider an ideal neural network simulation environment. If we had such an
environment, it would have to be flexible. We would want to be able to construct any network
topology (static or recurrent), and then train with any learning rule. We want a single network to be
able to simultaneously learn under more than one learning rule. Finally, when determining an error,
for learning rules that belong to a supervised learning paradigm, we want to be able to assign
arbitrary and user-defined criteria.

This ideal simulation environment should also be efficient. It should minimize its storage
requirements and maximize code efficiency based upon the network topology we present it.
Furthermore, it should allow us to interface with faster hardware platforms.

User friendliness is also very important. Even though some users may want to develop their own
network elements by writing source code, others will want to use elements that were provided with
the environment, or elements that more ambitious users give them, by simply grabbing their icon off
some component palette. Analogous to prototyping electronic circuits, we want to construct network
topologies by placing neural components on a breadboard and establishing connections.

We should then be allowed to inspect and alter each element on a breadboard, as well as place
runtime probes to graphically monitor any activations or adapting coefficients within the network. In
particular, in experimental research areas such as neural networks where the theory is being
developed, the user should have extended probing facilities to understand and control the quality of
the simulations.

Finally, this environment should inherently demand constructive development. User defined
network components should utilize all source code previously developed for similar elements. After
a breadboard has been developed, we would like to be able to collapse it and use it as a
component in another network on a separate breadboard. This process could continue indefinitely,
providing an inherently modular simulation environment.

Although this ideal environment may seem unrealistic, we have created it in NeuroSolutions.

 796

Code Generation
Code Generation

NeuroSolutions

NeuroDimension, Incorporated.

Gainesville, Florida

Purpose

This chapter describes the Code Generation facility available within the Professional and
Developers versions of NeuroSolutions. This feature enables the user to compile and run a neural
network on another platform. In addition, the generated code can be integrated into custom C/C++
user applications.

Introduction to Code Generation

The Code Generation facility of NeuroSolutions produces ANSI-compatible C++ source code for
any breadboard, including learning. This allows a simulation prototyped within the GUI of Windows
to be run on other hardware platforms. In addition, NeuroSolutions' networks can be easily
integrated into user applications.

It is important to note that the generated code is not completely self-contained. For any given
platform that you are compiling under, you must have the corresponding libraries that the source
code is compiled against. The libraries for Visual C++ are included with the Professional and
Developer levels, while the libraries for other platforms must be compiled by the user after
purchasing the Source Code License.

System Requirements for Code Generation

NeuroSolutions was developed using Microsoft’s Visual C++. The interface for the code generation
has been tightly integrated with this development environment. This allows you to compile, run, and
debug your C++ application right from NeuroSolutions. Please contact NeuroDimension for a list of
other C++ compilers that are supported.

The generated C++ code is portable to other platforms and other compilers (provided that you are
licensed for the NeuroSolutions Source Code License). This version of NeuroSolutions is not able

 797

to communicate with those compilers, so you will be required to integrate the generated source
code into the development environment manually.

Code Generation User Interface

The interface to the Code Generation facility is contained within the Code Generation property

page of the StaticControl or DynamicControl inspector. This page allows you to
Compile, Run, and Debug the C++ project right from NeuroSolutions.

Behind the Scenes of C++ Code Generation

Within the NeuroSolutions directory is a sub-directory named "CodeGen". It contains the
configuration files for each of the supported compilers. For each compiler there are several
configuration files. Here is a summary of these files for Visual C++ 6.0:

Msvc60.cmp Commands issued to the Windows 95 operating system when the "Compile" button is
pressed.

Msvc60.cmp.NT Commands issued to the Windows NT operating system when the "Compile" button is
pressed.

Msvc60.dbg Makefile used when the "Debug" button is pressed.

Msvc60.h The header file for the NeuroSolutions class library that the generated code links against.

Msvc60.lib The NeuroSolutions class library that the generated code links against.

Msvc60.mak The makefile used when the "Compile" button is pressed.

Msvc60.nsl Contains the configuration information for the Visual C++ compiler. This is the file that is
selected when choosing the "Target" from the Code Generation property page.

Msvc60.run Commands issued to the operating system when the "Run" button is pressed.

Whenever a new project is created the library ("NS.lib"), header file ("NSLib.h") and makefile
("BreadboardName.mak") are copied to the project directory. The makefile is modified slightly to
include the appropriate files and directories for the project.

Network Input/Output for Generated Code

Since the Input and Probe components are dependent on the Windows environment, special
consideration must be given to the network input/output when generating portable source code.
Inputs

 798

When the code for a breadboard is generated, NeuroSolutions stores a binary file for each Input
component on the breadboard by default. These binary files contain the data that is feed into the
network on the breadboard. The generated source code includes statements to read from these
files.

This default may be overridden from the Access property page of the Input component (see the on-
line help). By switching the Code Generation File Format switch to Function, the generated code
will call a user-defined function for its input instead. This function is called every time a new sample
of data is required by the attached component. The implementation of the function computes and/or
retrieves the data sample and stores it within the floating point array passed as a parameter.
Outputs

During a simulation, each probe on the breadboard will send its output to one of four locations,
based on the settings of the Code Generation File Format switches from the Access property page
of the component. The Stdio switch sends the output to the standard output, which is normally a
DOS window. The ASCII and Binary switches will write the probe’s output to a file of the
corresponding type. The Function switch is similar to that of the Input component, except the
implementation of the function reads from the floating-point array instead of writing to it. This data
may then be displayed, processed, and/or sent to another application.
File Names used within the Generated Code

When a file type is selected (ASCII or Binary) from the Access page of either an Input or Probe
component, the data associated with this component is written to a file. The prefix of the file name
is "in" for Inputs and "out" for Probes. Appended onto the prefix is the component's name (see the
Engine property page within the on-line help of the component’s inspector). The file extension is
"bin" for binary files and "asc" for ASCII files.
Function Prototype

void axonXXXAccess(
 NSFloat *data, // Buffer to read from/write to
 int rows, // Number of rows in buffer
 int cols // Number of cols in buffer
);

where,
data

Pointers to a block of floating point numbers that contain the processing elements (PEs) of the attached
component. For Input components this buffer is written to and for Probe components it is read from. The size of
this buffer is rows*cols*sizeof(NSFloat).
rows

The number of rows of processing elements (PEs) of the component attached below.
cols

The number of columns of processing elements (PEs) of the component attached below.

An empty function is automatically generated for every Input or Probe component on the
breadboard that has Function specified as its Code Generation File Format within the Access
property page. The prototype for the functions are identical for both Input components and Probe
components. The function implementations differ in that Input components write to the data buffer
and Probe components read from this buffer. Note that the "XXX" of the function name corresponds
to the name of the component attached below (the one accessing the data buffer).

 799

A Simple Example of Code Generation

The following example demonstrates how you would go about generating and compiling the code
for a simple MLP.

Step 1: Build the Network

Use the NeuralBuilder to build a 1-hidden-layer MLP. Set the input file to "xor.asc" such that the x
and y columns are the input and the z column is the output. From the Probe Configuration panel,
disable all probes except the MegaScope at the error.

Step 2: Configure the Network Output

Select the Access property page from the DataStorage inspector and verify that the Code
Generation File Format is set to stdio. This will send the mean squared error (MSE) from each
epoch to the standard output (a DOS window). Also verify that the probes at the networks input,
output and desired access points are all sending their data to binary files.
Step 3: Create the Project

From the Code Generation property page of the StaticControl inspector, press the New button.
Select the directory and file name of the source code to be generated (it must have a ".cpp"
extension). It is highly recommended that you create the project in an empty directory, since a
number of files will be created along with the source file. This will make clean up much easier. Click
the Edit button to view the generated code.

Step 4: Compile and Run

Press the Compile button. A DOS window displays the status of the compile, then prompts you to
press any key to close the window. Now press the Run button. This brings up another DOS window

 800

and displays a series of floating point numbers. These numbers are the decreasing error values for
each epoch, indicating that the network was able to learn the XOR problem. Try sending the
networks input and output to stdio as well, then press the Generate, Compile and Run buttons (in
that order) to observe how your changes affected the running of the network from the command
line.

Limitations of Code Generation

The source code generation facility was designed to produce a self-contained block of code that
can easily be ported to faster platforms. This code can also be easily integrated within a C/C++
application by implementing input/output functions. Both the porting and the integration tasks
should not require any modification to the generated code. However, since you have the header file
("NSLib.h") and the NeuroSolutions class library ("NS.lib"), you can experiment with manual
modifications to the generated code. For this version of NeuroSolutions, there is no documentation
for the class library and NeuroDimension will not be able to provide technical support for code
modifications that you make.

The only components that are not supported are the probes, since they use Windows-specific
functions for their displays. Instead, the probes write to either the standard output, an ASCII file, a
binary file, or a floating point array passed as a function parameter.

There is also a limitation with the use of the transmitters when generating code, in that not all of the
actions are supported. If you try to generate code for a breadboard containing a transmitter,
NeuroSolutions will check to make sure that all of the items selected within the Actions List of the
Transmitter property page are supported. If not, a panel will be displayed to warn you that the
unsupported action will be ignored.

Generating DLL Source Code

If the current breadboard contains one or more DLLs, then NeuroSolutions will automatically
integrate those customized components into the generated source code. It does this by extracting
the code from the DLL source, and copying it into the source code for the code generation project.
An additional statement is generated within the main() routine (setDLL), which establishes the link
between the base component and the DLL functions.

The function names have the component’s name (from the Engine property page of the
component’s inspector) appended to them. This forces each DLL implementation to use unique
function names to prevent overlap between DLLs using the same protocol.

There is one limitation to this feature: the only functions that are copied are the perform, alloc, and
free. These are the only functions that will get called automatically by the NeuroSolutions classes.
Any additional functions or global variables that are used by the DLL implementation must be
copied to the generated source file by hand. This limitation will be removed for the next release.

Porting the Generated Code

The Code Generation feature of NeuroSolutions produces C++ code that can be compiled on a
number of ANSI-compatible compilers under various hardware platforms. However, this code does
require the source code for the NeuroSolutions class library ("NS.lib"). Contact NeuroDimension for
information on purchasing a license for this code.

Some operating systems store the bytes of binary files in reverse from MS DOS/Windows. This
may require that the binary input files generated by NeuroSolutions be byte-swapped in order for

 801

these files to be read correctly on another platform. This operation is performed automatically when
these lines are commented out of the header file ("NSLib.h"):

#define PC

#define MS_VISUAL

The library source code includes a template makefile, which enable you to easily import the
generated source code and compile the project from the command line. Please refer to the readme
file of the library source code for instructions on compiling the NeuroSolutions class library.

Examples of Integrating the Generated C++ Code
Examples of Integrating the Generated C++ Code

The Code Generation feature of NeuroSolutions produces C++ code that will run a neural network
simulation without making any modifications to the code. However, if you want to integrate the
network into another application then some code modifications will be required. This section offers
three simple examples using an MLP to solve the XOR problem. All of the files needed for these
examples are contained within the directory "CodeGen\Examples".

To see an overview of the three example programs, run the program "MainMenu.exe". The files
you will be prompted for are "XorInput.asc", "Xor2Out.asc", and "XorDesir.asc" (for the input,
network output, and desired output, respectively).

Getting Started

Before integrating a network into an application, you most often will train the network within the
graphical user environment of NeuroSolutions. Open the breadboard "xortrain.nsb". Reset and run
the network to verify that the error approaches zero and the network output approaches either -1 or
1.

After 100 epochs, the weights are ready for use. From the StaticControl property page, save the
weights to the file "xor.nsw". This Weights File will be used by all three example programs.

Example 1: Keyboard Input using Function Calls (recall)

Example 2: ASCII File Input using Function Calls (recall)

Example 3: ASCII File Input using File Component (learning)

Code Generation Example - Keyboard Input using Function Calls

The following example demonstrates how to generate code for a recall network (one with no
learning). Two functions are added to the code to read the input from the keyboard and write the
network output to the screen. The initial weights are obtained by running the network from the
Example Introduction or Example 3.

 802

Step 1: Load the Network

Open the breadboard "xor1and2.nsb". This is the same topology as "xortrain.nsb", except all of the
components used for learning have been removed.
Step 2: Configure the Network Input

Select the Access property page from the File inspector and verify that the Code Generation File
Format is set to Function. This will create an empty function named inInputFileAccess ("inputFile" is
the component's name), which will be called every time the network needs an exemplar of input
data.

Step 3: Configure the Network Output

Select the Access property page from the DataWriter inspector and verify that the Code Generation
File Format is set to Function. This will create an empty function named outDataWriterAccess,
which will be called every time the network generates an exemplar of output data.
Step 4: Create the Project

From the Code Generation property page of the StaticControl inspector, press the New button.
Select the directory and enter the name of the new source code file to be generated (Note: do not
overwrite the existing source files "xor1.cpp", "xor2.cpp", or "xor3.cpp"). Note that the Load weights
before run switch is set, so that code will be included to read from the default weights file
("xor1.nsw"). Click the Edit button to view the generated code.
Step 5: Modify the Code

The generated functions need to be written in order to inject data into and extract data out of the
network. Open the file "xor1.cpp" within an ASCII editor. Note that code has been added to read
the input from the standard input (the keyboard) and write the output to the standard output (the
screen). The weights file to load has been changed to "xor.nsw". You could insert this code into the
project you created, but to save time you should instead Open this project from the Code
Generation property page. Note that if you click the Generate button, then the modified code will be
deleted.
Step 6: Compile and Run

 803

Press the Compile button. If the program is not up to date, a DOS window displays the status of the
compile, then prompts you to press any key to close the window. Now press the Run button. This
brings up another DOS window and prompts you for the next exemplar of input data. Enter "1 -1"
and the program will display the corresponding network output. Type "exit" when you finish entering
the input data.

 Next Example

Code Generation Example - ASCII File Input using Function Calls

The following example demonstrates how to generate code for a recall network (one with no
learning). Two functions are added to the code to read the input from an ASCII File and write the
network output to another ASCII file. There is also code added outside of the functions to open and
close the files. The initial weights are obtained by running the network from either the Example
Introduction or Example 3.

Step 1: Load the Network

See Example 1
Step 2: Configure the Network Input

See Example 1
Step 3: Configure the Network Output

See Example 1
Step 4: Create the Project

See Example 1
Step 5: Modify the Code

The generated functions need to be written in order to inject data into and extract data out of the
network. Open the file "xor2.cpp" within an ASCII editor. Note that code has been added in several
places within the source file. Search on the strings "(Begin)" and "(End)" to find these code
segments. You could insert this code into the project you created, but to save time you should
instead Open this project from the Code Generation property page. Note that if you click the
Generate button, then the modified code will be deleted.
Step 6: Compile and Run

Press the Compile button. If the program is not up to date, a DOS window displays the status of the
compile, then prompts you to press any key to close the window. Now press the Run button. This
brings up another DOS window and prompts you for the name of input file. Type in "XorInput.asc"
and press enter. Enter "Xor2Out.asc" as the output file. The network runs until the end of the input
file is reached (or 100 epochs, whichever comes first). Open the output file within an editor to
observe the network output for the 4 exemplars of input data.

Special Note

 804

The purpose of this example is to demonstrate how to inject data using a global variable. In this
case the variable was a file pointer, but it could have just as easily been a pointer to external data.
You do not have to write these functions to simply read from and write to a file (see Example
Introduction or Example 3).

Next Example

 Next Example

Code Generation Example - ASCII File Input using a File Component

The following example demonstrates how to generate code for a network with learning. This is
useful for when you want to train a network on a faster computer, use the trained weights within a
recall network (one without learning). The code for the File components has been modified to read
ASCII instead of binary data. There is also code added to prompt the user to load the weights and
to set the number of training epochs. The weights are automatically saved to "xor.nsw".

Step 1: Load the Network

Open the breadboard "xor3.nsb". This is the same topology as "xortrain.nsb", except that there is
only one probe used to monitor the error. Select the Access property page from the DataWriter
inspector and verify that the Code Generation File Format is set to Stdio. This will write the average
cost for each epoch to the standard output.
Step 2: Configure the Network Input/Output

Select the Access property page from the input File inspector and verify that the Code Generation
File Format is set to Binary. This will later be modified within the code to read from an ASCII
instead of a binary file. Repeat for the desired output file.
Step 3: Create the Project

From the Code Generation property page of the StaticControl inspector, press the New button.
Select the directory and enter the name of the new source code file to be generated (Reminder: do
not overwrite the existing source files "xor1.cpp", "xor2.cpp", or "xor3.cpp"). Note that both the
Load weights before run and the Save weights after run switches are set, so that code will be
included to read from and write to the default weights file ("xor3.nsw"). Click the Edit button to view
the generated code.
Step 4: Modify the Code

We would like to modify the generated code so that the program reads from ASCII files instead of
binary ones. We would also like to use the same weights file as the recall networks ("xor.nsw"
instead of the default of "xor3.nsw"). Open the file "xor3.cpp" within an ASCII editor. Note that code
has been added and removed in several places within the source file. Search on the strings
"(Begin)" and "(End)" to find these code segments. You could insert this code into the project you
created, but to save time you should instead Open this project from the Code Generation property
page. Note that if you click the Generate button, then the modified code will be deleted.
Step 5: Compile and Run

Press the Compile button. If the program is not up to date, a DOS window displays the status of the
compile, then prompts you to press any key to close the window. Now press the Run button. This
brings up another DOS window and prompts you for the name of input file. Type in "XorInput.asc"

 805

and press enter. Enter "XorDesir.asc" as the desired output file. Run the first simulation with
randomized weights for 500 epochs. Run the program again using the same training files, but load
the weights from the previous simulation. Note that the error starts out where the last simulation
started and drops further from there.

Things to Try

Run one of the recall networks (Example 1 or Example 2) again. Observe the network response
with the set of weights that you just trained.

Dynamic Link Libraries (DLLs)
Dynamic Link Libraries (DLLs)

NeuroSolutions

NeuroDimension, Incorporated.

Gainesville, Florida

Purpose

This chapter describes the Dynamic Link Library facility available within the Developers versions of
NeuroSolutions. This feature extends NeuroSolutions with a set of utilities that enable the user to
customize neural components by writing C functions. These new components can utilize all of the
basic features of the package, creating an extensible and flexible simulation environment.

Introduction to DLLs

NeuroSolutions utilizes an object oriented design methodology. This design is responsible for the
power and flexibility of the package, and it also allows for a user extensible simulation environment.
The need for an open simulation environment is clear. During the design process, the user is
confronted with a large number of unknowns that may require new solutions. It would be impossible
to develop a set of neural components that would meet every user’s needs. An alternate approach
is to let the user define their own modifications to the base components included within the
environment. Dynamic Link Libraries (DLLs) are the mechanism used for these component
modifications.

Dynamic Link Libraries are used to create user-defined components. This is done by writing one or
more C functions belonging to the base component’s protocol, thus overriding the component’s
functionality. The DLLs are typically implemented as C functions, but C++ may also be used. The
source code files for all customized components are included within the "DLLSys" directory. When
you create a new DLL, the default source code for the overridden component is copied to the

 806

"DLLCust" directory. This allows the user to start from familiar ground, providing the source code
for how the current component was implemented. The user then simply modifies this source code
to meet his or her particular needs, and re-compiles.

A word of caution should be raised. Since the user is able to modify the data variables used by
NeuroSolutions, some C programming knowledge is certainly required. Care must be taken when
working with pointers to data vectors in order to prevent errors from occurring outside of the scope
of the DLL.

System Requirements for creating DLLs

NeuroSolutions was developed using Microsoft’s Visual C++. The interface for the creation of DLLs
has been tightly integrated with this development environment. This allows you to compile, run, and
debug your DLLs within NeuroSolutions.

Structure of a DLL

Every neural component within NeuroSolutions is implemented as a C++ object. Each object
shares much of its code with other objects belonging to the same family. The unique functionality of
an object is normally contained within a couple of C++ functions.

NeuroSolutions developers extends each base component with a DLL protocol and the
corresponding default DLL source code that conforms to this protocol. This means that the user
has access to a source code implementation of the component selected. This source code can be
used as a starting point to make your modifications.

There are three sub-protocols available to each DLL implementation:

� Perform sub-protocol

� Memory management sub-protocol

� Breadboard sub-protocol

The perform sub-protocol (required on every DLL) handles the actual functionality of the
component. The prototype function name is prefixed with perform, followed by the component’s
protocol name. The memory management sub-protocol (optional in the DLL) handles the allocation
and freeing of any data stored within a particular instance of a DLL. The two prototype function
names are prefixed with alloc and free, followed by the component’s protocol name. The
breadboard sub-protocol (optional in the DLL) contains function prototypes used for synchronizing
a DLL with the various stages of the simulation. The prototype function names are the same for all
DLLs. The ability to modify NeuroSolutions components increases with each one of the sub-
protocols, but it is also coupled with a more detailed and complex interaction that requires more
programming skills.

How to Use DLLs

The first step towards utilizing DLLs is to select a NeuroSolutions component that has a
functionality similar to the one you seek. Most of the times this is an easy task. However, a
thorough knowledge of the NeuroSolutions components is necessary.

We suggest that you consult the Components chapter of NeuroSolutions Manual Volume II, where
we provide a mathematical description of the functionality of each component in NeuroSolutions.
You should select the component that has the closest mathematical description to the one you

 807

want to build. In particular, you should seek a component with the same number of parameters. For
instance, the Axon family has several components. If you want to create a new nonlinearity without
a bias term, you can select the Axon. If you want your new nonlinearity to have a bias, you should
use the BiasAxon instead. If you want to create a new memory structure, you should use the
TDNNAxon.

Once you have found the component, bring it to the breadboard and go to the Engine level of its
Inspector. Clicking on the New button will create source code for a new DLL with an
implementation that is identical to that of the selected component. Details will be given below. Here
we will simply address the steps of the design.

Next, simply open the new DLL for the component (the Edit button) to observe the DLL
implementation of the selected component. Looking at the perform sub-protocol, try to figure out
how the source code implements the selected component, and then identify the piece that you want
to modify to create your new component.

Modify the C code to implement the functionality that you desire. Compile the C code and make
sure that the code compiles without error. Finally, link the new component with the package (with
the Use DLL switch). Once properly linked, the component’s icon will have DLL stamped on it. Your
new component contains all of the features of its base component, so it can utilize all the
NeuroSolutions features, e.g. probes.

If you want to not only modify the functionality of a component but also add new variables, or
deeper modifications, you also can. As you might expect the procedure is more involved, but we
designed an environment that is very flexible. Please see the examples for a more in depth look at
DLL design.

User Interface of the DLL Feature

The interface to the Dynamic Link Library facility is contained within the Engine property page of
every component’s inspector.

Behind the Scenes of DLLs

Within the NeuroSolutions directory are two sub-directories used for DLLs: DLLCust and DLLSys.
DLLSys contains the source code and compiled DLLs for most of the base components within
NeuroSolutions. These files are arranged based on the protocol that they conform to.

The DLLCust directory is where the user-defined DLLs are stored. When a new DLL is created, the
DLL and source code file of the base component are copied from the DLLSys directory to the
DLLCust directory. Note that the sub-directory structure is preserved such that the user-defined
DLLs are arranged based on the protocol that they conform to.

The DLLSys directory also contains a few other files that are used to compile the DLLs:

DebugMakefile.v60 Visual C++ 6.0 makefile used to compile the DLL after the "Debug"
button is pressed.
DebugMakefile.v50 Visual C++ 5.0 makefile used to compile the DLL after the "Debug"
button is pressed.

DLLTest.dsp The Visual C++ project file used when the "Debug" button is pressed.

Global.h Global variables included by NSDLL.h.

 808

Makefile.v60 Visual C++ 6.0 makefile used to compile the DLL after the "Compile" button is
pressed.

Makefile.v50 Visual C++ 5.0 makefile used to compile the DLL after the " Compile " button is
pressed.

NSDLL.h Header file included by all DLLs.

Perform Sub-Protocol
Perform Sub-Protocol

The modifications to the base NeuroSolutions components have several degrees, depending on
how extensive the new properties differ from the old ones. The perform sub-protocol implements
the component’s basic functionality. Hence, the simplest type of modification involves a change of
the functionality of the base component’s perform function without altering the structure of the
component parameters or data.

Every DLL must have at least one perform sub-protocol. You can recognize the perform sub-
protocol in the code by the function:

void performComponentName(...)
{
...
}

which is normally followed by only a few lines of code that implement the component functionality.
This is the part you have to concentrate on rewriting. In order to make the code more readable, the
beginning and end of the block are commented.

DLL Example

One of the more common uses of DLLs is to customize the activation function of an Axon. Suppose
that the TanhAxon component were not included within NeuroSolutions. The following example
demonstrates how you would go about adding this component.

Step 1: Build a Network

Use the NeuralBuilder to build a 1-hidden-layer MLP. Set the input file to "xor.asc" such that the x
and y columns are the input and the z column is the desired response. Change the transfer function
of the layers from a TanhAxon to a LinearAxon. Build the network, and try running it. As expected,
the network is not able to solve the xor problem when the simulation was run.
Step 2: Create a New Component

You need to enhance the LinearAxon in order to have the network solve this problem. You will do
this by implementing a hyperbolic tangent transfer function.

Select the LinearAxon at the hidden layer and open its inspector. From the Engine property page,
click the New button. A panel for the new DLLs name will open. Enter "MyTanh" as the DLL name.
A copy of the LinearAxon’s DLL source code has been saved under this new name.
NeuroSolutions created automatically the file bkMyTanh for backpropagation support for this new
component.

 809

Step 3: Edit the Activation Component

Click the Edit button to bring up the source code for the DLL. The implementation of the
performLinearAxon function looks like this:

__declspec(dllexport) void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of processing elements (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *bias, // Pointer to the layer's bias vector, one for each PE
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;
 for (i=0; i<length; i++)
 data[i] = beta*data[i] + bias[i];
}

which simply multiplies the input data by a constant and adds a bias (implementing a linear input-
output map). To change the transfer function to a hyperbolic tangent, you need to edit the code as
follows:

__declspec(dllexport) void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of processing elements (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *bias, // Pointer to the layer's bias vector, one for each PE
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;
 for (i=0; i<length; i++)
 data[i] = (float)tanh(beta*data[i] + bias[i]);
}

The transfer function of the new component will be now the hyperbolic function of the input plus the
bias, implementing the tanh static nonlinearity. Save your changes and return to NeuroSolutions.
Step 4: Edit the Backprop Component

If we want to use this new component in a network that is trained with backpropagation, we also
have to create the corresponding backpropagation component. To implement this modification, you
need to Edit the code of the BackLinearAxon by selecting the BackLinearAxon, clicking on the Edit
button to edit the file bkMyTanh, and replacing:

error[i] *= beta;

with:

error[i] *= beta*(1.0f - data[i]*data[i]);

Step 5: Link your new Components

 810

Select the LinearAxon and click the Use DLL switch from the Engine property page. Notice that
NeuroSolutions automatically detected that you had modified the DLLs source code and is
prompting you to first compile it. Press YES to compile the source code. Once this step is
completed you will be prompted to compile the DLL for the BackLinearAxon. Your new components
are now linked with the rest of the package, as illustrated by the DLL stamps on their icons.
Step 6: Use DLL for the Output Layer

Select the LinearAxon at the output layer and click the Load button. Select "MyTanh.dll" from the
file selection panel. The corresponding backprop DLL is automatically loaded as well. Now both
layers have the LinearAxon overridden with the hyperbolic tangent transfer function. Click on the
Transfer Function property page of the Inspector to verify that the transfer function has changed.
When you run the simulation, the network will now solve the xor problem.

Memory Management Sub-Protocol
Memory Management Sub-protocol

When a new instance of a component is created, NeuroSolutions automatically creates the
variables needed to implement the component. If the modifications do not change the component’s
data structure, as in the previous example, we do not have to worry about memory management.
However, for more in-depth DLLs, the developer may want to add to the component’s data
structure. The purpose of this section is to explain the concepts and the details needed to add
variables to a base component.

The DLLData Structure

Adding Adaptable Weights to the Instance Data

Adding Parameters to the Instance Data

Adding User-Defined Data

Memory Management of Instance Data

Creating Global Variables

The DLLData Structure

The DLLData structure is used to store the weights, parameters, and user-defined data that is
specific to a particular instance of a DLL component. A pointer to this structure is passed by
NeuroSolutions to all implementation functions of the DLL. This data structure is divided in three
parts:

� the weights

� the parameters

� the user-defined data

The reason for this division in the data structure is due to the way components interact within the
NeuroSolutions environment. Weights are updated by the gradient descent components, and we
would like developers to be able to add adaptable weights to their components without having to
write the code for gradient search procedures, which are already implemented with NeuroSolutions.
Likewise, parameters are displayed and modified within NeuroSolutions’ Inspector window, so
there is no point in requiring developers to write their own code for this purpose. In general, user

 811

defined data structures cannot be supported by NeuroSolutions, so you will have to write the code
associated with this data. Next we present the general DLL data structure.

Data Structure
typedef struct {
 NSFloat *data;
 int length;
} DLLWeights;
typedef struct {
 char parameters[5][3][64];
 char parameterNames[5][3][64];
} DLLParameters;
typedef struct {
 DLLWeights *weights;
 DLLParameters *parameters;
 void *userData;
} DLLData;

The data variables that are available to the user are:
data

Pointer to a floating point array containing the user-defined weights. This pointer is accessed by
calling the getWeights function defined within "NSDLL.H". Note that the memory is allocated and
freed within NeuroSolutions.
length

The number of weights stored within data. This number is specified when the weights are allocated
(by calling the setWeights function defined within "NSDLL.H").
parameters

Storage for 15 parameter values -- 5 rows and 3 columns. The values are set using the
setBoolParameter, setIntParameter, setFloatParameter, and setStringParameter functions defined
within "NSDLL.H". These values are converted if needed and stored as strings. The parameter
values are retrieved using the getBoolParameter, getIntParameter, getFloatParameter, and
getStringParameter functions.
parameterNames

Storage for 15 parameter names, corresponding to the 15 parameter values. These are used as
labels within the DLL property page of the Inspector window.
weights

Pointer to the DLLWeights structure that holds the user-defined weights. This structure is allocated
by calling the setWeights function defined within "NSDLL.H"
parameters

Pointer to the DLLParameters structure that holds the user-defined parameters. This structure is
allocated during the first call to the setParameterName function defined within "NSDLL.H".
userData

 812

Pointer to a user-defined block of data. The memory is allocated and freed by the user, and the
pointer is updated by calling the setUserData function defined within "NSDLL.H".

 See Also

Adding Adaptable Weights to the Instance Data

There may be times when you want to add an adaptable weight vector to a component that already
has a set of adaptable weights. Recall that a TanhAxon has a bias vector (because it is a subclass
of BiasAxon), which may be adapted during learning. The beta term (the slope of the tanh function)
is not adaptable and is the same for all PEs. Suppose that you want to have a unique beta for each
PE and that these terms should be adaptable. This is a case where an instance weight vector is
needed (see Adjustable Transfer Function Slope DLL Example).

An instance weight vector is defined by making a call to the setWeights function within the alloc
function of the DLL:

__declspec(dllexport) DLLData *allocLinearAxon(
 DLLData* oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setWeights(instance, rows*cols);
 return instance;
}

The setWeights function simply allocates a vector of weights of the specified size, and inserts it
within the instance of DLLData. The memory for the weights is automatically freed when the
instance is freed (by calling freeDLLInstance from the freeInstance function of the DLL). Note that
the implementation of all DLL functions can be found within the "NSDll.h" header file.

The weights are automatically adapted the same way as the base component’s weights. The
attached Backprop component will compute the gradients and sensitivities for both sets of weights,
and the Gradient Search component will update all of the weights based on the computed
gradients. Note that adaptable instance weights only apply to members of the Axon and Synapse
families.

If an Axon or Synapse has a vector of adaptable weights, then the component’s backpropagation
dual must have a corresponding set of gradients. These gradients are treated as weights in an
identical manner to that of the activation dual.

Within the perform function of a DLL, you obtain a pointer to the weight vector by using the
getWeights function call:

NSFloat *beta = getWeights(instance);

From there you access the individual weights by indexing into the array (e.g., beta[i]).

