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NeuroDimension Products and Services 
 

NeuroSolutions 
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The Professional version adds ANSI C++ compatible code generation, allowing you to embed 
NeuroSolutions’ algorithms into your own applications (including learning). Furthermore, this 
version allows any simulation prototyped within NeuroSolutions to be run on other platforms, e.g. 
faster computers or embedded real time systems. The Developer versions allow you to extend the 
functionality of NeuroSolutions by integrating your own neural network, preprocessing, control, and 
input/output algorithms. 

NeuroSolutions for Excel 

NeuroSolutions for Excel is an Excel Add-in that integrates with any of the six levels of 
NeuroSolutions to provide a very powerful environment for manipulating your data, generating 
reports, and running batches of experiments. 

The Custom Solution Wizard 

The Custom Solution Wizard is a program that will take any neural network created with 
NeuroSolutions and automatically generate and compile a Dynamic Link Library (DLL) for that 
network, which you can then embed into your own application.  

 

NeuroSolutions for MATLAB 

NeuroSolutions for MATLAB is a neural network toolbox for MATLAB. The toolbox features 15 
flexible neural models, 5 learning algorithms and a host of useful utilities that enable you to employ 
the power of neural networks to solve complicated real-world problems. The NeuroSolutions 
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NeuroSolutions and utilize them inside MATLAB using the NeuroSolutions for MATLAB interface.   

The Genetic Server/Library 
The Genetic Server and Genetic Library provide a general purpose API for genetic algorithm 
design. Genetic Server is an ActiveX component that can be used to easily build a custom genetic 
application in Visual Basic. Genetic Library is a C++ library that can be used for building custom 
genetic applications in C++. 
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TradingSolutions 
TradingSolutions is a financial analysis and investment program that combines traditional technical 
analysis with state-of-the-art neural network and genetic algorithm technologies. Use any 
combination of financial indicators in conjunction with advanced neural networks and genetic 
algorithms to create remarkably effective trading models. 

Consulting 

Neural network and genetic algorithm experts are on staff and available for Consulting on an hourly 
basis.  Consulting rates are dependent upon the specifics of the problem.  To obtain an estimate for 
consulting, please email your problem specifics to info@nd.com. 
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Twice a year NeuroDimension holds a course in Orlando, Florida to teach both the theory of neural 
networks and use of NeuroSolutions. The course uses interactive hypertext material that allows a 
"learn by doing" methodology. For more information on the course content and the date of the next 
scheduled course offering, please visit http://www.neurosolutions.com/products/course/. 

Priority Support Package 

The priority support package is a valuable service that can be added to the purchase of any 
NeuroDimension product anytime within the first 30 days of product purchase. This service 
provides the following benefits: 

 

� Priority treatment for all support issues  

� Guaranteed bug fixes within 5 business days  

� Toll-free line for all calls  

� Free minor and major upgrades 

 

The annual subscription price for the Priority Support Package is 30% of the purchase price of the 
product to be covered. 

 

NeuroSolutions Feature Summary by Level 

Educator 
Unrestricted Topologies 

� Multilayer perceptrons (MLPs) 

� Generalized feedforward networks 

� User-defined network topologies 

� Up to 50 neurons per layer 

� Up to 2 hidden layers 
Learning Paradigms 

� Backpropagation 
Competitive Advantage 

� 32-bit code 
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� Faster simulations 

� Icon-based graphical user interface 

� Extensive probing capabilities 

 

Users 
Unrestricted Topologies 

� All topologies of the Educator 

� Modular networks 

� Jordan-Elman networks 

� Self Organizing Feature Map nets 

� Radial Basis Function networks 

� Neuro-Fuzzy 

� Support Vector Machines (SVM) 

� Up to 500 neurons per layer 

� Up to 6 hidden layers 
Additional Features 

� Genetic Parameter Optimization 
Learning Paradigms 

� Backpropagation 

� Unsupervised Learning 

� Hebbian 

� Oja’s 

� Sanger’s 

� Competitive 

� Kohonen 
Competitive Advantage 

� More neurons per layer 

� More neural models to choose from 

� More unsupervised learning rules 

 

Consultants 
Additional Topologies 

� Hopfield networks 

� Time Delay Neural Networks 

� Time-Lag Recurrent Networks 

� Unrestricted User-defined network topologies 

� Over 90 components to build from 

� A virtually infinite number of possible networks 
Learning Paradigms 
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� All paradigms of Users version 

� Recurrent backpropagation 

� Backpropagation through time 
Competitive Advantage 

� Modular design allowing user-defined network topologies 

� Dynamic systems modeling 

� Time-Lag Recurrent Networks 

 

Professional 
Additional Features 

� ANSI C++ Source Code generation 

� Embed networks into your own applications 

� Train networks on faster computers 

 

Developers 
Additional Features 

� User-defined dynamic link libraries 

� Customized neural components 

� Nonlinearities 

� Interconnection matrices 

� Gradient search procedures 

� Error criteria 

� Unsupervised learning rules 

� Memory structures 

� Customized input 

� Customized output 

� Customized parameter scheduling 

 

Developers Lite 
Features 

� All features of the Developers version except for ANSI C++ Source Code generation 

 

NeuroSolutions for Excel 
Features 

� Visual Data Selection 

� Data Preprocessing and Analysis 

� Batch Training and Parameter Optimization 

� Sensitivity Analysis 
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� Automated Report Generation 

 

Custom Solution Wizard 
Features 

� Encapsulate any NeuroSolutions NN into a Dynamic Link Library (DLL)  

� Use the DLL to embed a NN into your own Visual Basic, Microsoft Excel, Microsoft Access or Visual C++ 
application 

� Support for both Recall and Learning networks available 

� Simple protocol for sending the input data and retrieving the network response 

 

Genetic Library/Server 
Features 

� Provides a general purpose API for genetic algorithm design 

� Genetic Server 1.0 is an ActiveX component that can be used to easily build a custom genetic application in 
Visual Basic 

� Genetic Library 1.0 is a C++ library that can be used for building custom genetic applications in C++ 

� There are no royalties for distributing applications built with the ActiveX component or the library 

 

TradingSolutions 
Features 

� Download data directly from the Internet or import from a variety of other sources 

� Get up and running fast with animated demonstrations and step-by-step tutorials 

� Perform calculations on a single security or multiple securities at once 

� Model optimal actions and predict future prices with exclusive time-based neural networks 

� Implement your own functions, systems, and complete trading solutions 

� Evaluate trading models for profit potential using historical back-testing 

� Optimize your models for maximum profit 

 

Level Restrictions 
 

All levels of NeuroSolutions use the same executable. The software detects the level you are 
licensed for by reading a code from the attached hardware key or from a password stored on the 
file system. The restrictions for each of the levels are summarized in the table below. 

 
Level Restrictions Restriction Type 

Evaluation Always in Evaluation Mode Evaluation Mode  

Educator ContextAxon 

UnsupervisedFull 

Evaluation Mode  
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FuzzyAxon 

GeneticControl 

SVMStep 

PEs per Axon > 50 

Axons on BB > 5 

All restrictions of Users 

Users TDNNAxon 

GammaAxon 

LaguarreAxon 

PEs per Axon > 500 

Axons on BB > 9 

All restrictions of Consultants 

Evaluation Mode  

Consultants Code Generation 

All restrictions of Professional 

Disabled 

Professional Non-public DLLs Disabled 

Developers 
Lite 

Code Generation Disabled 

Developers None  

 

Evaluation Mode 
 

There are six levels of NeuroSolutions (the Educator, Users, Consultants, Professional, Developers 
Lite and Developers versions). If you have not purchased the Consultants version or higher, then 
you may encounter restricted operations. However, this will not keep you from experimenting with 
all of the features available within the Consultants version. 

Whenever a restricted operation is attempted, the program will ask if you would like to enter into 
evaluation mode. The evaluation mode allows you to use all of the features of the Consultants 
version. However, once you have entered this mode, you will encounter the following restrictions: 

 
Components Restrictions 

Axons & 
Synapses 

The weights are not stored when the breadboard is saved 

DataWriter Cannot save the text from the display window to a file 

Cannot copy the text from the display window to the pasteboard 
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Cannot redirect the probed data to a file 

ImageViewer Cannot save the probed image to a bitmap file 

Criterion Cannot automatically save the best network weights to a file 

StaticControl & 
DynamicControl 

Cannot save the network weights to a weights file 

The source code generation feature produces incomplete source code 

All Neural 
Components 

Cannot create, compile, or debug a DLL 

Can only load DLLs created by NeuroDimension 

Macro Bars Cannot create a new Macro Bar or delete an existing one 

 
Some of the tutorials within the on-line help require some advanced features available only in the 
higher-level versions. By allowing the program to switch to evaluation mode when prompted, you 
will be able to work through all of the tutorials within the text. 

Note: If you have not activated your copy of NeuroSolutions within 60 days from the time of 
installation then the evaluation software will expire.  

 

NeuroSolutions Pricing 
 

The latest pricing for all NeuroDimension products can be found on our web site at: 
http://www.nd.com/neurosolutions/pricing.html. 

 

Note: If you do not have access to the Internet, see the Contacting NeuroDimension topic for 
information on how to contact NeuroDimension via phone, fax and mail. 

 

NeuroSolutions University Site License Pricing 
 

The latest university site license pricing for NeuroDimension products can be found on our web site 
at: http://www.nd.com/neurosolutions/univsite.html. 

 

Note: If you do not have access to the Internet, see the Contacting NeuroDimension topic for 
information on how to contact NeuroDimension via phone, fax and mail. 

 

Ordering Information 
 

NeuroDimension products can be ordered using any of the following 3 methods: 
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1 Place the order on-line using our SECURE order entry system. 
2 Download and print the latest order form then fax the completed form to 352-377-9009, or mail it 
to: 

 

NeuroDimension, Inc. 

Order Processing Department 

1800 N. Main Street, Suite #D4 

Gainesville, FL 32609-8606 

 
3 Phone in your order (800-634-3327 or 352-377-5144) Monday through Friday between the hours 
of 8:30 AM and 5:00 PM EST. 

 

We accept payment by credit card (Visa, MasterCard or American Express), wire transfer, or 
prepayment by check or money order. 

 

Note: In order to use the links within this topic, you must be connected to the Internet. 

 

Getting Started 
System Requirements 

 

Before installing NeuroSolutions, you should verify that the configuration of your system meets the 
following minimum specifications: 

 

Operating System Windows 95/98/Me/NT/2000  

Memory 16MB RAM (32MB recommended) 

Hard Drive 40MB free space 

Video 640x480 with 256 colors (800x600 with 16M 
colors recommended) 

 

Running the Demos 
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The best way to get an overview of the features provided by NeuroSolutions is to run the demos. 
These demos present a series of examples in neural computing in an attempt to illustrate the broad 
range of capabilities NeuroSolutions has to offer. 

All demos are live! Each one starts with random initial conditions and learns on-line. Since most of 
the examples deal with highly nonlinear problems, they may get stuck in local minima. In such 
cases, simply run the simulation a couple of times. 

 

Demo selection panel 
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To display the Demo Panel, select the Demos item from the Help menu. To run a demo, make a 
selection by pressing one of the demo buttons followed by the Run button. The two buttons at the 
bottom are the exception; they do not use the Run button.  

 

A running demo 

 

These demos are designed to be interactive. Many of the panels have edit cells that allow you to 
modify the network parameters and buttons to run the simulation or single-step through an epoch. 

These demos are also not very restrictive. At any time during the presentation you are able to 
manipulate the breadboard by, adding a component, removing a component or changing a 
component’s parameters with the inspector. This can be advantageous in that you can learn a lot 
about the software by experimenting with the components. However, changing the state of the 
breadboard may result in a failure for the remainder of the demo, since the demos were designed 
with the assumption that no changes would be made. If the demo does fail, simply re-run the demo 
from the demo selection panel and do not make any changes to the components as you are 
stepping through the panels. 

It is important to note that the demos are nothing more than NeuroSolutions macros. In other 
words, you the user have the same the same tools at your disposal that we had to create this 
demo. To take a look at the macro source code, open one of the macro files (*.nsm) within the 
Demos subdirectory of NeuroSolutions using the MacroWizard (under the "Tools" menu). 

Once you have run the demos for NeuroSolutions, you should have a good idea of the broad range 
of capabilities provided by the base software. The next step you will want to take is to run the demo 
for NeuroSolutions for Excel. There is a button at the bottom of the NeuroSolutions demo panel that 
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will launch this demo for you, or you can click here . Note that both NeuroSolutions for Excel and 
Microsoft Excel (97 or higher) need be installed for this demo to work.  

What to do after Running the Demos 
 

After running the demos you will want to read the Getting Started Manual. This document steps you 
through the process of building a neural network with the NeuralExpert and NeuralBuilder utilities. 
The examples are written based on sample data included with the software, but you can use your 
own data instead. Click here  to open the electronic version of this manual.  

One possible starting point for building your own networks is to use the Demos. Simply run one of 
the demos that closely resembles the topology you want to use, then step through the panels until 
the network is constructed. From there you can load your own data into the File component(s) and 
make any other parameter and/or topology modifications that you wish. One you have made the 
desired changes, save the breadboard to a file for future use. 

If you have purchased or are interested in purchasing NeuroSolutions for Excel, then you will want 
to read the Getting Started chapter of the NeuroSolutions for Excel help file. Click here  to open 
this documentation. 

Included with the full installation of NeuroSolutions is an introductory chapter of an electronic book 
entitled Neural Systems: Fundamentals Through Simulations by Principe, Lefebvre, and Euliano. If 
you want to read this chapter and work through the simulations, then select "Interactive Book" from 
the Help menu. Please visit the Interactive Book page of the NeuroDimension web site for more 
information on this revolutionary teaching tool. 

 

Frequently Asked Questions (FAQ) 
 

General 
What is NeuroSolutions? 

NeuroSolutions is the premier neural network simulation environment. 
What is a neural network? 

A neural network is an adaptable system that can learn relationships through repeated presentation 
of data, and is capable of generalizing to new, previously unseen data. Some networks are 
supervised, in that a human must determine what the network should learn from the data. Other 
networks are unsupervised, in that the way they organize information is hard-coded into their 
architecture. 

What do you use a neural network for? 

Neural networks are used for both regression and classification. In regression, the outputs 
represent some desired, continuously valued transformation of the input patterns. In classification, 
the objective is to assign the input patterns to one of several categories or classes, usually 
represented by outputs restricted to lie in the range from 0 to 1, so that they represent the 
probability of class membership. 

Why are neural networks so powerful? 
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For regression, it can be shown that neural networks can learn any desired input-output mapping if they 
have sufficient numbers of processing elements in the hidden layer(s). For classification, neural networks 
can learn the Bayesian posterior probability of correct classification. 

What is the NeuralBuilder? 

The NeuralBuilder is an external program that aids the user in neural network design and setup. It 
automatically constructs any of the eight most popular neural architectures, including file and probe 
specifications. 

What is NeuroSolutions for Excel? 

NeuroSolutions for Excel is an Excel add-in that allows the user to construct, train, and test neural networks 
entirely from Excel. The user simply selects columns of data as input or target, and rows of data as training, 
testing, or cross-validation. NeuroSolutions for Excel then sends messages to NeuroSolutions in order to 
train or test a network. 

Algorithms 
How does NeuroSolutions implement neural networks? 

NeuroSolutions adheres to the so-called local additive model. Under this model, each component 
can activate and learn using only its own weights and activations, and the activations of its 
neighbors. This lends itself very well to object orientated modeling, since each component can be 
a separate object that sends and receives messages. This in turn allows for a graphical user 
interface (GUI) with icon based construction of networks. 

What algorithm does NeuroSolutions use to train recurrent networks? 

NeuroSolutions uses the back-propagation through time (BPTT) algorithm, which "unfolds" a dynamic net at 
each time step into an equivalent feed-forward net. 

How does NeuroSolutions implement Radial Basis Function (RBF) networks? 

The centers and widths of the Gaussian axons are determined from the cluster centers of the data, which 
are found through an unsupervised clustering algorithm. The weights from the Gaussian axons to the output 
layer are then determined through supervised learning with a desired signal. 

Can I implement my own algorithms? 

Yes, the easiest way to modify NeuroSolutions is through Dynamic Link Libraries (DLL’s), available with the 
Developer’s Lite and Developer’s levels. Every component has default code, which can be generated and 
edited from the "Engine" property page, and then compiled with MS Visual C++. 

Platforms and OS Issues 
What operating systems does NeuroSolutions run on? 

The full GUI environment of NeuroSolutions runs under Windows NT and Windows95. 
Are there versions of NeuroSolutions for the Macintosh, Sun, etc.? 

Not at present, and there are no immediate plans for porting the GUI environment to other platforms (see the 
next question). 

Does NeuroSolutions run under Unix? 

Yes, NeuroSolutions runs under Unix, but without the GUI environment. The source code license provides 
the user with the complete NeuroSolutions’ core algorithmic code, either as a pre-compiled library or raw 
source code to be compiled by the user. The easiest way to make use of the library is to use the code 
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generation capabilities of the Professional and Developer’s versions, which generate source code from the 
GUI breadboard. Alternatively, the user can write code that calls the library. 

How can I communicate with NeuroSolutions from another program? 

NeuroSolutions is an OLE compatible server, which means it can be controlled by any OLE client, such as 
MS Excel or an MS Visual Basic application. The OLE commands take advantage of NeuroSolutions’ macro 
language. Two of our other products, the "NeuralBuilder" and "NeuroSolutions for Excel", control 
NeuroSolutions externally as clients in this way. 

Network Components 
What do Axons do? 

The Axon family sums all incoming vectors from multiple connections, and then applies a transfer 
function to the sum. 

What does the plain blank Axon do? 

This Axon acts the same as all other Axons, except its transfer function is the identity function. 

What does a Full Synapse do? 

A Full Synapse takes its input and multiplies it by a matrix. If a delay is specified, the output is 
delayed by that many time steps. 

What’s does the straight Synapse do?  

Using the Straight synapse to connect two Axons is exactly the same as making a direct 
connection between them, except it gives the additional option of specifying a delay. 

What is that 2nd network that seems to lie on top of the main network? 

This is the backpropagation network. Every Axon and Synapse has a corresponding BackAxon 
and BackSynapse that attaches to the upper right corner of the corresponding forward component. 
Data flows forward from the input to the output through the forward propagation network. The 
criterion compares the output with the desired response, and computers the error. The error is then 
injected into the backpropagation network, and the data flows through this network, back towards 
the original input. 

In the control palette, what’s the difference between the clocks with one and two dials? 

The clocks with one dial are for use with static networks, where the complete forward activation 
and back-propagation cycle can be completed in the same time step. The clocks with two dials are 
dynamic controllers for use with dynamic networks (see the next question). 

When do I need to use the dynamic controllers? 

You need to use the dynamic controllers anytime your network has a feedback loop with an adaptable 
weight(s). This includes the Gamma and Laguarre Axons, which are components that have internal 
feedback loops with an adaptable weight.  You also need the dynamic controllers whenever a component 
with delays is used at any point in the network other than the input layer. For example, you can use a static 
controller for a network with a TDNN Axon (tapped delay line) at the input layer, but you must use a dynamic 
controller if the TDNN Axon is in the hidden layer. 

Constructing Networks 
How do I connect two components on the breadboard? 

There are two ways. The easiest way is to left-click select the "from" component, and then right-click select 
the "to" component, and choose "Connect To" from the menu. The other way is to manually grab the male 
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connector of the "from" component, and drag it over the female component of the "to" component, and 
release it. 

How do I move or delete a connection? 

First, of the two components connected by the connector, identify the "to" component. Then, 
identify where the male end of the connector joins with the female receptor of the "to" component. 
To move it, left-click select it, and then left-click drag it to a new location. To delete it, right-click 
select it and choose delete from the menu.  

How can I make a connector follow a path instead of straight line? 

First, move the male end of the connector to the first way-point on your path (see the previous question). 
Then, while holding down the shift key, drag the end of the connector to the next way-point. Continue in this 
fashion until the connector follows the desired path. Finally, drag the male end of the connector over the 
female receptor of the "to" component. 

Why can’t I connect a Synapse to multiple Axons? 

In NeuroSolutions, only Axons can branch. Thus, you can connect a single Axon to multiple 
Synapses but not the opposite. 

When I try to create a recurrency in my network, why do I get a message that there’s an 
infinite loop in the data flow? 

NeuroSolutions is a discrete-time simulator, and thus any recurrent loops must have a delay. 
Otherwise, the components in the loop would fire in sequence forever without ever advancing the 
time. In NeuroSolutions, Synapses implement the delays, and can be changed from the inspector’s 
Synapse property page.  Setting at least one Synapse in your recurrent loop to a delay of one or 
greater will solve the problem. 

What’s the meaning of "stacked access"? 

When you put one component on another, such as placing a probe on a file component, its access 
is said to be "stacked", in that the data it receives (or sends) comes from (or goes to) the same 
access point as the component below it. Note that a stacked component only communicates with 
those components that are below it, not above it. 

Editing Networks 
What is the Inspector? 

The inspector is a panel that displays component specific information that the user can edit. 

How do I bring up the Inspector for a particular component? 

Right-click on the component and choose  "Properties". You can also left-click select the 
component and then use the keyboard combination Alt-Enter. 

How can I simultaneously edit the parameters of several components? 

Right-click select the first component and, if the inspector is not already open, choose properties 
from the menu.  Then hold down the shift key while left-click selecting the remaining 
components. Any changes you make in the inspector will be reflected in all selected components, 
as long as they all have the same parameter. For example, you can simultaneously change the 
number of PE’s of a group of Axons, even if they have different transfer functions (tanh, sigmoid, 
etc.). 

In the Axon family, what is the meaning of "Rows" and "Cols" of PE’s on the Axon property 
page? 

The PE’s of an Axon can be arranged as a matrix for display purposes, such as viewing the 
activations as an image. However, for calculation purposes, NeuroSolutions only cares about the 
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total number of PE’s, given by rows times columns, and this is the number shown on the "Axon" 
property page. If you don’t care about arranging the Axon’s activations as a matrix, just set the 
"Rows:" of PE’s. Note that some Axons have a  "Transfer Function" property page with a "PEs" 
edit box, which is the same as the "Rows:" edit box. 

Why can’t I change the number of PE’s of an output Axon? 

The number of PE’s of the last Axon in a supervised network are completely determined by the number of 
PE’s of the Criteria. 

Why can’t I change the dimensions of a Synapse? 

The dimensions of a Synapse are completely determined by the two axons to which it is 
connected. 

In the forward controller’s Inspector, why can’t I choose the number of exemplars/epoch? 

For file input, the number of exemplars is entirely determined by the number of data points in the input file 
divided by the number of PE’s of the input axon. For other input, such as the function generator, you can set 
the number of exemplars. 

What’s the standard naming convention? 

All components on the breadboard must have distinct names. NeuroSolutions provides default names, which 
can be viewed or changed in the Inspector’s "Engine" property page. The standard naming convention is a 
set of suggested names for components based on their place and function within the network. The 
suggested names can be found in the on-line help index under "naming". 

Why should I name my components according to the standard convention? 

Following the standard naming convention means that you can use the same macros with any network, and 
that weight files and generated code will be easier to read. 

File Management 
How do I feed a test set through the network? 

First, go to the "File List" property page of the input file, click "Add…", and choose your test set. When the 
"Associate File" panel appears, choose "Testing" under the "Data Sets" list. If your test set has an 
associated desired file and you want to view error information, repeat the above steps for the desired file. 
Then, go to the "Static" property page of the forward controller, and choose "Testing" in the "Active Data 
Set" pull down menu. This automatically turns off learning. From the "Access" property page of the output 
probe, switch the "Access Data Set" to "Testing". You may then run the test set. 

How do I split a file into a training set and a test set? 

Add the file as usual from the File List property page of the File Inspector. It will be added as a 
Training data set by default. Click "Customize…" and then, within the "Data Segmentation" area 
of the resulting pop-up window, click the "Segment" box, and choose the offset and duration of 
the Training set. Then add the same file to the Data Set list, but this time as a test set (see the 
previous question). With the Testing file highlighted in the Data Set list, click "Customize…" 
again, and then the "Segment" box, and set the offset and duration to a different region of the file. 
These procedures must be applied to both the input and desired files. In addition, make sure you 
change your probe’s Access Data Set (see question H.2). 

Note that this technique can only be used to split files into contiguous regions. To split a file 
randomly, use NeuroSolutions for Excel, or some other external pre-processor. 

How can I train a network to do prediction of a data set without using multiple files? 

Add the input file as usual from the File List property page of the File Inspector. Click 
"Customize…" and then, within the "Data Segmentation" area of the resulting pop-up window, 
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click the "Segment" box. Leave the offset at zero. If you are predicting P steps in advance, and 
your file has N exemplars, enter the difference N-P as the duration. Then add the desired file and 
click "Customize…". Click the "Segment" box and enter P as the offset and the difference N-P as 
the duration. 

This process of setting up prediction is much simpler in the NeuralBuilder. Consider using it if 
your network is one of the default architectures it constructs. 

What is the normalization file? 

NeuroSolutions can scale and shift your data so that it fits in any range. This can be set from the "Stream" 
property page of the File Inspector. The normalization file is where NeuroSolutions stores the scale and bias 
parameters. You can view, select, and resave the normalization file under a different name from the "Data 
Sets" property page. 

How do I denormalize the network output? 

Place a probe on the network output, and go to the "Probe" property page, and check the box "Denormalize 
from Normalization File". Then choose the file that is used to normalize the desired output. 

What is the meaning of the various NeuroSolutions extensions? 

The extension "nsb" indicates a breadboard, "nsm" is for a macro, "nsn" is used for a 
normalization file, and "nsw" indicates a weight file. 

Running Networks 
Why doesn’t anything happen when I hit the Start button? 

NeuroSolutions now keeps track of the total number of epochs trained. After a training run, if you wish to 
continue training, you must increase the epochs in the "Static" property page of the forward controller, or 
reset the network and start over. 

When using a test data set, why don’t I see anything happening in the probes? 

All probes have an access property page, where you can set the "Access Data Set", through a pull-
down menu, to "All", "Cross-Validation", "Training", or "Testing". The default setting is 
"Training", and thus you need to set it to either "All" or "Testing". 

If I "fix" a component’s weights in the "Soma" property page, are they permanently frozen? 

No, fixing a component’s weights simply means that they can’t be randomized. The component can, 
however, still learn and improve its weight estimates. 

How can I freeze a component’s weights while allowing others to learn? 

For supervised components, set the associated gradient descent component’s learning rate to zero. 
For unsupervised components, set the learning rate of the component itself to zero. 

What’s the difference between randomize and jog in the control panel? 

Randomize alters the weights according to a uniform distribution with the given mean and range.  
Jog alters the weights around their current value, using the given range. Jog can be useful during 
training to nudge a network out of a local minima. 
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Terms to Know 
Main Window 

From the Start menu of Windows (the lower-left corner of your screen), select "Programs" then 
"NeuroSolutions 4". The icon  represents the NeuroSolutions program. Double-click on this icon 
to begin or click the following shortcut  to run NeuroSolutions. 

Once the program is launched you will see the main window of NeuroSolutions. The top of the 
window contains the main menus. These are used to issue commands to the program. The icons 
just below the menus are the toolbars. These buttons are shortcuts to the menu commands. The 
icons at the bottom of the main window represent neural components. All NeuroSolutions 
components are grouped into families and reside on palettes, which are very similar to toolbars. 
The sub-windows are referred to as the breadboards. These are the NeuroSolutions "documents" 
and it is where the network construction and simulations take place. This multi-document interface 
(MDI) allows you to run multiple simulations simultaneously. 
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The NeuroSolutions Main Window 

Inspector 

 

The Inspector is a window that is used to view and modify the parameters of the selected 
component(s) on the breadboard. Within the Inspector are multiple property pages, each page 
containing a different set of parameters. The pages are selected by clicking on the labeled tabs at 
the top of the Inspector window. To display the inspector window, select Inspector item of the View 
menu, or right-click on the component (to bring up the Component menu) and select the Properties 
item. 
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Axon Inspector 

Breadboards 
 

From the File menu select the New item. The blank window that appears is referred to as a 
breadboard. This is a simulation "document", similar to a document in your word processing 
program. The breadboard contains all of the information that defines an experiment. When the 
breadboard is saved to disk, all of the components, connections, parameters and (optionally) 
weights are stored. 

The breadboard is where the network construction and simulation takes place. Networks can be 
automatically constructed using the NeuralBuilder utility or they can be built from scratch by 
selecting components from palettes and stamping them on a breadboard. Note that networks 
constructed with the NeuralBuilder can later be customized by removing components and/or adding 
new ones from the palettes. 

Multiple breadboards can be opened at one time, allowing you to run multiple simulations 
simultaneously. To select between the breadboards you can click on the breadboard window (if it is 
not hidden), or use the Window menu. To maximize a breadboard to fill the entire workspace, 
simply double-click on the title bar of the breadboard window. 

 

 

Breadboard containing a MLP 
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Neural Components 
 

Each neural component encapsulates the functionality of a particular piece of a neural network. A 
working neural network simulation requires the interconnection of many different components. 

As mentioned above, the NeuralBuilder utility automates the construction process of many popular 
neural networks. There may be times when you will want to create a network from scratch, or to 
add components to a network created by the NeuralBuilder. This is done by selecting components 
from palettes and stamping them onto the breadboard. 

 

 

Axon component 

Toolbars and Palettes 
 

Both the toolbars and palettes are control bars that can be positioned anywhere on the screen. 
These control bars are also dockable, meaning that they have the ability to be attached or "docked" 
along any edge of the main window. 

Both the toolbars and palettes have a feature called tooltips. On palettes, tooltips display the name 
of an icon’s component. To activate the tooltip for an icon, simply hold the mouse cursor over the 
icon for a couple of seconds. 

 

 

Axon Palette 

 

The Customize Toolbars Page is used to toggle the visibility of toolbars. This feature is available so 
that only the palettes and toolbars used most often occupy the screen area. This page also allows 
you to switch between large and small buttons (the sample toolbar shown above contains small 
buttons). The contents of the toolbars is fully customizable within the Customize Buttons Page. 

 

 

  See Also 

Selection and Stamping Modes 
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The default operating mode of the NeuroSolutions main window is the Selection mode. The 
Selection mode is required in order to move and select components on the breadboard. The 
Stamping mode is used to select new components from palettes and stamp them onto the 
breadboard. 

Once a component is selected from a palette (by pressing the corresponding palette button), the 
program switches to Stamping mode. When the cursor is placed over a valid location on the 
breadboard, the mouse cursor will change from an arrow to a white stamp. At this point, pressing 
either the left or right mouse button will create a new component of the selected type and place it 
on the breadboard at the location of the cursor. By using the left mouse button, the program will 
return to Selection mode after the component is stamped. The right mouse button will leave the 
program in Stamping mode. 

If your cursor changes to a gray stamp, this means you are in replacement mode. Clicking the left 
mouse button will replace the component on the breadboard with the one selected from the palette. 

 

 

  See Also 

Temporary License 
 

There may be cases when you would like to run simulations of sophisticated networks on multiple 
machines, but you do not want to have to purchase a high-end license for each machine. The 
temporary license feature of NeuroSolutions offers a viable alternative. 

Suppose you have purchased one copy of the Developers version and five copies of the Educator. 
You have used the Developers version to build an elaborate neural network and you would like to 
run simulations using this topology on the other five machines. Once you copy the breadboard to 
those machines, the networks will run just as if they were licensed for the Developers version. 
However, there are two restrictions: 1) you cannot modify the topology, and 2) the breadboard 
expires after 30 days. The temporary license can be renewed by re-saving the breadboard using 
the Developers version. 

Menus & Toolbars 
File Menu & Toolbar Commands 

 

 

 

 

Description: 

The "File" menu pertains to the NeuroSolutions documents, otherwise referred to as breadboards. 
Open this toolbar segment by selecting "System" from the "Toolbars" menu. 

 

Menu/Toolbar Commands: 
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 New 

Creates a new breadboard (document) and opens it as a separate window. 

 Open 

Opens an existing breadboard (document) as a separate window. The file is specified using the File 
Open dialog box. 

 Close 

Closes the active breadboard (document). If there have been any changes to the breadboard since the 
last save then you will be given the option to save the breadboard before closing. 

 Save 

Use this command to save the active document to its current name and directory.  When you save a 
document for the first time, NeuroSolutions displays the Save As dialog box so you can name your 
document.  If you want to change the name and directory of an existing document before you save it, 
choose the "Save As" command (see below). 

 Save As 

Use this command to save and name the active document.  NeuroSolutions displays the Save As 
dialog box so you can name your document. 

 Recent Files 

Use the numbers and filenames listed at the bottom of the File menu to open the last four documents 
you closed.  Choose the number that corresponds with the document you want to open. 

 Exit 

Ends your NeuroSolutions session.  You can also use the Close button ( ) of the NeuroSolutions 
main window.  You will be prompted to save documents with unsaved changes. 

Edit Menu & Toolbar Commands 
 

 

 

 

Description: 

The "Edit" menu contains commands for manipulating the components on the breadboard. Open 
this toolbar segment by selecting "System" from the "Toolbars" menu. 

 

Menu/Toolbar Commands: 
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 Undo 

Reverses the most recent change to the breadboard. To return the breadboard its original state, issue 
the Undo command a second time. 

 Cut 

Removes the currently selected components from the breadboard and puts them on the clipboard.  
This command is unavailable if there are no components currently selected. Cutting data to the 
clipboard replaces the contents previously stored there. 

 Copy 

Copies the currently selected components onto the clipboard. This command is unavailable if there are 
no components currently selected. Copying data to the clipboard replaces the contents previously 
stored there. 

 Paste 

Inserts a copy of the clipboard contents at the insertion point.  This command is unavailable if the 
clipboard is empty or if a valid insertion point has not been selected. 

 Delete 

Removes the currently selected components from the breadboard. This command is unavailable if 
there are no components currently selected. 

 Copy to File 

Copies the currently selected components to the selected Clipboard file (*.nsc). This command is 
unavailable if there are no components currently selected. 

 Paste from File 

Inserts the contents of the selected Clipboard file (*.nsc) at the insertion point.  This command is 
unavailable if the clipboard is empty or if a valid insertion point has not been selected. 

 Selection Cursor 

Use this command to switch the cursor from the stamping mode to the selection mode. 

Alignment Menu & Toolbar Commands 
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Description: 

This toolbar is used for arranging the components on the breadboard. Open this toolbar by 
selecting "Alignment" from the "Toolbars" menu. These alignment commands can also be found 
under the "Alignment" menu. 

 

Menu/Toolbar Commands: 

 Align Left 

Moves the selected components so that the left borders all have the same x coordinate on the 
breadboard. 

 Align Right 

Moves the selected components so that the right borders all have the same x coordinate on the 
breadboard. 

 Align Top 

Moves the selected components so that the top borders all have the same y coordinate on the 
breadboard. 

 Align Bottom 

Moves the selected components so that the bottom borders all have the same y coordinate on the 
breadboard. 

 Space Across 

Distributes the selected components within the horizon tal space between the left-most selected 
component and the right-most selected component. 

 Space Down 

Distributes the selected components within the vertical space between the top selected component 
and the bottom selected component. 

 Center Horizontal 

Moves the selected components horizontally to the center of the visible portion of the breadboard.  

 Center Vertical 

Moves the selected components vertically to the center of the visible portion of the breadboard.  

 Center Objects 

Moves the selected components so that their centers all have the same x coordinate on the 
breadboard. 

 Bring To Front 
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Moves selected component in front of any other components sharing the same space. 

 Send To Back 

Moves selected component behind any other components sharing the same space. 

Windows Menu  & Toolbar Commands 
 

 

 

 

Description: 

The "Windows" menu contains commands for manipulating the breadboard (document) windows. 

 

Menu/Toolbar Commands: 

 New Window 

Opens a new window with the same contents as the active window. This feature allows you to 
view/modify two sections of the same breadboard at once. 

 Cascade 

Displays all breadboards in windows that do overlap. 

 Tile 

Displays all breadboards in windows that do not overlap. 

 Arrange Icons 

Arranges the minimized versions of the windows along the bottom of the application workspace. 

 Currently Open Breadboards 

Activates the window of the selected breadboard. 

Component Menu 
 

The component menu is used to issue commands specific to a particular component or group of 
components. To issue a command for an individual component on the breadboard, click the right 
mouse button while the cursor is on top of the component and select the menu item for the 
command. To issue a command for a group of components, you must first select the components 
(see Logic of the Interface) before right-clicking to display the menu. 

Menu Item Description 
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Properties Displays the inspector window, which is used to 
view/modify the component’s parameters.  

Connect to Connects the previously selected component to 
the selected component. 

Cut See Edit Menu  

Copy See Edit Menu  

Paste See Edit Menu  

Delete Removes the selected component(s) from the 
breadboard. 

Copy to File Writes the selected component(s) to a user-
specified clipboard (*.nsc) file. 

Paste from File Pastes the component(s) stored in a user-
specified clipboard file (*.nsc) onto the 
breadboard. 

Insert New 
Object 

Displays a list of object types available on your 
system. Once a type is selected, the appropriate 
OLE-compliant application will be launched and a 
new object of that type will be embedded into the 
NeuroSolutions breadboard. 

 

Tools 

Tools Menu Commands 

 

Description: 

The "Tools" menu contains macro and control commands. It also provides short cuts to wizard 
programs such as the NeuralBuilder. 

 

Menu/Toolbar Commands: 

 NeuralBuilder 

Launches the NeuralBuilder neural network construction utility. The user steps through a series of 
panels to specify the topology, input data, learning parameters and probing. The network is then 
constructed and ready for simulations. 

 NSForExcel 

Launches NeuroSolutions for Excel. This Excel add-in can be used in conjunction with any level of 
NeuroSolutions to simplify and enhance the process of getting data in and out of the network. Both 
NeuroSolutions for Excel and Microsoft Excel must be installed in order for this toolbar button to 
function. 

 CustomSolutionWizard 
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Launches the Custom Solution Wizard. This utility will take any neural network created with 
NeuroSolutions and automatically generate and compile a Dynamic Link Library (DLL) for that 
network, which you can then embed into your own application. The Custom Solution Wizard must be 
installed in order for this toolbar button to function. 

 NeuralExpert 

Launches the NeuralExpert neural network contruction utility. This is similar to the NeuralBuilder, but it 
is much simpler to use. It asks the user a series of questions about their problem and then intelligently 
builds a neural network based on the size and type of problem specified. 

 TestingWizard 

Launches the TestingWizard. This utility provides an easy way to produce the network output for a 
new dataset once the training phase has been completed. The network output can be displayed within 
a window or saved to a file. 

 MacroWizard 

Opens the MacroWizard Window. 

 Record Macro 

See Macro Menu & Toolbar Commands. 

 Control 

See Control Menu & Toolbar Commands. 

 Customize 

See Customize Toolbars Page. 

 Options 

See Options Window. 

 Add 

Opens a file selection panel to select an executable file. A menu cell is created that when selected will 
execute this file. 

 Remove 

Opens a panel listing the user-defined tools. Select from this list to remove one of the tools from the 
Tools menu. 

 

Control Menu & Toolbar Commands 
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Description: 

This toolbar allows you to perform global data flow operations on the network. Open this toolbar by 
selecting "Control" from the "Toolbars" menu. These control commands can also be found within 
the "Tools" menu. 

 

Toolbar Commands: 

 Start 

Begins an experiment defined by the Control component on the breadboard. If this button is disabled, 
then the experiment has run to completion and the network must either be reset (see below) or the 
epochs must be increased (see the Static property page). 

 Pause 

Pauses the simulation after finishing the current epoch. 

 Reset 

Resets the experiment by resetting the epoch and exemplar counters, and randomizing the network 
weights. Note that when the Learning switch from the Static property page is off, the weights are not 
randomized when the network is reset 

 Zero Counters 

Sets the Epoch and Exemplar counters to zero without resetting the network. 

 Step Epoch 

Runs the simulation for one epoch. 

 Step Exemplar 

Runs the simulation for one exemplar. 

 Randomize 

Randomizes the network weights. The mean and variance of the randomization is defined within the 
Soma property page of each component that has adaptable weights. 

 Jog 

Alters all network weights by a random value. The variance of the randomization is defined within the 
Soma property page of each component that has adaptable weights.  

 Hide Windows 

When this button is selected (pressed down), all display windows are hidden from view. When the 
button is de-selected (popped up), the display windows are restored to their original state. 
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  See Also 

Macro Menu & Toolbar Commands 

 

 

 

 

Description: 

This toolbar is used to issue commands associated with the MacroWizard. Open this toolbar by 
selecting "Macro" from the "Toolbars" menu. These macro commands can also be found within the 
"Tools" menu. 

 

Toolbar Commands: 

 MacroWizard 

Displays the MacroWizard window. 

 Record New 

Opens a panel for entering a macro name, creates a new macro with the specified name, and begins 
recording the macro. 

 Stop 

Stops the macro recording process and displays the MacroWizard Edit Page. 

 Pause 

Pauses the macro recording process. Press the button again to resume recording. 

Customize Toolbars Page 

 

A palette contains a group of neural components belonging to the same family. A toolbar contains 
shortcut buttons to the various menu commands. The Customize Toolbars page allows you to 
toggle the visibility of the various palettes and toolbars, as well as adding new ones and 
customizing the appearance.  
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Component Palettes 
Menu Item Description 

Axon Contains the processing elements (PEs) and 
activation functions of the network. 

Backprop Backpropagation components, which 
backpropagate the error through the network and 
compute weight gradients. 

Controls Control the data flow of the network. 

Dialog Text boxes, edit cells and buttons. 

ErrorCriteria Produce a measure of error based on the output 
and desired signal of the network. 

GradientSearch Updates the weights of the network based on first 
order gradient information. 

Input Bring data into the network, either by generating it 
or by reading it from the file system. 

MemoryAxon Axons that store information over time. 

Probes Graph the parameters and data contained within 
the network. 

Schedule Components that modify the network’s 
parameters during an experiment. 
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Synapse Connect axons together and contain the weights 
of the network. 

Transmitter Transmit data and control messages from one 
component to another. 

Unsupervised 
Family 

Synapses whose weights are updated based on 
unsupervised learning rules. 

 

Command Toolbars 
Menu Item Description 

Alignment  Commands used to align components on the 
breadboard. 

Control Commands used to control the simulation. 

Macro Commands used to record and manipulate 
macros. 

Necessities The most commonly used commands taken from 
several toolbars. 

System Commands that are common to most Windows 
programs. 

Tools  Shortcuts to wizards and related programs. 

 
Options: 

Show Tooltips 

This feature will display the full name of the command/component when the cursor is placed over 
the toolbar/palette button. 
Cool Look 

This feature diplays the toolbar/palette button in 3-D only when the cursor is placed over it. 
Large Buttons 

Displays a larger version of the toolbar/palette buttons, which includes the names of the 
commands/components. 

 

 

See also Customize Buttons Page  

Customize Buttons Page 

 

The Customize Buttons page allows you to select which tool buttons should be displayed on each 
toolbar. 
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To add a button to a toolbar/palette, select the category of the command/component and then drag 
the desired button to the location in the toolbar/palette that you would like it displayed. Note: You 
must drag the button to the actual toolbar/palette -- not to the category list. 

To remove a button, simply drag the button from the toolbar/palette to an emply place on the 
screen (while the Customize Buttons page is displayed). 

 

 

See also Customize Toolbars Page  

 

View 

View Menu 

 

This menu is used to toggle the visibility of the selected toolbar or window. 
Menu Item Description 

Custom Macro 
Bars  

Commands that are defined with user-defined 
macros. The default installation includes a set of 
sample macro bars. 
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Status Bar Section of the main window that indicates the 
current state of the system. 

Inspector Window to view/modify the component 
parameters.  

Console Window that displays the log of error and 
diagnostic messages. 

New Macro Bar  Creates a blank Macro Bar with the user-specified 
name. 

 

Macro Bars 
 

Macros can be run from the MacroWizard, a MacroEngine or a Macro Bar. Macro bars allow you to 
easily run macros directly from the main window of NeuroSolutions. Simply clicking a button on a 
macro bar will run the associated Macro. 

To create a new macro bar, select "New Macro Bar…" from the View Menu and enter a name for 
the bar. A new macro bar with a blank button should appear. Right-click on this bar to configure the 
buttons. Left-click on a button while holding down the shift key to move the button within the 
toolbar. 

 

Macro Bar Commands (right-click to display menu): 
Add Button 

Adds a blank button to the macro bar. 
Delete Button 

Deletes the selected button from the macro bar. 
Name Button 

Opens a dialog box for entering the name of the selected button. 
Assign Macro 

Opens a file selected panel for selecting the macro file (*.nsm) to associate with the button. 
Edit Macro 

Opens the MacroWizard Edit Page with the associated macro loaded. 
Delete Macro Bar 

Deletes the macro bar and removes its entry from the View Menu. 

 

The default installation of NeuroSolutions includes three macro bars, which can be found at the top 
of the View Menu. Below is a summary of the default macros. 
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Common Macros 
Macro Description 

Confusion  Configures the network to display a confusion 
matrix (see also the Confusion Matrix DLL 
Example). 

Discrim. Configures the network to display a discriminant 
function (see also the Discriminant Function DLL 
Example). 

Reset-Run Resets and Runs the network. 

Test Net Configures the network for testing and runs the 
simulation for one epoch. 

Train Net Configures the network for training and runs the 
simulation for the number of epochs defined 
within the Static Inspector. 

Build MLP Builds a multi-layer perception. Note that the data 
files need to be added to the File Inspector. 

 

Probe Manipulation 
Macro Description 

BarChart Replaces the existing training probes with the 
BarChart. 

DataWriter Replaces the existing training probes with the 
DataWriter. 

MatrixView Replaces the existing training probes with the 
MatrixViewer. 

Cross Val Configures the existing training probes to access 
the Cross Validation data set (see the Access 
inspector). 

Training Configures the existing training probes to access 
the Training data set (see the Access inspector). 

Testing Configures the existing training probes to access 
the Testing data set (see the Access inspector). 

 

Custom Dialogs 
Macro Description 

Epoch Creates a DialogEngine component that can be 
used to enter the training epochs directly on the 
breadboard. 

Layer1 PEs Creates a DialogEngine component that can be 
used to enter the number of PEs in the first 
hidden layer. 
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Layer1 Mom. Creates a DialogEngine component that can be 
used to enter the momentum of the first hidden 
layer. 

Layer1 Step Creates a DialogEngine component that can be 
used to enter the step size of the first hidden 
layer. 

Output Mom. Creates a DialogEngine component that can be 
used to enter the momentum of the output layer. 

Output Step Creates a DialogEngine component that can be 
used to enter the step size of the output layer. 

 

Status Bar 
 

 

 

 

The status bar is displayed at the bottom of the NeuroSolutions window.  To display or hide the 
status bar, select the "Status Bar" item within the View Menu. 

 

The left side of the status bar describes the action in progress or the action associated with the 
current cursor position.  The right areas of the status bar indicate which of the following keys are 
latched down: 

 
Indicator Description 

CAP The Caps Lock key is latched down. 

NUM The Num Lock key is latched down. 

SCRL The Scroll Lock key is latched down. 

Help 

Help Menu & Toolbar Commands 

 

 

 

 

Description: 
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The "Help" menu contains commands for displaying the on-line help, the about panel, and the 
demos.  

 

Menu/Toolbar Commands: 

 NeuroSolutions Help 

Displays the main window for the on-line help system. From there you can find the documentation by 
the table of contents, keyword index, or content search. 

 Context Help 

When you click this toolbar button or menu item, the mouse cursor will change to an arrow and 
question mark.  Click somewhere inside one of the windows of NeuroSolutions and the help topic will 
be shown for that specific item.  

 Getting Started Manual 

This is the online version of the printed manual that comes with all licensed copies of NeuroSolutions. 
It is recommended that new users read this manual before reading the main NeuroSolutions Help. 

 About NeuroSolutions 

Display the copyright notice and version number of your copy of NeuroSolutions.  

 Demos 

Use this command to run the NeuroSolutions Demo.  This will show a panel that contains a number of 
macros that demonstrate some of the capabilities of the program. Once an example is complete, the 
breadboard can be modified and additional experiments can be run. 

 Interactive Book 

Opens the introductory chapter of an electronic book entitled Neural Systems: Fundamentals Through 
Simulations by Principe, Lefebvre, and Euliano. Please visit the Interactive Book page of the 
NeuroDimension web site for more information on the entire publication. 

 Open ND Web Page 

Opens the home page of NeuroDimension (http://www.nd.com) using the default browser. 

 Technical Support 

Opens the Tech Support Help Page. 

 Activate Software 

Opens the Activate Software Panel, which displays the serial number for your installation and allows 
you to enter in the activation codes needed to upgrade the software from the evaluation level to the 
level you have purchased. 
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Activate Software Panel 

 

 

 

This panel displays the serial number for your installation and allows you to enter in the activation 
codes needed to upgrade the software from the evaluation level to the level you have purchased. 
Serial Number 

This is the number that the system automatically assigned to your installation of NeuroSolutions. 
You will need this number to obtain the activation code(s) from the Licensed Users section of the 
NeuroDimension web site.  
NeuroSolutions 

Use this text box to enter in the activation code for the level of NeuroSolutions you purchased. This 
code can be obtained from the Licensed Users section of the NeuroDimension web site. 

NeuroSolutions for Excel 

Use this text box to enter in the activation code for NeuroSolutions for Excel if you purchased this 
product. This code can be obtained from the Licensed Users section of the NeuroDimension web 
site. 

Custom Solution Wizard 
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Use this text box to enter in the activation code for the Custom Solution Wizard if you purchased 
this product. This code can be obtained from the Licensed Users section of the NeuroDimension 
web site. 
Activate 

Once you have entered in the activation codes for the products you purchased, click this button to 
save these codes. If the codes are correct, the software will be activated to the proper level. To 
verify the level is correct, select "About NeuroSolutions" from the NeuroSolutions Help menu. 

 

 

User Options 
Options Window 

 

This window is used to view/modify the user preference settings. These settings are stored in the 
file "NeuroSolutions.ini" located within the Windows directory. 
OK 

Saves all changes and closes the window. 
Cancel 

Closes the window and discards all changes that have not yet been applied. 
Apply 

Saves all changes and keeps the window open. 
Help 

Displays the on-line help for the selected options page. 

 

  See Also 

Options Workspace Page 
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This page relates to the components and documents. 

 
Animation Speed 

Adjusts the speed at which the components are painted on the screen. A slower setting will yield a 
smoother, yet slower, animation effect. 
Open Previous Docs. 

Automatically opens the breadboards that were last opened whenever NeuroSolutions is first 
launched. 
Prompt to change PEs 

When two axons are connected together, their dimensions (number of processing elements) must 
match. If this box is checked and the dimensions of one of two connected axons are changed, a 
dialog box will open asking if you want to make the same change to the other axon. If this box is 
not checked then this change is made automatically. 

 

 

  See Also 

 

Options Save Page 
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This page relates to the saving of files to the file system. 

 
Autosave 

Saves a backup copy of all open breadboards every x number of minutes, where x is specified in 
the corresponding edit cell. The backup files have a ".auto" extension appended to their names. 
Save before Run 

Saves the breadboard whenever a simulation starts. 
Backup on Save 

When a breadboard is saved it first copies the previously saved breadboard to a backup file. The 
backup files have a ".back" extension appended to their names. 
Data Directory 

This is the directory used to store all data files associated with the breadboards. If this directory is 
blank, then the data files will be stored in the same directory as their corresponding breadboards. 
Temp Directory 

The input components often use a temp directory to store temporary files. When one copy of 
NeuroSolutions is shared over a network, it is recommended that each machine have a unique 
temp directory. 
DLL Directory 

The directory used to store user-defined DLLs. 
Book Path 
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The directory where the Interactive Book files are stored. If you purchased this product then this 
directory should be on your CD-ROM drive. Otherwise, this directory will be a sub-directory of your 
NeuroSolutions installation and will contain only the files for the first chapter.  

 

  See Also 

Examples 
Example 1 - Toolbar Manipulation 

 

The figure below shows the default toolbar. Try moving this toolbar by beginning a drag operation 
with the mouse cursor just to the right of the right-most button. Drag the toolbar to the center of the 
main window and release. This toolbar is no longer attached to the main window. Try moving the 
main window to verify this. 

 

 

Default Toolbar 

 

Now drag the toolbar to the right border of the main window. As you drag the toolbar across, you 
should see the border change from a horizontal orientation to a vertical one. At this point, release 
the mouse button. The toolbar should now be docked on the right side of the main window. Both 
toolbars and palettes can be docked at any of the four borders of the main window.  

Move the mouse cursor to the button with the button labeled "NBuilder". After leaving it there for 
about a half of a second, a small yellow box with the text "NeuralBuilder" will appear. This is the 
button’s tooltip.  

Select "Customize" within the Tools menu to view the list of available palettes. Click on the Axon 
check box to display the Axon palette. You may move this palette as described above. 

 

 

  See Also 

Example 2 - Component Manipulation 
 

During the previous example you displayed the Axon palette. Select the left-most (or top-most if the 
palette is arranged vertically) button on this palette. You have now selected the Axon component. 
Move the mouse cursor over the breadboard and click the left mouse button. This should have 
placed an Axon component on the breadboard. From the Probes palette, select the left-most (or 
top-most) button. Now move the mouse cursor over the Axon on the breadboard and click the left 
mouse button. You have now placed a MatrixViewer probe on the Axon. At this point there is little 
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to probe since you are missing key elements of the network. This exercise is only intended to be a 
brief introduction to component manipulation. 

 

 

MatrixViewer attached to an Axon. 

 

 

  See Also 

Example 3 - Inspecting a Component's Parameters 
 

During the previous example you placed an Axon and a MatrixViewer on the breadboard. If you 
stamped the MatrixViewer using the right mouse button, then you are still in Stamping mode. If this 
is the case, you will first need to click the following button from the System toolbar: 

 

 

Selection Cursor toolbar button 

 

This changes the mouse cursor from Stamping mode to Selection mode. Now when you click the 
mouse on the breadboard, you will not stamp a new component as you did earlier. Move the mouse 
over the Axon on the breadboard and single-click. A square should appear around the Axon to 
indicate that this component is selected. 

From the View menu, select the Inspector item. This should display the Inspector window 
containing the parameter settings for the Axon component that you just selected. Click the tab 
buttons at the top of the Inspector window to switch between the three property pages of the Axon. 
From the breadboard, single click on the MatrixViewer’s icon to make it the selected component. 
Note that the Inspector has been updated to reflect the parameter settings of the MatrixViewer 
component. 
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Axon Inspector 

 

Double-click on the MatrixViewer’s icon to open its display window. This shows the current value of 
the Axon’s single processing element. 

If the Help toolbar button  is enabled, click on it to switch to the Context-Sensitive Help mode. 
Click on the MatrixViewer’s icon to display the on-line help for this component. Return to the 
Context-Sensitive Help mode and click on the current property page within the Inspector window. 
Note that if you click on a different property page, then a different section of the help will be 
displayed. Repeat the process for the display window of the MatrixViewer, as well as the 
MatrixViewer’s button on the palette. This should give you an appreciation for the powerful on-line 
help facility. Context-Sensitive help is available for most components, inspectors, toolbars and 
display windows. 

 

 

  See Also 

 

Simulations 
Simulations 

 

 

NeuroSolutions 

 

NeuroDimension, Incorporated. 

Gainesville, Florida 
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Purpose 

This chapter describes general principles useful in simulating neural networks, and motivates the 
step by step procedure utilized later in the Manual. After reading this chapter, the user should have 
a better understanding of the power of neural networks and how they can be effectively used to 
solve real world problems. 

 

Introduction to Neural Network Simulations 
What Are Artificial Neural Networks 

 

Before delving into the solution of real world problems using neural networks, a definition of neural 
networks will be presented. It is important to know the conditions under which this style of problem 
solving excels and what its limitations are. 

At the core of neural computation are the concepts of distributed, adaptive and nonlinear 
computing. Neural networks perform computation in a very different way than conventional 
computers, where a single central processing unit sequentially dictates every piece of the action. 
Neural networks are built from a large number of very simple processing elements that individually 
deal with pieces of a big problem. A processing element (PE) simply multiplies an input by a set of 
weights, and nonlinearly transforms the result into an output value (table lookup). The principles of 
computation at the PE level are deceptively simple. The power of neural computation comes from 
the massive interconnection among the PEs, which share the load of the overall processing task, 
and from the adaptive nature of the parameters (weights) that interconnect the PEs. 

Normally, a neural network will have several layers of PEs. This chapter only covers the most basic 
feedforward architecture, the multilayer perceptron (MLP). Other feedforward architectures as well 
as those with recurrent connections are addressed in the Tutorials chapter.  

The diagram below illustrates a simple MLP. The circles are the PEs arranged in layers. The left 
column is the input layer, the middle column is the hidden layer, and the right column is the output 
layer. The lines represent weighted connections (i.e., a scaling factor) between PEs. 

 

 

A simple multilayer perceptron 

 

By adapting its weights, the neural network works towards an optimal solution based on a 
measurement of its performance. For supervised learning, the performance is explicitly measured 
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in terms of a desired signal and an error criterion. For the unsupervised case, the performance is 
implicitly measured in terms of a learning law and topology constraints. 

A Prototype Problem 
 

Sleep staging is a quantitative measure to evaluate sleep. Sleep disorders are becoming quite 
common, probably due to the stress of modern living. Sleep is not a uniform process. The brain 
goes through well defined patterns of activity that have been catalogued by researchers. Insomnia 
is a disruption of this normal pattern, and can be diagnosed by analyzing sleep patterns. Normally 
these patterns are divided into five stages plus awake (sleep stage 0). Sleep staging is a time 
consuming and extremely expensive task, because the expert must score every minute of a 
multichannel tracing (1,200 feet of paper) recorded during the whole night. For these reasons, there 
is great interest in automating this procedure. 

In order to score sleep automatically, it is necessary to measure specific waveforms in the brain 
(alpha, beta, sigma spindles, delta, theta waves) along with additional indicators (two rapid eye 
movements -- REM 1 and 2, and muscle artifact). 

This example illustrates the type of problem that is best solved by a neural network. After much 
training the human expert is able to classify the sleep stages based on the input signals, but it 
would be impossible for that person to come up with an algorithm to automate the process. A 
neural network is able to perform such a classification by extracting information from the data, 
without any prior knowledge. 

The table below shows a segment of the brain wave sensor data. The first column contains the 
time, in minutes, of each reading, and the next eight columns contain the eight sensor readings. 
The last column is the sleep stage, scored by the sleep researcher, for each minute of the 
experiment. 

 

Sleep Staging Data 

Min ? ? ? ? ? MA REM 1 REM 2 Stage 

37 0 0 25 1 16 0 6 0 1 

38 0 0 25 2 14 0 1 0 1 

39 0 0 29 3 13 0 4 0 2 

40 0 0 29 1 8 0 5 0 1 

41 0 0 32 2 8 0 2 0 0 

42 0 0 29 1 8 0 1 1 1 

 

The problem is to find the best mapping from the input patterns (the eight sensors) to the desired 
response (one of six sleep stages). The neural network will produce from each set of inputs a set of 
outputs. Given a random set of initial weights, the outputs of the network will be very different from 
the desired classifications. As the network is trained, the weights of the system are continually 
adjusted to incrementally reduce the difference between the output of the system and the desired 
response. This difference is referred to as the error and can be measured in different ways. The 
most common measurement is the mean squared error (MSE). The MSE is the average of the 
squares of the difference between each output PE and the true sleep stage (desired output). 
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This simple example illustrates the basic ingredients required in neural computation. The network 
requires input data and a desired response to each input. The more data presented to the network, 
the better its performance will be. Neural networks take this input-output data, apply a learning rule 
and extract information from the data. Unlike other technologies that try to model the problem, 
artificial neural networks (ANNs) learn from the input data and the error. The network tries to adjust 
the weights to minimize the error. Therefore, the weights embody all of the information extracted 
during learning.  

Essential to this learning process is the repeated presentation of the input-output patterns. If the 
weights change too fast, the conditions previously learned will be rapidly forgotten. If the weights 
change too slowly, it will take a long time to learn complicated input-output relations. The rate of 
learning is problem dependent and must be judiciously chosen.  

Each PE in the ANN will simply produce a nonlinear weighted sum of inputs. A good network output 
(i.e. a response with small error) is the right combinations of each individual PE response. Learning 
seeks to find this combination. In so doing, the network is discovering patterns in the input data that 
can solve the problem. 

It is interesting that these basic principles are very similar to the ones used by biological 
intelligence. Information is gained and structured from experience, without explicit formulation. This 
is one of the exciting aspects of neural computation. These are probably the same principles 
utilized by evolution to construct intelligent beings. Like biological systems, ANNs can solve difficult 
problems that are not mathematically formulated. The systematic application of the learning rule 
guides the system to find the best possible solution. 

Ingredients of a Simulation 
Formulation of the problem  

 

As in the example given, one needs a well defined problem domain. In our everyday life we are 
bombarded with situations so complex that we do not have analytical ways to solve them. Some 
examples are: the best way to invest your money in a diversified portfolio, the prediction of your 
company’s next quarterly sales, repairs to your car which maximize its commercial value, who is 
going to win the football game. Note that in each one of these cases, there is a clearly defined 
problem. Once you have a crisp definition, the next step is to select the input variables and the 
desired responses. Here you always use common sense to select the variables that are relevant for 
the problem. As an example, using your birthday to forecast the weather is probably not a valuable 
variable. One should seek variables and conditions that appear relevant to the problem being 
analyzed. One should also seek data that cover a wide spectrum of cases. If the ANN does not see 
an equilibrated set of cases, its output will be ‘biased’. Since ANNs learn from the data, the data 
must be valid for the results to be meaningful. 

Sometimes the desired response is unknown. For instance, what is the desired response for a 
stock prediction problem? Everyday there is a stock price, so the history of the prices can be used 
as a basis for making a prediction. If the network can do this reliably for every day in the past, then 
it may also be able to predict tomorrow’s stock price. 

NeuroSolutions implements the basic building blocks of neural computation, such as multi-layer 
perceptrons, Jordan and Elman networks, radial basis function (also called probabilistic) networks, 
principal component analysis networks, self-organizing feature map networks, and time-lagged 
recurrent networks. With these neural models one can solve virtually any problem where a neural 
network solution has been reported. See the on-line documentation of the NeuralBuilder for more 
information on these models. 

Data Collection and Coding 
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Data collection is crucial for the training of neural networks. You have to make sure that your data 
covers conditions that the network may encounter later. It is not only necessary to collect large data 
sets, but also representative data sets. The Concepts chapter in this manual provides some 
heuristics to find out if you have enough data to reliably train your network.  

The next step is to get the data in computer readable format. Some data is already quantified and 
readily available, such as financial market indicators. If the data is not in numeric format, you have 
to decide a way to code the data into a numeric format. This may be challenging because there are 
many ways to do it, and unfortunately some are better than others for neural network learning. See 
the File component for a description of the facility provided for automatically coding non-numeric 
data into numeric data. Spreadsheets are a good way to structure and save data. Once the data is 
stored in a spreadsheet, a significant portion of the problem solution is already accomplished.  

Once you have collected and coded your data, you must address the specifics of neural network 
technology to effectively utilize the knowledge embedded in the input data and the desired 
response. The following sections cover these specifics. 

Getting Data into the Network 
 

The input and desired response data that was collected and coded must be written to one of the 
four file formats that NeuroSolutions accepts: ASCII, column-formatted ASCII, binary and bitmap 
(bmp image). Column-formatted ASCII is the most commonly used, since it is directly exportable 
from commercial spreadsheet programs. 

Each column of a column-formatted ASCII file represents one channel of data (i.e., input into one 
PE). Each channel may be used for the input, desired output, or may be ignored. The desired 
response data can be written to the same file as the input data, or they can each be written to 
separate files. 

The first line (row) of the file should contain the column headings, and not actual data (See figure 
below). Each group of spaces and/or tabs indicates a break in the columns. In order for the 
program to detect the correct number of columns, the column headings must not contain spaces. 
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Example of a column-formatted ASCII file 

 

The remaining lines contain the individual samples of data. The data elements (values) are 
separated by spaces and/or tabs. The number of data elements for each line must match the 
number of column headings from the first line. The data elements can be either numeric or 
symbolic. There is a facility to automatically convert symbolic data to numeric data. 

The remaining three file types are simply read as a sequential stream of floating-point values. Non-
formatted ASCII files contain numeric value separated by tabs and/or spaces. Any non-numeric 
values are simply ignored. Bitmap files can be either 16-color or 256-color. Each pixel of the image 
is converted to a value from 0 to 1, based on its intensity level. Binary files contain raw data, such 
that each 4-byte segment contains a floating-point value. Many numerical software packages 
export their data to this type of format. 

Cross Validation 
 

During training, the input and desired data will be repeatedly presented to the network. As the 
network learns, the error will drop towards zero. Lower error, however, does not always mean a 
better network. It is possible to overtrain a network. 

Cross validation is a highly recommended criterion for stopping the training of a network. Although 
highly recommended, it is not required. One will often want to try several networks using just 
training data in order to see which works best, and then use cross validation for the final training. 

When using cross validation, the next step is to decide how to divide your data into a training set 
and a validation set, also called the test set. The network is trained with the training set, and the 
performance checked with the test set. The neural network will find the input-output map by 
repeatedly analyzing the training set. This is called the network training phase. Most of the neural 
network design effort is spent in the training phase. Training is normally slow because the 
network’s weights are being updated based on the error information. At times, training will strain the 
patience of the designer. But a carefully controlled training phase is indispensable for good 
performance, so be patient. NeuroSolutions’ code was written to take maximum advantage of your 
computer’s resources. Hardware accelerators for NeuroSolutions that are totally transparent to the 
user are forthcoming.  

There is a need to monitor how well the network is learning. One of the simplest methods is to 
observe how the cost, which is the square difference between the network’s output and the desired 
response, changes over training iterations. This graph of the output error versus iteration is called 
the learning curve. The figure below shows a typical learning curve. Note that in principle the 
learning curve decreases exponentially to zero or a small constant. One should be satisfied with a 
small error. How small depends upon the situation, and your judgment must be used to find what 
error value is appropriate for your problem. The training phase also holds the key to an accurate 
solution, so the criterion to stop training must be very well delineated. The goal of the stop criterion 
is to maximize the network’s generalization. 
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Typical learning curve 

 

It is relatively easy to adapt the weights in the training phase to provide a good solution to the 
training data. However, the best test for a network’s performance is to apply data that it has not yet 
seen. Take a stock prediction example. One can train the network to predict the next day’s stock 
price using data from the previous year. This is the training data. But what is really needed is to use 
the trained network to predict tomorrow’s price.  

To test the network one must freeze the weights after the training phase and apply data that the 
network has not seen before. If the training is successful and the network’s topology is correct, it 
will apply its ‘past experience’ to this data and still produce a good solution. If this is the case, then 
the network will be able to generalize based on the training set. 