 813

Adding Parameters to the Instance Data

Each component has a set of parameters that are specified by the user within the various property
pages of the inspector window. The creation of custom components using DLLs will often require
additional user-defined parameters. For this reason, a facility has been included for you to specify
up to 15 parameters that are accessible to the user from the DLL property page of the Inspector.

A parameter set is initialized by making calls to the setParameterName functions within the alloc
function of the DLL:

__declspec(dllexport) DLLData *allocProtocolName(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 1, 1, "Amplitude", FALSE);
 setFloatParameter(instance, 1, 1, 11.0f, FALSE);
 setParameterName(instance, 2, 1, "Phase", FALSE);
 setIntParameter(instance, 2, 1, 180, FALSE);
 return instance;
}

The protocol for the setParameterName function is as follows:

void setParameterName(
 DLLData *instance, // Pointer to instance data storing parameters
 int row, // Inspector row to display parameter
 int col, // Inspector column to display parameter
 char *name, // Inspector label for parameter
 BOOL realloc // Reallocate instance data when value changes
);

The parameter names and values are stored as part of the instance data structure. The row and col
refer to the parameter’s position within the inspector. The number of parameters stored is static (5
rows and 3 columns), but only the ones initialized with this function are displayed within the
inspector. The name is used to label the parameter within the inspector. The realloc flag is used to
indicate whether or not this parameter affects the structure of the instance data. If realloc is set to
TRUE, then the instance data is reallocated (i.e., the DLL receives a call to the alloc function) every
time the value of the parameter changes. Note that the implementation of setParameterName, as
well as all other DLL functions, can be found within the "NSDLL.H" header file.

A default value for each parameter is normally set within the alloc function as well, using one of the
following function calls:

void setBoolParameter
 (DLLData *instance, int row, int col, BOOL boolValue, BOOL force);
void setIntParameter
 (DLLData *instance, int row, int col, int intValue, BOOL force);
void setFloatParameter
 (DLLData *instance, int row, int col, NSFloat floatValue, BOOL force);
void setStringParameter
 (DLLData *instance, int row, int col, char *stringValue, BOOL force);

 814

If the force flag is set to FALSE, then the parameter is only assigned if the current setting is
undefined (blank). Otherwise, the parameter is always set to the specified value. This flag should
always be set for FALSE for parameter initialization in order to avoid overwriting a previously
specified value.

Here is an example of how a parameter’s value is retrieved and used:

int i, length=rows*cols;
NSFloat amplitude = getFloatParameter(instance, 1, 1);
for (i=0; i<length; i++)
 data[i] = (NSFloat)amplitude*data[i];

The function prototypes for retrieving the parameter values are similar to those used to set them:

int getIntParameter(DLLData *instance, int row, int col);
BOOL getBoolParameter(DLLData *instance, int row, int col);
NSFloat getFloatParameter(DLLData *instance, int row, int col);
char *getStringParameter(DLLData *instance, int row, int col);

 See Also

Adding User-Defined Data

During the definition of your new components you may have necessity to define instance variables
and data. NeuroSolutions will maintain a pointer to this data for each instance of the DLL
component. You are responsible for allocating this data during the alloc sub-protocol, freeing it
during the free sub-protocol, and interpreting it during the perform sub-protocol. NeuroSolutions
only maintains a single pointer, so all user-defined data must be organized within a single data
structure.

For example, if you wanted each instance of your component to contain an integer variable called
length and a floating point array called dataArray, then you should define the following data
structure within your DLL:

typedef struct {
 int length;
 float *dataArray;
} MyData;

Memory Management of Instance Data
Allocation

An instance of a DLL is allocated when the DLL is first loaded, and it is reallocated whenever the
component itself is reallocated (e.g., the number of PEs change), or the instance data is reallocated
due to a change in a specially-tagged instance parameter. (Note that the instance parameter is
tagged by setting realloc=TRUE when calling the setParameterName function.) Whenever a DLL
instance is allocated or reallocated, the DLL’s instance allocation function is called.

 815

There are three types of instance data that are available within the DLLData structure: weights,
parameters, and user data. The following instance allocation implementation is an example of a
DLL that uses all three types:

__declspec(dllexport) DLLData *allocLinearAxon(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 int i, length = rows*cols;
 DLLData *instance = allocDLLInstance(oldInstance);
 setWeights(instance, rows*cols);
 setParameterName(instance, 2, 1, "Gain", TRUE);
 setFloatParameter(instance, 2, 1, 1.0f, FALSE);
 NSFloat *myData = (NSFloat *)calloc(rows*cols, sizeof(NSFloat));
 setUserData(instance, myData);
 return instance;
}

The call to allocDLLInstance allocates a new DLLData structure. If it is allocated for the first time,
then the three members of the structure are all set to NULL. If it is a reallocation (oldInstance !=
NULL), then the parameters and weights of the old instance are preserved in the new structure.

The call to setWeights sets the number of instance weights that NeuroSolutions will allocate. The
first call to setParameterName allocates the memory needed to store 15 instance parameters (5
rows and 3 columns). Only the first call to setFloatParameter sets the parameter value (since the
force flag is set to FALSE). This preserves the parameter values during a reallocation.

The memory management for the user data is the responsibility of the DLL author. Any block of
data may be allocated for use by a particular instance. The call to setUserData stores the pointer to
the data block within the DLLData structure. The prototype for this function as defined within
"NSDLL.H" is:

void setUserData(DLLData *instance, void *userData);

Deallocation

An instance of a DLL is deallocated when the DLL is unloaded, or when the instance has been
reallocated.

The following instance deallocation implementation corresponds to the allocation implementation
above:

__declspec(dllexport) void freeLinearAxon(DLLData *instance)
{
 free(getUserData(instance));
 freeDLLInstance(instance);
}

The prototype for the getUserData function as defined within "NSDLL.H" is:

void *getUserData(DLLData *instance);

Note that the user data is the only memory that the DLL author is responsible for freeing directly;
the freeDLLInstance function handles the rest.

 816

 See Also

Creating Global Variables

A very powerful concept that is supported in the DLLs is the global variable. Global variables allow
several component DLLs to share the same memory. The user must declare global variables at the
top of the DLL. When there are several components using the same DLL, the system only loads the
DLL into memory once. In other words, all of those components share the same memory space
when accessing the DLL. For this reason, any global variables that are declared within the DLL are
global to all instances using the DLL.

Example

Stamp two TanhAxons on a blank breadboard and bring up the inspector for one of them. From the
Engine property page click the New button and enter "MyAxon" as the DLL name. Edit the code as
follows:

NSFloat myBeta = 0.01f;
__declspec(dllexport) void performLinearAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of processing elements (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *bias, // Pointer to the layer's bias vector, one for each PE
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;
 for (i=0; i<length; i++) {
 data[i] = (NSFloat)tanh(myBeta*data[i] + bias[i]);
 myBeta += 0.01f;
 }
}

In this code myBeta is a global variable since it is defined before the perform function. Click the
Compile button to create and load this DLL. Select the other TanhAxon and click the Load button
from the Engine property page. Select the "MyAxon" DLL that you have just compiled. Now both
components are sharing the same DLL. Select the Transfer Function property page to observe the
effect of the global variable. Note that NeuroSolutions computes this graph by making consecutive
calls to performLinearAxon, thus the slope of the hyperbolic tangent function (myBeta) increases
with every point that is plotted. Now view the Transfer Function property page of the other
TanhAxon. It plotted the function based on the value of myBeta computed by the first TanhAxon.
Switch back and forth between the two components to observe the increasing slope of the transfer
function.

If these two DLL instances were placed in a network, then the slope would increase twice for each
sample of data run through the network because each instantiated object would be incrementing
the same variable.

 817

 See Also

Breadboard Sub-Protocol
Breadboard Sub-Protocol

The breadboard sub-protocol addresses the need to synchronize DLLs with the rest of the
simulation environment. This is an important feature for the functionality of the reconfigured
component since there are a lot of messages from the simulation environment that have to be
attended to by any component, such as reset, zeroing of counters at the end of epoch, updating of
weights in batch mode, etc.

NeuroSolutions will call all of the functions that are implemented during the appropriate times, and
pass a pointer to The DLLData Structure as the first parameter. Below we present the
synchronization function calls available to the DLLs.

// Called after the current epoch has completed
 __declspec(dllexport) void epochEnded(
 DLLData *instance,
 int epoch // Current epoch count
);

// Called after the current exemplar has completed
 __declspec(dllexport) void exemplarEnded(
 DLLData *instance,
 int exemplar // Current exemplar count
);

// Called after the Run button is pressed
 __declspec(dllexport) void fireGetReady(DLLData *instance);

// Called after fireGetReady(); return FALSE to abort the Run
 __declspec(dllexport) BOOL fireIsReady(DLLData *instance);

// Called after the simulation has stopped
 __declspec(dllexport) void fireConclude(DLLData *instance);

// Called after the weights have been jogged (Controller button)
 __declspec(dllexport) void networkJog(DLLData *instance);
// Called after the network weights are randomized (Controller button)
 __declspec(dllexport) void networkRandomize(DLLData *instance);

// Called after the network has been reset (Controller button)
 __declspec(dllexport) void networkReset(DLLData *instance);

// Called before the network weights are updated
 __declspec(dllexport) void prepareToUpdateWeights(DLLData
*instance);

// Called after the network weights have been updated
 __declspec(dllexport) void updateWeights(DLLData *instance);

 818

DLL Examples
DLL Examples

In the following we will present several important examples to illustrate the use of DLL features. For
each example we explicitly state the feature that is being illustrated, and the code is compared with
the base NeuroSolutions component to emphasize the differences, and how the new functionality
was implemented. We present examples to reconfigure components belonging to all the
NeuroSolutions families. The following summarizes all of the examples:

Axon

� Adjustable sigmoid - illustrates the addition of adaptable weights

� Adjustable hyperbolic tangent - illustrates the addition of adaptable weights

� Adjustable linear - illustrates the addition of adaptable weights

� TanhAxon with gain - illustrates the addition of a parameter
Synapse

� Subset FullSynapse - illustrates the addition of adaptable weights

� Locally-Connected Synapse - illustrates configuration
ErrorCriterion

� Loser learn all - illustrates configuration
GradientSearch

� DeltaBarDelta with limited step - illustrates configuration

� DeltaBarDelta with exponential step - illustrates configuration
General Input and Postprocessor

� Strange attractor - illustrates configuration

� Logistic function - illustrates configuration

� Discriminant function - illustrates configuration

� Scaling - illustrates configuration
Function Generator

� Sawtooth - illustrates configuration

� Triangle - illustrates configuration

� Square - illustrates configuration

� Decayed Sine - illustrates configuration

� Pulse - illustrates configuration
Noise Generator

� Gaussian - illustrates configuration

� Decayed Gaussian - illustrates configuration

� Decayed Uniform - illustrates configuration
File

 819

� Binary - illustrates configuration

� Binary float - illustrates configuration

� Binary Integer - illustrates configuration

� Binary Short - illustrates configuration

� Binary character - illustrates configuration
Preprocessor

� Averaging filter - illustrates configuration

� Decimator filter - illustrates configuration

� Extractor - illustrates configuration
Postprocessor and Probe

� Confusion matrix - illustrates global variables
Transformer

� Derivative - illustrates configuration

� Autocorrelation - illustrates configuration

� Crosscorrelation - illustrates configuration

Axon

Adjustable Transfer Function Slope DLL Example

Within the "DLLCUST/BiasAxon" directory are three DLL examples entitled "adjtana", "adjsiga", and
"adjlina". These DLLs implement specialized versions of the TanhAxon, SigmoidAxon, and
LinearAxon, respectively, to demonstrate the use of instance weights.

Each of the base components has a bias vector (because they are subclasses of BiasAxon) that
may be adapted during learning. However, the beta term (the slope of the transfer function) is not
adaptable and is the same for all PEs. These DLLs use adaptable instance weights to maintain a
unique beta for each PE. The backpropagation dual components ("bkadjtan", "bkadjsig", and
"bkadjlin") have a corresponding set of weights that store the gradient information, which is used to
adapt the beta terms of the activation dual.

The instance weight vectors for both the activation and backpropagation components are allocated
and freed as follows:

DLLData *allocBiasAxon(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setWeights(instance, rows*cols);
 return instance;
}
void freeBiasAxon (DLLData *instance)
{
 freeDLLInstance(instance);
}

 820

All three DLLs have very similar implementations, so only the code for hyperbolic tangent will be
shown here. Refer to the sample source code for the implementations of the other two.

The implementation for the activation DLL ("adjtana") is as follows:

void performBiasAxon(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the layer of processing elements (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector, one for each PE
)
{
 int i, length=rows*cols;
 NSFloat *beta = getWeights(instance);
 for (i=0; i<length; i++) {
 if (beta[i] < 0.5f)
 beta[i] = 0.5f;
 data[i] = (NSFloat)tanh(beta[i]*data[i] + bias[i]);
 }
}

Compare this with the implementation for the base component (TanhAxon):

int i, length=rows*cols;
for (i=0; i<length; i++)
 data[i] = (NSFloat)tanh(beta*data[i] + bias[i]);

The weight vector is stored within the DLLData structure and the pointer is obtained with the
getWeights function. The weights are accessed by indexing the floating point array.

Note that there is minimum value forced on each beta term. When the network is reset, the weights
are randomized to a value between -1 and 1. The beta term must be greater than zero. The higher
the beta, the steeper the slope and the more discriminating the function becomes. A value of 0.5
was chosen as a minimum value for this starting point. Most often, the network will adapt to a
higher value.

The implementation for the backpropagation DLL ("bkadjtan") is as follows:

void performBackBiasAxon(
 DLLData *instance, // Pointer to instance data
 DLLData *dualInstance, // Pointer to the forward axons instance data
 NSFloat *data, // Pointer to the layer of processing elements
(PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error, // Pointer to the sensitivity vector
 NSFloat *gradient // Pointer to the bias gradient vector
)
{
 int i,length=rows*cols;
 NSFloat *beta = getWeights(dualInstance);
 NSFloat *betaGradient = getWeights(instance);
 for (i=0; i<length; i++) {
 error[i] *= beta[i]*(1.0f - data[i]*data[i] + 0.1f);
 if (gradient)

 821

 gradient[i] += error[i];
 if (betaGradient)
 betaGradient[i] += error[i]*data[i];
 }
}

Compare this with the implementation for the base component (BackTanhAxon):

int i, length=rows*cols;
for (i=0; i<length; i++) {
 error[i] *= beta*(1.0f - data[i]*data[i] + 0.1f);
 if (gradient)
 gradient[i] += error[i];
}

The only differences are that the beta term is unique to each PE and that the gradient information
for the beta vector is computed along with the gradient information for the Axon’s weights.

 See Also

TanhAxon with Gain DLL Example

Within the "DLLCUST/LinAxon" directory is a DLL example entitled "gaintanh" and its
corresponding backprop dual "bkgainta". This DLL implements a specialized version of the
TanhAxon to demonstrate the use of instance parameters.

The transfer function of the base TanhAxon produces an output that ranges from -1 to 1. There are
cases when you may want to have the output scaled to match that of the original data. This would
be one use for a TanhAxon component that is enhanced with a gain factor.

The gain parameter is stored within the instance data of the activation component (the TanhAxon).
It is initialized within the allocLinearAxon function as follows:

DLLData *allocLinearAxon(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 2, 1, "Gain");
 setFloatParameter(instance, 2, 1, 1.0f, FALSE);
 return instance;
}

The two function calls set the label on the inspector to "Gain" and set the default value to 1.0. The
call to setParameterName must occur before the call to setFloatParameter in order to allocate
memory for the parameters. Note that since the parameters are stored with the instance data, that
memory is automatically freed when the freeDllInstance function is called.

 822

The implementation for the activation DLL ("gaintanh") is as follows:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the layer of processing elements (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *bias, // Pointer to the layer's bias vector, one for each PE
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;
 NSFloat gain = getFloatParameter(instance, 2, 1);
 for (i=0; i<length; i++)
 data[i] = (NSFloat)gain*tanh(beta*data[i] + bias[i]);
}

Compare this with the implementation for the base component (TanhAxon):

 int i, length=rows*cols;
 for (i=0; i<length; i++)
 data[i] = (NSFloat)tanh(beta*data[i] + bias[i]);

The gain parameter is stored within the DLLData structure and the value is obtained with the
getFloatParameter function. The activation function is simply multiplied by this parameter to
produce the scaled result.

The implementation for the backpropagation DLL ("bkgainta") is as follows:

void performBackLinearAxon(
 DLLData *instance, // Pointer to instance data
 DLLData *dualInstance, // Pointer to the forward axons instance data
 NSFloat *data, // Pointer to the layer of processing elements
(PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error, // Pointer to the sensitivity vector
 NSFloat *gradient, // Pointer to the bias gradient vector
 NSFloat beta // Slope gain scalar, same for all PEs
)
{
 int i, length=rows*cols;
 NSFloat gain = getFloatParameter(dualInstance, 2, 1);
 for (i=0; i<length; i++) {
 error[i] *= gain*beta*(1.0f - data[i]*data[i] + 0.1f);
 if (gradient)
 gradient[i] += error[i];
 }
}

Compare this with the implementation for the base component (BackTanhAxon):

 int i, length=rows*cols;
 for (i=0; i<length; i++) {
 error[i] *= beta*(1.0f - data[i]*data[i] + 0.1f);

 823

 if (gradient)
 gradient[i] += error[i];
 }

The backprop component does not need to store its own gain parameter. Instead, it retrieves it
from the activation dual component by passing the dualInstance pointer to the getFloatParameter
function.

 See Also

Synapse

Subset FullSynapse DLL Example

Within the "DLLCUST/Synapse" directory is a DLL example entitled "subsyn" and its corresponding
backprop DLL, "bksubsyn". These DLLs implement a specialized version of the Synapse
component to demonstrate connectivity customization using instance parameters.

When connecting two Axons of differing size together using the base Synapse component, all N
PEs of the smaller Axon are connected to the first N PEs of the larger Axon. This DLL provides
more flexibility by letting the user specify a subset of PEs from one Axon that is to be connected to
the other Axon.

The user has three parameters to work with from the DLL property page of the inspector. The Input
parameter specifies which Axon to select the segment of PEs from -- the input (Input=TRUE) or
output (Input=FALSE). The segment begins with the Start PE and ends with the Start+Length-1 PE.
These PEs are connected to the other Axon in order starting with PE 0.

DLLData *allocSynapse(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
)
{
 BOOL subInput;
 int maxLength, start, length;
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 1, 1, "Input", TRUE);
 setBoolParameter(instance, 1, 1, TRUE, FALSE);
 setParameterName(instance, 2, 1, "Start", TRUE);
 setIntParameter(instance, 2, 1, 0, FALSE);
 setParameterName(instance, 3, 1, "Length", TRUE);
 setIntParameter(instance, 3, 1, 1, FALSE);
 subInput = getBoolParameter(instance, 1, 1);
 maxLength = subInput? inRows*inCols: outRows*outCols;
 start = getIntParameter(instance, 2, 1);
 if (inRows && inCols && outRows && outCols) {
 if (start >= maxLength)
 start = maxLength-1;

 824

 length = getIntParameter(instance, 3, 1);
 if (start+length > maxLength)
 length = maxLength-start;
 if (!subInput)
 if (length > inRows*inCols)
 length = inRows*inCols;
 } else
 start = length = 0;
 setBoolParameter(instance, 1, 1, subInput, TRUE);
 setIntParameter(instance, 2, 1, start, TRUE);
 setIntParameter(instance, 3, 1, length, TRUE);
 return instance;
}

The call to freeDLLInstance handles the freeing of the instance parameters:

void freeInstance(DLLData *instance)
{
 freeDLLInstance(instance);
}

The implementation for the activation DLL ("subsyn") is as follows:

void performSynapse(
 DLLData *instance, // Pointer to instance data
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
)
{
 BOOL subInput = getBoolParameter(instance, 1, 1);
 int i,
 inCount = subInput? getIntParameter(instance, 3, 1): inRows*inCols,
 outCount = !subInput? getIntParameter(instance, 3, 1):
outRows*outCols,
 start = getIntParameter(instance, 2, 1),
 count = inCount<outCount? inCount: outCount;
 if (subInput)
 for (i=0; i<count; i++)
 output[i] += input[i+start];
 else
 for (i=0; i<count; i++)
 output[i+start] += input[i];
}

Compare this with the implementation for the base component (Synapse):

int i,
 inCount=inRows*inCols,
 outCount=outRows*outCols,
 count = inCount<outCount? inCount: outCount;

 825

for (i=0; i<count; i++)
 output[i] += input[i];

The implementation for the backpropagation DLL ("bksubsyn") is as follows:

void performBackSynapse(
 DLLData *instance, // Pointer to instance data
 DLLData *dualInstance // Pointer to the forward synapses instance data
 NSFloat *errorIn, // Pointer to the input error layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *errorOut, // Pointer to the output error layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols, // Number of columns of PEs in the output layer
 NSFloat *input // Pointer to output layer of forward synapse
)
{
 BOOL subInput = getBoolParameter(dualInstance, 1, 1);
 int i,
 inCount = !subInput? getIntParameter(dualInstance, 3, 1):
 inRows*inCols,
 outCount = subInput? getIntParameter(dualInstance, 3, 1):
 outRows*outCols,
 start = getIntParameter(dualInstance, 2, 1),
 count = inCount<outCount? inCount: outCount;
 if (subInput)
 for (i=0; i<count; i++)
 errorOut[i+start] += errorIn[i];
 else
 for (i=0; i<count; i++)
 errorOut[i] += errorIn[i+start];
}

Compare this with the implementation for the base component (BackSynapse):

 int i,
 inCount=inRows*inCols,
 outCount=outRows*outCols,
 count=inCount<outCount? inCount: outCount;
 for (i=0; i<count; i++)
 errorOut[i] += errorIn[i];

 See Also

Locally-Connected Synapse DLL Example

Within the "DLLCUST/Synapse" directory is a DLL example entitled "localsyn" and its
corresponding backprop DLL, "bklocals". These DLLs implement a specialized version of the
Synapse component to demonstrate connectivity customization using instance weights.

 826

A common problem with using a fully-connected neural network for image processing problems is
that even a modest sized image requires an enormous number of weights. One way to solve this
problem is to replace the fully-connected matrix of weights at the first layer with one that is only
locally-connected. For instance, if the input image is 400x400 pixels and the first hidden layer is a
40x40 PE Axon, then each PE of the hidden layer would be fed by a 10x10 matrix of weighted
connections from the input. In this way, much of the spatial information of the image is preserved
while the number of weights is drastically reduced (from 256,000,000 for the fully-connected case
down to 160,000 for the locally-connected case).

The instance weight vectors for both the activation and backpropagation components are allocated
and freed as follows:

DLLData *allocSynapse(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 int colSize = (int)inCols/outCols,
 colRemainder = inCols-outCols*colSize,
 rowSize = (int)inRows/outRows,
 rowRemainder = inRows-outRows*rowSize,
 totalWeights = outRows*outCols*rowSize*colSize +
 outRows*rowSize*colRemainder +
outCols*colSize*rowRemainder +
 rowRemainder*colRemainder;
 setWeights(instance, totalWeights);
 return instance;
}

The number of weights to allocate is based on ratio of input PEs to output PEs. This algorithm
takes into account the case when the rows or columns do not divide evenly.

The call to freeDLLInstance handles the freeing of the instance weights:

void freeSynapse(DLLData *instance)
{
 freeDLLInstance(instance);
}

The implementation for the activation DLL ("localsyn") is as follows:

void performSynapse(
 DLLData *instance, // Pointer to instance data
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
)
{
 int i, j, k, l, startRow, stopRow, startCol, stopCol,

 827

 colSize = (int)inCols/outCols,
 colRemainder = inCols-outCols*colSize,
 rowSize = (int)inRows/outRows,
 rowRemainder = inRows-outRows*rowSize;
 NSFloat *weights = getWeights(instance);
 for (i=0; i<outRows; i++)
 for (j=0; j<outCols; j++) {
 startRow = rowSize*i;
 if (i == outRows-1)
 stopRow = inRows;
 else
 stopRow = rowSize*(i+1);
 startCol = colSize*j;
 if (j == outCols-1)
 stopCol = inCols;
 else
 stopCol = colSize*(j+1);
 for (k=startRow; k<stopRow; k++)
 for (l=startCol; l<stopCol; l++)
 out(i,j) += *weights++ * in(k,l);
 }
}

Compare this with the implementation for the base component (Synapse):

int i,
 inCount=inRows*inCols,
 outCount=outRows*outCols,
 count = inCount<outCount? inCount: outCount;
for (i=0; i<count; i++)
 output[i] += input[i];

The implementation for the backpropagation DLL ("bklocals") is as follows:

void performBackSynapse(
 DLLData *instance, // Pointer to instance data
 DLLData *dualInstance // Pointer to the forward synapses instance data
 NSFloat *errorIn, // Pointer to the input error layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *errorOut, // Pointer to the output error layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols, // Number of columns of PEs in the output layer
 NSFloat *input // Pointer to output layer of forward synapse
)
{
 int i, j, k, l, startRow, stopRow, startCol, stopCol,
 colSize = (int)outCols/inCols,
 colRemainder = outCols-inCols*colSize,
 rowSize = (int)outRows/inRows,
 rowRemainder = outRows-inRows*rowSize;
 NSFloat *weights = getWeights(dualInstance);
 NSFloat *gradients = getWeights(instance);
 for (i=0; i<inRows; i++)
 for (j=0; j<inCols; j++) {

 828

 startRow = rowSize*i;
 if (i == inRows-1)
 stopRow = outRows;
 else
 stopRow = rowSize*(i+1);
 startCol = colSize*j;
 if (j == inCols-1)
 stopCol = outCols;
 else
 stopCol = colSize*(j+1);
 for (k=startRow; k<stopRow; k++)
 for (l=startCol; l<stopCol; l++) {
 out(k,l) += *weights++ * in(i,j);
 *gradients++ += in(i,j) * activity(k,l);
 }
 }
}

Compare this with the implementation for the base component (BackSynapse):

int i,
 inCount=inRows*inCols,
 outCount=outRows*outCols,
 count=inCount<outCount? inCount: outCount;
for (i=0; i<count; i++)
 errorOut[i] += errorIn[i];

 See Also

ErrorCriterion

Loser Learn All DLL Example

Within the "DLLCUST/ErrCrit" directory is a DLL example entitled "loserlrn". This DLL implements a
modified version of the L2Criterion. Instead of backpropagating the sensitivities for all output PEs,
this algorithm only passes back the sensitivity data for the PE that has the highest error. The rest of
the sensitivity vector is forced to zero.

NSFloat performCriterion(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *costDerivative, // Pointer to the cost derivative vector,
 // i.e. output sensitivity
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *output, // Pointer to the output layer of the network
 NSFloat *desired // Pointer to the desired output vector, same
 // length as output layer
)
{
 int i,maxInt=0,length=rows*cols;

 829

 NSFloat cost = 0.0f;
 for (i=0; i<length; i++) {
 costDerivative[i] = desired[i] - output[i];
 cost += costDerivative[i]*costDerivative[i];
 if (fabs(costDerivative[i]) > fabs(costDerivative[maxInt]))
 maxInt = i;
 }
 for (i=0; i<length; i++)
 if (i != maxInt)
 costDerivative[i] = 0.0f;
 return cost;
}

Compare this with the implementation for the base component (L2Criterion):

int i,length=rows*cols;
NSFloat cost=0.0f;
for (i=0; i<length; i++) {
 costDerivative[i] = desired[i] - output[i];
 cost += costDerivative[i]*costDerivative[i];
}
return cost;

 See Also

GradientSearch

DeltaBarDelta with Limited Step DLL Example

Within the "DLLCUST/DeltaBar" directory is a DLL example entitled "limitdbd". This DLL
implements a modified version of the DeltaBarDelta. The base DeltaBarDelta component has an
adaptive step size. In some cases, this step size may grow too large and make the network
unstable. This DLL uses an instance parameter to allow the user to specify the maximum step size
that any PE can have. This parameter is defined within the allocation function:

DLLData *allocDeltaBarDelta(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int length, // Length of the weight vector
 BOOL individual // Indicates whether their is one learning rate for
 //all weights (FALSE),
 // or each weight has its own learning rate
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 2, 1, "Max Step", TRUE);
 setFloatParameter(instance, 2, 1, 0.1f, FALSE);
 if (getFloatParameter(instance, 2, 1) < 0)
 setFloatParameter(instance, 2, 1, 0.0f, TRUE);
 return instance;
}

 830

The parameter (stepMax) is then used to limit the step size of each PE:

void performDeltaBarDelta(
 DLLData *instance, // Pointer to instance data (may
be NULL)
 NSFloat *step, // Pointer to vector of learning
rates for each
 // weight
 int length, // Length of learning rate
vector
 NSFloat momentum, // Momentum rate for all weights
 NSFloat *delta, // Last weight Update
 NSFloat *gradient, // Gradient vector from backprop
component
 NSFloat *smoothedGradient, // Smoothed gradient vector
 NSFloat beta, // Multiplicative constant
 NSFloat kappa, // Additive constant
 NSFloat zeta // Smoothing factor
)
{
 int i;
 NSFloat stepMax = getFloatParameter(instance, 2, 1);
 for (i=0; i<length; i++) {
 if (smoothedGradient[i]*gradient[i] > 0)
 step[i] += kappa;
 else
 if (smoothedGradient[i]*gradient[i] < 0)
 step[i] -= beta*step[i];
 if (step[i] > stepMax)
 step[i] = stepMax;
 smoothedGradient[i] = (1-zeta)*gradient[i] +
zeta*smoothedGradient[i];
 }
}

Compare this with the implementation for the base component (DeltaBarDelta):

int i;
for (i=0; i<length; i++) {
 if (smoothedGradient[i]*gradient[i] > 0)
 step[i] += kappa;
 else
 if (smoothedGradient[i]*gradient[i] < 0)
 step[i] -= beta*step[i];
 smoothedGradient[i] = (1-zeta)*gradient[i] + zeta*smoothedGradient[i];
}

 See Also

 831

DeltaBarDelta with Exponential Step DLL Example

Within the "DLLCUST/DeltaBar" directory is a DLL example entitled "expdbd". This DLL further
modifies the DeltaBarDelta with Limited Step example. It simply multiplies kappa by an exponential
term when computing the step sizes.

void performDeltaBarDelta(
 DLLData *instance, // Pointer to instance data (may
be NULL)
 NSFloat *step, // Pointer to vector of learning
rates for each
 // weight
 int length, // Length of learning rate
vector
 NSFloat momentum, // Momentum rate for all weights
 NSFloat *delta, // Last weight Update
 NSFloat *gradient, // Gradient vector from backprop
component
 NSFloat *smoothedGradient, // Smoothed gradient vector
 NSFloat beta, // Multiplicative constant
 NSFloat kappa, // Additive constant
 NSFloat zeta // Smoothing factor
)
{
 int i;
 NSFloat gamma = getFloatParameter(instance, 2, 1);
 NSFloat stepMax = getFloatParameter(instance, 3, 1);
 for (i=0; i<length; i++) {
 if (smoothedGradient[i]*gradient[i] > 0)
 step[i] += kappa * (NSFloat)exp(-
gamma*fabs(smoothedGradient[i]));
 else
 if (smoothedGradient[i]*gradient[i] < 0)
 step[i] -= beta*step[i];
 if (step[i] > stepMax)
 step[i] = stepMax;
 smoothedGradient[i] = (1-zeta)*gradient[i] +
zeta*smoothedGradient[i];
 }
}

 See Also

General Input and Postprocessor

Strange Attractor DLL Example

Within the "DLLCUST/PrePost" directory is a DLL example entitled "strange". This DLL implements
a strange attractor using the DLLInput component.

 832

A strange attractor is a chaotic system whose path in phase space is fully determined, but never
recurs. The particular attractor implemented by this DLL is represented by the following 3
equations:

 x[n+1] = sin(a*y[n]) - z[n]cos(b*x[n])

 y[n+1] = z[n]sin(c*x[n]) - cos(d*y[n])

 z[n+1] = sin(x[n])

The user specifies the 4 constants (a, b, c, and d) and the starting point (x[0], y[0], and z[0]). The
system state described by the 3-D point and the constants will ultimately converge to the attractor
after enough iterations.