What is interesting is that a network with enough weights will always learn the training set better as 
the number of iterations is increased. However, neural network researchers have found that this 
decrease in the training set error was not always coupled to better performance in the test set. 
When the network is trained too much, the network ‘memorizes’ the training patterns and does not 
generalize well.  

A practical way to find a point of better generalization is to set aside a small percentage (around 
10%) of the training set and use it for cross validation. One should monitor the error in the training 
set and the validation set. When the error in the validation set increases, the training should be 
stopped because the point of best generalization has been reached. Cross validation is one of the 
most powerful methods to stop the training. Other methods are discussed under Network Training.  

Network Topology 
 

After taking care of the data collection and organization of the training sets, one must select the 
network’s topology. An understanding of the topology as a whole is needed before the number of 
hidden layers and the number of PEs in each layer can be estimated. This discussion will focus on 
multilayer perceptrons (MLPs) because they are the most common.  

A multilayer perceptron with two hidden layers is a universal mapper. A universal mapper means 
that if the number of PEs in each layer and the training time is not constrained, then 
mathematicians can prove that the network has the power of solving any problem. This is a very 
important result but it is only an existence proof, so it does not say how such networks can be 
designed. The problem left to the experimentalist (like you) is to find out what is the right 
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combination of PEs and layers to solve the problem with acceptable training times and 
performance.  

This result indicates that there is probably not a need for more than two layers. A common 
recommendation is to start with a single hidden layer. In fact, unless you’re sure that the data is not 
linearly separable, you may want to start without any hidden layers. The reason is that networks 
train progressively slower when layers are added. It is just like tapping a stream of water. If you 
take too much water in the first couple of taps there will be less and less water available for later 
taps. In multilayer neural networks, one can think of the water as being the error generated at the 
output of the network. This error is propagated back through the network to train the weights. It is 
attenuated at each layer due to the nonlinearities. So if a topology with many layers is chosen, the 
error to train the first layer’s weights will be very small. Hence training times can become 
excruciatingly slow. As you may expect by the emphasis on training, training times are the 
bottleneck in neural computation (it has been shown that training times grow exponentially with the 
number of dimension of the network’s inputs), so all efforts should be made to make training easier. 

This point has to be balanced with the processing purpose of the layers. Each layer increases the 
discriminant power of the network. For instance, a network without hidden layers is only able to 
solve classification problems where the classes can be separated by hyper-planes. The figure 
below shows how this can be restrictive for a two-dimensional input space. 

 

 

Comparison between linear and nonlinear separability 

 

For completeness, the role of each PE in the network should also be addressed. These concepts 
can be difficult to grasp, so do not be discouraged if it is unclear at first. NeuroSolutions provides 
the option of hiding these low-level details. Therefore, understanding these concepts is not a 
prerequisite to using this software. 

Each PE is able to construct a linear discriminant function (i.e., a plane in many dimensions) in the 
space of its inputs. So for a single hidden layer network, each PE is cutting the input space with a 
plane. Points that are above the plane belong to one class, points that are below the plane belong 
to the other class. The weights position the planes in the input space (i.e., they can rotate or 
displace the planes) to best suit the classification task. The PEs for the other layers perform a 
similar function, but now in the space defined by the hidden layer activations. The final input/output 
map created by the neural network is a composition of all these planes. You may now see the 
purpose of the number of PEs -- they give the network the possibility of fitting very complex 
discriminant functions by compositions of piecewise linear approximations in successive spaces 
(the input space, the first hidden layer space, etc.). The number of sections in each space is 
approximated by the number of PEs. You can also appreciate how difficult it is to find the right 
number of PEs. It has nothing to do with the size of the input space, but with the complexity of the 
discriminant function needed to solve the problem. Since one normally does not have any idea as 
to the shape of the discriminant function required to solve a difficult problem, it is impossible to 
analytically (i.e., by a formula) set the number of PEs.  
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Once again, some heuristics are needed. A base rule is to start small, and observe the behavior of 
the learning curve. If the final training error is small, the number of PEs is probably appropriate. If 
the final error is large, either the learning was caught in a local minima (See Network Training) or 
the network does not have enough degrees of freedom to solve the problem, so you should 
increase the number of PEs. 

Is there a problem with having too many PEs in a neural network? Unfortunately the answer is yes. 
Many PEs in a fully connected neural network means many weights. Neural network researchers 
have shown that an excessive number of weights is the culprit for poor generalization. If the 
network performance drops dramatically from the training set to the test set one of two things has 
happened: either your training set is not representative of the problem domain, or you have 
configured your network with too many weights. You can still train a large network appropriately, 
but you will need a lot of training patterns. A good rule of thumb is that the number of weights 
should be equal to the number of training patterns multiplied by the precision required for the 
classification (in percentage), i.e. 

 

 

 

where N is the number of patterns, W the number of weights and ε the classification error that you 
desire. For instance for a 5% classification error a network with 1000 weights requires 20,000 
patterns.  

This illustrates an inherent problem with the MLP. The network needs a lot of PEs to classify 
complex patterns, but these PEs will have many weights that require lots of training data to 
generalize. The way out is to use data reduction techniques or special topologies (such as principal 
component analysis, or self-organizing maps). This reduces the number of inputs to the network 
(normally the largest layer). Another method is to use alternative topologies to the multilayer 
perceptron that use less weights per PE (such as the radial basis function networks), or to use 
modular MLP designs that decrease the number of weights per PE because their topologies are not 
fully connected.  

Network Training  
 

Training is the process by which the free parameters of the network (i.e. the weights) get optimal 
values. The weights are updated using either supervised or unsupervised learning. This chapter 
focuses on the MLP, so the details of unsupervised learning are not covered here (see the on-line 
documentation for the NeuralBuilder). With supervised learning, the network is able to learn from 
the input and the error (the difference between the output and the desired response). The 
ingredients for supervised learning are therefore the input, the desired response, the definition of 
error, and a learning law. Error is typically defined through a cost function. Good network 
performance should result in a small value for the cost. A learning law is a systematic way of 
changing the weights such that the cost is minimized. In supervised learning the most popular 
learning law is backpropagation. 

The network is trained in an attempt to find the optimal point on the performance surface, as 
defined by the cost definition. A simple performance surface is illustrated in the figure below. This 
network has only one weight. The performance surface of this system can be completely 
represented using a 2D graph. The x-axis represents the value of the weight, while the y-axis is the 
resulting cost. This performance surface is easy to visualize because it is contained within a two-
dimensional space. In general, the performance surface is contained within a N+1 dimensional 
space, where N is the number of weights in the network. 

Backpropagation changes each weight of the network based on its localized portion of the input 
signal and its localized portion of the error. The change has to be proportional (a scaled version) of 
the product of these two quantities. The mathematics may be complicated, but the idea is very 
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simple. When this algorithm is used for weight change, the state of the system is doing gradient 
descent; moving in the direction opposite to the largest local slope on the performance surface. In 
other words, the weights are being updated in the direction of down. 

 

 

Simple performance surface 

 

The beauty of backpropagation is that it is simple and can be implemented efficiently in computers. 
The drawbacks are just as important: The search for the optimal weight values can get caught in 
local minima, i.e. the algorithm thinks it has arrived at the best possible set of weights even though 
there are other solutions that are better. Backpropagation is also slow to converge. In making the 
process simple, the search direction is noisy and sometimes the weights do not move in the 
direction of the minimum. Finally, the learning rates must be set heuristically. 

The problems of backpropagation can be reduced. The slowness of convergence can be improved 
by speeding up the original gradient descent learning. NeuroSolutions provides several faster 
search algorithms such as Quickprop, Delta Bar Delta, and momentum. Momentum learning is 
often recommended due to its simplicity and efficiency with respect to the standard gradient.  

Most gradient search procedures require the selection of a step size. The idea is that the larger the 
step size the faster the minimum will be reached. However, if the step size is too large, then the 
algorithm will diverge and the error will increase instead of decrease. If the step size is too small 
then it will take too long to reach the minimum, which also increases the probability of getting 
caught in local minima. It is recommended that you start with a large step size. If the simulation 
diverges, then reset the network and start all over with a smaller step size. Starting with a large 
step size and decreasing it until the network becomes stable, finds a value that will solve the 
problem in fewer iterations. Small step sizes should be utilized to fine tune the convergence in the 
later stages of training. 

Another issue is how to choose the initial weights. The search must start someplace on the 
performance surface. That place is given by the initial condition of the weights. In the absence of 
any a priori knowledge and to avoid symmetry conditions that can trap the search algorithm, the 
weights should be started at random values. However, the network’s PEs have saturating 
nonlinearities, so if the weight values are very large, the PE can saturate. If the PE saturates, the 
error that goes through becomes zero, and previous layers may not adapt. Small random weight 
values will put every PE in the linear region of the sigmoid at the beginning of learning. 
NeuroSolutions uses uniformly distributed random numbers generated with a variance configurable 
per layer. If the networks are very large, one should further observe how many inputs each weight 
has and divide the variance of the random number generator by this value.  
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The stop criteria for learning are very important. The stop criterion based on the error of the cross 
validation set was explained earlier. Other methods limit the total number of iterations (hence the 
training time), stopping the training regardless of the networks performance. Another method stops 
training when the error reaches a given value. Since the error is a relative quantity, and the length 
of time needed for the simulation to get there is unknown, this may not be the best stop criterion. 
Another alternative is to stop on incremental error. This method stops the training at the point of 
diminishing returns, when an iteration is only able to decrease the error by a negligible amount. 
However, the training can be prematurely stopped with this criterion because performance surfaces 
may have plateaus where the error changes very little from iteration to iteration. 

Probing 
 

A successful neural network simulation requires the specification of many parameters. The 
performance is highly dependent on the choice of these parameters. A productive way to assess 
the adequacy of the chosen parameters is to observe the signals that flow inside the network. 
NeuroSolutions has an amazingly powerful set of probing tools. One can observe signals flowing in 
the network, weights changing, errors being propagated, and most importantly the cost, all while 
the network is working. This means that you do not need to wait until the end of training to find out 
that the learning rate was set too high. 

All probes within NeuroSolutions belong to one of two categories -- static probes and temporal 
probes. The big difference is that the first kind access instantaneous data, while the second access 
the data over a window in time. The temporal probes have a buffer that stores past values, so one 
can visualize the signals as they change during learning. Fourier transforms provide a look at the 
frequency composition of such signals. There is also a probe that provides a 3-D representation of 
the state space. 

Running the Simulation 
 

The simulation of a network in NeuroSolutions requires the orchestration of many pieces. When 
you run the simulation you should start by checking if the data is being correctly fed into the 
network by placing probes on the input sources. Likewise you should verify the desired signal.  

Another important aspect is to check if the learning rates are sufficiently low to avoid divergence. 
Divergence will usually occur during the beginning of training. You might place a matrix viewer on 
the first synapse to see if the weights are changing. Observing a steady decrease of the cost is the 
best overall indicator (the temperature) that everything is progressing well. 

Note that with a lot of the probes open, you are stealing computing cycles from the simulations. 
Therefore once you are convinced that the training is OK, you should momentarily stop the 
simulation and close the probe windows. Minimally you should leave the matrix viewer to report the 
cost, or even better to attach a scope to the cost, such that you can have the history of the learning 
during the length of the simulation. At this point you can leave the simulation unattended until the 
stop criterion halts the simulation.  

You now have to decide if the learning was successful or not. Most of the time, the first check is to 
see if the cost is within what you think is appropriate for your application. In the affirmative case, 
you should save your network. Remember that all the information gathered by the network from the 
input data is contained in the weights. So you should save the weights, along with the topology. 
The weights are saved by default. 

Concepts 
Concepts 
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NeuroSolutions 

 

NeuroDimension, Incorporated. 

Gainesville, Florida 

 

 

 
Purpose 

This chapter links neural network theory with the principles and components embodied within 
NeuroSolutions. It will provide an abstract tour of the NeuroSolutions components while motivating 
their application to neural network simulations. 

 

NeuroSolutions Structure 
NeuroSolutions Structure 

 

NeuroSolutions consists of two major parts: the main window and the neural network components. 
The main window includes the ability to load, create and save the document, which is called the 
breadboard. The neural components are used to construct neural network topologies and are 
organized into palettes that can be attached to the main window. 

 

 

Palettes 

Breadboard 

Palettes 
 

Palettes provide organized storage for neural components. Since NeuroSolutions is object-
oriented, the program modules that implement the neural component functionality are naturally 
organized in code hierarchies that have common ancestry. Each member of the hierarchy 
increases the functionality of its ancestors. Each branch in the code hierarchy has a specific 
function in the neural network simulations. 

NeuroSolutions associates an icon to each neural component. The user interacts with these icons 
within a graphical user interface (GUI) to construct and simulate neural topologies. The 
components are organized into families and stored within palettes. Select the Palettes menu from 
the NeuroSolutions main window to see a list of the component families. 

Networks are constructed by simply selecting components from the palettes and stamping them 
onto the breadboard. Palettes that are used frequently can be docked (attached) to the main 
window (see Toolbar Manipulation). 
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Example of a palette 

Breadboard 
 

NeuroSolutions has one document type, the breadboard. Simulations are constructed and run on 
breadboards. With NeuroSolutions, designing a neural network is very similar to prototyping an 
electronic circuit. With an electronic circuit, components such as resistors, capacitors and inductors 
are first arranged on a breadboard. NeuroSolutions instead uses neural components such as 
axons, synapses and probes. The components are then connected together to form a circuit. The 
electronic circuit passes electrons between its components. The circuit (i.e., neural network) of 
NeuroSolutions passes activity between its components, and is termed a data flow machine. 
Finally, the circuit is tested by inputting data and probing the systems' response at various points. 
An electronic circuit would use an instrument, such as an oscilloscope, for this task. A 
NeuroSolutions network uses one or more of its components within the probes family (e.g., the 
MegaScope). 

Networks are constructed on a breadboard by selecting components from the palettes, stamping 
them on the breadboard, and then interconnecting them to form a network topology. Once the 
topology is established and its components have been configured, a simulation can be run. An 
example of a functional breadboard is illustrated in the figure below. 

 

 

Example of a breadboard (single hidden layer MLP) 

 

New breadboards are created by selecting New from the File menu. This will create a blank 
breadboard titled "Breadboard1.nsb". The new breadboard can later be saved. Saving a 
breadboard saves the topology, the configuration of each component and (optionally) their weights. 
Therefore, a breadboard may be saved at any point during training and then restored later. The 
saving of weights is a parameter setting for each component that contains adaptive weights. This 
parameter can be set for all components on the breadboard or just selected ones. 
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NeuroSolutions Graphical User Interface (GUI) 
NeuroSolutions Graphical User Interface (GUI) 

 

Logic of the Interface 

Components 

The Inspector 

Single-Click vs. Double-Click 

Network Construction 

Network Access 

Network Simulation 

Logic of the Interface 
 

User interaction with NeuroSolutions follows very simple and clear principles: 

 

� Each neural component is represented by an icon. 

� Single-clicking on a component's icon will display its Inspector window. A component's inspector is where the 
user can inspect and alter any variables of the component. 

� Double-clicking on a component's icon will open its animation window, if such a window exist. Animation 
windows allow components to display data while a simulation is running. 

� Single-clicking on a component's icon with the help cursor will display its on-line help quick reference page. 

� Networks are constructed by placing and interconnecting components on a breadboard. 

� Components are created by selecting them from palettes and stamping them onto the breadboard. Components 
can be removed from the topology by means of the cut operation. 

� During a stamp operation, the cursor will indicate whether stamping the component in its present location is 
valid. These operations and their corresponding mouse cursor are as follows: 

� A stamp  indicates that the selected palette component can be copied to the present mouse location. 

� A move cursor  means that the component is under mouse control (drag). 

� A circle with a slanted line  means that the component can not be copied to the present mouse position.  

� A gray stamp  indicates that the selected palette component can be used to replace the component at 
the present mouse location. 

� Stamping by pressing the left mouse button will stamp a single component and return to selection mode. 

� Stamping by pressing the right mouse button will stamp a single component and remain in stamping mode. This 
allows multiple copies of the same component to be stamped easily. 

� The Selection Cursor toolbar button  is used to switch from stamping mode to selection mode. Several 
components can be selected at the same time by pressing the Shift key and mousing down on the component. 
Another method is to select a rectangular region of the breadboard, which then selects all components that lie 
within. A box is drawn around each of the selected components.  
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� Selected components can be cut, copied, pasted or moved. The multiple-selection feature is also used to 
broadcast parameter changes made in one component’s inspector to a group of components. 

Components 
 

The building blocks used to create, control and inspect neural networks are referred to as 
components. Each component is represented by an icon. An example is the Axon, which 
corresponds to the icon illustrated in the figure below. 

 

 

Icon for the Axon 

 

Each component is concisely described within the Components chapter. You will find the 
component’s function (with an equation if appropriate), how to manipulate and configure it (via its 
inspector), where it can "live" (be stamped), and how to access its data (access points). You can 

reach the help for a component by selecting the help cursor  and then selecting the component 
that you want help on. 

The Inspector 
 

The Inspector window is the tool used to configure individual components. If for any reason the 
Inspector window is closed, it can be re-opened by selecting Inspector from the View menu. Single-
clicking on any component will highlight it (put a square around it) and load its property pages into 
the Inspector window. The name of the inspected component is displayed at the top of the 
Inspector window. This procedure is referred to as selecting a component. 

The Inspector window has a folder organization (see figure belowHIDD_NAXONINSPECTOR), 
reflecting the hierarchical organization of the code (inheritance in object-oriented parlance). The 
name of the hierarchy level is placed on the tab of the folder. The highest ancestor is the right most 
tab. This system of inspecting components minimizes the number of windows open at any given 
time. A single breadboard may have hundreds of components. If each component used space on 
the screen for user interaction, the entire screen would quickly become cluttered. After a while this 
convention becomes natural and easy to use. 
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Axon inspector 

 

The tabs at the top of the inspector allow the user to configure variables defined by a superclass of 
the component being inspected. The number and contents of these tabs are determined by the 
"object-oriented" style with which each component was developed. While the concepts of object-
oriented design are beyond the scope of this document, a brief analogy should help. 

A component may be considered to be an "object." Each component belongs to a "family" of 
objects. This family consists of parents, siblings, and children. Each component inherits (i.e., 
assumes the characteristics) of its parent. All siblings will share the characteristics of their parents 
and their parents' parent, etc. The tabs will contain the name of each ancestor contributing any 
parameters to the selected component. Selecting a tab will display the parameters that are 
common to all components having that same ancestor. 

More than one component of the same type may be inspected at the same time. This allows the 
parameters of multiple components to be changed simultaneously. Only the parameters of the first 
component selected will be displayed in the inspector window. Changing a parameter setting from 
the inspector will make that change to all selected components that have that same parameter. For 
example, if you select all the axons and gradient search components from a breadboard and then 
change the learning rate, the gradient search components will all be updated to the same learning 
rate and the axons will be left unchanged (since they do not have a learning rate). 

To select a group of components, you first must be in selection mode (by clicking the Selection 

Cursor  toolbar button). Select the first component of the group by clicking on its icon. Hold 
down the Shift key while selecting the remaining members of the group. As the components are 
selected they are highlighted with a square border. 

Another method of multiple component selection is to select a rectangular region of the 
breadboard. First determine a rectangle that will encompass all of the components that you would 
like to have selected. Draw this rectangle by placing the mouse cursor at the upper-left corner of 
the region, holding the mouse button down, dragging the cursor to the lower-right corner of the 
region, and releasing the mouse button. All of the components that reside directly on the 
breadboard and are contained within this region will be highlighted (selected). 

Single-Click vs. Double-Click 
 

The single-click and double-click concepts are essential for using NeuroSolutions. As described 
above, when the user single-clicks (i.e., presses and releases the mouse button) on a component's 
icon, that component becomes selected and its current configuration is displayed in the Inspector 
window. When the user double-clicks (i.e. presses the mouse button twice in quick succession) on 
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any component, NeuroSolutions will select the component and attempt to open any windows that 
the component may have. Component windows allow components to display data while a 
simulation is running. If the inspector is hidden and the component’s window is already open (or it 
doesn’t have a window), then double-clicking on the component will bring the inspector into view. 

File Open Dialog Box 
 

The following options allow you to specify which breadboard to open: 
File Name 

Type or select the filename of the breadboard you want to open.  This box lists files with the 
extension you select in the List Files of Type box.  
List Files of Type 

Select the file type you want to open.  Since NeuroSolutions only document type is the breadboard, 
you should find your files with the ".nsb" extension. 
Drives 

Select the drive in which NeuroSolutions stores the breadboard that you want to open.  
Directories 

Select the directory in which NeuroSolutions stores the breadboard that you want to open. 
Network... 

Choose this button to connect to a network location, assigning it a new drive letter.  

Save As Dialog Box 
 

The following options allow you to specify the name and location of the file you're about to save: 
File Name 

Type a new filename to save a document with a different name.  A filename can contain up to eight 
characters and an extension of up to three characters.  NeuroSolutions adds the extension you 
specify in the Save File As Type box. 
Drives 

Select the drive in which you want to store the document. 
Directories 

Select the directory in which you want to store the document. 
Network... 

Choose this button to connect to a network location, assigning it a new drive letter.  

Toolbars and Palettes 
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Both the toolbars and palettes are control bars that can be positioned any where on the screen. 
These control bars are also dockable, meaning that they have the ability to be attached or "docked" 
to the main window. 

Both the toolbars and palettes have a feature called tooltips. Tooltips provide a means for labeling 
the buttons with a name in addition to the icons. 

The Toolbars menu and the Palettes menu are used to toggle the visibility of the control bars. This 
feature is available so that only the palettes and toolbars used most often occupy the screen area. 

Title Bar 
 

 

 

 

The title bar is located along the top of a window.  It contains the name of the application and 
document. 

 

To move the window, drag the title bar.  Note: You can also move dialog boxes by dragging their 
title bars. 

 

A title bar may contain the following elements: 

 

� Application Control-menu button 

� Maximize button 

� Minimize button 

� Close Button 

� Name of the application 

� Name of the document 

Scroll Bars 
 

Displayed at the right and bottom edges of the breadboard.  The scroll boxes inside the scroll bars 
indicate your vertical and horizontal location in the document.  You can use the mouse to scroll to 
other parts of the breadboard. 
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Network Construction 

Network Construction 

 

Components are selected from palettes and stamped on the breadboard. The network topology is 
specified by interconnecting components via male and female connectors. This topology is then 
tested by injecting data into and probing output from components via access points. 

The following sections describe each step in this simulation process. 

 

 

Stamping 

Manipulating Components 

Replacing Axons and Synapses 

Connectors 

Cabling 

Stacking 

Stamping 

 

The method used to copy components from palettes to breadboards is by selecting and stamping. 
Selecting is accomplished by clicking on the component’s button on the palette. The cursor then 
becomes a stamp, and the component can be copied many times on the breadboard by clicking on 
a specific location. Note that some components cannot be stamped directly on the breadboard and 
can only be stamped on top of other components. 

To switch from stamping mode back to selection mode, click the Selection Cursor button from the 
main toolbar (see figure below). 

 

 

Toolbar button used to switch to selection mode 

Manipulating Components 

 

Moving a component is very straightforward. Select the component by clicking on its icon. Holding 
down the mouse button will make the cursor change to a move cursor. While the mouse button is 
down, the component will track the location of the cursor. Release the mouse button to place the 
component at a new location. 

Copying a component will create a clone with the exact same configuration. To copy a component, 

select it and click the Copy  toolbar button. Then select where the clone should reside; click on 
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the breadboard or component where the copy should be placed. Then click the Paste  toolbar 
button to create the clone. If the Paste button is disabled (grayed-out), that means that the 
component can not be pasted on the selected location. Copied components that reside directly on 
the breadboard must be pasted on the breadboard. Copied components that are attached to other 
components must be pasted onto other components. 

These concepts get a bit more complicated, and more powerful, when a component is connected to 
other components on the breadboard. There are basically two methods for connecting components: 
through connectors and stacking. When a component is moved or copied, all components stacked 
on top of it will also be moved or copied. Components attached by connectors will be disconnected 
during a copy, except for those connections made between the copied components. However, 
connectors will be disconnected when a component is removed from the breadboard. 

Replacing Axons and Synapses 

 

There will often be times when you would like to change the transfer function or memory structure 
of an Axon, or change a fully connected Synapse to a sparsely connected one. This requires that 
you replace a component, which can be inconvenient when other components are attached and 
connected. The component replace feature automatically swaps an Axon or Synapse and re-
establishes all of the attachments and connections. Simply select the new component from the 
palette, place your cursor over the component to replace (notice that the cursor changes to a gray 
stamp), and click the left mouse button. 

Connectors 

 

Constructing a network topology is equivalent to assigning the order in which data flows through 
network components. Data flow connections are made using male and female connectors. These 
connectors have the icons illustrated in the figure below. 

 

                  

Male Connector Female Connector 

 

Connections are formed by dragging a MaleConnector over a FemaleConnector and releasing the 
mouse button (dropping). The cursor will turn to a move cursor when a male is dragged over an 
available female. Otherwise the forbidden sign will show up. The icon for a male connected to a 
female is shown in the figure below. 

 

 

Connection 

 

There is also a shortcut for making a connection between two components. First, select the source 
component (by single-clicking the left mouse button), then single click the destination component 
with the right mouse button to bring up the Component Menu. Select the "Connect to" menu item. 
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The connection may be broken by simply dragging the MaleConnector to an empty spot on the 
breadboard and performing a Cut operation. If a connection is valid, a set of lines will be drawn 
indicating that data will flow between the components. Data flows from the male to the female. The 
valid connection of two Axons is shown in the figure below. 

 

 

Valid connection between two axons 

 

Notice that a new FemaleConnector has appeared on the right Axon and a new MaleConnector 
was created on the left Axon. This indicates that axons have a summing junction at their input and 
a splitting node at their output. Since the axons contain a vector of processing elements, the 
summing junctions and splitting nodes are multivariate. Axons can accept input from an arbitrary 
number of simulation components, which are summed together. The axons’ output can feed the 
inputs of multiple components. 

An invalid connection between two components for any reason will look like the image shown in the 
figure below. 

 

 

Invalid connection between two axons. 

 

The reason for an invalid connection will appear in an alert panel. Most often the mismatch is due 
to incompatible component dimensions. The user must alter the dimensions of one of the 
components to correct the situation. 

Cabling 

 

Cabling is a graphical option to interconnect components that have connectors. A cable is started 
by dropping the MaleConnector at any empty location on the breadboard. Hold down the Shift key 
while dragging this connector again. This second drag operation will create a new segment of the 
connection (cable). With each successive move of the MaleConnector, a line (cable segment) will 
be drawn to show the connection path. This process may be repeated indefinitely. 

Single-clicking on the MaleConnector will highlight all breakpoints along the cable. A breakpoint 
may then be moved by dragging and dropping. If a breakpoint is Cut from the breadboard, then it is 
removed from the cable. Double-clicking on a breakpoint will insert an additional breakpoint next to 
it in the cable. Cabling is particularly useful when forming recurrent connections. An example of 
cabling between two axons is shown in the figure below. 
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Example of a cable between two axons 

 

NeuroSolutions verifies that all connections make sense as they are formed. This was already 
evident in the visual indication of incompatibility between components. In cabling, if the output of an 
element is brought to its input, an alert panel will be displayed complaining that an infinite loop was 
detected. It is up to the user to modify the cabling (e.g., making sure that the recurrent connection 
is delayed by at least one time step). 

Stacking 

 

Connectors are normally used to specify the network topology by defining the data flow. There are 
many situations where components should be connected to a network without altering its topology. 
Examples of such situations are probing, noise injection and attaching learning dynamics. Stacking 
allows this form of connection. 

The figure below illustrates the use of stacking to probe the activity flowing through an Axon. Notice 
that stacking does not use the male and female connectors. 

 

 

A probe stacked on top of an Axon. 

Network Access 

Network Access 

 

NeuroSolutions allows access to any data within the network via access points. The concept is 
simple. Every internal variable (i.e. piece of data or parameter) is encapsulated within an access 
point. All access points report their data through a universal language or protocol. Typical data that 
would be reported by a component are activations, gradients, weights and MSE. 
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Components that understand this protocol belong to the Access family. Access components attach 
to access points through stacking. Any component with accessible data will report its available 
access points to an Access component during the stamping operation. If the component being 
stamped has a compatible access point, then the cursor will turn to a stamp. The Probe stacked on 
top of an Axon figure illustrates a MatrixViewer that has been placed on an Axon. 

Since each component may have more than one access point, the desired access point must be 
selected from a list. This list is contained within the Access property page of the stacked 
component’s inspector (see The Inspector). 

The inspector for the MatrixViewer allows the user to select between the activity and pre-activity 
access reported by the Axon. This inspector is illustrated in the figure below. 

 

 

Available access points of the Axon component 

 

All Access components have an access point called Stacked access. This access point allows data 
to be simultaneously used by more than one Access component. In the above example, another 
probe can be dropped on top of the MatrixViewer using its Stacked access to visualize the data in a 
different way. 

 

 

Probes 

Data Input/Output 

Transmitters and Receivers 

Probes 

 

Probes are one family of components that speak the Access protocol. Each probe provides a 
unique way of visualizing the data provided by access points. Consider an access point presenting 
a fully connected matrix of weights. You could view this data instantaneously as a matrix of 
numbers or you could view this data over time as weight tracks. What is important here is that 
NeuroSolutions provides an extensive set of visualization tools that can be attached to any data 
within the network. 
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The DataStorage component collects multi-channel data into a circular buffer, which is then 
presented as the Buffered Activity access point. Temporal probes, such as the MegaScope, can 
only stack on top of a DataStorage component (directly or indirectly). In the configuration illustrated 
in the figure below, the MegaScope is used to display the Axon's activity over time. Used in this 
manner, the MegaScope/DataStorage combination functions as an oscilloscope. 

The DataStorage component may also be used in conjunction with the DataStorageTransmitter, 
allowing data from different locations in the topology to be displayed on a single probe. This is also 
illustrated in the figure below. 

 

 

Probing the output and input of a network using the same scope. 

Data Input/Output 

 

Probes attach to access points to examine data within the network. Network data can also be 
altered through access points. This provides an interface for using input files, output files and other 
I/O sources. Illustrated in the figure below is a FunctionGenerator stacked on top of the left Axon. 
This will inject samples of a user defined function into the network's data flow. 

 

 

FunctionGenerator as the input to a network 

 

To read data from the file system, the File component must be used. This component accepts 
straight ASCII, column-formatted ASCII, binary, and bitmap files. Several files of any type may be 
opened at the same time and input sequentially to the network. Segmentation and normalization of 
the data contained in the files is also provided by this component. The figure below shows a File 
component attached to the left Axon. 

Any network data can be captured and saved to a binary or ASCII file using the DataWriter probe. 
The figure below also shows a DataWriter attached to an output Axon to capture its activity as it 
flows through the network. 
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A File component to read data in and a DataWriter probe to write data out 

Transmitters and Receivers 

 

Both connectors and stacking provide local communication between components. There are 
situations where a global communication channel is necessary, either to send/receive data or for 
control. NeuroSolutions provides a family of components, called Transmitters, to implement global 
communications. These components use access points to globally transmit data, or to send global 
messages based on local decisions. Several components can receive data or control messages 
that alter their normal operation. This allows very sophisticated tasks to be implemented, such as 
adaptive learning rates, nonuniform relaxation, and error-based stop criteria. 

Network Simulation 

Network Simulation 

 

When a network is "run", data will flow one sample at a time from the input components, through 
the network topology, and into the output components. The standard data flow is from left to right, 
but this depends on how the components are connected together. Note that the NeuroSolutions 
main window has no menu options for controlling the simulation. This is done strictly at the 
component level using members of the Controls family. 

Application Window Commands 
Size command (System menu) 

 

Use this command to display a four-headed arrow so you can size the active window with the arrow 
keys. 

 

 

 

After the pointer changes to the four-headed arrow: 

1 Press one of the DIRECTION keys (left, right, up, or down arrow key) to move the pointer to the border you 
want to move.   

2 Press a DIRECTION key to move the border. 

3 Press ENTER when the window is the size you want. 
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Note:  This command is unavailable if you maximize the window. 

 
Shortcut 

Mouse: Drag the size bars at the corners or edges of the window. 

Move command (Control menu) 
 

Use this command to display a four-headed arrow so you can move the active window or dialog 
box with the arrow keys. 

 

 

 

Note:  This command is unavailable if you maximize the window. 

 
Shortcut 

Keys: CTRL+F7 

Minimize command (application Control menu) 

 

Use this command to reduce the NeuroSolutions window to an icon. 

 
Shortcut 

Mouse: Click the minimize icon  on the title bar. 

Keys: ALT+F9 

Maximize command (System menu) 
 

Use this command to enlarge the active window to fill the available space. 

 
Shortcut 

Mouse: Click the maximize icon  on the title bar; or double-click the title bar. 

Keys: CTRL+F10 enlarges a document window. 

Close command (Control menus) 
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Use this command to close the active window or dialog box. 

 

Double-clicking a Control-menu box is the same as choosing the Close command. 

 

Note:  If you have multiple windows open for a single document, the Close command on the 
document Control menu closes only one window at a time.  You can close all windows at once with 
the Close command on the File menu. 

 
Shortcut 

Keys:  ALT+F4 exits NeuroSolutions 

Restore command (Control menu) 
 

Use this command to return the active window to its size and position before you chose the 
Maximize or Minimize command. 

Switch to command (application Control menu) 
 

Use this command to display a list of all open applications.  Use this "Task List" to switch to or 
close an application on the list. 

 
Shortcut 

Keys: CTRL+ESC 

 
Dialog Box Options 

When you choose the Switch To command, you will be presented with a dialog box with the 
following options: 

Task List 

Select the application you want to switch to or close. 
Switch To 

Makes the selected application active. 
End Task 

Closes the selected application. 
Cancel 

Closes the Task List box. 
Cascade 
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Arranges open applications so they overlap and you can see each title bar.  This option does not affect 
applications reduced to icons. 
Tile 

Arranges open applications into windows that do not overlap.  This option does not affect applications 
reduced to icons. 
Arrange Icons 

Arranges the icons of all minimized applications across the bottom of the screen. 

Generating Source Code 
Generating Source Code 

 

The Code Generation facility of NeuroSolutions produces ANSI-compatible C++ source code for 
any breadboard, including learning. There are two main uses for this feature. 

You may find that the processing power of your PC is too limited to train your network in a 
reasonable amount of time. By generating the code for your network, you can compile this code on 
a high-end workstation and train the network there. The resulting weights can then be saved to a 
file and imported back into your breadboard within NeuroSolutions. 

Secondly, you may have a network that is trained to a point that it is of practical use. You may then 
want to use the code generation feature to produce a "black box" that can easily be integrated into 
a C++ application. This application would use function calls to feed data into the network and 
extract the resulting output. 

Note that this feature is only available within the Professional and Developer versions of 
NeuroSolutions. If you have a license for one of these versions, see the Developers manual for 
complete documentation. Also refer to the Code Generation Inspector. 

Customized Components 
Customized Components 

 

NeuroSolutions provides close to 100 neural components for you to build your neural networks 
from. Even though this is a fairly representative set of the algorithms most commonly used in the 
field, it is impossible to meet the needs of everyone. NeuroSolutions’ object oriented design 
methodology provides an ideal platform for an extensible simulation environment. These 
extensions are implemented as C/C++ functions that conform to the appropriate protocol and are 
then compiled as Dynamic Link Libraries (DLLs). 

In order for you to write DLLs to implement your own algorithms, you must be licensed for one of 
the Developer versions of NeuroSolutions. However, you do not have to be a programmer to reap 
the benefits of customized components. NeuroDimension continually develops new components 
that are public to all Developer customers. In addition, there is a subset of DLLs provided that is 
accessible within all versions of NeuroSolutions. 

The loading of a DLL is a very straightforward procedure. You first must select the component on 
the breadboard that the DLL overrides. Open the inspector window, switch to the Engine property 
page, press the Load button, and select the DLL ("*.dll") from the file list. Now the component’s 
functionality is overridden by the DLL. See the Engine property page for more detailed instructions. 
If you are licensed for the Developers version, see the Dynamic Link Libraries chapter for a 
complete description of this feature. 
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Testing the Network 
The TestingWizard 

 

After training a network, you will want to test the network performance on data that the network was 
not trained with. The TestingWizard automates this procedure by providing an easy way to produce 
the network output for the testing dataset that you defined within the NeuralExpert or NeuralBuilder, 
or on a new dataset not yet defined. 

To launch the TestingWizard from within NeuroSolutions go to the Tools menu and choose 
"TestingWizard" or click the "Testing" toolbar button. If your breadboard was built with the 
NeuralExpert, you may alternatively click the "Test" button in the upper-left corner of the 
breadboard. 

Online help is available from all TestingWizard panels. To access help, click the Help button in the 
lower left corner of the wizard. 

 

Freezing the Network Weights 
 

The method that the TestingWizard uses for freezing the network weights is to turn off the Learning 
switch from the Static page of the activation control inspector. This method is easy but not very 
efficient because the error is still computed, even though the weights are not modified. This method 
is convenient for times when you just want to run a small test set through your network, where 
efficiency is not a concern. 

To run a fixed network most efficiently, the Backprop and Gradient Search planes, as well as the 
ErrorCriteria component, should be removed from the breadboard. First save the breadboard so 
that you can easily return to the learning state. Press the Free All Backprop button of the 
Backpropagation page of the backprop control inspector to discard these learning planes 
automatically. The fixed network is now ready to run. 

  

Cross Validation 
 

Cross validation computes the error in a test set at the same time that the network is being trained 
with the training set. It is known that the MSE will keep decreasing in the training set, but may start 
to increase in the test set. This happens when the network starts "memorizing" the training 
patterns. The Termination page of the activation control inspector can be used to monitor the cross 
validation set error and automatically stop the network when it is not improving. 

The easiest way to understand the mechanics of cross validation is to use the NeuralBuilder or 
NeuralExpert to build a simple network that has cross validation. The Static Inspector is used to 
configure the switching between the testing and training phases of the simulation. The File 
components each contain a Training data set and a Cross-Validation data set (see the Data Set 
property page). The Cross-Validation data can either be a different segment of the same file, or a 
different file. There is an additional set of Probes and a ThresholdTransmitter for monitoring the 
cross validation phase of the simulation. Observe the Access Data Set setting of the Access 
property page for these components. 
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Production Data Set 
 

Once you have trained and tested a network and have determined that the network adequately 
models your data, you may want to then put that network into production. In doing so, you will have 
input data but no desired data. The data set to use for this case is the "Production" data set. The 
easiest way to configure a Production set is to run the TestingWizard and specify an input data file 
but no desired data file. 

 

Sensitivity Analysis 
 

As you are training a network, you may want to know the effect that each of the network inputs is 
having on the network output. This provides feedback as to which input channels are the most 
significant. From there, you may decide to prune the input space by removing the insignificant 
channels. This will reduce the size of the network, which in turn reduces the complexity and the 
training times. 

Sensitivity analysis is a method for extracting the cause and effect relationship between the inputs 
and outputs of the network. The network learning is disabled during this operation such that the 
network weights are not affected. The basic idea is that the inputs to the network are shifted slightly 
and the corresponding change in the output is reported either as a percentage or a raw difference. 

The activation control component generates the input data for the sensitivity analysis by temporarily 
increasing the input by a small value (dither). The corresponding change in output is the sensitivity 
data, which is reported by the ErrorCriteria component and displayed by an attached probe. 

To configure a network to report the sensitivity data, simply stamp a StaticProbe component on 
either the "Sensitivity", "Raw Sensitivity", or "Overall Sensitivity" Access Point of the ErrorCriteria 
component. Double-click the icon of the probe to open its display window. Once you have trained 
the network, open the Static Inspector, select the "Active Data Set" to perform the sensitivity 
operation on, specify the "Dither", then click the "Perform" button. The display window of the probe 
should be updated with the calculated sensitivity data. 

Probing the "Sensitivity" access point with a MatrixViewer will display a matrix of values, each 
corresponding to the percentage effect that a particular input has on a particular output. Each row 
represents a single input and each column represents a single output. Note that the total for each 
column (output channel) sums to 100 percent. Likewise, the "Raw Sensitivity" access point 
produces a matrix, but each value corresponding to the raw difference between the outputs for the 
dithered and non-dithered inputs. Probing the "Overall Sensitivity" access point with a MatrixViewer 
will display a column of values, each corresponding to the percentage effect that a particular input 
has on the output vector as a whole (the sum of all output channels).  

 

Confusion Matrix 
 

A confusion matrix is a simple methodology for displaying the classification results of a network. 
The confusion matrix is defined by labeling the desired classification on the rows and the predicted 
classifications on the columns. For each exemplar, a 1 is added to the cell entry defined by (desired 
classification, predicted classification). Since we want the predicted classification to be the same as 
the desired classification, the ideal situation is to have all the exemplars end up on the diagonal 
cells of the matrix (the diagonal that connects the upper-left corner to the lower right). Observe 
these two examples: 



 107

 

 

Confusion Matrix Example 1 

 

 

Confusion Matrix Example 2 

 

In example 1 we have perfect classification. Every male subject was classified by the network as 
male, and every female subject was classified as female. There were no males classified as 
females or vice versa. In example 2 we have imperfect classification. We have 9 females classified 
incorrectly by the network as males and 5 males classified as females. 

In NeuroSolutions, a confusion matrix is created by attaching a probe to one of the Confusion 
Matrix access points of the ErrorCriterion component. One option is to display the results as the 
raw number of exemplars classified for each combination of desired and actual outputs, as shown 
in the above examples. The other option is to display each cell as a percentage of the exemplars 
for the desired class. In this format, each row of the matrix sums to 100. 

Correlation Coefficient 
 

The size of the mean square error (MSE) can be used to determine how well the network output fits 
the desired output, but it doesn't necessarily reflect whether the two sets of data move in the same 
direction. For instance, by simply scaling the network output, we can change the MSE without 
changing the directionality of the data. The correlation coefficient (r) solves this problem. By 
definition, the correlation coefficient between a network output x and and a desired output d is: 

 

 

Correlation Coefficient Definition 
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The correlation coefficient is confined to the range [-1,1]. When r =1 there is a perfect positive linear 
correlation between x and d, that is, they covary, which means that they vary by the same amount. 
When r=-1, there is a perfectly linear negative correlation between x and d, that is, they vary in 
opposite ways (when x increases, d decreases by the same amount). When r =0 there is no 
correlation between x and d, i.e. the variables are called uncorrelated. Intermediate values describe 
partial correlations. For example a correlation coefficient of 0.88 means that the fit of the model to 
the data is reasonably good. 

In NeuroSolutions, a correlation vector is created by attaching a probe to the Correlation access 
point of the ErrorCriterion component. 

ROC Matrix 
 

Receiver Operating Characteristic (ROC) matricies are used to show how changing the detection 
threshold affects detections versus false alarms. If the threshold is set too high then the system will 
miss too many detections. Conversely, if the threshold is set too low then there will be too many 
false alarms. Below is an example of an ROC matrix graphed as an ROC curve. 

 

Example ROC Curve 
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In NeuroSolutions, a ROC matrix is created by attaching a probe to the ROC access point of the 
ErrorCriterion component. The matrix contains three columns: 1) the detection threshold, 2) the 
percentage of detections classified correctly, and 3) the percentage of non-detections incorrectly 
classified as detections (i.e., false alarms). The ouput channel and the number of thresholds are 
defined within the error criteria inspector. 

Performance Measures 
 

The Performance Meassures access point of the ErrorCriterion component provides six values that 
can be used to measure the performance of the network for a particular data set. 
MSE 

The mean squared error is simply two times the average cost (see the access points of the 
ErrorCriterion component.) The formula for the mean squared error is: 

 
NMSE 

The normalized mean squared error is defined by the following formula: 

 
r 

The correlation coefficient. 
% Error 

The percent error is defined by the following formula: 
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Note that this value can easily be misleading. For example, say that your output data is in the range 
of 0 to 100. For one exemplar your desired output is 0.1 and your actual output is 0.2. Even though 
the two values are quite close, the percent error for this exemplar is 100. 
AIC 

Akaike's information criterion (AIC) is used to measure the tradeoff between training performance 
and network size. The goal is to minimize this term to produce a network with the best 
generalization: 

 
MDL 

Rissanen's minimum description length (MDL) criterion is similar to the AIC in that it tries to 
combine the model’s error with the number of degrees of freedom to determine the level of 
generalization. The goal is to minimize this term: 

 

 

Practical Simulation Issues 
Practical Simulation Issues 

 

Data Preparation 

Forms of Backpropagation 

Probing 

Saving and Fixing Network Weights 
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Saving Network Data 

Stop Criteria 

Constructing Learning Dynamics 

Simulating Recurrent Networks 

Component Naming Conventions 

Coordinating Unsupervised and Supervised Learning 

Macro Bars 

Associating a File Extension with an Editor 
 

There are several places within NeuroSolutions where you can view or edit a text file within an 
editor. The editor that is used is based on the file’s extension (type). To select or modify the editor 
associated with a particular file type you should perform the following steps: 

 

1 Select ‘Options’ from the ‘View’ Menu of the Windows Explorer. 

2 Select the ‘File Types’ tab. 

3 If the File Type is already registered then select it from the list. 

4 If the File Type is not registered then press the ‘New Type" button. Enter the Description and Extension and press 
the ‘OK’ button. 

5 Press the ‘Edit’ button. 

6 If there is an item labeled ‘open’ under the Actions list, then select it and press ‘Edit’.  Type ‘notepad.exe’ for the 
standard Windows editor or enter the full path of the application you wish to use. 

7 If there is not an ‘open’ item listed then press the ‘New’ button. Enter ‘open’ as the Action and type ‘notepad.exe’ 
for the standard Windows editor or enter the full path of the application you wish to use. 

8.  Press ‘OK’ from all panels. 

 

The ‘Edit’ and ‘View’ buttons of NeuroSolutions should now open up the associated editor for all 
files of the specified type. 

Data Preparation 
 

The training data and testing data must first be converted to a format supported by NeuroSolutions. 
The most common data format is column-formatted ASCII, since this can be easily generated by a 
spreadsheet program. The first line (row) of the file is used to define the column labels, and should 
not contain actual data. In general, each column corresponds to one channel (PE) of the input or 
output of the network. Individual columns can be selected for inclusion or exclusion from the data 
stream. 
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The input data and desired output data may reside within different columns of the same file, or 
within two separate files. The testing data may be contained within different rows of the same file(s) 
as the training data, or from separate files. 

 

Normalization File 
 

The Input components have the ability to normalize the data between an upper and lower bound. 
Each sample of data is multiplied by an amplitude and shifted by an offset. The amplitude and 
offset are often referred to as normalization coefficients. These coefficients are most often 
computed "by channel", meaning that there is a unique amplitude and offset for each channel. The 
coefficients are stored in a normalization file (*.nsn) within the same directory as the breadboard. 

 

The normalization coefficients are computed based on the minimum and maximum values found 
across all of the data sets selected from the Data Set Inspector. All of the data streams within a 
given File component are generated using the same normalization file. For most cases you will 
want to compute the coefficients based on all of the data sets. This will guarantee that all of the 
samples of the data streams will fall between the upper and lower bounds. 

 

The normalization file is also used by the numerical probes to denormalize the network data to put 
it in terms of the original data. When the ‘Denormalize from File’ option is set (see the Probe 
Inspector) the inverse of the amplitude and offset is applied to each channel before 
displaying/writing the data. 

 

The normalization files contain two columns of ASCII data: the first column being the amplitude 
terms and the second column being the offset terms. Each row represents one channel of data 
(starting with channel 0). 

 

 

4-channel normalization file 
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These coefficients are calculated using the following formula: 

 

 Amp(i) = (UpperBound - LowerBound) / (Max(i) - Min(i))  

 Off(i) = UpperBound - Amp(i)  * Max(i) 

 

where Max(i)  and Min(i)  are the maximum and minimum values found within channel i, and 
UpperBound and LowerBound are the values entered within the Stream Inspector. 

 

The Input components normalize the data using the following formula: 

 

 Data(i) = Amp(i)  * Data(i)  + Off(i)   

 

The Probe components then use the following formula to denormalize the data: 

 

 Data(i)  = (Data(i)  - Off(i)) / Amp(i) 

 

Forms of Backpropagation 
 

Backpropagation can either be synchronized in Static, Trajectory or Fixed Point modes. 

 
Static 

Static backpropagation assumes that the output of a network is strictly a function of its present 
input (i.e., the network topology is static). In this case, the gradients and sensitivities are only 
dependent on the error and activations from the current time step. 
Trajectory 

Training a network in Trajectory mode assumes that each exemplar has a temporal dimension 
defined by its forward samples (period), and that there exists some desired response for the 
network's output over this period. The network is first run forward in time over the entire period, 
during which an error is determined between the network's output and the desired response. Then 
the network is run backwards for a prescribed number of samples (defined by the 

samples/exemplar of the BackDynamicControl ) to compute the gradients and 
sensitivities. This forward/backward pass is considered a single exemplar. 
Fixed Point 

Fixed Point mode assumes that each exemplar represents a static pattern that is to be embedded 
as a fixed point of a recurrent network. Here the terms forward samples and backward samples can 
be thought of as the forward relaxation period and backward relaxation period, respectively. All 
inputs are held constant while the network is repeatedly fired during its forward relaxation period, 
specified by the samples/exemplar of the DynamicControl component. Note that there are no 
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guarantees that the forward activity of the network will relax to a fixed point, or even relax at all. 
After the network has relaxed, an error is determined and held as constant input to the 
backpropagation layer. Similarly, the error is backpropagated through the backprop plane for its 
backward relaxation period, specified by the samples/exemplar of the BackDynamicControl 

. This forward/backward relaxation is considered to be one exemplar. 

Probing 
 

Probing is a fundamental concept of NeuroSolutions. Each probe provides a unique way of 
visualizing the data available throughout the network. Here are some hints on how to use probing 
to better guide the simulations: 

 

� Monitor the progression of learning by observing the output means square error. 

� Judiciously select learning parameters by observing if the learning curve oscillates or is too flat. 

� Monitor a component’s weights and/or activities to see if they did not change from their initial values during 
learning. These features can indicate redundant units. 

� Try to understand how the network learned its task, by observing how the waveforms change when they pass 
through the neural topology (particularly useful in dynamic nets). 

Saving and Fixing Network Weights 
 

Once a network is trained, its weights can be saved along with the breadboard. Each component 
with adaptive weights is responsible for saving them. The Soma property page of a component’s 
inspector contains a Save Weights switch. When the breadboard is saved to a file, the current 
weight settings (of all components with the Save switch set) are stored along with the components. 
By default, the Save switch is set on all components. When the breadboard is later re-loaded, the 
training can them resume from where it had left off. 

There is also an option within the StaticControl Inspector for saving all adaptive weights of the 
network to a NeuroSolutions Weights File. This allows a convenient interface with which to extract 
trained network weights to be used by another application, or to save the weights of several trials 
and keep the best results. 

The Soma property page also contains a Fix Weights switch. This switch protects the component 
weights from being modified by the global commands of the controller (i.e., Reset, Randomize and 
Jog). This switch is useful when you want to set the values of a component’s weight matrix (using 
the MatrixEditor) and have those values stay fixed while the rest of the network is trained. Note that 
if there is a gradient search component attached, then the learning rate must be set to zero for the 
weights to remain fixed. 

 

Weights File 
 

The NeuroSolutions weights file is used to store the weights, biases and internal states of each 
component on the breadboard. This file has several uses: 

 

� Save the best weights of a training session (see "Save Best" within the ErrorCriteria Inspector). 

� Save multiple states of the network (see "Auto Increment" within the Weights Inspector). 
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� Stores the state of the network to be retrieved by the Generated C++ Source Code. 

� Allows one to implement their own recall network by looking up the formulas for the components and using the 
parameters stored in the weights file. 

 

The default extension for NeuroSolutions weights files is "nsw", but the "Save Best" feature of the 
ErrorCriteria components stores the file with a "bst" extension. The file consists of a sequence of 
component definitions, one for each component on the breadboard containing adaptive weights. 
The file format for individual component definitions is as follows: 

 

#NAME CLASS 

SIZE 

WEIGHTS 

STATES 

 

All component definitions begin with the # delimiter. Immediately following this delimiter is the 
component’s name and the component’s class. The component's name is reported in the Engine 
property page of its inspector. The user can alter this name in order to match specific names within 
a weights file, but the name entered will be checked to verify that it is unique to the current 
breadboard. The component’s class must appear as reported by the title bar of its inspector 
(displayed at the top of the inspector window). 

The next lines following the component’s class is reserved for a set of numbers defining the 
component’s size. The contents of these lines will depend on the type of component. 

The next line contains the actual values of the weights. All Somas will store their adaptive weights 
in the following format: 

 

N w(1) w(2) .... w(N) 

 

where N is the total number of weights and w(i) represents each individual weight in integer, 
floating point or exponential format. 

The last line contains any parameters that determine the internal state of the component such as 
momentum or delayed activity. Most components do not include this line. 

 
Size Definitions 

Axon Family 

All axons will store their number of rows and columns in the following format: 

 

ROW_COUNT COL_COUNT 

 
Tapped MemoryAxon Family 
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All tapped memory axons will store their number of taps, rows and columns in the following format: 

 

TAP_COUNT 

ROW_COUNT COL_COUNT 

 
ArbitrarySynapse Component 

This component will store its user-defined connections in the following format: 

 

m 

FROM_INDEX(1)   n(1)   TO_INDEX(1) TO_INDEX(2) ... TO_INDEX(n(1)) 

FROM_INDEX(2)   n(2)   TO_INDEX(1) TO_INDEX(2) ... TO_INDEX(n(2)) 

  :   : 

  :   : 

FROM_INDEX(m)   n(m)   TO_INDEX(1) TO_INDEX(2) ... TO_INDEX(n(m)) 

 

where m is the total number of feeding indices and n(i) is the total number of indices that the 
feeding index FROM_INDEX(i) is connected to. Each TO_INDEX is connected to the 
FROM_INDEX by an adaptive weight. The total number of weights is the sum of the n(i)’s. 

 
FullSynapse Family 

The number of weights of a fully-connected Synapse is determined by the dimensions of the Axons 
that it is connected to. For this reason, there is no size field stored for these components. 
 

Weights Definitions 

ArbitrarySynapse Component 

This component stores its weights in the order that the "TO_INDEX" indices are listed (see above). 

 
FullSynapse Family 

These components store their weights in the following order: 

 

w(1,1)  w(1,2) … w(1,N)  w(2,1)  w(2,2) … w(2,N) … w(M,1)  w(M,2) … w(M,N) 

 

where w(i,j) is the weight connecting output processing element i to input processing element j. M is 
the total number of outputs and N is the total number of inputs (see the Soma Family Inspector). 
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GammaAxon Component 

This component uses the weights line to store its gamma coefficents, one for each processing 
element (see the GammaAxon component definition page). 

 
LaguarreAxon Component 

This component uses the weights line to store its Laguarre coefficents, one for each processing 
element (see the LaguarreAxon component definition page). 

 
BiasAxon Family 

These components use the weights line to store their biases, one for each processing element (see 
the BiasAxon component definition page). 

 
Feedback Family 

These components use the weights line to store their time constants, one for each processing 
element (see the Feedback Family Inspector). 

 
State Definitions 

Input Components 

This component uses the weights file to store its normalization coefficients, which are used to 
normalize the input data. These are the same coefficents stored in the associated Normalization 
File. Note that these coefficients are used by the generated C++ source code, but are ignored 
when using the weights file within the NeuroSolutions interface. 

 
Probe Components 

This component uses the weights file to store its normalization coefficients, which are used to 
denormalize the probed data. These are the same coefficents stored in the associated 
Normalization File. Note that these coefficients are used by the generated C++ source code, but 
are ignored when using the weights file within the NeuroSolutions interface. 

 
Tapped MemoryAxon Family 

All tapped memory axons store the values of each individual memory element in the following 
format: 

 

ELEMENT_COUNT  e(1,1)  e(1,2) … e(1,N)  e(2,1)  e(2,2) … e(2,N) … e(T,1)  e(T,2) … 
e(T,N) 
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where e(i,j) is the value of the memory element for tap i and processing element j. T is the number 
of taps (see the TDNNAxon Inspector) and N is the total number of processing elements of the 
axon ("Rows" times "Columns" defined within the Soma Family Inspector). 

 
Feedback Family 

These components store the delayed activities (the activities from the previous time step), one for 
each processing element. The format for this line is as follows: 

 

 PE_COUNT  a(1)  a(2) … a(N) 

 

where a(i) is the delayed activity for processing element i and N is the number of processing 
elements of the axon ("Rows" times "Columns" defined within the Soma Family Inspector).  

 
FullSynapse Family 

When there is a delay specified (see the Synapse Inspector), these components store the delayed 
inputs (the inputs from the previous time step), one for each processing element of the axon that is 
feeding the synapse. The format for this line is as follows: 

 

 PE_COUNT  a(1)  a(2) … a(N) 

 

where a(i) is the delayed activity for processing element i and N is the number of processing 
elements of the feeding axon ("Rows" times "Columns" defined within the Soma Family Inspector).  

 
Momentum Component 

This components stores the momentum parameters (see the Momentum component reference), 
one for each processing element. The format for this line is as follows: 

 

 PE_COUNT  m(1)  m(2) … m(N) 

 

where m(i) is the momentum parameter for processing element i and N is the number of processing 
elements of the attached Activation component.  

 
Quickprop Component 

This components stores the momentum parameters (see the Momentum component reference) 
and the second order derivative parameters (see the Quickprop component reference). The format 
for these lines is as follows: 
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 PE_COUNT  d(1)  d(2) … d(N) 

 PE_COUNT  m(1)  m(2) … m(N) 

 

where d(i) is the second order derivative for processing element i , m(i) is the momentum 
parameter for processing element i and N is the number of processing elements of the attached 
Activation component.  

 

Saving Network Data 
 

Any data that can be probed can also be stored to an ASCII or binary file by attaching a DataWriter 

probe. The DataWriter probe  functions similar to the MatrixViewer probe . It displays 
the probed data within a display window. From the DataWriter inspector, there is an option to 
specify a file on the file system. Once this is set, then all data that passes through the attached 
access point is displayed and written to the file. 

Stop Criteria 
 

The StaticControl  and the DynamicControl  components contain a parameter for 
the maximum number of training epochs. This parameter assigns a stop criterion. Other stop 
criteria can be specified that will supersede this criterion. 

The stop criterion of unsupervised components is often based on the amount of weight change 
between epochs. Once this change (for all weights) reaches some threshold then the unsupervised 
training is terminated. 

The stop criteria for supervised training is usually based on the mean squared error (MSE). Most 
often the training is set to terminate when the MSE drops to some threshold. Another approach is 
to terminate when the change in the error between epochs is less than some threshold. 

NeuroSolutions also provides a cross validation method to stop the training. Cross validation 
utilizes the error in the test set. Even though the MSE of the training set will keep decreasing 
throughout the simulation, at some point the MSE of the test set will begin to rise. This is an 
indication that the network has begun to overtrain or "memorize" the training patterns. The network 
can be automatically terminated at this point to insure the best generalization. 

The stop criteria just summarized are the most commonly used. NeuroSolutions provides the 
flexibility to specify a wide range of stop criteria using components from the Transmitter family. 

Constructing Learning Dynamics 
 

The BackStaticControl  and the BackDynamicControl  components provide a 
mechanism for automatically adding or removing the Backprop and the GradientSearch planes. 
This is used to specify whether or not the weights are to be frozen (i.e., when testing the network). 
The Remove button from the corresponding inspector will remove the two planes and the Add 
button will create two new planes. Note that the type of GradientSearch components created is 
based on the menu selection from the inspector. The learning rates for these components will be 
set to default values and not those from the previous training session.  
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An alternative method for freezing the weights during a simulation is to set all of the learning rates 
of the GradientSearch components to zero. However, note that the efficiency is worse since the 
learning dynamics are still being computed. 

Simulating Recurrent Networks 
 

Recurrent networks are more powerful than feedforward networks, but they are difficult to train and 
their properties are not well understood. NeuroSolutions provides both construction primitives and 
training paradigms (fixed point learning) for fully recurrent networks, while minimizing these 
disadvantages.  

The training of a recurrent network is much more sensitive to divergence. Most often, several step 
sizes must be used. NeuroSolutions provides the facilities for staging the step sizes during training. 
Another important aspect of fixed point leaning is the relaxation of the system. Without proper 
relaxation, a recurrent network will not learn. The Transmitter family is used for both of these 
functions. 

The user should extensively use the probing capabilities of NeuroSolutions to make sure that the 
network is not becoming unstable during training. This type of instability can be recognized when 
an activation constantly saturates for all input exemplars, effectively shutting the PE off and 
decreasing the number of degrees of freedom available in the network. This type of instability is 
difficult to recognize using the mean squared error of the output. 

Another aspect to be considered is the possibility of creating an infinite loop in the simulations. 
NeuroSolutions checks for a connection that causes an infinite loop and displays a warning if one is 
detected. In order to avoid this condition, the user must include at least one synapse in every 
recurrent connection, and set a non-zero Delay (normally 1, meaning that the activation is delayed 
one sample). A one-layer fully recurrent network can be constructed as illustrated in the figure 
below. 

 

 

Fully recurrent network 

 

If the user wants to impose a firing order (as is sometimes the case in simulations of biological 
nets), the network should be constructed from many axons with a single PE each. The firing can be 
controlled by appropriately interconnecting the elements on the breadboard and appropriately 
choosing the delays. 

 

Component Naming Conventions 
 

Whenever a wizard, macro, or add-in is used to manipulate a network, it must know the names of 
the various components in order to make the appropriate function calls. For this reason, the 
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following naming conventions have been defined in order to identify each component based on its 
particular function within the topology. It is recommended that you name your components 
according to these conventions if you plan to use a wizard, macro, or add-in with your network. It is 
important to note that the names should begin with a lower case letter, but that the remaining words 
should be capitalized (e.g., trainingCostProbe). 

 

Naming Conventions 

Family Template Comments 

Input #File # = {input, desired} 

Axon #%Axon # = {input, output, context, unsupervised, 
memory1, memory2, …, hidden1, 
hidden2, …} 

% = {Lower} 

The ‘Lower’ tag is only used if there are 
two axons in the same layer (e.g., a 
modular network). 

The ‘context’ tag is signifies a layer of 
context units, such as those found in a 
Jordan/Elman network. 

The ‘unsupervised’ tag signifies the axon 
fed by the unsupervisedSynapse of a 
hybrid network (see below). 

The ‘memory’ tag signifies a TDNNAxon, 
as found in the TLRN network. 

Synapse #%Synapse # = {output, unsupervised, hidden1, 
hidden2, …} 

% = {Lower} 

The ‘Lower’ tag is only used if there are 
two synapses in the same layer (e.g., a 
modular network). 

The ‘context’ tag is signifies a connection 
to a contextAxon (see above). 

The ‘unsupervised’ tag signifies the 
unsupervised component of a hybrid 
network (e.g., PCA, RBF, SOFM). 

 %To#Synapse % = name of component feeding the 
synapse 

# = name of the component that the 
synapse feeds 

The second template is used for 
connections between non-adjacent layers 
(e.g., Modular and Generalized 
Feedforward networks). 



 122

Probe %#@Probe % = {training, crossValidation} 

# = {Input, Output, Desired, Cost, 
ConnectionWeights, BiasWeights} 

@ = {Temporal} 

Only temporal probes (ones that attach to 
the ‘Buffered Activity’ access point of a 
DataStorage) use the ‘Temporal’ tag. 

Transmitter #Transmitter # = {cost, weights} 

Schedule #Scheduler # = {stepSize, radius} 

Backprop #Backprop # = name of attached activation 
component 

GradientSearc
h 

#Gradient # = name of attached backprop 
component 

ActivationCont
rol 

control  

 

Coordinating Unsupervised and Supervised Learning 
 

NeuroSolutions provides a very efficient integration of supervised and unsupervised learning within 
the same network. Hybrid networks are a very powerful class that has been largely unused due to 
the difficulty of the simulation of the two types of learning. 

NeuroSolutions’ modularization of learning enables a very elegant integration of unsupervised and 
supervised networks within the same simulation. Examples of this class of networks are the PCA 
networks, the Radial Basis Function Networks and the Self-Organizing Feature Map Networks. The 
unsupervised segment of the network functions as a preprocessor or feature extractor. The 
supervised segment is used to classify the extracted features. 

While the unsupervised segment extracts the features, the supervised classifier does not need to 
train (since it will learn incorrect features). The most efficient way to implement this hybrid training 
is to break the dataflow and train each piece of the network independently. The coordination of the 
learning and the dataflow requires the use of the Transmitter family. 

Organization of NeuroSolutions 
Organization of NeuroSolutions 

 

In this section, each family is presented along with any concepts regarding the use of its 
components. 

A list of component families is maintained under the Palettes menu of NeuroSolutions. There are 
also "families of families" (e.g., the Activation family), which do not have associated palettes. 

The user can dock some or all of the available palettes on the border of the NeuroSolutions main 
window. When the palette is visible, a check mark is placed by the family name. To dock a 
particular palette, first single-click on the desired menu item to make the palette visible. Then drag 
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the palette (grab it along its edge) to a free space on the border of the NeuroSolutions main 
window. When dropped, the palette will attach itself. 

 

 

Activation Family 

Backprop Family 

GradientSearch Family 

Controls Family 

Unsupervised Family 

Probe Family 

Input Family 

Transmitter Family 

 

Activation Family 

Activation Family 
 

 

 

 

 

 

Ancestor: Engine 

 

At the core of any artificial neural network (ANN) is the neuron, or processing element (PE). Most 
ANNs use PEs, which are derivatives of the McCulloch-Pitts neurons. However, the McCulloch-
Pitts neuron is not a model for network learning, but rather a model for network activation. By 
activation, we are describing the way in which information, or data, flows through the network. The 
McCulloch-Pitts model describes each neuron as receiving weighted input from every other neuron 
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in the network, applying a non-linear threshold and presenting its output for the others to input. The 
activation of data through a first order McCulloch-Pitts neuron is defined by the following equation, 

 

 

 

where xi(t) represents a neurons activity, ? is a nonlinearity and wij is a connection weight linking 
PEj to PEi.. 

Time t is discrete, and it relates to one simulation step. This equation means that the next value of 
the activation is obtained from the values of the other activations of PEj at the previous time step. If 
the first order model is generalized to any discrete time delay d, more sophisticated models for the 
neuron can be implemented from multiple first order models, as given by, 

 

 

 

Neural networks are constructed by first defining the neuron interconnections, and then assigning a 
learning procedure to adapt its weights. The Activation family only addresses the interconnection of 
PEs to form a neural network topology. A network constructed from Activation components 
contains no inherent procedure for learning, but rather supports a general communications protocol 
such that components belonging to various learning procedure families can adapt its weights. 

The McCulloch-Pitts model describes a network topology with a fully interconnected set of neurons 
(i.e., each neuron feeds all of the others). In practice, ANN topologies typically interconnect 
distributed clusters, or layers of PEs. For this reason, each component in the Activation family will 
operate on a layer, or vector of PEs. This leads to very efficient simulations. 

Activation family components model the McCulloch-Pitts neuron by dividing its functionality into a 
temporally discrete linear map, and an instantaneous nonlinear map. 

A Special Note for Neurobiologists 

Many of the terms used in NeuroSolutions have different meanings than when used in a biological context. 
This section is included to help neurobiologists avoid confusion by explicitly listing these differences. 

In NeuroSolutions, the term "soma" refers to a parent, or archetypal class of elements. Both "synapse" and 
"axon" are derivative classes of "soma". There is no specific "soma" element used in the construction of 
NeuroSolutions breadboards. 

The term "axon" in NeuroSolutions refers to an element that integrates its input weights and creates an 
output. Often this is a nonlinear process. The NeuroSolutions "axon" more closely resembles the combination 
of the neuronal dendrites, soma, and axon hillock in neurobiology. 

"Synapse" in NeuroSolutions refers to the principal element that transmits information between 
NeuroSolutions "axons". These "synapses" are more like the combined axon and synapses of neurobiology. A 
NeuroSolutions "synapse" can be connected to many NeuroSolutions "axons", and is therefore similar to a 
highly branched, or arborized, neurobiological axon. A biological synapse is functionally similar to a single 
weight in NeuroSolutions. 
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Members: 

Axon Family 

MemoryAxon Family 

Synapse Family 

 

 

  See Also 

Axon Family 

 

 

Axon family palette 

 

 

Ancestor: Activation Family 

 

Artificial neural networks are constructed by interconnecting processing elements (PEs) which 
mimic the biological nerve cell, or neuron. NeuroSolutions divides the functionality of a neuron into 
two disjoint operations: a nonlinear instantaneous map, which mimics the neuron’s threshold 
characteristics; and a linear map applied across an arbitrary discrete time delay, which mimics the 
neuron’s synaptic interconnections. The Axon family implements common variations on the 
nonlinear instantaneous maps employed by neural models. Each axon represents a layer, or 
vector, of PEs. All axons will also be equipped with a summing junction at their input and a splitting 
node at their output. This allows multiple components to feed an axon, which then processes their 
accumulated activity. It is important to notice the difference between this sum of activity vectors, 
and the weighted sum of products depicted by the McCulloch-Pitts neuron model (see Activation 
family). The latter is implemented as a linear map by the other functional division of the neuron, the 
Synapse family. 

For generality, an axon's map may actually be either linear or nonlinear. However, components in 
the Axon family typically apply a nonlinear instantaneous map, as given by, 
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where yi(t) is the axon's output, xi(t) is an accumulation of input activity from other components,  
is an internal weight or coefficient and  represents an arbitrary functional map. We call 

 the activation function, and the on-line help for a particular axon gives the definition of 
this map for that axon.  

All members of the Axon family accumulate input from, and provide output to, an arbitrary number 
of activation components. In other words, each axon has a summing junction at its input and a 
splitting node at its output. This functionality is illustrated by the following block diagram: 

 

 

The mapping for the PE of the Axon class. 

 

Axons can receive input from, and provide output to both axons and synapse within the network. 

 

Members: 

Axon  

BiasAxon  

GaussianAxon  

LinearAxon  

LinearSigmoidAxon  

LinearTanhAxon  

SigmoidAxon  

SoftMaxAxon  

TanhAxon  

ThresholdAxon  

WinnerTakeAllAxon 

 

 

  See Also 

MemoryAxon Family 
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MemoryAxon family palette 

 

 

Ancestor: Axon  

 

Members of the MemoryAxon family encapsulate a local memory structure into a single axon. They 
store a history of the input vector, which is contained within memory taps. MemoryAxons still 
belong to the Axon family (even though they are contained within a separate palette), but they 
diverge slightly from typical axon functionality. Most axons provide some form of an instantaneous 
map. A MemoryAxon's activation function is not instantaneous, but has been wrapped for efficiency 
into an axon. 

Tapped MemoryAxons also diverge from the Axon family by having more outputs than inputs. In 
fact, if there are n inputs and K taps (K-1 delay elements), then the MemoryAxon will have n*K 
outputs. MemoryAxons can be best described by using a z-domain (frequency domain) activation 
function. All MemoryAxons will be defined by their activation function given by: 

 

 

 

Tapped MemoryAxons will use a tap activation function as given by: 

 

 

 

with the topological understanding illustrated in the figure below. 
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Block diagram of a memory axon 

The index k refers to the tap value. 

 

Probing the Output: 

When attaching a MatrixViewer or MatrixEditor to an Axon without memory, the vector of PEs is 
displayed as a matrix of rows and columns based on the Rows and Cols parameters set within the 
Axon’s inspector. When probing a member of the MemoryAxon family, the number of columns 
displayed is the number of channels (Rows*Cols). The number of rows displayed is the number of 
Taps entered in the inspector. Therefore, each column represents data stored in a given channel’s 
memory taps. 

 

Members: 

ContextAxon  

GammaAxon  

IntegratorAxon  

LaguarreAxon  

SigmoidIntegratorAxon  

TanhContextAxon  

TanhIntegratorAxon  

TDNNAxon  

FuzzyAxon Family 

 

 

FuzzyAxon family palette 
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Ancestor: Axon  

 

Members of the FuzzyAxon family contain a set of membership functions (MFs) for each input 
processing element. The parameters of the membership functions are stored within the weight 
vector of the FuzzyAxon. The number of membership functions per processing element is specified 
within the FuzzyAxon inspector. The number of outputs is computed by taking the number of 
membership functions per processing element and raising it to the Nth power, where N is the 
number of inputs. 

 

Activation Function: 

The output of a FuzzyAxon is computed using the following formula: 

 

 

 

where  i = input index 

 j = output index 

 xi = input i 

 wij = weights (MF parameters) corresponding to the jth MF of input i 

 MF = membership function of the particular subclass of FuzzyAxon 

 

Members: 

BellFuzzyAxon  

GaussianFuzzyAxon   

 

ErrorCriteria Family  

 

 

ErrorCriteria family palette 
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Ancestor: Axon 

 

Supervised learning requires a metric, a measure of how the network is doing. Members of the 
ErrorCriteria family monitor the output of a network, compare it with some desired response and 
report any error to the appropriate learning procedure. In gradient descent learning, the metric is 
determined by calculating the sensitivity that a cost function has with respect to the network's 
output. This cost function, J, is normally positive, but should decay towards zero as the network 
approaches the desired response. The literature has presented several cost functions, but the 
quadratic cost function is by far the most widely applied (see L2Criterion). 

Components in the ErrorCriteria family are defined by a cost function of the form: 

 

  

 

and error function: 

 

  

 

Where d(t) and y(t) are the desired response and network's output, respectively.  

Each ErrorCriteria component accepts its desired response through the Desired Signal access 
point, and reports the total cost between weight updates to the Average Cost access point. 
ErrorCriteria components are responsible for determining an error that is used by the 
backpropagation plane to calculate the gradient information. 

NeuroSolutions implements supervised learning procedures using component planes. Each 
component used for implementing the activation plane has a single dual component that is used to 
implement the backprop plane. Components of the backprop plane are responsible for computing 
the weight gradients and backpropagating the sensitivities. ErrorCriteria components are 
responsible for determining the error used for the backpropagation. 

The ErrorCriteria family is also a member of the Axon family (i.e., its components interact within the 
network topology as an axon). It is generally used by attaching MaleConnector of network's output 
to the ErrorCriteria component’s FemaleConnector. The figure below illustrates the output segment 
of a network. The error is computed by the L2Criterion using the signal from the output Axon (left) 
and the data read from the desired output File. The resulting error is displayed using the 
MatrixViewer probe. 
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Output segment of a network (activation plane only) 

 

Members: 

L1Criterion  

L2Criterion  

LpCriterion  

LinfinityCriterion  

 

User Interaction: 

Macro Actions  

 

 

 

  See Also 

Synapse Family 

 

Synapse family palette 

 

 

Ancestor: Activation Family 

 

Artificial neural networks are constructed by interconnecting processing elements (PEs) which 
mimic the biological nerve cell, or neuron. NeuroSolutions divides the functionality of a neuron into 
two disjoint operations: a nonlinear instantaneous map, which mimics the neuron’s threshold 
characteristics; and a linear map applied across an arbitrary discrete time delay, which mimics the 
neuron’s synaptic interconnections. The Synapse family implements the dynamic linear mapping 
characteristics of the neuron. A synapse connects two layers of PEs (axons). A synapse will 
receive input from, and provide output to, components belonging to the Axon family. 

If a synapse is connected between two axons, then these axons represent distributed layers of PEs 
within a network. If the synapse's input and output are applied to the same axon, then the axon PEs 
are recurrently interconnected as described by the McCulloch-Pitts model. The concept of 
interconnected layers of distributed PEs is fundamental to neural network theory. The 
interconnection is normally defined by an interconnection matrix. In theory, any network topology 
can be specified through a single interconnection matrix. In practice, however, it is impractical to 
burden an already computationally expensive task with "connect by zero" operations. It makes 
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more sense to isolate groups of neurons to be fully interconnected, and interconnect the rest by a 
more efficient map. 

A synapse's map may actually be either linear or nonlinear. However, components in the Synapse 
family typically apply a temporally discrete linear map between their input and output axon 
activation vectors. The general form for the activation of a synapse is given by: 

 

 

 

where d is an arbitrary delay in time. This functionality can be illustrated by the following block 
diagram: 

 

 

The mapping for the PEs of the Synapse family. 

 

Members: 

Synapse 

FullSynapse 

ArbitrarySynapse 

 

 

  See Also 

Backprop Family 

Backprop Family 
 

 

Backprop family Palette 
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Ancestor: Activation Family 

 

The Activation family provides a base set of neural components which may be interconnected to 
construct an enormous number of network topologies. Once a specific topology has been 
constructed, the user can apply an arbitrary learning rule (if a specific rule is not supported, 
developers can write their own). The Backprop Family implements the backpropagation learning 
rule for elements in the Activation family. Each member of the Activation family will have a dual 
component in the Backprop family, which is responsible for calculating the gradient information 
based on its activation function. Backprop components are stacked on top of their Activation dual 
component. 

First, there needs to be a clear definition for the term backpropagation. The literature has presented 
many variations to the backpropagation learning rule, such as steepest descent, quickprop and 
conjugate gradients. At the core of all backpropagation methods is an application of the chain rule 
for ordered partial derivatives to calculate the sensitivity that a cost function has with respect to the 
internal states and weights of a network. In other words, the term backpropagation is used to imply 
a backward pass of error to each internal node within the network, which is then used to calculate 
weight gradients for that node. 

The Backprop family does not specify the way in which this gradient information is used to adapt 
the network. The GradientSearch family is responsible for applying the gradient information 
computed by the Backprop components to adapt the weights within the Activation components. Any 
member of the GradientSearch family may be applied to each member of the Backprop family, 
providing the variations to backpropagation (e.g. steepest descent, quickprop and conjugate 
gradients).  

Recall that the Activation family was divided into components having one of two activation 
functional forms, corresponding to the Axon and Synapse families. The functional form of 
backpropagation components is completely defined by the topology of their respective Activation 
duals. In other words, the Backprop family is divided into two distinct functional families. For 
convenience, these two families are contained within the same Backprop palette. 

 

Members: 

BackAxon Family 

BackMemoryAxon 

BackSynapse Family 

 

 

  See Also 

BackAxon Family 
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BackAxon section of the Backprop family Palette 

 

 

Ancestor: Backprop Family 

 

Members of the Axon family implement the instantaneous nonlinear threshold characteristics of the 
neuron, and its members are constrained to a standard activation functional form. Thus 
components implementing backpropagation for axons will also share a common functional form. 

Backpropagation requires that all members of the BackAxon family perform two operations. First, 
given an error at their output, BackAxons must calculate gradient information for all adaptive 
weights within their dual components (i.e. from the Axon family). Second, they must derive the 
relative error at their input to be backpropagated to any components which precedes them. Recall 
the standard activation function for members of the Axon family (see equation). Similarly, members 
of the BackAxon Family can be defined by a backward sensitivity function (error) as given by, 

 

  

 

Each member of the Axon family was completely defined through its activation function. Similarly, 
members of the BackAxon family can be defined by a backward sensitivity function (error) as given 
by: 

 

 

 

and a weight gradient function of the form: 

 

 

 

where  and  are sensitivities,  is the weight gradient, ' denote derivatives, 
and J is the cost function. The error propagation can be illustrated by the block diagram in the 
figure below. 
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BackAxon functionality 

 

Each BackAxon will assign its error function,  and weight gradient function, 

. 

 

Members: 

BackAxon 

BackBiasAxon 

BackLinearAxon 

BackSigmoidAxon 

BackTanhAxon 

BackMemoryAxon Family 

 

 

  See Also 

BackMemoryAxon Family 

 

 

BackMemoryAxon section of the Backprop family Palette 

 

 

Ancestor: BackAxon Family  
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Members of the MemoryAxon family encapsulate a local memory structure into a single axon. 
MemoryAxons do not use time domain equations to describe their activation, but instead use z-
domain tap activation equations. Similarly BackMemoryAxons are defined by a z-domain sensitivity 
function given by, 

 

 

 

Tapped MemoryAxons are defined by a z-domain tap sensitivity function, 

 

  

 

A topological perspective for the tapped components is illustrated in the figure below. Each 

individual pair of activations (i.e., , ) is treated as in the backward sensitivity equation 
and the weight gradient equation. 

 

 

Block diagram for BackMemoryAxons 

 

Members: 

BackContextAxon  

BackGammaAxon  

BackLaguarreAxon  

BackIntegratorAxon   
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BackSigmoidContextAxon  

BackSigmoidIntegratorAxon  

BackTanhContextAxon  

BackTanhIntegratorAxon 

BackTDNNAxon 

 

 

  See Also 

BackSynapse Family  

 

 

BackSynapse section of the Backprop family Palette 

 

 

Ancestor: Backprop Family  

 

Neural network topologies are constructed by interconnecting components that mimic the biological 
neuron. Members of the Synapse family implement the linear dynamic characteristics of the 
neuron, and its members are constrained to a standard activation functional form. Thus 
components implementing backpropagation for synapse will also share a common functional form. 

Backpropagation requires that all members of the BackSynapse family perform two operations. 
First, given an error at their output, BackSynapses must calculate gradient information for all 
adaptive weights within their family of dual components (i.e., the Synapse family). Second, they 
must derive the relative error (the sensitivities) at their input to be backpropagated to any 
components which precedes them. Recall the equation for the standard activation function for 
members of the Synapse family. Similarly, members of the BackSynapse family can be defined by 
a backward sensitivity function as given by: 

 

  

 

Each member of the Synapse family was completely defined through its activation function. 
Similarly, members of the BackSynapse family can be defined by a backward sensitivity function 
(error) of the form: 
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and a weight gradient function of the form: 

 

  

 

The error propagation can be illustrated by the block diagram in the figure below. 

 

 

BackSynapse block diagram 

 

Each BackSynapse is defined by an error function and weight gradient function.  

 

Members: 

BackSynapse  

BackFullSynapse  

BackArbitrarySynapse  

 

 

  See Also 

GradientSearch Family 

GradientSearch Family  
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GradientSearch family palette 

 

 

Ancestor: Engine 

 

Components in the GradientSearch family search a network’s performance surface in an attempt to 
find the global minima. Recall that the Activation family is responsible for passing activity forward 
through the network, and the Backprop family is responsible for passing an error backwards, in 
addition to calculating weight gradients. The GradientSearch family will use the weight gradients 
provided by the Backprop family to update the weights of the Activation family. This is depicted by 
the general form for the weight update equation given in the equation below. 

 

  

 

Conceptually, members of the Activation family are interconnected to form the network topology, 
which in turn fixes the performance surface topography. Members of the Backprop family act as a 
level, i.e. given the current location in weight space, they estimate the direction of a minima or 
valley within the performance surface. Members of the GradientSearch family move the location (by 
updating the weights) based on this estimated direction in an attempt to minimize the error.  

There are many methods for searching the performance surface based on first order gradient 
information (e.g., steepest descent, quickprop and conjugate gradients), as well as several 
methods for deriving these gradients (e.g., static backpropagation, backpropagation through time 
and real time recurrent learning). This is the motivation for separating gradient calculations from 
weight updates. 

A GradientSearch component can be stacked on top of any member of the Backprop family that 
contains weights (see figure below). This allows the GradientSearch component to access the 
errors and gradients of the Backprop component, as well as the activities and weights of the 
Activation component. 

 

 

Network with Activation, Backprop and GradientSearch planes 
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Members: 

Step  

Momentum  

Quickprop  

DeltaBarDelta  

 

 

  See Also 

Controls Family 

Controls Family 
 

 

Controls family palette 

 

 

Ancestor: Engine 

 

The Activation family is a collection of components which may be interconnected to form neural 
networks. Each component in this family performs a simple neural (processing) function, but when 
interconnected, these components work together to simulate very complicated neural networks. 
The order in which activity is fired through this network establishes a data flow machine. Input data 
is presented to the first component, which processes it and passes the result to the next 
component. This will continue until the last component has processed the data (i.e., the output of 
the network is reached). Each component in the Activation family understands the local rules of 
interaction required to operate as a data flow machine. Global rules of interaction are also required 
when simulating neural networks to insure the proper ordering of events. 

NeuroSolutions uses members of the Controls Family (i.e., controllers) to provide global activation 
and learning synchronization for simulations. All breadboards require at least one member of this 
family in order to run simulations. The Controls family consists of three sub-families. All Controls 
components are contained within the Controls palette. 

 

Members: 

ActivationControl Family  

BackpropControl Family  
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  See Also 

ActivationControl Family 

 

The ActivationControl family consists of the StaticControl  and DynamicControl  
components. These components are responsible for synchronizing the presentation of data to a 
neural network. The activation of network simulations are divided into experiments, epochs, 
exemplars and forward samples. The StaticControl component is only capable of controlling static 
network topologies, while the DynamicControl component supports both static and dynamic 
topologies. 

The outputs of a static network are only a function of its inputs and states at the current instant in 
time. This relationship can be depicted by the equation 

 

 

 

where y(t) are the network's outputs, i(t) are inputs, x(t) are internal nodes and w are the weights. 

The outputs of a dynamic network can be a function of its inputs and internal states at the present 
time, as well as its states at any past instant in time. This is defined by 

 

 

 

Note that static networks are a special case of dynamic where T is set to zero. 

An example may be the best method for explaining the settings available on the inspectors of these 
two components. Assume that you have designed a dynamic network for isolated speech 
recognition. In particular, you wish to train the network to recognize the digits 0-9. These digits 
have been individually spoken into a microphone and properly sampled. Each digit is completely 
contained within an isolated segment consisting of 8000 samples. To complete the training set, this 
process was repeated 100 times for each digit. 

The term samples, refers to the individual pieces of temporal information. An exemplar is a 
complete pattern of samples (e.g., each spoken digit), which may be static or temporal. The 
temporal dimension of an exemplar is defined by its Samples/Exemplar (in this case 8000). Static 
problems will have one sample per exemplar. An epoch refers to the set of all exemplars to be 
presented during the training of a network (e.g., all 100 exemplars of each of the 10 digits). Thus an 
epoch is defined by assigning the Exemplars/Epoch (1000 in our example). A neural network 
experiment will consist of the repeated presentation of an epoch to the network until it has 
sufficiently trained. Thus an experiment is defined by assigning the Epochs/Experiment. 
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Inspector for the DynamicControl component 

 

The StaticControl inspector does not contain the Samples/Exemplar parameter. This is because 
every sample corresponds to one exemplar. A simple example of a static case is the XOR problem. 
The XOR table is composed of 4 cases. You train an MLP to solve the XOR by presenting the 4 
cases 100 times. Here an exemplar is one of the four entries of the XOR table. An epoch consists 
of the four patterns (Exemplars/Epoch = 4). The experiment consists of 100 presentations of each 
of the 4 cases (Epochs/Experiment = 100). 

 

 

Inspector for the StaticControl component 

 

The ActivationControl family is also responsible for cross validation of the network during learning. 
It does this by sending a second set of data through the network during the training, while 
temporarily freezing the network weights. 

All Access components have the ability to choose the data set to access. Each probe can be 
assigned to monitor a particular data set. Furthermore, a transmitter can make control decisions 
based on one of the data sets, e.g. stopping training after the error in the cross validation set has 
fallen below a given threshold. 
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Members: 

StaticControl  

DynamicControl  

 

  See Also 

BackpropControl Family 

 

The BackpropControl family consists of the BackStaticControl  and the 

BackDynamicControl  components. They are responsible for synchronizing components 
in the backpropagation plane. There are two distinct synchronization paradigms for 
backpropagation. Synchronization refers to the way in which the network processes sensitivity 
(error) data. The ActivationControl family divides simulations into experiments, epochs, exemplars 
and samples. The BackpropControl family further defines a simulation by the number of backward 
samples per exemplar and the number of exemplars per weight update. Backpropagation can 
either be synchronized in Static, Trajectory or Fixed-Point modes. 

The BackStaticControl component is used in conjunction with the StaticControl component. Static 
backpropagation assumes that the output of a network is strictly a function of its present input (i.e., 
the network topology is static). In this case, the gradients and sensitivities are only dependent on 
the error and activations from the current time step. The Exemplars/Update field of the 
BackStaticControl inspector is the number of patterns presented to the networks before a weight 
update is computed. If the weights are updated after every exemplar (Exemplars/Update = 1), then 
this is termed on-line learning. If the weights are update after every epoch (Exemplars/Update = 
Exemplars/Epoch in the activation control component), then this is termed batch learning. 

 

 

BackStaticControl inspector 
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Note that for linear systems, static backpropagation is equivalent to least mean squares (LMS). If a 
network does not have any recurrent connections (i.e., the network is feed-forward) but has a 
dynamic component such as a TDNNAxon, then the sensitivity that the output has with respect to 
any internal node is strictly a function of that node at present time. Therefore, static 
backpropagation can still be used even though the network topology is dynamic. 

The BackDynamicControl component is used in conjunction with the DynamicControl  
component. These components allow for Trajectory and Fixed-Point learning. Training a network in 
Trajectory mode assumes that each exemplar has a temporal dimension defined by its forward 
samples (period), and that there exists some desired response for the network's output over this 
period. The network is first run forward in time over the entire period, during which an error is 
determined between the network's output and the desired response. Then the network is run 
backwards for a prescribed number of samples (defined by the Samples/Exemplar of the 
BackDynamicControl inspector) to compute the gradients and sensitivities. This forward/backward 
pass is considered a single exemplar. As with the static case, the Exemplars/Update field specifies 
how many times this process is repeated before the weight gradients are applied to the weights. 

Fixed Point mode assumes that each exemplar represents a static pattern that is to be embedded 
as a fixed point of a recurrent network. Here the terms forward samples and backward samples can 
be thought of as the forward relaxation period and backward relaxation period, respectively. All 
inputs are held constant while the network is repeatedly fired during its forward relaxation period, 
specified by the Samples/Exemplar of the DynamicControl component. There are no guarantees 
that the forward activity of the network will relax to a fixed point, or even relax at all. If the network 
becomes unstable or gets stuck in a limit cycle, simply randomize the weights and try again. Of 
course, a clever researcher will start the network from initial conditions that are known to be stable 
(as in the case of symmetric weights). After the network has relaxed, an error is determined and 
held as constant input to the backpropagation layer. Similarly, the error is backpropagated through 
the backprop plane for its backward relaxation period, specified by the Samples/Exemplar of the 
BackDynamicControl inspector. This forward/backward relaxation is considered to be one 
exemplar. Again, the Exemplars/Update specifies how often to update the weights. 

 

Members: 

BackStaticControl  

BackDynamicControl  

 

  See Also 

Unsupervised Family 

Unsupervised Family  
 

 

Unsupervised family palette. 
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Ancestor: Level 

 

Unsupervised learning trains based on internal constraints, so no desired signal is used during 
training. This should not be confused with not having a desired response. The way in which the 
network responds to input data is pre-encoded into the learning procedure. 

Unsupervised learning is only meaningful if there is redundancy in the input data. Without 
redundancy it is impossible to find any patterns or features. Unsupervised networks extract 
knowledge by exploring redundancy. In this sense, knowledge and information are exact opposites; 
information can be measured by a signal’s lack of redundancy. 

Unsupervised learning is normally applied to a single layer of weighted connections. In 
NeuroSolutions, this corresponds to the Synapse family. Therefore, all components in the 
Unsupervised family are also members of the Synapse family. Unlike supervised procedures, 
unsupervised components do not require a dedicated network controller. These components insert 
themselves into the data flow during the network's forward activation. The weights of the synapse 
are adapted internally with every sample of data flowing through the network. Supervised and 
unsupervised components may be intermixed within a single network. 

Within the Unsupervised palette are three sub-families summarized below. All components in the 
Unsupervised family can be functionally described through a weight update function in the form of 
the equation below. 

 

  

 

where η is the step size specified within the Learning Rateproperty page. 

 

Members: 

Hebbian Family 

Competitive Family 

 

User Interface: 

       Macro Actions  

 

Hebbian Family 

The Hebbian learning is correlation learning. The elements of this family utilize directly the product 
of its local input and output to derive the weight updates. NeuroSolutions implements straight 
Hebbian (Hebbian, anti-Hebbian, forced-Hebbian) and normalized Hebbian (Oja and Sanger). The 
last two types have an inherent normalization. These three components are HebbianFull, OjasFull 
and SangersFull. 
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Members: 

HebbianFull  

Ojas  

Sangers 

Competitive Family 

Ancestor: Unsupervised Family 

 

The goal of competitive networks is to cluster or categorize the input data. The user defines the 
number of categories, but their coordinates are determined without supervision. There are an 
enormous number of applications for such networks. Data encoding and compression through 
vector quantization comprise one important class of applications. 

Competitive learning weight updates are applied on a winner take all basis. In other words, only the 
weights that feed the most active output are adjusted. Like all components in the Unsupervised 
family, Competitive components are defined through their weight update function. However, this 
function is now only applied to the winning index, i*. 

 

 

 

where x is the input vector and i* is the index of the winning output. The difference between 
competitive rules is based on how the winning output is determined. Therefore, each component is 
defined by a winning index function of the form, 

 

i* = f(y) 

 

where y is the output vector. Note that the output vector y is a measure of the distance between the 
input and the output neurons’ weight vectors. This distance is dependent on the particular metric 
chosen. 
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The Competitive family consists of two components, StandardFull and ConscienceFull. The first 
component implements the standard competitive rule summarized above. With this rule, there are 
cases when one PE will win the competition too much, causing the output to be skewed. The 
second component implements the "competitive with a conscience" learning rule. This rule adds a 
bias term to balance the competition, which reduces this problem. 

The components of the Competitive family are often used in conjunction with a WinnerTakeAllAxon. 
This component will extract the winning PE of the competition. For the Dot Product metric, the 
winning PE is the one with the maximum value. For the other two metrics, the winning PE is the 
one with the minimum value. 

 

Members: 

StandardFull 

ConscienceFull 

Kohonen Family 

 

User Interface: 

       Macro Actions  

 

Kohonen Family 

 

Ancestor: Competitive Family 

 

The Kohonen family is an enhancement of the Competitive family. It extends the competition over 
spatial neighborhoods. While competitive learning only updates the weights of the winning PE, in 
Kohonen learning the weights in a neighborhood of the winning PE are also updated. 
NeuroSolutions implements a 1D neighborhood and two types of 2D neighborhoods. Both the 
neighborhood and the learning rates can be set to decay as the network learns. 

The Kohonen components use the same weight update as used for the competitive components, 
and they all use a conscience bias to determine the winning index. The difference is that a 
neighborhood of PEs around the winning output are updated along with the winning PE. 

The reference page of each component contains an illustration of its neighborhood for a 
neighborhood size of 2. Both the neighborhood size and learning rate are available on the 
component’s inspector. These parameters can also be scheduled to decay during the simulations. 

 

Members: 

DiamondKohonen  

LineKohonen  

SquareKohonen  
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User Interface: 

       Macro Actions  

 

Probe Family 

Probe Family 
 

 

Probes family palette 

 

 

Ancestor: Access Family 

 

Probing is a fundamental concept of NeuroSolutions. Since it is very difficult to mathematically 
describe the complex signal transformations occurring in highly nonlinear systems, neural networks 
are often used as "black boxes". However in a simulation environment, considerable insight can be 
gained by observing activations and weights at the input, output and internal nodes during training. 
The learning curve (i.e., how the output MSE decreases with training) is a paradigmatic display of 
the importance of probing. 

Analyzing the activity within PEs tends to be almost exclusively applied to output components. In 
NeuroSolutions, the user has the ability to place probes on ANY component in the network. Each 
probe provides a unique way of visualizing the data available at a component’s access points. It is 
obvious that on-line visualization of learning (i.e., visualizing the MSE or other network parameters 
during the simulations) is a time savings feature. Maladjustments in learning parameter settings 
can be observed early in the simulation, and corrected. Another useful feature of probing is the 
added understanding that the user gets about the path that the network takes to arrive at a working 
solution (see Frequency Doubler Example).  

The core idea of probing is to extract data from signal paths for visualization, and further 
processing, without disturbing the network topology. Probing will require additional clock cycles, but 
NeuroSolutions allows the user to set how often the display is refreshed. If the user does not take 
into account the interval between display cycles, probing can significantly hinder the simulation 
speed. 

In NeuroSolutions, whenever a component has data to monitor (e.g., activity, weights and learning 
rates) it reports the data through a standard protocol. In this way, all NeuroSolutions components 
speak the same language. No matter what the data represents, it is reported through the same 
protocol. This is the same protocol that all probes speak, allowing the same data to be visualized in 
many formats.  

The Probes Family consists of static probes, temporal probes and transformers. The static probes 
accept instantaneous data from component access points. Temporal probes are used to observe 
data that has been collected and stored over a number of simulation clock cycles. Transformer 
probes transform the data collected at temporal access points (e.g., a spectral estimator based on 
the Fast Fourier Transform). The results of these transformations are then presented as another 
temporal access point. 
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Members: 

StaticProbe Family  

TemporalProbe Family  

Transformer Family  

 

User Interaction: 

Macro Actions  

Input Family 

Input Family 
 

 

Input family palette 

 

 

Ancestor: Access Family 

 

The Input family links NeuroSolutions with the computer file system for input, and also provides 
testing signals (signal generators and noise sources) for the simulations. This is done by feeding 
data to an access point of the attached network component. 

These components are most often used to generate an input signal and a desired output signal. 
This is implemented by attaching an Input component to the Pre-Activity access point of the input 
Axon and another Input component at the Desired Signal access point of the ErrorCriterion 
component. 

The internal data input format in NeuroSolutions is a multi-channel stream. The number of channels 
is determined by the number of PEs contained within the component stacked below. The data 
stream for an input component is stored as a binary pattern file (*.nsp) within the same directory as 
the breadboard. When the input component is a File, a data stream is generated for each unique 
data set defined in the file list. 

The function of the File component is to translate other file formats to data streams stored as 
pattern files. Presently there is support for ASCII, column-formatted ASCII, binary, and bitmap file 
formats. Multiple files of mixed type can be translated simultaneously within the same File 
component. There are also provisions for normalization, segmentation and symbolic translation of 
input files.  

The Function component is a function generator, used for testing network topologies. It produces 
periodic waveforms of a variety of types. The waveforms can be the same for all channels or they 
can differ between them.  
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The Noise component provides the ability to inject noise into network components. By attaching a 
Noise component to another component, all data that flows through the selected access point has a 
noise factor added in. This component provides both a uniformly distributed noise source and a 
Gaussian distributed noise source. For both of these, the mean and variance of the noise is 
adjustable and can vary between channels. 

The DLLInput component is used to inject data into the network from a DLL. This is similar to using 
the DLL capability of the Function component, except that this data is not cyclical.  

The DLLPreprocessor component is used to preprocess the data sent from the component stacked 
on the Preprocessor access point using a DLL. The DLL retrieves the data one sample at a time 
and passes the processed data to the component attached below. 

 

Members: 

Function  

File  

Noise  

DLLInput  

DLLPreprocessor  

OLEInput  

 

Transmitter Family 

Transmitter Family 

 

 

Transmitters family palette. 

 

 

Ancestor: Access Family  

 

The purpose of the Transmitter Family is to provide global communications between the various 
network components. This is necessary because each network component is an isolated entity that 
only knows how to communicate with its immediate neighbors on the breadboard, via access points 
and connectors. A transmitter transmits control messages or data based on the data that passes 
through the access point of the attached component. In this way, data may be transmitted between 
components that are not connected by the topology, or a component’s parameters may be altered 
based on the data of a remote component. 
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Many of the components that are on the breadboard will have message that can be sent to them.  
When a transmitter is inspected, all of these messages are shown and any or all of them may be 
sent.  Some of these messages may have a parameter that must be sent with the message.  These 
parameters may be set using the inspector.  The parameters will be of one of three types: a floating 
point number, (i.e. 34.5322 or -3.21e5) an integer number, (i.e. 1322, -5, -132) or a boolean. (i.e. 
TRUE or FALSE)  The parameters type is determined by the message. 

If a component has messages, they will be shown in the inspector page of their respective on-line 
help screens.  The messages are shown in the following manner: 

 

(Message(parameter)) 

 

Members: 

DataTransmitter Family  

ControlTransmitter Family  

 

User Interface: 

       Macro Actions  

 

Schedule Family 

Schedule Family  
 

 

Scheduler family palette 

 

 

Ancestor: Access Family 

 

The Scheduler family implements a graded change of a parameter during learning. This operation 
is very important in neurocomputing in order to modify the behavior of learning throughout the 
experiment. For instance, it may be advisable to start learning with a high learning rate or over a 
large neighborhood, and during learning slowly decrease the learning rate and the neighborhood 
size to consolidate (i.e., fine-tune) the learning. This is most important in Kohonen self-organizing 
feature maps and other unsupervised topologies. 

The Scheduler family consists of the three components, LinearScheduler, LogScheduler and 
ExpScheduler. These components differ by the formula used to increase/decrease the parameter 
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from one iteration to the next (i.e., a linear, logarithmic or exponential function). Each component is 
defined by a recursive schedule equation of the form, 

 

 

 

where β is a parameter available on each component’s inspector. 

 

Members: 

ExpScheduler 

LinearScheduler  

LogScheduler 

 

User Interface: 

       Macro Actions  

 

Introduction to Neural Computation 
Introduction to NeuroComputation 

 

 

NeuroSolutions 

 

NeuroDimension, Incorporated. 

Gainesville, Florida 

 

 

 
Purpose 

NeuroSolutions is a highly advanced simulation environment capable of supporting users with 
varying levels of expertise. A conceptual understanding of the fundamentals of Neural Network 
Theory is deemed necessary. Our purpose here is not to provide a substitute for the already 
voluminous literature in this area, but to set pointers to key articles, making explicit the level of user 
knowledge required. This chapter provides a "guided tour" of neural network principles. 
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Introduction to Neural Computation 
Introduction to NeuroComputation 

 

History of Neural Networks 

What are Artificial Neural Networks 

Neural Network Solutions 

History of Neural Networks 
 

Neural Networks are an expanding and interdisciplinary field bringing together mathematicians, 
physicists, neurobiologists, brain scientists, engineers, and computer scientists. Seldom has a field 
of study coalesced from so much individual expertise, bringing a tremendous momentum to neural 
network research and creating many challenges.  

One unsolved challenge in this field is the definition of a common language for neural network 
researchers with very different backgrounds. Another, to compile a list of key papers which pleases 
everyone, has only recently been accomplished, see Arbib, 1995. However, for the sake of 
pragmatism, we present some key landmarks below.  

Neural network theory started with the first discoveries about brain cellular organization, by Ramon 
Y. Cajal and Charles S. Sherrington at the turn of the century. The challenge was immediately 
undertaken to discover the principles that would make a complex interconnection of relatively 
simple elements produce information processing at an intelligent level. This challenge is still with us 
today. 

The work of the neuroanatomists has grown into a very rich field of science cataloguing the 
interconnectivity of the brain, its physiology and biochemistry [Eccles, Szentagothai], and its 
function [Hebb]. The work of McCulloch and Pitts on the modeling of the neuron as a threshold 
logic unit, and Caia-niello on neurodynamics merit special mention because they respectively led to 
the analysis of neural circuits as switching devices and as nonlinear dynamic systems. More 
recently, brain scientists began studying the underlying principles of brain function [Braitenberg, 
Marr, Pellionisz, Willshaw, Rumelhart, Freeman, Grossberg], and even implications to philosophy 
[Churchland]. 

 

� Key books are Freeman’s "Mass Activation of the Nervous System", Eccles et al "The Cerebellum as a Neural 
Machine", Shaw and Palm’s "Brain theory" (collection of key papers), Churchland "NeuroPhilosophy", and 
Sejnowski and Churchland "The Computational Brain". 

 

The theoretical neurobiologists’ work also interested computer scientists and engineers. The 
principles of computation involved in the interconnection of simple elements led to cellular 
automata [Von Neumann], were present in Norbert Wiener’s work on cybernetics and laid the 
ground for artificial intelligence [Minsky, Arbib]. This branch is often referred to as artificial neural 
networks, and will be the one reviewed here. 

 

� There are a few compilations of key papers on ANN’s, for the technically motivated reader. We mention the 
MIT Press Neuro Computing III, the IEEE Press Artificial Neural Networks and the book on Parallel models of 
Associative memories by Erlbaum.  
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� Patrick Simpson’s book has an extensive reference list of key papers, and provides one possible taxonomy of 
neural computation.  

� The DARPA book provides an early account of neural network applications and issues.  

� Several books present the neural network computation paradigm at different technical levels:  

� Hertz, Krogh and Palmer’s "Introduction to the Theory of Neural Computation" (Addison Wesley, 1991) has 
probably one of the most thorough coverages of neural models, but requires a strong mathematical background. 

� Zurada’s "Introduction to Artificial Neural Systems" (West, 1992) and Kung’s "Digital Neural Networks" 
(Prentice Hall) are good texts for readers with an engineering background. Haykin’s book is encyclopedic, 
providing an extensive coverage of neural network theory and its links to signal processing. 

� An intermediate text is the Rumelhart and McClelland PDP Edition from MIT Press.  

� Freeman and Skapura, and Caudill and Butler are two recommended books for the least technically oriented 
reader.  

� In terms of magazines with state-of-the art technical papers, we mention "Neural Computation", "Neural 
Networks" and "IEEE Trans. Neural Networks".  

� Proceedings of the NIPS (Neuro Information Processing Systems) Conference, the Snowbird Conference, the 
Joint Conferences on Neural Networks and the World Congress are valuable sources of up-to-date technical 
information.  

 

An initial goal in neural network development was modeling memory as the collective property of a 
group of processing elements [von der Marlburg, Willshaw, Kohonen, Anderson, Shaw, Palm, 
Hopfield, Kosko]. Caianiello, Grossberg and Amari studied the principles of neural dynamics. 
Rosenblatt created the perceptron for data driven (nonparametric) pattern recognition, and 
Fukushima, the cognitron. Widrow’s adaline (adaptive linear element) found applications and 
success in communication systems. Hopfield’s analogy of computation as a dynamic process 
captured the importance of distributed systems. Rumelhart and McClelland’s compilation of papers 
in the PDP (Parallel Distributive Processing) book, opened up the field for a more general 
audience. From the first International Joint Conference on Neural Networks held in San Diego, 
1987, the field exploded. 

What are Artificial Neural Networks 
 

Artificial neural networks (ANN) are highly distributed interconnections of adaptive nonlinear 
processing elements (PEs). When implemented in digital hardware, the PE is a simple sum of 
products followed by a nonlinearity (McCulloch-Pitts neuron). An artificial neural network is nothing 
but a collection of interconnected PEs (see figure below). The connection strengths, also called the 
network weights, can be adapted such that the network’s output matches a desired response. 
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The building blocks of artificial neural networks 

 

Distributed computation has the advantages of reliability, fault tolerance, high throughput (division 
of computation tasks) and cooperative computing, but generates problems of locality of information, 
and the choice of interconnection topology. 

Adaptation is the ability to change a system’s parameters according to some rule (normally, 
minimization of an error function). Adaptation enables the system to search for optimal 
performance, but adaptive systems have trouble responding in a repeatable manner to absolute 
quantities. 

Nonlinearity is a blessing in dynamic range control for unconstrained variables and produces more 
powerful computation schemes (when compared to linear processing) such as feature separation. 
However, it complicates theoretical analysis tremendously. 

These features of distributed processing, adaptation and nonlinearity, are the hallmark of biological 
information processing systems. ANNs are therefore working with the same basic principles as 
biological brains, but probably the analogy should stop here. We are still at a very rudimentary 
stage of mimicking biological brains, due to the rigidity of the ANN topologies, restriction of PE 
dynamics and timid use of time (time delays) as a computational resource. 

Neural Network Solutions 
 

Neural computation has a style. Unlike more analytically based information processing methods, 
neural computation effectively explores the information contained within input data, without further 
assumptions. Statistical methods are based on assumptions about input data ensembles (i.e. a 
priori probabilities, probability density functions, etc.). Artificial intelligence encodes a priori human 
knowledge with simple IF THEN rules, performing inference (search) on these rules to reach a 
conclusion. Neural networks, on the other hand "discover" relationships in the input data sets 
through the iterative presentation of the data and the intrinsic mapping characteristics of neural 
topologies (normally referred to as learning). There are two basic phases in neural network 
operation. The training or learning phase where data is repeatedly presented to the network, while 
it’s weights are updated to obtain a desired response; and the recall or retrieval phase, where the 
trained network with frozen weights is applied to data that it has never seen. The learning phase is 
very time consuming due to the iterative nature of searching for the best performance. But once the 
network is trained, the retrieval phase can be very fast, because processing can be distributed. 

The user should become familiar with the types of problems that benefit from a neural network 
solution. In general, neural networks offer viable solutions when there are large volumes of data to 
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train the neural network. When a problem is difficult (or impossible) to formulate analytically and 
experimental data can be obtained, then a neural network solution is normally appropriate. 

 
The major applications of ANNs are the following: 

Pattern classifiers: The necessity of a data set in classes is a very common problem in information processing. 
We find it in quality control, financial forecasting, laboratory research, targeted marketing, bankruptcy 
prediction, optical character recognition, etc. ANNs of the feedforward type, normally called multilayer 
perceptrons (MLPs) have been applied in these areas because they are excellent functional mappers (these 
problems can be formulated as finding a good input-output map). The article by Lippman is an excellent 
review of MLPs. 

Associative memories: Human memory principles seem to be of this type. In an associative memory, inputs 
are grouped by common characteristics, or facts are related. Networks implementing associative memory 
belong generally to the recurrent topology type, such as the Hopfield network or the bidirectional associative 
memory. However, there are simpler associative memories such as the linear or nonlinear feedforward 
associative memories. A good overview of associative memories is a book edited by Anderson et al, 
Kohonen’s book (for the more technically oriented), or Freeman and Skapura book for the beginner. 

Feature extractors: This is also an important building block for intelligent systems. An important aspect of 
information processing is simply to use relevant information, and discard the rest. This is normally 
accomplished in a pre-processing stage. ANNs can be used here as principal component analyzers, vector 
quantizers, or clustering networks. They are based on the idea of competition, and normally have very simple 
one-layer topologies. Good reviews are presented in Kohonen’s, and in Hertz et al book. 

Dynamic networks: A number of important engineering applications require the processing of time-varying 
information, such as speech recognition, adaptive control, time series prediction, financial forecasting, 
radar/sonar signature recognition and nonlinear dynamic modeling. To cope with time varying signals, neural 
network topologies have to be enhanced with short term memory mechanisms. This is probably the area 
where neural networks will provide an undisputed advantage, since other technologies are far from 
satisfactory. This area is still in a research stage. The books of Hertz and Haykin present a reasonable 
overview, and the paper of deVries and Principe covers the basic theory. 

 

Notice that a lot of real world problems fall in this category, ranging from classification of irregular 
patterns, forecasting, noise reduction and control applications. Humans solve problems in a very 
similar way. They observe events to extract patterns, and then make generalizations based on their 
observations. 

Neural Network Analysis 
Neural Network Analysis 

 

At the highest level of neural network analysis is the neural model. Neural models represent 
dynamic behavior. What we call neural networks are nothing but special topologies (realizations) of 
neural models. 

 

The most common neural model is the additive model [Amari, Grossberg, Carpenter]. The neurodynamical 
equation is 
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where  is the eventual input to the i-th unit, τ is the time constant of the unit, σ a nonlinearity, and  are 
the interconnection weights. Notice that in this model the weights do not depend explicitly on the input. This 
model gives rise to the most common neural networks (the multilayer perceptron and the Hopfield networks). 
Another neural model is Grossberg’s shunting model, where the weights depend directly on the inputs. 

 

An ANN is an interconnection of PEs as depicted in the Building Blocks of ANN figure. In the figure 
below, a more detailed view of one of the PEs is shown. 

 

 

The McCulloch-Pitts processing element 

 

Two basic blocks can be identified: a linear map, the weighted sum of activations from other units 
(implemented as a sum of products) which produces the local variable  given by 

 

 

 

and an instantaneous nonlinear map that transforms  to the output variable xi, the activation of 
i-th PE, given by 
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Here  are the weights feeding the i-th PE,  is the activation of the j-th PE, and the summation 
runs over all the PEs that feed the i-th PE. 

In general, the form of the nonlinearity is a smooth, monotonically increasing and saturating 
function. Smooth nonlinearities are required when error backpropagation learning is used. The 
figure below shows some commonly used nonlinearities and their equations. 

 

 

Some commonly used nonlinearities 

 

 

Neural Network Taxonomies 

Learning Paradigms 

Constraining the Learning Dynamics 

Neural Network Taxonomies 
 

A neural network is no more than an interconnection of PEs. The form of the interconnection 
provides one of the key variables for dividing neural networks into families. Let us begin with the 
most general case, the fully connected neural network. By definition any PE can feed or receive 
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activations of any other including itself. Therefore, when the weights are represented in matrix form 
(the weight matrix), it will be fully populated. A 6 PE fully connected network is presented in the 
figure below. 

 

 

A fully connected ANN, and the weight matrix 

 

This network is called a recurrent network. In recurrent networks some of the connections may be 
absent, but there are feedback connections. An input presented to a recurrent network at time t, will 
affect the networks output for future time steps greater than t. Therefore, recurrent networks need 
to be operated over time. 

If the interconnection matrix is restricted to feedforwarding activations (no feedback nor self 
connections), the neural network is defined as feedforward. Feedforward networks are 
instantaneous mappers; i.e. the output is valid immediately after the presentation of an input. A 
special class of feedforward networks is the layered class, which is called the multilayer perceptron 
(MLP). This name comes from the fact that Rosenblatt’s network, which was called the perceptron, 
consisted of a single layer of nonlinear PEs without feedback connections. 

Multilayer perceptrons have PEs arranged in layers. The layers without direct access to the 
external world, i.e. connected to the input or output, are called hidden layers (PEs 4,5 in the figure 
below). Layers that receive the input from the external world are called the input layers (PEs 1,2,3 
in the figure below); layers in contact with the outside world are called output layers (PE 6 in the 
figure below). 

 

 

A multilayer perceptron and its weight matrix 
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Notice that most entries in the weight matrix of an MLP are zero. In particular, any feedforward 
network has at least the main diagonal, and the elements below it populated with zeros. 
Feedforward neural networks are therefore a special case of recurrent networks. Implementing 
partially connected topologies with the fully connected system and then zeroing weights is very 
inefficient, but unfortunately is sometimes done. 

Learning Paradigms 

Learning Paradigms 

 

The process of modifying network parameters to improve performance is normally called learning. 
Learning in ANN’s can also be thought of as a second set of dynamics, because the network 
parameters will evolve in time according to some rules. 

Consider the 6 PE MLP in A Multilayer Perceptron and its Weight Matrix figure. Assume that inputs 
are currents, and the weights are potentiometers that the user can control. For this example, the 
PEs can be thought of simply as being transistors. The goal is to obtain a value of 1 volt at the 
output, when several different currents are presented to the network. What the user would do is the 
following: start by connecting one of the inputs, and check the value at the output. If the value is not 
1 volt, then some of the potentiometers will have to be changed until the goal state is reached. 
Then a second input is presented, and the process repeated until the desired response is obtained 
for all the inputs. When a neural network is trained, this very process of changing the weights is 
automated. 

Learning requires several ingredients. First, as the network parameters change, the performance 
should improve. Therefore, the definition of a measure of performance is required. Second, the 
rules for changing the parameters should be specified. Third, this procedure (of training the 
network) should be done with known data. 

The application of a performance measure produces another important taxonomic division in ANNs. 
When the performance function is based on the definition of an error measure, learning is said to 
be supervised. Normally the error is defined as the difference of the output of the ANN and a pre-
specified external desired signal. In engineering applications where the desired performance is 
known, supervised learning paradigms become very important. 

The other class of learning methods modify the network weights according to some pre-specified 
internal rules of interaction (unsupervised learning). There is therefore no "external teacher". This is 
the reason unsupervised learning is also called self-organization. Self-organization may be very 
appropriate for feature discovery (feature extraction) in complex signals with redundancy. A third 
intermediate class of learning is called reinforcement learning. In reinforcement learning the 
external teacher just indicates the quality (good or bad) of the response. Reinforcement learning is 
still in a research phase, but it may hold the key to on-line learning (i.e. with the present sample). 
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A taxonomy for artificial neural networks 

 

For the class of supervised learning there are three basic decisions that need to be made: choice of 
the error criterion, how the error is propagated through the network, and what constraints (static or 
across time) one imposes on the network output. The first issue is related to the formula (the cost 
function) that computes the error. The second aspect is associated with mechanisms that modify 
the network parameters in an automated fashion. Here we will see that gradient descent learning is 
the most common in supervised learning schemes. The third aspect is associated with how we 
constrain the network output versus the desired signal. One can specify only the behavior at the 
final time (fixed point learning); i.e. we do not constrain the values that the output takes to reach the 
desired behavior. Or, we can constrain the intermediate values and have what is called trajectory 
learning. Note that a feedforward network, since it is an instantaneous mapper (the response is 
obtained in one time step), can only be trained by fixed-point learning. Recurrent networks, 
however, can be trained by specifying either the final time behavior (fixed-point learning) or the 
behavior along a path (trajectory learning). 

Learning requires the specification of a set of data for training the network. This is normally called 
the training set. Learning performance should be checked against a disjoint set of data called the 
test set. It is of fundamental importance to choose an appropriate training set size, and to provide 
representative coverage of all possible conditions. During learning, the network is going to discover 
the best mapping between the input data and the desired performance. If the data used in the 
training set is not representative of the input data class, we can expect poor performance with the 
test set, even though performance can be excellent with the training set. 

 

 

Cost Function 

Gradient Descent 

Cost Function 
 

Due to its importance, let us analyze the most general case of supervised learning in greater detail. 
There are several ways of going from an error measure, the difference between the network output 
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and the desired behavior, to a cost function. The mean square error is one of the most widely used 

error norms (also called  norm), and is defined by 

 

 

 

where  is the desired response (or target signal),  are the output units of the network, and the 
sums run over time and over the output units. When the mean square error is minimized, the power 
of the error (i.e. the power of the difference between the desired and the actual ANN output) is 
minimized. In certain cases we would prefer to minimize the maximum deviation between the 

desired signal and net’s output (  norm), or give equal weights to large and small errors (  norm). 

The appeal of the  norm is that the equations to be solved for computing the optimal weights (the 
weights that minimize the error) are linear for the weights in linear networks, so that closed form 

solutions exist to perform the computation. In general the  norm may be defined as 

 

 

 

A point worth stressing here is that the norm of the error only affects the error that needs to be 
backpropagated through the transpose network (see Gradient Descent). Therefore, gradient 
descent learning can be used with any norm, provided one can find a way to approximate the 
derivative of the cost function. NeuroSolutions is able to accept many error norms due to the clever 
way in which the cost function is implemented in the program. 

Gradient Descent 
 

Gradient descent learning is the most widely used principle for ANN training. The reason is that 
trivial computation is required to implement this method, and the fact that the gradient can be 
computed with local information. The principle of gradient descent learning is very simple. The 
weights are moved in a direction opposite to the direction of the gradient. The gradient of a surface 
points to the direction of the maximum rate of change. 

Therefore, if the weights are moved in the opposite direction of the gradient, the system state will 
approach points where the surface is flatter (see figure below). 
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Gradient descent in one dimension 

 

In the figure above, let us assume that the first point is . The gradient along x at  points to the 
right, so we move to the left, to  At , the gradient still points to the right, so we move to . 
Now the gradient points to the left. so we move to the right. The bottom of the bowl is also the flat 
region of the surface. So, at least for the convex surface depicted, moving in a direction opposite 
that of the gradient moves in the direction of the smallest curvature. The weights that correspond to 
the point of minimum error are the optimal weights. 

Widrow showed that in order to implement gradient descent in a linear distributed network (called 
an adaptive filter, see figure below) each of the weights (indexed by i) should be modified according 
to 

 

 

 

where ? is a sufficiently small constant (the learning rate parameter),  is the error (the difference 
between the desired response and the actual system response) at iteration step k,  is the input 
value to the weight i at iteration k, and  is the value of weight i at iteration k. 

This is the LMS (least mean square) algorithm. The basic idea behind the LMS algorithm is a 
simplification of computing the gradient. Instead of averaging a lot of samples to obtain an accurate 
representation of the gradient as indicated by the l2 cost equation, the LMS only uses the present 
sample to estimate the gradient. Therefore one only needs to take the derivative of the present 
difference between the desired signal and the present output with respect to the PE weights, which 
simply becomes the multiplication of the present error by the input at each PE. This estimate is 
unbiased, so although noisy, it will converge to the correct value. 

Notice that only two multiplications and one addition are necessary per weight to implement this 
equation, which is computationally very efficient. Notice also that all the necessary information 
(input and local error) is available locally to the weight. These are the two features of gradient 
descent that make it so appealing for ANN learning, but as with most things in the real world, there 
are some shortcomings. 
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The adaptive linear combiner (FIR filter) 

 

The problem is with the existence of multiple minima (non-convex surfaces) that can trap the 
adaptation, and with difficulty in choosing appropriate leaning constants for fast convergence (see 
figure below). 

 

 

A non-convex performance surface 

 

Notice that, from the point of view of the gradient, a local minimum and the global minimum are 
indistinguishable, i.e. in both cases the gradient will be zero. 

In nonlinear systems such as the ANN PE, the easy LMS rule must be modified to account for the 
nonlinearity. This gives rise to the delta rule, and this principle was known for a long time in 
sensitivity analysis. If one wants to compute the sensitivity of one quantity (E) with respect to 
another (w), related by a function (f(w)), as long as the function f is differentiable, the chain rule can 
be used, i.e. 
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Now we can understand why we required the nonlinearity of the PE to be monotonic and smooth, 
otherwise the first term of the equation could not be computed. If we apply this principle to the error 
at the output of the ith PE with respect to the weights, we see that 

 

 

 

The first term is the derivative of the instantaneous mapper which will be denoted as σ'’ . The 

second term gives the LMS rule applied to the weight  (i.e. having  as input and error ), i.e. 

 

 

 

Delta rule learning is just an application of these principles repeated over and over again for each 
PE in the network. The problem that was faced by early ANN researchers when they tried to 
extrapolate this simple procedure to multilayer perceptrons was the fact that the desired signal in 
the hidden layers of the network was not known explicitly. It turns out that when the error is 
considered as a signal that is propagated from the output of the net to the input, one can reason 
that the error reaching a given node should be distributed proportionally to the strength of the 
weights connecting to that node (just think of an electrical signal being propagated through a 
resistive network where the weights are the conductances or resistors). This is the principle behind 
the backpropagation algorithm. 

A relevant aspect of this methodology, which can be considered a contribution of ANN research to 
the theory of optimization, is the way the gradients are computed. In optimization, the method of 
forward perturbation is normally used to compute the gradient, which implies a massive 
computation of partial derivatives (see real time recurrent learning below). It has been shown 
repeatedly by ANN researchers, however that gradients can also be computed by propagating the 
error through the transpose network (or dual) and multiplying it locally with the activation residing at 
the node (see figure below). The transpose network is obtained from the original network by 
changing the direction of signal flow and switching the summing junctions with the nodes. 
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Relation between a network and its transpose (dual) 

 

It turns out that this is a much more efficient procedure for computing the gradients than forward 
activation of the sensitivities. Moreover, the backpropagation procedure is not restricted to 
feedforward networks. A recurrent network can also benefit from the same backpropagation 
principle, and the backpropagation principle can even be applied to problems where the gradients 
have to be computed over time. NeuroSolutions extensively uses this simplification. 

Note that in the backpropagation procedure there is an intrinsic data flow. First, the inputs are 
propagated forward through the network to reach the output. The output error is computed as the 
difference between the desired output and the current system output. Then errors are propagated 
back through the network up to the first layer after which the delta rule can be applied to each 
network PE. 

Normally, the backpropagation equations are written in a much more complicated manner because 
one has to mathematically formulate the composition of intermediate errors. But these equations 
cloud a very simple and uniform principle. All the PEs compute the gradient in the same manner as 
expressed by the delta rule. When the transpose network is used to propagate the error, a routine 
computing the backpropagation procedure only needs to know about the delta rule, because the 
complication of propagating the error up to the unit is naturally taken care of by the transpose 
network. This is the way NeuroSolutions implements the backpropagation procedure. 

A final note about backpropagation that needs to be covered is the functional form of the 
propagated error. Notice that the error passing across a PE is multiplied by the derivative of the 
nonlinearity taken at the operating value given by the PE activation. Practically, one does not need 
to explicitly compute the derivative of the nonlinearity since it can be given as a function of the 
operating point. 

 

 

 

We know that the nonlinearity is a saturating function. Therefore, the derivative of large activations 
(positive or negative) will produce an attenuation in the propagated error. Since the weights will be 
modified proportionally to the magnitude of the error, one can expect that learning speed decreases 
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for multiple layer networks (this phenomenon is sometimes called error dispersion). Fahlman 
proposes adding a small constant (0.1) to the propagated error to speed up learning. 

Constraining the Learning Dynamics 

Constraining the Learning Dynamics 

 

Feedforward networks only accept fixed-point learning algorithms because the network reaches a 
steady state in one iteration (instantaneous mappers). Due to this absence of dynamics, 
feedforward networks are also called static networks. Backpropagation for these networks is a 
static learning rule and is therefore referred to as static backpropagation. In recurrent networks, the 
learning problem is slightly more complex due to the richer dynamic behavior of the networks. 

One may want to teach a recurrent network a static output. In this case the learning paradigm is still 
fixed point learning, but since the network is recurrent it is called recurrent backpropagation. 
Almeida and Pineda showed how static backpropagation could be extended to this case. Using the 
transpose network, fixed-point learning can be implemented with the backpropagation algorithm, 
but the network dynamics MUST die away. The method goes as follows: An input pattern is 
presented to the recurrent net. The network state will evolve until the output stabilizes (normally a 
predetermined number of steps). Then the output error (difference between the stable output and 
the desired behavior) can be computed and propagated backwards through the adjoining network. 
The error must also settle down, and once it stabilizes, the weights can be adapted using the static 
delta rule presented above. This process is repeated for every one of the training patterns and as 
many times as necessary. NeuroSolutions implements this training procedure. 

In some cases the network may fail to converge due to instability of the network dynamics. This is 
an unresolved issue at this time. We therefore recommend extensive probing of recurrent networks 
during learning. 

The other learning paradigm is trajectory learning where the desired signal is not a point but a 
sequence of points. The goal in trajectory learning is to constrain the system output during a period 
of time (therefore the name trajectory learning). This is particularly important in the classification of 
time varying patterns when the desired output occurs in the future; or when we want to approximate 
a desired signal during a time segment, as in multistep prediction. The cost function in trajectory 
learning becomes 

 

 

 

where T is the length of the training sequence and i is the index of output units. 

The ANN literature provides basically two procedures to learn through time: the backpropagation 
through time algorithm (BPTT) and the real time recurrent learning algorithm (RTRL). 

In BPTT the idea is the following [Rumelhart and Williams, Werbos]: the network has to be run 
forward in time until the end of the trajectory and the activation of each PE must be stored locally in 
a memory structure for each time step. Then the output error is computed, and the error is 
backpropagated across the network (as in static backprop) AND the error is backpropagated 
through time (see figure below). In equation form we have, 
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where  (n) is the error propagated by the transpose network across the network and through 
time. Since the activations x(n) in the forward pass have been stored, the gradient across time can 
be reconstructed by simple addition. This procedure is naturally implemented in NeuroSolutions. 

 

 

Construction of the gradient in Backpropagation through time. 

 

The other procedure for implementing trajectory learning is based on a very different concept. It is 
called real time recurrent learning [Williams and Zipser] and is a natural extension of the gradient 
computation in adaptive signal processing and control theory. The idea is to compute, at each time 
step, ALL the sensitivities, i.e. how much a change in one weight will affect the activation of all the 

PEs of the network. Since there are  weights in a fully connected net, and for each we have to 
keep track of N derivatives this is a very computationally intensive procedure (we further need N 
multiplications to compute each gradient). However, notice that we can perform the computation at 
each time step, so the storage requirements are not a function of the length of the trajectory. At the 
end of the trajectory, we can multiply these sensitivities by the error signal and compute the 
gradient along the trajectory (see figure below). In equation form we write the gradient as 

 

 

 

where  (n) is the output of the network. We can compute the derivative of the activation 
recursively as 
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where  is the kronecker function, i.e. is 1 when p=i and is zero otherwise. 

 

 

Computation of the gradient in real time recurrent learning 

Practical Issues of Learning 
Practical Issues of Learning 

 

There are mainly three practical aspects related to learning. The first is the choice of the training 
set and its size. The second is the selection of learning constants, and the third is when to stop the 
learning. Unfortunately, there are no "formulas" to select these parameters. Only some general 
rules apply and a lot of experimentation is necessary. In this regard, the availability of fast 
simulation environments and extended probing abilities as implemented in NeuroSolutions are a 
definite asset. 

 

 

Training Set 

Network Size 

Learning Parameters 

Stop Criteria 

Training Set 
 

The size of the training set is of fundamental importance to the practical usefulness of the network. 
If the training patterns do not convey all the characteristics of the problem class, the mapping 
discovered during training only applies to the training set. Thus the performance in the test set will 
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be much worse than the training set performance. The only general rules that can be formulated 
are to use a lot of data and use representative data. If you do not have lots of data to train the ANN, 
then the ANN paradigm is probably not the best solution to solve your problem. Understanding of 
the problem to be solved is of fundamental importance in this step. 

Another aspect of proper training is related to the relation between training set size and number of 
weights in the ANN. If the number of training examples is smaller than the number of weights, one 
can expect that the network may "hard code" the solution, i.e. it may allocate one weight to each 
training example. This will obviously produce poor generalization (i.e the ability to link unseen 
examples to the classes defined from the training examples). We recommend that the number of 
training examples be at least double the number of network weights. 

When there is a big discrepancy between the performance in the training set and test set, we can 
suspect deficient learning. Note that one can always expect a drop in performance from the training 
set to the test set. We are referring to a large drop in performance (more than 10~15%). In cases 
like this we recommend increasing the training set size and/or produce a different mixture of 
training and test examples. 

Network Size 
 

At our present stage of knowledge, establishing the size of a network is more efficiently done 
through experimentation. The theory of generalization addresses this issue, but it is still difficult to 
apply in practical settings [VP dimension, Vapnik]. The issue is the following: The number of PEs in 
the hidden layer is associated with the mapping ability of the network. The larger the number, the 
more powerful the network is. However, if one continues to increase the network size, there is a 
point where the generalization gets worse. This is due to the fact that we may be over-fitting the 
training set, so when the network works with patterns that it has never seen before the response is 
unpredictable. The problem is to find the smallest number of degrees of freedom that achieves the 
required performance in the TEST set. 

One school of thought recommends starting with small networks and increasing their size until the 
performance in the test set is appropriate. Fahlman proposes a method of growing neural 
topologies (the cascade correlation) that ensures a minimal number of weights, but the training can 
be fairly long. An alternate approach is to start with a larger network, and remove some of the 
weights. There are a few techniques, such as weight decay, that partially automate this idea 
[Weigend, LeCun]. The weights are allowed to decay from iteration to iteration, so if a weight is 
small, its value will tend to zero and can be eliminated. 

In NeuroSolutions the size of the network can be controlled by probing the hidden layer weight 
activations with the scopes. When the value of an activation is small, does not change during 
learning, or is highly correlated with another activation, then the size of the hidden layer can be 
decreased. 

Learning Parameters 
 

The control of the learning parameters is an unsolved problem in ANN research (and for that matter 
in optimization theory). The point is that one wants to train as fast as possible and reach the best 
performance. Increasing the learning rate parameter will decrease the training time, but will also 
increase the possibility of divergence, and of rattling around the optimal value. Since the weight 
correction is dependent upon the performance surface characteristics and learning rate, to obtain 
constant learning, an adaptive learning parameter is necessary. We may even argue that what is 
necessary is a strategy where the learning rate is large in the beginning of the learning task and 
progressively decays towards the end of adaptation. Modification of learning rates is possible under 
certain circumstances, but a lot of other parameters are included that also need to be 
experimentally set. Therefore, these procedures tend to be brittle and the gains are problem 
dependent (see the work of Fahlman, LeCun, and Silva and Almeida, for a review). NeuroSolutions 
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enables versatile control of the learning rates by implementing adaptive schemes [Jacob] and 
Fahlman’s quickprop [Fahlman]. 

The conventional approach is to simply choose the learning rate and a momentum term. The 
momentum term imposes a "memory factor" on the adaptation, and has been shown to speedup 
adaptation while avoiding local minima trapping to a certain extent. Thus, the learning equation 
becomes 

 

 

 

where γ is a constant (normally set between 0.5 and 0.9), and µ is the learning rate. 

Jacob’s delta bar delta is also a versatile procedure, but requires more care in specification of the 
learning parameters. The idea is the following: when there are consecutive iterations that produce 
the same sign of weight update, the learning rate is too small. On the other hand, if consecutive 
iterations produce weight updates that have opposite signs, the learning rate is too fast. Jacob 
proposed the following formulas for learning rate updates: 

 

 

 

where η is the learning rate for each weight,  (n) is the gradient and  

 

 

 

where ξ is a small constant. 

One other option available to the researcher is when to perform the weight updates. Updates can 
be performed at the end of presentation of all the elements of the training set (batch learning) or at 
each iteration (real time). The first modality "smoothes" the gradient and may give faster learning 
for noisy data, however it may also average the gradient to zero and stall learning. Modification of 
the weights at each iteration with a small learning rate may be preferable most of the time. 