The implementation of the strange attractor requires the use of 7 user-defined parameters (the 4
constants and the starting point) and 3 instance variables (the previous x, y, and z).

void performInput(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 int i;
 NSFloat a = getFloatParameter(instance, 1, 1);
 NSFloat b = getFloatParameter(instance, 2, 1);
 NSFloat c = getFloatParameter(instance, 3, 1);
 NSFloat d = getFloatParameter(instance, 4, 1);
 NSFloat *lastResult = (NSFloat*)getUserData(instance);
 data[0] = (NSFloat)(sin(a*lastResult[1]) -
 lastResult[2]*cos(b*lastResult[0]));
 if (rows*cols > 1) {
 data[1] = (NSFloat)(lastResult[2]*sin(c*lastResult[0]) -
 cos(d*lastResult[1]));
 if (rows*cols > 2) {
 data[2] = (NSFloat)sin(lastResult[0]);
 lastResult[2] = data[2];
 }
 lastResult[1] = data[1];
 }
 lastResult[0] = data[0];
}

void networkReset(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 int i;
 NSFloat Xo = getFloatParameter(instance, 1, 2);
 NSFloat Yo = getFloatParameter(instance, 2, 2);
 NSFloat Zo = getFloatParameter(instance, 3, 2);
 NSFloat *lastData = (NSFloat*)getUserData(instance);
 lastData[0] = Xo;

 833

 lastData[1] = Yo;
 lastData[2] = Zo;
}

DLLData *allocInput(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setUserData(instance, calloc(3, sizeof(NSFloat)));
 setParameterName(instance, 1, 1, "a", FALSE);
 setFloatParameter(instance, 1, 1, 2.24f, FALSE);
 setParameterName(instance, 2, 1, "b", FALSE);
 setFloatParameter(instance, 2, 1, 0.43f, FALSE);
 setParameterName(instance, 3, 1, "c", FALSE);
 setFloatParameter(instance, 3, 1, -0.65f, FALSE);
 setParameterName(instance, 4, 1, "d", FALSE);
 setFloatParameter(instance, 4, 1, -2.43f, FALSE);
 setParameterName(instance, 1, 2, "Xo", FALSE);
 setFloatParameter(instance, 1, 2, 0.0f, FALSE);
 setParameterName(instance, 2, 2, "Yo", FALSE);
 setFloatParameter(instance, 2, 2, 0.0f, FALSE);
 setParameterName(instance, 3, 2, "Zo", FALSE);
 setFloatParameter(instance, 3, 2, 0.0f, FALSE);
 networkReset(instance);
 return instance;
}

void freeInput(DLLData *instance)
{
 if (getUserData(instance))
 free(getUserData(instance));
 freeDLLInstance(instance);
}

 See Also

Logistic Map DLL Example

Within the "DLLCUST/PrePost" directory is a DLL example entitled "logistic". This DLL implements
a logistic map using the DLLInput component.

This logistic map is a simple difference equation that produces widely varying time series (constant
periodic, quasi-periodic, and chaotic) depending upon the value of the parameter R:

 R=0.8 - Signal decays to 0

 R=2.9 - Alternating decay to a value greater than 0

 834

 R=3.2 - Cycle of period 2

 R=3.5 - Cycle of period 4

 R>4 - Chaos

The user specifies the value of R and the initial value of the series (seed). The implementation
requires the use of 2 user-defined parameters and an instance data structure that stores the result
from the last computation.

typedef struct {
 NSFloat *data;
 int length;
} ResultData;

void performInput(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 int i;
 NSFloat constant = getFloatParameter(instance, 2, 1);
 ResultData *results = (ResultData*)getUserData(instance);
 for (i=0; i<results->length; i++)
 data[i] = results->data[i] = constant * results->data[i] *
 (1 - results->data[i]);
}

void networkReset(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 int i;
 NSFloat seed = getFloatParameter(instance, 3, 1);
 ResultData *results = (ResultData*)getUserData(instance);
 for (i=0; i<results->length; i++)
 results->data[i] = seed;
}

DLLData *allocInput(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 ResultData *results = calloc(1,sizeof(ResultData));
 results->length = rows*cols;
 results->data = calloc(results->length, sizeof(NSFloat));
 setUserData(instance, results);
 setParameterName(instance, 2, 1, "Constant", FALSE);
 setFloatParameter(instance, 2, 1, 4.0f, FALSE);
 setParameterName(instance, 3, 1, "Seed", FALSE);

 835

 setFloatParameter(instance, 3, 1, 0.4f, FALSE);
 networkReset(instance);
 return instance;
}

void freeInput(DLLData *instance)
{
 ResultData *results = (ResultData*)getUserData(instance);
 if (results) {
 free(results->data);
 free(results);
 }
 freeDLLInstance(instance);
}

 See Also

Discriminant Function DLL Example

Within the "DLLCUST/PrePost" directory is a DLL example entitled "discrim". This DLL is used to
map the discriminant function between two input channels. It does this by scanning through a range
of input values and plotting the network’s output. This example demonstrates the customization of
the Postprocessor and Input components. It is also a good example of how global variables are
used to share data between two DLLs.

Using the DLL

In order to understand the source code for this DLL, you should start by seeing it in action. Using
the NeuralBuilder, build a MLP using the file "XOR.ASC" as the input file. Tag the x and y columns
as Input and the z column as Desired. Leave the rest of the default settings and Build the network.
Run the simulation to verify that the network easily learns the XOR problem.

Remove all of the probes except the MegaScope/DataStorage at the error. Attach a
DLLPostprocessor at the Activity access point of the output TanhAxon. From the Engine property
page of the DLLPostprocessor, load the "discrim" DLL. From the DLL property page, set the
number of Steps to 30. From the Access property page, set the Access During switch to Testing.
Stamp an ImageViewer on top of the DLLPostprocessor at the Postprocessor Output access point
and open its window. This will display a 30x30 image.

Stamp a StaticTestSetControl on top of the BackStaticControl. Set the Training Epochs / Test to 1
(to display after every epoch) and the Exemplars / Epoch to 900 (the number of points that are
plotted).

Stack a DLLInput on top of the input File. From the Engine property page of the DLLInput, load the
same DLL ("DLLCUST\PrePost\discrim.dll"). Keep the default settings of the DLL property page.
From the Access property page, set the Access During switch to Testing. Reset and run the
network.

 836

Discriminant function of the XOR problem

The corners of this graph represent the input data. As expected, the lower-left (-1,-1) and upper-
right (1,1) corners have an output of 0, and the other to two corners have an output of 1. The plot
shows how the network responds to every combination of values in between (in increments of
0.066667).

Functions used by the DLLPostprocessor

The DLLPostprocessor has two parameters defined by the user. The Plot Channel specifies which
PE to use as the output. The number of Steps specifies the resolution of the function. Note that the
number of output channels is Steps squared.

#define matrix(i,j) output[j+(i)*buffer.steps]

typedef struct {
 int steps;
 int currentX, currentY;
 int xChannel, yChannel;
 int plotChannel;
 NSFloat minX, maxX;
 NSFloat minY, maxY;
} BufferData;

 837

BufferData buffer = {0, 0, 0, 0, 0, 0, 0.0f, 0.0f, 0.0f, 0.0f};

BOOL performPrePost(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input data
 NSFloat *output, // Pointer to the output data
 int rows, // Number of rows of data
 int cols, // Number of cols of data
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
 // or postprocessor
)
{
 matrix(buffer.currentX++, buffer.currentY) = input[buffer.plotChannel];
 if (buffer.currentX >= buffer.steps) {
 buffer.currentX = 0;
 if (++buffer.currentY >= buffer.steps) {
 buffer.currentY = 0;
 return TRUE;
 }
 }
 return FALSE; // Return whether to inject this sample or to call
 // performPrePost with another sample
}

void networkReset(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 buffer.currentX = 0;
 buffer.currentY = 0;
}

DLLData *allocPrePost(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int *rows, // Number of rows of data attached above -- can
be
 // changed. The default is the number of rows
 // attached below.
 int *cols, // Number of cols of data attached above -- can
be
 // changed. The default is the number of cols
 // attached below.
 BOOL preprocessor // Flag to indicate whether this is a
preprocessor
 // or postprocessor
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 if (preprocessor)
 MessageBox(NULL,
 "Confusion matrix should only be used as a postprocessor",
 "Warning", MB_OK);
 setParameterName(instance, 2, 1, "Steps", TRUE);
 setIntParameter(instance, 2, 1, 10, FALSE);
 setParameterName(instance, 3, 1, "Plot Channel", TRUE);
 setIntParameter(instance, 3, 1, 0, FALSE);

 838

 buffer.steps = getIntParameter(instance, 2, 1);
 buffer.plotChannel = getIntParameter(instance, 3, 1);
 if (buffer.steps < 2)
 buffer.steps = 2;
 if (buffer.plotChannel >= *rows * *cols)
 buffer.plotChannel = *rows * *cols - 1;
 setIntParameter(instance, 2, 1, buffer.steps, TRUE);
 setIntParameter(instance, 3, 1, buffer.plotChannel, TRUE);
 *rows = *cols = buffer.steps;
 networkReset(instance);
 return instance;
}

void freePrePost(DLLData *instance)
{
 freeDLLInstance(instance);
}

Functions used by the DLLInput

The DLLInput has six parameters defined by the user. The X Channel and Y Channel parameters
specify which two PEs to use as the function’s input. The Min X, Min Y, Max X and Max Y
parameters specify the range of values to scan across. Note that the resolution of the scan is
defined by the Steps parameter of the DLLPostprocessor.

void performInput(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 data[buffer.xChannel] = buffer.minX +
 buffer.currentX*(buffer.maxX-
buffer.minX)/(buffer.steps-1);
 data[buffer.yChannel] = buffer.minY +
 buffer.currentY*(buffer.maxY-
buffer.minY)/(buffer.steps-1);
}

DLLData *allocInput(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 2, 0, "X Channel", TRUE);
 setIntParameter(instance, 2, 0, 0, FALSE);
 setParameterName(instance, 2, 1, "Min X", TRUE);
 setFloatParameter(instance, 2, 1, -1.0f, FALSE);
 setParameterName(instance, 2, 2, "Max X", TRUE);
 setFloatParameter(instance, 2, 2, 1.0f, FALSE);
 setParameterName(instance, 3, 0, "Y Channel", TRUE);
 setIntParameter(instance, 3, 0, 1, FALSE);
 setParameterName(instance, 3, 1, "Min Y", TRUE);

 839

 setFloatParameter(instance, 3, 1, -1.0f, FALSE);
 setParameterName(instance, 3, 2, "Max Y", TRUE);
 setFloatParameter(instance, 3, 2, 1.0f, FALSE);
 buffer.xChannel = getIntParameter(instance, 2, 0);
 buffer.minX = getFloatParameter(instance, 2, 1);
 buffer.maxX = getFloatParameter(instance, 2, 2);
 buffer.yChannel = getIntParameter(instance, 3, 0);
 buffer.minY = getFloatParameter(instance, 3, 1);
 buffer.maxY = getFloatParameter(instance, 3, 2);
 if (buffer.minX >= buffer.maxX)
 buffer.maxX = buffer.minX + 0.1f;
 if (buffer.minY >= buffer.maxY)
 buffer.maxY = buffer.minY + 0.1f;
 if (buffer.xChannel >= rows*cols)
 buffer.xChannel = rows*cols-1;
 if (buffer.yChannel >= rows*cols)
 buffer.yChannel = rows*cols-1;
 setIntParameter(instance, 2, 0, buffer.xChannel, TRUE);
 setFloatParameter(instance, 2, 2, buffer.maxX, TRUE);
 setIntParameter(instance, 3, 0, buffer.yChannel, TRUE);
 setFloatParameter(instance, 3, 2, buffer.maxY, TRUE);
 networkReset(instance);
 return instance;
}

void freeInput(DLLData *instance)
{
 freeDLLInstance(instance);
}

 See Also

Scaling DLL Example

Within the "DLLCUST/PrePost" directory is a DLL example entitled "scale". This DLL provides the
ability to apply a scale and an offset to either the input or output data. This is most commonly used
to denormalize the network output to match the units of the desired response data.

Using the DLL

This DLL is public to all versions of NeuroSolutions. Below is a procedure for using this DLL to
denormalize your output data. From a working neural network, perform the following steps:

Remove the probe attached to the Activity access point of the Axon at the network output.

Stamp a DLLPostprocessor probe where the old probe was.

Stamp a copy of the old probe on the DLLPostprocessor and move it to the Postprocessor Output
access point.

 840

� From the Engine property page of the DLLPostprocessor inspector, click the Load button.

� Select the file "Scale.dll".

� Open the inspector for the File component attached to the ErrorCriterion component.

� Switch to the Stream property page set the Normalize switch to ON and the By Channel switch to OFF.

� Switch to the File property page and press the Translate button if it is present (otherwise, the number of
exemplars should be displayed).

� Switch back to the Stream property page and record the values for Amp and Offset.

� Open the DLLPostprocessor inspector and switch to the DLL property page.

� Set the Offset parameter to be -1 times the Offset from the File inspector and set the Gain parameter to be
1/Amp.

 841

� Run the network. The displayed output data should be denormalized to match the desired output data.

How the DLL is Implemented

This DLL has 2 instance parameters. The Gain specifies the multiplicative constant and the Offset
specifies the additive constant.

BOOL performPrePost(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input // Pointer to the input data
 NSFloat *output, // Pointer to the output data
 int rows, // Number of rows of data
 int cols, // Number of cols of data
 BOOL preprocessor // Flag to indicate whether this is a preprocessor or
postprocessor
)
{
 int i, length=rows*cols;
 float gain = getFloatParameter(instance, 2, 1);
 float offset = getFloatParameter(instance, 3, 1);

 for (i=0; i<length; i++)
 output[i] += gain*(input[i] + offset);
 return TRUE;
}

DLLData *allocPrePost(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int *rows, // Number of rows of data attached above -- can be
 // changed. The default is the number of rows
 // attached below.
 int *cols, // Number of cols of data attached above -- can be
 // changed. The default is the number of cols
 // attached below.
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
 // or postprocessor
)
{

 842

 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 2, 1, "Gain", FALSE);
 setFloatParameter(instance, 2, 1, 1.0f, FALSE);
 setParameterName(instance, 3, 1, "Offset", FALSE);
 setFloatParameter(instance, 3, 1, 0.0f, FALSE);
 return instance;
}

void freePrePost(DLLData *instance)
{
 freeDLLInstance(instance);
}

 See Also

Function Generator

Sawtooth DLL Example

Within the "DLLCUST/Function" directory there is an example entitled "sawtooth". This DLL
implements a sawtooth waveform that is built into the base Function component. Note that the sine
is the default waveform for the Function DLLs and is defined within the "DLLSYS/Function"
directory.

The implementation of this function is very straight forward -- given the angle in radians, compute
the output of the function.

NSFloat performFunction(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat x // Current angle in radians
)
{
 return (NSFloat)((x - PI)/PI);
}

 See Also

Triangle DLL Example

Within the "DLLCUST/Function" directory there is an example entitled "triangle". This DLL
implements a triangle waveform that is built in to the base Function component. Note that the sine
is the default waveform for the Function DLLs and is defined within the "DLLSYS/Function"
directory.

The implementation of this function is very straight forward -- given the angle in radians, compute
the output of the function.

 843

NSFloat performFunction(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat x // Current angle in radians
)
{
 return (NSFloat)(x<PI? x/PI: (-x + 2*PI)/PI);
}

 See Also

Square DLL Example

Within the "DLLCUST/Function" directory there is an example entitled "square". This DLL
implements a square waveform that is built in to the base Function component. Note that the sine is
the default waveform for the Function DLLs and is defined within the "DLLSYS/Function" directory.

The implementation of this function is very straight forward -- given the angle in radians, compute
the output of the function.

NSFloat performFunction(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat x // Current angle in radians
)
{
 return x<PI? 1.0f: -1.0f;
}

 See Also

Decayed Sine DLL Example

The "decaysin" DLL implements a decayed sinewave function. This requires the use of two
additional user parameters and an additional instance variable. The cycles parameter specifies how
many sub-cycles are contained within each cycle of the function. The decay parameter is a floating
point number between 0 and 1 that specifies how fast the output decays (decay rate). The
amplitudeDecay variable is used to store the current level of decay.

NSFloat performFunction(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat x // Current angle in radians
)
{
 int cycles = getIntParameter(instance, 3, 1);
 NSFloat decay = getFloatParameter(instance, 2, 1);
 NSFloat *amplitudeDecay = getUserData(instance);
 NSFloat function = (NSFloat)(*amplitudeDecay*sin(cycles*x));

 844

 *amplitudeDecay *= decay;
 return function;
}

void getReadyToFire(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 NSFloat *amplitudeDecay = getUserData(instance);
 *amplitudeDecay = 1.0f;
}

DLLData *allocFunction(
 DLLData *oldInstance // Pointer to the last instance if reallocating
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 3, 1, "Cycles", FALSE);
 setIntParameter(instance, 3, 1, 5, FALSE);
 setParameterName(instance, 2, 1, "Decay", FALSE);
 setFloatParameter(instance, 2, 1, 0.9f, FALSE);
 setUserData(instance, malloc(sizeof(NSFloat)));
 return instance;
}

void freeFunction(DLLData *instance)
{
 free((NSFloat*)getUserData(instance));
 freeDLLInstance(instance);
}

 See Also

Pulse DLL Example

The "pulse" DLL implements a pulse function. This requires the use of an additional user
parameter. The width parameter is a floating point number between 0 and 1. The function returns a
1 if the current angle (x) is less than the width and 0 otherwise.

NSFloat performFunction(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat x // Current angle in radians
)
{
 NSFloat width = getFloatParameter(instance, 2, 1);
 return x<width? 1.0f: 0;
}

DLLData *allocFunction(
 DLLData *oldInstance // Pointer to the last instance if reallocating
)

 845

{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 2, 1, "Width", FALSE);
 setFloatParameter(instance, 2, 1, 0.1f, FALSE);
 return instance;
}

void freeFunction(DLLData *instance)
{
 freeDLLInstance(instance);
}

 See Also

Noise Generator

Gaussian DLL Example

Within the "DLLCUST/Noise" directory is a DLL example entitled "gaussian". This DLL implements
one of the noise generators built into the base Noise component. Note that the uniform is the
default distribution for the Noise DLLs and is defined within the "DLLSYS/Noise" directory.

The implementation of this function is very straightforward; given the mean and variance specified
by the user, generate a random number.

NSFloat performNoise(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat variance, // Variance set within components inspector
 NSFloat mean // Mean set within components inspector
)
{
 return (variance*(NSFloat)(sqrt(-2*log((NSFloat)rand()/
 RAND_MAX))*cos(2*PI*((NSFloat)rand()/RAND_MAX))) + mean);
}

 See Also

Decayed Gaussian DLL Example

Within the "DLLCUST/Noise" directory is a DLL example entitled "decgaus". The "decgaus" DLL
implements a decayed version of its base counterpart. This requires the use of one additional user
parameter and an additional instance variable. The decay parameter is a floating point number
between 0 and 1 that specifies how fast the variance decays (decay rate). The varianceDecay
variable is used to store the current level of decay.

NSFloat performNoise(

 846

 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat variance, // Variance set within components inspector
 NSFloat mean // Mean set within components inspector
)
{
 NSFloat decay = getFloatParameter(instance, 2, 1);
 NSFloat *varianceDecay = getUserData(instance);
 NSFloat noise = (variance * *varianceDecay*
 (NSFloat)(sqrt(-2*log((NSFloat)rand()/RAND_MAX))*
 cos(2*PI*((NSFloat)rand()/RAND_MAX))) + mean);
 *varianceDecay *= decay;
 return noise;
}

void getReadyToFire(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 NSFloat *varianceDecay = getUserData(instance);
 *varianceDecay = 1.0f;
}

DLLData *allocNoise(
 DLLData *oldInstance // Pointer to the last instance if reallocating
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 2, 1, "Decay", FALSE);
 setFloatParameter(instance, 2, 1, 0.9f, FALSE);
 setUserData(instance, malloc(sizeof(NSFloat)));
 return instance;
}

void freeNoise(DLLData *instance)
{
 free((NSFloat*)getUserData(instance));
 freeDLLInstance(instance);
}

 See Also

Decayed Uniform DLL Example

Within the "DLLCUST/Noise" directory is a DLL example entitled "decunifm". The "decunifm" DLL
implements a decayed version of its base counterpart. The structure of the implementation
matches that of the decayed gaussian DLL.

NSFloat performNoise(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat variance, // Variance set within components inspector
 NSFloat mean // Mean set within components inspector

 847

)
{
 NSFloat decay = getFloatParameter(instance, 2, 1);
 NSFloat *varianceDecay = getUserData(instance);
 NSFloat noise = ((NSFloat)sqrt(3*variance * *varianceDecay)*
 (NSFloat)(((NSFloat)rand()/RAND_MAX)-
0.5)+mean);
 *varianceDecay *= decay;
 return noise;
}

 See Also

File

Binary DLL Example

Within the "DLLCUST/File" directory is a DLL example entitled "binary". This DLL implements the
binary translator that is built into the base File component. Note that the ASCII translator is the
default for the File DLLs and is defined within the "DLLSYS/File" directory.

The implementation of this function is very straightforward -- the fileOpen function opens the file
and the performFile function reads the next floating point number.

BOOL performFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 FILE *file, // Pointer to the opened file
 NSFloat *sample // Location to place next sample
)
{
 if (fread(sample, sizeof(NSFloat), 1, (FILE*)file))
 return TRUE;
 fclose((FILE*)file);
 return FALSE;
}

FILE *openFile(DLLData *instance, const char *filePath)
{
 return fopen(filePath, "rb");
}

 See Also

Binary Float DLL Example

 848

Within the "DLLCUST/File" directory is a DLL example entitled "binfloat". The "binfloat" DLL is a
specialized version of the binary translator. It allows the user to specify a segment of the data to
read. This requires the use of two additional integer parameters and an additional instance
variable. The offset parameter specifies how many samples to skip from the beginning of the file
and the duration parameter specifies how many samples to read. The durationCount variable is
used to store the number of samples that have been skipped so far.

BOOL performFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 FILE *file, // Pointer to the opened file
 NSFloat *sample // Location to place next sample
)
{
 int duration = getIntParameter(instance, 2, 1);
 int *durationCount = (int*)getUserData(instance);
 if ((!duration || ((*durationCount)++ < duration)) && fread(sample,
sizeof(NSFloat), 1, (FILE*)file))
 return TRUE;
 *durationCount = 0;
 fclose((FILE*)file);
 return FALSE;
}

FILE *openFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 const char *filePath // Full path of file to be opened
)
{
 NSFloat *buffer;
 FILE *file = fopen(filePath, "rb");
 int offset = getIntParameter(instance, 1, 1);
 if (offset) {
 buffer = malloc(offset*sizeof(NSFloat));
 fread(buffer, sizeof(NSFloat), offset, file);
 free(buffer);
 }
 return file;
}

DLLData *allocFile(
 DLLData *oldInstance // Pointer to the last instance if reallocating
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 1, 1, "Offset", FALSE);
 setIntParameter(instance, 1, 1, 0, FALSE);
 setParameterName(instance, 2, 1, "Duration", FALSE);
 setIntParameter(instance, 2, 1, 0, FALSE);
 setUserData(instance, calloc(1,sizeof(int)));
 return instance;
}

void freeFile(DLLData *instance)
{
 free((int*)getUserData(instance));
 freeDLLInstance(instance);
}

 849

 See Also

Binary Integer DLL Example

Within the "DLLCUST/File" directory is a DLL example entitled "binint". The "binint" DLL is a
specialized version of the binary translator. It allows the user to specify a segment of the data to
read. This requires the use of two additional integer parameters and an additional instance
variable. The offset parameter specifies how many samples to skip from the beginning of the file
and the duration parameter specifies how many samples to read. The durationCount variable is
used to store the number of samples that have been skipped so far. This translator reads binary
data stored as integers (4-bytes).

BOOL performFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 FILE *file, // Pointer to the opened file
 NSFloat *sample // Location to place next sample
)
{
 int duration = getIntParameter(instance, 2, 1);
 int *durationCount = (int*)getUserData(instance);
 int typedSample;
 if ((!duration || ((*durationCount)++ < duration)) &&
 fread(&typedSample, sizeof(int), 1, (FILE*)file)) {
 *sample = (NSFloat)typedSample;
 return TRUE;
 }
 *durationCount = 0;
 fclose((FILE*)file);
 return FALSE;
}

 See Also

Binary Short DLL Example

Within the "DLLCUST/File" directory is a DLL example entitled "binshort". The "binshort" DLL is a
specialized version of the binary translator. It allows the user to specify a segment of the data to
read. This requires the use of two additional integer parameters and an additional instance
variable. The offset parameter specifies how many samples to skip from the beginning of the file
and the duration parameter specifies how many samples to read. The durationCount variable is
used to store the number of samples that have been skipped so far. This translator reads binary
data stored as short integers (2-bytes).

BOOL performFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 FILE *file, // Pointer to the opened file
 NSFloat *sample // Location to place next sample

 850

)
{
 int duration = getIntParameter(instance, 2, 1);
 int *durationCount = (int*)getUserData(instance);
 short typedSample;
 if ((!duration || ((*durationCount)++ < duration)) &&
 fread(&typedSample, sizeof(short), 1, (FILE*)file))
{
 *sample = (NSFloat)typedSample;
 return TRUE;
 }
 *durationCount = 0;
 fclose((FILE*)file);
 return FALSE;
}

 See Also

Binary Character DLL Example

Within the "DLLCUST/File" directory is a DLL example entitled "binchar". The "binchar" DLL is a
specialized version of the binary translator. It allows the user to specify a segment of the data to
read. This requires the use of two additional integer parameters and an additional instance
variable. The offset parameter specifies how many samples to skip from the beginning of the file
and the duration parameter specifies how many samples to read. The durationCount variable is
used to store the number of samples that have been skipped so far. This translator reads binary
data stored as characters (1-byte).

BOOL performFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 FILE *file, // Pointer to the opened file
 NSFloat *sample // Location to place next sample
)
{
 int duration = getIntParameter(instance, 2, 1);
 int *durationCount = (int*)getUserData(instance);
 char typedSample;
 if ((!duration || ((*durationCount)++ < duration)) &&
 fread(&typedSample, sizeof(char), 1, (FILE*)file)) {
 *sample = (NSFloat)typedSample;
 return TRUE;
 }
 *durationCount = 0;
 fclose((FILE*)file);
 return FALSE;
}

 See Also

 851

Preprocessor

Averaging Filter DLL Example

Within the "DLLCUST/PrePost" directory is a DLL examples entitled "average". This DLL
implements an averaging filter, which averages the last N samples of input for each channel and
writes the result to the output for each call to performPrePost. This requires the use of a user-
defined parameter (N) and a vector of instance data (bufferData) to store the past samples.

#define buffer(i, j) bufferData->data[j+(i)*bufferData->length]

typedef struct {
 int length;
 NSFloat *data;
} AverageData;

BOOL performPrePost(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input // Pointer to the input data
 NSFloat *output, // Pointer to the output data
 int rows, // Number of rows of data
 int cols // Number of cols of data
 BOOL preprocessor // Flag to indicate preprocessor or postprocessor
)
{
 int i, j;
 int N = getIntParameter(instance, 2, 1);
 AverageData *bufferData = getUserData(instance);
 NSFloat result;
 for (i=N-1; i>0; i--)
 for (j=0; j<bufferData->length; j++)
 buffer(i,j) = buffer(i-1,j);
 for (j=0; j<bufferData->length; j++)
 buffer(0,j) = input[j];
 if (!preprocessor) //Zero output buffer if postprocessor (since it is
local)
 for (j=0; j<bufferData->length; j++)
 output[j] = 0.0f;
 for (j=0; j<bufferData->length; j++) {
 result = 0.0f;
 for (i=0; i<N; i++)
 result += buffer(i,j);
 output[j] += result/N;
 }
 return TRUE;
}

void networkReset(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 int i, j;
 int N = getIntParameter(instance, 2, 1);
 AverageData *bufferData = getUserData(instance);
 for (i=0; i<N; i++)

 852

 for (j=0; j<bufferData->length; j++)
 buffer(i,j) = 0.0f;
}

DLLData *allocPrePost(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int *rows, // Number of rows of data attached above -- can be
 // changed. The default is the number of rows
 // attached below.
 int *cols, // Number of cols of data attached above -- can be
 // changed. The default is the number of cols
 // attached below.
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
 // or postprocessor
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 AverageData *bufferData = calloc(1,sizeof(AverageData));
 setParameterName(instance, 2, 1, "N", TRUE);
 setIntParameter(instance, 2, 1, 4, FALSE);
 bufferData->length = *rows * *cols;
 bufferData->data = calloc(bufferData->length*
 getIntParameter(instance, 2, 1),
sizeof(NSFloat));
 setUserData(instance, bufferData);
 return instance;
}

void freePrePost(DLLData *instance)
{
 AverageData *bufferData = getUserData(instance);
 if (bufferData) {
 free(bufferData->data);
 free(bufferData);
 }
 freeDLLInstance(instance);
}

 See Also

Decimator Filter DLL Example

Within the "DLLCUST/PrePost" directory is a DLL examples entitled "decimate". This DLL
implements a decimator filter, which reduces the amount of input data by skipping samples. In
order to keep as much of the input information as possible, the samples are averaged together to
produce the output. This is similar to the averaging filter except that the implementation passes the
results to the output one out of every N calls to performPrePost instead of every call. For the other
N-1 calls, it simply stores the input into the bufferData vector. The boolean value returned is used
to specify when to process the output.

#define buffer(i, j) bufferData->data[j+(i)*bufferData->length]

 853

typedef struct {
 int length;
 NSFloat *data;
} AverageData;

BOOL performPrePost(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input // Pointer to the input data
 NSFloat *output, // Pointer to the output data
 int rows, // Number of rows of data
 int cols, // Number of cols of data
 BOOL preprocessor // Flag to indicate a preprocessor or postprocessor
)
{
 int i, j;
 int N = getIntParameter(instance, 2, 1);
 DecimatorData *bufferData = getUserData(instance);
 NSFloat result;
 for (i=N-1; i>0; i--)
 for (j=0; j<bufferData->length; j++)
 buffer(i,j) = buffer(i-1,j);
 for (j=0; j<bufferData->length; j++)
 buffer(0,j) = input[j];
 if (++bufferData->count >= N) {
 bufferData->count = 0;
 if (!preprocessor) //Zero buffer if postprocessor (since it is
local)
 for (j=0; j<bufferData->length; j++)
 output[j] = 0.0f;
 for (j=0; j<bufferData->length; j++) {
 result = 0.0f;
 for (i=0; i<N; i++)
 result += buffer(i,j);
 output[j] = result/N;
 }
 return TRUE;
 }
 return FALSE;
}

void networkReset(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 int i, j;
 int N = getIntParameter(instance, 2, 1);
 DecimatorData *bufferData = getUserData(instance);
 for (i=0; i<N; i++)
 for (j=0; j<bufferData->length; j++)
 buffer(i,j) = 0.0f;
 bufferData->count = 0;
}

DLLData *allocPrePost(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int *rows, // Number of rows of data attached above -- can be

 854

 // changed. The default is the number of rows
 // attached below.
 int *cols, // Number of cols of data attached above -- can be
 // changed. The default is the number of cols
 // attached below.
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
 // or postprocessor
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 DecimatorData *bufferData = calloc(1,sizeof(DecimatorData));
 setParameterName(instance, 2, 1, "N", TRUE);
 setIntParameter(instance, 2, 1, 4, FALSE);
 bufferData->length = *rows * *cols;
 bufferData->data = calloc(bufferData->length*
 getIntParameter(instance, 2, 1),
sizeof(NSFloat));
 setUserData(instance, bufferData);
 return instance;
}

void freePrePost(DLLData *instance)
{
 DecimatorData *bufferData = getUserData(instance);
 if (bufferData) {
 free(bufferData->data);
 free(bufferData);
 }
 freeDLLInstance(instance);
}

 See Also

Extractor DLL Example

Within the "DLLCUST/PrePost" directory is a DLL example entitled "extract". This DLL provides the
ability to extract a subset of channels from the input and copy them to a subset of output channels.
This example also demonstrates how on-line parameter verification is implemented.