Stop Criteria 
 

The third problem is how to stop the learning. Stop criteria are all based on monitoring the mean 
square error. The curve of the MSE as a function of time is called the learning curve. The most 
used criterion is probably to choose the number of iterations, but we can also preset the final error. 
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These two methods have shortcomings. A compromise that we use in practice is to threshold the 
minimum incremental learning. When, between two consecutive iterations, the error does not drop 
at least a given amount, training should be terminated. This gives us a criterion for comparing very 
different topologies. 

Still another possibility is to monitor the MSE for the test set, as in cross validation. One should 
stop the learning when error in the test set starts increasing (see figure below). This is where the 
maximum generalization takes place. 

 

 

Behavior of MSE for training and test sets 

 

To implement this procedure we must train the net for a certain number of iterations, freeze the 
weights and test the performance in the test set. Then return to the training set and continue 
learning. It is a little more cumbersome to implement this criterion since, for a block of training 
iterations over the training set, an extra computation of the performance over the test set is 
required. NeuroSolutions implements a wealth of stop criteria for learning that are not necessarily 
limited to the mean square error. 

Unsupervised Learning 
Unsupervised learning 

 

For the most part, neural networks that use the unsupervised learning paradigms are very simple, 
one layer networks. In unsupervised learning there is no teacher, so the network must self-organize 
according to some internal rules in response to the environment. One of the most biologically 
plausible learning rules is called Hebbian learning due to the neurophysiologist Donald Hebb. The 
idea is to modify a network weight, proportionally, to the product of the input and the output of the 
weight, i.e. 

 

 

 

where µ is the learning constant, and y the single output of the network. Anti-Hebbian rule is 
formulated in the same way but with a negative learning rate. One of the problems of the Hebbian 
rule is that the weights may grow without bounds if the input is not properly normalized, and 
learning never stops. Hebbian learning implements, iteratively, the idea of correlation between x 
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and y (the input and output of the weight). This principle can even be applied with the input and a 
desired signal, as in heteroassociation (forced Hebbian). 

A very effective normalization of the Hebbian rule has been proposed by Oja, and reads 

 

 

 

For linear networks, one can show that Oja’s rule finds the principal component of the input data, 
i.e. it implements what is called an eigenfilter. A common name for the eigenfilter is matched filter, 
which is known to maximize the signal to noise ratio. Hence, Oja’s rule produces a system that is 
optimal and can be used for feature extraction. 

This network can be extended to M multiple output units and extract, in order, the M principal 
components of the input [Sanger], yielding 

 

 

 

where 

 

 

 

Principal Component Analysis is a very powerful feature representation method. PCA projects the 
data cluster on a set of orthogonal axes that best represent the input at each order. It can be shown 
that PCA is solving an eigenvalue problem. This can be accomplished with linear algebra 
techniques, but here we are doing the same thing using on-line, adaptive techniques. 

Another unsupervised learning paradigm is competitive learning. The idea of competitive learning is 
that the output PEs compete to be on all the time (winner-take-all). This is accomplished by 
creating inhibitory connections among the output PEs. Competitive learning networks cluster the 
input patterns, and can therefore be used in data reduction through vector quantization. One can 
describe competitive learning as a sort of Hebbian learning applied to the output node that wins the 
competition among all the output nodes. First, only one of the output units can be active at a given 
time (called the winner), which is defined as the PE that has the largest summed input. If the 
weights to each PE are normalized, then this choice takes the winner as the unit closest to the 

input vector x in the  norm sense, i.e. 
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where  means the winning PE. For the winning PE, the weights are updated as 

 

 

 

which displaces the weight vector towards the input pattern (inputs are assumed normalized). 
Several other distance metrics can also be used, and the Euclidean seems the one that is more 
robust. These types of networks have been applied successfully to vector quantization schemes, 
since they can search the code books in parallel. 

The problem with competitive learning is that the same unit may always win the competition. One 
way to handle this problem is to create a second competitive mechanism, where each unit keeps 
track of how many times it wins the competition. The units that win the competition too often are 
penalized. This second competition is called conscience. To implement conscience each PE must 
count how often it wins the competition by 

 

 

 

where  is one or zero. The constant β is normally small (0.001). The current bias for the unit is 
computed as 

 

 

 

where 1/N measures the equal firing rate for an N PE net. γ is normally large (for -1/+1 normalized 

data γ should be 1). The value of  is subtracted from the distance function that selects the 
winner. This gives the ability to use all the PEs, but distorts the a priori probability of the classes. 

Feature mapping is closely related to competitive learning networks. In feature mapping the output 
units are arranged in a geometric configuration (normally a 2D space). The goal is to map a 
multidimensional vector onto this 2D space while preserving neighborhoods. This can be achieved 
with an extension of competitive learning, where PEs in a neighborhood of the winning PE also 
have their weights updated according to the distance to the winning PE. The update rules read, 

 

 

 

where  
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is a neighborhood function that decays like a Gaussian, and the variance and learning rate are 
made time varying to speed up the convergence. 

Support Vector Machines 
Support Vector Machines 

 
The support vector machine (SVM) in NeuroSolutions is a new kind of classifier that is motivated by 
two concepts. First, transforming data into a high-dimensional space can transform complex 
problems (with complex decision surfaces) into simpler problems that can use linear discriminant 
functions. Second, SVMs are motivated by the concept of training and using only those inputs that 
are near the decision surface since they provide the most information about the classification. 

The first step in a SVM is transforming the data into a high-dimensional space. In NeuroSolutions 
this is done using a Radial Basis Function (RBF) network that places a gaussian at each data 
sample. Thus, the feature space becomes as large as the number of samples. The RBF, however, 
uses backpropagation to train a linear combination of the gaussians to produce the final result. The 
SVM in NeuroSolutions, however, uses the idea of large margin classifiers for training. This 
decouples the capacity of the classifier from the input space and at the same time provides good 
generalization. This is an ideal combination for classification. 
The learning algorithm is based on the Adatron algorithm extended to the RBF network. The 
Adatron algorithm can be easily extended to the RBF network by substituting the inner product of 
patterns in the input space by the kernel function, leading to the following quadratic optimization 
problem: 

 

 

 

We can then define  
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and choose a common starting multiplier (e.g. αi =0.1), learning rate η, and a small threshold (e.g., 
t = 0.01). 

While M>t, we choose a pattern xi and calculate an update ∆αi = ?(1?g(xi)) and perform the update 

 

 

 

After adaptation only some of the αi are different from zero (called the support vectors). They 
correspond to the samples that are closest to the boundary between classes. This algorithm is 
called the kernel Adatron and can adapt an RBF to have an optimal margin. This algorithm can be 
considered the "on-line" version of the quadratic optimization approach utilized for SVMs, and it can 
find the same solutions as Vapnik's original algorithm for SVMs. Notice that it is easy to implement 
the kernel Adatron algorithm since g(xi) can be computed locally to each multiplier, provided that 
the desired response is available in the input file. In fact, the expression for g(xi) resembles the 
multiplication of an error with an activation, so it can be included in the framework of neural network 
learning. The Adatron algorithm essentially prunes the RBF network of Figure 5-12 so that its 
output for testing is given by 

 

 

 
The typical SVM built by the NeuralBuilder is shown below. The first three components implement 
the expansion of the dimensionality by having a gaussian for each input. The second three 
components implement the large margin classifier that trains the parameters of the above 
equations. 
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Dynamic Networks 
Dynamic Networks 

 

Dynamic networks are a very important class of neural network topologies that are able to process 
time varying signals. They can be viewed as a nonlinear extension of adaptive linear filters, or an 
extension of static neural networks to time varying inputs. As such they fill an increasingly important 
niche in neural network applications and deserve special treatment in this introduction to neural 
computation. NeuroSolutions was developed from the start with dynamic neural network 
applications in mind. 

A dynamic neural network is a static neural network with an extended memory mechanism, which 
is able to store past values of the input signal. In many applications (system identification, 
classification of patterns in time, nonlinear prediction) memory is important for allowing decisions 
based on input behavior over a period of time. A static classifier makes decisions based on the 
present input only; it can therefore not perform functions that involve knowledge about the history of 
the input signal. 

In neural networks, the most common memory structures are linear filters. In the time delay neural 
network (TDNN) the memory is a tap delay line, i.e. a set of memory locations that store the past of 
the input [Waibel]. Self-recurrent connections (feeding the output of a PE to the input) have also 
been used as memory, and these units are called context units [Elman, Jordan]. 

The gamma memory (see figure below) is a structure that cascades self-recurrent connections 
[deVries and Principe]. It is therefore a structure with local feedback, that extends the context unit 
with more versatile storage, and accepts the tap delay line as a special case (µ=1). 

 

 

The gamma memory. gi(t) are inputs to the next layer PEs. 

 

µ is an adaptive parameter that controls the depth of the memory. This structure has a memory 
depth of K/µ, where K is the number of taps in the cascade. Its resolution is µ [deVries and 
Principe]. Since this topology is recurrent, a form of temporal learning must be used to adapt the 
gamma parameter µ (i.e. either real time recurrent learning or backpropagation through time). The 
advantage of this structure in dynamic networks is that we can, with a predefined number of taps, 
provide a controllable memory. And since the network adapts the gamma parameter to minimize 
the output mean square error, the best compromise depth/resolution is achieved. 



 178

The gamma memory can be applied to the input (focused gamma memory), to the hidden PEs or to 
the output PEs. In each case it will store the activations of the respective PEs and use their past 
values to compute the net output. A dynamic neural network with the gamma memory is called the 
gamma neural model. The gamma neural model can be applied to classification of time varying 
patterns, signal detection, prediction of chaotic time series, and identification of nonlinear systems. 

Famous Neural Topologies 
Famous Neural Topologies 

 

Perceptron 

Multilayer Perceptron 

Madaline 

Radial Basis Function Networks 

Associative Memories 

Jordan/Elman Networks 

Hopfield Network 

Principal Component Analysis Networks 

Kohonen Self-Organizing Maps (SOFM)  

Adaptive Resonance Theory (ART)  

Fukushima 

Time Lagged Recurrent Networks 

Perceptron 
 

The perceptron was probably the first successful neurocomputer (Rosenblatt 1957). Rosenblatt 
constructed the MARK I for binary image classification. The perceptron is nothing but a feedforward 
neural network with no hidden units. Its information processing abilities are limited. It can only 
discriminate among linearly separable classes, i.e. classes that could be separated by hyperplanes. 
The appeal of the perceptron was Rosenblatt’s proof that it is trainable (for linearly separable 
classes) in a finite number of steps. The Perceptron learning rule is very simple: 

 

Present a pattern. If the output is the desired output, do nothing. If the response is wrong, from the units that 
are active, change their weights towards the desired response. Repeat the process until all the units have 
acceptable outputs. 

 

The delta rule (simplified backpropagation) can also be applied to the perceptron, but perceptron 
learning is faster and more stable if the patterns are linearly separable. Even today (more than 30 
years later), the perceptron and its learning rule have appeal. Recently the perceptron learning rule 
was revisited to provide acceptable results even when the patterns were not linearly separable. We 
can implement a perceptron as a special case (no hidden layer) of a multilayer perceptron. 
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Multilayer Perceptron 
 

The multilayer perceptron (MLP) is one of the most widely implemented neural network topologies. 
The article by Lippman is probably one of the best references for the computational capabilities of 
MLPs. Generally speaking, for static pattern classification, the MLP with two hidden layers is a 
universal pattern classifier. In other words, the discriminant functions can take any shape, as 
required by the input data clusters. Moreover, when the weights are properly normalized and the 
output classes are normalized to 0/1, the MLP achieves the performance of the maximum a 
posteriori receiver, which is optimal from a classification point of view [Makhoul]. In terms of 
mapping abilities, the MLP is believed to be capable of approximating arbitrary functions. This has 
been important in the study of nonlinear dynamics [Lapedes and Farber], and other function 
mapping problems. 

MLPs are normally trained with the backpropagation algorithm [Rumelhart et al]. In fact the 
renewed interest in ANNs was in part triggered by the existence of backpropagation. The LMS 
learning algorithm proposed by Widrow can not be extended to hidden PEs, since we do not know 
the desired signal there. The backpropagation rule propagates the errors through the network and 
allows adaptation of the hidden PEs. 

Two important characteristics of the multilayer perceptron are: its nonlinear processing elements 
(PEs) which have a nonlinearity that must be smooth (the logistic function and the hyperbolic 
tangent are the most widely used); and their massive interconnectivity (i.e. any element of a given 
layer feeds all the elements of the next layer). 

The multilayer perceptron is trained with error correction learning, which means that the desired 
response for the system must be known. In pattern recognition this is normally the case, since we 
have our input data labeled, i.e. we know which data belongs to which experiment. 

Error correction learning works in the following way: From the system response at PE i at iteration 

n, (n), and the desired response (n) for a given input pattern an instantaneous error (n) is 
defined by 

 

 

 

Using the theory of gradient descent learning, each weight in the network can be adapted by 
correcting the present value of the weight with a term that is proportional to the present input and 
error at the weight, i.e. 

 

 

 

The local error (n) can be directly computed from (n) at the output PE or can be computed as a 
weighted sum of errors at the internal PEs. The constant η is called the step size. This procedure is 
called the backpropagation algorithm. 

Backpropagation computes the sensitivity of a cost functional with respect to each weight in the 
network, and updates each weight proportional to the sensitivity. The beauty of the procedure is 
that it can be implemented with local information and requires just a few multiplications per weight, 
which is very efficient. Because this is a gradient descent procedure, it only uses the local 
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information so can be caught in local minima. Moreover, the procedure is inherently noisy since we 
are using a poor estimate of the gradient, causing slow convergence. 

Momentum learning is an improvement to the straight gradient descent in the sense that a memory 
term (the past increment to the weight) is used to speed up and stabilize convergence. In 
momentum learning the equation to update the weights becomes 

 

 

 

where α is the momentum. Normally α should be set between 0.1 and 0.9. 

Training can be implemented in two ways: Either we present a pattern and adapt the weights (on-
line training), or we present all the patterns in the input file (an epoch), accumulate the weight 
updates, and then update the weights with the average weight update. This is called batch learning. 
They are theoretically equivalent, but the former sometimes has advantages in tough problems 
(many similar input -output pairs). 

To start backpropagation, we need to load an initial value for each weight (normally a small random 
value), and proceed until some stopping criterion is met. The three most common are: to cap the 
number of iterations, to threshold the output mean square error, or to use cross validation. Cross 
validation is the more powerful of the three since it stops the training at the point of best 
generalization (i.e. the performance in the test set) is obtained. To implement cross validation one 
must put aside a small part of the training data (10%) and use it to see how the trained network is 
doing (e.g. every 100 training epochs, test the net with a validation set). When the performance 
starts to degrade in the validation set, training should be stopped. 

Checking the progress of learning is fundamental in any iterative training procedure. The learning 
curve (how the mean square error evolves with the training iteration) is such a quantity. We can 
judge the difficulty of the task, and how to control the learning parameters from the learning curve. 
When the learning curve is flat, the step size should be increased to speed up learning. On the 
other hand, when the learning curve oscillates up and down the step size should be decreased. In 
the extreme, the error can go steadily up, showing that learning is unstable. At this point the 
network should be reset. When the learning curve stabilizes after many iterations at an error level 
that is not acceptable, it is time to rethink the network topology (more hidden PEs or more hidden 
layers, or a different topology altogether) or the training procedure (other more sophisticated 
gradient search techniques). 

We present below a set of heuristics that will help decrease the training times and, in general, 
produce better performance. 

 

� Normalize your training data. 

� Use the tanh nonlinearity instead of the logistic function. 

� Normalize the desired signal to be just below the output nonlinearity rail voltages (i.e. if you use the tanh, use 
desired signals of +/- 0.9 instead of +/- 1). 

� Set the step size higher towards the input (i.e. for a one hidden layer MLP, set the step size at 0.05 in the 
synapse between the input and hidden layer, and 0.01 in the synapse between the hidden and output layer). 

� Initialize the net’s weights in the linear region of the nonlinearity (divide the standard deviation of the random 
noise source by the fan-in of each PE). 

� Use more sophisticated learning methods (quick prop or delta bar delta). 
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� Always have more training patterns than weights. You can expect the performance of your MLP in the test set 
to be limited by the relation N>W/ε, where N is the number of training epochs, W the number of weights and ε 
the performance error. You should train until the mean square error is less than ε/2. 

Madaline 
 

Madaline is an acronym for multiple adalines, the ADAptive LINear Element proposed by Widrow 
[Widrow and Hopf]. The adaline is nothing but a linear combiner of static information, which is not 
very powerful. However, when extended to time signals, the adaline becomes an adaptive filter of 
the finite impulse response class. This type of filter was studied earlier by Wiener (1949). Widrow’s 
contribution was the learning rule for training the adaptive filter. Instead of numerically solving the 
equations to obtain the optimal value of the weights (the Wiener-Hopf solution), Widrow proposed a 
very simple rule based on gradient descent learning (the least mean square rule LMS). The 
previous adaptive theory was essentially statistical (it required expected value operators), but 
Widrow took the actual value of the product of the error at each unit and its input as a rough 
estimate of the gradient. It turns out that this estimate is noisy, but unbiased, so the number of 
iterations over the data average the estimate and make it approach the true value. 

The adaptive linear combiner with the LMS rule is one of the most widely used structures in 
adaptive signal processing [Widrow and Stearns]. Its applications range from echo cancellation, to 
line equalization, spectral estimator, beam former in adaptive antennas, noise canceller, and 
adaptive controller. The adaline is missing one of the key ingredients for our definition of neural 
networks (nonlinearity at the processing element), but it possesses the other two (distributed and 
adaptive). 

Radial Basis Function Networks 
 

Radial basis functions networks have a very strong mathematical foundation rooted in 
regularization theory for solving ill-conditioned problems. Suppose that we want to find the map that 
transforms input samples into a desired classification. Due to the fact that we only have a few 
samples, and that they can be noisy, the problem of finding this map may be very difficult 
(mathematicians call it ill-posed). We want to solve the mapping by decreasing the error between 
the network output and the desired response, but we want to also include an added constraint 
relevant to our problem. Normally this constraint is smoothness. 

One can show that such networks can be constructed in the following way (see figure below): Bring 
every input component (p) to a layer of hidden nodes. Each node in the hidden layer is a p 
multivariate Gaussian function 

 

 

 

of mean  (each data point) and variance . These functions are called radial basis functions. 
Finally, linearly weight the output of the hidden nodes to obtain 
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The problem with this solution is that it may lead to a very large hidden layer (the number of 
samples of your training set). 

 

 

Radial Basis Function (RBF) network 

 

We will approximate this solution by reducing the number of PEs in the hidden layer, but cleverly 
position them over the input space regions, i.e. where we have more input samples. This means 
that we have to estimate the positions of each radial basis function and its variance (width), as well 
as compute the linear weights .  
Estimation of the centers and widths 

The most widely used method of estimating the centers and widths is to use an unsupervised 
technique called the k-nearest neighbor rule. The input space is first discretized into k clusters and 
the size of each is obtained from the structure of the input data. The centers of the clusters give the 
centers of the RBFs, while the distance between the clusters provide the width of the Gaussians. 
The definition of the width is nontrivial. NeuroSolutions uses competitive learning to compute the 
centers and widths. It sets each width proportional to the distance between the center and its 
nearest neighbor. Conscience can be used to make sure that all the RBF centers are brought into 
the data clusters. However, conscience also brings the problem of confining the centers too close 
together. Scheduling of the conscience may be necessary for a good coverage of the data clusters. 
Computing the Output Weights 

The output weights in turn are obtained through supervised learning. The error correction learning 
described in the multilayer perceptron section is normally used, but this problem is easier because 
the output unit is normally linear, so convergence is faster. In practical cases, an MLP can be 
superior to the linear network, because it may take advantage of nonlinearly separable data 
clusters produced by too few RBFs. 

Associative Memories 
 



 183

Steinbuch was a cognitive scientist and one of the pioneering researchers in distributed 
computation. His interests were in associative memories, i.e. devices that could learn associations 
among dissimilar binary objects. He implemented the learnmatrix, where a set of binary inputs is 
fed to a matrix of resistors, producing a set of binary outputs. The outputs are 1 if the sum of the 
inputs is above a given threshold, zero otherwise. The weights (which were binary) were updated 
by using several very simple rules based on Hebbian learning. But the interesting thing is that the 
asymptotic capacity of this network is rather high and easy to determine (I=  [Willshaw]). 

The linear associative memory was proposed by several researchers [Anderson, Kohonen]. It is a 
very simple device with one layer of linear units that maps N inputs (a point in N dimensional 
space) onto M outputs (a point in M dimensional space). In terms of signal processing, this network 
does nothing but a projection operation of a vector in N dimensional space to a vector in M 
dimensional space. 

This projection is achieved by the weight matrix. The weight matrix can be computed analytically: it 
is the product of the output with the pseudo inverse of the input [Kohonen]. In terms of linear 
algebra, what we are doing is computing the outer product of the input vector with the output 
vector. This solution can be approximated by Hebbian learning and the approximation is quite good 
if the input patterns are orthogonal. Widrow’s LMS rule can also be used to compute a good 
approximation of W even for the case of non-orthogonal patterns [Hecht-Nielsen]. 

Jordan/Elman Networks 
 

The theory of neural networks with context units can be analyzed mathematically only for the case 
of linear PEs. In this case the context unit is nothing but a very simple lowpass filter. A lowpass 
filter creates an output that is a weighted (average) value of some of its more recent past inputs. In 
the case of the Jordan context unit, the output is obtained by summing the past values multiplied by 
the scalar  as shown in the figure below. 

 

 

Context unit response 

 

Notice that an impulse event x(n) (i.e. x(0)=1, x(n)=0 for n>0) that appears at time n=0, will 
disappear at n=1. However, the output of the context unit is t1 at n=1, t2 at n=2, etc. This is the 
reason these context units are called memory units, because they "remember" past events. t 
should be less than 1, otherwise the context unit response gets progressively larger (unstable). 

The Jordan network and the Elman network combine past values of the context units with the 
present inputs to obtain the present net output. The input to the context unit is copied from the 
network layer, but the outputs of the context unit are incorporated in the net through adaptive 
weights. NeuroSolutions uses straight backpropagation to adapt all the network weights. In the 
NeuralBuilder, the context unit time constant is pre-selected by the user. One issue in these nets is 
that the weighting over time is kind of inflexible since we can only control the time constant (i.e. the 
exponential decay). Moreover, a small change in t is reflected in a large change in the weighting 
(due to the exponential relationship between time constant and amplitude). In general, we do not 
know how large the memory depth should be, so this makes the choice of t problematic, without a 
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mechanism to adapt it. See time lagged recurrent nets for alternative neural models that have 
adaptive memory depth. 

The Neural Wizard provides four choices for the source of the feedback to the context units (the 
input, the 1st hidden layer, the 2nd hidden layer, or the output). In linear systems the use of the past 
of the input signal creates what is called the moving average (MA) models. They represent well 
signals that have a spectrum with sharp valleys and broad peaks. The use of the past of the output 
creates what is called the autoregressive (AR) models. These models represent well signals that 
have broad valleys and sharp spectral peaks. In the case of nonlinear systems, such as neural 
nets, these two topologies become nonlinear (NMA and NAR respectively). The Jordan net is a 
restricted case of an NAR model, while the configuration with context units fed by the input layer 
are a restricted case of NMA. Elman’s net does not have a counterpart in linear system theory. As 
you probably could gather from this simple discussion, the supported topologies have different 
processing power, but the question of which one performs best for a given problem is left to 
experimentation. 

Hopfield Network 
 

The Hopfield network is a recurrent neural network with no hidden units, where the weights are 
symmetric ( ). The PE is an adder followed by a threshold nonlinearity. The model can be 
extended to continuous units [Hopfield]. The processing elements are updated randomly, one at a 
time, with equal probability (synchronous update is also possible). The condition of symmetric 
weights is fundamental for studying the information capabilities of this network. It turns out that 
when this condition is fulfilled the neurodynamics are stable in the sense of Lyapunov, which 
means that the state of the system approaches an equilibrium point. With this condition Hopfield 
was able to explain to the rest of the world what the neural network is doing when an input is 
presented. The input puts the system in a point in its state space, and then the network dynamics 
(created by the recurrent connections) will necessarily relax the system to the nearest equilibrium 
point (point P1 in the figure below). 

 

 

Relaxation to the nearest fixed point 

 

Now if the equilibrium points were pre-selected (for instance by hardcoding the weights), then the 
system could work as an associative memory. The final state would be the one closest (in state 
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space) to that particular input. We could then classify the input or recall it using content 
addressable properties. In fact, such a system is highly robust to noise, also displaying pattern 
completion properties. Very possibly, biological memory is based on identical principles. The 
structure of the hippocampus is very similar to the wiring of a Hopfield net (outputs of one unit fed 
to all the others). In a Hopfield net if one asks where the memory is, the answer has to be in the set 
of weights. The Hopfield net, therefore, implements a nonlinear associative memory, which is 
known to have some of the features of human memory; (e.g. highly distributed, fault tolerance, 
graceful degradation, and finite capacity). 

Most Hopefield net applications are in optimization, where a mapping of the energy function to the 
cost function of the user’s problem must be established and the weights pre-computed. The 
weights in the Hopfield network can be computed using Hebbian learning, which guarantees a 
stable network. Recurrent backpropagation can also be used to compute the weights, but in this 
case, there is no guarantee that the weights are symmetric (hence the system may be unstable). 
NeuroSolutions can implement the Hopfield net and train it with fixed-point learning or Hebbian 
learning. 

The "brain state in a box" [Anderson] can be considered as a special case of the Hopfield network 
where the state of the system is confined to the unit hypercube, and the system attractors are the 
vertices of the cube. This network has been successfully used for categorization of the inputs. 

Principal Component Analysis Networks 
 

The fundamental problem in pattern recognition is to define data features that are important for the 
classification (feature extraction). One wishes to transform our input samples into a new space (the 
feature space) where the information about the samples is retained, but the dimensionality is 
reduced. This will make the classification job much easier. 

Principal component analysis (PCA) also called Karhunen-Loeve transform of Singular Value 
Decomposition (SVD) is such a technique. PCA finds an orthogonal set of directions in the input 
space and provides a way of finding the projections into these directions in an ordered fashion. The 
first principal component is the one that has the largest projection (we can think that the projection 
is the shadow of our data cluster in each direction). The orthogonal directions are called the 
eigenvectors of the correlation matrix of the input vector, and the projections the corresponding 
eigenvalues. 

Since PCA orders the projections, we can reduce the dimensionality by truncating the projections to 
a given order. The reconstruction error is equal to the sum of the projections (eigenvalues) left out. 
The features in the projection space become the eigenvalues. Note that this projection space is 
linear. 

PCA is normally done by analytically solving an eigenvalue problem of the input correlation 
function. However, Sanger and Oja demonstrated (see Unsupervised Learning) that PCA can be 
accomplished by a single layer linear neural network trained with a modified Hebbian learning rule. 

Let us consider the network shown in the figure below. Notice that the network has p inputs (we 
assume that our samples have p components) and m<p linear output PEs. The output is given by 

 

 

 

To train the weights, we will use the following modified Hebbian rule  
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where η is the step size. 

 

 

PCA network 

 

What is interesting in this network is that we are computing the eigenvectors of the correlation 
function of the input without ever computing the correlation function. Sanger showed that this 
learning procedure converges to the correct solution, i.e. the weights of the PCA network approach 
the first m principal components of the input data matrix. The outputs are therefore related to the 
eigenvalues and can be used as input to another neural networks for classification. 

PCA networks can be used for data compression, providing the best m linear features. They can 
also be used for data reduction in conjunction with multilayer perceptron classifiers. In this case, 
however, the separability of the classes is not always guaranteed. If the data clusters are 
sufficiently separated, yes, but if the classes are on top of each other, the PCA will get the largest 
projections, but the separability can be in some of the other projections. Another problem with 
linear PCA networks is outlying data points. Outliers will distort the estimation of the eigenvectors 
and create skewed data projections. Nonlinear networks are better able to handle this case. 

The importance of PCA analysis is that the number of inputs for the MLP classifier can be reduced 
a lot, which positively impacts the number of required training patterns, and the training times of the 
classifier. 

Kohonen Self-Organizing Maps (SOFM) 
 

As was stated previously, one of the most important issues in pattern recognition is feature 
extraction. Since this is such a crucial step, different techniques may provide a better fit to our 
problem. An alternative to the PCA concept is the self-organizing feature map. 

The ideas of SOFM are rooted in competitive learning networks. These nets are one layer nets with 
linear PEs but use a competitive learning rule. In such nets there is one and only one winning PE 
for every input pattern (i.e. the PE whose weights are closest to the input pattern). In competitive 
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nets, only the weights of the winning node get updated. Kohonen proposed a slight modification of 
this principle with tremendous implications. Instead of updating only the winning PE, in SOFM nets 
the neighboring PE weights are also updated with a smaller step size. This means that in the 
learning process (topological) neighborhood relationships are created in which the spatial locations 
correspond to features of the input data. In fact one can show that the data points that are similar in 
input space are mapped to small neighborhoods in Kohonen’s SOFM layer. Our brain has several 
known topographic maps (visual and auditory cortex). 

The SOFM layer can be a one or two dimensional lattice, and the size of the net provides the 
resolution for the lattice. The SOFM algorithm is as follows: 

Initialize the weights with small different random values for symmetry breaking. 

For each input data find the winning PE using a minimum distance rule, i.e. 

 

 

 

For the winning PE, update its weights and those in its neighborhood Λ(n) by 

 

 

 

Note that both the neighborhood and the learning rate are dependent on the iteration, i.e. they are 
adaptive. Kohonen suggests the following Gaussian neighborhood 

 

 

 

where  is the winning PE and |rj-rj0| is the spatial distance from the winning node to the j-th PE. 
The adaptive standard deviation controls the size of the neighborhood through iterations. The 
neighborhood should start as the full output space and decrease to zero (i.e. only the winning PE), 
according to 

 

 

 

where  and  are constants. The step size η(n) should also be made adaptive. In the 
beginning the step size should be large, but decrease progressively to zero, according to  
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where  and  are also problem dependent constants. 

The idea of these adaptive constants is to guarantee, in the early stages of learning, plasticity and 
recruitment of units to form local neighborhoods and, in the later stages of learning, stability and 
fine-tuning of the map. These issues are very difficult to study theoretically, so heuristics have to be 
included in the definition of these values. 

Once the SOFM stabilizes, its output can be fed to an MLP to classify the neighborhoods. Note that 
in so doing we have accomplished two things: first, the input space dimensionality has been 
reduced and second, the neighborhood relation will make the learning of the MLP easier and faster 
because input data is now structured. 

Adaptive Resonance Theory (ART) 
 

Adaptive resonance theory proposes to solve the stability-plasticity dilemma present in competitive 
learning. Grossberg and co-workers [Grossberg, Carpenter] add a new parameter (vigilance 
parameter) that controls the degree of similarity between stored patterns and the current input. 
When the input is sufficiently dissimilar to the stored patterns, a new unit is created in the network 
for the input. There are two ART models, one for binary patterns and one for continuous valued 
patterns. This is a highly sophisticated network that achieves good performance, but the network 
parameters need to be well tuned. It is not supported in NeuroSolutions. 

Fukushima 
 

Fukushima [Fukushima] proposed the Neocognitron, a hierarchical network for image processing 
that achieves rotation, scale, translation and distortion invariance up to a certain degree. The 
principle of a Fukushima network is a pyramid of two layer networks (one, feature extractor and the 
other, position readjusting) with specific connections that create feature detectors at increasing 
space scales. The feature detector layer is a competitive layer with neighborhoods where the input 
features are recognized. It is not supported in NeuroSolutions 

Time Lagged Recurrent Networks 
 

TLRNs with the memory layer confined to the input can also be thought of as input preprocessors. 
But now the problem is representation of the information in time instead of the information among 
the input patterns, as in the PCA network. When we have a signal in time (such as a time series of 
financial data, or a signal coming from a sensor monitoring an industrial process) we do not know a 
priori where, in time, the relevant information is. Processing of the signal can be used here in a 
general sense, and can be substituted for prediction, identification of dynamics, or classification.  

A brute force approach is to use a long time window. But this method does not work in practice 
because it creates very large networks that are difficult or impossible to train (particularly if the data 
is noisy). TLRNs are therefore a very good alternative to this brute force approach. The other class 
of models that have adaptive memory are the recurrent neural networks. However, these nets are 
very difficult to train and require more advanced knowledge of neural network theory. 
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NeuroSolutions is prepared to run these models, but they were not considered for the 
NeuralBuilder.  

The most studied TLRN network is the gamma model. The gamma model is characterized by a 
memory structure that is a cascade of leaky integrators, i.e. an extension of the context unit of the 
Jordan and Elman nets (see figure below). 

 

 

Connectionist memory structures, and the frequency domain location of the pole 

 

The signal at the taps of the gamma memory can be represented by 
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Note that the signal at tap k is a smoothed version of the input, which holds the voltage of a past 
event, creating a memory. When an impulse is presented in the input at time zero, the response of 
the different taps is shown in the on-line documentation for the NeuralBuilder. 

Note that the point in time where the response has a peak is approximately given by k/µ, where µ 
is the feedback parameter. This means that the neural net can control the depth of the memory by 
changing the value of the feedback parameter, instead of changing the number of inputs. The 
parameter µ can be adapted using gradient descent procedures just like the other parameters in 
the neural network. But since this parameter is recursive, a more powerful learning rule needs to be 
applied. NeuroSolutions uses backpropagation through time (BPTT) to do this adaptation (see 
Constraining the Learning Dynamics).  

Memories can be appended to any layer in the network, producing very sophisticated neural 
topologies very useful for time series prediction and system identification and temporal pattern 
recognition (see figure below). 

 

 

Use of gamma kernels in an MLP architecture 

 

Instead of the gamma memory there are other memory structures that recently have been applied 
with some advantages. One of these is the Laguarre memory, based on the Laguarre functions. 
The Laguarre functions are an orthogonal set of functions that are built from a lowpass filter 
followed by a cascade of allpass functions. 

This family of functions constitutes an orthogonal span of the gamma space, so they have the 
same properties as the gamma memories, but they may display faster convergence for some 
problems. The equation for the Laguarre functions is 

 

 

 

Notice that this gives a recursion equation of the form 
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where u(n) is the input signal. 
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Purpose 

This chapter is a collection of hands-on examples. Our purpose is to explain the core concepts of 
NeuroSolutions by showing them to you. You will be guided through the construction of network 
topologies at increasing levels of difficulty. Upon completion, you are expected to be able to 
construct similar topologies by analogy. 

 

Running NeuroSolutions 
 
Windows 3.1, 3.11, NT 

In the Program Manager of Windows, there are two icons within the program group labeled 
NeuroSolutions. The question mark represents the on-line help for the program. This can be 

launched separately or from within NeuroSolutions. The cluster  represents the 
NeuroSolutions program. Double-click on this icon or click the following shortcut  to run 
NeuroSolutions. 
Windows 95 

In the Start Menu of Windows 95, there are two icons within the folder labeled NeuroSolutions. The 
book represents the on-line help for the program. This can be launched separately or from within 
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NeuroSolutions. The icon  represents the NeuroSolutions program. Double-click on this icon to 
begin or click the following shortcut  to run NeuroSolutions. 

 

The NeuroSolutions MainWindow will appear in the center of the display. The Inspector window will 
also appear in the lower right corner of your display; this is where you will configure all 
NeuroSolutions components. 

A good way to get started with NeuroSolutions is to run through the various demos. The demos can 
be accessed by selecting Utilities/Run Demo from the MainMenu bar. This contains a list of demos, 
each of which is similar to one of the breadboards constructed in the following examples. It is 
recommended that you refer to these breadboards for ideas on solving your particular problem. By 
taking the time to work through the following examples, a much better understanding of the 
concepts behind NeuroSolutions will be obtained. 

 

NeuroSolutions after program launch 

Signal Generator Example 
Signal Generator Example 
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Purpose - This example creates a simple system for generating composite waveforms. The 
purpose of this example is to illustrate how components are interconnected, data is injected into the 
network, data is probed within the network and how the simulation is controlled. 

Components Introduced - Axon, MaleConnector, FemaleConnector, FunctionGenerator, 
MegaScope, DataStorage and StaticControl. 

Concepts Introduced - Connecting components, palettes, breadboards, the Inspector, stacking 
components, component selection, access points, probing data, data buffers, data flow and cut & 
paste. 

 

 
STEPS 

Construction Rules 

Stamping Components 

On-line Help 

Connectors 

Selecting and Configuring a Component 

Arranging Icons 

Connecting Components 

The Cursor 

Component Compatibility 

Bringing in the Function Generators 

Stacking Components 

Accessing the Component Hierarchy 

Access Points 

Displaying the Output Waveform 

Opening the Display Window 

Controlling Data Flow 

Configuring the Controller 

Running the Signal Generator Example 

Things to Try with the Signal Generator 

What You have Learned from the Signal Generator Example 

Construction Rules 
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When you run NeuroSolutions, the MainWindow has a blank area called a breadboard where the 
user constructs neural networks. The border of the MainWindow can be populated with 
components, which are organized in groups called Palettes. A palette contains a family of related 
components. Components are selected from a palette and stamped onto the breadboard. The 
Palettes Menu contains a list of all families of components available in NeuroSolutions. When you 
click on a given family, the corresponding palette is opened, and you can dock it onto the 
breadboard border. Select "Axon" from the Palettes Menu. The Axon palette is now on the screen. 

 

 

 

It can be docked by dragging it to the border of the MainWindow and releasing the mouse. You can 
organize the palettes any way you want. 

Stamping Components 
 

Put the cursor over the palette and wait a few seconds. You should see a small window pop up with 
the name of a component in it. This is called a "tool tip" and you can use it to determine which 
component you are selecting from the palette. Slide the cursor over each button on the palette until 

the tool tip shows "Axon"  and click on it. Notice that the cursor becomes a stamp  when 
you place it over the breadboard. If you click again anywhere in the breadboard an Axon 

 will be copied to that location. This operation is called component stamping. You can 
stamp more than one Axon or bring new components to the breadboard in the same way. If you 
stamp a component using the right mouse button, you will remain is stamping mode. To return to 

selection mode, you must select the selection cursor icon  located on the top border of the 
main window. If you stamp a component using the left mouse button, the cursor automatically 
returns to selection mode. 

On-line Help 
 

It should be noted again that complete descriptions of all components are contained within the on-
line help. The easiest way to access the help for a given component is to click on that component 

with the Help cursor . The Help cursor is located on the tool bar. Just click on it and then move 
the mouse over the component you want to get help, clicking on the component’s icon. Move your 
cursor over to the Axon and single-click to bring up the on-line help for the Axon. 

Connectors 
 

Let’s take a closer look at the Axon icon. Notice that there is a double diamond contact point on its 
left  (the FemaleConnector), and a single diamond contact on its right  (the 
MaleConnector). 
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Selecting and Configuring a Component 
 

If you single-click on the Axon’s icon, the Inspector window (see figure below) in the lower right 
corner will show the information pertaining to this component, and the component is itself 
highlighted by a rectangular border. This will also be referred to as selecting a component. If the 
inspector window is not visible, then select View/Inspector from NeuroSolutions Main Menu. Notice 
that the Axon was created with a single neuron, or Processing Element (PE), as one of its default 
parameters. The user can modify the number of neurons by simply typing a number in the Rows or 
Cols edit cell of the Processing Elements area. Normally the number is entered in the Rows edit 
cell since your networks are structured by layers, but you can organize the layers also in a matrix 
form (2D). The total number of elements will be the product of the Rows and Cols entries. The area 
called DataFlow configures the Axon to stop data flow or enable transfer of information to other 
Axons connected to it. Normally both switches are activated. If you disable the data flow by clicking 

off the "On" switch, notice that the Axon Icon changed to a CrackedAxon , meaning 
that the data flow was interrupted at that axon. The switch "Turn ON after RESET" will configure 
the Axon back to its normal dataflow mode after reset commands are given during the simulation. 

 

 

Axon Inspector 

Arranging Icons 
 

Stamp two more Axons on the breadboard such that you have three axons placed as shown in the 
figure below. The two on the left will be inputs and the one on the left will be an output. You can 
move the icons around on the breadboard, once you have stamped them. Just press the mouse 
button and drag the component to the new position. Notice that the cursor changes from the arrow 
to a move cursor . 
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System with two inputs and one output 

Connecting Components 
 

Select the MaleConnector  of one of the input Axons, drag it over the FemaleConnector  of 
the output Axon, and release the mouse button. Notice that three connections have been 
established between the input and output Axons. 

An alternate way to connect components is to select a component, then click with the right mouse 
button on the component to connect to. The three connection lines will be automatically 
established. 

The Cursor 
 

Notice that while you were performing the drag operation, the mouse arrow changed to a move 
cursor , meaning that you can drop the MaleConnector  on any unoccupied portion of the 
breadboard. If you place the cursor over the component, you will see that the cursor becomes a 
crossed circle , meaning that you can not drop the MaleConnector in that place. 

Component Compatibility 
 

Three lines were drawn from the input Axon to corresponding points on the output Axon. This 
means that there is compatibility between the two components. 

Also notice that the output Axon created a new (second) FemaleConnector . It will always do 
this so that a new input can always be brought into the Axon. The signals from multiple inputs are 
accumulated (added together) by the Axon. Also notice that a new MaleConnector  was created 
to replace the one just used. This gives the Axon the ability to feed multiple components. Drag the 
MaleConnector of the second input Axon to the newly created FemaleConnector of the output 
Axon. Notice again that three lines are created from the input Axon to the output Axon. All three 
Axons are now interconnected and should resemble the System with Two Input and One Output 
figure. 

Go to the Axon inspector and change the size of the output element to 3 by typing this value into 
the Rows edit cell. Notice that the lines connecting both input Axons to the output Axon collapsed in 
the MaleConnector (see figure below). This along with an Info panel provides a visual indication 
that there is an incompatibility of dimension between the Axons. Return the number of Processing 
Elements to 1and you will see the connection being reestablished. 
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Attempted connection among Axons of differing dimensions 

Bringing in the Function Generators 
 

Now that the network topology is established, you will connect a function generator to the input 
Axons. Select Palettes/Input from the Palettes menu and dock it on the MainWindow border. Stamp 

the FunctionGenerator icon  onto one of the input Axons. 

 

 

 

Input Family Palette 

Stacking Components 
 

Notice that the cursor turns to the stamp  only over the Axons. This means that the 
FunctionGenerator can not be dropped directly onto the breadboard, but only over accepting 
components. The FunctionGenerator will attach to one of the corners of the Axon. If you select the 
FunctionGenerator, its inspector will be shown. 
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FunctionGenerator inspector 

 

For each PE in the Axon, you can choose the type of signal, along with its frequency, amplitude, 
sampling rate, offset and phase shift. Click on the button showing the sinewave and type 20 in the 
Samples/Cycle edit cell. A sinewave of 20 samples per cycle was just programmed. 

Accessing the Component Hierarchy 
 

At the top of the Inspector you will find several tabs. Each tab represents another page of 
parameters that can be configured for this component. This allows you to change the other 
attributes of the FunctionGenerator. The attributes you are viewing are specific to the class 
FunctionGenerator. By selecting the Stream tab, you will see the attributes that pertain to a class 
called Stream, from which FunctionGenerator was derived. Notice that it is currently configured to 
Accumulate Data on the Network, i.e. it will add the signal from the FunctionGenerator to the 
accumulated input of the Axon. The option Overwrite data will discard the accumulated input and 
replace it with the injected signal. Since the Axon has no other input, this setting is not important for 
this example. Notice also that the generated data can be normalized and that it can also be saved 
to disk. 

Now select the Access tab to view the attributes that configure how the FunctionGenerator 
communicates with the component. In particular this tells you about the data format and the access 
points available for the component the Function Generator is stacked on. 
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Access Property Page of the FunctionGenerator 

Access Points 
 

Now, where is the sine wave that you created going to be injected? The Axon has several access 
points that can be visualized by selecting the input axon and then clicking on the Access tab in the 
inspector (see Access Property Page of the FunctionGenerator figure). Select PreActivity, which 
means that the signal will be injected before the transfer function of the component is applied. You 
may have noticed that the FunctionGenerator icon moved from the right of the input Axon to the 
left. Since Axon’s transfer function is the identity map, it makes no difference whether the signal is 
injected before or after the component is activated. 

Repeat this process of bringing a signal generator to the second Axon, except select a square 
wave of 80 Samples/Cycle. 

Displaying the Output Waveform 
 

Select Palettes/Probes from the main menu, and dock the probes palette. Select the DataStorage 

 from the probes palette and stamp it over the output Axon. Notice that once again the arrow 

will turn to a stamp only over the Axon. Select the MegaScope  from the probes palette and 
stamp it on the DataStorage. These two components work together. The DataStorage is a circular 
buffer that will collect samples of data to be visualized by the other component, the MegaScope. If 
you single-click on the DataStorage component, the inspector will show the DataStorage inspector. 
It should contain the size of the buffer along with how often its contents will be reported to the 
component stacked on top of it (in this case the MegaScope). Verify the Buffer Size is set to 100 
and change the Message Every edit cell to 90. When the system runs, the MegaScope’s window 
will be updated after every 90 samples. 

 

 

Probes Palette 
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Select the DataStorage and check which access point the DataStorage is attached to by clicking on 
the Access tab of the inspector. The Access Menu should be set to Activity, which is the output of 
the element. 

Opening the Display Window 
 

Now double-click on the MegaScope component. The MegaScope inspector is shown and a 
resizable window opens. This window displays the samples captured in the data buffer from the 
access point of the component being probed. Due to the speed of the computer the changing data 
will appear animated. Notice that the MegaScope inspector resembles the controls of a 
multichannel oscilloscope. You can control the vertical scale and the horizontal and vertical offsets 
of each channel independently or in tandem. If you click on the MegascopeSweep tab, you can 
control the sweep rate of the traces (in samples per division). If you click on the Display tab you can 
change the trace color of each channel, and also control the display background (grid, lines, or 
none). The window is sized by dragging the lower right corner. 

Controlling Data Flow 
 

The final component that you need is the StaticControl . Every simulation will require one 
and only one StaticControl component. This component exists on the Controls palette. Stamp the 
StaticControl icon, the icon with one large yellow dial, from the palette to the breadboard. Notice 
that it can exist anywhere on the breadboard (once the icon reaches the breadboard, the arrow 
turns to a stamp). Single-clicking on the StaticControl icon brings up the Activation inspector, and 
double-clicking brings up a StaticControl panel. 

Configuring the Controller 
 

The Controller controls the firing of data through the components on the breadboard, from left to 
right. Using a square wave of 80 samples per period, one possible way to present this data to the 
network is to consider each sample as an exemplar. To present at least an entire period, set the 
Exemplars/Epoch to 100. Entering 500 in the Epochs/Experiment edit cell will repeatedly present 
the 100 exemplars to the network 500 times. 
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ActivationControl inspector 

 

The StaticControl panel has 5 buttons. The 1st button toggles between Run and Stop and is used to 
initiate or stop the simulation. The Reset button resets the experiment by zeroing all counters, the 
activations, and reloading the weights with random values. The Jog button just jogs the 
component's weights. The Exemplar button allows you to single step the simulations. Whereas, the 
Epoch button presents an entire epoch upon each click. Notice also that there are counters under 
the exemplar and epoch buttons. 

Running the Signal Generator Example 
 

Click on the Run Button of the StaticControl panel. Notice the MegaScope is displaying the addition 
of the square and sine waves. The Epochs counter in the StaticControl panel will show you the 
number of epochs that have elapsed. You have just run your first simulation—a rather simplistic 
simulation but be patient. You can go back to the FunctionGenerator and change the waveforms 
and view the effect on the MegaScope. Every time you want to make a modification in the system, 
simply press Stop, modify the component and press Run again. An error will sound if you try to 
make a modification while the simulation is running. You should get familiar with the controls of the 
MegaScope. It is recommended that you adjust the controls and view the affect of the modifications 
in the MegaScope window. (see the figure below for the completed network configuration or load 
the file EX1.NSB) 
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Signal generator simulation 

Things to Try with the Signal Generator 
 

Disconnecting Components 

Take one of the input Axon’s MaleConnectors and remove it from the output Axon by dropping it 
over the middle of the output Axon. Notice that the connection between the Axon components 
disappeared, i.e. they were disconnected. An alternate way to disconnect components is to select 

the MaleConnector and then click on the scissors icon  on the tool bar. The scissors will 
always remove the selected component from the breadboard. Reestablish the connection by 
dragging the MaleConnector of the input Axon to the output FemaleConnector. 
Cables 

If you drop a MaleConnector directly on the breadboard, lines will be established from the Axon to 
that point. You can create cables linking the Axons in this way. Every time you drag the 
MaleConnector while holding the shift key, a new section of the cable will be created. This is very 
handy when building recurrent neural networks. You can modify the cable path by first selecting the 
MaleConnector of the cable. This will display all of the points used to define the cable. Dragging 
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intermediate points of the cable will redefine the cable’s path. Note that all components included in 
the Axon palette obey these simple rules of interconnection. 

 

 

Forming a connection using cables 

 

Remove one of the Axons by clicking on it’s icon (this selects the component) and clicking on the 
scissors icon. Instead of stamping both Axons and both FunctionGenerators from the palettes, you 
can construct just one Axon/FunctionGenerator combination and then copy it to get a second set. 

Select the Axon to be copied, click on the copy button  on the toolbar, click on an empty spot 

on the breadboard, and click on the paste button . A new copy is formed on the breadboard. 
Notice that the FunctionGenerator was also copied. Copying a component will also copy all 
components that are stacked on top of it. More important, you see that the parameter settings 
correspond to the ones you had selected for the original Axon and not the default values. 

There is another way to create a composite signal generator. Throw away one of the input Axons 
(by selecting it and cutting), bring from the Input palette another FunctionGenerator and drop it on 
top of the one residing on the Axon. Using the FunctionGenerator inspector, you will see that under 
Access the Active Access Point is set to StackedAccess, i.e. both FunctionGenerators are sharing 
the same access point. This circuit will perform as the one previously constructed. 

Try saving the breadboard by selecting File/Save from the NeuroSolutions MainMenu, or clicking 

on the disk icon . A Save panel will then allow you to give a name to the breadboard, and will 
save it to a file. The breadboard can now be re-opened by selecting File/Open from the MainMenu, 
or simply clicking on the open icon from the tool bar. The breadboard is ready to run; press run on 
the StaticControl window. 

What You have Learned from the Signal Generator Example 
 

You have learned the basic rules for connecting and disconnecting components of the Axon class. 
You have also learned how to modify the dimension of Axons (i.e., their number of PEs) and 
hopefully you were able to appreciate the inspector, since it encapsulates all information regarding 
the selected component on the breadboard. 

You were able to inject data into the network by means of FunctionGenerators attached to Axon 
access points. You were also able to view the output of the system by attaching a 
MegaScope/DataStorage to the output Axon. You learned that some components have several 
access points for both injecting and retrieving data. Finally, you learned how to use the 
StaticControl component to set up the parameters of the experiment. It is recommended that you 
refer to the Concepts chapter if any portion of this example was unclear. 
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Combination of Data Sources Example 
Combination of Data Sources Example 

 

Purpose - Combination of information is fundamental in neurocomputing. By feeding data into a 
series of weights, NeuroSolutions implements virtually all models used in neurocomputing. 
NeuroSolutions combines (linearly or nonlinearly) independent data sources or several delayed 
versions of the same source. This example demonstrates the construction of such topologies. 

Components Introduced - ThresholdAxon, FullSynapse, TanhAxon, MatrixEditor, MatrixViewer, 
File. 

Concepts Introduced - Nonlinear elements, McCulloch-Pitts neuron, weight inspection and 
manipulation, probing data, file input. 

 

 
STEPS 

Constructing a McCulloch-Pitts Processing Element 

Preparing Files for Input into NeuroSolutions 

Things to Try with the Combination of Data Sources Example 

What You have Learned from the Combination of Data Sources Example 

Constructing a McCulloch-Pitts Processing Element 
 

Select File/New from the Main Menu. Go to the Axon palette and stamp an Axon and a 
ThresholdAxon to the breadboard. Drop the ThresholdAxon to the right of the Axon. The 
ThresholdAxon component corresponds to a nonlinear element that clips the values of its input at 
+/- 1. This element creates an output that is a logic value as used in digital computers (-1 is 
normally the zero voltage). 

 

 

Synapse Palette 

 

From the Synapse palette, select and stamp the FullSynapse (the one with lines connecting all the 
points) to the breadboard between the two other components (see figure below). The FullSynapse 

implements full connectivity between two axons. The FullSynapse  provides the 
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scalar values (combination weights) that multiply each input. Select the Axon and enter 2 in the 
Processing Element form cell of the inspector. This creates two processing elements in the input 
layer. Connect the Axon to the FullSynapse by dragging the MaleConnector of the Axon to the 
FemaleConnector of the FullSynapse. Then connect the MaleConnector of the FullSynapse to the 
FemaleConnector of the ThresholdAxon. This structure (FullSynapse followed by the 
ThresholdAxon) implements a McCulloch-Pitts processing element (neuron) with two inputs. Go to 
the Soma property page of the inspector to verify that the FullSynapse has two weights. 

 

 

Implementation of a McCulloch-Pitts neuron 

 

Go to the Probes palette, select and stamp a MatrixEditor  to the FullSynapse, and place it at 
the WeightsAccess point. Double-click on the MatrixEditor icon and a row vector with two values 
will appear. This MatrixEditor window allows us to observe, and change the network weights. For 
this example, enter 1 in each form cell of the window. Now select the FullSynapse and display it’s 
inspector.  Under the Soma tab, click on the Fix switch. This will keep the weight values unchanged 
during the full simulation, even when the Randomize button on the StaticControl is pressed. You 
have to do a similar thing to the bias (i.e., free parameter, weight) of the ThresholdAxon. Place the 
MatrixEditor over this component, select the Weights Access in the inspector, and enter the value -
1.2 in the MatrixEditor window. Also set the Fix button of the ThresholdAxon in the corresponding 
inspector. Remove the MatrixEditor from the network. What you have done can be translated as 
the following: the data input to the Axon will be multiplied by 1, added in the ThresholdAxon, and 
internally compared with the threshold. If the bias (weight) of the ThresholdAxon is set at -1.2, the 
threshold will be 1.2. If the input to the ThresholdAxon is larger than this value, the output will be 1. 
If smaller, the output will be -1. 

Preparing Files for Input into NeuroSolutions 
 

The last thing to do in this example is to prepare the input files that will contain the input patterns. 
For this simple case, you will use the ASCII column format. Using the Windows NotePad Editor 

 (click here to run ), create a file with the format shown in the figure below. The four lines 
will have the numbers specifying the coordinates of the input points (two per line). 
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An ASCII input file 

 

When you store an ASCII file for NeuroSolutions, name it with the extension ".ASC". Save the file 
in your home directory and call it "XOR_IN.ASC". Next establish the link between NeuroSolutions 

and these files. From the Input palette, select and stamp a File component  to the input Axon, 
and select it to show the corresponding inspector. Click on the Add button and an Add panel will 
appear on the screen. Find the "XOR_IN.ASC" file using the browser and double-click on the file 
name. This name will be copied to the inspector. Click the Translate button to convert the ASCII 
characters to a data stream. The inspector will provide statistics regarding the length of the file (4 
exemplars) and the type of data under the Stream tab. Now from the Access level, select the 
access point to be Pre-Activity, since you want this file to be the input to the network. 

In order to run the input data through the McCulloch-Pitts processing element you need to select 
and stamp a StaticControl component to the breadboard. Select the StaticControl to show its 
inspector and enter 4 in the exemplar/epoch cell. This is done because the XOR problem has four 
exemplars. Notice that each exemplar feeds two channels. Before you simulate this network, think 
about how you want to visualize the results. To view the input and the output values use the 

MatrixViewer . 

From the Probes palette, stamp the MatrixViewer on the input Axon. Double click on the icon to 
open the corresponding window. In the inspector set the Stacked Access, such that you can 
observe the data that is input to the network. Stamp another copy of the MatrixViewer to the 
ThresholdAxon, double click to open the window, and set the access point to Activity, i.e. the output 
of the network. 
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FileInput inspector 

 

Now you are ready to run the example. In the StaticControl window, click on the Exemplar button. 
This will bring in the data one exemplar at a time. Observe the MatrixViewer windows. You should 
see them change for every click on the Exemplar button. The relation should implement an AND 
function, i.e. the output is one only when both inputs are one. (see the Implementation of a 
McCulloch-Pitts Neuron figure for network configuration or load file EX2_AND.NSB) 

Things to Try with the Combination of Data Sources Example 
 

By changing the threshold of the ThresholdAxon, the OR function can be implemented. Set the bias 
(weight) at -0.8, and verify that in fact this is true. Now with an OR function and an AND function, 
you can combine them and implement any function of two variables, as is well known in logic 
design. It is a good exercise to create a circuit that will implement the XOR function. You will need 
three ThresholdAxons. The first will implement a logic function that implements the statement ‘the 
response is one only when the first input is one and the second input is zero’. In the OR function it 
is just necessary to change the weight of the second input to -1. The second implements the 
statement ‘the response is one only when the second variable is one and the first is zero’. The XOR 
can be constructed by the OR of these two outputs. Notice that there are no adaptive weights in 
these networks. One configuration for this network can be seen by loading file EX2_XOR.NSB. 

Instead of using the MatrixViewers, the BarChart  can also be used. The BarChart displays 
data amplitude as the length of a bar, so it is a very appealing qualitative display of information. If 
you click on the BarChart component, in the inspector you will find that you can control how often 
the data is displayed. This is a very important feature to save time during the simulations, since the 
display of information steals time from the simulations. Most of the time you want to observe the 
information once per epoch, so the DisplayEvery form field should contain a number equal to the 
number of exemplars per epoch plus one (to visualize the next pattern of the next epoch). 

A similar system can be constructed substituting the ThresholdAxon by the TanhAxon. The 
advantage of the TanhAxon as you will see in the next example is that the nonlinearity is 
differentiable, so one can adapt the weights. The same construction rules apply to the linear 
combination of inputs, i.e. when the output processing element is the Axon or the BiasAxon. 
However, in these cases the system will be linear and provide only a weighted sum of inputs. 
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What You have Learned from the Combination of Data Sources 
Example 

 

You have learned how to construct nonlinear and linear weighting of input data. This is a 
fundamental piece of neurocomputing. You have also learned how to visualize and manipulate 
network parameters with the MatrixEditor. You have linked for the first time NeuroSolutions with the 
computer file system by means of the File component. 

The Perceptron and Multilayer Perceptron 
Perceptron and Multilayer Perceptron Example 

 

Purpose - In this example you will construct your first adaptive network—the perceptron. You will 
repeat the AND function, but now the network will learn how to select the weights and the bias of 
the components by itself. This will be accomplished using backpropagation, one of the most useful 
learning rules. Later you will construct a network to learn the XOR problem.  

Components Introduced - SigmoidAxon, L2Criterion, BackTanhAxon, BackSigmoidAxon, 
BackFullSynapse, BackAxon, BackStaticControl, Momentum, BackCriteriaControl, Quickprop. 

Concepts Introduced - Cost function (mean square error), backpropagation of error, dual network 
(backprop plane), gradient search (weight updating), automatic creation of the backprop plane, 
learning paradigms, divergence, hidden layers, broadcasting of parameter changes. 

 

 
STEPS 

Perceptron Topology 

Constructing the Learning Dynamics of a Perceptron 

Alternate Procedure for Constructing the Learning Dynamics of a Perceptron 

Selecting the Learning Paradigm 

Running the Perceptron 

MLP Construction 

Running the MLP 

Things to Try with the Perceptron and Multilayer Perceptron Example 

What You have Learned from the Perceptron and Multilayer Perceptron Example 

Perceptron Topology 
 

The perceptron is one of the most famous neural network topologies (see Perceptron). Its major 
difference with respect to the McCulloch-Pitts model seen in the previous example is the use of 
smooth nonlinearities and adaptive weights. So this is the first adaptive system that you have 
encountered. Here you will construct the perceptron using the SigmoidAxon. 
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With a new breadboard, stamp from the Axon Palette one Axon for the input, a FullSynapse, and 

the SigmoidAxon , which implements a smooth nonlinearity also called the logistic 
map. Interconnect all the elements as before. Select the number of processing elements in the 
Axon as two. 

 

 

ErrorCriteria Palette 

 

Select Palette/ErrorCriteria from the Main Menu. Go to the ErrorCriteria palette and choose the 
L2Criterion. This cost function implements the mean square error—the most widely used error 

metric. Now place the L2Criterion  to the right of the SigmoidAxon, then make the 
connection between them. The L2Criterion will compare the desired response with the network 
input, compute the error power and give it to other components that handle error backpropagation. 

From the Probes palette, select and stamp a MatrixViewer on the L2Criterion and set the access 
point to Average Cost. Double-clicking on the MatrixViewer will open up a window. Since you are 
probing the L2Criterion at its average cost access point, this window will display the learning curve, 
i.e. how the mean square error evolves during learning. The MatrixEditor probe could also be used, 
but it would slow the simulations since it allows editing at every epoch. 

 

 

The perceptron with the L2criterion attached 

Constructing the Learning Dynamics of a Perceptron 
 

There are two basic ways to create the learning dynamics. Start out by docking the Backprop 
palette. Each of these components is a dual of a component on the Axon and Synapse palettes. 
The reason for this can be found in the theory of learning dynamics (see Backprop Family). When 
backpropagation trains a neural network, the error can be thought of as being injected at the output 
of the network, and propagated through a dual network of the original topology. The dual topology 
has the same weights but switches splitting nodes with summing junctions. 
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Backprop palette 

 

A closer look at the Backprop palette shows that there are two icons with bell shaped curves. One 
is the BackTanhAxon that corresponds to the hyperbolic tangent nonlinearity, and the other is the 
BackSigmoidAxon corresponding to the logistic function. All Backprop components will be stacked 
on top of their activation duals. Bring in the BackAxon, the BackSigmoidAxon, and repeat the 
process for the BackFullSynapse. Notice that lines are automatically drawn between the BackAxon 
and the BackFullSynapse. By adding the BackCriteriaControl, you have created a network capable 
of learning. The error can now flow from the output to every component in the network, allowing the 
program to compute local error gradients. 

 

 

Addition of the backprop plane to propagate the error 

 

There are several ways that the activation and error can be combined to compute the weight 
updates. Therefore, you must specify what type of gradient search you want by selecting a 

component from the GradientSearch palette. There is the Step  (straight LMS), the 

Momentum  (LMS with momentum, the most widely used in neural computing), the 

Quickprop  (Fahlman’s quick prop) and the DeltaBarDelta  (adaptive step sizes). 

You have to place one of these gradient procedures on every activity component that contains 
adaptive weights. 
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Momentum inspector 

 

In the perceptron example, the only elements that have adaptive weights are the FullSynapse and 
the SigmoidAxon (a bias term), so you need to drag the Momentum to these two components. 
From the Momentum inspector, enter a momentum of 0.9 and set the step size to 1. 

Alternate Procedure for Constructing the Learning Dynamics of a 
Perceptron 

 

Before moving on, consider a second alternative to the construction of backprop plane or of 
learning dynamics. Since there is a tight relationship between the original topology and the 
backpropagation topology used for learning, the learning network is unequivocally defined by the 
original topology (there is a duality between the two). Therefore, NeuroSolutions can 
AUTOMATICALLY construct the learning network. This facility is included in the BackStaticControl 
component. 

From the Controls palette, you will recognize the BackStaticControl as the red dial component. 
After stamping a StaticControl on the breadboard, select the BackStaticControl from the palette and 
stamp it over the StaticControl. 

At the bottom of the BackStaticControl inspector, you can find the Backpropagation Plane box. 
There are two buttons—one that adds the backprop plane and one that removes the backprop 
plane. You also have the ability to select on the scroll panel the class of gradient search that you 
want using the pull down menu. Verify that this is set to Momentum. Now press the Remove button 
and observe that the backprop plane that you constructed disappears from the breadboard. 

By pressing the Add button, the backprop plane is automatically constructed for us. Since the 
original topology had weights in the FullSynapse and SigmoidAxon, two new GradientSearches 
were created. Since they are new components, you still need to set the Step Size and the 
Momentum values in the corresponding inspector. This facility of NeuroSolutions is very powerful. 
By decoupling the learning dynamics from the original topology, several important goals are 
simultaneously achieved. First, the learning becomes extremely fast because you are giving each 
element the ability to learn (see Learning Dynamics). This leads to very efficient and compact code. 
Second, the weights can be easily frozen for testing by freeing the learning plane. This speeds up 
the simulations tremendously once the network has learned. 
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BackStaticControl inspector 

Selecting the Learning Paradigm 
 

There is still one aspect that needs to be selected before the network is able to learn a task. The 
learning paradigm defines how the data is fired through the network, and when learning takes 
place. These aspects are controlled by the network controllers; the StaticControl and the 
BackStaticControl work in tandem to propagate the data back and forth through the network. Note 

that NeuroSolutions has two sets of controllers, one with two dials  and another with three 

dials . The two dial controllers are static, while the three dial controllers are dynamic. 
Here you will be using the two-dial controller also called the BackStaticControl. 

The activation is computed in the forward pass and the error is computed in the backward pass. 
Then the Momentum updates the weights based on the instantaneous error gradient. For this 
problem, the number of Exemplars/Update is set to 1, meaning that weights are updated after the 
presentation of each pattern.  

Finally you have to set the Exemplars/Epoch at 4 (since you have four patterns in the training set), 
and enter 500 in the Epoch/Experiment cell (i.e. training will stop after 500 passes over the training 
set). 

If you were to select the dynamic controller (3 dial) the System Dynamics could be set to Static, 
Trajectory or Fixed-Point. Using static will mimic the static controller, while the other two will 
backpropagate the errors over time (see Constraining the Learning Dynamics). In other words, the 
weights are updated based on gradient information obtained over several samples for each 
exemplar. As before, the activations are computed in the forward path until the Samples/Exemplar 
is reached. Errors are then computed by driving the system backward for the number of samples 
entered as the Samples/Exemplar for the BackpropControl. In this way, the gradient is computed 
over time and the weights are updated based on the composite gradient. Since the network in this 
example is feedforward, this would be equivalent to batch learning with LMS. Notice that the 
gradient computed by this method is the average gradient, which has some benefit when the input 
data is noisy. 

Now you are ready to deal with the input and desired responses. Since you want to learn the AND 
function of two variables, the file created in the previous example can be used as input. Now create 
a file containing the desired response for the network. The figure below shows the desired 
response file. 
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An ASCII desired response file 

 

Note that the inputs and desired data must be aligned in order for the network to learn the desired 
task. You have to stamp a File component on the input Axon (Pre-Activity Access point), and 
another File component on the L2Criterion for the desired response (Desired Access point). 

 

 

Construction of the Perceptron Example 

Running the Perceptron 
 

In order to analyze the performance of the network, select and stamp a MegaScope/DataStorage 
over the MatrixViewer that has access to the average cost. Configure the buffer size to 100 and 
report the error every sample. This will show the learning curve. Now you are ready to start the 
simulation. Click on the run button of the StaticControl and the simulation will start. Note that the 
error starts large, but then decreases steadily to a very small value (<0.01) meaning that the 
network learned the task. 