This DLL has 4 instance parameters. The fromLength or toLength (depending on the value of the
preprocessor flag of the allocPrePost function) specifies the number of channels for the component
stacked above by setting the rows and cols of the allocPrePost function. The fromStart parameter
specifies the first channel of input to extract and the fromStop parameter specifies the last channel
of input (the rest of the input channels are ignored). The toStart parameter specifies the channel of
output that will be mapped to the fromStart channel of input. The remaining extracted input
channels are mapped sequentially to the output from this point. Therefore, there is no need to
specify a toStop parameter (since toStop = toStart + fromStop - toStop).

BOOL performPrePost(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input // Pointer to the input data
 NSFloat *output, // Pointer to the output data

 855

 int rows, // Number of rows of data
 int cols, // Number of cols of data
 BOOL preprocessor // Flag to indicate preprocessor or postprocessor
)
{
 int i;
 int fromLength = getIntParameter(instance, 2, 0);
 int fromStart = getIntParameter(instance, 2, 1);
 int fromStop = getIntParameter(instance, 2, 2);
 int toStart = getIntParameter(instance, 3, 1);
 if (!preprocessor) //Zero buffer if postprocessor (since it is local)
 for (i=0; i<bufferData->length; i++)
 output[i] = 0.0f;
 for (i=0; i<=fromStop-fromStart; i++)
 output[toStart+i] += input[fromStart+i];
 return TRUE;
}

DLLData *allocPrePost(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int *rows, // Number of rows of data attached above -- can be
 // changed. The default is the number of rows
 // attached below.
 int *cols, // Number of cols of data attached above -- can be
 // changed. The default is the number of cols
 // attached below.
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
 // or postprocessor
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 int fromLength, toLength, fromStart, fromStop, toStart, returnMax;

 setParameterName(instance, 2, 1, "From Start", TRUE);
 setIntParameter(instance, 2, 1, 0, FALSE);
 setParameterName(instance, 2, 2, "From Stop", TRUE);
 setIntParameter(instance, 2, 2, 0, FALSE);
 setParameterName(instance, 3, 1, "To Start", TRUE);
 setIntParameter(instance, 3, 1, 0, FALSE);
 if (preprocessor) {
 setParameterName(instance, 2, 0, "From Length", TRUE);
 setIntParameter(instance, 2, 0, 1, FALSE);
 returnMax = fromLength = getIntParameter(instance, 2, 0);
 toLength = *rows * *cols;
 } else {
 setParameterName(instance, 2, 0, "To Length", TRUE);
 setIntParameter(instance, 2, 0, 1, FALSE);
 fromLength = *rows * *cols;
 returnMax = toLength = getIntParameter(instance, 2, 0);
 }
 if (fromLength < 1)
 fromLength = 1;
 fromStart = getIntParameter(instance, 2, 1);
 if (fromStart >= fromLength)
 fromStart = fromLength - 1;
 fromStop = getIntParameter(instance, 2, 2);

 856

 if (fromStop < fromStart)
 fromStop = fromStart;
 if (fromStop >= fromLength)
 fromStop = fromLength - 1;
 toStart = getIntParameter(instance, 3, 1);
 if (toStart >= toLength)
 toStart = toLength - 1;
 if (toStart > toLength - (fromStop-fromStart+1))
 fromStop = fromStart + (toLength-toStart-1);
 setIntParameter(instance, 2, 1, fromStart, TRUE);
 setIntParameter(instance, 2, 2, fromStop, TRUE);
 setIntParameter(instance, 3, 1, toStart, TRUE);
 setIntParameter(instance, 2, 0, returnMax, TRUE);
 *rows = returnMax;
 *cols = 1;
 return instance;
}

void freePrePost(DLLData *instance)
{
 freeDLLInstance(instance);
}

 See Also

Postprocessor and Probe

Confusion Matrix DLL Example

Within the "DLLCUST/PrePost" directory is a DLL example entitled "confuse". This DLL is used to
determine the percentage of correctly classified exemplars for each output class. This example
demonstrates the customization of the Postprocessor and Probe components. It is also a good
example of how global variables are used to share data between two DLLs.

Using the DLL

In order to understand the source code for this DLL, you should start by seeing it in action. Run the
Character Recognition example from the NeuroSolutions Demo Panel (press Run Demo from the
Utilities menu). Quit the demo after the network has run the first experiment. You now have a fully
functioning network to work from.

Remove all of the probes except the MegaScope/DataStorage at the error. Attach a
DLLPostprocessor at the Activity access point of the SoftMaxAxon (the network output). From the
Engine property page of the DLLPostprocessor, load the "confuse" DLL. Switch to the DLL page of
the inspector and enter "TRUE" if you want the output classes computed as percentages or
"FALSE" if you want the raw tallies for each output class. Attach a MatrixViewer on top of the
DLLPostprocessor at the Postprocessor Output access point and open its window. Stack a Hinton
on top of the MatrixViewer and open its window. Reset and run the network.

 857

Confusion Matrix of the Character Recognition Example

As the network learns, you will see the output of the confusion matrix form a diagonal line (after
about 100 epochs). This indicates that the network has fully learned the problem. Normally, this
matrix will consist of output percentages (if the "Percentages" DLL parameter of the
DLLPostprocessor is set to "TRUE"), but since the training set consists of only one exemplar per
output class, the percentage is either 100 or 0 for each channel. Note that the x-axis represents the
network output and the y-axis represents the correct output class.

This type of classification problem is a special case. It requires that the exemplars be ordered by
the output class, and that there is the same number of exemplars for each class. This example
contained only one exemplar per output class, but there could have been several sets of digits of
differing fonts.

Since most classification problems do not fit within these constraints, this use of the DLL may not
be that useful. However, this same DLL can be used by a Probe at the desired output to implement
a confusion matrix for any classification problem that has each output class represented by the
activity of a single PE.

Run the Sleep Staging example from the NeuroSolutions Demo Panel. Quit the demo after the
network has run the first experiment. Remove all of the probes except for the error and the desired
output, and set the Epochs/Experiment to 100. Attach to the network output a DLLPostprocessor, a
Hinton, and a MatrixViewer, and configure them the same way as described above. Select the
BarChart stacked on top of the desired output File, switch to the Engine property page of the
inspector, and load the same DLL ("DLLCUST\PrePost\Confuse.dll"). Reset and run the network.
After about 60 epochs, the confusion matrix should look something like this:

 858

Confusion Matrix of the Sleep Staging Example

In the first example, the DLLPreprocessor knew which PE was supposed to be active because the
exemplars were ordered. For this example, it is the job of the Probe DLL attached to the desired
output File to communicate with the DLLPreprocessor to tell it the active PE for each exemplar.
This is done by sharing global variables within the same DLL source file.

Functions used by the DLLPostprocessor
#define matrix(i,j) buffer.output[j+i*buffer.length]

typedef struct {
 int length;
 int currentClass;
 int currentOutput;
 BOOL report, zero;
 BOOL outputProbe;
 NSFloat *output;
} BufferData;

BufferData buffer = {0, 0, 0, FALSE, FALSE, FALSE, NULL};

/***/
/* Activation of Postprocessor component */
__declspec(dllexport) BOOL performPrePost(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input data
 NSFloat *output, // Pointer to the output data
 int rows, // Number of rows of data
 int cols, // Number of cols of data
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
or postprocessor
)
{
 int i, j;
 NSFloat total;
 BOOL percentFlag = getBoolParameter(instance, 1, 1);

 buffer.output = output;

 859

 buffer.currentOutput = 0;
 if (buffer.zero) {
 for (i=0; i<buffer.length; i++)
 for (j=0; j<buffer.length; j++)
 matrix(i,j) = 0.0f;
 buffer.zero = FALSE;
 }
 for (i=1; i<buffer.length; i++)
 if (input[i] > input[buffer.currentOutput])
 buffer.currentOutput = i;
 if (!buffer.outputProbe) {
 matrix(buffer.currentClass++, buffer.currentOutput) += 1;
 if (buffer.currentClass >= buffer.length)
 buffer.currentClass = 0;
 }
 if (buffer.report) {
 buffer.report = FALSE;
 buffer.zero = TRUE;
 if (percentFlag) {
 for (i=0; i<buffer.length; i++) {
 total = 0.0f;
 for (j=0; j<buffer.length; j++)
 total += matrix(i,j);
 if (total > 0)
 for (j=0; j<buffer.length; j++)
 matrix(i,j) = 100*matrix(i,j)/total;
 }
 }
 return TRUE;
 }
 return FALSE; // Return whether to inject this sample or to call
performPrePost with another sample
}

/**/
/* Called every time the network is reset */
__declspec(dllexport) void networkReset(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 int i,j;
 if (buffer.output) {
 for (i=0; i<buffer.length; i++)
 for (j=0; j<buffer.length; j++)
 matrix(i,j) = 0.0f;
 }
 buffer.zero = FALSE;
 epochEnded(instance);
}

/**/
/* Management of instance data (OPTIONAL) */
__declspec(dllexport) DLLData *allocPrePost(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int *rows, // Number of rows of output data, can be changed to
reflect a diffenent number for the input data
 int *cols, // Number of cols of output data, can be changed to

 860

reflect a diffenent number for the input data
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
or postprocessor
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 int size = *rows * *cols;

 if (preprocessor)
 MessageBox(NULL, "Confusion matrix should only be used as a
postprocessor", "Warning", MB_OK);
 *rows = *cols = size;
 buffer.length = size;
 buffer.report = FALSE;
 buffer.zero = FALSE;

 setParameterName(instance, 1, 1, "Percent", FALSE);
 setBoolParameter(instance, 1, 1, FALSE, FALSE);
 return instance;
}

__declspec(dllexport) void freePrePost(DLLData *instance)
{
 buffer.output = NULL;
}

Functions used by the Probe
/**********************************/
/* Activation of output component */
__declspec(dllexport) BOOL performOutput(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 int i,j;

 if (buffer.zero) {
 for (i=0; i<buffer.length; i++)
 for (j=0; j<buffer.length; j++)
 matrix(i,j) = 0.0f;
 buffer.zero = FALSE;
 }

 if (buffer.output) {
 buffer.currentClass = 0;
 for (i=1; i<buffer.length; i++)
 if (data[i] > data[buffer.currentClass])
 buffer.currentClass = i;
 matrix(buffer.currentClass, buffer.currentOutput) += 1;
 }
 return TRUE;
}

/************************************/

 861

/* Called at the end of every epoch */
__declspec(dllexport) void epochEnded(
 DLLData *instance // Pointer to instance data (may be NULL)
)
{
 if (!buffer.outputProbe)
 buffer.currentClass = 0;
 buffer.report = TRUE;
}

__declspec(dllexport) DLLData *allocOutput(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 buffer.outputProbe = TRUE;
 return NULL;
}

__declspec(dllexport) void freeOutput(DLLData *instance)
{
 buffer.outputProbe = FALSE;
}

 See Also

Transformer

Derivative DLL Example

Within the "DLLCUST/transfrm" directory there is a DLL example entitled "deriv". This DLL
demonstrates how to implement a signal transformer. The "deriv" DLL performs a simple derivative
approximation by outputting the difference between each pair of successive samples. It performs
this operation on each channel independently.

There is no instance data required for this operation, so the instance allocation and deallocation
functions are omitted. The implementation for the perform function is as follows:

BOOL performTransform(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the buffered data
 int length, // Length of the buffer to be transformed
 int channel // Current channel number
)
{
 int i;
 for (i=length-1; i>0; i--)
 data[i] = data[i] - data[i-1];

 862

 // Return whether or not to display this channel
 return TRUE;
}

This algorithm simply starts at the last sample in the buffer and scans backward while computing
the difference between the samples. Note that this function is called once for each channel, since
each channel has its own data buffer. The function returns TRUE to indicate that the probe
attached to this DLL should display all channels.

 See Also

Autocorrelation DLL Example

Within the "DLLCUST/transfrm" directory there is a DLL example entitled "autocorr". This DLL
demonstrates how to implement a signal transformer. The "autocorr" DLL performs an
autocorrelation operation on each channel independently. There is no instance data required for
this operation, so the instance allocation and deallocation functions are omitted. The
implementation for the perform function is as follows:

BOOL performTransform(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the buffered data
 int length, // Length of the buffer to be transformed
 int channel // Current channel number
)
{
 int i,j, start=0, stop=length;
 NSFloat *corr = (NSFloat*)calloc(length, sizeof(NSFloat));
 for (i=0; i<length; i++) {
 for (j=start; j<stop; j++)
 corr[i] += data[j]*data[j-start];
 start++;
 }
 for (i=0; i<length; i++)
 data[i] = corr[i];
 free(corr);
 // Return whether or not to display this channel
 return TRUE;
}

This algorithm scans through the data buffer while storing the computed correlation information in
the corr buffer. Then the corr buffer is copied to the data buffer to produce the output of the
Transformer. The function returns TRUE to indicate that the probe attached to this DLL should
display all channels.

 See Also

 863

Crosscorrelation DLL Example

Within the "DLLCUST/transfrm" directory there is a DLL example entitled "crosscor". This DLL
demonstrates how to implement a signal transformer. The "crosscor" DLL performs a
crosscorrelation operation between two channels of the data buffer to produce a single channel of
output. The two channels are selected by the user from the DLL property page of the inspector.
These instance parameters are defined within the instance allocation function:

DLLData *allocTransform(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int length, // Length of the buffer to be transformed
 int channels // Number of channels to be transformed
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 setParameterName(instance, 2, 1, "Chan X");
 setIntParameter(instance, 2, 1, 0, FALSE);
 setParameterName(instance, 2, 2, "Chan Y");
 setIntParameter(instance, 2, 2, 1, FALSE);
 return instance;
}

The perform function is implemented as follows:
BOOL performTransform(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the buffered data
 int length, // Length of the buffer to be transformed
 int channel // Current channal number
)
{
 NSFloat *corr, *firstChannel=(NSFloat*)getUserData(instance);
 BOOL displayChannel=FALSE;
 int i, j, start=0,
 channel1=getIntParameter(instance, 2, 1),
 channel2=getIntParameter(instance, 2, 2);
 if ((channel == channel1) || (channel == channel2)) {
 if (channel1 == channel2)
 firstChannel = data;
 if (firstChannel) {
 corr = (NSFloat*)calloc(length, sizeof(NSFloat));
 for (i=0; i<length; i++) {
 for (j=start; j<length; j++)
 corr[i] += data[j]*firstChannel[j-start];
 start++;
 }
 for (i=0; i<length; i++)
 data[i] = corr[i];
 setUserData(instance, NULL);
 displayChannel = TRUE;
 free(corr);
 } else
 setUserData(instance, data);
 }
 return displayChannel;

 864

}

This algorithm is similar to that of the autocorrelation, except that the correlation is based on two
channels instead of one. The two channel numbers are defined by the user and stored as instance
parameters. Also, there is only one channel displayed by the Probe attached to the DLL instead of
displaying an output channel for every input channel.

Recall that each call to performTransform represents only one channel of data. In order to use the
data from two channels at once, the DLL must store a pointer to the data of the first correlation
channel. The call to setUserData stores this pointer as part of the instance data. When
performTransform is called during the second correlation channel, then getUserData is called to
retrieve the data pointer of the first correlation channel.

Once the correlation is computed based on the two channels, the corr buffer is copied the data
buffer. This is the only time that the data should be displayed by the probe attached to the DLL.
This is why displayChannel is set to TRUE after the correlation has been computed. Note that this
only occurs when channel is equal to the second correlation channel.

 See Also

Customizing NeuroSolutions Components using
DLLs
Customizing an Activation Component

Customizing an Activation Component using DLLs
Introduction

Activation components consist of the Axon and Synapse families. Customizing any of these
components for supervised learning requires the creation of a DLL for both the activation
component and the corresponding backprop dual.

To get started, simply build a breadboard that contains an activation/backprop pair that closely
resembles the components that you want to create. Select the activation component and press the
New button from the Engine Inspector property page of the inspector. This will create a DLL that
matches the functionality of the base component. Edit the source code to change the functionality
and press the Compile button.

When an activation DLL is created, the default DLL for the corresponding backprop component is
automatically created (assuming that the backprop component is attached). Edit and Compile the
source code for the backprop component. Run the network to test your new components.
Activation

Within the DLLData structure containing The DLLData Structure, there is a mechanism for storing
Adding Adaptable Weights to the Instance Data . These weights are in addition to any weights that
are contained within the base component.
Backprop

The responsibility of the backprop component is to compute the gradients and sensitivities (the
gradient and error vectors) for the activation component. If the activation component contains

 865

adaptable weights within its instance data, then the backprop component must also allocate a
corresponding weight vector and use it to store the computed gradients.

 See Also

Customizing an Axon using DLLs
Protocols:

Activation

PerformAxon DLL Protocol

PerformBiasAxon DLL Protocol

PerformContextAxon DLL Protocol

PerformGammaAxon DLL Protocol

PerformLinearAxon DLL Protocol

PerformTDNNAxon DLL Protocol

Backprop

PerformBackAxon DLL Protocol

PerformBackBiasAxon DLL Protocol

PerformBackContextAxon DLL Protocol

PerformBackGammaAxon DLL Protocol

PerformBackLinearAxon DLL Protocol

PerformBackTDNNAxon DLL Protocol

Examples:

Adjustable sigmoid

Adjustable hyperbolic tangent

Adjustable linear

TanhAxon with gain

Customizing a Synapse using DLLs
Protocols:

Activation

PerformSynapse DLL Protocol

 866

PerformFullSynapse DLL Protocol

Backprop

PerformBackSynapse DLL Protocol

PerformBackFullSynapse DLL Protocol

Examples:

Locally-Connected Synapse DLL Example

Subset FullSynapse DLL Example

Customizing an ErrorCriterion Component

Customizing an ErrorCriterion using DLLs
Description:

ErrorCriteria DLLs are used to customize the computation of the backpropagated sensitivities and
the cost (error).

Protocols:

PerformCriterion DLL Protocol

Examples:

Loser Learn All DLL Example

Customizing a Gradient Search Component

Customizing a Gradient Search component using DLLs
Description:

ErrorCriterion DLLs are used to customize the computation of the backpropagated sensitivities and
the cost (error).

Protocols:

PerformDeltaBarDelta DLL Protocol

PerformMomentum DLL Protocol

PerformQuickprop DLL Protocol

PerformStep DLL Protocol

 867

Examples:

DeltaBarDelta with Limited Step DLL Example

DeltaBarDelta with Exponential Step DLL Example

Customizing an Input Component

Customizing an Input Component using DLLs
Introduction:

The base components of the Input family consist of a function generator (Function), a noise
generator (Noise), and a file reader (File). Each of these components can be customized by
implementing a DLL. There are two additional input components that require the use of a DLL in
order to function: the DLLInput and the DLLPreprocessor. The first allows you to inject any data
into the network through a function call and the second is used to preprocess the data from another
Input source before it is injected into the network.

To get started, simply stamp an Axon on the breadboard, then stamp one of the Input components
on the PreActivity access point of the Axon. Stamp a StaticControl on the breadboard and set the
Exemplars/Epoch to 1000. Stamp a MegaScope/DataStorage pair on the Activity access point of
the Axon. Select the Input component and press the New button from the Engine Inspector
property page of the inspector. This will create a copy of the default DLL for the base component.
Edit the source code to change the functionality and press the Compile button. Run the network
and monitor the MegaScope display to test your DLL.

 See Also

Customizing a General Input using DLLs
Protocols:

PerformInput DLL Protocol

Examples:

Strange attractor

Logistic function

Discriminant Function DLL Example

Customizing a Function using DLLs
Protocols:

PerformFunction DLL Protocol

Examples:

Sawtooth

 868

Triangle

Square

Decayed Sine

Pulse

Customizing a Noise using DLLs
Protocols:

PerformNoise DLL Protocol

Examples:

Gaussian

Decayed Gaussian

Decayed Uniform

Customizing a File using DLLs
Protocols:

PerformFile DLL Protocol

Examples:

Binary

Binary float

Binary Integer

Binary Short

Binary character

Customizing a Preprocessor or Postprocessor using DLLs
Protocols:

PerformPrePost DLL Protocol

Examples:

Averaging Filter DLL Example

Extractor DLL Example

Scaling

Confusion Matrix DLL Example

 869

Discriminant Function DLL Example

Customizing a Probe Component

Customizing a Probe Component using DLLs
Introduction:

Any data that is accessed by a Static Probe can be forwarded on to a function within a DLL
conforming to thePerformOutput DLL Protocol . This protocol is passive, meaning that it does not
alter the network data. To process static data for further use by other static probes, the
DLLPostprocessor component is used in conjunction with a DLL conforming to the PerformPrePost
DLL Protocol To process buffered data for use by the TemporalProbe Family , the Transformer
component is used in conjunction with a DLL conforming to the PerformTransform DLL Protocol .

 See Also

Customizing a General Probe using DLLs
Protocols:

PerformOutput DLL Protocol

Examples:

Confusion Matrix DLL Example

Customizing a Transformer using DLLs
Protocols:

PerformTransform DLL Protocol

Examples:

Derivative

Autocorrelation

Crosscorrelation

Customizing a Scheduler Component

Customizing a Scheduler using DLLs
Description:

Scheduler DLLs are used to customize the scheduling of internal network parameters (i.e.,
processing elements). The DLL implementation applies a function of beta to the vector of PEs.

Protocols:

 870

PerformScheduler DLL Protocol

Examples:

There are no DLL examples available for the Schedulers. Instead, use the DLL implementations of
the base components as a reference:

LinearScheduler DLL Implementation

LogScheduler DLL Implementation

ExpScheduler DLL Implementation

Customizing a Transmitter Component

Customizing a Transmitter using DLLs
Description:

DLLs for Transmitters are currently restricted to the ThresholdTransmitter. The DLL implementation
returns a boolean value indicating whether or not the user-defined threshold has been crossed
during a particular exemplar.

Protocols:

PerformThresholdTransmitter DLL Protocol

Examples:

There are no DLL examples available for the ThresholdTransmitter. Instead, use the DLL
implementation of the base component as a reference:

ThresholdTransmitter DLL Implementation

Customizing an Unsupervised Component

Customizing an Unsupervised component using DLLs

The Unsupervised components are Synapses that update their own weights. The basis for
implementing an Unsupervised DLL is to modify the matrix of weights given a matrix of PEs at the
input, a matrix of PEs at the output, and a user-defined step size. The performCompetitive and
performKohonen protocols pass additional parameters that are specific to those algorithms.

Protocols:

PerformUnsupervised DLL Protocol

PerformCompetitive DLL Protocol

PerformKohonen DLL Protocol

 871

Examples:

There are no DLL examples available for the Unsupervised family. Instead, use the DLL
implementations of the base components as a reference:

Competitive DLL Implementation

LineKohonen DLL Implementation

SquareKohonen DLL Implementation

DiamondKohonen DLL Implementation

HebbianFull DLL Implementation

OjasFull DLL Implementation

SangersFull DLL Implementation

DLL Protocols
Axon Family Protocols
PerformAxonProtocol

Description:

This protocol is used for members of the Axon family that do not contain any adaptable weights,
nor parameters.

DLL Prototype:

void performAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
data

 872

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in
row-major order.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.

Memory Management Protocol:

DLLData *allocAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

Axon DLL Implementation

WinnerTakeAllAxon DLL Implementation

 See Also

PerformBiasAxon Protocol

Description:

This protocol is used for members of the Axon family that contain an adaptable bias vector, one
bias term for each of the Axon’s PEs.

 873

DLL Prototype:

void performBiasAxon(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
data

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in
row-major order.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
bias

Pointer to a block of floating point numbers that contain the bias term for each of the Axon’s
processing elements (PEs). The size and structure of the block match that of data.

Memory Management Protocol:

DLLData *allocBiasAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBiasAxon(DLLData *instance)
{

 874

 freeDLLInstance(instance);
}

Component Implementations:

BiasAxon DLL Implementation

ThresholdAxon DLL Implementation

 See Also

PerformLinearAxon Protocol

Description:

This protocol is used for members of the Axon family that have all of the parameters contained
within the PerformBiasAxon DLL Protocol protocol, in addition to a beta term. This term is the
same for all PEs and is used to specify the slope of the Axon’s transfer function.

DLL Prototype:

void performLinearAxon(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *bias // Pointer to the layer's bias vector
 NSFloat beta // Slope gain scalar, same for all PEs
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData
structure.
data

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in
row-major order.
rows

 875

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
bias

Pointer to a block of floating point numbers that contain the bias term for each of the Axon’s
processing elements (PEs). The size and structure of the block match that of data.
beta

A scalar that is applied to all PEs to provide the slope of the transfer function.

Memory Management Prototypes:

DLLData *allocLinearAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeLinearAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

LinearAxon DLL Implementation

LinearSigmoidAxon DLL Implementation

LinearTanhAxon DLL Implementation

SigmoidAxon DLL Implementation

TanhAxon DLL Implementation

GaussianAxon DLL Implementation

 See Also

 876

MemoryAxon Family Protocols
PerformContextAxon Protocol

Description:

This protocol is used for members of the MemoryAxon family that have a vector of adaptable time
constants, one for each processing element (PE), and a user-defined scaling factor that is applied
to all PEs.

DLL Prototype:

void performContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta // Linear scaling factor (user-defined)
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData
structure.
data

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements
(PEs). The size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are
arranged in row-major order.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
delayedData

Pointer to a block of floating point numbers that contains the state of data one time step back. The
size and structure of the block match that of data.
tau

 877

Pointer to a vector of adaptable time constants, one for each processing element. Each of these
constants determines the memory depth for the corresponding PE.
beta

Scaling factor that is specified by the user within the ContextAxon inspector.

Memory Management Protocol:

DLLData *allocContextAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeContextAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

ContextAxon DLL Implementation

IntegratorAxon DLL Implementation

SigmoidContextAxon DLL Implementation

TanhContextAxon DLL Implementation

SigmoidIntegratorAxon DLL Implementation

TanhIntegratorAxon DLL Implementation

 See Also

PerformGammaAxon Protocol

Description:

This protocol is used for members of the MemoryAxon family that have a vector of memory taps
and an adaptable Gamma coefficient for each input channel. Components conforming to this
protocol are responsible for updating the data vector, given the gamma coefficient vector and the
delayedData vector. The latter contains the state of the taps τ time steps back. The tap delay τ is
specified by the user within the TDNNAxon’s inspector and is not included within the prototype.

 878

DLL Prototype:

void performGammaAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 int taps // Number of memory taps
 NSFloat *gamma // Pointer to vector of gamma coefficients
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
data

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements
(PEs). The number of input channels is rows*cols. The number of outputs, which is the number of
floats within the data vector, is channels*taps. The following diagram illustrates the structure of the
data. This example has 4 channels and 3 taps.

rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.

 879

cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
delayedData

Pointer to a block of floating point numbers that contains the state of data τ time steps back. The
tap delay τ is specified by the user within the TDNNAxon’s inspector and is not included within the
prototype. The size and structure of the block match that of data.
taps

The number of memory taps stored for each channel. Note that the total number of PEs is
rows*cols*taps.
gamma

Pointer to the vector of adaptable Gamma coefficients, one for each input channel (rows*cols).

Memory Management Prototypes:

DLLData *allocGammaAxon (
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 int taps // Number of taps attached to each channel
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeGammaAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

GammaAxon DLL Implementation

LaguarreAxon DLL Implementation

 See Also

PerformTDNNAxon Protocol

 880

Description:

This protocol is used for members of the MemoryAxon family that have a vector of memory taps for
each input channel. Components conforming to this protocol are responsible for updating this
vector, given a second vector that contains the state of the taps τ time steps back. The tap delay τ
is specified by the user within the TDNNAxon’s inspector and is not included within the prototype.

DLL Prototype:

void performTDNNAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 NSFloat *delayedData, // Pointer to a delayed PE layer
 int taps // Number of memory taps
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
data

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements
(PEs). The number of input channels is rows*cols. The number of outputs, which is the number of
floats within the data vector, is channels*taps. The following diagram illustrates the structure of the
data. This example has 4 channels and 3 taps.

 881

rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
delayedData

Pointer to a block of floating point numbers that contains the state of data τ time steps back. The
tap delay τ is specified by the user within the TDNNAxon’s inspector and is not included within the
prototype. The size and structure of the block match that of data.
taps

The number of memory taps stored for each channel. Note that the total number of PEs is
rows*cols*taps.

Memory Management Prototypes:

DLLData *allocTDNNAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 int taps // Number of taps attached to each channel
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeTDNNAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

TDNNAxon DLL Implementation

Example:

 882

A TDNNAxon with 1 channel and three taps is fed 6 samples of data. The first row of the table is
tap[0], which is the Axon’s input. Each column of the table shows that state of the 3 taps at a given
instant in time. Compare the two tables and note how the tap delay τ determines the memory
depth.

It is worth pointing out how the delayedData vector fits into this example. If τ is set to 1, then
delayedData would point to a block containing the values found in the time=4 column of the first
table. Likewise, If τ is set to 2, then delayedData would point to a block containing the values found
in the time=3 column of the second table.

 See Also

FuzzyAxon Family Protocols
PerformFuzzyAxon Protocol

Description:

This protocol is used for members of the FuzzyAxon family that have all of the parameters
contained within the PerformAxon DLL Protocol protocol, with the addition of four parameters.

DLL Prototype:

void performFuzzyAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the layer of processing elements (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *param, // Pointer to the layer of parameters for the MFs
 int paramIndex, // Index into the param array
 int PEIndex, // Index into the processing elements of the

 883

Axon
 // (the data array)
 NSFloat *returnVal // Value to return after applying the MF
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData
structure.
data

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in
row-major order.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
param

Pointer to a block of floating point numbers that contain the set of membership function parameters
for each of the Axon’s input processing elements (PEs).
paramIndex

The base index into the parameter array.
PEIndex

The index of the current input PE that is being calculated.
returnVal

Pointer to a floating point value, used to store the result of the membership function calculation.

Memory Management Prototypes:

DLLData *allocFuzzyAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;

 884

}

void freeFuzzyAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BellFuzzyAxon DLL Implementation

GaussianFuzzyAxon DLL Implementation

Synapse Family Protocols
PerformFullSynapse Protocol

Description:

This protocol is similar to the PerformSynapse DLL Protocol protocol except that the Synapse also
contains a matrix of adaptable weights. This matrix is used to provide a fully-connected linear
mapping between the PEs of the Axon at the input of the Synapse and the PEs of the Axon at the
output of the Synapse.

DLL Prototype:

void performFullSynapse(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
 NSFloat *weights // Pointer to the fully-connected weight matrix
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. Memory Management of Instance Data for documentation on the
DLLData structure.
input

 885

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values
are arranged in row-major order.
inRows

The number of rows of processing elements contained within the feeding Axon, as specified within
its inspector.
inCols

The number of columns of processing elements contained within the feeding Axon, as specified
within its inspector.
output

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon
that is being fed by the Synapse. The size of the block in bytes is
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order.
outRows

The number of rows of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
outCols

The number of columns of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
weights

Pointer to a block of floating point numbers that contain the adaptable weights of the Synapse. The
size of the block in bytes is inRows*inCols*outRows*outCols*sizeof(NSFloat), and the floating point
values are arranged in input-major order.

Memory Management Prototypes:

DLLData *allocFullSynapse(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in output layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeFullSynapse(DLLData *instance)
{
 freeDLLInstance(instance);
}

 886

Component Implementations:

FullSynapse DLL Implementation

 See Also

PerformSynapse Protocol

Description:

This protocol is used for members of the Synapse family that simply provide a one-to-one mapping
from the inputs to the outputs. The delay between the input and output is defined by the user within
the Synapse Inspector (see Synapse Family).