It is interesting to verify the weights found after learning the AND task. Select and stamp a 
MatrixViewer on the FullSynapse, and select the weight Access. You will see that both weights are 
large and positive, and the bias of the SigmoidAxon is large and negative, just like you expect after 
running the previous example. (see Construction of the Perceptron Example figure for network 
configuration or load the file EX3_AND.NSB) 
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MLP Construction 
 

The perceptron is able to find arbitrary linear discriminant functions in pattern space. However, 
there are a lot of important problems that require more sophisticated discriminant functions. The 
XOR is well known in neural network circles as an example of a problem that requires a nonlinear 
discriminant function. Therefore, a network with at least one hidden layer is required to solve the 
XOR problem. Here you will construct a one-hidden-layer network, an example of a multilayer 
perceptron (MLP). The inputs will be the same as the last example and the desired response will be 
based on the table below. 

 

Definition of the XOR problem 

 

Start by using the perceptron breadboard. You will be stamping on another FullSynapse, and 
another SigmoidAxon before the L2Criterion (see figure below). You will have to break the 
connection between the SigmoidAxon and the L2Criterion. (by dragging the connected male 
connector of the SigmoidAxon over the center of the L2Criterion and dropping it), and rearrange the 
components to make room for a hidden layer. Connect the components as shown in the figure 
below. Create the new backpropagation plane by pressing the Add button in the BackpropControl 
inspector. Notice that there are Momentums created for the SigmoidAxons and FullSynapses. 

 

 

 

Construction of the MLP Example 

 

Now you need to decide on the size of the layers and a few other parameters. Assign two 
Processing Elements to the SigmoidAxon representing the hidden layer. Now you need to select 
the learning rates. Notice that there are several components that have learning parameters and you 
would like to be able to set them all at once. You can do this easily by broadcasting the changes of 
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one component to similar components. Select one of the Momentums, and while pressing the shift 
key click on the other Momentums. They will be all selected. Use a Step Size of 1 and a 
Momentum of 0.9. Verify that these parameters were broadcast to the other Momentums by 
clicking on each component and observing its corresponding inspector. You will keep the learning 
in batch mode. 

The last thing to do in this example is to prepare the "desired" file, which will contain the patterns 
for the desired signal according to the table above. You have to create a file called 
XOR_DES.ASC, as shown in the "out" column of the table above and link it to the File placed over 
the L2Criterion. The first step is to remove the previous file, and add the new one, using the same 
procedure as explained in the Combination of Data Sources example. Before running the example, 
you should determine what it is that you want to probe. As usual, you should monitor the output 
mean square error just to make sure that the network is converging. Stamp a MatrixViewer on the 
L2Criterion. You should also bring a MegaScope/DataStorage to the input axon and stamp it on the 
Activity point. This way you can verify that the data is firing in the appropriate order. Configure the 
DataStorage to Message Every 10 samples. 

Running the MLP 
 

Double-click on the MegaScope. You will see that you have two channels, since the input has two 
channels. You may want to move the Channel 1 signal so that it doesn’t overlap the Channel 2 
signal. This can be accomplished by using the Vertical offset slider or the Autoset Channels button. 
Open the StaticControl panel. If you click on the Exemplar button several times, you should see two 
waveforms being displayed—one that looks like a triangular wave and the other more like a square 
wave (you may need to adjust the Vertical Scale and Samples/division to match the display shown 
in the figure below). By looking at the XOR table, you can interpret the alternating 0’s and 1’s in 
each column as being square waves of different frequencies. You may want to adjust the settings 
of the MegaScope to magnify the waveforms. Verify that the input is being correctly read. You can 
now move the MegaScope/DataStorage to the output Axon to observe the output of the network 
through the learning process. Run the network and observe that in the beginning the MegaScope at 
the output will display a wave that is irregular, but that it will converge to a periodic square wave. At 
the same time, the error will decrease to almost zero. The network will most often learn the XOR 
problem in less than 150 iterations (depending on the initial conditions). The network may have to 
be jogged several times if it appears to have settled in a local minima. An example of a network 
solution for this problem using an MLP can be seen by loading file EX3_XORS.NSB. 
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Training a MLP to learn the XOR problem 

Things to Try with the Perceptron and Multilayer Perceptron Example 
 

Move the MegaScope/DataStorage to the left FullSynapse and select the Weight access point, 
such that you can track the weights through learning. Now randomize the weights and run the 
network again. Observe that the weight tracks are constant in the beginning, but that there is a 
quick inflection and both weight tracks go in opposite directions. This is the most general behavior 
of weights for networks that learn this problem, but other solutions are possible depending upon the 
initial conditions. 
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Tracking the values of the weights during training 

 

If one wants to smooth out the learning curve, you can use batch learning. Batch learning adapts 
the weights after the presentation and calculation of the gradients for the full training set (four 
patterns). You can implement batch learning by going to the BackStaticControl Inspector and 
selecting the Batch radio button. Reset the network and run it again. You will see that now the 
learning curve is very smooth, which shows the steady decrease of the error through learning. 

You can also see the effect of different gradient update rules on the learning speed. Choose 
Quickprop and repeat the experiment. Choose the Step and repeat the experiment. The idea is to 
compare the speed of adaptation of each rule. 

What You have Learned from the Perceptron and Multilayer 
Perceptron Example 

 

You were able to create a system that was able to adapt its weights to approximate a desired 
signal. To do this, it had to be able to determine the error between the output and the desired 
signal. By attaching an L2Criterion to the output and attaching a desired signal to the L2Criterion, 
the system had the error criteria it needed. This error had to be backpropagated through the 
network to determine error gradients. This gradient was computed and the weights were updated 
by attaching a Momentum to the FullSynapse. After running the system, you observed that it was 
able to learn the AND table with no difficulty. 

You were able to create the backprop plane automatically using the BackStaticControl. This can 
save you the several steps required to stamp each of the backprop components individually. You 
also learned a little more about the probing capabilities of NeuroSolutions. The MatrixViewer is 
similar to the MatrixEditor except that it runs faster because it does not give you the ability to 
modify the data. 

You have also constructed an MLP with the ability to solve a problem that is not linearly separable. 
You did this by using nonlinear processing elements (SigmoidAxons) for the hidden and output 
layers of the network. You were able to give the network the problem (the input and the 
corresponding desired output) by creating ASCII text files and linking them in to the system (by 
means of the File component). 
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You also learned how to broadcast the parameter changes of one component to other components 
on the breadboard by choosing the appropriate scope of the broadcast; this feature can be a real 
time-saver. 

Associator Example 
Associator Example 

 

Purpose - The purpose of this example is to provide an easy introduction to the use of hetero-
association, and to show the speed of NeuroSolutions. 

Components Introduced - ArbitrarySynapse, ImageViewer, Noise. 

Concepts Introduced - Hetero-association in distributed systems, the use of images in 
simulations, testing systems for immunity to noise. 

 

 
STEPS 

Building the Associator 

Things to Try with the Associator 

What you have Learned from the Associator Example 

Building the Associator 
 

In this example you will be building a simple linear associative memory, trained with gradient 
descent learning. The task is to associate the images of three people (48x48) with their 
corresponding initials (30x7). The images are provided with the package. This example also shows 
the efficiency of the NeuroSolutions code, as you will see the training happen in front of your eyes. 

Linear associative memories are probably one of the oldest forms of artificial neural networks. Their 
advantage is that they can be understood mathematically (since they are linear systems), they are 
easy and fast to train, but they are not immune to noise. Please see Associative Memories for a 
review of linear associative memories. Normally, linear associative memories are either trained with 
Hebbian learning or computed using the outer-product. But more recently, it has been shown that 
they can also be trained with gradient descent learning when the desired signal is known. This 
method has an advantage in that the training approaches the minimum norm solution. 
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Construction of a linear associative memory 

 

From the Axon palette stamp an Axon component and from the synapse palette an 

ArbitrarySynapse , and from the error palette an L2Criterion. For training you will be 
using Bitmap images as input. Within the NeuroSolutions directory, there is a file called 
JCSPICT.BMP. This file contains three 48x48 images, so the input Axon must be configured with 
48 Rows and 48 Cols, which is 2,304 Processing Elements (PEs). The desired output is also a 
Bitmap file (JCSTEXT.BMP) containing three 30x7 images of the respective initials. 

 

 

ArbitrarySynapse inspector 

 

Therefore, the L2Criterion must be configured with 7 Rows and 30 Cols, which is 210 PEs. Notice 
that a FullSynapse would have 483,840 weights—this would be an overkill to associate three image 
pairs. This is the reason you elected to solve this problem with the ArbitrarySynapse. 

When created, this element has no connections established, so the user must specify which 
connections need to be made. Going to the ArbitrarySynapse inspector, notice there are two 
columns of numbered radio buttons. They correspond to the input and output PEs of the axons. For 
your case, since the input Axon was created with 2,304 processing elements, there are that many 
cells on the left. On the right you have 210 PEs. The user has the ability to arbitrarily connect the 
elements. The procedure is very simple. In manual mode (the default), the user simply clicks the 
radio buttons with the mouse and the elements will be highlighted. By clicking the Connect button, 
connections will be established. Alternatively, the user can select Random Connections, Near 
Connections or Sparse Connections in the Autoset Connections box and specify the number of 
connections to be automatically made. This feature is important for large networks, like the one you 
are simulating now. You can start the connections from the left or the right. You would like to 
connect from the left. Select connect from the left (click on the "->" radio button), enter 2 
connections, then click the Random radio button (this will take a couple of minutes to process). You 
may not see a lot of connections but remember that you are just looking at a small window. Moving 
one of the scrollers will show only how many connections are specified in the two windows, not the 
total. If you want to know the total number of connections, just click on the Soma tab and verify the 
number of weights (it should be close to 4600, but probably a few less due to duplications made in 
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the randomization process). As you will see, this is more than enough to associate the pairs of 
patterns given. 

Now go to the Input palette, stamp a File component onto the input Axon, and attach it to the Pre-
Activity Access point. In the Combination of Data Sources example, you used the File component 
to input ASCII data into your network. This component also accepts Bitmap image data (8 bits, 
without alpha channels). From the File list box of the File inspector, the user can manipulate files or 
translators. A translator is a program that reads data from one of the accepted formats to a stream, 
which is the format that NeuroSolutions processes. Presently there are translators for ASCII(.ASC), 
ASCII- Column Format, Binary and Bitmap (.BMP) files. Data can be read from several files, and 
the data types can be mixed. 

 

 

FileInput inspector 

 

To open the image data file, click on the Add button and select JCSPICT.BMP from the Open 
panel. The name will be copied to the FileInput inspector. In order to translate it to a stream, click 
the Translate button. Notice that the inspector tells you the number of samples in the file in the 
Stream level. You also have the ability to Customize the file. Normalize the data (between the 
values of Lower and Upper), or to extract a Segment (using Offset and Duration). By not 
normalizing, the translator has converted the pixels of the three images into a stream of 6912 
floating point values ranging from 0 (black) to 1 (white). Now perform the same procedure using the 
file JCSTEXT.BMP and attaching it to the Desired Access point of the L2Criterion. 

To complete the example, you need to stamp a MatrixViewer on the Average Cost Access of the 

L2Criterion to create an MSE probe. Also needed are two ImageViewers , one to the input 
Axon’s Activity Access point and the other to the Pre-Activity Access point of the L2Criterion. From 
the ImageViewer inspector, set to Display Every sample. You would also like the normalization to 
be Automatic because it will guarantee the correct gray (or color) scale. You will also need to set 
the parameters for the second ImageViewer in the same way. Double click on these ImageViewers 
to open their windows. 
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ImageViewer inspector 

 

You are now ready to stamp the StaticControl and the BackStaticControl. Use the StaticControl 
Inspector to enter 3 for the Exemplars/Epoch (the number of image pairs), and set the 
Epochs/Experiment to 30. From the BackStaticControl inspector, set the Exemplars/Update to 3 
(batch learning), then Allocate the backpropagation plane. Do not forget to select a Step Size (0.08) 
and a Momentum (0.5) for the Momentum. You are ready to run the experiment. 

 

 

Viewing the association made between two images 

 

Open the StaticControl window and press the run button. You should see three images presented 
in succession—each will correspond to an image with the person’s first name. In the beginning the 
names are unrecognizable, but after 30 iterations, you will be able to recognize the names. Notice 
that the mean square error decreases very fast. You can stop the simulation and single step 
through the exemplars to see the hetero-associations. It is remarkable how fast the network trains 
4588 weights. This gives you a feel for the amount of time this environment takes to solve large 
problems. (see Construction of a Linear Associative Memory figure for network configuration or 
load file EX4.NSB) 
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Things to Try with the Associator 
 

One obvious thing to try is to go back to the ArbitrarySynapse and test other possible wiring 
combinations to see when the wiring density fails. Another interesting aspect is the weak noise 
immunity of this type of memory. Since it is a linear system, a small amount of noise may disturb 

the associations. You can verify this by stamping a Noise component  from the Input palette 
on the File attached to the input Axon. 

 

 

Noise inspector 

 

From the Noise inspector you can control the Variance and Mean of the noise source, and you can 
also have the option to add the noise source to the existing signal (accumulate), or overwrite it (i.e. 
disconnect the other signal source and replace it with just noise). Select Accumulate Data on 
Network from the Stream tab. 

Choose a small Variance of 0.3 (make sure that it is set to Change All Channels) and set the Step 
Size to 0 such that the weights will remain fixed. By single-stepping through the iterations, you will 
see that the images of the faces are still somewhat recognizable. You will also see that the system 
is still able to make the associations. The reason is that 3500 weights provide enough redundancy 
to overcome the noise. Now try decreasing the number of weights, but not so much that the wiring 
density fails. Re-train the network and re-test with the noise. Was the system more susceptible to 
the noise? Why? 

What you have Learned from the Associator Example 
 

You were able to build a system that could associate a set of large images with a set of much 
smaller images. You did this by implementing a simple linear associative memory and trained it 
with gradient descent learning. Since the system only required a fraction of the weights of a 
FullSynapse, you instead used the ArbitrarySynapse with random connections. You were able to 
input the images into the system using the bmp translator of the File component. While running the 
system you were able to view the input image and its corresponding output image with the 
ImageViewer probe. You were also introduced to the UniformNoise component and how it can be 
used to test your system for immunity to noise. 
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Filtering Example 
Filtering Example 

 

Purpose - Adaptive filtering is still today the largest application area for adaptive systems. The 
basic structure of an adaptive filter is that of ADALINE networks as proposed by Widrow. The basic 
difference is that you need to combine the input data with its previous values, so a delay line is 
needed. Here you will learn how to construct and adapt linear adaptive filters. 

Components Introduced - TDNNAxon, BackTDNNAxon, SpectralTransform. 

Concepts Introduced - Tap delay line, adaptive filtering, divergence, spectral transformation of 
data (FFT). 

 

 
STEPS 

Constructing A Linear Filter 

Things to Try with the Linear Filter 

Adaptive Network Construction 

Running the Adaptive Network 

Things to Try with the Adaptive Network 

What You have Learned from the Filter Example 

Constructing A Linear Filter 
 

Select File/New from the Main Menu. Go to the MemoryAxon palette and stamp the TDNNAxon 

 onto the breadboard. This component corresponds to a tap delay line, the 
fundamental element of all finite impulse response digital (FIR) filters. Select this new component to 
bring up the TDNNAxon inspector. Enter 5 as the number of taps; this means that you are creating 
a structure with 4 delays. 

From the Synapse palette, stamp the FullSynapse to the breadboard. The FullSynapse will provide 
the filter weights. Connect the TDNNAxon to the FullSynapse by dragging the MaleConnector of 
the TDNNAxon to the FemaleConnector of the FullSynapse. From the Axon palette, stamp an Axon 
to the right of the FullSynapse and connect the FullSynapse to this new Axon. This structure 
implements a FIR filter. Click the Soma tab of the FullSynapse inspector to verify that it has 5 
weights. 
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Implementation of a Linear Filter 

 

Now go to the Input palette and stack two FunctionGenerators on the Pre-Activity point of the 
TDNNAxon. Select a sinewave of 8 Samples/Cycle on one FunctionGenerator and a sinewave of 
20 Samples/Cycle on the other. 

Next go to the Probes palette and stamp a MegaScope/DataStorage on the output Axon, placing it 
on the Activity access point. Select a StaticControl from the Controls palette and stamp it on the 
breadboard, set the Exemplars/Epoch to 100, and verify that the Epochs/Experiment is set to 500. 
Run the network. The waveform in the MegaScope will probably appear complex. The reason is 
that the sum of input sinusoids is being filtered by a random set of weights. 

Go to the Probes palette, stamp a MatrixEditor to the FullSynapse, and place it at the Weight 
access point. Double-click on the MatrixEditor icon and a row vector with 5 values will appear. This 
MatrixEditor window allows us to observe, and change the filter weights. While running the network, 
click the Jog button of the StaticControl window. You should see the values in the MatrixEditor 
change and the waveform on the MegaScope should also change. 

Say you want to produce a specified frequency response by implementing a simple bandstop filter. 
Stop the simulation and enter in the Matrix Editor the values 1,0,0,0,1. This implements the filter 

 

 

 

which is known to have zeros at ?/4, ??/4, 5?/4, and 7?/4. Therefore, an 8 samples per cycle 
sinewave will be totally attenuated by this filter. In fact, you should see a perfect sinewave at the 
output that corresponds to the 20 samples per cycle sinewave generator. 
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Running the Linear Filter 

 

If you randomize the weights again, the output waveshape will change as well as the weights 
displayed by the MatrixEditor. Don’t worry if you have no experience with filters, just run the 
example to get its "feel" (see figure above for network configuration or load file EX5.NSB). 

Things to Try with the Linear Filter 
 

You have been introduced to the concept of component stacking, in which a component stacked 
below forwards all of its data to the component stacked on top of it. MegaScopes have the ability to 
forward a segment of data to a component stacked above. Select another MegaScope (without the 
DataStorage) from the Probes palette, and stamp it on top of the existing MegaScope, and bring up 
its inspector. Click on the Access tab of the inspector and set the access point to Selection. 
Double-click on this MegaScope to open its window. 

Now you need to select the data segment to be forwarded to the second MegaScope. First click on 
the MegaScope window (the one stacked on the DataStorage) to select it. Then use the mouse to 
select the beginning point of the segment of interest on the display window. Drag the mouse 
(keeping the left mouse button pressed) either to the left or to the right until the end of the segment 
you want. When you release the left mouse button, the signal within the highlighted area will be 
displayed on the second MegaScope. Adjust the top MegaScope so that the signal occupies the 
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entire display. When you run the simulation again, you should see the top MegaScope mirroring the 
selected segment of the bottom MegaScope. 

This exercise may not seem that interesting, but you will find that this ability to select segments of 
data for further processing and/or probing is a powerful feature that you will likely find very useful. 
For instance, you will later be introduced to a component that will perform a Fast Fourier Transform 
(FFT) on the data. Using a MegaScope, you are able to select a portion the signal (i.e. how many 
periods) from which to construct the FFT. Notice also that the more windows open the slower the 
simulations run. So a compromise between simulation speed and visualization tools is needed. 

Adaptive Network Construction 
 

You will use the same network but now you will let the weights adapt according to a given desired 
response. From the ErrorCriteria palette, choose the L2Criterion—the most widely used error 
metric. Now place the L2Criterion to the right of the output Axon, then make the connection 
between them. From the Probes palette, select the MatrixViewer and stamp it on the L2Criterion 
and set the access point to Average Cost. 

 

 

Attaching the L2Criterion to the output 

 

Now select the BackStaticControl and stamp it over the StaticControl. Use the BackStaticControl 
Inspector to add the backpropagation components. Select the On-Line radio button from within the 
BackStaticControl Inspector. From within the Static Control Inspector, set the Exemplars/Epoch to 
80. Set the Step Size to .1 in the Momentum Inspector. Within the DataStorage Inspector, set the 
Message Every form cell to 80. Make a copy of the 20 samples/cycle input FunctionGenerator and 
place it over the L2Criterion. Now select the access point to be Desired access. Effectively, you are 
telling the ADALINE to output a signal that is equal to a sine with 20 samples per cycle. This 
adaptive system will then try to approximate the filter that you hand-coded for the previous 
example. 

Running the Adaptive Network 
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Running the example 

 

Now open the StaticControl window and press the Run button. In the MatrixEditor you can observe 
the weights being modified. The numbers are also changing in the MatrixViewer, showing the 
average mean square error. The waveform on the MegaScope changes at a much slower rate. The 
buffer is only reporting data to the MegaScope every 80 samples. Press the Stop button on the 
StaticControl inspector to stop the simulation.  

Close the MatrixEditor window (click the square on the upper-left corner of the window), and run 
the simulation again. Have you noticed the change in speed? A faster simulation is obtained. The 
waveform in the scope is being displayed much more frequently. Notice that the waveform 
approaches a sinewave. You may have to click the run button a few times before you obtain a 
perfect sinewave. When the waveform looks like a sinewave, stop the simulation and open the 
MatrixEditor. Now you can observe the weights that the network "discovered" to construct the 
bandstop filter (i.e. a network that will cancel a sinusoidal component). Notice that you have simply 
given the desired signal to the net and it found the coefficients using the rules of learning 
(minimization of the mean square error). The values found through learning are different from the 
ones you hand coded in the previous example. For this problem, many solutions exist. (see figure 
above for configuration or load file EX5_A.NSB) 

Things to Try with the Adaptive Network 
 

Now select the Momentum component, change the Step Size to .3, randomize the weights, and run 
the network. What happened? The waveform becomes very complex and the values in the mean 
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square error window become extremely large. Stop the simulation. The step size was selected too 
large and the iterations are simply diverging (i.e. the operating point of the network departs further 
and further from the optimal solution). 

Select a new Step Size of 0.1 in the Momentum Inspector. Now go back to the Probes palette, 
select a second MegaScope/DataStorage, and place it over the MatrixViewer attached to the 
L2Criterion (the MSE probe). Verify that the access point of the DataStorage is Stacked access (i.e. 
it is reading the value reported by the MatrixViewer). Have the buffer message after every 10 
samples. You have constructed a probe that will display the learning curve for this network. 

Randomize the weights and run the simulation again. What do you see? The MegaScope 
connected to the MatrixViewer is showing a very complex waveform—the instantaneous error 
through iteration. Notice that the largest value of the waveform is steadily decreasing. After 5 
epochs (400 exemplars) the MegaScope connected to the output is displaying a waveform very 
close to a sinewave, and the error is decreasing to zero very fast. After 15 epochs (1200 
exemplars) the network basically learned the task. Randomize the weights again and re-run the 
network just to see the effect of the initialization on the speed of adaptation. 

Now let the system learn this task with batch learning. From the BackStaticControl inspector, select 
the Batch radio button. This means that you are using 80 exemplars to learn (the setting of the 
Exemplars/Epoch form cell in the StaticControl Inspector). Also, select a new Step Size of .5 in the 
Momentum Inspector. 

Randomize the weights and run the simulation. What happened? Notice that now the learning 
curve is much smoother than with the on-line system, decreasing steadily to zero. Also notice that 
the system basically learns the task in 150 epochs. But don’t forget that in each epoch has the 
gradient has the contribution of 80 samples. Another aspect that must be stressed is that the 
simulation with batch learning is more efficient. In the way that the code is implemented, the 
activations and errors are being stored in memory, and the switching between forward and 
backward task is less frequent.  This will be addressed in later sections. 

The final test with this example is to show a little more of the phenomenal probing abilities of the 

package. From the Probes palette, stamp the SpectralTransform  over the MegaScope on the 
output Axon (we will call this the output MegaScope). Stamp another MegaScope on top of this 
component. This MegaScope will enable us to visualize the spectrum of the network’s output 
WHILE the network is learning. Just double click on this MegaScope to open its corresponding 
window. 
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Using the SpectralTransform to obtain FFT data 

 

The SpectralTransform averages several FFTs for the data stored in the component stacked below 
(the DataStorage stacked below the output MegaScope) and sends this transformed data to the 
component(s) stacked above (the new MegaScope). In order for the SpectralTransform to access 
the output of the MegaScope, a region of the display must be selected. This is done by clicking and 
then dragging the mouse cursor across the screen of the MegaScope display (see figure above). 

Click once on the SpectralTransform to access the corresponding inspector. Set the Window Size 
to 30, the Number of Segments to 2, and verify that the Size of FFT is set to 128 and the 
Percentage Overlap is set to 50. 

In order to select the appropriate scale for the SpectralTransform, go to the StaticControl window, 
reset the weights, and press the Exemplar button twice. This will fire two exemplars through the 
network, and will produce one update of the SpectralTransform. Select the MegaScope attached to 
the SpectralTransform to bring up the MegaScope controls in the inspector. Since you are 
displaying the FFT’s magnitude, you know that it will always be positive. You can therefore place 
the zero line on the bottom of the MegaScope’s window (using the vertical position control). You 
can also change the vertical scale such that the spectral peak fills two-thirds of the screen. 

Now run the simulation and observe what happens. This provides a complete display of the 
network performance. You should observe the learning curve, the instantaneous MSE, the output 
of the network and its spectrum. All of this will be updated while the network is learning. Of course 
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simulations become a little slower this way, but the insight obtained with this arrangement of probes 
is often worth the performance penalty. 

Notice that the SpectralTransform is very sensitive to the accuracy of the output. The MSE is 
already very low, but the MegaScope still displays a predominant second harmonic stating that the 
learning is not yet complete. After approximately 500 epochs, the spectrum consistently displays a 
single peak and you can say that learning is complete. (see figure above for network configuration 
or load file EX5_FFT.NSB) 

What You have Learned from the Filter Example 
 

In this example you have learned more fundamentals of interconnecting elements. By making the 
appropriate connection, you were able to feed the taps of the TDNNAxon to the weights of the 
FullSynapse. You were able to manipulate the values of those weights by randomizing them, or by 
setting them manually with the MatrixEditor. This manipulation of the weights defined the frequency 
response of the filter. 

You also have learned how to automatically adapt the filter weights by providing a cost function and 
a desired signal. The constructed network worked as an adaptive interference chancellor, widely 
used in communications and instrumentation. You have seen that you can adapt the coefficients 
on-line or in batch mode, and that if you are not careful the adaptation may diverge. 

You have also learned how to compute and display Fast Fourier Transforms with NeuroSolutions. 
This is very important for engineering applications. 

Recurrent Neural Network Example 
Recurrent Neural Network Example 

 

Purpose - In this example you will learn how to construct a recurrent neural network. You will then 
train this network to learn the exclusive-or problem.  

Components Introduced - DeltaTransmitter. 

Concepts Introduced - Delay operators, feedback loops, fixed point learning algorithms, network 
stability, probing for appropriate learning, dynamic relaxation. 

 

 
STEPS 

Creating the Recurrent Topology 

Fixed Point Learning 

Running the Recurrent Network 

Things to Try with the Recurrent Network 

What You have Learned from the Recurrent Network Example 

Creating the Recurrent Topology 
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The network components used for recurrent neural networks are not different from the feedforward 
topologies that you have encountered thus far, so you can expect to find Axons and Synapses as 
before. The topology is characterized by feedback loops that go from the processing elements to 
themselves and to other processing elements. The first thing to realize is that the feedback loops 
must include some form of delay to implement a realistic network. This is due to the fact that there 
is no instantaneous transmission of information in dynamic systems. 

 

 

Construction of the recurrent neural network 

 

The figure above shows a recurrent topology to solve the XOR problem. Start by stamping an Input 
Axon, which should be configured with 2 processing elements to accommodate the two inputs. 
Create a new layer using a SigmoidAxon containing 2 PEs and a FullSynapse to connect it with the 
input layer. It is necessary to feed the outputs of this layer to itself to create the recurrence 
connections. You should use a FullSynapse to receive the output of the layer and feed it back to 
the same layer. Notice that in order to make these connections, either a cable is used or straight 
connections can be made (by dragging the male connector from the SigmoidAxon to the 
FullSynapse, and dragging the male of the FullSynapse back to the SigmoidAxon input). When you 
close the connection an error panel will pop-up warning us that an infinite loop was detected. In 
order to construct an acceptable topology, you have to delay the output of the SigmoidAxon since it 
is being fed back to itself. This is done by going to the FullSynapse inspector, switching to the 
Synapse tab, and entering 1 as the exponent of the Delay box. Now a delay of 1 time step has 
been created between the output and input of the SigmoidAxon. Also notice that a visual feedback 
of this operation—the FullSynapse now displays a  to symbolize the delay. 

The resulting network consists of only 2 PEs, which are fully connected back onto themselves. To 
train this network for the XOR problem, you have to assign the PEs to an output. This output will 
then be fed to an L2Criterion to compute an error. Stamp an ArbitrarySynapse and an L2Criterion 
to the right of the SigmoidAxon. Connect these components to the network. Select the 
ArbitrarySynapse to view its inspector. Use the ArbitrarySynapse to bring the output of the 
SigmoidAxon to an L2Criterion. Notice that the purpose of this connection is to select which 
processing elements to choose for the output. Select PE #0 and PE #1 as the output elements. 
From the ArbitrarySynapse inspector, click on the radio button 0 and 1 at the left, 0 at the right, and 
click Connect. These connections should not be adaptive. In order to establish connections with a 
fixed weight, drop a MatrixEditor on this ArbitrarySynapse, choose the weights access and enter a 
1 in each of its cells. Next select the ArbitrarySynapse to view it’s inspector, and in the Soma tab 
click on the Fix button in the weights box (we are telling the program to fix these values, so when 
you randomize the weights the connections will remain at 1). 
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To provide the input and desired response you can use two FileInput components with the input 
and output files created for the XOR problem. These should be stamped respectively at the input 
Axon and at the L2Criterion. You are now ready to establish the training protocol of fixed-point 
learning.  

Fixed Point Learning 
 

Fixed-point learning is an extension of static backpropagation that is used to embed fixed points 
into recurrent systems. See the Constraining the learning Dynamics for details. There are several 
steps involved in fixed-point learning. First, there is the forward propagation of the activations. This 
has to be done for a certain number of time steps, since the network has its own dynamics (this is 
called the relaxation period). After the net stabilizes, an error can be computed at the output in the 
normal way. Then the error is propagated backward through the dual network, and once again it 
must be fed several times to allow the network to relax. After relaxation, the error at each PE can 
be multiplied by the relaxed activation to update the weights. 

As per this explanation, you have to select the relaxation time both in the forward and 

backpropagation planes. Stamp a DynamicControl  on the breadboard and then a 

BackDynamicControl  over the DynamicControl. Select the Fixed Point radio button in 
the DynamicControl Inspector. Notice that within the DynamicControl Inspector there are 3 form 
cells: the Epochs/Experiment, the Exemplars/Epoch and the Samples/Exemplar. You should select 
respectively 1000, 4 (since you have 4 patterns for the XOR), and 10. This means that each 
sample will be repeatedly presented to the network 10 times to let the output relax. 

 

 

DynamicControl inspector 

 

This parameter is crucial for stable learning. If the network is not relaxed enough, the output 
activation will not be the steady state value and will produce an erroneous error estimate. A 
MegaScope/DataStorage should be used here on the SigmoidAxon to help set and monitor the 
relaxation period through learning. A more efficient method will be presented later using the 
transmitters. 

Now you have to do a similar thing for the BackDynamicControl. From the BackDynamicControl 
inspector, observe the Samples/Exemplar and the Exemplars/Update. You should match the 
Samples/Exemplar of the forward plane and select the Exemplars/Update to 4 for this XOR 
problem. 
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While here, you should also allocate the backprop plane by selecting Momentum and clicking the 
Add button. The gradient search can be selected by typing the appropriate method or simply using 
the default. Notice that all the components with adaptive weights will be provided with a backprop 
component and a gradient search component. Since the weight of the output ArbitrarySynapse 
should not be adapted, remove the corresponding Momentum from the breadboard. 

Now add the probes needed to monitor the learning. If probing was important for the static 
networks, it is now ESSENTIAL. In our opinion, one of the reasons recurrent systems are not as 
popular as static systems is the difficulty of the learning dynamics. With probing, a lot of the 
guesswork can be taken away by simply visualizing the appropriate variables. With learning, all of 
the information is carried to the backprop plane (the errors), so place a MegaScope/DataStorage 
on the BackSigmoidAxon and choose the Activity point. This probe will monitor the errors during 
learning. Use a MatrixViewer as a mean square error probe. Note that since the network is 
recurrent, you can expect transient behavior between the different input patterns. 

Now select the Learning Rate. Start with a large Step Size of 0.5 and a Momentum of 0.8. Turn off 
normalization. 

Running the Recurrent Network 
 

You are now ready to run the example. Open the MegaScopes, the MatrixViewer, and run the 
network. The MSE error starts large (~.4) and quickly should approach ~ 0.25. This problem has a 
plateau around this value of MSE (the linear solution). The problem is to get over this part of the 
performance surface. If a smaller step size or momentum is selected, very probably the adaptation 
will be caught in the local minimum. On the other hand, these two parameters are too large towards 
the end of adaptation.  Therefore, the user must stop the training and drastically reduce both the 
step size and the momentum after the knee. It is recommended to interrupt the learning just after 
the MSE drops below 0.2, and reduce the Learning Rate at this point to 0.05 Step Size and 0.1 
Momentum. It should be pointed out that this inherent ability to have real time monitoring of 
parameters is a distinctive advantage of NeuroSolutions. Furthermore, you will learn how to use 
transmitters to automate these changes in learning rates. (see Construction of the Recurrent 
Neural Network figure for network configuration or load file EX6.NSB) 

Before continuing the simulation, an important concept relating to the relaxation of the network 
needs to be mentioned. In the beginning of learning, the network relaxes almost immediately as 
can be observed by the flat top and bottom of the error signal waveforms. Towards the end of 
learning, you will notice that the backpropagated error has longer and longer transients. It is 
therefore necessary to increase the relaxation time to ensure that the transients die away before 
the comparison with the desired signal is done. 
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Probing the state of the system after learning 

 

When you observed the MegaScopes on the initial run, you should have seen that initially the 
output signal did not resemble the desired response. To verify this, just go to the desired signal file 

to see the sequence of values you entered. Alternatively, use a DataStorageTransmitter  to 
project the desired response of the forward activation MegaScope. If you are not yet familiar with 
this component, you will learn about it in later sections. Now that you have reached the plateau and 
have modified the parameters, continue the simulation. The MSE should decrease steadily and you 
should see a square wave, which does resemble the desired signal such that the length of the 
pulse is the relaxation time that you chose. 

Some extra comments are pertinent at this time. First, training a recurrent system is not trivial and 
requires appropriate tools like the ones provided in NeuroSolutions. Don’t give up if the network 
seems to get stuck in a local minimum. Try increasing the momentum, but be prepared for "picky" 
training and a lot of instabilities (i.e. the network will blow up frequently). When this occurs, you will 
need to reset the network. Resetting clears all storage locations (activations) and randomizes the 
weights. Note that randomization of the weights alone is not sufficient, since in a recurrent system 
the output depends on the initial state of the activations. Finely tuned, the network learns in less 
than 800-1000 steps. Remember that each training pattern is presented repeatedly to the net 
during relaxation, so training time is longer than for a multi-layer perceptron (MLP). 
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Notice in the figure above that the amplitude of the backpropagated error signal observed using the 
MegaScope becomes larger towards the end of adaptation (this is normally, but not necessarily 
observed). Also notice the large values of the weights. This is one feature of recurrent systems 
(due to the feedback connections, the output error can be small but internally the backpropagated 
error can be large), and it is one of the reasons they are more difficult to adapt. Notice that the error 
is not as small as the one achieved with a static system, the reason being the dynamic behavior of 
the net output (i.e. the transients). What you gain with a recurrent system is the insensitivity it has 
towards input noise. You observed a disadvantage of the system as it nears adaptation; the 
network weights become large requiring the step size to be reduced proportionally. 

Things to Try with the Recurrent Network 
 

This is the perfect example to introduce the transmitter family. The transmitters are a class of 
objects that test for a particular condition and perform global communications within a breadboard. 
Transmitters have a lot of potential applications, but here they will be used to control the relaxation 
time (i.e. the number of samples/exemplar) of the network in the forward and backward planes. 
Above you had to control the relaxation time conservatively, by imposing a fixed relaxation period. 
But the relaxation can be controlled by measuring the differential between two consecutive 
iterations. When the difference is smaller than a given threshold you can assume that the system 
stabilized. This produces an enormous savings in training time for a recurrent system. Now you can 
include the transmitters in your recurrent system. 

 

 

Using transmitters to dynamically control the relaxation period 

 

Dock the Transmitters palette, and select the DeltaTransmitter  . The idea is to place one 
DeltaTransmitter in the forward plane to monitor the network output and to notify the breadboard 
controller when to stop firing. To accomplish this, attach it to the Pre-Activity access point of the 
L2Criterion. 

From the Transmitter tab of the DeltaTransmitter inspector, select DynamicControl within the 
Receivers box and double-click on end samples within the Actions box. The selection should be 
preceded by a C, denoting that the connection has been made. You have configured the 
DeltaTransmitter so that after every sample, it will check to see if the change (delta) in activation 
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crosses a threshold and inform the DynamicControl if it does. When this happens, the 
DynamicControl will go to the next exemplar, just as if the specified fixed Relaxation Period was 
reached. It should also be noted that the Relaxation Period is now the maximum number of 
iterations performed on a single exemplar. Try setting it to 500 for this experiment, and notice that it 
never requires all 500 samples to relax. 

Switching to the ThresholdTransmitter level of the inspector, observe that you can control the 
threshold value, the direction of the threshold crossing (up or down), and if you are interested in All, 
One or a Mean of activations. For this application, you will select a Threshold of 0.001 in the down 
direction (the "<" symbol). You can also control the smoothing; i.e. instead of working with 
instantaneous values (small beta) you can average with an exponential decay of beta. 

 

 

 

 

DeltaTransmitter inspector 

 

In order to control the backward relaxation, you need to place another DeltaTransmitter at the 
output of the backpropagation plane to broadcast a message to the BackpropControl when its 
threshold is reached. Notice that the output of the backprop plane is the far left processing element 
(the BackAxon). This DeltaTransmitter should be configured the same as the first one, except that 
the receiver is the BackDynamicControl. 
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You are ready to use the DeltaTransmitters to train the recurrent net. Starting with the large step 
sizes, notice that the training goes much faster. The MegaScope shows that the length of the 
pulses becomes much shorter, meaning that the network relaxes very fast because the differential 
increment of 0.01 is reached very quickly. You should interrupt the training when the MSE drops 
below 0.2 to decrease the Step Size to 0.05 and Momentum to 0.1. Continue training and you will 
observe that the relaxation time increases quite a bit towards the end of training, meaning that the 
net requires more iterations to reach the steady state. With the transmitters, relax the network only 
as much as needed to achieve the incremental condition. However, notice that to achieve a MSE 
on the order of 0.08, you will have to set the threshold at 1.e-6 or less, otherwise the network does 
not relax sufficiently, possibly resulting in instability. 

 

 

Distorted input to the XOR problem 

 

 

Configuration for testing generalization 

 

Another thing to test is the generalization ability of this network. Recall that one of the advantages 
of recurrent systems is their ability to handle noise very well. In order to experiment with this 
characteristic, distort the input signal by adding a noise source to the input (see figure above). Then 
set the learning rates to zero (in the trained network), and pass the distorted XOR data through the 
net. It is clear that the network is able to reproduce the XOR output for these distorted inputs. You 
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may want to try this same experiment for the perceptron that you constructed earlier so that you 
can compare the two network topologies. 

What You have Learned from the Recurrent Network Example 
 

In this example, you were exposed to the concept of recurrent networks, and you learned how to 
train one to solve the XOR problem using fixed point learning. Fixed-point learning is an extension 
of backpropagation for recurrent networks. You were able to setup the controllers for fixed point 
learning, and you learned the importance of probing to appropriately train recurrent systems. 

You were also exposed to the DeltaTransmitter, which allowed you to dynamically adapt the 
relaxation period based on the incremental difference in the activations. This allowed you to run the 
network more efficiently, since you were not forced to make a conservative estimate on the number 
of iterations needed to relax. At the end, you were able to verify the noise immunity of this recurrent 
system. 

Frequency Doubler Example 
Frequency Doubler Example 

 

Purpose - The purpose of the frequency doubler example is to introduce the topic of trajectory 
learning, so useful in the recognition of time varying patterns such as speech recognition, adaptive 
controls, and time series prediction. Here you will learn how to design and train a dynamic network 
to double the frequency of a sinewave. 

Components Introduced - GammaAxon, LaguarreAxon, BiasAxon, StateSpaceProbe, 
DataStorageTransmitter, IntegratorAxon. 

Concepts Introduced - Trajectory learning, dynamic neural networks, comparison of memory 
structures. 

 

 
STEPS 

Creating the Frequency Doubler Network 

Configuration of the Trajectory 

Running the Frequency Doubler Network 

Using the Gamma Model to Double the Frequency 

Visualizing the State Space 

Things to Try with the Frequency Doubler Network 

What You have Learned from the Frequency Doubler Example 

Creating the Frequency Doubler Network 
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Trajectory learning is another variant of backpropagation useful in problems that require solutions 
based on gradient information over time. Note that fixed-point learning does not fit this definition 
because the learning system is trained to recognize a set of fixed patterns. But there are cases 
where the neural network must capture information from patterns that exist over time. In fact this is 
the great majority of problems in engineering (speech recognition, adaptive controls), in finance 
(time series prediction), and in military and biomedical applications (event detectors and pattern 
classifiers). You will see that static neural networks must be extended to dynamic networks, i.e. 
have short-term memory structures which capture the information of time patterns. Time Lagged 
Recurrent Networks and Constraining the Learning Dynamics should be read to understand the 
basic concepts of memory structures and trajectory learning. 

 

 

Construction of the frequency doubler 

 

The network that you will create is a single layer perceptron, but the input will be a memory 
structure instead of the more conventional static processing element. From the MemoryAxon 
palette, one can find several types of memory structures. Two examples are the TDNNAxon 

 (tap delay line), and the GammaAxon . Each one of these elements 
delay the signals that are fed at their input. They provide an output for each of the delay elements 
as well as an output for the input signal. Therefore, they are systems with one input to many (k) 
outputs.  

Memory depth is a parameter that specifies how far into the past the memory system reaches. You 
can think of it as the length of a window that extends to the past. For the delay line, the memory 
depth can be defined by entering the number of Taps and the delay between each tap (Tap Delay) 
in the corresponding inspector. The product of these two quantities produces the length of the 
memory window (in samples). Note that the order of the memory is number of taps minus one. 

Start by stamping on a new breadboard a TDNNAxon, a FullSynapse, a TanhAxon, a second 

FullSynapse, a BiasAxon  (this is simply a linear component which adds a bias to the 
signal), and a L2Criterion. Interconnect these components as shown in the figure above. This 
topology, called a focused TDNN, produces the following result. The input signal is delayed in the 
memory layer such that the present sample of the input and delayed versions of the input are used 
by the hidden layer PEs to create the appropriate mappings. Even if the input signal is time varying, 
the input memory layer will store a segment of the input and use it effectively to solve the problem 
at hand. This is unlike the MLP where only the present information is used in the mappings. In a 
sense, the memory structures turn a time varying classification problem into a static one. 
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One of the issues is to determine the memory depth (how far into the past is the information 
relevant for your application?). In this case, the definition of the memory depth is simple because 
you want to duplicate the frequency of a sinewave. Therefore, you have to give to the dynamic net 
a number of samples that corresponds roughly to one fourth the period of the slower wave (at 
least), such that the net "sees" the doubling of frequency. To solve this problem, the net has to 
combine the input samples in the window and produce new values that match the double of the 
frequency, all of which is done over time (i.e. the samples keep on changing). Frequency doubling 
of a sinewave is intrinsically a nonlinear problem that no linear system can solve. 

Now stamp two FunctionGenerators, one on the input (TDNNAxon Pre-Activity access) and the 
other to the L2Criterion to be used as the desired signal. Select the input to be a sinewave of 40 
Samples/Cycle and the desired output to be a sinewave of 20 Samples/Cycle. From the 
TDNNAxon inspector, enter a memory depth of 10 Taps and a Tap Delay of 1. The hidden layer 
(TanhAxon) should have 2 PEs. Stamp a DynamicControl on the breadboard and a 
BackDynamicControl on the DynamicControl. Now Allocate the backprop plane and start with an 
initial estimate of the learning rate to be 0.4 for the normalized Step Size and 0.5 for the 
Momentum. Stamp two MegaScopes/DataStorages to verify the performance of the network—one 
on the input and the other on the output (set them to Message Every 80 samples, so that the 
display of the waveforms is steady). Stamp an MSE probe (MatrixViewer) on the output to monitor 
the learning. 

Configuration of the Trajectory 
 

The goal of the trajectory configuration is to use the information of an input section and train the 
classifier to minimize the fitting error between the network output and the desired trajectory. Notice 
that to solve this problem, the network needs information along time. For this problem, you need to 
accumulate the gradient information during at least one period of the slowest wave. You will elect to 
accumulate over two periods (80 samples) and backpropagate the errors 70 (the trajectory length 
minus the memory depth) samples in the past. You propose this length to avoid feeding in 
erroneous values associated with the initial conditions. Learning becomes more stable with this 
selection. 

After selecting the DynamicControl, select Trajectory within the System Dynamics box, enter 80 as 
the number of Samples/Exemplar, and 1,000 as the number of Epochs/Experiment. This means 
that you have only two periods of the sinewave that will be repeatedly used for learning. Since the 
sinewave is periodic, the number of Exemplars/Epoch can be set to 1. Otherwise, this number 
would be associated with the length of the input data (divided by the Samples/Exemplar used). You 
have to go to the BackDynamicControl to establish how far into the past to propagate the errors. As 
explained above, you will select 70 for the Samples/Exemplar and 1 for the Exemplars/Update, 
meaning that you will update the weights every time you backpropagate the error through time. 
(see Construction of the Frequency Doubler figure for network configuration or load file EX7.NSB) 

Running the Frequency Doubler Network 
 

Be sure to open the MegaScopes and calibrate them. Within 200 iterations the network should 
learn this task. At first the output waveform looks distorted, but then the second peak 
corresponding to the doubling of frequency appears and the display stabilizes. The errors decrease 
to very small values, showing that the task has been learned. 

It is recommended that you try changing the memory size. If you decrease it too much the doubling 
of frequency will not be complete. If you increase it, the task is learned a little faster with respect to 
the number of iterations, but the actual processing time increases since there are more weights to 
compute. Try decreasing the number of Taps to 5 and increasing the Tap Delay to 2. What this 
does is cut the number of free parameters (weights) in half, but you still span the same segment of 
the signal (with only half of the resolution). You may think that the net will not learn the task with 5 
taps, but you will see that what counts most in temporal signal processing with dynamic neural nets 
is the memory depth (which is still 10). By running the simulation again, you will see that the net 
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again learns the doubling of the frequency. If the time window size is not properly adjusted, you 
may end up with a very powerful multi-layer net (one with lots of PEs) which may still not be able to 
learn the task. 

In order to help in the determination of the more appropriate memory depth, the gamma memory 
was introduced in neural computation. It is a memory structure that is more versatile than the tap 
delay line, since it is recursive. This means that during learning, the network can change one 
parameter (the gamma parameter) to adapt the memory depth. So, with the gamma memory, there 
are less problems associated with the choice of the memory size, since the net is able to adapt the 
compromise of memory depth and memory resolution. 

Using the Gamma Model to Double the Frequency 
 

Now substitute the TDNNAxon with the GammaAxon  and assign it 5 Taps with a Tap 
Delay of 1. Remember to also attach a BackGammaAxon and a Momentum, since the 
GammaAxon has one parameter that is adaptive (the gamma parameter). Re-attach the 
FunctionGenerator and stamp the MegaScope/DataStorage on the WeightsAccess point of the 
GammaAxon. You will be observing the adaptation of the gamma parameter during learning, so 
change the Buffer Size of the DataStorage to 250 and have it Message Every 4 iterations. The 
gamma parameter requires a slower adaptation rate (it is a recursive parameter), so configure the 
corresponding Momentum to have a Step Size of 0.1 and a Momentum of 0.5. 

Run the experiment. Notice that the gamma parameter always starts at 1 (you may have to 
autoscale the MegaScope with the first few iterations). For this value, the gamma memory defaults 
to the tap delay line of the same number of taps. So you are starting with the previous case which 
was difficult to learn. Notice that during adaptation the gamma parameter decreases, meaning that 
longer memory depths are being searched (memory depth = number of taps / gamma parameter). 
When the gamma parameter stabilizes (at around 0.5), notice that the output MegaScope displays 
the expected waveform with double the original frequency. This means that the task was solved by 
the static classifier attached to the gamma memory structure, just after the correct memory depth 
was reached. 

Now make the problem even harder. Reduce the number of taps to 3. Notice that to provide the 
same memory depth the gamma parameter must even go to smaller values. Resume the training 
without randomizing the weights. You will find out that the problem is still solvable, and that the 
gamma parameter reduces to an even smaller value (~0.3). This versatility of the gamma 
memory—having the ability to choose an appropriate compromise memory depth/resolution for a 
given memory size—has been shown to be very important in dynamic modeling with neural 
networks. 
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Tracking the gamma coefficient with 5 and then 3 taps 

 

Another interesting question to ask: How is this network solving the task? This question is 
answered by stamping a MegaScope/DataStorage on the hidden layer to monitor the activations of 
the hidden nodes. Reset the net (we suggest going back to 5 taps in the GammaAxon such that 
learning is a little more stable and faster). By watching the MegaScope, you can analyze the 
approach the system takes toward solving the problem. As shown in the figure below, there is more 
than one variation of the solution that the system can come up with. Basically, each of the hidden 
units saturate the input (creating the flat peaks or troughs) at a phase shift of 90 degrees from each 
other. The role of the output unit (which has been selected as linear to utilize the full dynamic range 
of the output) is simply to ADD these two contributions. A remarkably simple solution for such a 
difficult problem. 
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Activations of the two hidden layer PEs after learning (two runs) 

Visualizing the State Space 
 

You will now introduce a different way of looking at the waveforms by using the StateSpaceProbe 

. This probe is particularly valuable in dynamic system analysis, because it provides a way to 
visualize the evolution of the state of the system that is producing the output waveform. 

In state space, the axes are the amplitude of the signal and its derivatives. You will restrict your 
display to 3-D (the amplitude, the first derivative, and the second derivative). For instance, a 
sinewave in state space corresponds to a circle. Now the interesting question: How does the state 
of the neural network change while it learns to double the frequency of the input? 

Go to the Probes palette, stamp a StateSpaceProbe, and place it over the output MegaScope at 
the Selection Access point. This means that the segment of data that you select from the 
MegaScope (by dragging the mouse across the window) will be passed to the StateSpaceProbe. 
Select the entire contents of the window as the data segment (be sure to calibrate the MegaScope 
to display the entire segment stored in the DataStorage). 

 

 

StateSpaceProbe inspector 
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Select the StateSpaceProbe to show its inspector. At the StateSpaceProbe tab, select a 
Displacement of 5 so that the display will go 5 steps back to estimate the first derivative and 10 
steps back to estimate the second. Set the History (the number of points displayed in the plot) to be 
40 so that one period of the input signal can be visualized. 

 

 

The3DProbe level of the StateSpaceProbe inspector 

 

Notice that you can control the vertical rotation of the display by the left slider, the horizontal 
rotation by the bottom slider, and the proximity (relative angle of view) by the right slider. From the 
3DProbe level of the inspector, the controls for the 3D display will appear. Controls for zoom and 
offset are also provided such that you can center the display within the cube. The cube is just there 
to provide a 3-D perspective, and can be turned off (with the Show Cube toggle switch). There is 
also an autoscale option (whose use is recommended), and a Uniform Scale switch, which can be 
used to ensure that each axis is calibrated using the same scale. 

The Reset button returns the parameters to the default setup and the adjacent pull-down menu 
simply configures what to display: Dots which plot the samples, Lines which linearly interpolate the 
samples, or Both. Both is the more effective setting most of the time because it gives a sense of the 
trajectory and the location of the actual values. 
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Using the StateSpaceProbe to monitor the state trajectory 

 

Using the StateSpaceProbe, you can now visualize what happens to the state of the system while it 
learns to double the frequency. In the beginning, the trajectory is just an ellipse that corresponds to 
the original frequency. During learning, the state space starts to describe a more complex 
trajectory. Towards the end, you should witness the folding of the ellipsoid such that a second 
ellipsoid is formed and overlaps the original. The visualization of the intermediate states gives us a 
much better appreciation for the nonlinear effects that the system needs to discover in order to 
solve the problem. An example of the state space probe can be seen by loading file 
EX7_STSP.NSB. 

Things to Try with the Frequency Doubler Network 
 

One of the interesting questions to ask about this example is how well does the neural network 
generalize? In order to answer this question, you must train the net and then change the input 
frequency to a different value and see if the output is the double of the input signal frequency. 

The best way to do this is to go to the BackpropControl, Free the backplane, and then just discard 
the BackDynamicControl. The weights will now be fixed to their trained values. In order to make the 
comparison between the input and output frequencies, you can use a component from the 

transmitter family again. Go to the Transmitters palette and stamp the DataStorageTransmitter  
on the input FunctionGenerator, and single-click to bring up the inspector. Note that all of the 

DataStorage  components on the breadboard are displayed as Receivers. Single-click on one 
and see which one is highlighted. Select the one attached to the output, go to the Actions box, and 
double-click on Attach to Buffer. A C will show up to indicate that the connection was made. Now 
the output MegaScope will display BOTH the input and the output waveforms. 
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Viewing both the input and output using the DataStorageTransmitter 

 

You are now ready to do comparisons. With a network properly trained, you should be able to go 
from 10 up to 100 Samples/Period and obtain a fairly good doubling of the frequency. This shows 
the generalization ability of this network. Of course, if you choose a square wave the method 
breaks down, simply because the relation between the data samples is very different. If you try a 
triangular wave, you will verify that the network is still able to double the frequency, but as you 
might expect, the corners will be rounded. It is recommended that you substitute the GammaAxon 

by the LaguarreAxon  and repeat the experiment. The Laguarre tends to be a little 
faster than the Gamma kernel. 

It is also interesting to contrast this solution of the frequency doubler (using the input memory plane 
of a delay line) with a solution that instead, uses the memory by recurrency. One experiment is to 
substitute the input memory layer with context units creating a Jordan net. 
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A frequency doubler using recurrent hidden units 

 

The figure above shows another possible configuration for solving the frequency doubling problem, 
but using "context units" that hold the values of the input units (Elman’s architecture). Use an 
IntegratorAxon for the context units which integrates the input signals, and a TanhAxon as the 
hidden layer with 2 PEs. At the input use an Axon with a single input. Use a FullSynapse to bring 
the output of each context unit to each hidden unit. The breadboard is shown in the figure above. 
The parameters of the trajectory learning should be as before, except that now you should use the 
same value for Samples/Exemplar for both the DynamicControl and BackDynamicControl (since a 
memory depth does not apply anymore). 

This is a recurrent net, but you will not adapt the time constant of the context unit nor the 
connections of the input to the context units. Fix the time constant at 0.8. In order to keep this 
value, you should discard the gradient descent that will automatically be placed on the component 
when the backplane is allocated. Also select Fixed within the weights box under the Soma tab of 
the inspector. In this way, static backpropagation can be used. Choose the initial Step Size to be 
1.0 and Momentum to be 0.6 for all Momentums. Learning progresses very fast. Looking at the 
MegaScope you will see that one of the parts of the sinewave is already there, but the other half 
appears very quickly. In the StateSpaceProbe you see that the double ellipsoid is still not present. 

It is interesting to compare this solution with the gamma memory. Note that here the memory 
necessary to learn the problem is given by the context units, because they integrate the past. See 
figure above for configuration or load EX7_RECU.NSB. 

 

 

Actual output vs. desired output for the recurrent frequency doubler 

What You have Learned from the Frequency Doubler Example 
 

The system you created was one that should have provided an introduction to trajectory learning. It 
was able to take a sinewave as input and produce a sinewave, which was doubled in frequency—
not a trivial problem. At first, this was done using a tap delay line. You found that the system could 
still learn the problem after you reduced the number of taps, but kept the memory depth the same. 
You then substituted in a gamma delay line, which allowed you to use still fewer taps. You also 
constructed a system with context units, which replaced the memory structures of the delay lines 
with recurrent connections to provide memory. You found that this approach was well suited to 
solve this problem. 
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You were introduced to a few more components of NeuroSolutions. The StateSpaceProbe is a 
useful tool in dynamic systems, because it allows you to visualize the evolution of the system state 
in 3D. The DataStorageTransmitter is a useful tool for probing in that it allows you to transmit a 
signal from a remote component to a probe. The context units are important components for 
learning in time. 

Unsupervised Learning Example 
Unsupervised Learning Example 

 

Purpose - The purpose of this example is to discuss and present the unsupervised learning 
paradigms available in NeuroSolutions. You will present the Hebbian (including the normalized 
versions), the Sanger’s and the Oja’s rules. You will see that unsupervised learning has the appeal 
of preprocessing and feature extraction. 

Components Introduced - OjasFull, SangersFull, HebbianFull. 

Concepts Introduced - Unsupervised learning topologies (straight Hebbian, anti-Hebbian, Oja’s 
rule, and Sanger’s rule). 

 

 
STEPS 

Introduction to Unsupervised Learning 

Noise Reduction with Oja's or Sanger's Learning 

Things to Try with the Unsupervised Network 

What You have Learned from the Unsupervised Learning Example 

Introduction to Unsupervised Learning 
 

Unsupervised learning is particularly well suited to perform feature extraction. There are a lot of 
problems where you do not know a priori the desired signal, nor what are the most important 
features of a given signal. This happens in compression, in signal and noise separation, and in 
feature extraction problems. 

Unsupervised learning networks are normally very simple topologies that utilize the idea of 
correlation between input and output to process signals. It turns out that correlation can be easily 
implemented in a neural network through Hebbian learning. Most of the unsupervised learning 
rules, in one way or another, are based on Hebbian learning. 

Hebbian learning has a slight problem of producing unbounded network weights (weights that keep 
increasing with each iteration). To compensate for this, you can either normalize the input data, clip 
the weights, or normalize the weights. The last idea is the more general, so extensions to the 
Hebbian learning (Oja’s rule or Sanger’s rule) are the recommended learning rules. 

In Hebbian type learning, the weights are modified according to the product of the input and output 
at the weight, implying that there is no desired signal. Hence, it is not necessary to propagate the 
signal forward and the error backward, as in gradient descent learning. In terms of network 
construction, these networks are normally very simple in that they consist of a single layer of 
components. 
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NeuroSolutions provides five Hebbian type learning rules: straight Hebbian, anti-Hebbian, forced 
Hebbian, Oja’s rule, and Sanger’s rule. Please read the Unsupervised Learning topic to learn more 
about them. 

 

 

Unsupervised palette 

Noise Reduction with Oja's or Sanger's Learning 
 

There are many types of applications that try to reduce the amount of noise in a signal. This can be 
accomplished through linear filtering if the noise and signal spectra do not overlap. Utilize the idea 
of principal components to extract the signal from noise. 

If the signal is viewed as a vector, the principal components are basically the directions of the 
signal vector in signal space. Broadband noise totally fills in the signal space, so it has components 
in every direction. The signal normally exists in a subspace of lower dimension. Hence, if it is 
possible to project the signal plus noise on the subspace built from the principal components of the 
signal, then less noise power will be present and the signal will be less distorted. 

This simple geometric projection can be achieved with Oja’s or Sanger’s rule applied to a single 
layer of linear components, simply because these two learning rules extract the principal 
components of the input signal. This means that the weight vectors of the network are the principal 
components, and the outputs are the projection of the input along these directions. 

The figure below depicts the example that you will be building with NeuroSolutions. The network 
has a single layer of linear units (built from the Axon and an Ojas). You will be using a 
FunctionGenerator as your input, but since these unsupervised rules are static, you will need a 
TDNNAxon at the input layer. Therefore, the memory unit will transform the time signals into static 
patterns of a length equal to the size of the memory. Stamp a TDNNAxon on a new breadboard. 

 

 

Construction of an unsupervised system using Oja’s rule 

 

Select a memory of 10 Taps. The output will have a single PE. Stamp an Axon to the right of the 
TDNNAxon. The input to this network will be a sinewave of 20 Samples/Cycle added to uniformly 
distributed noise. Stamp a Function component on the Pre-Activity access of the TDNNAxon. 
Select a Noise component from the Input palette, stamp it over the FunctionGenerator and verify 
that the Variance is set to 1. 
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In order to train this network, open and dock the Unsupervised palette. Stamp an OjasFull 

 component on the breadboard and connect it according to the figure above. 
Unsupervised components are very similar to the FullSynapse. Each contains a matrix of weights 
that will be trained as input is presented. From the Ojas inspector, you will configure the Step Size 
(learning rate) to be 0.01. 

Unsupervised components differ from the supervised learning components in the data flow. You 
only need to fire the data forward through the network, since there is no error to learn from. 
Therefore, you only need to stamp the StaticControl on the breadboard. Each time a sample is fired 
through the network, the learning rule will update the weights. 

This network will then clean the noise added to the sinewave. Stamp a StaticControl, then select 
10,000 Epochs/Experiment, and run the experiment. Observing the MegaScope, you will see the 
output of the net showing a sinewave almost immediately. Compare it to the input by using a 
DataStorageTransmitter to display the input of the network on the existing MegaScope. In view of 
the information that is being supplied, it is remarkable that the system can extract that portion which 
is consistent to produce a sinewave which is so clean (see figure above for the network 
configuration or load file EX8.NSB). 

 

 

Comparison of noisy input with filtered output 

Things to Try with the Unsupervised Network 
 

You should increase the noise Variance (try using 3) and you will see that the shape of the 
sinewave is hardly recognizable. Decrease the learning rate (0.001) to improve the signal to noise 
ratio. Let the system learn for 15,000 iterations. You should find that it is still able to extract a signal 
that resembles a sinewave. 
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You can also stamp a SangersFull  component to train the net. The results will be 
indistinguishable from the one explained. 

Try another interesting experiment. Bring a HebbianFull  component to replace the 
Ojas and set the Step Size to 0.001. Bring the Variance of the noise back down to 1. Replace the 
output MegaScope/DataStorage with a MegaScope/SpectralTransform/DataStorage, and configure 
the SpectralTransform as follows: Size of FFT = 128, Percentage Overlap = 50, Number of 
Segments = 3, Window Size = 50. Run the experiment for 2000 epochs and monitor the FFT data 
on the MegaScope. As mentioned earlier, the weights of the Hebbian model are unbounded and 
you should have witnessed this phenomenon. Reset the network and run it again, but for only 350 
epochs. As shown in the figure below, the spike indicates that it was able to extract the 20 samples 
per cycle frequency of the input sinewave. 

 

 

FFT analysis of the Hebbian network 

 

Now try a negative Step Size (-0.001). This is what is called the anti-Hebbian rule. What do you 
expect to happen? Hebbian learning extracts the correlation between signal presentations. Anti-
Hebbian will do the opposite, i.e. it will find what is less common among the signal presentations 
(decorrelate the inputs). In other words, it is choosing the direction in space where there is no 
signal component. In this case, it will extract the white noise. Run the network for 750 epochs and 
you should see that the spike will disappear, but the noise is still present. An example of the FFT 
Probe can be seen by loading file EX8_HEBB.NSB. 
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What You have Learned from the Unsupervised Learning Example 
 

You have been introduced to four of the five Hebbian type learning rules provided by 
NeuroSolutions. Using Oja’s or Sanger’s rule, you were able to construct a simple network which 
could filter out much of the noise from a distorted sinewave. By analyzing the FFT using Hebbian 
learning, you were able to see the extraction of the sinewave. You were then able to extract the 
noise (which eliminated the sinewave) using the anti-Hebbian model. You also verified the 
unbounded nature of the weights using the straight Hebbian rule. 

Principle Component Analysis Example 
Principal Component Analysis Example 

 

Purpose - You will show that Sanger’s and Oja’s perform principal component analysis. To verify 
the extraction of the principle components, you will re-combine the extracted signals to approximate 
the original input. 

Components Introduced - OjasFull, SangersFull. 

Concepts Introduced - Principal component analysis, forced Hebbian learning. 

 

 
STEPS 

Introduction to Principal Component Analysis 

Running the PCA Network 

Things to Try with the PCA Network 

What You have Learned from the Principal Component Analysis Example 

Introduction to Principal Component Analysis 
 

You will now perform principal component analysis on a complex waveform using Sanger’s and 
Oja’s rules. In this respect, Sanger’s is better because it always outputs the components in order. 

The problem is to input a square wave to a one layer linear network with several outputs, train it 
with Sanger ‘s rule and observe the waveforms at the outputs. As you may know, a square wave is 
built from the addition of multiple sinewaves at the harmonics of the fundamental frequency, 
properly weighted and shifted. The Fourier series computes this decomposition. 

Sanger’s and Oja’s networks can also provide a very similar decomposition. During learning, the 
weights will find the orthogonal directions (eigenvectors) associated with the square wave. The 
outputs will then be the projections on these directions. For a square wave, you can expect to find 
an infinite number of directions (infinite harmonics). For each frequency, you can expect to find two 
sinusoidal components that are orthogonal (just like the sine and the cosine). 

Running the PCA Network 
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Starting from the Unsupervised Learning example, discard the Noise, increase the size of the 
TDNNAxon to have 30 Taps (once again to have a stable "view" of the input), drop the Ojas and 
replace it with a Sangers, and enlarge the output Axon to have 6 PEs. Configure the Step Size to 
0.001, just to make sure that learning is accurate (it will be a bit slower). Change your input signal 
from a sine wave to a square wave of 20 Samples/Cycle. (see figure below for network 
configuration or load file EX9.NSB) 

 

 

Configuration of PCA network 

 

Observing the output MegaScope (run the network a few iterations and then autoscale), you will 
see that after training the output units will show pairs of sinusoids of the fundamental frequency and 
their odd harmonics. As expected, the sinusoids of a given frequency are orthogonal (when one 
reaches the peak the other goes through zero). Notice that there is an intrinsic ordering to the 
decomposition. The first two units give the slower components, followed by the next higher 
frequency, etc. You will not get this feature with Oja’s. It is remarkable that this network performed 
principal component analysis (sometimes also called singular value decomposition or Karhunen 
Loeve transforms) just using the correlation information, but you can expect this from the theory. 
The only difference with respect to the theoretical methods is that the amplitudes of the waves 
(which are associated through the power with the eigenvalues) are not estimated correctly. 

 

 

Probing the activations to verify the principal component extraction 
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Things to Try with the PCA Network 
 

Substitute the Sangers with the Ojas and verify that the principal components are not ordered. An 
interesting aspect can be found by adding all the six outputs using a FullSynapse and an Axon and 
plotting the result with another MegaScope. Fix the amplitude of this FullSynapse by dropping the 
MatrixEditor and entering 1 into every weight. Run the network again (without randomizing). If the 
amplitudes were right, the resulting wave should approximate the initial square wave built from 
three harmonics. You can play with the multiplicative constants to see if you get a square wave. 

What You have Learned from the Principal Component Analysis 
Example 

 

You were able to verify that both the Sanger’s and Oja’s rules can be used to extract the principle 
components from a complex waveform such as a square wave. The advantage of the Sanger’s 
model is that it produces components in order, where Oja’s does not. You were able to verify that 
these components could be re-combined to approximate the original signal. You tried this first by 
straight addition of the signals, but since the amplitudes of the principal components produced are 
not accurate, the result did not resemble a square wave. 

Competitive Learning Example 
Competitive Learning Example 

 

Purpose - You will introduce the principles of competitive learning by creating a system that is able 
to represent centers of clusters. 

Components Introduced - StandardFull, ConscienceFull, ScatterPlot. 

Concepts Introduced - The purpose of competitive learning, interpretation of scatter data. 

 

 
STEPS 

Introduction to Competitive Learning 

Constructing the Competitive Network 

Things to Try with the Competitive Network 

What You have Learned from the Competitive Learning Example 

Introduction to Competitive Learning 
 

Competitive learning is a rather important unsupervised learning method. It enables the adaptive 
system to cluster input data into classes. There are a lot of engineering applications related to 
clustering, such as vector quantization and classification. In classification, one may want to divide 
the input data set into clusters and use their centers to represent the different classes. Competitive 
learning provides exactly this functionality. The user must decide how many classes the data has, 
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then the learning rule will adapt the weights such that they represent the center of mass for each of 
the classes. Another application is vector quantization. By defining each class as simply the center 
of a cluster, you can perform data reduction (a lot of different signal values can be reduced to the 
value of their centers). This technique has been applied to speech compression (code books). 
NeuroSolutions contains two competitive learning laws, the standard competitive and the 
normalized competitive. 

In this example, you will create two classes of 2D data such that you can visualize the clouds of 
input as well as the values of the weights. After adaptation, these weights should represent the 
centers of mass of each of the clusters. 

Constructing the Competitive Network 
 

From the Axon palette, stamp two Axons. Now go to the Unsupervised palette and stamp a 

StandardFull  and connect them as shown in the figure below. Configure both the 
input and output Axons to have 2 PEs, and enter a Step Size of 0.01 in the StandardFull inspector. 
The inspector also allows the selection of the metric. Competitive learning uses a metric to decide 
the distance between the input and the weight vector. You can choose from a DotProduct 
(measures an angle distance), a Box car (measures distances on a grid) and the Euclidean (the 
normal distance between two points). The Euclidean is the most common distance measure, but 
competitive normally is computed with the dot product. In the Standard inspector you can also 
select the learning rates. 

In order to visualize the data, you will use a ScatterPlot  combined with DataStorage from the 
Probes palette. Stamp it over the input Axon and select the Activity Access point. Since you also 
want to visualize the values of the weights, select a DataStorageTransmitter from the Transmitters 
palette and stamp it over the Standard (on the Weight access point). Now link the 
DataStorageTransmitter to the DataStorage of the ScatterPlot. 

 

 

Construction of the competitive learning example 

 

The figure below shows the inspector of the ScatterPlot. The ScatterPlot can display scatter plots 
for multiple inputs (channels). The scatter will always be plotted in 2D (i.e. the x versus the y axis), 
but the number of possible combinations depends on the number of channels that are being 
received from its DataStorage. Therefore, the user must have a way to select any possible input-
output pair in terms of the x and y axis. 
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ScatterPlot inspector 

 

Using the Y Channel slider, you can select which channel (processing element or weight) will be 
plotted as the y coordinate. Likewise, the X Channel slider is used to select which channel to plot 
on the x axis for the given Y Channel. In this case you will have 2 channels from the input (the input 
PEs) and 4 channels from the output (the weights)— a total of 6 possible (x,y) pairs. Verify that 
there are 6 channels available on the sliders. What you would like to do is to plot the inputs 
(channels 0 and 1) as an x, y scatter, and the weights connected to a given output PE (channels 2 
thru 5) as the other two x, y scatters. 

To define the x,y pairs to plot, start at Y Channel 0 (corresponding to PE 0 of the input). You first 
need to determine if you want this channel plotted on the y axis. You do, so make the display 
Visible (radio button) and choose the color black (click on the set color button under the Display tab 
to bring up the Colors panel). You would like this channel to be plotted against PE 1 of the input, so 
select X Channel 1. Y Channel 0 is now defined. Move to Y Channel 1 and make the display not 
Visible (we already have channel 1 plotted on the x axis). Repeat the process for the remaining four 
channels (the weights). Channel 2 should be plotted against Channel 3 (the two weights connected 
to output PE 0) and displayed in red. Using purple as the display color, repeat for Channels 4 and 5 
(the two weights connected to output PE 1). Enter the Size of the dots to be 2. In summary, you will 
be seeing the input as black dots and the weights connected to the output PEs as red and purple 
dots. Go to the DataStorage inspector and choose a Buffer Size of 100 and have it Message Every 
25. 

As for the input, you need to create two clusters of points. One possible way is to use one 
FunctionGenerator and a UniformNoise. If you apply to the two input PEs two square waves of 2 
Samples/Cycle, with Amplitudes of 1.5 and an Offset of 0, you will be creating alternating pairs of 
points (1.5, 1.5) and (-1.5, -1.5). Stamp a FunctionGenerator (which is multichannel) and a 
UniformNoise from the Input palette and stack them in the Pre-Activity access point of the input 
Axon. From the inspector of the FunctionGenerator, set the Channel to 0, and configure the signal 
as described above. Configure Channel 1 the same. If you add small Variance (choose 0.5) noise 
to both channels, you will be disturbing these amplitudes slightly. Since the noise is unpredictable, 
you will be creating two clusters of points centered at (1.5, 1.5) and (-1.5, -1.5). 

Now stamp a StaticControl, enter 100 Exemplars/Epoch, and run the example. You will see the two 
scatters of input points in black. At the very beginning, you should see two lines of red and purple 
dots moving towards the centers of each cluster, forming two centers of mass. If you randomize the 
weights by clicking Reset on the StaticControl window (you can do this while it is running), you will 
display the transformation again. 
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Using ScatterPlot to animate the clustering 

 

When the weights are randomized, the state of the system could be set to anywhere in this space. 
With the competitive learning rule, the weights are immediately moved towards the centers of mass 
of the clusters. (see figure above for network configuration or load file EX10.NSB) 

Things to Try with the Competitive Network 
 



 258

Try setting the Phase of one of the FunctionGenerators to 180. What do you expect to happen? 
Run the network again (without randomizing) and you should discover that the clusters are now 
moved to the other two quadrants and that the centers were still found. 

You can see the effect of a bad selection of the initial number of clusters by selecting 3 output PEs. 
Since you have only two clusters of points, the third output unit will have its weights put half way 
between the other two, giving an erroneous result (you could interpret it as meaning that there are 
three clusters of data). 

Now enter an offset of 2 in the FunctionGenerator. (You will have to autoscale the ScatterPlot to 
see both clusters.) Notice that the clusters now are not symmetrical with respect to the origin. Try to 
run the competitive network again. What do you find? The weights no longer go to the centers of 
the clusters. This is due to the dot product metric selected in the competitive. You can still solve the 
problem if you select Euclidean in the competitive level of the inspector of the competitive 
component. An alternative to solve this new problem is to use a new component, the 

ConscienceFull . Select this component from the Unsupervised palette and use it to 
replace the StandardFull. The Conscience is a mechanism that keeps track of the number of times 
that a PE wins the competition. It is a competitive mechanism of its own. The two parameters in the 
ConscienceFull Inspector are beta (small value 0.001) and gamma (normally between 1 and 20). 
Try to solve the problem again, with the ConscienceFull component, and see that it can be solved 
easily. 

Another interesting experiment is to take out the competitive learning rule and substitute it with the 
Sanger’s rule that you covered in the Principal Components Analysis example. Set the step size to 
0.1. You should keep the input exactly as is. The purpose is to show how a change in the learning 
rule affects the information extracted from the same input. Can you foresee what will happen? 

Competitive learning gave us the centers of the clusters. Sanger’s provides the principal directions 
for the data sets (principal components). Therefore, the weights of the FullSynapse should now 
seek a point on the unit circle (since the input is normalized) in the direction of the principal axis of 
the data clusters. These are the directions where the data projections are the largest. For this case, 
these can be obtained by drawing a line between the centers of the clusters and its perpendicular 
(the bisectors of the quadrants). 

Keep the same learning rate and the same ScatterPlot settings. By running the example, you will 
see the larger dots representing the weights move towards the first quadrant bisector and the fourth 
quadrant bisector, as expected. 
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Principal components displayed with the ScatterPlot 

 

If you randomize the weights during learning, you will see the weights jump to a random position 
and then track to the previous locations. By stopping the simulation and switching to the 
FunctionGenerator inspector, you can change the parameters of the waveforms. By choosing the 
triangular wave, you will find that the clusters of points move to the second and fourth quadrant. 
Immediately after, the synaptic weights will travel to the first and fourth quadrants. 

What You have Learned from the Competitive Learning Example 
 



 260

You were able to construct a system that could take two clusters of data and find their centers of 
mass. You did this using the standard competitive learning rule, which updated the weights to 
represent the centers. You were able to visualize the learning process by plotting the input data 
and the centers using the ScatterPlot. You also saw the importance of selecting an appropriate 
number of clusters; otherwise the system may not perform well. 

Kohonen Self Organizing Feature Map (SOFM) 
Example 
Kohonen Self Organizing Feature Map (SOFM) Example 

 

Purpose - Kohonen self-organizing map is a very important component in self-organization 
because it preserves topological neighborhoods from the input space to the output space (neural 
field). 

Components Introduced - LineKohonen, DiamondKohonen, SquareKohonen, 
WinnerTakeAllAxon, LinearScheduler. 

Concepts Introduced - SOFM and scheduling of learning parameters. 

 

 
STEPS 

Introduction to SOFM Example 

SOFM Network Construction 

Running the SOFM Network 

Things to Try with the SOFM Network 

What you have Learned from the Kohonen SOFM Example 

Introduction to SOFM Example 
 

This example will build a self-organizing feature map (SOFM) from a 2D space into a 2D space. 
The input is a cloud of samples that are organized in a circle around the origin. The idea is to 
create a SOFM that will adequately represent this cloud of points in input space. The SOFM 
discretizes the input probability density function. Notice that you are going to do this with several 
different types of neighborhoods, and just a few PEs. 

SOFM Network Construction 
 

Start with an Axon, a LineKohonen  and a WinnerTakeAllAxon  as 
shown in the figure below. Set the number of PEs in the Axon to 2. The LineKohonenFull Synapse 
creates a line of PEs. The WinnerTakeAllAxon is a component that wins the competition in the 
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layer (maximum or minimum value depending on the metric); i.e. only one PE in the layer will be 
active at all times. Create a WinnerTakeAllAxon with 25 elements. 

 

 

LineKohonen SOFM network 

 

The LineKohonenFull component has several parameters to be set. The first is the neighborhood, 
which normally is set at between 100% and 70% of the linear size of the layer. Here set it to 5 
(100%). The next tab is the conscience where you have to select the value of beta (small ~ 0.001) 
and gamma (large ~1 and 20). The next choice is the type of matrix used, which should select as 
dot Product. Finally you should set the learning rate of the competitive component (0.002). 

As input data, stamp a File component on the input Axon and use the CIRCLE.ASC data file, which 
will create 8 points around a circle. The cloud of points will be produced by adding uniform noise on 
top of these points. So stamp a Noise component on top of the File component and set the 
variance to 0.1 and the mean to 0. To display the data stamp a DataStorage/ScatterPlot on the 
input Axon. Also, stamp a DataStorageTransmitter on the weights access point of the 
LineKohonenFull and connect it to the DataStorage under the ScatterPlot to visualize the weights 
on the LineKohonen component. 

Running the SOFM Network 
 

Stamp a StaticControl, set the Epochs/Experiment to 1000, set the Exemplars/Epoch to 8, and run 
the example. (You will need to autoscale the ScatterPlot to see all the points.) Notice that the 
weights of the PE will start approximating the cloud of points, but fail to reach their final values. This 
is due to the fixed size of the neighborhood. So use a LinearScheduler  to decrease the size of 
the neighborhood from the initial value to a neighborhood of 1. 

Another aspect that will be introduced in this example is how to schedule a component parameter. 
This function is implemented by the Schedule family. There are three schedulers, the 
LinearScheduler, the ExpScheduler , and the LogScheduler . As the names indicate, they 
decrease or increase the parameter linearly, exponentially or logarithmically. Notice that the icons 
graphically display these three types by the shape of the curve. 

Select a LinearScheduler from the Schedule palette and drop it on the upper part of the 
LineKohonen. If you go to the inspector, and choose Access you will see that there are two access 
points of interest, the neighborhood radius and the step size. You should use the neighborhood 
radius. If you go to the schedule tab of the inspector, note that the control area will allow you to 
define the start and stop of the scheduling in number of epochs, and the parameter beta, the rate of 
increase (decrease). Since this is a LinearScheduler, to decrease the neighborhood use a negative 
constant. Notice also that the constraints area of the inspector has a minimum and a maximum. 
These are the extreme values that the parameter can take during scheduling. Since your 
neighborhood starts at 5 and goes to one, these should be the values used for maximum and 
minimum respectively. Note that the value of beta should be such as to decrease the maximum 
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value to the minimum in the number of epochs selected (i.e., beta = -0.0025). Put a MatrixViewer 
on top of the scheduler just to visualize the neighborhood parameter. Running the example again, 
you will see that the number of points in the display split when the neighborhood parameter passes 
through integer values, creating a much better approximation of the cloud of points. 

Things to Try with the SOFM Network 
 

You can change the neighborhood from LineKohonenFull to DiamondKohonen  (4 

nearest neighbors) or SquareKohonen  (8 nearest neighbors). You will find out that 
the splitting of neighborhoods is much more readily apparent. Experiment with the size of the 
original neighborhood. If the original neighborhood is large, learning will be much slower, but all 
weights are brought to the cloud of points. Smaller neighborhoods make learning faster, but you 
loose some PEs. An example of using the SquareKohonenFull can be seen by loading file 
EX11.NSB. The example in this file also illustrates some of the versatile customizing features of the 
ScatterPlot probe in NeuroSolutions. 

What you have Learned from the Kohonen SOFM Example 
 

You have learned what the self organizing map is, and how to create one. There are a few 
parameters that need to be defined in the Kohonen components. For a more in depth treatment, 
see Kohonen Self-Organizing Maps. You also learned how to schedule parameters, like for 
instance the neighborhood using the LinearScheduler. 

Character Recognition Example 
Character Recognition Example 

 

Purpose - The purpose of this example is to show how non-conventional neural models can be 
easily simulated in NeuroSolutions. You will construct a counterpropagation network, which will 
integrate the unsupervised and supervised learning paradigms. 

Components Introduced - SangersFull, ImageViewer, Noise, HebbianFull. 

Concepts Introduced - Integration of supervised and unsupervised learning models. 

 

 
STEPS 

Introduction to Character Recognition Example 

Constructing the Counterpropagation Network 
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Running the Counterpropagation Network 

Things to Try with the Counterpropagation Network 

What You have Learned from the Character Recognition Example 

Introduction to Character Recognition Example 
 

In this example you will simulate a network that will learn how to classify images (8x8) of the 10 
digits. If you used the images without any preprocessing, you would have to construct a very large 
net. This would make the recognition very sensitive to any distortions or noise in the images. 
Instead, you will perform principal component analysis on the input with a Sanger’s network (see 
Principal Component Analysis example), then classify the principal components with a multilayer 
perceptron. The ease with which these more advanced topics can be simulated in NeuroSolutions 
shows the power of the environment and the applicability of the neural network principles built into 
the package. 

Constructing the Counterpropagation Network 
 

The mechanics of building this network are very similar to those of the Principal Component 
Analysis example. Without going into the details of the construction, simply copy the breadboard 
shown in the figure below. At the input is an Axon with 64 inputs (8 Rows and 8 Cols) feeding the 
unsupervised learning layer (using a Sangers). This layer then reduces the input such that the next 
Axon has only 8 PEs. The activations of these PEs provide the projections of the input onto the 8 
principal components. These activations now feed the hidden layer of an MLP (a SigmoidAxon with 
15 PEs) which is then trained with backpropagation using the L2Criterion (10 PEs—one for each 
character). 

 

 

Construction of the character recognition example 

 

Note that the backpropagation plane does not need to span back to the input Axon, since the first 
layer is trained with unsupervised learning, which does not require the backpropagation of errors. 
Theoretically, you know that the two learning paradigms can co-exist. Nonetheless, it is remarkable 
that the simple simulation principle of breaking down global dynamics into local rules of interaction 
can implement such a complex neural system so effortlessly. 

Since this is a character recognition problem, it bests to use the ImageViewer  probe 
extensively. They should be used to visualize the input image, the principal components, and the 
output. Select the ImageViewer attached at the input. It is recommended that you have it Display 
Every 11 so it will always display a new image, but not to slow down the simulation too much. You 
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should also verify that the Normalization of the gray levels (or color) is set to Automatic. Notice that 
the colors (or gray levels) at the output are meaningless except for white, which represents the 
class. 

Now you need to configure the learning dynamics. For the SangersUnsupervised, set the Step Size 
to be 0.002. This may be too small of a value, but it ensures that there are no instabilities between 
the two learning modes. As for the learning rate of the MLP, set a Step Size of 0.01 and a 
Momentum of 0.7. Again, these may be too small, but remember that there is no point of learning a 
principal component that is not stable. For this reason, the learning of the MLP should be slower or 
at an equivalent speed of the Sanger’s. 

Finally, inject an input and a desired output into the system. From the Examples/Data directory of 
NeuroSolutions, select the file CHAR.ASC as your input. For principal component analysis the 
input data must be normalized between -1 and 1. This is done by using Data Normalization section 
in the Stream tab of the File inspector. Switch on the Normalize switch and type a -1 and a 1 into 
the Lower and Upper forms respectively. As the desired signal, use the file TARGET.ASC from the 
same directory. After you have Translated the files, double-click on each of them to view their 
contents. (see figure above for the network configuration or load file EX12.NSB) 

Running the Counterpropagation Network 
 

Select the StaticControl and enter 10 for the number of Exemplars/Epoch. From the 
BackpropControl inspector, enter 10 as the Exemplars/Update. Click on one of the ImageViewer 
windows to load the grayscale palette and then run the network. 

 

 

Monitoring the learning of the character recognition example 
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You will see the patterns being flashed through the network and the mean square error decreasing. 
After 400 epochs, the ImageViewer at the output of the net should be displaying an upward 
scrolling white bar, meaning that the highest activation corresponds to the desired pattern. Training 
can continue (try 800 epochs) until basically all the outputs are dark except the desired one, 
proving that the net has learned the task well. 

This example shows how a robust pre-processing sub-system can decrease the size of the nets 
required to learn a large task. It also has the added advantage of creating a system that is fairly 
immune to noise. 

Things to Try with the Counterpropagation Network 
 

An interesting experiment is to stop the learning and add noise to the input. Just stack a Noise 

component  from the Input palette on the File component at the input. Set the Variance (of all 
channels) to 0.2. Now set the learning on the Sanger’s to 0, Free the backprop plane, and discard 
the BackStaticControl. Now run the net again with the frozen weights. You will not be able to 
recognize many of the characters due to the noise, but notice that the white bar is still scrolling as it 
did before, meaning that there is enough information within the principal components to still 
accurately classify the patterns. 

 

 

Testing the classification ability of the system by using a noisy input 

 



 266

Another thing to try is to use forced Hebbian learning instead of the MLP. Set the Step Size of the 
SangersFull to 0.002 and remove the Noise. You also need to convert the second Axon to a 
TanhAxon to ensure that the data fed to the second layer is normalized to -1/1. Now replace the 

FullSynapse with a HebbianFull  and place a copy of the input signal (the File 
component) on top of it. This will produce forced Hebbian learning, as was demonstrated in the 
Principal Component Analysis example. Replace the L2Criterion with an Axon of 64 PEs. Copy the 
ImageViewer at the input and attach it to the output Axon. Now you have a full unsupervised 
learning system that will basically learn the same task. The learning rate for the Hebbian must be 
very slow (0.005). You will also find that the training time is much longer and that the learning is not 
as effective as the MLP. (see figure below for the configuration or load file EX12_HEB.NSB) 

 

 

Using solely unsupervised learning for the classification 

What You have Learned from the Character Recognition Example 
 

This example attempted to demonstrate that NeuroSolutions gives tremendous flexibility, namely 
the inclusion of supervised and unsupervised learning components within the same network. The 
unsupervised network worked as a feature extractor, which provided robustness to noise. It also 
enabled a drastic reduction of the size of the net required to learn the problem. You found that by 
strictly using unsupervised learning, the system was not as efficient. 

Pattern Recognition Example 
Pattern Recognition Example 

 

Purpose - This example will show how NeuroSolutions is able to mix unsupervised and supervised 
learning schemes training each part of the network separately. 

Components Introduced - GaussianAxon, ThresholdTransmitter, LinearScheduler, SoftMaxAxon, 
ConscienceFull. 

Concepts Introduced - Coordination of unsupervised and supervised learning. 

 

 
STEPS 
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Introduction to Pattern Recognition Example 

Constructing the Pattern Recognition Network 

Running the Pattern Recognition Network 

What you have Learned from the Pattern Recognition Example 

Introduction to Pattern Recognition Example 
 

In pattern recognition, feature extraction is a decisive step, because when done properly reduces 
drastically the size of the input space and keeps the separability of the data clusters. The problem 
is that feature extraction is more an art than a science, so several alternate procedures should be 
tested to see which one best fits your needs.  

The general idea is to utilize a preprocessor before the classifier. Here you will use a radial basis 
function network for the preprocessing stage, but the following networks could also be used for 
preprocessing: 

 

� Principal Component Analysis Networks 

� Kohonen Self-Organizing Networks 

 

The major step that the integration of the preprocessor brings is how to train the overall system. 
Most of the times the preprocessor is trained with unsupervised learning (competitive or Hebbian) 
to self-organize and discover features, while the back-end classifier requires supervised training. It 
will be a waste to train both systems at the same time as you did in the Introduction to Character 
Recognition example for the following reason: until the features are stable, the classifier will be 
learning the wrong thing. You can choose the learning rates of the classifier much slower than 
those of the feature extractor, but the point is that in terms of computation you are training both 
systems, but one of them will not have stable information. 

In order to guarantee efficient learning, NeuroSolutions enables the training of the front-end system 
independently of the back-end classifier. The orchestration of the training is the objective of this 
example. 

Constructing the Pattern Recognition Network 
 

Here you are going to get deeper into the configuration of components. Instead of training BOTH 
the preprocessor and the classifier at the same time as in the Introduction to Character Recognition 
example, you are going to schedule the learning into two stages. 

In order to do this, you have to break the data flow in the forward plane to avoid sending activations 
to the classifier. You are also going to tell the BackStaticControl to wait for a specified number of 
epochs before starting firing of the backprop plane. Someone has to count the number of epochs 
and automatically piece together the forward plane at the pre-specified moment. These steps are 
accomplished in the following way. 

First, construct the network shown in the figure below (note that the cracked axon should be a 

GaussianAxon ). Select the GaussianAxon and at the Axon tab of its inspector, click 
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off the data flow ON and Turn ON after RESET switches. Notice that the Axon will crack (as shown 
in the figure below) meaning that the dataflow is interrupted. Also, in the Transfer Function tab, set 
the number of PE’s to 3. 

Now click on the BackStaticControl to access its inspector. Click off the two switches Learning and 
Learn after RESET. This means that when you press the reset switch supervised learning will not 
start automatically. Notice that the red double dial was transformed to a single gray dial to 
demonstrate that its functionality has been changed. 

 

 

Construction of the pattern recognition network 

 

Now that these features are disabled, something must turn them on at the right time. Towards that 

goal, you will use a ThresholdTransmitter . Select the ThresholdTransmitter above the 
StaticController and open its corresponding inspector. Set the threshold to 10, and click the greater 
than (>) switch. This means that when the controller epoch counts pass 10 the 
ThresholdTransmitter will broadcast a command. The problem is who is going to listen? 

If you go to the Transmitter tab of the ThresholdTransmitter inspector, you will find a list of possible 
receivers of the message. First select the GaussianAxon as the receiver (note that the components 
are listed in the order in which they were pasted on the breadboard). After clicking on it, the action 
list will display the possible actions. Select the setFireNext action. If this action says (FALSE) you 
will need to set it to true by typing TRUE in the Parameter form cell and pressing the set button. 
Now, enable this action by double clicking the setFireNext(TRUE) line. Notice that a "C" will appear 
meaning that a connection was made. Now, when the ThresholdTransmitter fires, the Axon will turn 
on data flow and the right side of the topology (the classifier) will be able to learn. Select the 
assignCenters() and assignVariance() actions and double click them to connect them also. This will 
assign the centers and the variance of the GaussianAxon based on the weights when the 
ThresholdTransmitter fires. 

Now select the ConscienceFull as the receiver. Double click the action setLearning(FALSE). This 
will stop the learning in the preprocessor section when the ThresholdTransmitter fires. You also 
need to enable the backpropagation learning for the classifier section when the 
ThresholdTransmitter fires. To do this, select the BackStaticControl as the receiver and double click 
the setLearning(TRUE) action. 
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Transmitter Inspector 

 

Next, you need to schedule the learning rate of the ConscienceFull  component. It 
should be decreased linearly. Click on the LinearScheduler  above the ConscienceFull 
component to open its inspector. Within the Access tab, select the Unsupervised Step Size as the 
access point. Going back to the schedule tab, you should set the start epoch to 1 and the end 
epoch to 10 in this case, since the unsupervised run was set above at 10 iterations. 

You still have to tell the scheduler how you want to schedule the parameter. In this case you want 
to decrease the learning rate, so beta should be a negative value. How negative depends on the 
annealing rate that you want. The right side of the inspector displays two constraint values, a 
minimum and a maximum. In this case the maximum should be chosen equal to the initial setting of 
the ConscienceFull learning rate (use .01). The minimum constraint is the smallest learning rate 
that you want for this application (use .001). Now beta can be easily computed, because it should 
decrease the step size from the maximum to the minimum in 10 iterations. The value of beta can 
be approximated, since the bounds are always met. Data that can be used for training this network 
are located in files FAULT.ASC for the input file and FAULTT.ASC for the desired file. 

Running the Pattern Recognition Network 
 

Now you are ready to run the pattern recognition network. Before pressing the run button, notice 
that the dataflow is interrupted by the cracked axon after the ConscienceFull, i.e. you will train the 
RBF preprocessor for 10 iterations alone, and then the classifier for another 40 iterations (for 
Epochs/Experiment = 50). 

Notice that the scheduler value starts at 0.01 and decreases linearly. Notice also that the cost is at 
zero (for the first 10 Epochs), signaling that the classifier is not learning. When the epoch counter 
passes over 10, the cracked Axon is reconstructed into a GaussianAxon, and the MSE starts 
changing. Notice how much slower the epoch counter becomes. This is the reason you 
implemented all these features, to make the simulations much more efficient. 

If you stamp and open a Hinton over the ConscienceFull, you will find that during the first 10 
iterations the weights are changing, fast at first, then very slowly since the learning rates are being 
decreased be the LinearScheduler. After 10 iterations, the Hinton diagram will become unchanged, 
signaling that the weights quit adapting. 
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The procedure just described also applies to a PCA network and a Kohonen SOFM Network. You 
should try these networks to have a feel for how they behave (see Construction of the Pattern 
Recognition Network figure for the configuration or load the file EX13.NSB). 

What you have Learned from the Pattern Recognition Example 
 

In this example you have learned a very important lesson on how to combine data flow for 
unsupervised and supervised learning. The synchronization aspects that were described in this 
example are very valuable to design sophisticated simulations. 

Time Series Prediction Example 
Time Series Prediction Example 

 

Purpose - The purpose of this example is to show how artificial neural networks can be used to 
predict chaotic time series. To show this, you will construct a time lagged recurrent net (TLRN) that 
will be designed to predict the next point (or the next few points ahead) of a time series. 

Components Introduced - LinearAxon, LaguarreAxon. 

Concepts Introduced - Performing dynamic modeling with time lagged recurrent neural (TLRN) 
networks. 

 

 
STEPS 

Introduction to Time Series Prediction Example 

Constructing the TLRN Network 

Running the TLRN Network 

What You have Learned from the Time Series Prediction Example 

Introduction to Time Series Prediction Example 
 

Dynamic modeling is the process of identifying the system that produced a time series, assumed to 
be created by a dynamically system. You will be using a time series produced by the Mackey-Glass 
system, having a delay of 30. This system is mildly chaotic for this choice of delay (largest 
Lyapunov exponent of 0.02 bits/sec). 

Our goal is to predict the Mackey-Glass system using a time lagged recurrent neural network. A 
time lagged recurrent network has the static PEs substituted by PEs with short term memories, 
such as the gamma, the Laguarre or the tap delay line. 

How can you construct and train such an ANN system? The core idea is that you should train the 
ANN as a nonlinear predictor, i.e. the input is delayed by L samples before being presented to the 
net, and the input signal without delays becomes the desired response. Since it is best to match a 
time series, and as long as the network is recurrent, you should use trajectory learning as your 
learning paradigm. For the case of prediction with a net using TDNNAxon (tap delay line) memory 
structures, trajectory learning is equivalent to static backpropagation in batch mode (the batch is 
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the length of the trajectory), but as soon as you have a net that is recurrent, this equivalency no 
longer holds. 

Constructing the TLRN Network 
 

Stamp a LaguarreAxon  for the input, a TanhAxon, another LaguarreAxon, a 

LinearAxon , and two FullSynapse components and connect them as shown in the 
figure below. Note that the Laguarre is a local recurrent memory structure. Set the number of taps 
of the LaguarreAxon at the input to 4. Set the number of taps of the LaguarreAxon in the hidden 
layer to 2. Set the number of PEs of the TanhAxon to 8 (thus, you must also set the number of 
Rows of the hidden layer LaguarreAxon to 8). You will use the L2Criterion and Trajectory learning 
as the gradient descent paradigm (using a Normalized Step Size of 0.5 and Momentum Rate of 0.7 
except for the Momentum components above the two BackLaguarreAxons for which you should 
use a Step Size of .05 and a Momentum Rate of .1). Stamp a DynamicControl and use a trajectory 
(Samples/Exemplar in the DynamicControl) of 50 samples and set the Exemplars/Epoch to 6. Set 
the back trajectory (Samples/Exemplar in the BackDynamicControl) to 50 samples. The gradients 
will be updated at each exemplar (verify that the Exemplars/Update is set to 1). Now stamp two File 
components and use the file MG300.ASC as both the input and the desired signal. This is a well-
known chaotic time series. Offset the desired signal file by three samples, which can be 
accomplished by pressing the customize button in file property page of the File inspector. This will 
show a panel where you should click the segment switch on, enter 3 in the offset, and enter 300 as 
the duration. This same procedure should be done with the input file, except use 0 offset and 300 
duration. Set the Normalize switch for both the input and desired signal and enter -1 and 1 for the 
Lower and Upper values of the normalization range, respectively. 

 

 

Construction of the prediction network 
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Finally, bring a MegaScope/DataStorage to the network output (the Activity access point of the 
LinearAxon), place a DataStorageTransmitter on both File components, and have them transmit to 
the DataStorage. From the DataStorage inspector, configure a Buffer Size of 300 samples, which 
will Message Every 300 samples. You will also want to stamp a MatrixViewer on the Average Cost 
access point of the L2Criterion to monitor the MSE (see figure above for the configuration or load 
file EX14.NSB) 

Running the TLRN Network 
 

Shortly after running the network, you will see that the net output resembles the desired signal very 
closely. It is informative to watch the net output "mold" to the desired signal. First the gross shape 
is fitted, and then the learning concentrates on the finer (higher frequency) detail. 

 

 

Mackey-Glass input, output, and desired after training 

What You have Learned from the Time Series Prediction Example 
 

You constructed an ANN, which was able to predict a chaotic time series. You did this using a 
TLRN network with Laguarre memories. Notice that the memory can be placed anywhere in the 
network structure. In this example it was placed at the input and the hidden PEs. 

Neural Network Components 
Components 

 

 

NeuroSolutions 

 

NeuroDimension, Incorporated. 

Gainesville, Florida 
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Purpose 

This chapter provides a detailed description of each component available in NeuroSolutions. 

 

Engine Family 
 

Ancestor: ImageView Family 

 

All NeuroSolutions components will belong to the Engine family. Being an Engine provides 
communication and control of inspectors and animation windows. The Engine inspector provides 
the ability to have the component's animation window opened after the component is unarchived, 
and the ability to fix components to their superengine. 

 

User Interaction: 

Inspector 

Macro Actions  

Activation Family 
Axon Family 

Axon 

 

 

 

 

Family: Axon Family 

Superclass: Soma 

Backprop Dual: BackAxon 

 

Description: 



 274

The Axon simply performs an identity map between its input and output activity. The Axon is the 
first member of the Axon family, and all subsequent members will subclass its functionality. 
Furthermore, each subclass will use the above icon with a graph of their activation function 
superimposed on top. 

 

Activation Function: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

       Macro Actions 

  

 

  See Also 

BiasAxon 
 

 
 

 

Family: Axon Family 

Superclass: Axon  

Backprop Dual: BackBiasAxon  

 

Description: 

The BiasAxon simply provides a bias term, which may be adapted. Most nonlinear axons are 
subclasses of this component in order to inherit this bias characteristic. 
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Activation Function: 

 

 

 

Note: The Weights access point of the BiasAxon provides access to the Bias vector (  in the 
above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

 

 

  See Also 

CombinerAxon 

 

 

 

 

Family: Axon Family 

Superclass: Axon  

Backprop Dual: BackCombinerAxon  

 

Description: 
The CombinerAxon multiplies each neuron from the top half of the Axon with the corresponding 
neuron from the bottom half of the Axon and overwrites the activity of the top neuron with this 
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product. This Axon has twice as many inputs as it has outputs. This component is normally used 
within the neural-fuzzy architecture built by the NeuralBuilder. 

 

Activation Function: 

 

 

 

where N is equal to the number of input PEs and i < N/2. 

 

User Interaction: 

Inspector 

Drag and Drop 

Access Points 

 

GaussianAxon 
 

 
 

 

Family: Axon Family 

Superclass: LinearAxon 

Backprop Dual: None 

 

Description: 

The GaussianAxon implements a radial basis function layer. There is a significant difference 
between the GaussianAxon and other members of the Axon family. The GaussianAxon only 
responds significantly to a local area of the input space (where the peak of the Gaussian is 
located). It is therefore considered to be a local function approximator. The center of the Gaussian 
is controlled using the bias weight inherited from the BiasAxon, and its width using the β parameter 
inherited from the LinearAxon. 

 

Activation Function: 
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Note: The Weights access point of the GaussianAxon provides access to the Bias vector (  in the 
above equation). These weights control the locations of the centers of the Gaussian functions. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example  

DLL Implementation 

Macro Actions  

LinearAxon 

 

 

 

 

Family: Axon Family 

Superclass: BiasAxon 

Backprop Dual: BackLinearAxon 

 

Description: 

The LinearAxon implements a linear axon with slope and offset control. It is therefore more 
powerful than the BiasAxon (because it implements an affine transform). The bias is inherited from 
the BiasAxon and can be adapted, but the slope is controlled by an additional parameter β, which 
is not adaptive. 

 

Activation Function: 

 



 278

 

 

Note: The Weights access point of the LinearAxon provides access to the Bias vector (  in the 
above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

Macro Actions  

LinearSigmoidAxon 

 

 

 

 

Family: Axon Family 

Superclass: LinearAxon 

Backprop Dual: BackSigmoidAxon 

 

Description: 

The LinearSigmoidAxon substitutes the intermediate portion of the sigmoid by a line of slope β, 
making it a piecewise linear approximation of the sigmoid. This PE has an input-output map that is 
discontinuous, so it is not recommended for learning. However, when used with the 
BackSigmoidAxon it can learn. This component is more computationally efficient that the 
SigmoidAxon (it is much easier to compute the map). 

 

Activation Function: 
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where  is the scaled and offset activity inherited from the LinearAxon. 

 

Note: The Weights access point of the LinearSigmoidAxon provides access to the Bias vector (  
in the above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

LinearTanhAxon 

 

 

 

 

Family: Axon Family 

Superclass: LinearAxon 

Backprop Dual: BackTanhAxon 

 

Description: 

The LinearTanhAxon substitutes the intermediate portion of the tanh by a line of slope β, making it 
a piecewise linear approximation of the tanh. This PE has an input-output map that is 
discontinuous, so it is not recommended for learning. However, when used with the BackTanhAxon 
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it can learn. This component is more computationally efficient that the TanhAxon (it is much easier 
to compute the map). 

 

Activation Function: 

 

 

 

where  is the scaled and offset activity inherited from the LinearAxon. 

 

Note: The Weights access point of the LinearTanhAxon provides access to the Bias vector (  in 
the above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

NormalizedAxon 

 

 

 

 

Family: Axon Family 

Superclass: Axon  

Backprop Dual: BackNormalizedAxon  
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Description: 
The NormalizedSigmoidAxon divides each neuron by the sum of the inputs. This component is 
normally used within the neural-fuzzy architecture built by the NeuralBuilder. 

 

Activation Function: 

 

 

 

User Interaction: 

Inspector 

Drag and Drop 

Access Points 

 

NormalizedSigmoidAxon 

 

 

 

 

Family: Axon Family 

Superclass: SigmoidAxon  

Backprop Dual: BackNormalizedSigmoidAxon  

 

Description: 
The NormalizedSigmoidAxon applies a scaled and biased sigmoid function to each neuron in the 
layer. The scaling factor and bias are inherited from the SigmoidAxon. In addition, each neuron is 
scaled by the ratio of the neuron's input to the sum of the inputs. This component is normally used 
within the neural-fuzzy architecture built by the NeuralBuilder. 

 

Activation Function: 
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where  is the activation function inherited from the SigmoidAxon. 

 

User Interaction: 

Inspector 

Drag and Drop 

Access Points 

 

SigmoidAxon 

 

 

 

 

Family: Axon Family 

Superclass: LinearAxon 

Backprop Dual: BackSigmoidAxon 

 

Description: 

The SigmoidAxon applies a scaled and biased sigmoid function to each neuron in the layer. The 
scaling factor and bias are inherited from the LinearAxon. The range of values for each neuron in 
the layer is between 0 and 1. Such nonlinear elements provide a network with the ability to make 
soft decisions. 

 

Activation Function: 
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where  is the scaled and offset activity inherited from the LinearAxon. 

 

Note: The Weights access point of the SigmoidAxon provides access to the Bias vector (  in the 
above equation). 

 

User Interaction: 

Inspector 

Drag and Drop 

Access Points 

Example 

DLL Implementation  

 

SoftMaxAxon 
 

 

 

 

 

Family: Axon Family 

Superclass: LinearAxon 

 

Description: 

The SoftMaxAxon is a component used to interpret the output of the neural net as a probability. In 
order for a set of numbers to constitute a probability density function, their sum must equal one. 

Often the output of a neural network produces a similarity measure. In order to convert this 
similarity measure to a probability, the SoftMaxAxon is used at the output of the network. 

 

Activation Function: 
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where  is the scaled and offset activity inherited from the LinearAxon. 

 

Note: The Weights access point of the SoftMaxAxon provides access to the Bias vector (  in the 
above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

TanhAxon 

 

 

 

 

Family: Axon Family 

Superclass: LinearAxon 

Backprop Dual: BackTanhAxon 

 

Description: 

The TanhAxon applies a bias and tanh function to each neuron in the layer. This will squash the 
range of each neuron in the layer to between -1 and 1. Such nonlinear elements provide a network 
with the ability to make soft decisions. 

 

Activation Function: 
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where  is the scaled and offset activity inherited from the LinearAxon. 

 

Note: The Weights access point of the TanhAxon provides access to the Bias vector (  in the 
above equation). 

 

User Interaction: 

Inspector 

Drag and Drop 

Access Points 

Example 

DLL Implementation 

ThresholdAxon 

 

 

 

 

Family: Axon Family 

Superclass: BiasAxon 

 

Description: 

The ThresholdAxon will output a 1 if the input plus bias are positive and -1 otherwise. Such 
nonlinear elements provide a network with the ability to implement hard decision functions. 

 

Activation Function: 
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where  is the offset activity inherited from the BiasAxon. 

 

Note: The Weights access point of the ThresholdAxon provides access to the Bias vector (  in the 
above equation). 

 

User Interaction: 

Inspector 

Drag and Drop 

Access Points 

Example 

DLL Implementation 

WinnerTakeAllAxon 

 

 

 

 

Family: Axon Family 

Superclass: Axon 

 

Description: 

The winner-take-all is a special type of Axon that ensures that only one PE is active at all times (the 
winner). So the output of all the PEs of that layer are compared, and the one that is largest (or 
smallest) wins the competition. 

 

Activation Function: 
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User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

 

Macro Actions  

Access Points 

Axon Family Access Points  

 

Family: Axon Family 

 

Access points allow simulation components that are not part of the neural network topology to 
probe and/or alter data flowing through the network. All members of the Axon family share a 
standard functional form. The sub-system block diagram given in Axon Family depicted this 
functionality. Access to data flowing through any axon is provided at the following three access 
points, 

 

 

 

Pre-Activity Access: 

Attaches the Access component to the vector sum just prior to applying the activation function 
.  It is important to realize that this access point does not correspond to any physical 

storage within the simulation. In other words, data may be injected or probed as activity flows 
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through the network, but is then immediately lost. Trying to alter the pre-activity out of sync with the 
network data flow will actually alter the data storage for Activity Access. 

Activity Access: 

Attaches the Access component to the vector of activity immediately after the function map 
 

Weights Access: 

All adaptive weights within the axon are reported by attaching to Weight Access. This data may be 
reported in vector or matrix form, depending on how the axon stores it.  If a component does not 
have any weights, this access point will not appear in the inspector. 

Winning PE Access (WinnerTakeAllAxon only): 

With a "winner-take-all" output  of a  Self-Organizing Map (SOM), the winning PE gets a value of 
1 and all the others get a value of 0. This access point provides the numeric value of the winning 
PE. 

 

 

  See Also 

DLL Implementation 

Axon DLL Implementation 

 

 

 

 

Component: Axon 

Protocol: PerformAxon 

 

Description: 

The Axon component does not modify the data fed into the processing elements (PEs). 

 

Code: 
 
void performAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
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 ) 
{ 
 
} 

BiasAxon DLL Implementation 

 

 

 

 

Component: BiasAxon  

Protocol: PerformBiasAxon 

 

Description: 

The BiasAxon component adds a bias term to each processing element (PE). The bias vector 
contains the bias term for each PE and can be thought of as the Axon’s adaptable weights. 

 

Code: 
 
void performBiasAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) 
  data[i] += bias[i]; 
} 

GaussianAxon DLL Implementation 
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Component: GaussianAxon  

Protocol: PerformLinearAxon 

 

Description: 

The GaussianAxon applies a gaussian function to each neuron in the layer. The bias vector 
determines the center of the gaussian for each PE, and the beta term determines the width of the 
gaussian for all PEs. The range of values for each neuron in the layer is between 0 and 1. 

 

Code: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  data[i] += bias[i]; 
  data[i] = (NSFloat)exp(-beta*data[i]*data[i]); 
 } 
} 

LinearAxon DLL Implementation 

 

 

 

 

Component: LinearAxon  

Protocol: PerformLinearAxon 

 

Description: 
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The LinearAxon component adds to the functionality of the BiasAxon by adding a beta term that is 
the same for all processing elements (PEs). This scalar specifies the slope of the linear transfer 
function. 

 

Code: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) 
  data[i] = beta*data[i] + bias[i]; 
} 

LinearSigmoidAxon DLL Implementation 

 

 

 

 

Component: LinearSigmoidAxon  

Protocol: PerformLinearAxon 

 

Description: 

The implementation for the LinearSigmoidAxon is the same as that of the LinearAxon except that 
the transfer function is clipped at 0 and 1. 

 

Code: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
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 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  data[i] = beta*data[i] + bias[i]; 
  if (data[i] < 0.0f) 
   data[i] = 0.0f; 
  else 
   if (data[i] > 1.0f)  
    data[i] = 1.0f; 
 }  
} 

LinearTanhAxon DLL Implementation 

 

 

 

 

Component: LinearTanhAxon  

Protocol: PerformLinearAxon 

 

Description: 

The implementation for the LinearTanhAxon is the same as that of the LinearAxon except that the 
transfer function is clipped at -1 and 1. 

 

Code: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  data[i] = beta*data[i] + bias[i]; 
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  if (data[i] < -1.0f) 
   data[i] = -1.0f; 
  else 
   if (data[i] > 1.0f)  
    data[i] = 1.0f; 
 } 
} 

SigmoidAxon DLL Implementation 

 

 

 

 

Component: SigmoidAxon  

Protocol: PerformLinearAxon 

 

Description: 

The SigmoidAxon applies a scaled and biased sigmoid function to each neuron in the layer. The 
range of values for each neuron in the layer is between 0 and 1. 

 

Code: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 
 for (i=0; i<length; i++) 
  data[i] = 1.0f / (1.0f + (NSFloat)exp(-(beta*data[i] + 
bias[i]))); 
} 

SoftMaxAxon DLL Implementation 
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Component: SoftMaxAxon  

Protocol: PerformLinearAxon 

 

Description: 

The SoftMaxAxon is a component used to interpret the output of the neural net as a probability, 
such that the sum of the outputs is equal to one. Unlike the WinnerTakeAllAxon, this component 
outputs positive values for the non-maximum PEs. The beta term determines how hard or soft the 
max function is. A high beta corresponds to a harder max; meaning that the PE with the highest 
value is accentuated compared to the other PEs. The bias vector has no effect on this component. 
The range of values for each neuron in the layer is between 0 and 1. 

 

Code: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 NSFloat sum=(NSFloat)0.0; 
 
 for (i=0; i<length; i++) { 
  data[i] = beta*data[i]; 
  sum += data[i] = (NSFloat)exp(data[i]); 
 } 
 for (i=0; i<length; i++) 
  data[i] /= sum; 
} 

TanhAxon DLL Implementation 
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Component: TanhAxon  

Protocol: PerformLinearAxon 

 

Description: 

The TanhAxon applies a scaled and biased hyperbolic tangent function to each neuron in the layer. 
The range of values for each neuron in the layer is between -1 and 1. 

 

Code: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) 
  data[i] = (NSFloat)tanh(beta*data[i] + bias[i]); 
} 

ThresholdAxon DLL Implementation 

 

 

 

 

Component: ThresholdAxon  

Protocol: PerformBiasAxon 

 

Description: 

The ThresholdAxon component uses the bias term of each processing element (PE) as a 
threshold. If the value of a given PE is less than or equal to its corresponding threshold, then this 
value is set to -1. Otherwise, the PE’s value is set to 1.  
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Code: 
 
void performBiasAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  data[i] += bias[i]; 
  data[i] = data[i] > 0? (NSFloat)1.0: (NSFloat)-1.0; 
 } 
} 

WinnerTakeAllAxon DLL Implementation 

 

 

 

 

Component: WinnerTakeAllAxon  

Protocol: PerformAxon 

 

Description: 

The WinnerTakeAllAxon component determines the processing element (PE) with the highest 
value and declares it as the winner. It then sets the value of the winning PE to 1 and the rest to 0.  

 

Code: 
 
void performAxon( 
 DLLData *instance,     // Pointer to instance data 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 register int i, length=rows*cols, winner=0; 
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 for (i=1; i<length; i++) 
  if (data[i] > data[winner]) 
   winner = i; 
 for (i=0; i<length; i++) 
  data[i] = (NSFloat)0.0; 
 data[winner] = (NSFloat)1.0; 
} 

Examples 

Axon Example 

 

 

 

 

Component: Axon 

 

The Axon’s activation function is the identity map. It is normally used just as a storage unit. Recall 
however, that all axons have a summing junction at their input and a node junction at their output. 
The Axon will often be used purely to accumulate/distribute vectors of activity to/from other network 
components. 

 

The figure below illustrates the output of an Axon with a ramp function as the input. The ramp in 
this example provides a sweep of 100 points from [-1,1). Notice that the output is equal to the input 
as expected. To experiment with this example, load the breadboard AxonExample.nsb. 
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BiasAxon Example 

 

 

 

 

Component: BiasAxon  

 

The BiasAxon will typically be used at the network's output, or as a superclass of most nonlinear 
axons. There are very few applications requiring the BiasAxon class, rather than a subclass, to be 
instantiated and used directly. 

 

The figure below illustrates the output of a BiasAxon with a ramp function as the input. The ramp in 
this example provides a sweep of 100 points from [-1,1). The Bias has been set to .5 by stamping a 
MatrixEditor on the Weights access point of the BiasAxon and entering .5 (see figure below). 
Increasing the Bias has the affect of shifting the output up while decreasing the Bias has the affect 
of shifting the output down. Notice that the output is equal to the input plus the Bias as expected. 
To experiment with this example, load the breadboard BiasAxonExample.nsb. 
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GaussianAxon Example 

 

  

 

 

Component: GaussianAxon  

 

The GaussianAxon is at the core of the network topology called Radial Basis Function (RBF). It has 
been shown that with a sufficient number of PEs, the RBF outputs can be linearly combined to 
produce any input-output map. 

 

The figure below illustrates the output of a GaussianAxon with a ramp function as the input. The 
ramp in this example provides a sweep of 100 points from [-1,1). The Bias has been set to -.25 by 
stamping a MatrixEditor on the Weights access point of the GaussianAxon and entering -.25 (see 
figure below). Increasing the Bias has the affect of shifting the center of the Gaussian function to 
the left while decreasing the Bias has the affect of shifting the center of the Gaussian function to 
the right. The width of the Gaussian function is controlled through the choice of Beta within the 
Transfer Function property page of the GaussianAxon Inspector. Increasing Beta decreases the 
width and vice versa. Notice that the output is a Gaussian function as expected. To experiment with 
this example, load the breadboard GaussianAxonExample.nsb. 
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LinearAxon Example 

 

 

 

 

Component: LinearAxon 

 

The figure below illustrates the output of a LinearAxon with a ramp function as the input. The ramp 
in this example provides a sweep of 100 points from [-1,1). The Bias has been set to 1 by stamping 
a MatrixEditor on the Weights access point of the LinearAxon and entering 1 (see figure below). 
Increasing the Bias has the affect of shifting the output up while decreasing the Bias has the affect 
of shifting the output down. The scale factor can be controlled through the choice of Beta within the 
Transfer Function property page of the LinearAxon Inspector. Increasing Beta increases the slope 
of the output and vice versa. Notice that the output is a scaled and shifted version of the input as 
expected. To experiment with this example, load the breadboard LinearAxonExample.nsb. 

 



 301

 

LinearSigmoidAxon Example 

 

 

 

 

Component: LinearSigmoidAxon 

 

The figure below illustrates the output of a LinearSigmoidAxon with a ramp function as the input. 
The ramp in this example provides a sweep of 100 points from [-2,2). The Bias has been set to 0 by 
stamping a MatrixEditor on the Weights access point of the LinearSigmoidAxon and entering 0 (see 
figure below). Increasing the Bias has the affect of shifting the knee of the output to the left while 
decreasing the Bias has the affect of shifting the knee of the output to the right. The slope of the 
linear region can be controlled through the choice of Beta within the Transfer Function property 
page of the LinearSigmoidAxon Inspector. Increasing Beta increases the slope of the linear region 
and vice versa. Of course, increasing Beta also decreases the range of the inputs that the PE can 
accept without saturating and vice versa. To experiment with this example, load the breadboard 
LinearSigmoidAxonExample.nsb. 
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LinearTanhAxon Example 

 

 

 

 

Component: LinearTanhAxon 

 

The figure below illustrates the output of a LinearTanhAxon with a ramp function as the input. The 
ramp in this example provides a sweep of 100 points from [-3,3). The Bias has been set to 1 by 
stamping a MatrixEditor on the Weights access point of the LinearTanhAxon and entering 1 (see 
figure below). Increasing the Bias has the affect of shifting the knee of the output to the left while 
decreasing the Bias has the affect of shifting the knee of the output to the right. The slope of the 
linear region can be controlled through the choice of Beta within the Transfer Function property 
page of the LinearTanhAxon Inspector. Increasing Beta increases the slope of the linear region and 
vice versa. Of course, increasing Beta also decreases the range of the inputs that the PE can 
accept without saturating and vice versa. To experiment with this example, load the breadboard 
LinearTanhAxonExample.nsb. 
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SigmoidAxon Example 

 

  

 

 

Component: SigmoidAxon  

 

The SigmoidAxon will typically be used as hidden and output layers in MLP topologies. If used in 
the output layer, it is important to verify that the desired signal is normalized to between 0 and 1. 

 

The figure below illustrates the output of a SigmoidAxon with a ramp function as the input. The 
ramp in this example provides a sweep of 100 points from [-6,6). The Bias has been set to 1.5 by 
stamping a MatrixEditor on the Weights access point of the SigmoidAxon and entering 1.5 (see 
figure below). Increasing the Bias has the affect of shifting the knee of the output to the left while 
decreasing the Bias has the affect of shifting the knee of the output to the right. The slope of the 
linear region can be controlled through the choice of Beta within the Transfer Function property 
page of the SigmoidAxon Inspector. Increasing Beta increases the slope of the linear region and 
vice versa. Of course, increasing Beta also decreases the range of the inputs that the PE can 
accept without saturating and vice versa. To experiment with this example, load the breadboard 
SigmoidAxonExample.nsb. 
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SoftMaxAxon Example 

 

 

 

 

Component: SoftMaxAxon  

 

The SoftMaxAxon component should be used as the output of any MLP to allow interpretation of 
the output as a probability, as normally is the case in classification. 

 

The figure below illustrates the 3 outputs (grouped at the top of the MegaScope) of a SoftMaxAxon 
(3 PEs) with a sine function, a triangle function, and a ramp function as the inputs (grouped at the 
bottom of the MegaScope). Notice that at any point in time, the 3 outputs sum to one that is 
required for each of the outputs to be interpreted as a probability. To experiment with this example, 
load the breadboard SoftMaxAxonExample.nsb. 
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TanhAxon Example 

 

 

 

 

Component: TanhAxon  

 

The TanhAxon will typically be used as hidden and output layers in MLP topologies. If used in the 
output layer, it is important to verify that the desired signal is normalized to between -1 and 1. 

 

The figure below illustrates the output of a TanhAxon with a ramp function as the input. The ramp in 
this example provides a sweep of 100 points from [-6,6). The Bias has been set to -1.5 by stamping 
a MatrixEditor on the Weights access point of the TanhAxon and entering -1.5 (see figure below). 
Increasing the Bias has the affect of shifting the knee of the output to the left while decreasing the 
Bias has the affect of shifting the knee of the output to the right. The slope of the linear region can 
be controlled through the choice of Beta within the Transfer Function property page of the 
TanhAxon Inspector. Increasing Beta increases the slope of the linear region and vice versa. Of 
course, increasing Beta also decreases the range of the inputs that the PE can accept without 
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saturating and vice versa. To experiment with this example, load the breadboard 
TanhAxonExample.nsb. 

 

 

ThresholdAxon Example 

 

 

 

Component: ThresholdAxon  

 

The ThresholdAxon will typically be used as hidden layers in non-adaptive (hardwired) topologies 
such as the Hopfield net and McCulloch-Pitts models. 

 

The figure below illustrates the output of a ThresholdAxon with a ramp function as the input. The 
ramp in this example provides a sweep of 100 points from [-1,1). The Bias has been set to .5 by 
stamping a MatrixEditor on the Weights access point of the ThresholdAxon and entering .5 (see 
figure below). Increasing the Bias has the affect of shifting the knee of the output to the left while 
decreasing the Bias has the affect of shifting the knee of the output to the right. With the Bias set to 
.5 as in the figure below, this means that any input less than -.5 will be output as -1 and any input 
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greater than -.5 will be output as 1. This is illustrated on the MegaScope in the figure below. To 
experiment with this example, load the breadboard ThresholdAxonExample.nsb. 

 

 

WinnerTakeAllAxon Example 

 

 

 

 

Component: WinnerTakeAllAxon 

 

The WinnerTakeAllAxon simulates natural selection and is normally used to create the output of a 
Kohonen network. It can also be used as a gating function. 

 

The figure below illustrates the 3 outputs (grouped at the top of the MegaScope) of a 
WinnerTakeAllAxon (3 PEs) with a sine function, a triangle function, and a ramp function as the 
inputs (grouped at the bottom of the MegaScope). Notice that when the sine function is maximum, 
the corresponding output (shown in black) is 1. The same principle holds for the triangle function 
and the ramp function. Within the Winner property page of the WinnerTakeAllAxon inspector, the 
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user can choose whether the maximum value or the minimum value wins. To experiment with this 
example, load the breadboard WinnerTakeAllAxonExample.nsb. 

 

 

Macro Actions 

Axon 

Axon Macro Actions 
Overview Superclass Macro Actions 

Action Description 
cols  The number of columns of PE’s for the Axon. 
 
fireNext  Returns the current "Data Flow ON" setting 
 
fireNextOnReset  Returns the current "Turn Data Flow ON after RESET" setting 
 
rows  The number of rows of PE’s for the Axon. 
 
setCols Sets  the number of columns of PE’s for the Axon. 
 
setDimensions  Sets the number of rows and columns of PE’s for the Axon. 
 
setFireNext  Sets the "Data Flow ON" setting. 
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setFireNextOnReset Sets the "Turn Data Flow ON after RESET" setting. 
 
setRows  Sets  the number of rows of PE’s for the axon. 
 

setRows 
Overview Macro Actions 

Syntax 

componentName.setRows(rows) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
rows int Number of rows of PE’s for the Axon (see "Rows" within the Axon Inspector ). 

 

 

 

 

 

cols 
Overview Macro Action 

Syntax 

componentName.cols() 

Parameters Type Description 
return int Number of columns of PE’s for the Axon (see "Cols" within the Axon Inspector ). 
 
componentName  Name defined on the engine property page. 
 

fireNext 
Overview Macro Actions 

Syntax 

componentName.fireNext() 

Parameters Type Description 
return BOOL When TRUE, data flows through the axon (see "Data Flow On" within the Axon 
Inspector). 
 
componentName  Name defined on the engine property page. 
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fireNextOnReset 
Overview Macro Actions 

Syntax 

componentName.fireNextOnReset() 

Parameters Type Description 
return BOOL When TRUE, data flow resumes after the network is reset (see "Turn Data Flow 
On After Reset" within the Axon Inspector ). 
 
componentName  Name defined on the engine property page. 
 

rows 
Overview Macro Actions 

Syntax 

componentName.rows() 

Parameters Type Description 
return int Number of rows of PE’s for the Axon (see "Rows" within the Axon Inspector ). 
 
componentName  Name defined on the engine property page. 

 

 

setCols 
Overview Macro Actions 

Syntax 

componentName.setCols(cols) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
cols int The number of columns of PE’s for the Axon (see "Cols" within the Axon 
Inspector). 

 

setDimensions 
Overview Macro Actions 
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Syntax 

componentName.setDimensions(rows, cols) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
rows int Number of rows of PE’s for the Axon (see "Rows" within the Axon Inspector ). 
cols int The number of columns of PE’s for the Axon (see "Cols" within the Axon 
Inspector). 
 

 

setFireNext 
Overview Macro Actions 

Syntax 

componentName.setFireNext(fireNext) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fireNext BOOL When TRUE, data flows  through the axon (see "Data Flow On" within the Axon 
Inspector). 
 
 

 

setFireNextOnReset 
Overview Macro Actions 

Syntax 

componentName.setFireNextOnReset(fireNextOnReset) 

Parameters  Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fireNextOnReset BOOL When TRUE, data flow resumes after the network is reset (see "Data 
Flow Turn On After Reset" within the Axon Inspector ). 
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Gaussian Axon 

GaussianAxon Macro Actions 
Overview Superclass Macro Actions 

Action Description 
assignCenters  Sets the centers (weights) of the Axon’s PEs from the FullSynapse that is feeding 
it. 
 
assignVariance  Sets the widths of the Axon’s PEs from the FullSynapse that is feeding it. 
 
neighbors  Returns the nearest neighbors setting (P). 
 

setEngineData  Sets the gaussian widths (β) for each of the axon's processing elements. 
 
setNeighbors  Sets the nearest neighbors setting (P). 
 

assignCenters 
Overview Macro Actions 

Syntax 

componentName.assignCenters() 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 

assignVariance 
Overview Macro Actions 

Syntax 

componentName.assignVariance() 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 

neighbors 
Overview Macro Actions 

Syntax 

componentName.neighbors() 

Parameters Type Description 
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return int Number of nearest neighbors for computation of variance (see "P" within the 
GaussianAxon Inspector ). 
 
componentName  Name defined on the engine property page. 
 

setEngineData 
Overview Macro Actions 

Syntax 

componentName.setEngineData(data) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
data variant An array of single-precision floating point values that contains the gaussian 
widths (β) for each of the axon's processing elements (see "Variance" within the GaussianAxon 
Inspector ). 
 

setNeighbors 
Overview Macro Actions 

Syntax 

componentName.setNeighbors(neighbors) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
neighbors int Number of nearest neighbors for computation of variance (see "P" 
within the GaussianAxon Inspector ). 
 

Linear Axon 

LinearAxon Macro Actions  
Overview Superclass Macro Actions 

Action Description 
beta  Returns the Beta value. 
 
setBeta  Sets the Beta value. 
 
setWeightMean  Sets the Bias Mean value. 
 
setWeightVariance Sets the Bias Variance value. 
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weightMean  Returns the Bias Mean value. 
 
weightVariance  Returns the Bias Variance value. 
 

beta 
Overview Macro Actions 

Syntax 

componentName.beta() 

Parameters Type Description 
return float The slope of the nonlinearities for all PE’s (see "Beta" within the 
TransferFunction Inspector ). 
 
componentName  Name defined on the engine property page. 
 

setBeta 
Overview Macro Actions 

Syntax 

componentName.setBeta(beta) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
beta float The slope of the nonlinearities for all PE’s (see "Beta" within the 
TransferFunction Inspector ). 

setWeightMean 
Overview Macro Actions 

Syntax 

componentName.setWeightMean(weightMean) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightMean float The mean of the bias values when the weights are randomized (see 
"Bias Mean" within the TransferFunction Inspector ). 
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setWeightVariance 
Overview Macro Actions 

Syntax 

componentName.setWeightVariance(weightVariance) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightVariance float The variance of the bias values when the weights are randomized (see 
"Bias Variance" within the TransferFunction Inspector ). 

weightMean 
Overview Macro Actions 

Syntax 

componentName.weightMean() 

Parameters Type Description 
return float The mean of the bias values when the weights are randomized (see "Bias Mean" 
within the TransferFunction Inspector ). 
 
componentName  Name defined on the engine property page. 

weightVariance 
OverviewMacro Actions  

Syntax 

componentName.weightVariance() 

Parameters Type Description 
return float The variance of the bias values when the weights are randomized (see "Bias 
Variance" within the TransferFunction Inspector ). 
 
componentName  Name defined on the engine property page. 
 
 
 
 

Winner Take All Axon 

WinnerTakeAllAxon Macro Actions 
Overview Superclass Macro Actions 

Action Description 
maxWinner  Returns TRUE if PE with maximum value is the winner, or FALSE if PE with 
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minimum value is the winner. 
 
setMaxWinner  Sets the maxWinner setting above. 
 
 
  

maxWinner 
Overview Macro Actions 

Syntax 

componentName.maxWinner() 

Parameters Type Description 
return BOOL When TRUE, the neuron with the largest value is the winner of the competition 
(see "Maximum/Minimum Value is Winner" within the WinnerTakeAllAxon Inspector ). 
 
componentName  Name defined on the engine property page. 
 

setMaxWinner 
Overview Macro Actions 

Syntax 

componentName.setMaxWinner(maxWinner) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
maxWinner BOOL When TRUE, the neuron with the largest value is the winner of the 
competition (see "Maximum/Minimum Value is Winner" within the WinnerTakeAllAxon Inspector ). 

Inspectors 

Axon Inspector 

 

Family: Axon Family 

Superclass Inspector: Soma Family Inspector  
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Component Configuration: 

Rows (SetRows(int)) 

Used to specify the number of rows of PE’s this axon contains.  The total number of PE’s for an 
axon is Rows*Cols. 
Cols (SetCols(int)) 

Used to specify the number of columns of PE’s this axon contains.  The total number of PE’s for an 
axon is Rows*Cols. 
Data Flow On 

Used to switch the data flowing through the axon on or off.  This feature is useful when using 
networks that have both an unsupervised stage and a supervised stage.  The data flow of the 
supervised input is turned off during the unsupervised stage to optimize the computational speed. 
Data Flow Turn On After Reset 

Used to turn the data flow back on after the network has been reset. 

 

 

  See Also 

GaussianAxon Inspector 

 

Component: GaussianAxon 

Superclass Inspector: Transfer Function Family Inspector 
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Component Configuration: 

This component is primarily used in conjunction with a component from the Competitive family 
using unsupervised learning. See the Radial Basis Function (RBF) section of the NeuralBuilder 
documentation for a description of how this component is implemented. 

 
Centers 

Each weight of the GaussianAxon is used to tune the center of its corresponding Gaussian transfer 
function. The Center button sets all of the weights based on the following rule: 

 

 

 

where w(ij) is a weight from the Synapse component that feeds the GaussianAxon. Note that this 
rule is dependent on the metric used by the Synapse. The FullSynapse component uses the Dot 
Product metric, while the Competitive components can use any one of the three metrics. 

The individual weights can also be adjusted manually by attaching a MatrixEditor to the Weights 
access point of the GaussianAxon. 

 
Variance 
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The GaussianAxon has a width parameter (β) for each PE. This parameter is used to specify the 
variance (i.e., the width) of the Gaussian transfer function for the given PE. The Variance button 
sets all of the PE widths based on the following formula: 

 

  

 

where the Synapse weight w(kj) is one of the P nearest neighbors to the weight w(ij). 

The individual widths can also be adjusted manually by attaching a MatrixEditor to the Widths 
access point of the GaussianAxon. 

 
P (SetP(int)) 

This parameter sets the number of nearest neighbors that are averaged together when computing 
the variance of the Gaussian transfer functions (see above). If this is set low and there are clusters 
of centers that are relatively close together, then the resulting widths will often be too small (filtering 
out important data). If P is set high, then many of the neighbors will be averaged together and the 
resulting widths may be too high (blending the Gaussians together). 

 
Normalize (SetNormalize(Bool)) 

This switch determines whether the output is normalized. If the output is normalized, then the sum 
of all the activations is equal to one. This can be useful for Generalized Regression and 
Probabilistic networks. 