DLL Prototype:

void performSynapse(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
input

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values
are arranged in row-major order.
inRows

The number of rows of processing elements contained within the feeding Axon, as specified within
its inspector.
inCols

The number of columns of processing elements contained within the feeding Axon, as specified
within its inspector.

 887

output

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon
that is being fed by the Synapse. The size of the block in bytes is
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order.
outRows

The number of rows of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
outCols

The number of columns of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.

Memory Management Prototypes:

DLLData *allocSynapse(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in output layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeSynapse(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

Synapse DLL Implementation

 See Also

BackAxon Family Protocols
PerformBackAxon Protocol

Description:

 888

This protocol is used to backpropagate the error of its dual Axon component. Note that the Axon
does not contain any adaptable weights.

DLL Prototype:

void performBackAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *data, // Pointer to the layer of PEs in the axon
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error // Pointer to the sensitivity vector
)

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the Axon). See The DLLData Structure for documentation on the DLLData structure.
data

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in
row-major order.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
error

Pointer to a block of floating point numbers that contain the sensitivity information for each of the
Axon’s processing elements (PEs). In other words, this is the error that gets backpropagated
through the network. The size and structure of the block match that of data.

Memory Management Prototypes:

DLLData *allocBackAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating

 889

 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBackAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BackAxon DLL Implementation

 See Also

PerformBackBiasAxon Protocol

Description:

This protocol is used to compute the backpropagated error vector and the bias gradient vector of its
dual Axon component, which conforms to the PerformBiasAxon DLL Protocol .

DLL Prototype:

void performBackBiasAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *data, // Pointer to the layer of PEs in the axon
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error // Pointer to the sensitivity vector
 NSFloat *gradient // Pointer to the bias gradient vector
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component

 890

using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the BiasAxon). See The DLLData Structure for documentation on the DLLData structure.
data

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in
row-major order.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
error

Pointer to a block of floating point numbers that contain the sensitivity information for each of the
Axon’s processing elements (PEs). In other words, this is the error that gets backpropagated
through the network. The size and structure of the block match that of data.
gradient

Pointer to a block of floating point numbers that contain the gradient information for each of the
Axon’s weights (i.e., bias terms). Note that this is the vector that is used by the Gradient Search
components. The size and structure of the block match that of bias.

Memory Management Prototypes:

DLLData *allocBackBiasAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBackBiasAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BackBiasAxon DLL Implementation

 891

 See Also

PerformBackLinearAxon Protocol

Description:

This protocol is used to compute the backpropagated error vector and the bias gradient vector of its
dual Axon component, which conforms to the PerformLinearAxon DLL Protocol protocol.

DLL Prototype:

void performBackLinearAxon(
 DLLData *instance, // Pointer to instance data
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *data, // Pointer to the layer of PEs
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error // Pointer to the sensitivity vector
 NSFloat *gradient // Pointer to the bias gradient vector
 NSFloat beta // Slope gain scalar, same for all PEs
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the LinearAxon). See The DLLData Structure for documentation on the DLLData structure.
data

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in
row-major order.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

 892

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
error

Pointer to a block of floating point numbers that contain the sensitivity information for each of the
Axon’s processing elements (PEs). In other words, this is the error that gets backpropagated
through the network. The size and structure of the block match that of data.
gradient

Pointer to a block of floating point numbers that contain the gradient information for each of the
Axon’s weights (i.e., bias terms). Note that this the vector that is used by the Gradient Search
components. The size and structure of the block match that of bias.
beta

A scalar that is applied to all PEs to provide the slope of the Axon’s transfer function.

Memory Management Prototypes:

DLLData *allocBackLinearAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBackLinearAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BackLinearAxon DLL Implementation

BackTanhAxon DLL Implementation

BackSigmoidAxon DLL Implementation

 See Also

PerformBackFuzzyAxon Protocol

Description:

 893

This protocol is used to compute the gradient for the specified parameter of the membership
function of its dual Axon component, which conforms to the PerformFuzzyAxon DLL Protocol
protocol.

DLL Prototype:

void performBackFuzzyAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data (may be
NULL)
 NSFloat *data, // Pointer to the layer of processing
elements (PEs)
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *error, // Pointer to the sensitivity vector
 NSFloat *param, // Pointer to the layer of parameters for
the MFs
 int paramIndex, // Index of the MF parameter
 int winnerIndex, // Index of the winning MF
 NSFloat winnerVal, // Value of the winning Input
 NSFloat *returnVal // Return value
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the LinearAxon). See The DLLData Structure for documentation on the DLLData structure.
data

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in
row-major order.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
error

 894

Pointer to a block of floating point numbers that contain the sensitivity information for each of the
Axon’s processing elements (PEs). In other words, this is the error that gets backpropagated
through the network. The size and structure of the block match that of data.
param

Pointer to a block of floating point numbers that contain the set of membership function parameters
for each of the dual Axon’s input processing elements (PEs).
paramIndex

The index into the parameter array that specifies the parameter whose derivative needs to be
calculated.
winnerIndex

The index of the dual Axon's membership function which produced the minimum value (i.e., the
winning MF).
winnerVal

The dual Axon's input PE value corresponding to the membership function which produced the
minimum value (i.e., the winning MF).
returnVal

The return value, which is the gradient (derivative) for the specified membership function
parameter.

Memory Management Prototypes:

DLLData *allocBackFuzzyAxon(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 DLLData *dualInstance, // Pointer to forward axon’s instance data (may be
NULL)
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 return instance;
}

void freeBackFuzzyAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BackBellFuzzyAxon DLL Implementation

BackGaussianFuzzyAxon DLL Implementation

 895

BackMemoryAxon Family Protocols
PerformBackContextAxon Protocol

Description:

This protocol is used to compute the backpropagated error vector and the gamma gradient vector
of its dual MemoryAxon component, which conforms to the PerformContextAxon DLL Protocol
protocol.

DLL Prototype:

void performBackContextAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 NSFloat *data, // Pointer to the layer of PEs
 NSFloat *tau, // Pointer to a vector of time constants
 NSFloat beta, // Linear scaling factor (user-defined)
 NSFloat *gradient // Pointer to the tau gradient vector
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the ContextAxon). See The DLLData Structure for documentation on the DLLData structure.
error

Pointer to a block of floating point numbers that contain the sensitivity information for each of the
MemoryAxon’s processing elements (PEs). In other words, this is the error that gets
backpropagated through the network. The size and structure of the block match that of data.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

 896

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
delayedError

Pointer to a block of floating point numbers that contains the state of error one time step back. The
size and structure of the block match that of error.
data

Pointer to a block of floating point numbers that contain the PEs of the activation dual (i.e., the
ContextAxon). The size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point
values are arranged in row-major order.
tau

Pointer to the vector of adaptable time constants contained within the activation dual (i.e., the
ContextAxon). These constants are adapted by the attached Gradient Search component by using
the gradient vector.

beta

Scaling factor that is specified by the user within the ContextAxon inspector.
gradient

Pointer to a block of floating point numbers that contain the gradient information for each of the
ContextAxon’s time constants. Note that this is the vector that is used by the Gradient Search
components. The size and structure of the block match that of tau.

Memory Management Prototypes:

DLLData *allocBackContextAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBackContextAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BackContextAxon DLL Implementation

BackIntegratorAxon DLL Implementation

BackSigmoidContextAxon DLL Implementation

BackTanhContextAxon DLL Implementation

 897

BackSigmoidIntegratorAxon DLL Implementation

BackTanhIntegratorAxon DLL Implementation

 See Also

PerformBackGammaAxon Protocol

Description:

This protocol is used to compute the backpropagated error vector and the gamma gradient vector
of its dual MemoryAxon component, which conforms to the PerformGammaAxon DLL Protocol
protocol.

DLL Prototype:

void performBackGammaAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *delayedError, // Pointer to the delayed error vector
 int taps, // Number of memory taps (user-defined)
 NSFloat *data // Pointer to the layers of (PEs)
 NSFloat *gamma, // Pointer to vector of gamma coefficients
 NSFloat *gradient // Pointer to the gamma gradient vector
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the GammaAxon). See The DLLData Structure for documentation on the DLLData structure.
error

Pointer to a block of floating point numbers that contain the sensitivity information for each of the
MemoryAxon’s processing elements (PEs). In other words, this is the error that gets
backpropagated through the network. The size and structure of the block match that of data.

 898

rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
delayedError

Pointer to a block of floating point numbers that contains the state of error τ time steps back. The
tap delay τ is specified by the user within the TDNNAxon’s inspector and is not included within the
prototype. The size and structure of the block match that of error.
taps

The number of memory taps stored for each channel. Note that the total number of PEs is
rows*cols*taps.
data

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements
(PEs). The number of input channels is rows*cols. The number of outputs, which is the number of
floats within the data vector, is channels*taps. The following diagram illustrates the structure of the
data. This example has 4 channels and 3 taps.

gamma

Pointer to the vector of adaptable Gamma coefficients of the GammaAxon, one for each input
channel (rows*cols).
gradient

 899

Pointer to a block of floating point numbers that contain the gradient information for each of the
GammaAxon’s gamma coefficients. Note that this is the vector that is used by the Gradient Search
components. The size and structure of the block match that of gamma.

Memory Management Prototypes:

DLLData *allocBackGammaAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 int taps // Number of taps attached to each channel
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBackGammaAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BackGammaAxon DLL Implementation

BackLaguarreAxon DLL Implementation

 See Also

PerformBackTDNNAxon Protocol

Description:

This protocol is used to compute the backpropagated error vector of its dual MemoryAxon
component, which conforms to the PerformTDNNAxon DLL Protocol protocol.

DLL Prototype:

void performBackTDNNAxon(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *error, // Pointer to the current sensitivity vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer

 900

 NSFloat *delayedError, // Pointer to the delayed error vector
 int taps, // Number of memory taps (user-defined)
 NSFloat *data // Pointer to the layers of (PEs)
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the TDNNAxon). See The DLLData Structure for documentation on the DLLData structure.
error

Pointer to a block of floating point numbers that contain the sensitivity information for each of the
MemoryAxon’s processing elements (PEs). In other words, this is the error that gets
backpropagated through the network. The size and structure of the block match that of data.
rows

The number of rows of processing elements contained within the Axon, as specified within the
component’s inspector.
cols

The number of columns of processing elements contained within the Axon, as specified within the
component’s inspector.
delayedError

Pointer to a block of floating point numbers that contains the state of error τ time steps back. The
tap delay τ is specified by the user within the TDNNAxon’s inspector and is not included within the
prototype. The size and structure of the block match that of error.
taps

The number of memory taps stored for each channel. Note that the total number of PEs is
rows*cols*taps.
data

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements
(PEs). The number of input channels is rows*cols. The number of outputs, which is the number of
floats within the data vector, is channels*taps. The following diagram illustrates the structure of the
data. This example has 4 channels and 3 taps.

 901

Memory Management Prototypes:

DLLData *allocBackTDNNAxon(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
 int taps // Number of taps attached to each channel
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBackTDNNAxon(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BackTDNNAxon DLL Implementation

 See Also

 902

BackSynapse Protocols
PerformBackFullSynapse Protocol

Description:

This protocol is used to compute the weight gradient matrix and the backpropagated error vector of
its dual Synapse component, which conforms to the PerformFullSynapse DLL Protocol protocol.
Note that the input and output are reversed from that of the activation dual component.

DLL Prototype:

void performBackFullSynapse(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *errorIn, // Pointer to the input error layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs at the input
 NSFloat *errorOut, // Pointer to the output error layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols, // Number of columns of PEs at the output
 NSFloat *input // Pointer to output PEs of forward synapse
 NSFloat *weights, // Pointer to fully-connected weight matrix
 NSFloat *gradients // Pointer to the weight gradient matrix);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the Synapse). The DLLData Structure for documentation on the DLLData structure.
errorIn

Pointer to the sensitivity vector of the PerformBackAxon DLL Protocol component that is feeding
the BackSynapse. The size and structure of the block match that of output from the activation dual
component.
inRows

The number of rows of processing elements associated with the BackAxon component that is
feeding the BackSynapse, as specified within the corresponding Axon’s inspector.
inCols

 903

The number of columns of processing elements associated with the BackAxon component that is
feeding the BackSynapse, as specified within the corresponding Axon’s inspector.
errorOut

Pointer to the sensitivity vector of the PerformBackAxon DLL Protocol component the
BackSynapse is feeding. In other words, this is the error that gets backpropagated through the
network. The size and structure of the block match that of input from the activation dual
component.
outRows

The number of rows of processing elements associated with the BackAxon component that the
BackSynapse is feeding, as specified within the corresponding Axon’s inspector.
outCols

The number of columns of processing elements associated with the BackAxon component that the
BackSynapse is feeding, as specified within the corresponding Axon’s inspector.
input

Pointer to a block of floating point numbers that contain the PEs of the activation dual (i.e., the
Synapse) at its output. The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the
floating point values are arranged in row-major order.
weights

Pointer to a block of floating point numbers that contain the adaptable weights of the activation dual
component (see PerformFullSynapse DLL Protocol).
gradient

Pointer to a block of floating point numbers that contain the matrix of gradients for each of the
Synapse’s weights. Note that this is the matrix that is used by the Gradient Search components.
The size and structure of the block match that of weights.

Memory Management Prototypes:

DLLData *allocBackFullSynapse(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in output layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBackFullSynapse(DLLData *instance)
{
 freeDLLInstance(instance);
}

 904

Component Implementations:

BackFullSynapse DLL Implementation

 See Also

PerformBackSynapse Protocol

Description:

This protocol is used to compute the backpropagated error vector of its dual Synapse component,
which conforms to the PerformSynapse DLL Protocol protocol. The delay between the output and
input is defined by the user within the inspector of the activation dual (see BackSynapse Family).
Note that the input and output are reversed from that of the activation dual component.

DLL Prototype:

void performBackSynapse(
 DLLData *instance, // Pointer to instance data (may be NULL)
 DLLData *dualInstance, // Pointer to forward axon’s instance data
 NSFloat *errorIn, // Pointer to the input error layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs at the input
 NSFloat *errorOut, // Pointer to the output error layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols, // Number of columns of PEs at the output
 NSFloat *input // Pointer to output PEs of forward synapse
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
dualInstance

Pointer to data that may have been allocated for the dual component in the activation plane (i.e.,
the Synapse). See The DLLData Structure for documentation on the DLLData structure.
errorIn

Pointer to the sensitivity vector of the PerformBackAxon DLL Protocol component that is feeding
the BackSynapse. The size and structure of the block match that of output from the activation dual
component.
inRows

 905

The number of rows of processing elements associated with the BackAxon component that is
feeding the BackSynapse, as specified within the corresponding Axon’s inspector.
inCols

The number of columns of processing elements associated with the BackAxon component that is
feeding the BackSynapse, as specified within the corresponding Axon’s inspector.
errorOut

Pointer to the sensitivity vector of the PerformBackAxon DLL Protocol component the
BackSynapse is feeding. In other words, this is the error that gets backpropagated through the
network. The size and structure of the block match that of input from the activation dual
component.
outRows

The number of rows of processing elements associated with the BackAxon component that the
BackSynapse is feeding, as specified within the corresponding Axon’s inspector.
outCols

The number of columns of processing elements associated with the BackAxon component that the
BackSynapse is feeding, as specified within the corresponding Axon’s inspector.
input

Pointer to a block of floating point numbers that contain the PEs of the activation dual (i.e., the
Synapse) at its output. The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the
floating point values are arranged in row-major order.

Memory Management Prototypes:

DLLData *allocBackSynapse(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in output layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeBackSynapse(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

BackSynapse DLL Implementation

 906

 See Also

ErrorCriteria Family Protocols
PerformCriterion Protocol

Description:

This protocol is used for members of the ErrorCriterion family. Implementations of this protocol are
responsible for computing the output sensitivity vector, which is the error used for the
backpropagation. The function returns the accumulated cost based on the particular criterion.

DLL Prototype:

NSFloat performCriterion(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *costDerivative, // Pointer to output sensitivity vector
 int rows, // Number of rows of PEs in the layer
 int cols, // Number of columns of PEs in the layer
 NSFloat *output, // Pointer to output layer of the network
 NSFloat *desired // Pointer to desired output vector
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData
structure.
error

Pointer to a block of floating point numbers that contain the sensitivity information for each of the
processing elements (PEs) of the Axon at the output of the network. In other words, this is the error
that gets backpropagated through the network. The size and structure of the block match that of
output.
rows

The number of rows of processing elements contained within the ErrorCriterion component. Note
that this should match the number of rows of the feeding Axon.
cols

The number of columns of processing elements contained within the ErrorCriterion component.
Note that this should match the number of columns of the feeding Axon.
output

 907

Pointer to a block of floating point numbers that contain the processing elements (PEs) at the
output of the network. The size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating
point values are arranged in row-major order.
desired

Pointer to a block of floating point numbers that contain the desired response of the corresponding
processing elements (PEs) at the output of the network. The size and structure of the block match
that of output.

Memory Management Protocol:

DLLData *allocCriterion(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeCriterion(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

L1Criterion DLL Implementation

L2Criterion DLL Implementation

LinfinityCriterion DLL Implementation

 See Also

GradientSearch Family Protocols
PerformDeltaBarDelta Protocol

Description:

The implementation of this protocol is responsible for computing the step size for each of the
weights based on the gradient from the backprop component, a smoothed version of the gradient
(smoothedGradient), and three constants (beta, kappa, and zeta) defined by the user within the
DeltaBarDelta inspector. The implementation is also responsible for computing the

 908

smoothedGradient vector. Note that the component itself implements the standard Momentum DLL
Implementation rule using the step sizes computed within the function.

DLL Prototype:

void performDeltaBarDelta(
 DLLData *instance, // Pointer to instance data
 NSFloat *step, // Pointer to vector of learning rates
 int length, // Length of learning rate vector
 NSFloat *smoothedGradient, // Smoothed gradient vector
 NSFloat *gradient, // Gradient vector from backprop comp.
 NSFloat beta, // Multiplicative constant
 NSFloat kappa, // Additive constant
 NSFloat zeta // Smoothing factor
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
step

Pointer to a block of floating point numbers that contain the learning rates (i.e., step sizes) for each
of the weights. This vector is computed within the protocol implementation and is used by the
component itself for the standard Momentum weight update.
length

The number of weights.
smoothedGradient

Pointer to a block of floating point numbers that contain the gradient information applied to a
smoothing filter. This vector is computed by the protocol implementation. The size and structure of
the block match that of gradient.
gradient

Pointer to a block of floating point numbers that contain the gradient information for each of the
weights of the attached activation component. This vector is used in conjunction with the
smoothedGradient vector to compute the step vector.
beta

Multiplicative constant specified by the user within the DeltaBarDelta inspector (see equation within
DeltaBarDelta).
kappa

Additive constant specified by the user within the DeltaBarDelta inspector (see equation within
DeltaBarDelta).

 909

zeta

Smoothing factor specified by the user within the DeltaBarDelta inspector (see equation within
DeltaBarDelta).

Memory Management Prototypes:

DLLData *allocDeltaBarDelta(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int length, // Length of the weight vector
 BOOL individual // Indicates whether their is one learning
 // rate for all weights (FALSE), or each
 // weight has its own learning rate (TRUE)
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeDeltaBarDelta(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

DeltaBarDelta DLL Implementation

 See Also

PerformMomentum Protocol

Description:

This protocol is similar to the PerformStep DLL Protocol protocol, except that there is the addition
of a momentum term and a vector containing the previous weight change (delta). These terms are
used in conjunction with the step size and gradient information to adjust the weights. This weight
adjustment is the new delta and the implementation of this function is responsible for updating this
vector as well as the weights vector.

DLL Prototype:

void performMomentum(
 DLLData *instance, // Pointer to instance data
 NSFloat *weights, // Pointer to the vector of weights

 910

 int length, // Length of the weight vector
 NSFloat *gradient, // Pointer to vector of gradients
 NSFloat *step, // Pointer to the learning rate/s
 BOOL individual // Indicates whether there is one learning rate
 // for all weights (FALSE), or each weight has
 // its own learning rate (TRUE)
 NSFloat *delta, // Last weight Update
 NSFloat momentum // Momentum rate for all weights
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
weights

Pointer to a block of floating point numbers that contain the weights of the attached activation
component. This vector is adjusted by the GradientSearch component. The size of the block in
bytes is length*sizeof(NSFloat).
length

The number of elements contained within the weights vector.
gradient

Pointer to a block of floating point numbers that contain the gradient information for each of the
weights of the attached activation component. This vector is used to determine the amount to
adjust the weights. The size and structure of the block match that of weights.
step

Pointer to a block of floating point numbers that contain the learning rates (i.e., step sizes) for each
of the weights. If individual is set to TRUE, then this block contains only one floating-point number,
which is the step size for all of the weights.
individual

Flag to indicate whether the step pointer contains only one floating point number, which is the step
size for all of the weights (individual=FALSE), or length floating point numbers, which are the
individual step sizes for each of the weights (individual=TRUE).
delta

Pointer to a block of floating point numbers that contain the previous update (i.e., delta) for each of
the weights. The implementation of this function is responsible for updating this vector before
returning.
momentum

Scalar containing the momentum rate applied to all weight updates.

 911

Memory Management Prototypes:

DLLData *allocMomentum(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int length, // Length of the weight vector
 BOOL individual // Indicates whether their is one learning
 // rate for all weights (FALSE), or each
 // weight has its own learning rate (TRUE)
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeMomentum(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

Momentum DLL Implementation

 See Also

PerformQuickprop Protocol

Description:

This protocol is similar to the PerformMomentum DLL Protocol protocol, except that the momentum
rate is unique to each weight. Note that this vector could have been allocated as local storage, but
it is passed as a parameter for efficiency reasons. The defaultMomentum is defined by the user
within the inspector. The lastGradient is a pointer to a block containing the previous state of
gradient. This function is responsible for updating the lastGradient vector as well as the delta and
weights vectors.

DLL Prototype:

void performQuickprop(
 DLLData *instance, // Pointer to instance data
 NSFloat *weights, // Pointer to the vector of weights
 int length, // Length of the weight vector
 NSFloat *gradient, // Pointer to vector of gradients
 NSFloat *step, // Pointer to the learning rate/s
 BOOL individual // Indicates whether there is one learning
 // rate for all weights (FALSE), or each

 912

 // weight has its own learning rate (TRUE)
 NSFloat *delta, // Last weight Update
 NSFloat defaultMomentum, // Max momentum rate for all weights
 NSFloat *momentum, // Individual momentum rate for each weight
 NSFloat *lastGradient // Previous weight gradient vector
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
weights

Pointer to a block of floating point numbers that contain the weights of the attached activation
component. This vector is adjusted by the GradientSearch component. The size of the block in
bytes is length*sizeof(NSFloat).
length

The number of elements contained within the weights vector.
gradient

Pointer to a block of floating point numbers that contain the gradient information for each of the
weights of the attached activation component. This vector is used to determine the amount to
adjust the weights. The size and structure of the block match that of weights.
step

Pointer to a block of floating point numbers that contain the learning rates (i.e., step sizes) for each
of the weights. If individual is set to TRUE, then this block contains only one floating-point number,
which is the step size for all of the weights.
individual

Flag to indicate whether the step pointer contains only one floating point number, which is the step
size for all of the weights (individual=FALSE), or length floating point numbers, which are the
individual step sizes for each of the weights (individual=TRUE).
delta

Pointer to a block of floating point numbers that contain the previous update (i.e., delta) for each of
the weights. The implementation of this function is responsible for updating this vector before
returning.
defaultMomentum

Scalar containing the momentum rate entered by the user within the inspector. The quickprop
algorithm uses this parameter as the maximum that the absolute value of each element within the
momentum vector can be.
momentum

 913

Pointer to a block of floating point numbers used to store the momentum rates for each of the
weights. Note that this vector could have been allocated as local storage, but it is passed as a
parameter for efficiency reasons.
lastGradient

Pointer to a block of floating point numbers that contain the previous state of the gradient vector.
This pointer must be maintained by the protocol’s implementation.

Memory Management Prototypes:

DLLData *allocQuickprop(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int length, // Length of the weight vector
 BOOL individual // Indicates whether their is one learning
 // rate for all weights (FALSE), or each
 // weight has its own learning rate (TRUE)
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeQuickprop(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

Quickprop DLL Implementation

 See Also

PerformStep Protocol

Description:

This protocol is used to update the weight vector of the attached Activation component given the
gradient information from the corresponding Backprop component. The learning rate is solely
determined by the step size, which can be unique to each weight or the same for all weights.

DLL Prototype:

void performStep(
 DLLData *instance, // Pointer to instance data

 914

 NSFloat *weights, // Pointer to the vector of weights
 int length, // Length of the weight vector
 NSFloat *gradient, // Pointer to vector of gradients
 NSFloat *step, // Pointer to the learning rate/s
 BOOL individual // Indicates whether there is one learning rate
 // for all weights (FALSE), or each weight has
 // its own learning rate (TRUE)
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
weights

Pointer to a block of floating point numbers that contain the weights of the attached activation
component. This vector is adjusted by the GradientSearch component. The size of the block in
bytes is length*sizeof(NSFloat).
length

The number of elements contained within the weights vector.
gradient

Pointer to a block of floating point numbers that contain the gradient information for each of the
weights of the attached activation component. This vector is used to determine the amount to
adjust the weights. The size and structure of the block match that of weights.
step

Pointer to a block of floating point numbers that contain the learning rates (i.e., step sizes) for each
of the weights. If individual is set to TRUE, then this block contains only one floating-point number,
which is the step size for all of the weights.
individual

Flag to indicate whether the step pointer contains only one floating point number, which is the step
size for all of the weights (individual=FALSE), or length floating point numbers, which are the
individual step sizes for each of the weights (individual=TRUE).

Memory Management Prototypes:

DLLData *allocStep(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int length, // Length of the weight vector
 BOOL individual // Indicates whether their is one learning
 // rate for all weights (FALSE), or each
 // weight has its own learning rate (TRUE)
)

 915

{
 DLLData *instance = NULL;
 return instance;
}

void freeStep(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

Step DLL Implementation

 See Also

Input Family Protocols
PerformFile Protocol

Description:

This protocol is used to implement a customized file translator. The responsibility of the performFile
implementation is to read the next floating-point value from the file. The function returns a TRUE if
a value was read and a FALSE if the end-of-file was reached.

DLL Prototype:

BOOL performFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 FILE *file, // Pointer to the opened file
 NSFloat *sample // Location to place next sample
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters and user defined structures for each copy of a component using a particular
DLL on the breadboard. See The DLLData Structure for documentation on the DLLData structure.
file

Pointer returned by the openFile function of the DLL.
sample

 916

Pointer to the storage used to return the next floating-point value read from the file.

Initialization Prototype:

This function takes in the path name of the input file and returns a pointer to the opened file.

FILE *openFile(
 DLLData *instance, // Pointer to instance data (may be NULL)
 const char *filePath // Full path of file to be opened
);

Memory Management Protocol:

DLLData *allocFile(
 DLLData *oldInstance // Pointer to the last instance if reallocating
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeFile(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

File DLL Implementation

 See Also

PerformFunction Protocol

Description:

This protocol is used to define a periodic wave to be used as an input source.

DLL Prototype:

NSFloat performFunction(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat x // Current angle in radians

 917

);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters and user defined structures for each copy of a component using a particular
DLL on the breadboard. See The DLLData Structure for documentation on the DLLData structure.

x

The current angle in radians. Each time the perform function is called, this angle is incremented by
NeuroSolutions based on the number of Samples/Cycle specified by the user within the Function
inspector.

Initialization Prototype:

This function is used to initialize any instance variables before a new cycle of input is generated.
Note that this is different from (and called before) the global prototype, fireGetReady().

void getReadyToFire(
 DLLData *instance // Pointer to instance data (may be NULL)
);

Memory Management Protocol:

DLLData *allocFunction(
 DLLData *oldInstance // Pointer to the last instance if reallocating
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeFunction(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

Function DLL Implementation

 See Also

 918

PerformNoise Protocol

Description:

This protocol is used to generate a noise source.

DLL Prototype:

NSFloat performNoise(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat variance, // Variance set within components inspector
 NSFloat mean // Mean set within components inspector
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters and user defined structures for each copy of a component using a particular
DLL on the breadboard. See The DLLData Structure for documentation on the DLLData structure.
variance

The variance of the generated noise defined by the user within the Noise inspector.
mean

The mean of the generated noise defined by the user within the Noise inspector.

Initialization Prototype:

This function is used to initialize any instance variables before a new segment of noise data is
generated. Note that this is different from (and called before) the global prototype, fireGetReady().

void getReadyToFire(
 DLLData *instance // Pointer to instance data (may be NULL)
);

Memory Management Protocol:

DLLData *allocNoise(
 DLLData *oldInstance // Pointer to the last instance if reallocating
)
{
 DLLData *instance = NULL;
 return instance;
}

 919

void freeNoise(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

Noise DLL Implementation

 See Also

PerformInput Protocol

Description:

This protocol is used to inject data into the network. The implementation of the performInput
function computes the next sample of data for each of the input channels (PEs of the attached
component) and writes the floating-point values to the data vector.

DLL Prototype:

void performInput(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data
 int rows, // Number of rows of data
 int cols // Number of cols of data
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters and user defined structures for each copy of a component using a particular
DLL on the breadboard. See The DLLData Structure for documentation on the DLLData structure.
data

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the
attached component. This is where the next sample of data is written to. The size of the block in
bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in row-major order.
rows

The number of rows of processing elements contained within the attached component, as specified
within the component’s inspector.

 920

cols

The number of columns of processing elements contained within the attached component, as
specified within the component’s inspector.

Memory Management Protocol:

DLLData *allocInput(
 DLLData *oldInstance // Pointer to the last instance if reallocating
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 return instance;
}

void freeInput(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

DLLInput DLL Implementation

 See Also

PerformPrePost Protocol

Description:

This protocol is used for both preprocessing of network input as well as postprocessing of network
output. The implementation of the performPrePost function reads the data from input and writes the
processed data to output. The function returns a TRUE if the output is to be passed on to the next
component, or FALSE if more data needs to be processed (more calls to performPrePost).

It is important to understand the distinction between the preprocessor and postprocessor modes.
The preprocessor gets its input from an Input component stacked above, and its output is the
vector of processing elements of the component stacked below. The preprocessed output is
normally accumulated to the existing activity (e.g., data[i] = data[i] + preprocessedData[i]), in order
allow other components to inject data into the same component. The postprocessor’s input is the
vector of PEs of the component stacked below and its output is a locally-stored vector, which is
used by a Probe attached above. Note that this vector is not automatically zeroed, so that it can be
used to store the postprocessed data from the previous call to performPrePost.

 921

DLL Prototype:

BOOL performPrePost(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input data
 NSFloat *output, // Pointer to the output data
 int rows, // Number of rows of data
 int cols, // Number of cols of data
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
 // or postprocessor
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters and user defined structures for each copy of a component using a particular
DLL on the breadboard. See The DLLData Structure for documentation on the DLLData structure.
input

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the
attached component that is feeding data into the processor. For the DLLPreprocessor, this is the
component stacked above (using the Preprocessor access point) and for the DLLPostprocessor,
this is the component stacked below. Note that for the DLLPostprocessor, the size of this vector is
fixed based on the size of the component stacked below (rows*cols*sizeof(NSFloat). For the
DLLPreprocessor, the size of this vector defaults to the size of output, but can be modified within
the allocPrePost function.
output

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the
attached component that is retrieving data from the processor. For the DLLPostprocessor, this is
the component stacked above (using the Postprocessor access point) and for the
DLLPreprocessor, this is the component stacked below. Note that for the DLLPreprocessor, the
size of this vector is fixed based on the size of the component stacked below
(rows*cols*sizeof(NSFloat). For the DLLPostprocessor, the size of this vector defaults to the size of
input, but can be modified within the allocPrePost function.
rows

The number of rows of processing elements contained within the attached component that is fixed
in size (i.e., the component stacked below).
cols

The number of columns of processing elements contained within the attached component that is
fixed in size (i.e., the component stacked below).
preprocessor

Flag to indicate if the component using the DLL is a DLLPreprocessor (TRUE) or a
DLLPostprocessor (FALSE).

Memory Management Protocol:

 922

DLLData *allocPrePost(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int *rows, // Number of rows of data attached above -- can be
 // changed. The default is the number of rows
 // attached below.
 int *cols, // Number of cols of data attached above -- can be
 // changed. The default is the number of cols
 // attached below.
 BOOL preprocessor // Flag to indicate whether this is a preprocessor
 // or postprocessor
);

void freePrePost(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

DLLPreprocessor and DLLPostprocessor DLL Implementation

 See Also

StaticProbe Family Protocols
PerformOutput Protocol

Description:

This protocol is used to extract the data accessed by a static Probe. Each call to performOutput
contains a single sample (of rows*cols PEs) of output data. This DLL is intended to be passive,
meaning that the data vector should not be modified. The return value indicates whether the base
Probe component is active (TRUE) or not (FALSE).

DLL Prototype:

BOOL performOutput(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data
 int rows, // Number of rows of data
 int cols // Number of cols of data
);

 923

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters and user defined structures for each copy of a component using a particular
DLL on the breadboard. See The DLLData Structure for documentation on the DLLData structure.
data

Pointer to a block of floating point numbers containing one sample of output for all channels
(rows*cols).
rows

The number of rows contained within data.
cols

The number of cols contained within data.

Memory Management Protocol:

DLLData *allocOutput(
 DLLData *oldInstance, // Pointer to the last instance if reallocating
 int rows, // Number of rows of data
 int cols // Number of cols of data
)
{
 DLLData *instance = allocDLLInstance(oldInstance);
 return instance;
}

void freeOutput(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

Static Probe DLL Implementation

 See Also

Transformer Family Protocols
PerformTransform Protocol

 924

Description:

This protocol is used to transform temporal output data. For each sample of data to be processed,
the performTransform function is called once for each channel. The caller copies its buffer (of
length samples) to the data buffer for that particular channel. The implementation then processes
the data and writes the transformed data back to the same buffer. The return value specifies
whether or not the data for the particular channel is to be displayed by the component stacked on
the Transformer Access Points access point.

DLL Prototype:

BOOL performTransform(
 DLLData *instance, // Pointer to instance data
 NSFloat *data, // Pointer to the buffered data
 int length, // Length of the buffer to be transformed
 int channel // Current channel number
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters and user defined structures for each copy of a component using a particular
DLL on the breadboard. See The DLLData Structure for documentation on the DLLData structure.
data

Pointer to a block of floating point numbers containing the output for a single channel over time.
This buffer is also used for writing the transformed data. The size of the buffer is
length*sizeof(NSFloat).
length

The number of samples stored in the data buffer.
channel

The channel number that corresponds to the data buffer. Note that for each sample of output, the
performTransform function is called once for each channel.

Memory Management Protocol:

DLLData *allocTransform(
 int length, // Length of the buffer to be transformed
 int channels // Number of channels to be transformed
)

void freeTransform(DLLData *instance)
{
 if (instance)
 free(instance);
}

 925

Component Implementations:

Transformer DLL Implementation

 See Also

Schedule Family Protocols
PerformScheduler Protocol

Description:

This protocol is implemented by members of the Scheduler family. The function is called during
each epoch that has scheduling active (specified by the user within the Scheduler inspector). The
implementation simply applies a function of beta to the vector of data. Note that the base
component automatically handles the clipping if the data exceeds the boundaries specified by the
user.

DLL Prototype:

BOOL performScheduler(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data to be scheduled
 int length, // Number of elements in scheduled data vector
 NSFloat beta // Scheduler parameter (specified by user)
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
data

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the
attached component at a particular access point. This is the data that is modified (i.e., scheduled)
by the Scheduler component. The size of the block in bytes is length*sizeof(NSFloat).
length

The number of processing elements contained within the attached component at a particular
access point.
beta

 926

User-specified parameter that is used to define the rate of change of the scheduling function.

Memory Management Protocol:

DLLData *allocScheduler(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int length // Number of PEs in scheduled data vector
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeScheduler(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

LinearScheduler DLL Implementation

LogScheduler DLL Implementation

ExpScheduler DLL Implementation

 See Also

ControlTransmitter Family Protocols
PerformThresholdTransmitter Protocol

Description:

This protocol is used by ThresholdTransmitter components to signal when a threshold has been
crossed by returning a TRUE from the function. The implementation of this protocol scans through
the values within data, and determines if the user-defined threshold (specified by the threshold,
lessThan, and type parameters) has been crossed.

DLL Prototype:

BOOL performThresholdTransmitter(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *data, // Pointer to the data at the access point
 int rows, // Number of rows of PEs in the layer

 927

 int cols, // Number of columns of PEs in the layer
 NSFloat threshold, // Threshold specified by user
 BOOL lessThan, // Less than/greater than state (user-specified)
 int type // Threshold type, 0=All 1=One 2=Average
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
data

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the
attached component at a particular access point. The size of the block in bytes is
rows*cols*sizeof(NSFloat), and the floating point values are arranged in row-major order.
rows

The number of rows of processing elements contained within the attached component at a
particular access point.
cols

The number of cols of processing elements contained within the attached component at a particular
access point.
threshold

Threshold value specified by the user within the ThresholdTransmitter inspector.
lessThan

Flag to indicate whether the crossing occurs when the data is greater than (lessThan=FALSE) or
less than (lessThan=TRUE) the threshold value. This flag is specified by the user within the
ThresholdTransmitter inspector.
type

Flag to indicate whether All elements (type=0), One element (type=1), or the Mean element
(type=2) of the attached access point are used to determine if the threshold has been crossed. This
flag is specified by the user within the ThresholdTransmitter inspector.

Memory Management Protocol:

DLLData *allocThresholdTransmitter(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int rows, // Number of rows of PEs in the layer
 int cols // Number of columns of PEs in the layer
)
{
 DLLData *instance = NULL;

 928

 return instance;
}

void freeThresholdTransmitter(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

ThresholdTransmitter DLL Implementation

 See Also

Unsupervised Family Protocols
PerformUnsupervised Protocol

Description:

This protocol is similar to the PerformSynapse DLL Protocol protocol, except that there is an
additional parameter for the learning rate (for all PEs). Note that the weight matrix is adapted by the
DLL implementation of the Unsupervised component, instead of an attached BackSynapse
component as required by supervised learning.

DLL Prototype:

void performUnsupervised(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
 NSFloat *weights // Pointer to the fully-connected weight matrix
 NSFloat step // Learning rate
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component

 929

using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
input

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values
are arranged in row-major order.
inRows

The number of rows of processing elements contained within the feeding Axon, as specified within
its inspector.
inCols

The number of columns of processing elements contained within the feeding Axon, as specified
within its inspector.
output

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon
that is being fed by the Synapse. The size of the block in bytes is
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order.
outRows

The number of rows of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
outCols

The number of columns of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
weights

Pointer to a block of floating point numbers that contain the adaptable weights of the Synapse. The
size of the block in bytes is inRows*inCols*outRows*outCols*sizeof(NSFloat), and the floating point
values are arranged in input-major order. Note that this matrix is adapted by the Unsupervised
component itself.
step

A scalar used to specify the learning rate of the unsupervised procedure.

Memory Management Prototypes:

DLLData *allocUnsupervised(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in output layer
)
{
 DLLData *instance = NULL;
 return instance;

 930

}

void freeUnsupervised(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

HebbianFull DLL Implementation

OjasFull DLL Implementation

SangersFull DLL Implementation

 See Also

Competitive Family Protocols
PerformCompetitive Protocol

Description:

This protocol is similar to the PerformUnsupervised DLL Protocol protocol, except that there is an
additional parameter that contains the winning PE at the output. Implementations of this protocol
are responsible for updating the weights, which are normally only those connected to the winning
PE. Note that this protocol is used for both Standard Competitive learning and Competitive with a
Conscience, since the computation of the winning PE is made by the component itself.

DLL Prototype:

void performCompetitive(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
 NSFloat *weights // Pointer to the fully-connected weight matrix
 NSFloat step // Learning rate
 int winner // Index of winning PE
);

Variables:

 931

instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
input

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values
are arranged in row-major order.
inRows

The number of rows of processing elements contained within the feeding Axon, as specified within
its inspector.
inCols

The number of columns of processing elements contained within the feeding Axon, as specified
within its inspector.
output

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon
that is being fed by the Synapse. The size of the block in bytes is
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order.
outRows

The number of rows of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
outCols

The number of columns of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
weights

Pointer to a block of floating point numbers that contain the adaptable weights of the Synapse. The
size of the block in bytes is inRows*inCols*outRows*outCols*sizeof(NSFloat), and the floating point
values are arranged in input-major order. Note that this matrix is adapted by the Unsupervised
component itself.
step

A scalar used to specify the learning rate of the unsupervised procedure.
winner

The index of the winning PE within output.

Memory Management Prototypes:

DLLData *allocCompetitive(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer

 932

 int inCols, // Number of columns of PEs in input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in output layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeCompetitive(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

StandardFull

ConscienceFull

 See Also

Kohonen Family Protocols
PerformKohonen Protocol

Description:

This protocol is similar to the PerformUnsupervised DLL Protocol protocol, except that there are
two parameters to specify the location of the winning PE, and a third that contains the
neighborhood size specified by the user within the component’s inspector.

DLL Prototype:

void performKohonen(
 DLLData *instance, // Pointer to instance data (may be NULL)
 NSFloat *input, // Pointer to the input layer of PEs
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in the input layer
 NSFloat *output, // Pointer to the output layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in the output layer
 NSFloat *weights // Pointer to the fully-connected weight matrix
 NSFloat step // Learning rate
 int winningRow, // Index of winning row
 int winningCol, // Index of winning column

 933

 int size // Size of the neighborhood
);

Variables:
instance

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used
to store parameters, adaptive weights, and user defined structures for each copy of a component
using the DLL on the breadboard. See The DLLData Structure for documentation on the DLLData
structure.
input

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values
are arranged in row-major order.
inRows

The number of rows of processing elements contained within the feeding Axon, as specified within
its inspector.
inCols

The number of columns of processing elements contained within the feeding Axon, as specified
within its inspector.
output

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon
that is being fed by the Synapse. The size of the block in bytes is
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order.
outRows

The number of rows of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
outCols

The number of columns of processing elements contained within the Axon that is being fed by the
Synapse, as specified within the Axon’s inspector.
weights

Pointer to a block of floating point numbers that contain the adaptable weights of the Synapse. The
size of the block in bytes is inRows*inCols*outRows*outCols*sizeof(NSFloat), and the floating point
values are arranged in input-major order. Note that this matrix is adapted by the Unsupervised
component itself.
step

A scalar used to specify the learning rate of the unsupervised procedure.
winningRow

The row index of the winning PE within output.
winningCol

 934

The column index of the winning PE within output.
size

The neighborhood size specified by the user within the component’s inspector.

Memory Management Prototypes:

DLLData *allocKohonen(
 DLLData *oldInstance, // Pointer to last instance if reallocating
 int inRows, // Number of rows of PEs in the input layer
 int inCols, // Number of columns of PEs in input layer
 int outRows, // Number of rows of PEs in the output layer
 int outCols // Number of columns of PEs in output layer
)
{
 DLLData *instance = NULL;
 return instance;
}

void freeKohonen(DLLData *instance)
{
 freeDLLInstance(instance);
}

Component Implementations:

LineKohonen DLL Implementation

SquareKohonen DLL Implementation

DiamondKohonen DLL Implementation

 See Also

Macros
Macro Introduction

The NeuroSolutions' macro language consists of hundreds of function calls, which are available to
you as the user to create and run very elaborate scripts of operations. To see the power of the
macros, try Running the Demos – they were created entirely with macros.

It is usually quite simple to create these scripts using the "Record at Cursor" button of the
MacroWizard Edit Page. However, more complex macros require that you write some commands

 935

manually. For this reason, you will need to become familiar with the reference pages of the Macro
Language.

 See Also

Macro Language
Macro Language

Each component on the breadboard has a set of macro commands that are associated with it. The
easiest way to bring up the reference page for these commands is to perform the following steps:

� Click on the "Context Help" button of the Help Toolbar.

� Click on the desired component to display its main help page.

� Scroll down to the bottom of the page and click on "Macro Actions". Note: if there is not a "Macro Actions"
link then you will want to go to the help page for the component's superclass (the superclass link is at the top of
the page).

� From there you see a summary of each function specific to that component. You can click on a particular
function to view its syntax and parameter descriptions. You can also click on the "Superclass Macro Actions"
link at the top to view the other functions that are supported by the component.

To issue a component-specific command from a macro you simply need to precede the function name by the
component name (see "Component Name" within the Engine Inspector) and a period ('.').

In addition to the component-specific macro commands, there are commands that allow you to control the active
breadboard and the NeuroSolutions application. To issue these commands from a macro you simply need to
precede the function name by "activeBreadboard." or "application." respectively.

 See Also

Active Breadboard Macro Actions
Overview

Action Description
alignBottom Moves the selected components so that the bottom borders all have the same y
coordinate on the breadboard.

alignLeft Moves the selected components so that the left borders all have the same x
coordinate on the breadboard.

alignRight Moves the selected components so that the right borders all have the same x
coordinate on the breadboard.

alignTop Moves the selected components so that the top borders all have the same y

 936

coordinate on the breadboard.

animatePointX Returns the x-coordinate of the animate point (the location of the next stamped
component).

animatePointY Returns the y-coordinate of the animate point (the location of the next stamped
component).

centerHorizontal Moves the selected components horizontally to the center of the visible portion of
the breadboard.

centerObjects Moves the selected components so that their centers all have the same x
coordinate on the breadboard.

centerVertical Moves the selected components vertically to the center of the visible
portion of the breadboard.

copySelection Assigns the currently selected component(s) to the pasteboard.

copyToFile Copies the currently selected components to the specified Clipboard file (*.nsc).

cutSelection Assigns the currently selected component(s) to the pasteboard and removes the
components from the breadboard.

deleteObject Removes the specified named component from the breadboard.

deleteSelection Removes the currently selected component(s) from the breadboard.

distributeHorizontal Distributes the selected components within the horizontal space
between the left-most selected component and the right-most selected component.

distributeVertical Distributes the selected components within the vertical space between the top
selected component and the bottom selected component.

isModified Returns TRUE if the breadboard has been modified since the last save.

lockWindowUpdate Puts the breadboard in a state such that the display is not updated as
the macro statements are being executed. Returns TRUE if the statement executed successfully.

maximize Maximizes the breadboard window within the NeuroSolutions window.

minimize Minimizes the breadboard window within the NeuroSolutions window.

moveAnimatePointBy Moves the animate point (the location of the next stamped component)
by the specifed horizontal and vertical offsets.

moveSelectionBy Moves the selected components by the specifed horizontal and vertical
offsets.

moveToBack Moves selected component behind all other components sharing the same
space.

 937

moveToFront Moves selected component in front of all other components sharing the same
space.

onBreadboard Returns TRUE if the specified named component exists on the breadboard.

pasteFromFile Places the contents of the specified Clipboard file (*.nsc) at the animate point.

pasteToSelection Copies the contents of the pasteboard to the breadboard at the animate
point.

pathName Returns the full path of the breadboard file.

promptToSaveModifications Returns TRUE if the user is to be prompted to save the
breadboard modifications when closing the document.

replaceWith Replaces the specified named component with a new component of the specified
class.

restore Restores the breadboard window to its original size.

runMacro Runs the specified macro file.

save Saves the breadboard file. If the breadboard has not yet been saved then a Save As
dialog box opens to specify the file name and location.

saveAs Saves the breadboard to the specified file path.

select Selects the named component. The previously selected components can either be
included or not.

selectKind Selects all components that are members of a specified class, or members a
sub-class of that class.

selectMembers Selects all components that are members of a specified class.

selectRespondingTo Selects all components that respond to the specified function name.

sendDataToEngine Passes data to the setEngineData function of the specified component.

setAnimatePoint Sets the animate point (the location of the next stamped component).

setAnimatePointBottomLeft Sets the animate point (the location of the next stamped
component) relative to the bottom-left corner of the breadboard.

setEditModeEnabledForTextAndButtons Set to TRUE to enable the text of the TextBoxEngine and
the ButtonEngine components to be edited by the user.

setPathName Sets the full path of the breadboard file.

setPromptToSaveModifications Set to TRUE if the user is to be prompted to save the
breadboard modifications when closing the document.

 938

setTitle Sets the breadboard's title (the string displayed in the title bar of a frame
window).

showOpenProbes Set to TRUE to display the windows of all probes on the breadboard,
and set to FALSE to hide them.

sizeWindow Sizes the breadboard window to the specified width and height.

stampAndMove Creates a new component of the specified class and sets the component name.

stampOnAndMove Creates a new component of the specified class and stamps it on top of
the specified named component.

stampOnMoveAndName Creates a new component of the specified class, stamps it on top of the
specified named component and names the new component.

stampOnAndMoveAtAccessPoint Creates a new component of the specified class and stamps it
on top of the specified named component at the specified access point.

title Returns the breadboard's title (the string displayed in the title bar of a frame window).

unlockWindowUpdate Puts the breadboard in a state such that the display is updated as the
macro statements are being executed.

unselect Unselects the name component from those that are selected.

Application Macro Actions
Overview

Action Description

activateBreadboard Sets the breadboard with the specified name (with extension) as the
active document.

breadboards Sets the breadboard with the specified name (without extension) as the active
document.

closeApplication Closes the NeuroSolutions program.

closeBreadboard Closes the active breadboard.

displayInspector Opens or closes the inspector window.

horizontalResolution Returns the number of horizontal pixels of the user's desktop area.

maximize Maximizes the NeuroSolutions window.

minimize Minimizes the NeuroSolutions window.

moveWindow Moves the upper-left corner of the NeuroSolutions window to the specified
location.

 939

newBreadboard Creates an empty breadboard window.

openApplicationDocument Opens a file into an application based on the file's extension.

openBreadboard Opens a breadboard given the full path of the file.

openDefaultEditorWithFile Opens a file into an application based on the file's extension, and allows
the user to select an application if one is not associated.

pathFromActiveBreadboard Returns the full path of a file given the path relative to the
active breadboard.

pathFromMacro Returns the full path of a file given the path relative to the current macro file.

pathFromNS Returns the full path of a file given the path relative to the NeuroSolutions
executable.

pathFromWizard Returns the full path of a file given the path relative to the executable of the
specifed wizard (found in the Tools Menu of NeuroSolutions).

restore Restores the NeuroSolutions window.

runExecutable Lauches an executable file given its path.

runWizard Lauches a wizard given its name (found in the Tools Menu of NeuroSolutions).

runSubMacro Runs the specified macro within the currently running macro.

setUserParameter Sets one of 10 user-defined string parameters.

sizeWindow Sizes the NeuroSolutions window to the specified height and width.

sleep Halts processing for a set number of milliseconds.

strcat Returns the concatenation of the two passed strings.

verticalResolution Returns the number of vertical pixels of the user's desktop area.

MacroWizard Window
MacroWizard Window

This window is used to select, edit, record, run and debug NeuroSolutions macro files (*.nsm).
Macro files contain a series of macro commands, each of which correspond to a user interface
command (e.g., stamping a component or changing a component parameter). This very powerful
yet simple programming language allows you to write very elaborate scripts, which can be run from
within NeuroSolutions or from other OLE server applications such as Excel.

 940

 See Also

MacroWizard List Page

This page serves as a file browser for macros. All macro files (ones with a "nsm" extension) in the
current directory are displayed in the list box. Single-click on the item to select the macro or double-
click to run it. Double-click on a directory labeled with a plus (+) (or single-click on the plus) to
expand the directory tree.

New

Displays a window to enter the name of a new macro. A blank macro file (*.nsm) is created with the
specified name and placed in the current directory of the macro browser.
Delete

Deletes the selected macro from the file system.
Stamp

Creates a graphical button for the selected macro and stamps it on the breadboard. When this
macro button is pressed, the corresponding macro is run. To move this button you must first select
a rectangular region around the button to highlight it.
Editor

 941

Opens a text editor for the selected macro. The editor used is determined based on the application
associated with the "nsm" extension defined within Windows. Click here for instructions on
associating an editor with a file extension.
Copy as VB

Generates VBA (Visual Basic for Applications) code for the selected macro and copies it to the
Windows clipboard. This code can then be pasted into an Excel module sheet as a user-defined
script. This code can also be used within Visual Basic or any other development environment that
supports OLE (some syntax differences may exist).
Run

Executes the entire macro.

 See Also

MacroWizard Edit Page

This page serves as a macro editor. The edit box allows you to directly modify the ASCII text of the
macro file (*.nsm). If the button is pressed, NeuroSolutions internally translates all of the user
interface commands (e.g., stamping components and changing component parameters) into the
macro language. Once the stop button is pressed from the Macro Toolbar, the recording stops and
the recorded macro commands are inserted into the macro.

 942

Toggle Breakpoint

Sets a breakpoint at the line where the cursor is currently located. When a breakpoint is set and the
macro is run (see MacroWizard List Page) the execution stops just before the tagged line and the
MacroWizard Debug Page is displayed. From there you can single step through the macro to track
down any bugs.
Record at Cursor

Starts the macro recording process and inserts the recorded macro commands into the macro file
once the Stop button has been pressed (from the Macro Toolbar). The macro commands are
inserted beginning at the current cursor position. Note that if you are inserting commands in the
middle of the macro then you will want to insert a carriage return to put the cursor on a blank line.

 See Also

MacroWizard Debug Page

This page serves as a macro debugger. The edit box displays the macro command to be executed
next. Change the selected command by single-clicking within the edit box. The buttons below allow
you to single step through the commands one at a time, or execute the remainder of the macro.

Single Step

 943

Executes the macro command that is selected within the edit box and selects the next command in
the list.
Continue

Executes from the selected command through the end of the macro, or until a breakpoint is
reached.

 See Also

MacroWizard Watch Page

This page displays the values of all active variables. This is most commonly used to find out the
result returned by the previous macro command (using the "lastResult" variable).

Value

Displays the value for the variable selected within the Variables list box above. Change the variable
to examine by single-clicking on the item in the list.

 See Also

 944

Application Macro Actions
breadboards

Overview MacroActions

Syntax

application. breadboards(name)

Parameters Type Description
return void

name string The name of the breadboard (without extension) to activate.

closeBreadboard
Overview MacroActions

Syntax

componentName. closeBreadboard()

Parameters Type Description
return void

componentName Name defined on the engine property page.

horizontalResolution
Overview MacroActions

Syntax

componentName. horizontalResolution()

Parameters Type Description
return int The number of horizontal pixels of the user's desktop area.

componentName Name defined on the engine property page.

maximize
Overview MacroActions

Syntax

componentName. maximize()

 945

Parameters Type Description
return void

componentName Name defined on the engine property page.

minimize
Overview MacroActions

Syntax

application. minimize()

Parameters Type Description
return void

moveWindow
Overview MacroActions

Syntax

application. moveWindow(x, y)

Parameters Type Description
return void

x int The new x-coordinate for the upper-left corner of the NeuroSolutions window.

y int The new y-coordinate for the upper-left corner of the NeuroSolutions window.

newBreadboard
Overview MacroActions

Syntax

application. newBreadboard()

Parameters Type Description
return void

openBreadboard
Overview MacroActions

Syntax

 946

application. openBreadboard(path)

Parameters Type Description
return void

path string The full path of the breadboard file to open.

pathFromActiveBreadboard
Overview MacroActions

Syntax

application. pathFromActiveBreadboard(relativePath)

Parameters Type Description
return string The full path of the file.

relativePath string The file path relative to the active breadboard.

pathFromMacro
Overview MacroActions

Syntax

application. pathFromMacro(relativePath)

Parameters Type Description
return string The full path of the file.

relativePath string The file path relative to the currently running macro.

pathFromNS
Overview MacroActions

Syntax

application. pathFromNS(relativePath)

Parameters Type Description
return string The full path of the file.

relativePath string The file path relative to the NeuroSolutions executable.

pathFromWizard
Overview MacroActions

 947

Syntax

application. pathFromWizard(wizardName, relativePath)

Parameters Type Description
return string The full path of the file.

wizardName string The name of a wizard found within the Tools Menu of NeuroSolutions.

relativePath string The file path relative to the named wizard.

restore
Overview MacroActions

Syntax

application. restore()

Parameters Type Description
return void

runSubMacro
Overview MacroActions

Syntax

application. runSubMacro(path)

Parameters Type Description
return void

path string The path of the macro file to run.

runWizard
Overview MacroActions

Syntax

application. runWizard(wizardName)

Parameters Type Description
return void

wizardName string The name of the wizard to run (found within the Tools Menu of
NeuroSolutions).

 948

setUserParameter
Overview MacroActions

Syntax

application. setUserParameter(index, aString)

Parameters Type Description
return void

index int The index of the parameter array (0 <= index <= 9).

aString string The user-defined parameter.

sizeWindow
Overview MacroActions

Syntax

application. sizeWindow(cx, cy)

Parameters Type Description
return void

cx int The new width of the NeuroSolutions window.

cy int The new height of the NeuroSolutions window.

sleep
Overview MacroActions

Syntax

application. sleep(time)

Parameters Type Description
return void

time int The number of milliseconds to halt the processing for.

verticalResolution
Overview MacroActions

Syntax

 949

application. verticalResolution()

Parameters Type Description
return int The number of vertical pixels of the user's desktop area.

strcat
Overview MacroActions

Syntax

application. strcat(str1, str2)

Parameters Type Description
return string The concatenation of str1 and str2.

str1 string The left half of the concatenated string.

str2 string The right half of the concatenated string.

displayInspector
Overview MacroActions

Syntax

application. displayInspector(show)

Parameters Type Description
return void

show BOOL TRUE to show the inspector window and FALSE to hide it.

openApplicationDocument
Overview MacroActions

Syntax

application. openApplicationDocument(path)

Parameters Type Description
return void

path string Full path of the document file to open.

 950

closeApplication
Overview MacroActions

Syntax

application. closeApplication()

Parameters Type Description
return void

activateBreadboard
Overview MacroActions

Syntax

application. activateBreadboard(name)

Parameters Type Description
return void

name string The name of the breadboard (with extension) to activate.

runExecutable
Overview MacroActions

Syntax

application. runExecutable(path)

Parameters Type Description
return voie

path string The full path of the executable file to run.

openDefaultEditorWithFile
Overview MacroActions

Syntax

application. openDefaultEditorWithFile(path)

Parameters Type Description
return void

path string Full path of the document file to open.

 951

Active Breadboard Macro Actions
alignBottom

Overview Macro Actions

Syntax

activeBreadboard. alignBottom()

Parameters Type Description
return void

alignLeft
Overview Macro Actions

Syntax

activeBreadboard. alignLeft()

Parameters Type Description
return void

alignRight
Overview Macro Actions

Syntax

activeBreadboard. alignRight()

Parameters Type Description
return void

alignTop
Overview Macro Actions

Syntax

activeBreadboard. alignTop()

Parameters Type Description
return void

animatePointX
Overview Macro Actions

 952

Syntax

activeBreadboard. animatePointX()

Parameters Type Description
return int The x-coordinate of the animate point (the location of the next stamped
component).

animatePointY
Overview Macro Actions

Syntax

activeBreadboard. animatePointY()

Parameters Type Description
return int The y-coordinate of the animate point (the location of the next stamped
component).

centerHorizontal
Overview Macro Actions

Syntax

activeBreadboard. centerHorizontal()

Parameters Type Description
return void

centerObjects
Overview Macro Actions

Syntax

activeBreadboard. centerObjects()

Parameters Type Description
return void

centerVertical
Overview Macro Actions

Syntax

activeBreadboard. centerVertical()

 953

Parameters Type Description
return void

copySelection
Overview Macro Actions

Syntax

activeBreadboard. copySelection()

Parameters Type Description
return void

copyToFile
Overview Macro Actions

Syntax

activeBreadboard. copyToFile(path)

Parameters Type Description
return void

path string The path of the clipboard file (*.nsc) to copy the currently selected components to
(see "Copy to File" within the Edit Menu and Toolbar Commands page).

cutSelection
Overview Macro Actions

Syntax

activeBreadboard. cutSelection()

Parameters Type Description
return void

deleteObject
Overview Macro Actions

Syntax

activeBreadboard. deleteObject()

Parameters Type Description
return void

 954

deleteSelection
Overview Macro Actions

Syntax

activeBreadboard. deleteSelection()

Parameters Type Description
return void

distributeHorizontal
Overview Macro Actions

Syntax

activeBreadboard. distributeHorizontal()

Parameters Type Description
return void

distributeVertical
Overview Macro Actions

Syntax

activeBreadboard. distributeVertical()

Parameters Type Description
return void

isModified
Overview Macro Actions

Syntax

activeBreadboard. isModified()

Parameters Type Description
return BOOL TRUE if the breadboard has been modified since it was last saved.

lockWindowUpdate
Overview Macro Actions

 955

Syntax

activeBreadboard. lockWindowUpdate()

Parameters Type Description
return void Returns TRUE if the statement executed successfully.

maximize
Overview Macro Actions

Syntax

activeBreadboard. maximize()

Parameters Type Description
return void

minimize
Overview Macro Actions

Syntax

activeBreadboard. minimize()

Parameters Type Description
return void

moveAnimatePointBy
Overview Macro Actions

Syntax

activeBreadboard. moveAnimatePointBy(x, y)

Parameters Type Description
return void

x int The horizontal offset to move the animate point by.

y int The vertical offset to move the animate point by.

moveSelectionBy
Overview Macro Actions

Syntax

 956

activeBreadboard. moveSelectionBy(x, y)

Parameters Type Description
return void

x int The horizontal offset to move the selected components by.

y int The vertical offset to move the selected components by.

moveToBack
Overview Macro Actions

Syntax

activeBreadboard. moveToBack()

Parameters Type Description
return void

moveToFront
Overview Macro Actions

Syntax

activeBreadboard. moveToFront()

Parameters Type Description
return void

onBreadboard
Overview Macro Actions

Syntax

activeBreadboard. onBreadboard(name)

Parameters Type Description
return BOOL TRUE if the named component is on the breadboard.

name string The component name.

pasteFromFile
Overview Macro Actions

 957

Syntax

activeBreadboard. pasteFromFile(path)

Parameters Type Description
return void

path string The Clipboard file (*.nsc) path that contains the components to paste (see "Paste
from File" within the Edit Menu and Toolbar Commands page).

pasteToSelection
Overview Macro Actions

Syntax

activeBreadboard. pasteToSelection()

Parameters Type Description
return void

pathName
Overview Macro Actions

Syntax

activeBreadboard. pathName()

Parameters Type Description
return string The full path of the breadboard file.

replaceWith
Overview Macro Actions

Syntax

activeBreadboard. replaceWith(name, class)

Parameters Type Description
return void

name string The name of the component to replace.

class string The class of the new component.