WinnerTakeAllAxon Inspector  

 

Component: WinnerTakeAllAxon 

Superclass Inspector: Axon Inspector 
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Component Configuration: 
Maximum/Minimum Value is Winner 

These radio buttons allow you to choose whether the winning neuron of the competition is the one 
with the largest value or the one with the smallest value. 

Engine Inspector 

 

Superclass Inspector: None 

 

 

 

Component Configuration: 
Component Name 

This string is used to uniquely identify the components, which is required by the macro language. 
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Fix Name 

When this switch is on, the component’s name will not be modified by NeuroSolutions. 
Keep Window Active 

When this switch is on, the window associated with this component will stay open even if the "Hide 
Windows" command is issued (see Control Menu & Toolbar Commands).  
Fix to Superengine 

When this switch is on, the component may not be dragged from where it sits on the breadboard. 
Use DLL 

Turning this switch on will attempt to link the selected DLL, thus overriding the functionality of the 
base component with that defined by the selected DLL. When this switch is off, the selected DLL is 
ignored. The DLL is selected using the New or Load buttons. 
Load 

This button will display a file selection panel, from which a DLL is selected. The file may be the DLL 
itself, or the corresponding source file (with a .c or .cpp extension). Note that the DLL will only be 
active when the Use DLL switch is on. 
Edit 

This button will open an editor containing the source code for the selected DLL. From there, the 
code may be modified and saved for the next Compile. Note that the editor used is specified by 
associating the .c or .cpp file extension with it. See the Windows documentation for more 
information on associating files to applications. 
Compile 

This button will update the selected DLL by compiling the corresponding source code. Note that the 
directory containing the command line compiler (nmake.exe) must be included in the search path. 
See the Windows documentation for information on setting the Path environment variable. 
New 

This button brings up a panel for entering the name of a new DLL. From there, the source code for 
the selected component is copied to the appropriate work directory under the new name. The 
functionality of the default DLL will, in most cases, be the same as the base component. To modify 
this functionality you must first Edit the source code and then Compile the DLL. Note that the DLL 
will only be active when the Use DLL switch is on. 
Debug 

This feature is used to run the DLL through the development environment in order to debug it. The 
first thing this button does is create a makefile for the DLL and copies it to the "DLLTest" directory. 
This project is then compiled in "debug" mode and the release version of the DLL is replaced by the 
debug version. Next, the development environment is launched and the running instance of 
NeuroSolutions is linked into the debugger. Now you can set breakpoints within the DLL source 
code and run the network. Note that when you stop the debugger then you are also quitting 
NeuroSolutions. 

Save state variables 

Some neural components have internal states the affect their input/output map. By saving the state 
variables with the breadboard, the results will be repeatable between identical experiments. The 
components that have state variables include: BackContextAxon, BackTDNNAxon, ContextAxon, 
Momentum, Quickprop, Step, Synapse, and TDNNAxon. 
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  See Also 

Soma Family Inspector  
 

Superclass Inspector: Engine Inspector  

 

 

 

Component Configuration: 
Inputs 

This cell reports the number of PEs within the Axon that are attached to the Synapse's input. This 
value cannot be modified. 
Outputs 

This cell reports the number of PEs within the Axon attached to the Synapse's output. This value 
cannot be modified. 
Weights 

This text reports the number of weights within the Activation component. For Axon components, the 
weights are referred to as the biases (one for each PE). The number of weights within a 
FullSynapse is equal to Inputs*Outputs. 
Save 

This switch forces the weights to be saved whenever the breadboard is saved. Note that this switch 
only corresponds to the weights of this component and not the entire breadboard. To change this 
setting for the entire network, first select all Activation components (by holding down the Shift key 
while selecting). 
Fix 
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When this switch is on, the adaptive weights for the component are frozen during the randomization 
process. However, the weights may still be adapted by an attached GradientSearch component. 
Use Weights From 

This is used for weight sharing. When this switch is on, the adaptive weights for the component are 
obtained from another Axon or Synapse of the same dimensions. If a GradientSearch component is 
attached, then it will adapt the weights in addition to the adaptation made by the GradientSearch 
component attached to the Axon or Synapse who own the weights. 
Range 

When the component’s weights are randomized or jogged, the randomization range is based on the 
value specified within this cell. Note that the weights can be set manually by attaching a 
MatrixEditor to the Weights access point.  
Mean 

When the component’s weights are randomized, the randomization mean is based on the value 
specified within this cell. Note that this is the same parameter specified within the Transfer Function 
Family Inspector property page. 
Jog 

This button randomizes each weight of the component using its current value as the mean and the 
range specified within the Range cell (see above). 
Randomize 

This button randomizes each weight of the component using the mean specified within the Mean 
cell and the range specified within the Range cell (see above). 

Transfer Function Inspector 

 

Superclass Inspector: Axon Inspector 
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Component Configuration 
PE’s 

This cell can be used to alter the total number of PEs for the component. 
Beta (SetBeta(float)) 

The cell is used to specify the slope (?) of the nonlinearities for all PEs. Refer to the activation 
function of the particular Axon component for the specifics of its use. 
Bias Mean 

When the network is randomized, the biases are randomized based on a mean and a variance. 
This cell specifies the mean of the randomization. Note that the biases can be set manually by 
attaching a MatrixEditor to the Weights access point. 
Bias Variance 

When the network is randomized, the biases are randomized based on a mean and a variance. 
This cell specifies the variance of the randomization and is the same parameter that appears within 
the Soma property page. Note that the biases can be set manually by attaching a MatrixEditor to 
the Weights access point. 

Drag and Drop 

Axon Family Drag and Drop 

 

Axons are base components on the breadboard. This means that they must be dropped directly 
onto an empty breadboard location. 

 

 

  See Also 

MemoryAxon Family 

ContextAxon 

 

 

 

 

Family: MemoryAxon Family 

Superclass: LinearAxon  

Backprop Dual: BackContextAxon 
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Description: 

The ContextAxon integrates with a time constant the activity received by each PE in the layer. This 
operation implements a (non-normalized) feedback from the scaled output of the PE to its input. 
The ContextAxon is very similar to the IntegratorAxon, except that in this family the activity can 
have instantaneous jumps, which will taper off according to the defined time constant. The gain 
factor β is inherited from the LinearAxon. The time constant is implemented by the Axon’s weight 
vector, i.e. τ = . This allows each PE to have its own time constant, each of which can be 
adapted. 

 

Activation Function: 

 

 

 

Note: The Weights access point of the ContextAxon provides access to the time constant vector 
(  in the above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

GammaAxon 

 

 

 

 

Family: MemoryAxon Family 

Superclass: TDNNAxon 

Backprop Dual: BackGammaAxon 
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Description: 

The GammaAxon provides a recursive memory of the input signals past. Note that the axon 
receives a vector of inputs, therefore the GammaAxon implements a vector memory structure. The 
memory depth is equal to K/µ, where K is the number of taps and µ is the Gamma coefficient. The 
Gamma coefficient is implemented by the axon’s weight vector, i.e. τ = . This allows each PE to 
have its own coefficient, each of which can be adapted. The delay between taps, τ, is an 
adjustable parameter of the component. 

 

Tap Activation Function: 

 

 

 

Note: The Weights access point of the GammaAxon provides access to the Gamma coefficient 
vector (  in the above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Point 

Example  

DLL Implementation 

IntegratorAxon 

 

 

 

 

Family: MemoryAxon Family 

Superclass: ContextAxon 

Backprop Dual: BackIntegratorAxon  
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Description: 

The IntegratorAxon integrates with a time constant the activity received by each PE in the layer. 
This operation implements a normalized feedback from the scaled output of the PE to its input. The 
IntegratorAxon is very similar to the ContextAxon, except that in this family the activity cannot have 
instantaneous jumps. The gain factor β is inherited from the LinearAxon. The time constant is 
implemented by the axons weight vector, i.e. τ = . This allows each PE to have its own time 
constant, each of which can be adapted. 

 

Activation Function: 

 

 

 

Note: The Weights access point of the IntegratorAxon provides access to the time constant vector 
(  in the above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 

DLL Implementation 

LaguarreAxon 

 

 

 

 

Family: MemoryAxon Family 

Superclass: TDNNAxon  

Backprop Dual: BackLaguarreAxon 
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Description: 

The LaguarreAxon memory structure is built from a low-pass filter with a pole at z = (1-µ), followed 
by a cascade of K all-pass functions. This provides a recursive memory of the input signal’s past. 
Notice that the axon receives a vector of inputs, therefore the LaguarreAxon implements a vector 
memory structure. The memory depth is equal to K/µ, where K is the number of taps and is the 
Laguarre coefficient. The Laguarre coefficient is implemented by the axon’s weight vector, i.e. µ = 

. This allows each PE to have its own coefficient, each of which can be adapted. The delay 
between taps, τ, is an adjustable parameter of the component. 

 

Tap Activation Function: 

 

 

 

Note: The Weights access point of the LaguarreAxon provides access to the Laguarre coefficient 
vector (  in the above equation). 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Point 

Example 

DLL Implementation 

SigmoidContextAxon 

 

 

 

 

Family: MemoryAxon Family 

Superclass: ContextAxon 
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Backprop Dual: BackSigmoidContextAxon 

 

Description: 

The SigmoidContextAxon is very similar to the ContextAxon, except that the transfer function of 
each PE is a sigmoid (i.e., saturates at 0 and 1) and the feedback is taken from this output. 

 

Tap Activation Function: 

 

The input data is transformed by a SigmoidAxon followed by a ContextAxon. 

 

Note: The Weights access point of the SigmoidContextAxon provides access to the time constant 
vector. There is no Bias as in the SigmoidAxon. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Point 

Example 

DLL Implementation 

SigmoidIntegratorAxon 

 

 

 

 

Family: MemoryAxon Family 

Superclass: IntegratorAxon 

Backprop Dual: BackSigmoidIntegratorAxon 

 

Description: 

The SigmoidIntegratorAxon implements the self-feedback of the SigmoidAxon. So it is a nonlinear 
integrator, because its output activity saturates at 0 or 1. 
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Tap Activation Function: 

 

The input data is transformed by a SigmoidAxon followed by an IntegratorAxon. 

 

Note: The Weights access point of the SigmoidIntegratorAxon provides access to the time constant 
vector. There is no Bias as in the SigmoidAxon. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Point 

Example 

DLL Implementation 

TanhContextAxon 

 

 

 

 

 

Family: MemoryAxon Family  

Superclass: ContextAxon  

Backprop Dual: BackTanhContextAxon  

 

Description: 

Description: The TanhContextAxon is very similar to the ContextAxon, except that the feedback is 
taken from the output of tanh PE, i.e. it will saturate at +/- 1. 

 

Tap Activation Function: 

 

The input data is transformed by a ContextAxon followed by a TanhAxon. 
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Note: The Weights access point of the TanhContextAxon provides access to the time constant 
vector. There is no Bias as in the TanhAxon. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Point 

Example 

DLL Implementation 

TanhIntegratorAxon 

 
 

 
 

 

Family: MemoryAxon Family 

Superclass: TDNNAxon 

Backprop Dual: BackTanhIntegratorAxon 

 

Description: 

The TanhIntegratorAxon implements the self-feedback of the TanhAxon. So it is a nonlinear 
integrator, because its output activity saturates at +/- 1. 

 

Tap Activation Function: 

 

The input data is transformed by an IntegratorAxon followed by a TanhAxon. 

 

Note: The Weights access point of the TanhIntegratorAxon provides access to the time constant 
vector. There is no Bias as in the TanhAxon. 

 

User Interaction: 
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Drag and Drop 

Inspector 

Access Point 

Example 

DLL Implementation 

TDNNAxon 

 

 

 

 

Family: MemoryAxon Family 

Superclass: Axon 

Backprop Dual: BackTDNNAxon 

 

Description: 

The TDNNAxon is a multi-channel tapped delay line memory structure. The number of sample 
delays between each tap, defined by τ, may be varied, allowing memory depth and the number of 
taps to be decoupled. This forms a local memory whose length (depth) is equal to the number of 
taps minus 1, times the tap delay, times the sampling period. Notice that the axon receives a vector 
of inputs, therefore the TDNNAxon implements multiple tapped delay line (TDL) memory structures. 

 

Tap Activation Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Example 
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DLL Implementation 

Macro Actions  

DLL Implementation 

ContextAxon DLL Implementation 

 

 

 

 

Component: ContextAxon  

Protocol: PerformContextAxon 

 

Description: 

The ContextAxon integrates the activity received by each PE in the layer using an adaptable time 
constant. Each PE within the data vector is computed by adding the product of the PE’s time 
constant and the activity of the PE at the previous time step to the current activity. This sum is then 
multiplied by a user-defined scaling factor. 

 

Code: 
 
void performContextAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 NSFloat *tau,         // Pointer to a vector of time constants 
 NSFloat beta          // Linear scaling factor (user-defined) 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) 
  data[i] = beta * (data[i] + tau[i] * delayedData[i]); 
} 

GammaAxon DLL Implementation 
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Component: GammaAxon  

Protocol: PerformGammaAxon 

 

Description: 

The GammaAxon is a multi-channel tapped delay line with a Gamma memory structure. With a 
straight tapped delay line (TDNNAxon), each memory tap (PE) within the data vector is computed 
by simply copying the value from the previous tap of the delayedData vector. With the 
GammaAxon, a given tap within data vector is computed by taking a fraction (gamma) of the value 
from the previous tap of the delayedData vector and adding it with a fraction (1-gamma) of the 
same tap. The first PE of each channel (tap[0]) is simply the channel’s input and is not modified. 

 

Code: 
 
void performGammaAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 int     taps          // Number of memory taps 
 NSFloat *gamma        // Pointer to vector of gamma coefficients 
 ) 
{ 
 register int i,j,k,length=rows*cols; 
 
 for (i=0; i<length; i++) 
  for (j=1; j<taps; j++) { 
   k = i + j*length; 
   data[k] = gamma[i]*delayedData[k-length] + (1-
gamma[i])*delayedData[k]; 
  }   
} 

IntegratorAxon DLL Implementation 
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Component: IntegratorAxon  

Protocol: PerformContextAxon 

 

Description: 

The IntegratorAxon is very similar to the BackLaguarreAxon DLL Implementation, except that the 
feedback connection is normalized. Each PE within the data vector is computed by adding the 
product of the PE’s time constant and the activity of the PE at the previous time step to the product 
of current activity times 1 minus the time constant. This sum is then multiplied by a user-defined 
scaling factor. 

 

Code: 
 
void performContextAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 NSFloat *tau,         // Pointer to a vector of time constants 
 NSFloat beta          // Linear scaling factor (user-defined) 
 ) 
{ 
 int i, length=rows*cols;  
 
 for (i=0; i<length; i++) 
  data[i] = (NSFloat)(beta * ((1.0-tau[i])*data[i] + 
tau[i]*delayedData[i])); 
} 

LaguarreAxon DLL Implementation 

 

 

 

 

Component: LaguarreAxon  

Protocol: PerformGammaAxon 
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Description: 

The LaguarreAxon is a multi-channel tapped delay line similar to the GammaAxon. The difference 
is that this algorithm provides an orthogonal span of the memory space. 

 

Code: 
 
void performGammaAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 int     taps          // Number of memory taps 
 NSFloat *gamma        // Pointer to vector of gamma coefficients 
 ) 
{ 
 register int i,j,k,length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  NSFloat gain = (NSFloat)pow(1-pow(gamma[i], 2), 0.5); 
  for (j=1; j<taps; j++) { 
   k = i + j*length; 
   data[k] = delayedData[k-length] + 
gamma[i]*delayedData[k]; 
   if (j==1) 
    data[k] *= gain; 
   else 
    data[k] -= gamma[i]*data[k-length]; 
  } 
 } 
} 

SigmoidContextAxon DLL Implementation 

 

 

 

 

Component: SigmoidContextAxon  

Protocol: PerformContextAxon 

 

Description: 
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The SigmoidContextAxon is very similar to the ContextAxon, except that the transfer function of 
each PE is a sigmoid (i.e., saturates at 0 and 1) and the feedback is taken from this output. 

 

Code: 
 
void performContextAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 NSFloat *tau,         // Pointer to a vector of time constants 
 NSFloat beta          // Linear scaling factor (user-defined) 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  data[i] = beta * (data[i] + tau[i] * delayedData[i]); 
  data[i] = (NSFloat)(1.0/(1.0+exp(-data[i]))); 
 } 
} 

SigmoidIntegratorAxon DLL Implementation 

 

 

 

 

Component: SigmoidIntegratorAxon  

Protocol: PerformContextAxon 

 

Description: 

The SigmoidIntegratorAxon is very similar to the IntegratorAxon, except that the transfer function of 
each PE is a sigmoid (i.e., saturates at 0 and 1) and the feedback is taken from this output. 

 

Code: 
 
void performContextAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
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 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 NSFloat *tau,         // Pointer to a vector of time constants 
 NSFloat beta          // Linear scaling factor (user-defined) 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  data[i] = beta * ((1-tau[i])*data[i] + 
tau[i]*delayedData[i]); 
  data[i] = 1/(1+(NSFloat)exp(-data[i])); 
 } 
} 

TanhContextAxon DLL Implementation 

 

 

 

 

Component: TanhContextAxon  

Protocol: PerformContextAxon 

 

Description: 

The TanhContextAxon is very similar to the ContextAxon, except that the transfer function of each 
PE is a hyperbolic tangent (i.e., saturates at -1 and 1) and the feedback is taken from this output. 

 

Code: 
 
void performContextAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 NSFloat *tau,         // Pointer to a vector of time constants 
 NSFloat beta          // Linear scaling factor (user-defined) 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) 
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  data[i] = (NSFloat)tanh(beta * (data[i] + tau[i] * 
delayedData[i])); 
} 

TanhIntegratorAxon DLL Implementation 

 

 

 

 

Component: TanhIntegratorAxon  

Protocol: PerformContextAxon 

 

Description: 

The TanhIntegratorAxon is very similar to the IntegratorAxon, except that the transfer function of 
each PE is a hyperbolic tangent (i.e., saturates at -1 and 1) and the feedback is taken from this 
output. 

 

Code: 
 
void performContextAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 NSFloat *tau,         // Pointer to a vector of time constants 
 NSFloat beta          // Linear scaling factor (user-defined) 
 ) 
{ 
 for (i=0; i<length; i++)  
  data[i] = (NSFloat)tanh(beta * ((1-tau[i])*data[i] + 
tau[i]*delayedData[i])); 
} 

TDNNAxon DLL Implementation 
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Component: TDNNAxon  

Protocol: PerformTDNNAxon 

 

Description: 

The TDNNAxon is a multi-channel tapped delay line memory structure. For each memory tap (PE) 
within the data vector, the value is copied from the previous tap of the delayedData vector. The first 
PE of each channel (tap[0]) is simply the channel’s input and is not modified. 

 

Code: 
 
void performTDNNAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 int     taps          // Number of memory taps 
 ) 
{ 
 register int i,j,k,length=rows*cols; 
 
 for (i=0; i<length; i++) 
  for (j=1; j<taps; j++) { 
   k = i + j*length; 
   data[k] = delayedData[k-length]; 
  }   
} 

Examples 

IntegratorAxon Example 

 

  

 

 

Component: IntegratorAxon 
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The IntegratorAxon can be used as a context unit in Jordan or Elman nets. Its function is to 
integrate the past activity. It can also be used as an integrator PE at the output of a net. 

 

The figure below illustrates the impulse response (the output for an impulse at the input) of the 
IntegratorAxon. The red curve on the MegaScope is the input impulse, whereas the black and blue 
curves illustrate the IntegratorAxon output with time constants of .7 and .5 respectively. The time 
constant can be accessed by stamping a matrix editor on the Weights access point of the 
IntegratorAxon (as shown in the figure below) or it can be accessed directly on the Feedback 
property page of the IntegratorAxon inspector. Notice that increasing the time constant has the 
affect of increasing the memory depth. To experiment with this example, load the breadboard 
IntegratorAxonExample.nsb. 

 

 

TanhIntegratorAxon Example 

 

 

 

 

Component: TanhIntegratorAxon 
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The TanhIntegratorAxon can be used as a context unit in Jordan or Elman nets. Its function is to 
integrate the past activity. It can also be used as an integrator PE at the output of a net. A signal 
fed into a TanhIntegratorAxon is processed by an IntegratorAxon followed by a TanhAxon. Note 
that the Weights access point of the TanhIntegratorAxon provides access to the Time Constant (not 
the Bias as with the TanhAxon). 

 

The figure below illustrates the impulse response (the output for an impulse at the input) of the 
TanhIntegratorAxon. The red curve on the MegaScope is the input impulse, whereas the black and 
blue curves illustrate the TanhIntegratorAxon output with time constants of .7 and .5 respectively. 
The time constant can be accessed by stamping a matrix editor on the Weights access point of the 
TanhIntegratorAxon (as shown in the figure below) or it can be accessed directly on the Feedback 
property page of the TanhIntegratorAxon inspector. Notice that increasing the time constant has 
the affect of increasing the memory depth. To experiment with this example, load the breadboard 
TanhIntegratorAxonExample.nsb. 

 

 

SigmoidIntegratorAxon Example 
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Component: SigmoidIntegratorAxon 

 

The SigmoidIntegratorAxon can be used as a context unit in Jordan or Elman nets. Its function is to 
integrate the past activity. It can also be used as an integrator PE at the output of a net. A signal 
fed into a SigmoidIntegratorAxon is processed by a SigmoidAxon followed by an IntegratorAxon. 
Note that the Weights access point of the SigmoidIntegratorAxon provides access to the Time 
Constant (not the Bias as with the SigmoidAxon). To experiment with this example, load the 
breadboard SigmoidIntegratorAxonExample.nsb. 
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ContextAxon Example 

 

 

 

 

Component: ContextAxon 

 

The ContextAxon is normally used in Jordan or Elman nets. 

 

The figure below illustrates the impulse response (the output for an impulse at the input) of the 
ContextAxon. The red curve on the MegaScope is the input impulse, whereas the black and blue 
curves illustrate the ContextAxon output with time constants of .9 and .6 respectively. The time 
constant can be accessed by stamping a matrix editor on the Weights access point of the 
ContextAxon (as shown in the figure below) or it can be accessed directly on the Feedback 
property page of the ContextAxon inspector. Notice that increasing the time constant has the affect 
of increasing the memory depth. To experiment with this example, load the breadboard 
ContextAxonExample.nsb. 
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SigmoidContextAxon Example 

 

 

 

 

Component: SigmoidContextAxon 

 

The SigmoidContextAxon is normally used in Jordan or Elman nets. A signal fed into a 
SigmoidContextAxon is processed by a SigmoidAxon followed by a ContextAxon. Note that the 
Weights access point of the SigmoidContextAxon provides access to the Time Constant (not the 
Bias as with the SigmoidAxon).  To experiment with this example, load the breadboard 
SigmoidContextAxonExample.nsb. 
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TanhContextAxon Example 

 

 

 

 

Component: TanhContextAxon 

 

The TanhContextAxon is normally used in Jordan or Elman nets. A signal fed into a 
TanhContextAxon is processed by a ContextAxon followed by a TanhAxon. Note that the Weights 
access point of the TanhContextAxon provides access to the Time Constant (not the Bias as with 
the TanhAxon). 

 

The figure below illustrates the impulse response (the output for an impulse at the input) of the 
TanhContextAxon. The red curve on the MegaScope is the input impulse, whereas the black and 
blue curves illustrate the TanhContextAxon output with time constants of .9 and .6 respectively. 
The time constant can be accessed by stamping a matrix editor on the Weights access point of the 
TanhContextAxon (as shown in the figure below) or it can be accessed directly on the Feedback 
property page of the TanhContextAxon inspector. Notice that increasing the time constant has the 
affect of increasing the memory depth. To experiment with this example, load the breadboard 
TanhContextAxonExample.nsb. 
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GammaAxon Example 

 

 

 

Component: GammaAxon  

 

The GammaAxon is typically used as an input layer when processing temporal sequences. This 
allows the temporal signal to be presented directly to the network without preprocessing or 
segmentation. The GammaAxon finds the best compromise between time resolution vs. memory 
depth for the application. When used with Axon, the GammaAxon extends the Adaline to a 
recursive adaptive linear filter. 

 

The figure below illustrates the impulse response (the output for an impulse at the input) of each of 
the taps of a 5 tap GammaAxon. Notice that the output of the first tap (black) is just an impulse. 
This is because the input and the first tap are directly connected. In general, the point in time where 
the response has a peak is approximately given by k/? where ? is the Gamma Coefficient and k is 
the tap number (note that the directly connected first tap is number 0). In this example ? has been 
set to .5 by stamping a MatrixEditor on the Weights access point of the GammaAxon and entering 
.5 (see figure below). Thus, the depth of the memory can be controlled by adjusting the value of ? 
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(i.e. increasing ? decreases the memory depth and vice versa). To experiment with this example, 
load the breadboard GammaAxonExample.nsb. 

 

 

LaguarreAxon Example 

 

 

 

 

Component: LaguarreAxon 

 

The LaguarreAxon is typically used as an input layer when processing temporal sequences. This 
allows the temporal signal to be presented directly to the network without preprocessing or 
segmentation. 

 

The figure below illustrates the impulse response (the output for an impulse at the input) of each of 
the taps of a 5 tap LaguarreAxon. Notice that the output of the first tap (black) is just an impulse. 
This is because the input and the first tap are directly connected. In general, the point in time where 
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the response has a peak is approximately given by k/? where ? is the Laguarre Coefficient and k is 
the tap number (note that the directly connected first tap is number 0). In this example ? has been 
set to .5 by stamping a MatrixEditor on the Weights access point of the LaguarreAxon and entering 
.5 (see figure below). Thus, the depth of the memory can be controlled by adjusting the value of ? 
(i.e. increasing ? decreases the memory depth and vice versa). To experiment with this example, 
load the breadboard LaguarreAxonExample.nsb. 

 

 

TDNNAxon Example 

 

 

 

 

Component: TDNNAxon 

 

Like any axon, the TDNNAxon can be placed anywhere within the network topology to provide local 
memory. The TDNNAxon also serves as the superclass for a number of infinite impulse response 
(IIR) memory structures. When used in conjunction with a FullSynapse, the TDNNAxon forms a 
linear multivariate adaptive Finite Impulse Response (FIR) filter. In the digital signal processing 
literature this system is called the FIR adaptive filter, so important in echo cancellation and line 
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equalization. It is important to remember that this multivariate FIR filter can also be made adaptive, 
so NeuroSolutions can also implement adaptive linear filter simulations. 

 

The figure below shows the output of each of the taps of a 3 tap TDNNAxon, with a triangle 
function as the input. The input is also set up to display on the MegaScope but it is completely 
covered by the by the output of the first tap (red) since the first tap and the input are directly 
connected. The second and third taps are simply time-delayed versions of the input as shown in 
the figure. The length of the tap delay can be set within the TDNN property page of the TDNNAxon 
inspector. To experiment with this example, load the breadboard TDNNAxonExample.nsb. 

 

 

Inspectors 

TDNNAxon Inspector 

 

Family: MemoryAxon Family 

Superclass Inspector: Axon Inspector 
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Component Configuration: 
Taps (SetTaps(int)) 

The TDNNAxon attaches a tapped delay line (TDL) to each PE in its input vector. This cell sets the 
number of taps for each of these TDLs. 
Tap Delay (SetTapDelay(int)) 

This cell is used to specify the delay (number of samples) between successive taps in the TDLs. 
Rows (SetRows(int)) 

Used to specify the number of rows of PE’s this axon contains. The total number of PE’s for an 
axon is Rows*Cols. 
Cols (SetCols(int)) 

Used to specify the number of columns of PE’s this axon contains. The total number of PE’s for an 
axon is Rows*Cols. 
Output 

This cell reports the total number of outputs that the TDNNAxon generates. This will be the number 
of PE’s times the number of taps. Note that a component attached to the output does not 
distinguish between the output taps and the PE’s; they are all treated as PE’s. 

Feedback Inspector 

 

Superclass Inspector: Axon Inspector 

 



 352

  

 

Component Configuration: 
PE’s 

This cell may be used to change the number of PE’s for this component. This parameter is also 
defined within the Axon Inspector 
PE Gain 

This cell specifies the PE gain, β? This term is primarily used to adjust the saturation for the 
SigmoidContextAxon, SigmoidIntegratorAxon, TanhContextAxon, and TanhIntegratorAxon. See the 
component reference for the use of β within the activation function 
Time Constant (SetTimeConstant(float)) 

This cell specifies the default time constant ? for each PE. Each time constant can be individually 
specified by attaching a MatrixEditor to the Weights access point of the Axon. See the component 
reference for the use of ? within the activation function. 

Macro Actions 

TDNN Axon 

TDNNAxon Macro Actions  
Overview Superclass Macro Actions 

Action Description 
setTapDelay  Sets the Tap Delay setting. 
 
setTaps  Sets the number of taps. 
 
tapDelay  Returns the Tap Delay setting. 
 
taps  Returns the number of taps. 
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setTapDelay 
Overview Macro Actions 

Syntax 

componentName.setTapDelay(tapDelay) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
tapDelay int The delay (number of samples) between successive taps in the TDLs 
(see "Tap Delay" within the TDNNAxon Inspector ). 
 

setTaps 
Overview Macro Actions 

Syntax 

componentName.setTaps(taps) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
taps int The number of taps for each tapped delay line (TDL) (see "Taps" within the 
TDNNAxon Inspector ). 
 

tapDelay 
Overview Macro Actions 

Syntax 

componentName.tapDelay() 

Parameters Type Description 
return int The delay (number of samples) between successive taps in the TDLs (see "Tap 
Delay" within the TDNNAxon Inspector ). 
 
componentName  Name defined on the engine property page. 

taps 
Overview Macro Actions 

Syntax 

componentName.taps() 
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Parameters Type Description 
return int The number of taps for each tapped delay line (TDL) (see "Taps" within the 
TDNNAxon Inspector ). 
 
componentName  Name defined on the engine property page. 

 

FuzzyAxon Family 

BellFuzzyAxon 

 

 

 

 

Family: FuzzyAxon Family  

Superclass: Axon 

 

Description: 

The BellFuzzyAxon is a type of FuzzyAxon that uses a bell-shaped curve as its membership 
function. Each membership function takes 3 parameters, which are stored in the weight vector of 
the BellFuzzyAxon. 

 

Membership Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points  

DLL Implementation  
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GaussianFuzzyAxon 

 

 

 

 

Family: FuzzyAxon Family  

Superclass: Axon 

 

Description: 

The GaussianFuzzyAxon is a type of FuzzyAxon that uses a gaussian-shaped curve as its 
membership function. Each membership function takes 2 parameters, which are stored in the 
weight vector of the GaussianFuzzyAxon. 

 

Membership Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points  

DLL Implementation  

 

 

DLL Implementation 

GaussianFuzzyAxon DLL Implementation 
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Component: GaussianFuzzyAxon  

Protocol: PerformFuzzyAxon  

 

Description: 

The GaussianFuzzyAxon applies a number of gaussian-shaped membership functions to each 
input neuron.  

 

Code: 
 
void performFuzzyAxon( 
 DLLData *instance,// Pointer to instance data (may be NULL) 
 NSFloat *data,  // Pointer to the layer of processing 
elements 
       // (PEs) 
 int  rows,   // Number of rows of PEs in the layer 
 int  cols,   // Number of columns of PEs in the 
layer 
 NSFloat *param,  // Pointer to the layer of parameters 
for the MFs 
 int  paramIndex, // Index into the param array 
 int  PEIndex,  // Index into the processing 
elements of the Axon 
       // (the data array) 
 NSFloat *returnVal // Value to return after applying the MF 
 ) 
{ 
 int baseIndex = paramIndex * 2; 
 NSFloat c = *(param + baseIndex); 
 NSFloat sigma = *(param + baseIndex + 1); 
 if (sigma == 0.0f) 
  *returnVal = 0.0f; 
 else { 
  NSFloat exp_fraction = (*(data + PEIndex) - c) / sigma; 
  NSFloat exp_final = (NSFloat) (pow ((double)exp_fraction, 
(double)2.0) / (double)-2.0); 
  *returnVal = (NSFloat)exp(exp_final); 
 } 
} 
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BellFuzzyAxon DLL Implementation 

 

 

 

 

Component: BellFuzzyAxon  

Protocol: PerformFuzzyAxon  

 

Description: 

The BellFuzzyAxon applies a number of bell-shaped membership functions to each input neuron.  

 

Code: 
 
void performFuzzyAxon( 
 DLLData *instance,// Pointer to instance data (may be NULL) 
 NSFloat *data,  // Pointer to the layer of processing 
elements 
       // (PEs) 
 int  rows,   // Number of rows of PEs in the layer 
 int  cols,   // Number of columns of PEs in the 
layer 
 NSFloat *param,  // Pointer to the layer of parameters 
for the MFs 
 int  paramIndex, // Index into the param array 
 int  PEIndex,  // Index into the processing 
elements of the Axon 
       // (the data array) 
 NSFloat *returnVal // Value to return after applying the MF 
 ) 
{ 
 int baseIndex = paramIndex * 3; 
 NSFloat a = *(param + baseIndex); 
 NSFloat b = *(param + baseIndex + 1); 
 NSFloat c = *(param + baseIndex + 2); 
 if (a == 0.0f) 
  *returnVal = 0.0f; 
 else { 
  NSFloat tmp1 = (*(data + PEIndex) - c) / a; 
  NSFloat tmp2 = tmp1 == 0.0f ? 0.0f : (NSFloat)pow(pow(tmp1, 
2.0), b); 
  *returnVal = (1 / (1 + tmp2)); 
 } 
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} 
 

Inspectors 

FuzzyAxon Inspector 

 

Components: BellFuzzyAxon; GaussianFuzzyAxon  

Superclass Inspector: Axon Family Inspector  

 

 

 

Component Configuration: 

This component is primarily used as part of the CANFIS neural model built by the NeuralBuilder. 
See the NeuralBuilder documentation for instructions on building this model. 

 
Membership Functions per Input 

Each input processing element of the FuzzyAxon has a number of fuzzy membership functions 
assigned to it. This edit cell is used to specify this number. Note that the number of outputs 
reported within the Soma inspector will match the number of membership functions per input 
specified. 

 

Synapse Family 

ArbitrarySynapse 
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Family: Synapse Family  

Superclass: Synapse  

 

Description: 

The ArbitrarySynapse provides an arbitrarily connected linear map between its input and output 
axons. Since each axon contains a vector of processing elements (PEs), the ArbitrarySynapse is 
capable of connecting any PE in the input axon to an arbitrary PE in the output axon. The 
connections can be either established manually or automatically to form common interconnection 
patterns. 

 

Activation Function: 

The ArbitrarySynapse does not have a predefined activation function. We know that the map is 
linear, but the interconnections are arbitrarily defined by the user. 

 

Note: The Weights access point will provide the connection weights in vector form. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Macro Actions  

 

CombinerSynapse 

 

 

 

 

Family: Synapse Family  

Superclass: Synapse  
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Description: 
The CombinerSynapse is used to establish a one-to-one connection between all N PEs of the Axon 
at the input with N PEs of the Axon at the output, in sequential order. The CombinerSynapse 
inspector is used to specify the PE of the output Axon to use as the first connection (the one that is 
connected to the PE 0 of the input Axon). This component is normally used within the neural-fuzzy 
architecture built by the NeuralBuilder. 

 

Activation Function: 

The activation function will be the same as the FullSynapse, except the weights associated with 
non-existent connections would be 0. 

 

Note: The Weights access point will provide the connection weights in vector form. 

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points  

 

ContractorSynapse 

 

 

 

 

Family: Synapse Family  

Superclass: Synapse  

 

Description: 

The ContractorSynapse provides a connection mapping between an Axon at its input and an Axon 
of smaller dimension at its output. The number of PEs of the input Axon should be an even multiple 
of the number of PEs at the output Axon. This component is normally used within the neural-fuzzy 
architecture built by the NeuralBuilder. 

There are two connection sequences to choose from. The following shows an example of the two 
sequences for a ContractorSynapse with six inputs and three outputs: 

Sequence 1: I0-O0, I3-O1, I1-O1, I4-O1, I2-O2, I5-O2 

Sequence 2: I0-O0, I0-O1, I2-O1, I3-O1, I4-O2, I5-O2 
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where  In-Om indicates a connection between input n and output m 

 

Activation Function: 

The activation function will be the same as the FullSynapse, except the weights associated with 
non-existent connections would be 0. 

 

Note: The Weights access point will provide the connection weights in vector form. 

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points  

 

ExpanderSynapse 

 

 

 

 

Family: Synapse Family  

Superclass: Synapse  

 

Description: 

The ExpanderSynapse provides a connection mapping between an Axon at its input and an Axon 
of larger dimension at its output. The number of PEs of the output Axon should be an even multiple 
of the number of PEs at the input Axon. This component is normally used within the neural-fuzzy 
architecture built by the NeuralBuilder. 

There are two connection sequences to choose from. The following shows an example of the two 
sequences for an ExpanderSynapse with three inputs and six outputs: 

Sequence 1: I0-O0, I0-O3, I1-O1, I1-O4, I2-O2, I2-O5 

Sequence 2: I0-O0, I0-O1, I1-O2, I1-O3, I2-O4, I2-O5 

where  In-Om indicates a connection between input n and output m 
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Activation Function: 

The activation function will be the same as the FullSynapse, except the weights associated with 
non-existent connections would be 0. 

 

Note: The Weights access point will provide the connection weights in vector form. 

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points  

 

ModularSynapse 

 

 

 

 

Family: Synapse Family  

Superclass: Synapse  

 

Description: 

The ModularSynapse breaks up the neurons of the Axon at its input into equal sized groups, or 
modules. The neurons of the Axon at the output are also divided into the same number of groups, 
although the number of neurons per group may be different depending on the number of PEs of the 
Axon. This Synapse then provides a full interconnection between the corresponding modules of the 
two Axons. The number of modules is specified within the ModularSynapse inspector. This 
component is normally used within the neural-fuzzy architecture built by the NeuralBuilder. 

 

Activation Function: 

The activation function will be the same as the FullSynapse, except the weights associated with 
non-existent connections would be 0. 

 

Note: The Weights access point will provide the connection weights in vector form. 
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User Interaction: 

Drag and Drop 

Inspector  

Access Points  

 

FullSynapse 

 

 

 

 

Family: Synapse Family  

Superclass: Synapse  

Backprop Dual: BackFullSynapse  

 

Description: 

The FullSynapse provides a fully connected linear map between its input and output axons. Since 
each axon represents a vector of PEs, the FullSynapse simply performs a matrix multiplication. For 
each PE in its output axon, the FullSynapse accumulates a weighted sum of activations from all 
neurons in its input axons. 

 

Activation Function: 

 

 

 

Note: The Weights access point will provide the connection weights in vector form. 

 

User Interaction: 

Drag and Drop 

Inspector 
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Access Points 

DLL Implementation 

 

SVMOutputSynapse 

 

 

 

 

Family: Synapse Family  

Superclass: FullSynapse  

Backprop Dual: BackFullSynapse  

 

Description: 

This component is used to implement the "Large Margin Classifier" segment of the Support Vector 
Machine model. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

 

Synapse 

 

 

 

 

Family: Synapse Family 

Superclass: Soma 
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Backprop Dual: BackSynapse 

 

Description: 

The Synapse applies an identity map between its input and output axons. Since this map is one to 
one, the axons must have the same number of processing elements. The Synapse is the first 
member of the Synapse family, and all subsequent members will subclass its functionality. 

 

Activation Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

       Macro Actions  

 

  See Also 

Access Points 

Synapse Family Access Points 

 

Family: Synapse Family  

 

Access points allow simulation components that are not part of the neural network topology to 
probe and/or alter data flowing through the network. All members of the Synapse family share a 
standard functional form. The sub-system block diagram given in diagram depicted this 
functionality.  Access to data flowing through any synapse is provided at the following two access 
points, 

 



 366

  

 

Activity Access: 

Attaches the NSAccess component to the input axon's activity vector just prior to applying the delay 
and activation function .  It is important to realize that the data reported by this access 
point actually belongs to the input axon, possibly delayed in time. 

Weight Access: 

All adaptive weights within the synapse are reported by attaching to Weight Access. This data may 
be reported in vector or matrix form, depending on how the synapse stores it. 

 

 

  See Also 

DLL Implementation 

FullSynapse DLL Implementation 

 

 

 

 

Component: FullSynapse  

Protocol: PerformFullSynapse 

 

Description: 

The FullSynapse component is similar to the Synapse except that the FullSynapse implements a 
fully-connected linear map from its input to its output, while the Synapse implements only a one-to-
one mapping. This mapping requires a matrix of weights, which is adaptable by the Gradient 
Search components. For each PE in its output axon, the FullSynapse accumulates a weighted sum 
of activations from all neuron in its input axon. 

 

Code: 
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void performFullSynapse( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,    // Pointer to the input layer of PEs 
 int     inRows,    // Number of rows of PEs in the input layer 
 int     inCols,    // Number of columns of PEs in the input layer 
 NSFloat *output,   // Pointer to the output layer 
 int     outRows,   // Number of rows of PEs in the output layer 
 int     outCols    // Number of columns of PEs in the output layer 
 NSFloat *weights   // Pointer to the fully-connected weight matrix 
 ) 
{ 
 int i, j, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols; 
 
 for (i=0; i<outCount; i++) 
  for (j=0; j<inCount; j++) 
   output[i] += W(i,j)*input[j];  
} 

Synapse DLL Implementation 

 

 

 

 

Component: Synapse  

Protocol: PerformSynapse 

 

Description: 

The Synapse component simply takes each PE from the Axon feeding the Synapse’s input and 
adds its activity to the corresponding PE of the Axon at the Synapse’s output. The delay between 
the input and output is defined by the user within the Synapse Inspector (see Synapse Family). 
Note that the activity is accumulated at the output for the case of a summing junction (i.e., 
connection that is fed by multiple Synapses) at the output Axon. Also note that if there is a different 
number of input PEs than output PEs, then the extra ones are ignored. 

 

Code: 
 
void performSynapse( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,    // Pointer to the input layer of PEs 
 int     inRows,    // Number of rows of PEs in the input layer 
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 int     inCols,    // Number of columns of PEs in the input layer 
 NSFloat *output,   // Pointer to the output layer 
 int     outRows,   // Number of rows of PEs in the output layer 
 int     outCols    // Number of columns of PEs in the output layer
 ) 
{ 
 int i, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols, 
  count = inCount<outCount? inCount: outCount; 
 
 for (i=0; i<count; i++) 
  output[i] += input[i];  
} 

Drag and Drop 

Synapse Family Drag and Drop 

 

Synapses are base components on the breadboard. This means that they must be dropped directly 
onto an empty breadboard location. 

 

 

  See Also 

Inspectors 

ArbitrarySynapse Inspector 

 

Component: ArbitrarySynapse 

Superclass Inspector: Synapse Inspector 
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Component Configuration: 
Connections Radio Buttons 

The Radio Buttons, which appear on the right half of the inspector, are used to individually select 
connections between neurons. Each Button is associated with one neuron, the left buttons 
corresponding to the neurons at the input and the right buttons corresponding to the neurons at the 
output. Any number of neurons from either side may be selected at once.  The connections are 
made once the Connect button is clicked on. 
Connection Sliders 

The left and right Sliders may be used to scroll through the visible input and output neurons, 
respectively.  As each input neuron comes into view, any connections it may have with the visible 
output neurons will be displayed.  The up and down Buttons associated with each of the Sliders 
allows neurons to be scrolled one at a time. If the Sliders or Buttons turn gray, that means they are 
disabled and not used during this mode.  This could happen if the number of corresponding 
neurons is less than six, or if the Scroll Fix Switch is on. 
Scroll Fix 

This Switch places the Sliders into fixed mode.  In this mode each input neuron will be lined up with 
its corresponding output neuron.  This will apply as long as there are sufficient input or output 
neurons to match. Once these have run out, the smaller of the two will remain stationary. 
Near, Sparse, Random, Manual 

These Radio Buttons are used in conjunction with the Connections cell.  Specifying the desired 
number of connections and then pressing Near, Sparse, or Random will automatically implement 
the following connection schemes. 

 

Near - tries to make connections to the Nth nearest neurons in the opposing layer. 

 

Sparse - tries to evenly distribute N connections over the opposing layer. 

 

Random - randomly makes N connections to neurons in the opposing layer. 
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Once the connection scheme has been chosen, the connections will change under the following 
conditions: 1) the number of Connections is changed by typing a new number in the Connections 
cell, or 2) the number of neurons in either the input or output layer are changed, or 3) the 
component is loaded from a saved breadboard. Note that the third condition can be avoided (i.e., 
the individual connections will be stored with the breadboard instead of regenerated) by selecting 
the Manual radio button after the automated connections have been made (but before saving the 
breadboard). 

Pressing the Manual button will allow arbitrarily selected connections to be made. Arbitrary 
"adding" or "pruning" of connections may be done at any time as long as the Manual Button is 
highlighted.  This works by selecting the input and output neurons, then clicking either the Connect 
or Remove button. 
Connections 

This cell is used to indicate how many connections should be made from each neuron when using 
the automatic connection schemes (See above description). 
From Left, From Right 

These radio buttons are used to determine which direction the automatic connection schemes 
should use when computing which neurons to connect from and to. 
Connect 

This button is used to make connections between arbitrarily selected neurons.  When this button is 
pressed, every highlighted input neuron will be connected to every highlighted output neuron. 
Clear 

Pressing this button will remove all connections. 
Remove 

This button is used to remove connections between neurons.  When this button is pressed, every 
highlighted input neuron will be disconnected from each of the highlighted output neurons. 

 

CombinerSynapse Inspector 

 

Component: CombinerSynapse  

Superclass Inspector: Synapse Inspector 

 



 371

 

 

Component Configuration: 
Starting PE 

This specifies the PE of the Axon at the output to use as the first connection (the one that is 
connected to the PE 0 of the input Axon). The remaining connections are then made in sequential 
order (e.g., input PE 1 connects to output PE "Starting+1"). 

 

ContractorSynapse Inspector 

 

Component: ContractorSynapse  

Superclass Inspector: Synapse Inspector 

 

 

 

Component Configuration: 
Connection Sequence 
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These Radio Buttons are used to specify the connection mapping between the input and output 
PEs of the ExpanderSynapse. The button labeled "123123123" corresponds to the Sequence 1 
example given within the ContractorSynapse component definition page and the button labeled 
"111222333" corresponds to the Sequence 2 example. 

 

ExpanderSynapse Inspector 

 

Component: ExpanderSynapse  

Superclass Inspector: Synapse Inspector 

 

 

 

Component Configuration: 
Connection Sequence 

These Radio Buttons are used to specify the connection mapping between the input and output 
PEs of the ExpanderSynapse. The button labeled "123123123" corresponds to the Sequence 1 
example given within the ExpanderSynapse component definition page and the button labeled 
"111222333" corresponds to the Sequence 2 example. 

 

ModularSynapse Inspector 

 

Component: ModularSynapse  

Superclass Inspector: Synapse Inspector 
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Component Configuration: 
Modules 

This specifies the number of groups to break up the Axons' neurons into. The ModularSynapse 
component then provides a full interconnection between the neurons of the corresponding 
modules. 

 

Synapse Inspector 

 

Family: Synapse Family 

Superclass Inspector: Engine Inspector  

 

 

 

Component Configuration: 
Delay 
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A synapse applies an arbitrary activation function to the activity of an axon at its input, and passes 
the result to an axon at its output. The activation function can be applied to the input axon's current 
activity, or its activity at any previous instant in time. The Delay cell allows the user to connect the 
synapse to delayed versions of the input axon's activity. All recurrent connections on a breadboard 
will require at least one synapse with a delay greater than zero. 
Inputs 

This cell reports the number of PEs within the Axon attached to the Synapse's input. This value 
cannot be modified from this location. 
Outputs 

This cell reports the number of PEs within the Axon attached to the Synapse's output. This value 
cannot be modified from this location. 

 

 

  See Also 

Macro Actions 

ArbitrarySynapse 

ArbitrarySynapse Macro Actions 
Overview Superclass Macro Actions 

Action Description 
autoconnect  Returns the autoconnect setting (Near, Sparse, Random, or Manual). 
 
disconnectAll Removes all connections between neurons. 
 
forward  Returns the connection direction setting (left to right or right to left).  
 
nConnections  Returns the number of connections setting. 
 
removeConnections Removes connections between neurons. 
 
setAutoconnect Sets the autoconnect setting (Near, Sparse, Random, or Manual). 
 
setForward  Sets the connection direction setting (left to right or right to left). 
 
setNConnections  Sets the number of connections setting. 
 
toggleInputNeuron  Selects/deselects specific input neurons to be used in the next 
connection. 
 
toggleOutputNeuron Selects/deselects specific output neurons to be used in the next 
connection. 

autoconnect 
Overview Macro Actions 
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Syntax 

componentName.autoconnect() 

Parameters Type Description 
return int Current autoconnect setting (see "Near, Sparse, Random, Manual" within the  
ArbitrarySynapse Inspector ). 
    0 = Near 
    1 = Sparse 
    2 = Random 
    3 = Manual 
 
componentName  Name defined on the engine property page. 
 
 
 

disconnectAll 
Overview Macro Actions 

Syntax 

componentName.disconnectAll() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

 

forward 
Overview Macro Actions 

Syntax 

componentName.forward() 

Parameters Type Description 
return BOOL True if current direction setting is from left to right (see "From Left, From Right" 
within the ArbitrarySynapse Inspector ). 
 
componentName  Name defined on the engine property page. 
 

 

 

nConnections 
Overview Macro Actions 
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Syntax 

componentName.nConnections() 

Parameters Type Description 
return int The current number of connections from each neuron (see "Connections" within 
the ArbitrarySynapse Inspector ). 
 
componentName  Name defined on the engine property page. 
 

 

 

removeConnections 
Overview Macro Actions 

Syntax 

componentName.removeConnections() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

 

setAutoconnect 
Overview Macro Actions 

Syntax 

componentName.setAutoconnect(autoconnect) 

 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
autoconnect int New autoconnect setting (see "Near, Sparse, Random, Manual" within 
the ArbitrarySynapse Inspector ). 
    0 = Near 
    1 = Sparse 
    2 = Random 
    3 = Manual 
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setForward 
Overview Macro Actions 

Syntax 

componentName.setForward(forward) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
forward BOOL True if new direction setting is from left to right (see "From Left, From Right" 
within the ArbitrarySynapse Inspector ). 

 

setNConnections 
Overview Macro Actions 

Syntax 

componentName.setNConnections(nConnections) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
nConnections int The current number of connections from each neuron (see 
"Connections" within the ArbitrarySynapse Inspector ). 

 

toggleInputNeuron 
Overview Macro Actions 

Syntax 

componentName.toggleInputNeuron(neuronPos) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
neuronPos int Index of the input neuron to be selected/deselected for the next 
connection (see "Connections Radio Buttons" within the ArbitrarySynapse Inspector ).  

 

toggleOutputNeuron 
Overview Macro Actions 
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Syntax 

componentName.toggleOutputNeuron(neuronPos) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
neuronPos int Index of the output neuron to be selected/deselected for the next 
connection (see "Connections Radio Buttons" within the ArbitrarySynapse Inspector ).  

 

 

FullSynapse 

Synapse 

Synapse Macro Actions 
Overview Superclass Macro Actions 

Action Description 
delay  Returns the Delay setting.  
 
inputConnector  Returns the name of the Axon attached to the Synapse's input. 
 
outputConnector  Returns the name of the Axon attached to the Synapse's output. 
 
setDelay  Sets the Delay setting. 

 

delay 
Overview Macro Actions 

Syntax 

componentName.delay() 

Parameters Type Description 
return int The Synapse’s delay in samples  (see "Delay" within the Synapse Inspector ). 
 
componentName  Name defined on the engine property page. 

inputConnector 
Overview Macro Actions 

Syntax 

componentName.inputConnector() 
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Parameters Type Description 
return string The name of the Axon attached to the Synapse's input. 
 
componentName  Name defined on the engine property page. 

outputConnector 
Overview Macro Actions 

Syntax 

componentName.outputConnector() 

Parameters Type Description 
return string The name of the Axon attached to the Synapse's output. 
 
componentName  Name defined on the engine property page. 

 

setDelay 
Overview Macro Actions 

Syntax 

componentName.setDelay(delay) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
delay int The Synapse’s delay in samples (see "Delay" within the Synapse Inspector ). 
 
 

Macro Actions 

Soma 

Soma Macro Actions 
Overview Superclass Macro Actions  

Action Description 
networkJog  Randomizes each weight of the component using its current value as the mean 
and the variance specified within the Variance cell. 
 
networkRandomize  Randomizes each weight of the component using the mean specified 
within the Mean cell and the variance specified within the Variance cell. 
 
setEngineData  Sets the soma's weights. 
 
setWeightMean  Sets the Mean value for the weight randomization. 
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setWeightsFixed  Sets the Fix Weights setting. 
 
setWeightsSave  Sets the Save Weights setting. 
 
setWeightVariance  Sets the Variance value for the weight randomization. 
 
weightMean  Returns the Mean value for the weight randomization. 
 
weightsFixed  Returns the Fix Weights setting. 
 
weightsSave  Returns the Save Weights setting. 
 
weightVariance  Returns the Variance value for the weight randomization. 
 

networkJog 
Overview Macro Actions 

Syntax 

componentName.networkJog() 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 

networkRandomize 
Overview Macro Actions 

Syntax 

componentName.networkRandomize() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

setEngineData 
Overview Macro Actions 

Syntax 

componentName.setEngineData(data) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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data variant An array of single-precision floating point values that contains the soma's 
weights. 
 

setWeightsFixed 
Overview Macro Actions 

Syntax 

componentName.setWeightsFixed(weightsFixed) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightsFixed BOOL When TRUE, the adaptive weights for the component are frozen during 
the randomization process (see "Fix Weights" within the Soma Family Inspector ). 
 

setWeightMean 
Overview Macro Actions 

Syntax 

componentName.setWeightMean(weightMean) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightMean float The randomization mean for the component weights (see "Mean" within 
the Soma Family Inspector ). 
 
  

setWeightsSave 
Overview Macro Actions 

Syntax 

componentName.setWeightsSave(weightsSave) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightSave BOOL When TRUE, the weights will be saved when the breadboard is saved 
(see "Save" within the Soma Family Inspector ). 
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setWeightVariance 
Overview Macro Actions 

Syntax 

componentName.setWeightVariance(weightVariance) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightVariance float The randomization variance for the component weights (see "Variance" 
within the Soma Family Inspector). 
 
 

weightsFixed 
Overview Macro Actions 

Syntax 

componentName.weightsFixed() 

Parameters Type Description 
return BOOL When TRUE, the adaptive weights for the component are frozen during the 
randomization process (see "Fix Weights" within the Soma Family Inspector ). 
 
componentName  Name defined on the engine property page. 
 

weightMean 
Overview Macro Actions 

Syntax 

componentName.weightMean() 

Parameters Type Description 
return float The randomization mean for the component weights (see "Mean" within the 
Soma Family Inspector ). 
 
componentName  Name defined on the engine property page. 
 

weightsSave 
Overview Macro Actions 

Syntax 

componentName.weightsSave() 
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Parameters Type Description 
return BOOL When TRUE, the weights will be saved when the breadboard is saved (see 
"Save" within the Soma Family Inspector ). 
 
componentName  Name defined on the engine property page. 
 

weightVariance 
Overview Macro Actions 

Syntax 

componentName.weightVariance() 

Parameters Type Description 
return float The randomization variance for the component weights (see "Variance" within 
the Soma Family Inspector). 
 
componentName  Name defined on the engine property page. 
 
 
 
 

Backprop Family 
BackAxon Family 

BackAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: Axon 

Activation Dual: Axon 

 

Sensitivity Function: 
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Gradient Function: 

 

No weights 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackBiasAxon 

 

 

 

 

 

Family: BackAxon Family 

Superclass: BiasAxon 

Activation Dual: BiasAxon 

 

Sensitivity Function: 

 

 

 

Gradient Function: 
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User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackCombinerAxon 

 

 

 

 

 

Family: BackAxon Family  

Superclass: BackAxon  

Activation Dual: CombinerAxon  

 

Sensitivity Function: 

 

 

where i < N/2, and 

 

where i >= N/2. 

 

Gradient Function: 

 

No weights to update. 

 

User Interaction: 

Drag and Drop 

Inspector 
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Access Points 

DLL Implementation 

 

BackLinearAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: BackBiasAxon 

Activation Dual: LinearAxon 

 

Description: 

The BackLinearAxon is the companion component for the LinearAxon that implements learning. It 
basically allows for the adaptation of the bias weight. The slope can be scheduled or user modified.  

 

Sensitivity Function: 

 

  

 

Gradient Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 
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DLL Implementation 

Macro Actions  

BackNormalizedAxon 

 

 

 

 

 

Family: BackAxon Family  

Superclass: BackAxon  

Activation Dual: NormalizedAxon  

 

Sensitivity Function: 

 

 

 

Gradient Function: 

 

No weights to update. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

 

BackNormalizedSigmoidAxon 
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Family: BackAxon Family  

Superclass: BackSigmoidAxon  

Activation Dual: NormalizedSigmoidAxon  

 

Sensitivity Function: 

 

 

where  is the sensitivity function of the BackSigmoidAxon. 

 

Gradient Function: 

 

Same as the BackSigmoidAxon. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

 

BackSigmoidAxon 
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Family: BackAxon Family  

Superclass: BackLinearAxon 

Activation Duals: SigmoidAxon, LinearSigmoidAxon 

 

Sensitivity Function: 

 

 

 where O is the Nonlinearity Derivative Offset . 

 

Gradient Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

 

BackTanhAxon 
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Family: BackAxon Family 

Superclass: BackLinearAxon 

Activation Duals: TanhAxon, LinearTanhAxon 

 

Sensitivity Function: 

 

 

 where O is the Nonlinearity Derivative Offset . 

 

Gradient Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackCriteriaControl 

 

 

 

 

 

Family: BackAxon Family 

Superclass: BackAxon 

Activation Dual: ErrorCriteria Family  
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Description: 

The BackCriteriaControl is designed to stack on top of any member of the ErrorCriteria family, and 
communicate with the Backprop components to perform backpropagation. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

BackBellFuzzyAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: BackAxon  

Activation Dual: BellFuzzyAxon  

 

Description: 

The BackBellFuzzyAxon is the companion component for the BellFuzzyAxon that implements 
learning. It basically allows for the adaptation of the three parameters of each of the membership 
functions.  

 

Sensitivity Function: 

 

  

 

Gradient Function: 
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where  wi = weight (MF parameter) 

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points  

DLL Implementation  

 

BackGaussianFuzzyAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: BackAxon  

Activation Dual: GaussianFuzzyAxon  
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Description: 

The BackGaussianFuzzyAxon is the companion component for the GaussianFuzzyAxon that 
implements learning. It basically allows for the adaptation of the two parameters of each of the 
membership functions.  

 

Sensitivity Function: 

 

  

 

Gradient Function: 

 

 

 

 

where  wi = weight (MF parameter) 

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points  

DLL Implementation  

 

Access Points 

BackAxon Family Access Points 

 

Family:BackAxon Family  
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Pre-Activity Gradients Access: 

Attaches the Access component to the vector sum just prior to applying the activation function 
.  It is important to realize that this access point does not correspond to any physical 

storage within the simulation. In other words, data may be injected or probed as activity flows 
through the network, but is then immediately lost. Trying to alter the pre-activity out of sync with the 
network data flow will actually alter the data storage for Activity Access. 

Activity Gradients Access: 

Attaches the Access component to the vector of activity immediately after the function map 
. 

Weights Gradients Access: 

All adaptive weights within the axon are reported by attaching to Weight Access. This data may be 
reported in vector or matrix form, depending on how the axon stores it.  If a component does not 
have any weights, this access point will not appear in the inspector. 

DLL Implementation 

BackAxon DLL Implementation 

 

 

 

 

Component: BackAxon  

Protocol: PerformBackAxon 

 

Description: 

Since the Axon component does not modify the data fed into the processing elements (PEs), the 
BackAxon component does not modify the sensitivity vector. The Axon component does not have 
any adaptable weights, so there is no gradient vector to compute. 

 

Code: 
 
void performBackAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *error         // Pointer to the sensitivity vector 
 ) 
{ 
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} 

BackBiasAxon DLL Implementation 

 

 

 

 

Component: BackBiasAxon  

Protocol: PerformBackBiasAxon 

 

Description: 

Since the partial of the BiasAxon’s cost with respect to its activity is 1, the sensitivity vector is not 
modified. The partial of the BiasAxon’s cost with respect to its weight vector is used to compute the 
gradient vector. This vector is simply an accumulation of the error. 

 

Code: 
 
void performBackBiasAxon( 
 DLLData *instance,     // Pointer to instance data 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *error         // Pointer to the sensitivity vector 
 NSFloat *gradient      // Pointer to the bias gradient vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 if (gradient)  
  for (i=0; i<length; i++) 
   gradient[i] += error[i]; 
} 
 

BackLinearAxon DLL Implementation 
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Component: BackLinearAxon  

Protocol: PerformBackLinearAxon 

 

Description: 

The partial of the LinearAxon’s cost with respect to its activity is the sensitivity from the previous 
layer times beta. The partial of the LinearAxon’s cost with respect to its weight vector is used to 
compute the gradient vector. As with the BiasAxon, this vector is simply an accumulation of the 
error. 

 

Code: 
 
void performBackLinearAxon( 
 DLLData *instance,     // Pointer to instance data 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *error         // Pointer to the sensitivity vector 
 NSFloat *gradient      // Pointer to the bias gradient vector 
 NSFloat beta           // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] *= beta; 
  if (gradient) 
   gradient[i] += error[i]; 
 }  
} 

BackSigmoidAxon DLL Implementation 

 

 

 

 

Component: BackSigmoidAxon  

Protocol: PerformBackLinearAxon 

 

Description: 
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The partial of the SigmoidAxon’s cost with respect to its activity is used to compute the sensitivity 
vector. The partial of the SigmoidAxon’s cost with respect to its weight vector is used to compute 
the gradient vector. As with the BiasAxon, this vector is simply an accumulation of the error. 

 

Code: 
 
void performBackLinearAxon( 
 DLLData *instance,     // Pointer to instance data 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *error         // Pointer to the sensitivity vector 
 NSFloat *gradient      // Pointer to the bias gradient vector 
 NSFloat beta           // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] *= beta*(data[i]*(1.0f-data[i]) + 0.1f); 
  if (gradient) 
   gradient[i] += error[i]; 
 } 
} 

BackTanhAxon DLL Implementation 

 

 

 

 

Component: BackTanhAxon  

Protocol: PerformBackLinearAxon 

 

Description: 

The partial of the TanhAxon’s cost with respect to its activity is used to compute the sensitivity 
vector. The partial of the TanhAxon’s cost with respect to its weight vector is used to compute the 
gradient vector. As with the BiasAxon, this vector is simply an accumulation of the error. 

 

Code: 
 
void performBackLinearAxon( 
 DLLData *instance,     // Pointer to instance data 
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 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *error         // Pointer to the sensitivity vector 
 NSFloat *gradient      // Pointer to the bias gradient vector 
 NSFloat beta           // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] *= beta*(1.0f - data[i]*data[i] + 0.1f); 
  if (gradient) 
   gradient[i] += error[i]; 
 } 
} 

BackBellFuzzyAxon DLL Implementation 

 

 

 

 

Component: BackBellFuzzyAxon  

Protocol: PerformBackFuzzyAxon  

 

Description: 
The BellFuzzyAxon has three parameters for each membership function. This function computes 
the partial of each of those parameters with respect to the input value corresponding to the winning 
membership function.  

 

Code: 
 
void performBackFuzzyAxon( 
 DLLData *instance, // Pointer to instance data (may be 
NULL) 
 DLLData *dualInstance,// Pointer to forward axon’s instance 
data 
        // (may be NULL) 
 NSFloat *data,   // Pointer to the layer of 
processing 
        // elements (PEs) 
 int  rows,    // Number of rows of PEs in the 
layer 
 int  cols,    // Number of columns of PEs in 
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the layer 
 NSFloat *error,  // Pointer to the sensitivity 
vector 
 NSFloat *param,   // Pointer to the layer of 
parameters for the 
        // MFs 
 int  paramIndex,  // Index of the MF parameter 
 int  winnerIndex,  // Index of the winning MF 
 NSFloat winnerVal,  // Value of the winning Input 
 NSFloat *returnVal  // Return value 
 ) 
{ 
 NSFloat b; 
 NSFloat c; 
 NSFloat tmp1; 
 NSFloat tmp2; 
 NSFloat denom; 
 NSFloat a = *(param + winnerIndex); 
 if (a == 0.0f) 
  *returnVal = 0.0f; 
 b = *(param + winnerIndex + 1); 
 c = *(param + winnerIndex + 2); 
 tmp1 = (winnerVal - c)/a; 
 tmp2 = tmp1 == 0 ? 0 : (NSFloat)pow(pow(tmp1, 2.0), b); 
 denom = (1 + tmp2)*(1 + tmp2); 
 if (paramIndex == winnerIndex) 
  *returnVal = (2*b*tmp2/(a*denom)); 
 if (paramIndex == (winnerIndex + 1)) { 
  if (tmp1 == 0) 
   *returnVal = 0.0f; 
  else 
   *returnVal = ((NSFloat)-log(tmp1*tmp1)*tmp2/denom); 
 } 
 if (paramIndex == (winnerIndex + 2)) { 
  if (winnerVal == c) 
   *returnVal = 0.0f; 
  else 
   *returnVal = (2*b*tmp2/((winnerVal - c)*(denom))); 
 } 
} 
 

BackGaussianFuzzyAxon DLL Implementation 
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Component: BackGaussianFuzzyAxon  

Protocol: PerformBackFuzzyAxon  

 

Description: 
The GaussianFuzzyAxon has two parameters for each membership function. This function 
computes the partial of each of those parameters with respect to the input value corresponding to 
the winning membership function.  