 958

restore
Overview Macro Actions

Syntax

activeBreadboard. restore()

Parameters Type Description
return void

runMacro
Overview Macro Actions

Syntax

activeBreadboard. runMacro(path)

Parameters Type Description
return void

path string The full path of the macro file to run.

save
Overview Macro Actions

Syntax

activeBreadboard. save()

Parameters Type Description
return void

saveAs
Overview Macro Actions

Syntax

activeBreadboard. saveAs(path)

Parameters Type Description
return void

path string The full path of the breadboard file.

select
Overview Macro Actions

 959

Syntax

activeBreadboard. select(name, keep)

Parameters Type Description
return void

name string The name of the component to select.

keep BOOL TRUE to add the component to the previous selection and FALSE to make the
component the only selection.

selectKind
Overview Macro Actions

Syntax

activeBreadboard. selectKind(class, keep)

Parameters Type Description
return void

class string The class name of the components to select.

keep BOOL TRUE to add the component to the previous selection and FALSE to make the
component the only selection.

selectMembers
Overview Macro Actions

Syntax

activeBreadboard. selectMembers(class, keep)

Parameters Type Description
return void

class string The class name of the components to select.

keep BOOL TRUE to add the component to the previous selection and FALSE to make the
component the only selection.

selectRespondingTo
Overview Macro Actions

Syntax

activeBreadboard. selectRespondingTo(forYes, action, keep)

Parameters Type Description

 960

return void

forYes BOOL TRUE to select only those components that return a non-null value from the
function.

action string The name of the function.

keep BOOL TRUE to add the component to the previous selection and FALSE to make the
component the only selection.

sendDataToEngine
Overview Macro Actions

Syntax

activeBreadboard. sendDataToEngine(data, component)

Parameters Type Description
return void

data variant Data to pass to the setEngineData function (see the reference pages for the
OLEInput, Soma, and the GaussianAxon).

component string The name of the component to pass the data to.

setAnimatePoint
Overview Macro Actions

Syntax

activeBreadboard. setAnimatePoint(x, y)

Parameters Type Description
return void

x int The horizontal location of the animate point (the location of the next stamped
component).

y int The vertical location of the animate point (the location of the next stamped
component).

setAnimatePointBottomLeft
Overview Macro Actions

Syntax

activeBreadboard. setAnimatePointBottomLeft(x, y)

Parameters Type Description

 961

return void

x int The horizontal location of the animate point (the location of the next stamped
component).

y int The vertical location of the animate point (the location of the next stamped
component) relative to the bottom of the breadboard window.

setPromptToSaveModifications
Overview Macro Actions

Syntax

activeBreadboard. setPromptToSaveModifications(aBool)

Parameters Type Description
return void

aBool BOOL TRUE if the user is to be prompted to save the breadboard modifications when
closing the document.

showOpenProbes
Overview Macro Actions

Syntax

activeBreadboard. showOpenProbes(aBool)

Parameters Type Description
return voie

aBool BOOL TRUE to display the windows of all probes on the breadboard, and FALSE to
hide them.

sizeWindow
Overview Macro Actions

Syntax

activeBreadboard. sizeWindow(cx, cy)

Parameters Type Description
return void

cx int The new width of the breadboard window.

cy int The new height of the breadboard window.

 962

stampAndMove
Overview Macro Actions

Syntax

activeBreadboard. stampAndMove(class, name)

Parameters Type Description
return void

class string The class of the new component to be created.

name string The name of the new component.

stampOnAndMove
Overview Macro Actions

Syntax

activeBreadboard. stampOnAndMove(class, name)

Parameters Type Description
return void

class string The class of the new component to be created.

name string The name of the component to stamp the new component on top of.

stampOnMoveAndName
Overview Macro Actions

Syntax

activeBreadboard. stampOnMoveAndName(class, onName, newName)

Parameters Type Description
return void

class string The class of the new component to be created.

onName string The name of the component to stamp the new component on top of.

newName string The name of the new component.

title
Overview Macro Actions

 963

Syntax

activeBreadboard. title()

Parameters Type Description
return string The breadboard's title (the string displayed in the title bar of a frame window).

unlockWindowUpdate
Overview Macro Actions

Syntax

activeBreadboard. unlockWindowUpdate()

Parameters Type Description
return void

unselect
Overview Macro Actions

Syntax

activeBreadboard. unselect(name)

Parameters Type Description
return void

name string The name of the component to remove from the selection group.

stampOnAndMoveAtAccessPoint
Overview Macro Actions

Syntax

activeBreadboard. stampOnAndMoveAtAccessPoint(class, name, access)

Parameters Type Description
return void

class string The class of the new component to be created.

name string The name of the component to stamp the new component on top of.

access string The name of the access point to attach the new component to.

setTitle
Overview Macro Actions

 964

Syntax

activeBreadboard. setTitle(title)

Parameters Type Description
return void

title string The new title of the breadboard window.

setPathName
Overview Macro Actions

Syntax

c activeBreadboard. setPathName(pathName)

Parameters Type Description
return void

pathName string The new pathname of the breadboard file.

setEditModeEnabledForTextAndButtons
Overview Macro Actions

Syntax

activeBreadboard. setEditModeEnabledForTextAndButtons(bool)

Parameters Type Description
return void

bool BOOL TRUE to allow the user to change the text of the TextBoxEngine and
ButtonEngine components.

promptToSaveModifications
Overview Macro Actions

Syntax

activeBreadboard. promptToSaveModifications()

Parameters Type Description
return BOOL TRUE if the user is to be prompted to save changes when closing the
breadboard.

 965

OLE Automation
OLE Automation Introduction

NeuroSolutions is a fully-compliant OLE Automation Server. This means that NeuroSolutions can
receive control messages from OLE Automation Controllers, such as Visual Basic, Microsoft Excel,
Microsoft Access, and Delphi. All of the functions that are accessible through the NeuroSolutions
Macro Language are also accessible from other applications by means OLE automation.

Writing a fully-functioning VB program is as simple as recording a NeuroSolutions macro, clicking
the "Convert to VB" button (see the MacroWizard List Page), and pasting the converted VB code
into the desired VB application. A VB application might be written to set a network’s parameters,
run the network, then retrieve the network’s output. The NeuroSolutions Demos include a sample
VB application that communicates with NeuroSolutions via OLE and there is a complete Visual
Basic Project included with the NeuroSolutions installation.

Writing a Visual C++ program to interface with NeuroSolutions is a little more difficult, because
there is no facility for directly converting from a macro to C++ code. However, the code generated
from the "Convert to VB" operation can be used as a starting point for writing the C++ code. You
may want to use the sample Visual C++ Project included with the NeuroSolutions installation as a
starting point for your own OLE application.

 See Also

Sample Visual Basic Project Demonstrating OLE
Automation

The complete installation of NeuroSolutions includes a subdirectory named "OLE\Visual Basic".
This contains a Visual Basic project, which injects data into a NeuroSolutions breadboard
("OLE\Breadboard\MLPXor.nsb") and extracts the network output. The breadboard is a 1-hidden-
layer MLP trained with the exclusive-or data.

To open the project, simply double-click on the file "OLEShellProject.vbp" from your Windows
Explorer (Note: this project requires Visual Basic 5.0 or higher). Pressing the Start button of the
Visual Basic toolbar should run the program and bring up the following dialog:

 966

Click the "Open Breadboard" button, enter two values between –1 and 1, then click the "Compute
Output" button. Notice that the network output displayed on the NeuroSolutions probe is copied to
the dialog box.

The code is pretty self-explanatory, however there are a few points worth mentioning:

� The "NSApp" variable is the NeuroSolutions Application object.

� The "NSBB" variable is the Active Breadboard object.

� The sendDataToEngine function is what is used to inject the X and Y values into the network.

� The getProbeData function is what is used to extract the Z value from the network.

 See Also

Sample Visual C++ Project Demonstrating OLE
Automation

The complete installation of NeuroSolutions includes a subdirectory named "OLE\VC++". This
contains a Visual C++ project, which injects data into a NeuroSolutions breadboard
("OLE\Breadboard\MLPXor.nsb") and extracts the network output. The breadboard is a 1-hidden-
layer MLP trained with the exclusive-or data.

To open the project simply double-click on the file " OLEShell.dsw" from your Windows Explorer
(Note: this project requires Visual C++ 5.0 or higher). Press F7 to build the project, then press F5 to
run the program, which should bring up the following dialog:

Click the "Open Breadboard" button, enter two values between –1 and 1, then click the "Compute
Output" button. Notice that the network output displayed on the NeuroSolutions probe is copied to
the dialog box.

The code is pretty self-explanatory, however there are a few points worth mentioning:

 967

� The " m_nsApp" variable is the NeuroSolutions Application object.

� The " m_nsObject" variable is the Active Breadboard object.

� The sendDataToEngine function is what is used to inject the X and Y values into the network.

� The getProbeData function is what is used to extract the Z value from the network.

 See Also

References
References

Almeida L. "A learning rule in perceptrons with feedback in a combinatorial environment." 1st IEEE
Int. Conf. Neural Networks 2, 609-618, 1987.

Amari S. "Characteristics of random nets of analog neuron-like elements." IEEE Trans. Syst. Man
Cybern. SMC-2,5, 643-657, 1972.

Anderson J. and Rosenfeld E. NeuroComputing: Foundations for Research. MIT Press, (vol I,
1988), (vol II, 1990).

Anderson J. "The BSB model: a simple nonlinear autoassociative neural network." In Associative
Neural Memories, (ed. Hassoun). Oxford Press, pp77-103, 1993.

Arbib M. Brains, Machines and Mathematics. Springer Verlag, 1987.

Baldi P. "Gradient descent learning algorithms: a general overview." (submitted to IEEE Trans.
Neural Networks, 1992).

Braitenberg V. "Functional interpretation of cerebellar histology." Nature 190, 539-540, 1961.

Birkhoff G. Lattice Theory. American Mathematical Society, 1967.

Bryson A. and Ho Y. Applied Optimal Control, Optimization, Estimation and Control. Hemispheric
publishing Co., New York, 1975.

Caianiello E. "Outline of a theory of thought-processes and thinking machines." Journal of
Theoretical Biology 2, 204-235, 1961.

Carpenter G. and Grossberg S. Pattern Recognition by Self-organizing Neural Networks. MIT
Press, 1991.

Cox R. Object Oriented Programming. Addison Wesley, 1987.

Churchland P. Neurophilosophy: Towards a Unified Science of the Mind/Brain. MIT Press, 1986.

DARPA Neural Network Study. AFCEA, 1988.

deVries B. and Principe J. "The gamma model - A new neural model for temporal processing."
Neural Networks 5(4), 565-576, 1992.

Eccles J., Ito M. and Szentagothai J. The Cerebellum as a Neuronal Machine. Springer Verlag,
1967.

Elman J. "Finding structure in time." Cognitive science 14, 179-211, 1990.

 968

Freeman W. Mass Activation in the Nervous System. Academic Press, 1975.

Freeman J. and Sakura D. Neural Networks: Algorithms, Applications, and Programming
Techniques. Addison-Wesley, 1991.

Fukushima K. "Neocognitron: a self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position." Biological Cybernetics 36, 193-202, 1980.

Grossberg S. Studies of Mind and Brain. Dordrecht, Holland, 1982.

Grossberg S. and Cohen M. "Absolute stability of global pattern formation and parallel memory
storage by competitive neural networks." IEEE Trans. on Syst. Man Cybern. SMC-13, 815-826,
1983.

Haykin S. Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, 1991.

Haykin S. Neural Networks, a Comprehensive Foundation. MacMillan, 1994.

Hebb D. The Organization of Behavior. Wiley, New York, 1949.

Hecht-Nielsen R. NeuroComputing. Addison Wesley, 1990.

Hertz J., Krogh A. and Palmer R. Introduction to the Theory of Neural Networks. Addison Wesley,
1991.

Hopfield J. "Neural networks and physical systems with emergent collective computational
abilities." Proc. Natl. Acad. Sci. (USA) 79, 2554-2558, 1982.

Jacobs R. "Increased rates of convergence through learning rate adaptation." Neural Networks 1,
295-307, 1988.

Jordan M. "Attractor dynamics and parallelism in a connectionist sequential machine." Proc. 8th
Annual Conf. on Cognition Science Society, pp 531-546, 1986.

Kohonen T. Self Organization and Associative Memory. Springer Verlag, 1988.

Kohonen T. "The self-organizing map." Proc. IEEE 78, 1464-1480, 1990.

Kosko B. Neural Networks and Fuzzy Systems. Prentice Hall, 1992.

Kung S.Y. Digital Neural Networks. Prentice Hall, 1993.

Lang K., Waibel A. and Hinton G. "A time delay neural network architecture for isolated word
recognition." Neural Networks 3(1), 23-44, 1990.

Lapedes A. and Farber R. "Nonlinear signal processing using neural networks: prediction, and
system modelling." LA-VR-87-2662, Los Alamos, 1987.

LeCun Y., Denker J., Henderson D., Howard R., Hubbard W. and Jackel L. "Handwritten digit
recognition with a backpropagation network." In Advances in Neural Information Processing
Systems 2, (ed. Touretsky), pp 396-404, 1990.

Lefebvre C. and Principe J. "Object-oriented artificial neural network implementations." World
Cong. Neural Networks 4, 436-439, 1993.

Lefebvre C. An Object-Oriented Methodology for the Analysis of Artificial Neural Networks. Masters
Thesis, University of Florida, 1992.

Lippman R. "An introduction to computing with neural nets." IEEE Trans. ASSP Magazine 4, 4-22,
1987.

Little W. and Shaw G. "Analytical study of the memory storage capacity of a neural network."
Mathematical Biosciences 39, 281-290, 1978.

 969

Makhoul J. "Pattern recognition properties of neural networks." Proc. 1991 IEEE Workshop on
Neural Networks for Signal Processing, pp 173-187, 1992.

Marr D. "A theory of cerebellar cortex." Journal of Physiology 202, 437-470, 1969.

McCulloch W. and Pitts W. "A logical calculus of the ideas imminent in the nervous activity."
Bulletin of Mathematical Biophysics 5, 115-133, 1943.

Minsky M. and Papert S. Perceptrons. MIT Press, 1969.

NeXTStep Operating System, NeXT Computer Documentation, 1991.

Oja E. "A simplified neuron modeled as a principal component analyzer." J. of mathematical biology
15, 267- 273, 1982.

Palm G. "On associative memory." Biological Cybernetics 36, 19-31, 1980.

Pineda F. "Generalization of backpropagation to recurrent neural networks." Physical Rev. Let. 59,
2229-2232, 1987.

Pellionisz A. and Llinas R. "Brain modeling by tensor network theory and computer simulation."
NeuroScience 4, 323-348, 1979.

Principe J., deVries B., Kuo J. and Oliveira P. " Modeling applications with the focused gamma
network." In Neural Information Processing Systems 4, (eds. Moody, Hanson, Touretsky), pp121-
126, Morgan Kaufmann, 1992.

Ramon y Cajal S. Histologie du systeme nerveux de l’homme et des vertebres. Tome I and II,
Paris, 1911.

Rosenblatt F. "The perceptron: a probabilistic model for information storage and organization in the
brain." Physiological Review 65, 386-408, 1958.

Rumelhart D. and McClelland J. (eds.) Parallel Distributed Processing. vol I, II, MIT Press, 1987.

Rumelhart D., Hinton G. and Williams R. "Learning internal representations by error propagation."
In Parallel Distributed Processing, (eds. Rumelhart and McClelland), MIT Press, 1986.

Sanchez-Sinencio E. and Lau C. Artificial Neural Networks. IEEE Press, 1992.

Sanger T. "Optimal unsupervised learning in a single layer linear feedforward network." Neural
Networks 12, 459-473, 1989.

Sejnowski T., Koch C. and Churchland P. "Computational Neuroscience." Science 241, 1299-1306,
1988.

Shaw G. and Palm G. (eds.) Brain Theory. World Scientific, 1988.

Sherrington C. The Integrative Action of the Nervous System. Yale Press, 1906.

Simpson P. Artificial Neural Systems. Pergamon Press, 1990.

Silva F., Almeida L. "Speeding up backpropagation." In Advanced Neural Computers, (ed.
Eckmiller), pp 151-160.

Steinbuch K. "Die Lernmatrix." Kybernetik 1, 36-45, 1961.

Sutton R. "Learning to predict by the methods of temporal differences." Machine Learning 3, 9-44,
1988.

Thrun S. and Smieja F. "A general feedforward algorithm for gradient descent learning in
connectionist networks." Int. Rep. German National Res. Center Comp. Sci., 1991.

 970

Von der Marlsburg C. "Network self-organization." In Introduction to Neural and Electronic
Computing, (eds. Zornetzer, Davis, Lau), pp 421-432, Academic Press, 1990.

Von Neumann J. The Computer and the Brain. Yale Press, 1958.

Weigend A., Rumelhart D. and Huberman B. "Generalization by weight elimination with applications
to forecasting." In Advances in Neural Information Processing Systems 3, (eds. Lippman, Moody,
Touretsky), pp 875-882, 1991.

Werbos P. "Backpropagation through time: what it does and how to do it." Proc. IEEE 78(10), 1990.

Wiener N. Cybernetics. Wiley, 1961.

Widrow B. and Hoff M. Adaptive Switching Circuits. IRE Wescon Rept. 4, 1960.

Widrow B. and Lehr M. "30 years of adaptive neural networks: perceptron, madaline and
backpropagation." Proc. IEEE 78, 1415-1442, 1990.

Widrow B. and Stearns S. Adaptive Signal Processing. Prentice-Hall, 1985.

Williams R. and Zipser D. "A learning algorithm for continually running fully recurrent neural
networks." Neural Computation 1, 270-280, 1989.

Willshaw D. "Holography, associative memory and inductive generalization." In Parallel Models of
Associative Memory, (eds. Hinton, Anderson). pp83-104, Lawrence Erlbaum, 1981.

Zurada J. Artificial Neural Systems. West, 1992

 971

Index

3
3DProbe.. 642, 663
Macro Actions... 664, 665, 666, 667, 668, 669, 670, 671

A
About .. 32, 70
Absolute value .. 707
absoluteValue... 708
Access .. 98, 99, 523, 524, 560, 563, 568, 569
Macro Actions... 572, 573, 574, 575, 576
Access Points .287, 365, 393, 428, 489, 510, 559, 601, 637, 685, 703, 721, 729, 735, 736
accessDataSet ... 572
accessedComponent.. 573
accessRows.. 628
Accumulate ... 567
Acknowledgments .. 32
Action.. 714
Activate.. 72
activateBreadboard .. 950
activateDLL... 747
Activation .. 123, 124, 864
Activation Code .. 71, 72
ActivationControl .. 141
Active Breadboard Macro Actions .. 935
Active Neuron ... 609, 610
activeAccessPoint .. 573
activeBreadboard ... 935
ActiveBreadboard
Macro Actions.................951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963
activeChannel ... 582, 659
activeDataSet ... 467, 541
activeFileName... 542
activeFilePath ... 542
activeNeuron... 629
activeTranslatorName .. 542
Adaptive.. 188
Add... 439, 441, 442, 536, 706
addFile .. 542
Additive.. 514, 515
Adjustment.. 706, 707
AIC.. 110
alignBottom... 951
alignLeft .. 951
Alignment.. 58
alignRight.. 951
alignTop.. 951
allocateBackpropPlane... 455
amplitude .. 577, 647, 665
Amplitude .. 568

 972

Amplitude FormCell ... 564
amplitudeForChannel ... 582
animatePointX .. 951
animatePointY .. 952
Application
Macro Actions... 938, 944, 945, 947, 948
ArbitrarySynapse .. 359, 368, 431
Macro Actions... 374, 375, 376, 377
Arrange .. 59
Arrow .. 758
ArrowEngine ... 758, 776
ART... 188
Artificial ... 154, 155
ASCII .. 529, 530, 532, 533, 534, 569, 606
assignCenters... 312
assignVariance ... 312
Associate .. 111, 537, 570
associateActiveFile... 543
Associative Memory ... 183
Associator ... 218
Example.. 218
Attach... 604
Auto .. 444, 638, 640, 687
Auto Increment ... 432
autoconnect .. 375
autoIncrement... 467
autoNormalize .. 676
autoSave... 499
autoscale .. 666
autoscaleChannel... 647
autoSetUpChannels ... 648, 654, 660
autosize .. 766
Autosize... 763
autosizing.. 629
Autosizing ... 610
autoWindow.. 573
Average Cost... 495
averageOverUpdates ... 499
Axon................125, 126, 273, 274, 287, 288, 297, 308, 309, 316, 317, 324, 819, 821, 865
Macro Actions... 308, 309, 310, 311
Axon Example .. 297

B
Back.. 57
BackArbitrarySynapse .. 418
BackAxon.. 134, 135, 383, 393, 394
BackBellFuzzyAxon.. 391, 398
BackBiasAxon .. 384, 395
BackCombinerAxon.. 385
BackContextAxon ... 402, 410
BackCriteriaControl .. 391
BackDynamicControl .. 426, 438, 439
Macro Action... 453
Macro Actions... 453
BackFullSynapse.. 419, 420
BackGammaAxon... 403, 410

 973

BackGaussianFuzzyAxon... 393, 399
Background... 762
BackIntegratorAxon .. 405, 412
BackLaguarreAxon ... 404, 412
BackLinearAxon ... 386, 395, 401
Macro Actions... 401, 402
BackMemoryAxon .. 135
BackNormalizedAxon ... 387
BackNormalizedSigmoidAxon .. 387
Backprop... 132, 133, 422
Backpropagation... 113, 114, 438, 439, 440
BackpropControl ... 143
backpropOffset ... 453
BackSigmoidAxon .. 388, 396
BackSigmoidContextAxon.. 406, 414
BackSigmoidIntegratorAxon... 407, 414
BackStaticControl ... 424, 429, 441, 442
Macro Actions... 453, 455, 456, 457, 458, 459, 460, 461
BackStaticControl Macro Actions ... 453
BackSynapse.. 137, 138, 420, 421
BackTanhAxon ... 389, 397
BackTanhContextAxon... 407, 415
BackTanhIntegratorAxon.. 408, 416
BackTDNNAxon ... 409, 417
Bar Size.. 603
BarChart ... 594, 603, 611
Macro Actions... 615, 616
barSize.. 615
baseEngineOnDocument ... 747
batch ... 455
Batch.. 439, 441, 442
beginCustomizeOfActiveFile .. 543
Behind the Scenes of C++ Code Generation ... 797
Behind the Scenes of DLLs .. 807
BellFuzzyAxon.. 354, 357
Best... 432, 433
bestCost.. 499
beta... 314, 518, 698, 708, 725
Beta .. 324, 697, 705, 723, 734
Bias .. 324
Bias Axon Example .. 298
BiasAxon... 274, 275, 289, 298
Binary.. 529, 534, 569, 606
binaryEncodingForSymbols.. 543
Bitmap... 530, 609
bold ... 766
Bold.. 763
Border .. 762
borderType ... 766
bottom... 748
Bottom .. 58
Breadboard... 53, 56, 59, 89, 817
Macro Actions... 935
breadboards.. 944
broadcast .. 583, 660
broadcastBumpStep ... 521

 974

Browse... 764
Buffer ... 604
Buffer Size ... 606, 607
bufferLength.. 623
bufferSize.. 617
bumpStep ... 521
Button ... 760
ButtonEngine .. 760
Buttons.. 65, 66

C
Cabling.. 97, 98
Cascade.. 59
Center .. 58, 318, 763
centerHorizontal ... 952
centerObjects.. 952
centerVertical.. 952
Channel..564, 565, 566, 567, 638, 640, 641, 687, 688
channels ... 583
Character Recognition.. 262
Example.. 262
checkCostEvery.. 499
Chromosome .. 452
Classification... 106, 107, 108
className.. 748
clear .. 617
Clear... 370, 605
clearBeforeRun... 617
Click .. 92
Clipboard .. 60
Close .. 445
closeApplication.. 950
closeBreadboard .. 944
closeEngineWindow ... 748
closeMacro ... 467
Code ... 104, 443, 444
Code Generation442, 796, 797, 798, 799, 800, 801, 802, 803, 804
Code Generation Chapter .. 796
Purpose ... 796
codeGenProjectPath .. 467
codeGenTargetPath ... 468
codeNormalizesData .. 573
Coefficients ... 112, 113
Color ... 688, 762, 763
cols ... 309
Cols... 316, 351, 569
Column ... 530, 531, 533, 534, 609, 610
Column headings.. 610
columnCountForActiveFile ... 544
columnTagForActiveFile... 544
CombinerAxon.. 275
CombinerSynapse .. 360, 370
Competitive... 146, 147, 722, 724
Competitive Learning.. 254
Example.. 254
CompetitiveFull

 975

Macro Actions... 724
Compile.. 321, 443
compileSourceCode ... 468
Component ... 121
Component Menu ... 59
Components ... 54, 75, 91, 95, 96
Adding... 95
Manipulating ... 95
Replacing.. 96
Components Chapter ... 272
Purpose ... 273
Concepts Chapter... 87
Purpose ... 88
Confusion Matrix... 106, 107, 857, 858
Conjugate ... 503, 504, 505
ConjugateGradient ... 503
Connect .. 60
Connection .. 369, 370, 371, 372
Connectors ... 96
connectTo... 748
Conscience... 723
ConscienceFull ... 720, 721
Macro Actions... 725, 726
Constraint ... 167
Contact ... 33
Contents ... 70
ContextAxon ... 325, 333, 344
Context-sensitive .. 69
ContractorSynapse... 360, 371
Contributions... 777
to the theory of Neural Networks.. 777
Control .. 62, 434, 435
Controls .. 60, 140, 428
ControlTransmitter.. 701
Conventions.. 121
Copy ... 57, 60
copySelection ... 953
copyToFile .. 953
correlation... 109
Correlation .. 107, 108
Cost.. 429, 430
Cost Function ... 162
costWeightingActive ... 455
Criteria .. 119, 171, 172
Criterion .. 792
Macro Actions... 498, 499, 500, 501, 502, 503
Cross Validation ... 82, 83, 105, 434
Cube... 643
Current... 567
Cursor ... 57
custom .. 456
Custom .. 439, 441
Custom Solution Wizard ... 61
Customize... 65, 66, 104, 532, 533, 534, 535, 537
customizeActiveFile.. 544
Cut .. 56, 59

 976

cutSelection .. 953
Cycle... 563

D
Data .. 100, 101
Coding .. 81
Collection.. 81
Injection .. 81
Input/Output .. 100
Preparation ... 111
Saving... 119
Data Flow... 317
Data Set.. 434, 528, 538, 569, 570
Data: ... 80, 81, 111, 119
DataGraph .. 595, 604, 605, 611
dataLength.. 676
dataSetCount.. 545
dataSetForActiveFile .. 545
dataSetNameAt .. 545
dataSetUsedForNormalization ... 545
dataSource ... 583
DataStorage.. 596, 597, 601, 607
Macro Actions... 623, 624
DataStorageTransmitter ... 713
DataTransmitter .. 713
dataWidth.. 676
DataWriter... 595, 606, 612
Macro Actions... 616, 617, 618, 619, 620, 621, 622, 623
Debug... 321, 444, 942
debugSourceCode.. 468
decrementChannel ... 660
decrementNeuron... 629
decrementXChannel... 654
Default.. 571
delay ... 378
Delay... 351, 373, 374
delete .. 749
Delete ... 59
deleteObject.. 953
deleteSelection ... 954
Delta ... 642
DeltaBarDelta ... 494, 505, 515
Macro Actions... 517, 518, 519
DeltaTransmitter ... 702
Demo .. 43, 44, 45
Denormalize.. 112, 113, 674
denormalizeFromFile.. 677
Dialog.. 93, 758, 759, 760, 761
DialogEngine .. 758
DiamondKohonen... 727, 730
disconnectAll... 375
Discriminant Function ... 835, 836
displacement... 672
Displacement .. 642
Display .. 431, 609, 674, 688
displayEvery ... 677

 977

displayInspector.. 949
distance .. 666
distributeHorizontal... 954
distributeVertical ... 954
dither... 469
Division ... 639, 640
DLL 104, 288, 289, 290, 291, 292, 293, 294, 295, 296, 321, 333, 335, 336, 337, 338, 339,
355, 357, 366, 367, 394, 395, 396, 397, 398, 399, 410, 411, 413, 414, 415, 416, 417,
420, 421, 491, 492, 493, 511, 512, 513, 532, 535, 560, 561, 562, 565, 602, 685, 695,
696, 703, 722, 730, 731, 732, 736, 738, 739, 800, 806, 807, 808, 809, 810, 811, 812,
813, 814, 815, 816, 817, 818, 864, 865, 866, 867, 868, 869, 870, 871
DLL Chapter ... 805
Purpose ... 805
DLL Example .819, 821, 823, 825, 828, 829, 831, 833, 835, 842, 843, 844, 845, 846, 847,
848, 849, 850, 851, 852, 854, 856, 861, 862, 863
dllActive .. 749
DLLData.. 810, 811
DLLInput ... 526, 562
dllName... 749
dllPath... 750
DLLPostprocessor .. 562, 600, 601
DLLPreprocessor.. 526, 559, 562
DLLScaling ... 839
Document ... 56, 59
Dot.. 741
Dot Size.. 640
dotSize.. 655
Down .. 516, 517
dualName ... 469
Dump.. 606
dumpFile ... 618
Duration ... 532, 535
durationForActiveFile.. 546
Dynamic.. 177, 436, 437, 788
DynamicControl .. 61, 425, 430, 431, 433, 435, 436, 437, 444
Macro Actions... 461, 462, 463, 464
Dynamics .. 120

E
Edit.. 56, 321, 444, 761, 763, 764, 941
EditEngine .. 761
Macro Actions...764, 766, 767, 768, 769, 770, 771, 772, 773, 774
editModeEnabled.. 767
Editor .. 111
elapsedTimeInSeconds .. 469
enableLabels .. 629
endChannel .. 584
endCustomizeOfActiveFile ... 546
Engine... 273, 320
Macro Actions.........................745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757
engineAtAccessPoint.. 750
Epoch.. 434, 435, 495, 697
epochCounter ... 469
epochs .. 470
Epochs... 431, 452
epochsPerTest ... 470

 978

Equation-based Modeling... 779
error ... 109, 110
Error.. 792
ErrorCriteria .. 129, 130, 489, 490, 494, 495, 496
ErrorCriterion .. 828, 866
Euclidean... 741
Evaluation... 40, 41
Example.75, 76, 79, 80, 193, 204, 208, 218, 223, 230, 238, 248, 252, 254, 260, 262, 266,
270, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 341, 342, 343, 344,
345, 346, 347, 348, 349, 350, 799, 801, 803, 804, 805, 808, 818, 839
Associator ... 218
Character Recognition.. 262, 263
Combination of Data Sources... 204
Competitive Learning.. 254
Filtering ... 223
Frequency Doubler ... 238
Pattern Recognition .. 267
Perceptron and Multilayer Perceptron.. 208
Principal Component Analysis.. 252
Recurrent .. 230
Self Organizing Feature Map.. 260
Signal Generator .. 193
Unsupervised Learning... 248
executableFilePath ... 470
Exemplar...429, 430, 434, 435, 436, 437, 438, 440, 441, 442, 567
exemplarCounter .. 470
exemplars ... 471
Exemplars.. 431, 451
expandedColumnCountForActiveFile... 546
ExpanderSynapse .. 361, 372
ExpScheduler ... 693, 695
Extension.. 111

F
Family ...128, 129, 141, 142, 143, 145, 273, 523, 758, 759
3DProbe.. 663
Activation .. 123
ActivationControl .. 141, 142
Axon.. 125
BackAxon.. 133
BackMemoryAxon .. 135
Backprop... 132
BackpropControl ... 143
BackSynapse.. 137
Competitive... 146
Controls .. 140
ControlTransmitter.. 701
DataTransmitter .. 713
DialogEngine .. 758
ErrorCriteria .. 129
GradientSearch .. 138
Hebbian .. 145
Input.. 149
Kohonen ... 147
MacroEngine... 759
MemoryAxon... 126

 979

Probe .. 148
Schedule... 151
StaticProbe ... 593
Synapse.. 131
TemporalProbe... 635
Transformer .. 683
Transmitter.. 150
Unsupervised.. 144
Family: ...123, 125, 126, 129, 131, 132, 133, 135, 137, 138, 140, 144, 146, 147, 148, 149,
150, 151, 593, 635, 663, 683, 701, 713
FAQ .. 45
Feedback.. 351
FFT Size ... 686
fftSize.. 689
File ...56, 112, 114, 115, 117, 149, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 570,
571, 606, 610, 803, 804, 805, 847, 848, 849, 850, 868
Macro Actions 538, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554,
555, 556, 557, 558, 559
fileCount.. 546
fileForColumnHeadings .. 630
filePath.. 618
filePathAt .. 547
fileType ... 618
Filtering ... 223
Example.. 223
fireNext ... 309
fireNextOnReset ... 310
Fitness .. 428
Fix ... 105, 114, 321, 322
Fixed Point.. 113, 114, 436
fixedPointMode... 462
fixName... 750
fixToSuperengine ... 750
fixWindowTitle .. 677
flashFileMode ... 574
Font .. 610, 763
Font Size.. 606
fontHeight ... 630
fontSize... 618, 767
Force .. 431, 439
Force Learning ... 440
forceWindowOnTop.. 471
Form ... 42
Formulation... 80
forward.. 375
Free .. 439, 442
freeALL ... 456
freeBackpropPlane ... 456
Freeze... 105
Freezing.. 105
Frequency.. 564, 565
Frequency Doubler ... 238
Example.. 238
Front ... 59
Fukushima .. 188
FullSynapse.. 363, 366, 431

 980

function ... 358
Function ..524, 560, 564, 569, 570, 802, 803, 842, 843, 844, 867
Macro Actions... 576, 577, 578
fuzzy ...275, 280, 281, 359, 360, 361, 362, 391, 392
Fuzzy .. 128, 354, 355
FuzzyAxon.. 128, 129, 355, 357, 358, 882

G
Gain.. 352
gamma.. 725
Gamma... 723, 734
GammaAxon... 326, 334, 347
Gaussian.. 565
GaussianAxon .. 276, 277, 290, 299, 318, 319
Macro Actions... 312, 313
GaussianAxon Example ... 299
GaussianFuzzyAxon... 355, 356
General ... 867, 869
General Input and Postprocessor... 831, 833, 835
Generate... 443, 535, 538
generateSymbolFile.. 547
Generation.. 104, 442
Genetic427, 428, 445, 446, 447, 448, 449, 450, 451, 452, 744, 745
GeneticControl.. 427, 428, 445, 447, 450
getProbeData ... 677
Global Variables ... 816
Gradient .. 430, 503, 504, 505
Gradient Descent.. 162, 163
Gradient Search .. 439, 441, 442, 793
gradientClass.. 456
GradientSearch .. 139, 514, 829, 831, 866
gradientWeightingActive... 456
Graph.. 594
Graphical User Interface... 90
grid.. 660
Grid .. 688
GUI ... 90

H
Hebbian .. 145
HebbianFull... 716, 736, 737
height .. 767
Height... 763
Help .. 32, 70
Hide .. 62
Hinton ... 597, 608, 613
Macro Actions... 625
history ... 672
History... 153, 642
Hopfield... 184, 185
Horizontal Offset... 639
horizontalPos.. 648
horizontalPosSamples.. 648
horizontalResolution ... 944
Hybrid ... 122

 981

I
I/O ... 797
Icon ... 59
ImageViewer... 598, 608, 609, 613, 614
Macro Actions... 625, 626, 627
incrementActiveChannel... 584
incrementChannel .. 661
incrementEndChannel .. 584
incrementNeuron .. 630
incrementXChannel .. 655
Individual... 515, 517
individualSteps ... 521
Initial .. 706, 707
initialValue .. 708
inject ... 584
Input.. 149, 322, 374, 563, 867
Input/Output .. 797
inputConnector ... 378
inputEnabled... 619
Inspector52, 60, 76, 77, 91, 92, 316, 317, 319, 320, 322, 323, 350, 351, 358, 369, 370,
371, 372, 373, 401, 429, 430, 433, 435, 436, 437, 438, 439, 441, 442, 443, 444, 446,
447, 450, 495, 496, 514, 515, 516, 536, 537, 563, 564, 565, 566, 567, 568, 569, 602,
603, 605, 607, 608, 609, 637, 638, 639, 640, 641, 642, 673, 686, 687, 688, 697, 705,
714, 723, 734, 740, 744, 745, 761, 762, 763
Instance Data ... 812, 813, 814, 815
Integration... 801, 803, 804
IntegratorAxon .. 327, 335, 341
IntegratorAxon Example ... 340
Interface.. 90, 797, 807
Introduction... 78, 153, 934, 965
Introduction to NeuroComputation Chapter.. 152
Purpose ... 152
isDescendant.. 751
isKindOf .. 751
isMemberOf .. 751
isModified.. 954
isOfLevel... 752
isSubengine.. 752
italic... 768
Italic.. 763
Iterative ... 437, 440

J
Jog .. 61, 323
jogNetworkWeights... 471
Jordan/Elman ... 183
Famous Neural Topology ... 183

K
kappa .. 518
keepWindowActive ... 752
Keyboard .. 801
Kohonen ... 147, 729, 734
KohonenFull
Macro Actions... 735

 982

L
L1Criterion .. 484, 491
L2Criterion .. 485, 492
L2TemporalCriterion... 486, 496
label .. 631
Label ... 610
Macro Actions... 627, 628, 629, 630, 631, 632, 633, 634
labelSize ... 631
LaguarreAxon ... 328, 336, 348, 349
Language.. 935
learning ... 457, 471, 742
Learning.119, 120, 160, 161, 167, 168, 169, 172, 173, 174, 175, 434, 439, 441, 442, 740,
789, 790, 791, 792
Paradigms... 160
Parameters ... 170, 171
Practical Issues .. 169
Unsupervised.. 172, 173
Learning Rate ... 740
Learning:... 169, 170
learningOnReset... 457, 742
left ... 753
Left.. 58, 763
lessThan ... 708
Level ... 71, 72
License ... 55
Limitations... 800
linear ... 689
LinearAxon.. 277, 278, 291, 300
Macro Actions... 313, 314, 315
LinearAxon Example .. 300
LinearScheduler ... 693, 695
LinearSigmoidAxon .. 278, 279, 291
LinearSigmoidAxon;Example ... 301
LinearTanhAxon ... 279, 280, 292, 302
LinearTanhAxon Example .. 302
LineKohonen... 728, 732
LinfinityCriterion.. 488, 492
List .. 940
Load ... 321, 432, 433, 610
Load weights... 443
loadColumnHeadings ... 631
loadPaletteBeforeRun .. 626
loadWeights .. 471
lockWindowUpdate... 954
Log.. 452
LogScheduler.. 694, 696
Lower ... 567
lowerBound... 585
LpCriterion .. 487

M
Machine .. 364, 488, 509, 741
Machines .. 175, 719
Macro.. 60, 61, 63, 67, 445, 759, 760, 764
macroAction.. 775

 983

MacroEngine... 759, 761
Macro Actions... 775, 776
macroPath .. 775
Macros .. 934, 935
MacroWizard... 63, 939, 940, 942, 943
Madaline ... 181
Manual ... 369, 370
matchPEsWithColumns.. 547
Matrix ... 606
MatrixEditor... 599, 614
MatrixViewer ... 599, 600, 615
maximize... 944, 955
maximum .. 699
Maximum .. 319, 698
maxNormValue... 678
maxWinner.. 316
MDL .. 110
mean... 579
Mean... 323, 324, 565, 706
mean squared error .. 109
Measurement.. 109
MegaScope... 636, 637, 639, 644
Macro Actions... 647, 648, 649, 650, 651, 652, 653
MegaScope Macro Actions... 646
membership .. 358
Memory Management... 810, 815
MemoryAxon... 127, 128
Menu... 55, 56, 58, 59, 60, 61, 63, 70
Component ... 59, 60
Palettes... 63, 64
View .. 65, 66
Menu:.. 59, 63, 65, 66
mergeProbeNames .. 619
Message... 607
messageEvery.. 624
metric .. 724
Metric ... 724
minimize.. 945, 955
minimum ... 699
Minimum ... 319, 697, 698
minNormValue.. 678
MLP .. 180, 181, 208
Example.. 208
Famous Neural Topology ... 179
Mode... 40, 41
Modeling ... 779, 782, 783
Equation-based .. 779, 782
Modes ... 54
ModularSynapse... 362, 373
Modules ... 373
Momentum.. 507, 510, 511, 515, 516
Macro Actions... 520
Momentum Rate.. 516
momentumRate .. 520
Mouse ... 92
moveAnimatePointBy ... 955

 984

moveBy... 753
moveEngineWindow... 753
moveOn .. 754
moveSelectionBy.. 955
moveTo... 754
moveToBack... 956
moveToFront .. 956
moveWindow .. 945
MSE .. 109
multiBy .. 709
MultiChannelStream
Macro Actions.........................580, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592
Multilayer Perceptron.. 179, 208
Example.. 208
Famous Neural Topology ... 179
Multiplicative ... 515
multiplier ... 648
Multiply.. 705

N
name... 754
Name .. 320, 321
Naming ... 121
nConnections.. 375
Near.. 369
neighborhood.. 735
Neighborhood ... 734
neighbors .. 313
Network... 156, 158
Access .. 98
Analysis .. 105, 106, 156
Construction.. 95
Simulation... 101
Size... 170
Network:.. 95, 98, 101, 105, 106, 170
networkJog ... 380
networkRandomize... 380
networkReset.. 585
Networks... 177
Dynamic.. 177, 178
Recurrent .. 120
Networks:.. 120
Neural ... 54, 178
Topologies .. 178
Neural Network... 153, 154, 155, 156, 158, 159
History... 153
Solutions ... 155
Taxonomies .. 158
NeuralBuilder .. 60, 61
NeuralExpert... 61
NeuroComputation ... 153
NeuroDimension... 33, 34
NeuroSolutions ... 191, 192
Running .. 191
NeuroSolutions for Excel .. 60
New... 56, 59, 321, 444, 571

 985

newBreadboard .. 945
NMSE ... 109
Noise... 525, 561, 565, 566, 845, 846, 847, 868
Macro Actions... 578, 579, 580
Norm.File .. 537
Normalization.. 112, 538
Normalization file.. 674
normalizationFileName... 547
normalizationFilePath ... 548, 678
normalizationFileReadOnly .. 548
normalize .. 585
Normalize.. 112, 113, 567
normalizeByChannel .. 585
normalized .. 109, 522
Normalized .. 515, 517
normalizeDataFile... 574
NormalizedAxon ... 280
NormalizedSigmoidAxon .. 281
Notation ... 606
NSN .. 112
NSP .. 149, 527
Numeric .. 533, 534
numericForActiveFile.. 548

O
Object ... 60
Object-oriented Modeling ... 782
Off... 567, 568
offset ... 402, 577, 666
Offset ... 401, 532, 535, 564, 567, 568, 642
offsetForActiveFile.. 549
offsetForChannel .. 586
OjasFull... 717, 738
OLE... 59, 527, 965, 966
OLEInput... 527
Macro Actions... 592, 593
On ... 566, 567, 568
onBreadboard... 956
onIncrease.. 500
On-Line .. 439, 441
Open ... 55, 56, 93, 444, 445
openApplicationDocument.. 949
openBreadboard... 945
openDefaultEditorWithFile.. 950
openEngineWindow.. 755
openMacro.. 472
Operators.. 447, 448
Optimization.. 427, 446, 447, 450, 452
Optimize.. 744
Options ... 72, 73
Order... 42
Organization ... 122
Output ... 322, 351, 374, 687
outputConnector ... 379
overlap .. 690
Overlap .. 686, 687

 986

Overwrite ... 567

P
padding ... 768
Padding.. 763
Palette... 54, 75, 89, 93
Paradigms... 160
Parameter ... 427, 714, 761
Parameters ... 744, 813
Password.. 71
Paste .. 57, 60
pasteFromFile... 956
pasteToSelection.. 957
pathFromActiveBreadboard.. 946
pathFromMacro .. 946
pathFromNS ... 946
pathFromWizard ... 946
pathName ... 957
Pattern .. 149, 528
Pattern Recognition .. 266
Example.. 266
Pause.. 61, 63
pauseNetwork... 472
PCA .. 185, 186, 252
Example.. 252
Famous Neural Topology ... 185
PE ... 323, 352
Perceptron .. 178, 208
Example.. 208
Perform... 808
Performance ... 109, 110
performAutoscale ... 655
PerformAxon... 288, 296, 871
PerformBackAxon... 394, 887
PerformBackBiasAxon.. 395, 889
PerformBackContextAxon .. 410, 411, 414, 415, 416, 895
PerformBackFullSynapse ... 420, 902
PerformBackFuzzyAxon ... 398, 399, 892
PerformBackGammaAxon.. 410, 413, 897
PerformBackLinearAxon... 395, 396, 397, 891
performBackSynapse ... 823, 825
PerformBackSynapse... 421, 904
PerformBackTDNNAxon... 417, 899
performBiasAxon .. 819
PerformBiasAxon.. 289, 295, 872
PerformCompetitive.. 722, 930
PerformContextAxon .. 333, 334, 336, 337, 338, 339, 876
performCriterion.. 828
PerformCriterion ... 491, 492, 906
performDeltaBarDelta... 829, 831
PerformDeltaBarDelta .. 493, 907
performFile.. 847, 849, 850
PerformFile ... 532, 535, 915
PerformFullSynapse ... 366, 884
performFunction ... 842, 843, 844
PerformFunction ... 560, 916

 987

PerformFuzzyAxon ... 355, 357, 882
performGammaAxon .. 877
PerformGammaAxon.. 333, 335
performInput ... 831, 833
PerformInput ... 562, 919
PerformKohonen .. 730, 731, 732, 932
performLinearAxon ... 821
PerformLinearAxon... 289, 290, 291, 292, 293, 294, 874
PerformMomentum... 511, 909
performNoise .. 845, 846
PerformNoise.. 561, 918
performOutput .. 856
PerformOutput .. 602, 922
performPrePost .. 837, 851, 852, 854, 859
PerformPrePost .. 563, 839, 920
PerformQuickprop .. 512, 911
PerformScheduler... 695, 696, 925
PerformStep.. 513, 913
performSynapse ... 823, 825
PerformSynapse... 367, 886
PerformTDNNAxon... 339, 879
PerformThresholdTransmitter... 703, 926
performTransform... 861, 862, 864
PerformTransform .. 685, 923
PerformUnsupervised... 736, 737, 738, 928
Phase.. 564
phaseShift... 577
phi ... 666
Pixel .. 608
Pointer .. 758
Porting .. 800
position ... 768
Postprocessor... 601, 868
Postprocessor and Probe... 856
Post-run ... 445
postRunMacro .. 472
Practical .. 110
Prediction.. 437, 440
Preferences .. 72
Preprocessor .. 560, 851, 852, 853, 854, 855, 868
preRunMacro.. 473
Pricing... 41
Principal Component Analysis.. 185, 252
Example.. 252
Famous Neural Topology ... 185
Print .. 55
probe... 602, 637
Probe .. 148, 674, 675, 869
Macro Actions... 675, 676, 677, 678, 679, 680, 681, 682
Probes .. 99, 100
Probing ... 87, 114
Product .. 741
Production... 106
Progress ... 431, 451, 452
Project... 443, 444
Projection .. 643

 988

promptToSaveModifications ... 964
Properties ... 59
Protocol..808, 810, 817, 871, 872, 874, 876, 877, 880, 882, 884, 886, 888, 889, 891, 893,
895, 897, 899, 902, 903, 904, 906, 907, 908, 909, 911, 913, 915, 916, 918, 919, 920,
922, 924, 925, 926, 928, 930, 932
Purpose ... 78, 87, 152, 191, 272, 777, 796, 805
Code Generation Chapter .. 796
Components Chapter ... 272
Concepts Chapter... 87
DLL Chapter ... 805
Introduction to NeuroComputation Chapter.. 152
Theory Chapter... 777
Tutorials Chapter .. 191

Q
Questions.. 45
Quickprop ... 508, 512
Quicprop ... 510

R
Radial Basis Function... 182
Famous Neural Topology ... 181
Radio Button... 370
Random ... 369
Randomize.. 61, 323
randomizeNetworkWeights... 473
RBF... 181
Famous Neural Topology ... 181
Read Only .. 534, 535
Receiver.. 108, 714
Receivers.. 101
Recent files ... 55
Record ... 63
Recurrent .. 120, 230
Example.. 230
References ... 967
Refresh .. 604
Regenerate .. 566
regenerateData... 579
Regression.. 107
Remove .. 370, 442, 537
Remove Button ... 439
removeActiveFile .. 549
removeAllFiles .. 549
removeConnections.. 376
Replace .. 537
replaceWith... 957
reportEvery ... 500
Requirement ... 806
Requirements ... 42
reset.. 667
Reset .. 62, 445, 567, 740
resetAll.. 586
resetNetwork... 473
restore... 947, 958

 989

restorePaletteAfterRun ... 626
Restriction
Level ... 39
right... 755
Right ... 58, 763
Right-click ... 59
ROC.. 108, 109
Row... 316, 350, 568, 609, 610
rows .. 310
Run... 434, 443, 444, 445, 764
runCompiledCode... 473
runExecutable... 950
runMacro... 775, 958
runNetwork ... 474
Running .. 87
runSensitivity .. 474
runSubMacro .. 947
runWizard ... 947

S
Sample.. 436, 438, 563, 565, 639
samples .. 462, 586
Samples.. 430
Sampling.. 495, 496
Sampling Rate .. 565
SangersFull... 718, 739
save .. 958
Save.. 56, 74, 114, 119, 322, 432, 433, 567
Save As .. 93
Save Best... 495
Save Text ... 606
Save weights .. 443
saveAs.. 958
Saved error.. 496
saveImageToBitmap... 626
saveStream... 587
saveText ... 619
saveWeights ... 474
scale ... 587, 649
Scale... 567, 642, 643
ScatterPlot .. 636, 641, 645
Macro Actions... 653, 654, 655, 656, 657, 658
Schedule... 152, 697, 869
Scheduler
Macro Actions... 698, 699, 700, 701
scientificNotation .. 620
Scope.. 637
Scroll... 94
Scroll Fix ... 369
Seconds... 431
Segment ... 532, 535
segmentForActiveFile... 549
segments .. 690
Segments... 687
select .. 959
Select ... 764

 990

Selection... 55, 57
selectKind ... 959
selectMembers ... 959
selectRespondingTo... 959
Self Organizing Feature Map.. 260
Example.. 260
Self Organizing Maps ... 729
Self-Organizing Feature Map ... 186
Famous Neural Topology ... 186
Sensitivity.. 106
sentDataToEngine.. 960
Sequence... 371, 372
Serial Number... 71
Set .. 606, 714
setAbsoluteValue.. 709
setAccessDataSet .. 574
setAccessRows .. 631
setActiveAccessPoint ... 575
setActiveChannel.. 587, 661
setActiveDataSet .. 474, 550
setActiveFileNameAndDataSet .. 550
setActiveFilePath.. 550
setActiveNeuron ... 632
setActiveTranslatorName ... 551
setAmplitude... 577, 588, 649, 667
setAnimatePoint ... 960
setAnimatePointBottomLeft .. 960
setAutoconnect... 376
setAutoIncrement ... 475
setAutoNormalize ... 678
setAutoSave ... 500
setAutoscale ... 667
setAutosize ... 768
setAutoSizing.. 632
setAutoWindow... 575
setAverageOverUpdates .. 501
setBackgroundColor ... 768
setBackpropOffset .. 453
setBarSize .. 616
setBatch.. 457
setBestCost .. 501
setBeta.. 314, 518, 699, 709, 726
setBinaryEncodingForSymbols .. 551
setBold.. 769
setBoradcast... 661
setBorderType .. 769
setBroadcast... 588
setBufferLength .. 624
setBufferSize .. 620
setCheckCostEvery .. 501
setClearBeforeRun ... 620
setCloseMacro.. 475
setCodeGenProjectPath... 475
setCodeGenTargetPath.. 476
setCodeNormalizesData... 575
setColor .. 662, 769

 991

setCols.. 310
setColumnTagForActiveFile ... 551
setCostWeightingActive.. 458
setCustom... 458
setDataSetForActiveFile... 552
setDataSetUsedForNormalization.. 552
setDataSource.. 588
setDelay.. 379
setDenormalizeFromFile .. 679
setDimensions .. 310
setDisplacement ... 672
setDisplayEvery.. 679
setDistance... 671
setDither ... 476
setDLLName... 755
setDotSize .. 656
setDumpFile.. 620
setDurationForActiveFile .. 552
setEditModeEnabled .. 770
setEditModeEnabledForTextAndButtons ... 964
setEnableLabels ... 632
setEndChannel ... 588
setEngineData .. 313, 592
setEpochCounter.. 476
setEpochs... 477
setEpochsPerTest .. 477
setExemplarCounter... 477
setExemplars.. 478
setFFTSize ... 690
setFileForColumnHeadings .. 632
setFilePath.. 621
setFileType ... 621
setFireNext ... 311
setFireNextOnReset ... 311
setFixedPointMode... 462
setFixName... 755
setFixToSuperengine ... 756
setFixWindowTitle .. 679
setFlashFileMode ... 576
setFontHeight ... 633
setFontSize... 621, 770
setForceLearning.. 458
setForceWindowOnTop.. 478
setForward.. 377
setGamma .. 726
setGradientClass .. 458
setGradientClassName .. 459
setGradientWeightingActive ... 459
setGrid .. 662
setHeight... 770
setHistory.. 673
setHorizontalPos .. 649
setHorizontalPosSamples .. 649
setIndividualSteps .. 522
setInitialValue ... 710
setInject .. 589

 992

setInputEnabled.. 622
setItalic.. 771
setKappa... 519
setKeepWindowActive.. 756
setLabel .. 633
setLabelSize ... 633
setLearning... 459, 478, 742
setLearningOnReset... 460, 743
setLessThan ... 710
setLinear ... 691
setLoadPaletteBeforeRun .. 627
setLowerBound... 589
setMacroAction... 776
setMacroPath ... 776
setMaximum ... 699
setMaxNormValue .. 680
setMaxWinner... 316
setMean.. 579
setMergeProbeName ... 622
setMessageEvery ... 624
setMetric ... 724
setMinimum .. 700
setMinNormValue ... 680
setMomentumRate ... 520
setMultBy.. 710
setMultiplier... 650
setName ... 756
setNConnections .. 377
setNeighborhood .. 735
setNeighbors... 313
setNormalizationFilePath.. 553, 593, 680
setNormalizationFileReadOnly ... 553
setNormalize... 589
setNormalizeByChannel ... 590
setNormalized... 522
setNormalizeDataFile ... 576
setNumericForActiveFile .. 553
setOffset ... 402, 578, 590, 671
setOffsetForActiveFile .. 554
setOnIncrease .. 502
setOpenMacro .. 478
setOverlap .. 691
setPadding.. 771
setParameter .. 715
setPathName.. 964
setPhaseShift.. 578
setPhi.. 668
setPosition .. 771
setPostRunMacro ... 479
setPreRunMacro... 479
setPromptToSaveModifications.. 961
setRegenerateData .. 580
setReportEvery... 502
setRestorePaletteAfterRun... 627
setRows.. 309
setSamples... 462, 590

 993

setScale .. 591, 650
setScientificNotation ... 622
setSegmentForActiveFile ... 554
setSegments... 691
setShowCube ... 668
setShowDots... 668
setShowExemplars... 479
setShowLabels ... 634
setShowLines ... 668
setSkipForActiveFile... 554
setSquareCube... 669
setSquareSize .. 625
setStart ... 700
setStepSize... 523, 743
setStop.. 700
setStreamOn... 591
setSweepMulti .. 650
setSweepRate .. 651
setSweepScale... 651
setSymbolFilePath.. 555
setSymbolFileReadOnly ... 555
setSymbolForActiveFile.. 555
setTapDelay.. 353
setTaps ... 353
setText .. 772
setTextFromFile.. 772
setTheta.. 669
setThreshold... 711
setThresholdDecay... 711
setThresholdType... 711
setTitle .. 963
setTrainTest.. 502
setTransparent ... 772
setTranspose.. 623
setUnderlined ... 773
setUpdateDisplayByEpoch... 480
setUpdateDisplayEvery .. 480
setUpdateEvery .. 460
setUpperBound... 591
setUseDefaultTranslatorForActiveFile.. 556
setUseName... 480
setUserParameter .. 948
setVariance... 580
setVerticalPos... 651
setVerticalPosVolts... 652
setVisible .. 662
setWantsColumn .. 634
setWeightingFilePath.. 460
setWeightMean... 314, 381
setWeightsFixed ... 381
setWeightsSave.. 381
setWeightVariance ... 315, 382
setWidth.. 773
setWindowSize ... 692
setWindowTitle ... 681
setXChannel ... 656

 994

setXMaxScale... 656
setXMinScale.. 656
setXValDataSet .. 480
setYMaxScale... 657
setYMinScale.. 657
setZeroOnReset ... 481
setZeroState ... 463
setZeroStateEpoch... 463
setZeta.. 519
Show .. 431
showCube... 669
showDots .. 670
showExemplars .. 481
showLabels... 634
showLines... 670
showOpenProbes ... 961
SigmoidAxon... 282, 283, 293, 303
SigmoidAxon Example ... 303
SigmoidContextAxon .. 329, 337, 345
SigmoidIntegratorAxon ... 329, 330, 337, 343
Simulation... 77, 87, 101, 451, 452, 793, 794, 795
Size... 686, 687, 763
sizeEngineWindow ... 757
sizeToFit ... 773
sizeWindow... 948, 961
Skip... 533, 534
skipForActiveFile .. 556
sleep ... 948
Sliders.. 369
Smoothing... 515
SOFM ... 186, 187, 188, 260
Example.. 260
Famous Neural Topology ... 186
SoftMaxAxon .. 283, 284, 294, 304
SoftMaxAxon Example ... 304
SOM.. 729, 730
Soma .. 322
Macro Actions... 379, 380, 381, 382, 383
Source Code... 104
Space ... 58, 59
Sparse.. 369
SpectralTransform .. 684, 686
Macro Actions... 689, 690, 691, 692
Square Size ... 608
squareCube .. 670
SquareKohonen.. 728, 733
squareSize.. 625
Stacking .. 98
Stamp ... 59
stampAndMove... 962
Stamping... 55, 75, 95
stampOnAndMove.. 962
stampOnAndMoveAtAccessPoint .. 963
stampOnMoveAndName .. 962
StandardFull ... 720
start... 701

 995

Start.. 697
Starting .. 371
StateSpaceProbe ... 641, 645, 646, 664
Macro Actions... 671, 672, 673
Static... 113, 436, 784
Static Probe .. 601
StaticControl ... 61, 423, 428, 430, 431, 433, 435, 444
Macro Actions.464, 467, 468, 469, 470, 471, 473, 474, 475, 477, 478, 480, 481, 482, 483
StaticProbe ... 593
Status.. 451
Status Bar ... 69
Stdio... 569
Step .. 508, 510, 513, 517
Macro Actions... 520, 521, 522, 523
Step Size.. 515, 517, 740
stepEpoch... 481
stepExemplar.. 482
stepSize .. 523, 743
stop ... 701
Stop .. 61, 63, 119, 171, 172
stopNetwork.. 482
strcat ... 949
Stream .. 566, 567, 568
Stream Length... 567
streamOn.. 592
Structure ... 88, 806
subengines ... 757
Superengine .. 321
Supervised.. 122
Support ... 175, 176, 364, 489, 509, 719, 741
SVM.. 175, 176, 364, 488, 509, 719, 741
SVMInputSynapse.. 719, 741
SVML2Criterion .. 488
SVMOutputSynapse ... 364
SVMStep... 509
Sweep... 639
sweepMult... 652
sweepRate.. 652
sweepScale .. 652
Symbol.. 531, 533, 534, 535
symbolFileName... 556
symbolFilePath ... 556
symbolFileReadOnly .. 557
symbolForActiveFile ... 557
Synapse..........................131, 132, 364, 365, 366, 367, 368, 373, 374, 823, 825, 827, 866
Macro Actions... 378, 379
System.. 42
System Requirements for Code Generation .. 796

T
TanhAxon ... 284, 285, 295, 305
TanhAxon Example .. 305
TanhContextAxon... 330, 331, 338, 346
TanhIntegratorAxon.. 331, 339, 342
Tap ... 351
tapDelay.. 353

 996

taps ... 354
Target... 443
TDNN Axon Example ... 349
TDNNAxon.. 332, 340, 349, 350, 351
Macro Actions... 352, 353
Teacher .. 440
Technical Support... 34, 35
temporal
time-series .. 486
Temporal... 496, 595
TemporalProbe... 635
Macro Actions... 659, 660, 661, 662, 663
Temporary .. 55
Terminate... 435
Termination... 450
Testing .. 105, 106, 107, 108, 109, 495
TestingWizard... 61, 105
text .. 774
Text... 760
Text Box.. 762
TextBoxEngine ... 759
Theory Chapter... 777
Introduction... 777
Purpose ... 777
theta.. 670
threshold ... 712
Threshold.. 706, 707
ThresholdAxon ... 285, 286, 295, 306
ThresholdAxon Example .. 306
thresholdDecay... 712
ThresholdTransmitter ... 703, 704, 706
Macro Actions... 707, 708, 709, 710, 711, 712
thresholdType... 712
Tile .. 59
tileWindow .. 681
tileWindowBelow .. 682
tileWindowNextTo... 682
Time ... 452
Time Constant... 352
Time Lagged Recurrent.. 188
Famous Neural Topology ... 188
Time Series Prediction ... 270
title .. 963
Title ... 94
TLRN .. 189, 270
Famous Neural Topology ... 188
toggleColumnForActiveFile .. 557
toggleConnection.. 715
toggleInputNeuron .. 377
toggleOutputNeuron ... 377
Toolbar.. 54, 55, 56, 58, 62, 63, 75, 93
Toolbars.. 63, 65
Tools ... 61
top... 757
Top.. 58
Topics ... 69

 997

Topologies .. 178
Neural ... 178
Topology... 83, 84
Training... 85, 86, 87, 435, 496
Training Set .. 169, 170
trainTest.. 503
Trajectory.. 113, 436
Transfer .. 323
Transformer .. 683, 684, 685, 861, 862, 863, 869
translate .. 558
Translate.. 538
translateIfNeeded ... 558
Translator.. 527, 529, 530, 532, 535, 571
translatorCount ... 558
translatorNameAt.. 558
Transmitter.. 150, 151, 705, 714, 870
Macro Actions... 715
Transmitters.. 101
transparent.. 774
Transparent ... 762
transpose.. 623
Transpose.. 606
Tutorials Chapter .. 191
Purpose ... 191

U
Unary.. 534
Underline .. 762
underlined... 774
Undo ... 57
Uniform .. 565
University Site License ... 41
unlockWindowUpdate... 963
unselect .. 963
Unsupervised.. 122, 144, 145, 172, 735, 736, 739, 870
Unsupervised Learning... 248
Example.. 248
UnsupervisedFull
Macro Actions... 741, 742, 743
Until.. 697
Up ... 516, 517
Update .. 438, 441, 442
updateDisplayByEpoch .. 482
updateDisplayEvery.. 482
updateEvery.. 461
Upgrade.. 71
Upper ... 567
upperBound .. 592
URL... 55
useDefaultTranslatorForActiveFile ... 559
useName .. 483
User .. 72
User-Defined Data.. 814

 998

V
variance .. 580
Variance... 318, 319, 322, 324, 565
VB ... 965
Vector ... 175, 364, 489, 509, 719, 741
verifiedSamples .. 559
Version.. 32
Versions.. 35
Vertical Offset ... 639
Vertical Scale.. 638, 639
verticalPos .. 653
verticalPosVolts .. 653
verticalResolution ... 948
View.. 534, 537, 538
View Menu.. 66, 69
View Range .. 673
visible.. 663
Visible ... 688
Visual Basic .. 965
Visual C++ .. 966

W
wantsColumn.. 635
Watch.. 943
Waveform .. 564
Weight Update.. 495
Weighting.. 429, 430
weightingFilePath ... 461
weightMean .. 315, 382
Weights...105, 114, 115, 116, 117, 322, 323, 432, 433, 812
Fixing .. 114
Saving... 114
Weights:.. 114
weightsFixed... 382
weightsSave ... 382
weightVariance ... 315, 383
width ... 774
Width.. 763
Window.............................72, 451, 452, 611, 612, 613, 614, 643, 644, 646, 686, 687, 939
Main .. 51, 52
Window: .. 51
Windows ... 59
windowSize... 692
windowTitle ... 683
Winner.. 320
WinnerTakeAllAxon .. 286, 296, 307, 319
Macro Actions... 315, 316
WinnerTakeAllAxon Example... 307
Workspace.. 72
WWW.. 55

X
X ... 640
X-Axis ... 604
xChannel... 657

 999

xMaxScale .. 658
xMinScale ... 658
xValDataSet.. 483

Y
Y ... 640, 641
Y-Axis ... 605
yMaxScale .. 658
yMinScale ... 658

Z
Zero .. 433
Zero state... 436, 437
zeroOnReset... 483
zeroState .. 463
zeroStateEpoch .. 464
zeta ... 519
Zoom .. 642