 

Code: 
 
void performBackFuzzyAxon( 
 DLLData *instance, // Pointer to instance data (may be 
NULL) 
 DLLData *dualInstance,// Pointer to forward axon’s instance 
data 
        // (may be NULL) 
 NSFloat *data,   // Pointer to the layer of 
processing 
        // elements (PEs) 
 int  rows,    // Number of rows of PEs in the 
layer 
 int  cols,    // Number of columns of PEs in 
the layer 
 NSFloat *error,  // Pointer to the sensitivity 
vector 
 NSFloat *param,   // Pointer to the layer of 
parameters for the 
        // MFs 
 int  paramIndex,  // Index of the MF parameter 
 int  winnerIndex,  // Index of the winning MF 
 NSFloat winnerVal,  // Value of the winning Input 
 NSFloat *returnVal  // Return value 
 ) 
{ 
 NSFloat c = *(param + winnerIndex); 
 NSFloat sigma = *(param + winnerIndex + 1); 
 if (sigma == 0.0f) 
  *returnVal = 0.0f; 
 else { 
  NSFloat exp_fraction = (winnerVal - c) / sigma; 
  NSFloat exp_final = (NSFloat)(pow (exp_fraction, 2.0) / -
2.0); 
  NSFloat fwrd_activation = (NSFloat)exp (exp_final); 
  if (paramIndex == winnerIndex) 
  { 
   NSFloat deriv_fwrd = (NSFloat)((winnerVal - c) / pow 
(sigma, 2.0)); 
   *returnVal = fwrd_activation * deriv_fwrd; 
  } 
  if (paramIndex == (winnerIndex + 1)) { 
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   NSFloat deriv_fwrd = (NSFloat)(pow ( (winnerVal - c), 
2.0) / pow (sigma, 3.0)); 
   *returnVal = fwrd_activation * deriv_fwrd; 
  } 
 } 
} 
 

Inspectors 

BackLinearAxon Inspector  

 

Component: BackLinearAxon  

Superclass Inspector: Axon Inspector 

 

 

 

Component Configuration: 
Nonlinearity Derivative Offset 

This offset is added to computed sensitivities in order to avoid a zero error, which could result in a 
flat learning curve. 

 

Macro Actions 

Back Linear Axon 

BackLinearAxon Macro Actions 
Overview Superclass Macro Actions  

Action Description 
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offset Returns the nonlinearity derivative offset. 
 
setOffset Sets the nonlinearity derivative offset. 
 
 
  

offset 
Overview Macro Actions 

Syntax 

componentName.offset() 

Parameters Type Description 
return float The nonlinearity derivative offset (see the BackLinearAxon Inspector). 
 
componentName  Name defined on the engine property page. 
 

setOffset 
Overview Macro Actions 

Syntax 

componentName.setOffset(offset) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
offset float The nonlinearity derivative offset (see the BackLinearAxon Inspector). 
 
 

BackMemoryAxon Family 

BackContextAxon 

 

 

 

 

 

Family: BackAxon Family 
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Superclass: BackLinearAxon 

Activation Dual: ContextAxon 

 

Sensitivity Function: 

 

  

 

Gradient Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackGammaAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: BackTDNNAxon 

Activation Dual: GammaAxon 

 

Tap Sensitivity Function: 
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Gradient Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackLaguarreAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: BackTDNNAxon 

Activation Dual: LaguarreAxon 

 

Tap Sensitivity Function: 
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Gradient Function: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackIntegratorAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: BackContextAxon 

Activation Dual: IntegratorAxon 

 

Sensitivity Function: 

 

 

 

Gradient Function: 
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User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackSigmoidContextAxon 
 

 

 

 

Family: BackAxon Family 

Superclass: BackContextAxon 

Activation Dual: SigmoidContextAxon 

 

Sensitivity Function: 

 

See BackSigmoidAxon and BackContextAxon 

 

Gradient Function: 

 

See BackContextAxon 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 
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BackSigmoidIntegratorAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: BackIntegratorAxon 

Activation Dual: SigmoidIntegratorAxon 

 

Sensitivity Function: 

 

See BackSigmoidAxon and BackIntegratorAxon 

 

Gradient Function: 

 

See BackIntegratorAxon 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackTanhContextAxon 

 

 

 

 

 

Family: BackAxon Family 
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Superclass: BackContextAxon 

Activation Dual: TanhContextAxon 

 

Sensitivity Function: 

 

See BackTanhAxon and BackContextAxon  

 

Gradient Function: 

 

See BackContextAxon 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackTanhIntegratorAxon 
 

 

 

 

Family: BackAxon Family 

Superclass: BackIntegratorAxon 

Activation Dual: TanhIntegratorAxon 

 

Sensitivity Function: 

 

See BackTanhAxon and BackIntegratorAxon 

 

Gradient Function: 
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See BackIntegratorAxon 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

BackTDNNAxon 

 

 

 

 

Family: BackAxon Family 

Superclass: BackAxon 

Activation Dual: TDNNAxon 

 

Tap Sensitivity Function: 

 

 

 

Gradient Function: 

 

No weights 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 
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DLL Implementation 

BackContextAxon DLL Implementation 

 

 

 

 

Component: BackContextAxon  

Protocol: PerformBackContextAxon 

 

Description: 

The gradient information is computed to update the time constants and the sensitivity vector is 
computed for the backpropagation. 

 

Code: 
 
void performBackContextAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 NSFloat *data,         // Pointer to the layer of PEs 
 NSFloat *tau,          // Pointer to a vector of time constants 
 NSFloat beta,          // Linear scaling factor (user-defined) 
 NSFloat *gradient      // Pointer to the tau gradient vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] = beta*(data[i] + tau[i]*delayedError[i]); 
  if (gradient) 
   gradient[i] += delayedError[i]*beta*data[i]; 
 }  
} 

BackGammaAxon DLL Implementation 
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Component: BackGammaAxon  

Protocol: PerformBackGammaAxon 

 

Description: 

The gradient information is computed to update the gamma coefficients and the sensitivity vector is 
computed for the backpropagation. 

 

Code: 
 
void performBackGammaAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 int     taps,          // Number of memory taps (user-defined) 
 NSFloat *data          // Pointer to the layers of (PEs) 
 NSFloat *gamma,        // Pointer to vector of gamma coefficients 
 NSFloat *gradient      // Pointer to the gamma gradient vector 
 ) 
{ 
 register int i,j,k,length=rows*cols; 
 
 for (i=0; i<length; i++) 
  for (j=1; j<taps; j++) { 
   k = i + j*length; 
   error[k-length] += gamma[i]*delayedError[k]; 
   error[k] += (1.0f-gamma[i])*delayedError[k]; 
   if (gradient)  
    gradient[i] += delayedError[k]*(data[k-
length]-data[k]); 
  } 
} 

BackIntegratorAxon DLL Implementation 
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Component: BackIntegratorAxon   

Protocol: PerformBackContextAxon 

 

Description: 

The gradient information is computed to update the time constants and the sensitivity vector is 
computed for the backpropagation. 

 

Code: 
 
void performBackContextAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 NSFloat *data,         // Pointer to the layer of PEs 
 NSFloat *tau,          // Pointer to a vector of time constants 
 NSFloat beta,          // Linear scaling factor (user-defined) 
 NSFloat *gradient      // Pointer to the tau gradient vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] = beta*((1.0f-tau[i])*data[i] + 
tau[i]*delayedError[i]); 
  if (gradient) 
   gradient[i] += delayedError[i]*beta*data[i]; 
 }  
} 

BackLaguarreAxon DLL Implementation 
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Component: BackLaguarreAxon  

Protocol: PerformBackGammaAxon DLL Protocol  

 

Description: 

The gradient information is computed to update the gamma coefficients and the sensitivity vector is 
computed for the backpropagation. 

 

Code: 
 
void performBackGammaAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 int     taps,          // Number of memory taps (user-defined) 
 NSFloat *data          // Pointer to the layers of (PEs) 
 NSFloat *gamma,        // Pointer to vector of gamma coefficients 
 NSFloat *gradient      // Pointer to the gamma gradient vector 
 ) 
{ 
register int i,j,k,length=rows*cols; 
  NSFloat gain; 
 
 for (i=0; i<length; i++) { 
  gain = (NSFloat)pow(1-pow(gamma[i], 2.0f), 0.5f); 
  for (j=1; j<taps; j++) { 
   k = i + j*length; 
   error[k-length] += delayedError[k]; 
   error[k] += gamma[i]*delayedError[k]; 
   if (gradient)  
    gradient[i] += delayedError[k]*data[k]; 
   if (j==1)  
    error[k] *= gain; 
   else { 
    error[k-length] -= gamma[i]*error[k]; 
    if (gradient)  
     gradient[i] -= error[k]*data[k-length]; 
   } 
  } 
 } 
} 
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BackSigmoidContextAxon DLL Implementation 

 

 

 

 

Component: BackSigmoidContextAxon  

Protocol: PerformBackContextAxon 

 

Description: 

The gradient information is computed to update the time constants and the sensitivity vector is 
computed for the backpropagation. 

 

Code: 
 
void performBackContextAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 NSFloat *data,         // Pointer to the layer of PEs 
 NSFloat *tau,          // Pointer to a vector of time constants 
 NSFloat beta,          // Linear scaling factor (user-defined) 
 NSFloat *gradient      // Pointer to the tau gradient vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] *= data[i]*(1.0f-data[i]) + 0.1f; 
  error[i] = beta*(data[i] + tau[i]*delayedError[i]); 
  if (gradient) 
   gradient[i] += delayedError[i]*beta*data[i]; 
 }  
} 

BackSigmoidIntegratorAxon DLL Implementation 
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Component: BackSigmoidIntegratorAxon  

Protocol: PerformBackContextAxon 

 

Description: 

The gradient information is computed to update the time constants and the sensitivity vector is 
computed for the backpropagation. 

 

Code: 
 
void performBackContextAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 NSFloat *data,         // Pointer to the layer of PEs 
 NSFloat *tau,          // Pointer to a vector of time constants 
 NSFloat beta,          // Linear scaling factor (user-defined) 
 NSFloat *gradient      // Pointer to the tau gradient vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] *= data[i]*(1.0f-data[i]) + 0.1f; 
  error[i] = beta*((1.0f-tau[i])*data[i] + 
tau[i]*delayedError[i]); 
  if (gradient) 
   gradient[i] += delayedError[i]*beta*data[i]; 
 }  
} 

BackTanhContextAxon DLL Implementation 
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Component: BackTanhContextAxon  

Protocol: PerformBackContextAxon 

 

Description: 

The gradient information is computed to update the time constants and the sensitivity vector is 
computed for the backpropagation. 

 

Code: 
 
void performBackContextAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 NSFloat *data,         // Pointer to the layer of PEs 
 NSFloat *tau,          // Pointer to a vector of time constants 
 NSFloat beta,          // Linear scaling factor (user-defined) 
 NSFloat *gradient      // Pointer to the tau gradient vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] *= 1.0f - data[i]*data[i] + 0.1f; 
  error[i] = beta*(data[i] + tau[i]*delayedError[i]); 
  if (gradient) 
   gradient[i] += delayedError[i]*beta*data[i]; 
 }  
} 

BackTanhIntegratorAxon DLL Implementation 

 

 

 

 

Component: BackTanhIntegratorAxon  
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Protocol: PerformBackContextAxon 

 

Description: 

The gradient information is computed to update the time constants and the sensitivity vector is 
computed for the backpropagation. 

 

Code: 
 
void performBackContextAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 NSFloat *data,         // Pointer to the layer of PEs 
 NSFloat *tau,          // Pointer to a vector of time constants 
 NSFloat beta,          // Linear scaling factor (user-defined) 
 NSFloat *gradient      // Pointer to the tau gradient vector 
 ) 
{ 
 int i, length=rows*cols; 
 
 for (i=0; i<length; i++) { 
  error[i] *= 1.0f - error[i]*error[i] + 0.1f; 
  error[i] = beta*((1.0f-tau[i])*error[i] + 
tau[i]*delayedError[i]); 
  if (gradient) 
   gradient[i] += delayedError[i]*beta*data[i]; 
 }  
} 

BackTDNNAxon DLL Implementation 

 

 

 

 

Component: BackTDNNAxon  

Protocol: PerformBackTDNNAxon 

 

Description: 
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Since the TDNNAxon has no adaptable weights, there is no gradient information to compute. The 
sensitivity vector is computed by taking the backpropagated error from each PE and adding the 
delayedError from the next tap. 

 

Code: 
 
void performBackTDNNAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity 
vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 int     taps,          // Number of memory taps (user-defined) 
 NSFloat *data          // Pointer to the layers of (PEs) 
 ) 
{ 
 register int i,j,k,length=rows*cols; 
 
 for (i=0; i<length; i++) 
  for (j=1; j<taps; j++) { 
   k = i + j*length; 
   error[k-length] += delayedError[k]; 
  } 
} 

BackSynapse Family 

BackArbitrarySynapse 

 

 

 

 

Family: BackSynapse Family  

Superclass: BackSynapse  

Activation Dual: ArbitrarySynapse  

 

Sensitivity Function and Gradient Function: 

 

There is no pre-specified map for the ArbitrarySynapse. This component will backpropagate the 
sensitivities and gradients for any user defined connections within its dual component. 
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User Interaction: 

Drag and Drop 

Inspector 

Access Points 

BackFullSynapse 
 

 
 

 

Family: BackSynapse Family 

Superclass: BackSynapse 

Activation Dual: FullSynapse 

 

Sensitivity Function: 

 

  

 

Gradient Function: 

 

  

 

User Interaction: 

Drag and Drop  

Inspector  

Access Points  

DLL Implementation 

BackSynapse 
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Family: BackSynapse Family 

Superclass: Synapse 

Activation Dual: Synapse 

 

Sensitivity Function: 

 

 

 

Gradient Function: 

 

No weights 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

DLL Implementation 

BackFullSynapse DLL Implementation 

 

 

 

 

Component: BackFullSynapse  
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Protocol: PerformBackFullSynapse 

 

Description: 

The gradient of the weight going from the jth PE of the input BackAxon to the ith PE of the output 
BackAxon is the product of the error at the ith PE of the input BackAxon and the activity of the jth 
PE of the output BackAxon’s activation dual component. 

The error at the ith PE of the output BackAxon is the sum of the products of each weight connected 
to that PE and the corresponding error at the input BackAxon. Note that the input and output are 
reversed from the activation dual (i.e., the Synapse). 

 

Code: 
 
void performBackFullSynapse( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *errorIn,      // Pointer to the input error layer of PEs 
 int     inRows,        // Number of rows of PEs in the input layer 
 int     inCols,        // Number of columns of PEs at the input 
 NSFloat *errorOut,     // Pointer to the output error layer  
 int     outRows,       // Number of rows of PEs in the output 
layer 
 int     outCols,       // Number of columns of PEs at the output 
 NSFloat *input         // Pointer to output PEs of forward synapse 
 NSFloat *weights,      // Pointer to fully-connected weight matrix 
 NSFloat *gradients     // Pointer to the weight gradient matrix 
 ) 
{ 
 int i, j, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols; 
 
 for (i=0; i<outCount; i++) 
  for (j=0; j<inCount; j++) { 
   errorOut[i] += W(j,i)*errorIn[j];  
   if (gradients) 
    Wg(j,i) += errorIn[j]*input[i]; 
  }  
} 

BackSynapse DLL Implementation 

 

 

 

 



 422

Component: BackSynapse  

Protocol: PerformBackSynapse 

 

Description: 

Since the Synapse component has no adaptable weights, there is no gradient information 
computed. The sensitivity vector is computed by taking the error from the previous backprop layer 
and adding it to the error at the next backprop layer. Note that the error is accumulated at the 
output for the case of a splitting node (i.e., connection that feeds multiple Synapses) at the Axon 
that feeds the activation dual component (i.e., the Synapse). 

The delay between the output and input is defined by the user within the inspector of the activation 
dual (see Back Synapse Family). Note that the input and output are reversed from the activation 
dual (i.e., the Synapse). 

 

Code: 
 
void performBackSynapse( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *errorIn,      // Pointer to the input error layer of PEs 
 int     inRows,        // Number of rows of PEs in the input layer 
 int     inCols,        // Number of columns of PEs at the input 
 NSFloat *errorOut,     // Pointer to the output error layer  
 int     outRows,       // Number of rows of PEs in the output 
layer 
 int     outCols,       // Number of columns of PEs at the output 
 NSFloat *input         // Pointer to output PEs of forward synapse 
 ) 
{ 
 int i, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols, 
  count=inCount<outCount? inCount: outCount; 
 
 for (i=0; i<count; i++) 
  errorOut[i] += errorIn[i]; 
} 

Drag and Drop 

Backprop Family Drag and Drop 

 

Each member of the Backprop family was custom developed to perform backpropagation for a 
component in the Activation family. There is a one-to-one association between members of the 
Backprop family and the adaptive Activation components. The Activation component associated 
with any Backprop member will be referred to as its Activation dual. Each member of the 
Backprop family must be dropped directly on its activation dual, or a subclass of its dual. 
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  See Also 

Controls Family 
StaticControl 

 

 

 

 

Family: Controls Family  

Superclass: Control 

 

Description: 

The StaticControl implements data flow for static backpropagation. It expects a static input and a 
static desired response, from which an error is obtained. The error is propagated through the dual 
system (backprop plane). 

The user-defined options are limited to the number of patterns in the training set (exemplars/epoch) 
and the number of training cycles (epochs/experiment). The Control Toolbar contains controls to 
start/stop the simulation, reset the network (randomize the weights and clear the activations), and 
jog the weights (alter them by a small random value). The user can also single-step through the 
presentation of patterns either one exemplar at a time or one epoch at a time using the Static 
property page. 

The StaticControl allows a Cross Validation data set to flow through a network during learning, 
without affecting the updating of the weights. 

 

User Interaction: 

Drag and Drop 

Inspector 

Toolbar 

Window  

Access Points 

 

Macro Actions  
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  See Also 

Schedule Family  

BackStaticControl 
 

  

 

 

Family: Controls Family  

Superclass: Control 

 

Description: 

The BackStaticControl component is used in conjunction with the StaticControl component. Static 
backpropagation assumes that the output of a network is strictly a function of its present input (i.e., 
the network topology is static). In this case, the gradients and sensitivities are only dependent on 
the error and activations from the current time step. Note that static backpropagation can be used 
with temporal problems when using components with internal memory taps (e.g., TDNNAxon). 

The user specifies the number of patterns to be presented to the network before a weight update is 
computed. If the weights are updated after every exemplar (exemplars/update = 1), then this is 
termed on-line learning. If the weights are update after every epoch (exemplars/update = 
exemplars/epoch), then this is termed batch learning. 

This component also has a facility for automatically constructing or removing the learning dynamics 
(the backprop and gradient search planes) from the network. This provides an efficient means of 
switching a network between testing and training modes. 

 

User Interaction: 

Drag and Drop 

Inspector 

 

Macro Actions  

 

 

  See Also 

DynamicControl 
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Family: Controls Family  

Superclass: Control 

 

Description: 

The DynamicControl component is responsible for synchronizing the presentation of data to a 
neural network. The activation of all network simulations are divided into experiments, epochs, 
exemplars and forward samples. The DynamicControl component is capable of controlling both 
static and dynamic network topologies and is an extension of the StaticControl component. 

The outputs of a static network are only a function of its inputs and states at the current instant in 
time. This relationship can be depicted by the following equation: 

 

y(t) = f(i(t), x(t), w) 

 

where y(t) are the network's outputs, i(t) are inputs, x(t) are internal nodes and w are its weights. 

The outputs of a dynamic network can be a function of its inputs and internal states at the present 
time step, as well as its states at any past instant in time. This is illustrated by: 

 

y(t) = f(i(t), x(t), x(t-1), ... , x(t-T), w) 

 

The term forward samples refers to the individual pieces of temporal information. An exemplar is a 
complete pattern of samples. The temporal dimension of an exemplar is defined by the number of 
samples/exemplar. Note that the temporal dimension of a static network is one. An epoch refers to 
the set of all exemplars to be presented during the training of a network. A neural network 
experiment consists of the repeated presentation of an epoch to the network until it has sufficiently 
trained. 

Like the StaticControl, the DynamicControl allows a Cross Validation data set to flow through a 
network during learning, without affecting the updating of the weights. 

 

User Interaction: 

Drag and Drop 

Inspector 

Toolbar 

 

Macro Actions  
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  See Also 

BackDynamicControl 
 

  

 

 

Family: Controls Family 

Superclass: Control 

 

Description: 

The BackDynamicControl and BackStaticControl components are responsible for the 
synchronization of components implementing the backpropagation learning rule (i.e., the 
backpropagation plane). There are two distinct synchronization paradigms for backpropagation. 
Synchronization refers to the way in which the network processes sensitivity (error) data. The 
ActivationControl family divides simulations into experiments, epochs, exemplars and forward 
samples. The BackDynamicControl further defines a simulation by the number of backward 
samples per exemplar and the number of exemplars per update. As with the static case, the 
exemplars/update specifies how many times this process is repeated before the weight gradients 
are applied to the weights. Backpropagation can either be synchronized in Static, Trajectory or 
Fixed Point modes. 

Static backpropagation requires that the samples/exemplar of both the DynamicControl and the 
BackDynamicControl be set to one. See the reference for BackStaticControl for a description of 
static backpropagation. 

Training a network in Trajectory mode assumes that each exemplar has a temporal dimension 
defined by its forward samples (period), and that there exists some desired response for the 
network's output over this period. The network is first run forward in time over the entire period, 
during which an error is determined between the network's output and the desired response. Then 
the network is run backwards for a prescribed number of samples (defined by the 
samples/exemplar of the BackDynamicControl) to compute the gradients and sensitivities. This 
forward/backward pass is considered a single exemplar. 

Fixed Point mode assumes that each exemplar represents a static pattern that is to be embedded 
as a fixed point of a recurrent network. Here the terms forward samples and backward samples can 
be thought of as the forward relaxation period and backward relaxation period, respectively. All 
inputs are held constant while the network is repeatedly fired during its forward relaxation period, 
specified by the samples/exemplar of the DynamicControl component. Note that there are no 
guarantees that the forward activity of the network will relax to a fixed point, or even relax at all. 
After the network has relaxed, an error is determined and held as constant input to the 
backpropagation layer. Similarly, the error is backpropagated through the backprop plane for its 
backward relaxation period, specified by the samples/exemplar of the BackDynamicControl. This 
forward/backward relaxation is considered to be one exemplar. 

 

User Interaction: 

Drag and Drop 

Inspector 
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Macro Actions  

 

 

  See Also 

GeneticControl 
 

  

 

 

Family: Controls Family  

Superclass: Control 

 

Description: 

The GeneticControl component implements a genetic algorithm to optimize one or more 
parameters within the neural network. The most common parameters to optimize are the input 
columns, the number of hidden PEs, number of memory taps, and the learning rates. Many other 
network parameters are available for optimization. 

Genetic Algorithms are general-purpose search algorithms based upon the principles of evolution 
observed in nature.  Genetic algorithms combine selection, crossover, and mutation operators with 
the goal of finding the best solution to a problem. They search for this optimal solution until a 
specified termination criterion is met. In NeuroSolutions the criteria used to evaluate the fitness of 
each potential solution is the lowest cost achieved during the training run. 

The solution to a problem is called a chromosome. A chromosome is made up of a collection of 
genes, which are simply the neural network parameters to be optimized.  A genetic algorithm 
creates an initial population (a collection of chromosomes) and then evaluates this population by 
training a neural network for each chromosome. It then evolves the population through multiple 
generations (using the genetic operators discussed above) in the search for the best network 
parameters. 

 

User Interaction: 

Drag and Drop  

Inspector  

 

Window  
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Access Points 

StaticControl Access Points 

 

Family: Activation Control Family  

 

Epochs: 
This access point reports the number of epochs that have been run during a given simulation.  This 
number may be used to transmit messages at various points during leaning. 

Exemplars: 

This access point reports the number of exemplars that have been run during the current epoch. 
This number may be used to transmit messages at various points during leaning. 

GeneticControl Access Points 

 

Family: Activation Control Family  

 

Best Fitness: 
Reports the fitness of the chromosome with the lowest value. In other words, this is the lowest 
Average Cost reported by the ErrorCriterion since the beginning of the genetic run. 

Average Fitness: 

Reports the average fitness of all of the chromosomes in the current population. Note that the 
fitness is the Average Cost reported by the ErrorCriterion. 

SD Fitness: 

Reports the standard deviation fitness of all of the chromosomes in the current population. Note 
that the fitness is the Average Cost reported by the ErrorCriterion. 

Worst Fitness: 

Reports the fitness of the chromosome with the highest value. Note that the fitness is the Average 
Cost reported by the Error Criterion. 

Generations: 

Reports the generation number. Note that this value is also reported within the Simulation Progress 
window. 

 

Drag and Drop 

Controls Drag and Drop 
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Components: StaticControl, DynamicControl, GeneticControl  

 

All network simulations will require one, and only one of either the StaticControl or 
DynamicControl component on the breadboard. This component may be places anywhere within 
the breadboard. The GeneticControl must be stamped on top of either a BackStaticControl or 
BackDynamicControl component. 

 

 

  See Also 

Inspectors 

Exemplar Weighting Inspector  

 

Component: BackStaticControl  

Superclass Inspector: Engine Inspector 

 

 

 

Component Configuration: 
Weight the Gradients 

When this switch is set, the gradients are weighted for each exemplar based on the coefficients 
stored in the weighting file. 
Weight the Reported Cost 
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When this switch is set, the computation of the reported cost is weighted for each exemplar based 
on the coefficients stored in the weighting file. 
Weighting File 

Opens a file dialog box to select the path of the exemplar weighting file. This file should contain one 
row for each exemplar of the training set. Each row contains a single floating point value 
representing the weighting coefficient for the exemplar. The higher the value, the more the error for 
the exemplar changes the gradient and/or cost (1.0 is the default). 
Assign Weights to File 

Computes the default weights for the weighting file based on the following formula: 

 

Wi = y/(x*Zi) 

 

where Zi = # of exemplars for output class i 

Wi = weight for output class i 

x = # of classes 

y = # of exemplars 

 

This function only works properly when the outputs are unary encoded (i.e., each output class is 
represented by a unique output PE).  
Edit 

Opens the weighting file using the default text editor. 

Progress Display Inspector  

 

Components: StaticControl, DynamicControl  

Superclass Inspector: Engine Inspector 
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Component Configuration: 
Update Every 

Specifies how often to update the display of the Simulation Progress Window. 
Seconds 

When this switch is set, the Simulation Progress Window is updated every x seconds, where x is 
defined within the Update Every edit cell. This setting will not work properly when the simulation is 
run from an external application such as NeuroSolutions for Excel. 
Epochs 

When this switch is set, the Simulation Progress Window is updated after every x epochs of 
simulation, where x is defined within the Update Every edit cell. It is recommended that you use this 
setting when the simulation is run from an external application such as NeuroSolutions for Excel. 
Show Exemplars 

When this switch is set, the exemplar counter is displayed below the epoch counter within the 
Simulation Progress Window. 
Force Window on Top 

When this switch is set, the Simulation Progress Window is always displayed on top of the other 
windows. 
Open 

This button opens the Simulation Progress Window. 
Close 

This button closes the Simulation Progress Window. 

Weights Inspector 

 

Components:  Static Control  
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Dynamic Control 

Superclass Inspector: Auto Macros Inspector   

 

 

 

Component Configuration: 
Load 

Clicking this button will bring up an open panel for specifying a NeuroSolutions Weights File, then 
import all adaptive network parameters from this file. This allows a convenient interface with which 
to import trained network weights, or to initialize the network with a user-defined set of weights. See 
the Save Weights section below for a definition of the file layout. Note that if the "Use Current File" 
switch is set, the open panel is bypassed and the current file is used. 

The dimensions of the current topology are stored and are automatically recovered when the 
weights are loaded. Therefore, the component interconnections for the loading and saved 
topologies must agree, but the dimensions (e.g. the number of PEs) can differ. 
Save 

Clicking this button will bring up a save panel for specifying a NeuroSolutions Weights File, then 
export all adaptive network parameters to this file. This allows a convenient interface with which to 
extract trained network weights to be used by another application, or to save the weights of several 
trials and keep the best results. Note that if the "Use Current File as Base Name" switch is set, the 
save panel is bypassed and the current file is used. 
Edit 

This button is used to edit the current Weights File. The program used to view the file is determined 
based on the file’s extension and application associated with that extension defined within 
Windows. Click here for instructions on associating an editor with a file extension. 
Use Current File 

If you click this switch and there is no file defined, a file save dialog box will appear for you to select 
the file to use for future weight saves. Once this switch is set, all file saves will use this file (or a 
slight variant if "Auto Increment" is selected). When both the "Save Best" switch and the "Use 
Current File" switches are set, the path of the best weights file is the same as the path specified for 
the normal weights file except it will have a ".bst" extension instead of ".nsw". 
Auto Increment 
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When this switch is turned on, a counter is incremented each time the weights are loaded or saved. 
This counter is appended onto the base file name defined (see above). Note the "Use Current File" 
switch must be set in order for this switch to be enabled.  
Zero on Reset 

This switch specifies whether or not the file name counter (see above) will be set to zero when the 
network is reset. Note that the "Use Name" switch must be set in order for this switch to be 
enabled.  
Save Best 

This switch specifies that the best weights (the weights that produced the lowest error) are 
automatically saved during training. This switch is tied to the "Save Best" switch of the ErrorCriteria 
inspector – see this page for all of the configuration options of this feature.  
Load Best on Test 

If this switch is set and there is an ErrorCriteria component on the breadboard and the Learning 
switch of the Static page of the inspector is turned off (the default for the Testing set), then the best 
weights stored during training are automatically loaded just before the network is run.  
Use Seed 

When this switch is set, the randomization of the weights is seeded the same each time, allowing 
you to start with the same initial conditions for multiple experiments.  
Seed 

This is the value used to seed the weight randomization when the "Use Seed" switch is set.  

 

  See Also 

StaticControl Inspector 

 

Components:  Static Control  

Dynamic Control 

Superclass Inspector: Termination Inspector  

 



 434

 

 

Component Configuration: 
Epochs / Run (SetEpochs(int)) 

This cell specifies the maximum number of epochs to run (i.e., training cycles) before the simulation 
stops. Note that the simulation can also be stopped manually with the Control Toolbar, or 
automatically using one or more Transmitters. 
Exemplars / Epoch 

This cell specifies the number of exemplars that comprise one epoch of data (i.e., the number of 
patterns in the training set). This value is automatically determined from the exemplars reported by 
the File components and cannot be modified by the user. 
Epochs / Cross Val. 

This cell specifies the number of training epochs between each cross validation epoch. The higher 
this number, the less often the network is tested. 
Learning 

This switch enables/disables the learning for the entire network (for the active data set). It does this 
by setting the Learning switch of the BackpropControl component and any Unsupervised  
components. Note that when the learning is disabled, the weights are not randomized when the 
network is reset (see Control Toolbar). 
Active Data Set 

This cell is used to select the currently active data set. The available data sets are detemined from 
the File components on the breadboard. 
Cross Validation Data Set 

This cell is used to select the data set that is used for the Cross Validation portion of the simulation. 
The available data sets are detemined from the File components on the breadboard. If "None" is 
selected then cross validation is not performed. 
Epoch 

Runs the simulation for a duration of one epoch. 
Exemplar 
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Runs the simulation for a duration of one exemplar. 
Perform 

Performs the Sensitivity Analysis operation. 
Dither 

The amount that the inputs are dithered during the Sensitivity Analysis operation. 

 

 

  See Also 

Termination Inspector 

 

Components:  Static Control  

Dynamic Control 

Superclass Inspector: Weights Inspector 

 

 

 

Component Configuration: 
Terminate after (setTerminateWOImprovement(bool)) 

In general, the error of the cross validation set will initially drop with the error of the training set. 
Once the network begins to "memorize" the training set, the cross validation error will begin to rise. 
When this switch is set, the training will stop if the cross validation error has not reached a new low 
value within the specified number of epochs. It is important to note that the weights can 
automatically be saved at the point of lowest cross validation error even if the simulation stops 
many epochs afterwards. See the Weights page of the inspector for more information. 
Epochs w/o improvement in cross val. Error (setMaxEpochsWoImprovement(int)) 

This cell specifies the number of epochs to let the network run without improvement in the cross 
validation error, as described above. 
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DynamicControl Inspector  

 

Component: DynamicControl 

Superclass Inspector: Iterative Prediction Inspector  

 

  

 

Component Configuration: 
Samples / Exemplar (SetSamples(int)) 

The term forward samples refers to the individual pieces of temporal information. An exemplar is a 
complete pattern of samples. The temporal dimension of an exemplar is defined by this cell. Note 
that this value is 1 for static networks. 
Static 

This radio button forces the number of samples/exemplar to be 1. Note that this is equivalent to 
using the StaticControl component. 
Fixed Point 

This radio button sets the network synchronization to be in fixed point mode. See the 
DynamicControl reference for an explanation of this mode. 
Trajectory 

This radio button sets the network synchronization to be in trajectory mode. See the 
DynamicControl reference for an explanation of this mode. 
Zero state between exemplars 
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When this switch is turned on and an exemplar has completed, all components that store internal 
states (e.g., MemoryAxons, delayed Synapses) will have those states set to zero before the next 
exemplar. 
Zero state between epochs 

When this switch is turned on and an epoch has completed, all components that store internal 
states (e.g., MemoryAxons, delayed Synapses) will have those states set to zero before the next 
epoch. 

 

 

  See Also 

Iterative Prediction Inspector  

 

Component: DynamicControl 

Superclass Inspector: Static Inspector 

 

  

 

Component Configuration: 
Enable (setEnableIP(bool)) 

Enables interative prediction mode. Interative prediction is a process by which the first input sample 
of each trajectory is read from the network input and the remaining input samples of the trajectory 
are obtained from the network output. Note that if teacher forcing is enabled (see the Teacher page 
of the BackDynamicControl inspector) then the number of input samples read from the network 
input may vary. 
Trajectory Length (setSamples(int)) 

The length of the prediction trajectory in samples. This value determines the number of exemplars 
per epoch (# of exemplars = # samples in file - trajectory length + 1). Note that any change made to 
the Trajectory Length field will be reflected in the Samples/Exemplar field of the Dynamic page of 
the inspector. 
Input Data Source (setInputDataSourceName(string)) 
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The component name of the Input component used for the network input. Note that a component's 
name can be found within the Engine page of its inspector. 
Desired Data Source (setDesiredDataSourceName(string)) 

The component name of the Input component used for the desired output of the network. Note that 
a components name can be found within the Engine page of its inspector. 
Output Axon (setOutputAxonName(string)) 

The component name of the Axon component used for the network output. Note that a components 
name can be found within the Engine page of its inspector. 

 

Backpropagation Inspector (Dynamic) 

 

Component: BackDynamicControl 

Superclass Inspector: Teacher Forcing Inspector   

 

 

 

Component Configuration: 
Samples/Exemplar 

Training for an exemplar in Trajectory mode requires that the network first be run forward in time for 
the number of samples specified by the samples/exemplar of the DynamicControl Inspector. An 
error is determined between the network's output and the desired response. Then the network is 
run backwards for a prescribed number of samples to compute the gradients and sensitivities. This 
number of backpropagation samples is defined within this cell. 

For Fixed Point mode the terms forward samples and backward samples can be thought of as the 
forward relaxation period and backward relaxation period, respectively. All inputs are held constant 
while the network is repeatedly fired during its forward relaxation period, specified by the 
samples/exemplar of the DynamicControl Inspector. After the network has relaxed, an error is 
determined and held as constant input to the backpropagation layer. Similarly, the error is 
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backpropagated through the backprop plane for its backward relaxation period, specified by the 
value within this cell. 

Note than the value within this cell cannot exceed the samples/exemplar of the DynamicControl 
Inspector. 
On-Line, Batch, Custom (SetMode(int)) 

See BackStaticControl Inspector  
Exemplars/Update (SetExemplars(int)) 

See BackStaticControl Inspector 
Learning (Turn learning on(); Turn learning off(); Toggle learning()) 

See BackStaticControl Inspector 
Learn after RESET 

See BackStaticControl Inspector 
Gradient Search 

See BackStaticControl Inspector 
Add (AddBackprop()) 

See BackStaticControl Inspector 
Remove Button (RemoveBackprop()) 

See BackStaticControl Inspector 
Free All Backprop Components 

See BackStaticControl Inspector 
(Force Learning()) 

See BackStaticControl Inspector  

 

  See Also 

Teacher Forcing Inspector 

 

Component: BackDynamicControl 

Superclass Inspector: Exemplar Weighting Inspector  
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Component Configuration: 
Enable (setEnableTF(bool)) 

Enables teacher forcing mode. Teacher forcing is a variation of iterative prediction in which the first 
N samples of each trajectory are read from the network input (i.e., "forced") and the remaining N-T 
input samples are obtained from the network output, where T is the trajectory length. Note that 
iterative prediction must be enabled (see the prediction page of the DynamicControl inspector) in 
order to enable teacher forcing. It is also important to note that teacher forcing only pertains to the 
Active Data Set (see the Static page of the DynamicControl inspector) and the Learning switch 
must be on in order for it to be enabled. 

Initial (setTfInitialPercent(float)) 

The initial percentage of trajectory samples which are forced. 
Decrease per Epoch (setTfDecreasePercent(float)) 

The amount to decrease the percentage of forced samples after each epoch, provided that the 
resulting percentage is not less than the Minimum (see below). 
Minimum (setTfMinimumPercent(float)) 

The minimum percentage of trajectory samples which are forced. 
Current 

This reports the current level of forcing both in terms of the number of samples (N) and the 
percentage of the trajectory. The percentage starts at the Initial percentage (when the network is 
created and after a reset) then decreases by the specified amount after each epoch until the 
Minimum is reached. 

 

BackStaticControl Inspector (Static) 

 

Component: BackStaticControl 

Superclass Inspector: Exemplar Weighting Inspector  

 



 441

 

 

Component Configuration: 
On-Line, Batch, Custom (SetMode(int)) 

These radio buttons specify the supervised learning mode. On-line learning updates the weights 
after the presentation of each exemplar (pattern). Batch learning updates the weights after the 
presentation of all exemplars (i.e., after each epoch). Custom enables you to modify the value 
within the Exemplars/Update cell (see below). 
Exemplars/Update (SetExemplars(int)) 

This cell specifies how many exemplars are presented between weight updates. This value can 
only be modified when the Custom radio button is set (see above). Note that for On-Line learning 
this cell is forced to 1 and for Batch learning this value is forced to the number of Exemplars/Epoch 
from then StaticControl Inspector . 
Learning (Turn learning on(); Turn learning off(); Toggle learning()) 

When this switch is turned on, the BackStaticControl will communicate with the GradientSearch 
components to update the network’s weights. When this switch is turned off, the GradientSearch 
components are disabled. This is most often used to synchronize the training of hybrid 
supervised/unsupervised networks. It can also be used to freeze the network weights during a 
testing phase. 

This switch will be turned on when the network is reset provided the Learn after RESET switch is 
turned on (see below). For standard supervised learning, both the Learn and the Learn after 
RESET switches should be turned on. If you want to start the learning phase in the unsupervised 
mode, click off both switches. Note that when the learning is off, the icon changes from a double 
red dial to a single gray dial. The learning mode can be switched during the simulation using one or 
more Transmitters. 
Learn after RESET 

This switch specifies whether the Learn switch (see above) is turned on or off when the network is 
reset. This is used to specify the initial training mode of the network (supervised or unsupervised). 
Gradient Search 

This pull down menu is used to select the type of GradientSearch components to create when the 
Add button is clicked (see below). Note that the parameters (i.e., learning rates) of these 
components will be set to default values; they will not contain the settings from any previous 
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GradientSearch components. In order to change the learning procedure for an existing network, 
click the Remove button, select the Gradient Search procedure, and click the Add button. 
Add (AddBackprop()) 

When this button is clicked, a Backprop and GradientSearch component will be attached to each 
Activation component that has adaptable weights. Each Backprop component is automatically 
selected to be the dual of the corresponding Activation component. The type of GradientSearch 
components is specified with the Gradient Search pull down menu (see above). Note that this 
function only adds these components if none exist; you must Remove (see below) the old Backprop 
and GradientSearch components before adding new ones. 
Remove (RemoveBackprop()) 

When this button is clicked, all Backprop and GradientSearch components will be removed from 
the breadboard. This will freeze the network weights, but still allow you to monitor the network 
error. 
Free All Backprop Components 

In addition to the components removed by the Remove button, this button will remove the 
ErrorCriterion and the BackStaticControl component. This will freeze the network weights and 
eliminate the overhead of the error computation. 
(Force Learning()) 

This transmitter action requires that the Learning switch be turned off. When this message is 
received, the Learning is turned on, the error of the current exemplar is backpropagated, and the 
learning is turned back off. By attaching a ThresholdTransmitter to the Cost access point of the 
ErrorCriteria component, this message can be sent when the error for a given exemplar is above a 
certain threshold. This way, only those patterns that the network has not yet sufficiently learned will 
be used to update the weights. This can significantly speed the convergence. 

Recall that the number of Exemplars/Update specifies how often the GradientSearch components 
update their weights. It may be important to note that the exemplar count is only incremented when 
the error is backpropagated. Therefore, forced learning may take several epochs of training before 
the weights are updated, even though the learning is set to batch mode. 

 

  See Also 

Code Generation Inspector 

 

Components: StaticControl, DynamicControl  

Superclass Inspector: Progress Display Inspector   
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Component Configuration: 

This property page is used to generate, compile and run C++ source code for the current 
breadboard.  
Target 

Sets the target platform by selecting a library definition file (".nsl" extension) from a file selection 
panel. This will copy the appropriate header (".h" extension), library (".lib" extension), and makefile 
(".mak" extension) to the directory of the active project. Note that libraries for platforms other than 
Windows are sold separately and may be obtained by Contacting NeuroDimension  
Project Name 

Displays the name of the currently active project. This is used to name the source file (".cpp" 
extension), weight file (".nsw" extension) and executable file (".exe" extension). The current project 
is switched by clicking on either the Open or New button. 
Load Weights before Run 

When this flag is set, the generated code will include instructions for loading the weights from the 
weight file ("ProjectName.nsw") before running the simulation, allowing you to continue training 
from a previously saved state. These weights could be from a previous run of the C++ project (see 
Save Weights after Run below), or they could be from a previous run of the NeuroSolutions 
breadboard (see Save Weights within the StaticControl Inspector ). 
Save Weights after Run 

When this flag is set, the generated code will include instructions for saving the weights to the 
weight file ("ProjectName.nsw") after running the simulation. These weights could be used by a 
future run of the C++ project (see above), or they could be loaded into the NeuroSolutions 
breadboard (see Load Weights within the StaticControl Inspector   
Generate 

Clicking this button generates the C++ source code for the current state of the breadboard and 
saves it to the source file ("ProjectName.cpp"). Once the code is generated, press the Compile 
button and then the Run button to test the generated code. If the code does not perform as 
expected, press the Debug button to load the project into the C++ development environment. 
Compile 
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Clicking this button compiles the C++ source code and saves the result to the executable file 
("ProjectName.exe"). Note that the directory containing the command line compiler ("nmake.exe") 
must be included in the search path. See the Windows documentation for information on the Path 
environment variable. 
Run 

Clicking this button runs the executable file ("ProjectName.exe") within a DOS window. The data 
from the probes will be displayed if they are configured to write to the standard output (seeAccess 
inspector ). 
Edit 

Clicking this button opens an editor window and loads the C++ source file ("ProjectName.cpp"). 
From here you can modify the generated code, save the file, and then Compile and Run the 
project. Note that the ".cpp" file extension must be associated with an editor application for this to 
work. See the Windows documentation for more information on associating files to applications. 
Open 

Sets the current project by selecting an existing source file (".cpp" extension) from a file selection 
panel. Note that the Generate button will overwrite this file with the source code for the current 
breadboard. 
New 

Sets the current project by creating a new source file (".cpp" extension) from a file selection panel. 
This will automatically Generate the code for the existing breadboard and save it to the new source 
file ("ProjectName.cpp"). 
Debug 

This launches the development environment and loads the makefile for the current project. From 
there, you will need to build a debug version of the project. Presently, this integration is only 
available for the MS Visual C++ 4.0 and 5.0 compilers. 

Auto Macros Inspector  

 

Components: StaticControl, DynamicControl  

Superclass Inspector: Code Generation Inspector  
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Component Configuration: 
Open 

Displays a file selection panel to specify the macro that will be run automatically when the 
breadboard is opened. 
Close 

Displays a file selection panel to specify the macro that will be run automatically when the 
breadboard is closed. 
Reset 

Displays a file selection panel to specify the macro that will be run automatically when the network 
is Reset. 
Post-Run 

Displays a file selection panel to specify the macro that will be run automatically when the 
simulation has been Paused or run to completion. 

 

GeneticControl Inspector  

 

Component: GeneticControl  

Superclass Inspector: Genetic Operators Inspector  
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Component Configuration: 
Generational 

This is a type of genetic algorithm in which the entire population is replaced with each iteration. 
This is the traditional method of progression for a genetic algorithm and has been proven to work 
well for a wide variety of problems. It tends to be a little slower than Steady State progression (see 
below), but it tends to do a better job avoiding local minima. 
Steady State 

This is a type of genetic algorithm in which only the worst member of the population gets replaced 
with each iteration. This method of progression tends to arrive at a good solution faster than 
generational progression. However, this increased performance also increases the chance of 
getting trapped in local minima. 
Population Size 

The number of chromosomes to use in a population. This determines the number of times that the 
network will be trained for each generation. 
Minimize Training Cost 

When this radio button is selected the Average Cost of the training set is used as the fitness criteria 
that the genetic algorithm tries to minimize. 
Minimize Cross Validation Cost 

When this radio button is selected the Average Cost of the cross validation set is used as the 
fitness criteria that the genetic algorithm tries to minimize. This is the recommended setting if a 
cross validation set is used. 
Enable Optimization 

This switch turns genetic optimization on and off. The parameters that are to be optimized are 
specified within the Genetic Parameters inspector pages of the network components. The 
exception to this is the File component, which uses the Column Translator Customize panel to 
specify the inputs to be optimized. 
Load Best Parameters 

If a genetic training run stops because one of its termination criterion are met (see the Genetic 
Termination page) the genetically optimized parameters which produced the lowest cost are 
automatically loaded into their respective component inspector pages. If you stop the network 
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manually with the Pause button, the parameters are left to those of the training run for the current 
chromosome. Click this button if you want to load the best parameters into the component’s 
inspector pages. Note that if the Save Best switch is set (see below) the weights that produced the 
lowest error are automatically loaded in with the best parameters. 
Save Best Weights 

When this switch is set, the weights of the network are saved whenever the cost is lower than the 
previous best training run. These best weights are associated with the set of parameters used to 
produce this lowest cost. When the best parameters are loaded, the best weights are loaded as 
well. 
Randomization Seed 

By default, the random values used for the genetic algorithm will be different for each genetic 
training run. However, there are times when one may want to use the same random values 
between different runs. If this is the case, then check this check box and set the randomization 
seed to any integer between 0 and 10,000,000. 

 

Genetic Operators Inspector  

 

Component: GeneticControl  

Superclass Inspector: Genetic Termination Inspector  

 

  

 

Component Configuration: 
Selection 

Selection is a genetic operator that chooses a chromosome from the current generation’s 
population for inclusion in the next generation’s population.  Before making it into the next 
generation’s population, selected chromosomes may undergo crossover and/or mutation 
(depending upon the probability of crossover and mutation) in which case the offspring 
chromosome(s) are actually the ones that make it into the next generation’s population. There are 
five selection operators to choose from: 
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• Roulette - The chance of a chromosome getting selected is proportional to its fitness (or rank).  
This is where the idea of survival of the fittest comes into play. There is also the option to specify 
whether the chance of being selected is based on fitness or on rank. 

• Tournament - Uses roulette selection N times (the "Tournament Size") to produce a tournament 
subset of chromosomes. The best chromosome in this subset is then chosen as the selected 
chromosome. This method of selection applies addition selective pressure over plain roulette 
selection. There is also the option to specify whether the chance of being selected is based on 
fitness or on rank. 

• Top Percent - Randomly selects a chromosome from the top N percent (the "Percentage") of the 
population. 

• Best - Selects the best chromosome (as determined by the lowest cost of the training run). If there 
are two or more chromosomes with the same best cost, one of them is chosen randomly. 

• Random - Randomly selects a chromosome from the population. 

 
Crossover 

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a 
new chromosome (offspring).  The idea behind crossover is that the new chromosome may be 
better than both of the parents if it takes the best characteristics from each of the parents.  
Crossover occurs during evolution according to the Crossover Probability. This probability should 
usually be set fairly high (0.9 is a good first choice). There are five crossover operators to choose 
from: 

• One Point - Randomly selects a crossover point within a chromosome then interchanges the two 
parent chromosomes at this point to produce two new offspring. Consider the following two 
parents that have been selected for crossover.  The "|" symbol indicates the randomly chosen 
crossover point. 

Parent 1:  11001|010 

Parent 2:  00100|111 

After interchanging the parent chromosomes at the crossover point, the following offspring are 
produced: 

Offspring1:  11001|111 

Offspring2:  00100|010 

• Two Point - Randomly selects two crossover points within a chromosome then interchanges the 
two parent chromosomes between these points to produce two new offspring. Consider the 
following two parents that have been selected for crossover.  The "|" symbols indicate the 
randomly chosen crossover points. 

Parent 1:  110|010|10 

Parent 2:  001|001|11 

After interchanging the parent chromosomes at the crossover point, the following offspring are 
produced: 

Offspring1:  110|001|10 

Offspring2:  001|010|11 

• Uniform - Decides (with the probability defined by the "Mixing Ratio") which parent will contribute 
each of the gene values in the offspring chromosomes. This allows the parent chromosomes to be 
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mixed at the gene level rather than the segment level (as with one and two point crossover).  For 
some problems, this additional flexibility outweighs the disadvantage of destroying building blocks. 
Consider the following two parents which have been selected for crossover: 

Parent 1:  11001010 

Parent 2:  00100111 

If the mixing ratio is 0.5, approximately half of the genes in the offspring will come from parent 1 
and the other half will come from parent 2.  Below is a possible set of offspring after uniform 
crossover: 

 

Note: The subscripts indicate which parent the gene came from. 

• Arithmetic - Linearly combines two parent chromosome vectors to produce two new offspring 
according to the following equations: 

Offspring1 = a * Parent1 + (1- a) * Parent2 

Offspring2 = (1 – a) * Parent1 + a * Parent2 

where a is a random weighting factor (chosen before each crossover operation). If the 
chromosomes contain any integer genes, these genes are rounded after the linear combination 
operation. If the chromosome contains any binary genes, uniform crossover is performed on these 
genes since arithmetic crossover does not apply. Consider the following two parents (each 
consisting of four float genes) that have been selected for crossover: 

Parent 1:  (0.3)(1.4)(0.2)(7.4) 

Parent 2:  (0.5)(4.5)(0.1)(5.6) 

If a = 0.7, the following two offspring would be produced: 

Offspring1:  (0.36)(2.33)(0.17)(6.86) 

Offspring2:  (0.402)(2.981)(0.149)(6.842) 

• Heuristic - uses the fitness values of the two parent chromosomes to determine the direction of the 
search.  The offspring are created according to the following equations: 

Offspring1 = BestParent + r * (BestParent – WorstParent) 

Offspring2 = BestParent 

where r is a random number between 0 and 1. It is possible that Offspring1 will not be feasible.  
This can happen if r is chosen such that one or more of its genes fall outside of the allowable 
upper or lower bounds.  For this reason, heuristic crossover has a parameter (n) for the number of 
times to try and find an r that results in a feasible chromosome. If a feasible chromosome is not 
produced after n tries, the WorstParent is returned as Offspring1. If the chromosomes contain any 
integer genes, these genes are rounded after the heuristic crossover operation. If the 
chromosome contains any binary genes, uniform crossover is performed on these genes since 
heuristic crossover does not apply. 

Mutation Probability 

Mutation is a genetic operator that alters one ore more gene values in a chromosome from its initial 
state. This can result in entirely new gene values being added to the gene pool. With these new 
gene values, the genetic algorithm may be able to arrive at a better solution than was previously 
possible.   Mutation is an important part of the genetic search as it helps to prevent the population 
from stagnating at any local optima. Mutation occurs during evolution according to the probability 
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defined in this cell.  This probability should usually be set fairly low (0.01 is a good first choice). If it 
is set too high, the search will turn into a primitive random search. Note that the mutation type is 
defined within the Genetic Parameters inspector page for the components with parameters to be 
optimized. 

 

Genetic Termination Inspector  

 

Component: GeneticControl  

Superclass Inspector: Engine Inspector  

 

  

 

Description: 

A genetic training run will run until the user stops the network with the Pause button, or until one of 
the three termination criteria described below are met. When the network terminates due to one of 
these criterion, the best parameters (those that produced the lowest cost) are automatically loaded 
into the network. See the GeneticControl page if you want to manually load in the best network 
parameters. 

 

Component Configuration: 
Maximum Generations 

This cell specifies the maximum number of generations that will be run until the simulation is 
stopped. 
Termination Type 

You may choose one of these four termination methods or "None". 

• Fitness Threshold - Stops the evolution when the best fitness in the current population becomes 
less than the fitness "Threshold" and the objective is set to minimize the fitness. 

• Fitness Convergence - Stops the evolution when the fitness is deemed as converged. Two filters 
of different lengths are used to smooth the best fitness across the generations. When the 
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smoothed best fitness from the long filter is less than the "Threshold" percentage away from the 
smoothed best fitness from the short filter, the fitness is deemed as converged and the evolution 
terminates. Both filters are defined by the following equations: 

y(0) = 0.9 * f(0); if the objective is set to maximize, or 

y(0) = 1.1 * f(0); if the objective is set to minimize 

y(n) = (1- b) f(n) + b y(n - 1) 

where n is the generation number, y(n) is the filter output, y(n-1) is the previous filter output, and 
f(n) is the best cost. The only difference between the short and long filters is the coefficient b. As 
can be seen from the equations above, the higher the b, the more that the past values are 
averaged in. The short filter uses b = 0.3 and the long filter uses b = 0.9. 

• Population Convergence - Stops the evolution when the population is deemed as converged. The 
population is deemed as converged when the average fitness across the current population is 
less than the "Threshold" percentage away from the best fitness of the current population.  

• Gene Convergence - Stops the evolution when the "Percentage" of the genes that make up a 
chromosome are deemed as converged. A gene is deemed as converged when the average 
value of that gene across all of the chromosomes in the current population is less than the 
"Threshold" percentage away from the maximum gene value across the chromosomes. 

Elapsed Time 

Stops the evolution when the elapsed genetic training time exceeds the number of "Minutes" 
specified. Note that the training is not stopped until the evaluation of the current generation has 
completed. 

 

Windows 

Simulation Progress Window 

 

 

 

 

This window displays a status bar indicating the progress of the simulation. If the status bar is 
completely filled in, then the experiment has run to completion and the network must either be 
Reset, the counters must be Zeroed, or the Epochs/Run must be increased. 
Epoch 
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Display of the current epoch count. 
Exemplar 

Display of the current exemplar count. If this is not displayed then switch the "Show Exemplars" 
setting within the Progress Display Inspector . 
Sample 

Display of the current sample count (DynamicControl only). 
Elapsed Time 

Display of the total time (H::MM::SS) that the simulation has run. 
Time Remaining 

Display of the estimated time remaining (H::MM::SS) until the maximum number of epochs (or 
generations) is reached. 
Generation 

When genetic optimization is enabled (see the GeneticControl inspector) this will show the current 
generation number of the genetic training. 

 

  See Also 

Optimization Log Window 

 

 

 

During genetic optimization, the values of the user-specified neural network parameters are set 
before each training pass based on the contents of the current chromosome. This window displays 
each of the optimized parameter settings for each training pass, along with the fitness (the best 
average cost of the training). 
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Macro Actions 

Back Dynamic Control 

BackDynamicControl Macro Actions 
Overview Superclass Macro Actions 

Action Description 
backpropOffset  Returns the Samples/Exemplar setting. 
 
setBackpropOffset  Sets the Samples/Exemplar setting. 

backpropOffset 
Overview Macro Actions 

Syntax 

componentName.backpropOffset() 

Parameters Type Description 
return int The number of backpropagation samples to be run for each epoch (see 
"Samples/Exemplar" within the BackDynamicControl Inspector). 
 
componentName  Name defined on the engine property page. 
 

setBackpropOffset 
Overview Macro Actions 

Syntax 

componentName.setBackpropOffset(backpropOffset) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
backpropOffset int The number of backpropagation samples to be run for each epoch (see 
"Samples/Exemplar" within the BackDynamicControl Inspector). 
 

Back Static Control 

BackStaticControl Macro Actions 
Overview Superclass Macro Actions  

Action Description 
allocateBackpropPlane  The Backprop and GradientSearch components are attached to each 
Activation component that has adaptable weights (see "Add" within the BackStaticControl 
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Inspector). 
 
batch  Returns the Batch learning mode setting. 
 
costWeightingActive  Returns the "Weight the Reported Cost" setting. 
 
custom  Returns the Custom learning mode setting. 
 
freeALL  Removes all ErrorCriterion, BackStaticControl, Backprop, and GradientSearch 
components from the breadboard (see "Free All Backprop Components" within the 
BackStaticControl Inspector ). 
 
freeBackpropPlane  Removes all Backprop and GradientSearch components from the 
breadboard (see "Remove" within the BackStaticControl Inspector). 
 
gradientClass  Returns the class name of the GradientSearch components that are added when 
the allocateBackpropPlane function is called (see above). 
 
gradientWeightingActive  Returns the "Weight the Gradients" setting. 
 
learning  Returns FALSE if the GradientSearch components are disabled. 
 
learningOnReset  Returns the "Learning after RESET" setting. 
 
setBatch  Sets the learning mode to Batch. 
 

setCostWeightingActive  Sets the "Weight the Reported Cost" setting. 

 
setCustom  Sets the learning mode to Custom. 
 
setForceLearning  Sets the Learning to on, backpropagates the error of the current 
exemplar, and then turns off the Learning. 
 
setGradientClass  Allows the user to select GradientSearch components from a pull down menu 
and then add or remove them from the project. 
 
setGradientClassName  Sets the class name of the GradientSearch components that are added 
when the allocateBackpropPlane function is called (see above). 
 
setGradientWeightingActive  Sets the "Weight the Gradients" setting. 
 
setLearning  Set to FALSE to disable the GradientSearch components. 
 
setLearningOnReset Sets the "Learning after RESET" setting. 
 
setUpdateEvery  Sets the Exemplar/Update setting. 
 
setWeightingFilePath  Sets the path of the exemplar weighting file. 
 
updateEvery  Returns the Exemplar/Update setting. 
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weightingFilePath  Returns the path of the exemplar weighting file. 
 

allocateBackpropPlane 
Overview Macro Actions 

Syntax 

componentName.allocateBackpropPlane() 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
 

batch 
Overview Macro Actions 

Syntax 

componentName.batch() 

Parameters Type Description 
return BOOL TRUE for Batch learning mode (see "On-line, Batch, Custom" within the 
BackStaticControl Inspector ). 
 
componentName  Name defined on the engine property page. 
 

costWeightingActive 
Overview*HIDB_NBackStaticControl Macro Actions*BackStaticControl_Macro_Actions 

Syntax 

componentName.costWeightingActive() 

Parameters Type Description 
return BOOL TRUE when cost weighting is active (see "Weight the Reported Cost" within the 
Exemplar Weighting Inspector ). 
 
componentName  Name defined on the engine property page. 
 

 

custom 
Overview*HIDB_NBackStaticControl Macro Actions*BackStaticControl_Macro_Actions 

Syntax 
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componentName.custom() 

Parameters Type Description 
return BOOL TRUE for Custom learning mode (see "On-line, Batch, Custom" within the 
BackStaticControl Inspector ). 
 
componentName  Name defined on the engine property page. 
 

freeALL 
Overview Macro Actions 

Syntax 

componentName.freeAll() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

freeBackpropPlane 
Overview Macro Actions 

Syntax 

componentName.freeBackpropPlane() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

gradientClass 
Overview Macro Actions 

Syntax 

componentName.gradientClass() 

Parameters Type Description 
return String The class name of the GradientSearch components to be added (see the 
"Gradient Search" pull down menu within the BackStaticControl Inspector). 
 
componentName  Name defined on the engine property page. 
 

gradientWeightingActive 
Overview Macro Actions 

Syntax 
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componentName.gradientWeightingActive() 

Parameters Type Description 
return BOOL TRUE if gradient weighting is active (see the "Weight the Gradients" switch of the 
Exemplar Weighting Inspector). 
 
componentName  Name defined on the engine property page. 

 

learning 
Overview Macro Actions 

Syntax 

componentName.learning() 

Parameters Type Description 
return BOOL TRUE if the GradientSearch components are enabled (see "Learning" within the 
BackStaticControl Inspector ). 
 
componentName  Name defined on the engine property page. 
 

learningOnReset 
Overview Macro Actions 

Syntax 

componentName.learningOnReset() 

Parameters Type Description 
return BOOL TRUE sets the learning flag to TRUE when the network is reset (see "Learning 
after RESET" within the BackStaticControl Inspector). 
 
componentName  Name defined on the engine property page. 
 

setBatch 
Overview Macro Actions 

Syntax 

componentName.setBatch(batch) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
batch BOOL TRUE for batch learning mode (see "On-line, Batch, Custom" within the 
BackStaticControl Inspector). 
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setCostWeightingActive 
Overview Macro Actions 

Syntax 

componentName.setCostWeightingActive(costWeightingActive) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
costWeightingActive BOOL TRUE when cost weighting is active (see "Weight the Reported 
Cost" within the Exemplar Weighting Inspector ). 

 

setCustom 
Overview Macro Actions 

Syntax 

componentName.setCustom(custom) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
custom BOOL TRUE for custom learning mode (see "On-line, Batch, Custom" within the 
BackStaticControl Inspector). 
 

setForceLearning 
Overview Macro Actions 

Syntax 

componentName.setForceLearning(forceLearning) 

Parameters Type Description 
return BOOL TRUE sets the Learning to on, backpropagates the error of the current exemplar, 
and then turns off the Learning. 
 
componentName  Name defined on the engine property page. 
 

setGradientClass 
Overview Macro Actions 

Syntax 
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componentName.setGradientClass(gradientClass) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
gradientClass  When selected, allows the user to select GradientSearch components 
from a pull down menu and then add or remove them from the project (see "Gradient Search" 
within the BackStaticControl Inspector). 
 

setGradientClassName 
Overview Macro Actions 

Syntax 

componentName.setGradientClassName(gradientClassName) 

Parameters Type Description 
return string The class name of the GradientSearch components to be added (see the 
"Gradient Search" pull down menu within the BackStaticControl Inspector). 
 
componentName  Name defined on the engine property page. 
   

setGradientWeightingActive 
Overview Macro Actions 

Syntax 

componentName.setGradientWeightingActive(gradientWeightingActive) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
gradientWeightingActive BOOL TRUE if gradient weighting is active (see the "Weight the 
Gradients" switch of the Exemplar Weighting Inspector). 

 

setLearning 
Overview Macro Actions 

Syntax 

componentName.setLearning(learning) 

Parameters Type Description 
return void 
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componentName  Name defined on the engine property page. 
 
learning BOOL TRUE if the GradientSearch components are enabled (see "Learning" within the 
BackStaticControl Inspector ). 
 
 

setLearningOnReset 
Overview Macro Actions 

Syntax 

componentName.setLearningOnReset(learningOnReset) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
learningOnReset BOOL TRUE sets the learning flag to TRUE when the network is reset 
(see "Learning after RESET" within the BackStaticControl Inspector). 

setUpdateEvery 
Overview Macro Actions 

Syntax 

componentName.setUpdateEvery(updateEvery) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
updateEvery int The number of exemplars presented between weight updates (see 
"Exemplars/Update" within the BackStaticControl Inspector ). 
. 

setWeightingFilePath 
Overview Macro Actions 

Syntax 

componentName.setWeightingFilePath(weightingFilePath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightingFilePath String The path of the weighting file (see the "Weighting File" button 
within the Exemplar Weighting Inspector). 
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updateEvery 
Overview Macro Actions  

Syntax 

componentName.updateEvery() 

Parameters Type Description 
return int The number of exemplars presented between weight updates (see 
"Exemplars/Update" within the BackStaticControl Inspector ). 
 
componentName  Name defined on the engine property page. 

weightingFilePath 
Overview Macro Actions 

Syntax 

componentName.weightingFilePath() 

Parameters Type Description 
return String The path of the weighting file (see the "Weighting File" button within the 
Exemplar Weighting Inspector). 
 
componentName  Name defined on the engine property page. 

 

Dynamic Control 

DynamicControl Macro Actions 
Overview Superclass Macro Actions 

Action Description 
fixedPointMode  Returns TRUE if activation mode is set to "Fixed Point". 
 
samples Returns the "Samples/Exemplar" setting. 
 
setFixedPointMode  Set to TRUE to change activation mode to "Fixed Point". 
 
setSamples Sets the "Samples/Exemplar" setting. 
 
setZeroState  Sets the "Zero state between exemplars" setting. 
 
setZeroStateEpoch  Sets the "Zero state between epochs" setting. 
 
zeroState  Returns the "Zero state between exemplars" setting. 
 
zeroStateEpoch  Returns the "Zero state between epochs" setting. 
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fixedPointMode 
Overview Macro Actions 

Syntax 

componentName.fixedPointMode() 

Parameters Type Description 
return BOOL TRUE if activation mode is Fixed Point, FALSE is activation mode is Trajectory 
(see "Fixed Point" within the DynamicControl Inspector ). 
 
componentName  Name defined on the engine property page. 

samples 
Overview Macro Actions 

Syntax 

componentName.samples() 

Parameters Type Description 
return int The temporal dimension of an exemplar (see "Samples/Exemplar" within the 
DynamicControl Inspector). 
 
componentName  Name defined on the engine property page. 

 

setFixedPointMode 
Overview Macro Actions 

Syntax 

componentName.setFixedPointMode(fixedPointMode) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fixedPointMode BOOL TRUE if activation mode is Fixed Point, FALSE is activation mode is 
Trajectory (see "Fixed Point" within the DynamicControl Inspector ). 
 

setSamples 
Overview Macro Actions 

Syntax 

componentName.setSamples(samples) 

Parameters Type Description 
return void 
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componentName  Name defined on the engine property page. 
 
samples int The temporal dimension of an exemplar (see "Samples/Exemplar" 
within the DynamicControl Inspector). 
 

setZeroState 
Overview Macro Actions 

Syntax 

componentName.setZeroState(zeroState) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
zeroState BOOL If TRUE, then all components storing internal states (e.g., 
MemoryAxons, delayed Synapses) will be set to zero prior to the next exemplar (see "Zero state 
between exemplars" within the DynamicControl Inspector). 
 

setZeroStateEpoch 
Overview Macro Actions 

Syntax 

componentName.setZeroStateEpoch(zeroState) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
zeroState BOOL If TRUE, then all components storing internal states (e.g., 
MemoryAxons, delayed Synapses) will be set to zero prior to the next epoch (see "Zero state 
between epochs" within the DynamicControl Inspector). 
 

zeroState 
Overview Macro Actions 

Syntax 

componentName.zeroState() 

Parameters Type Description 
return BOOL If TRUE, then all components storing internal states (e.g., MemoryAxons, 
delayed Synapses) will be set to zero prior to the next exemplar (see "Zero state between 
exemplars" within the DynamicControl Inspector). 
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componentName  Name defined on the engine property page. 
 

zeroStateEpoch 
Overview Macro Actions 

Syntax 

componentName.zeroStateEpoch() 

Parameters Type Description 
return BOOL If TRUE, then all components storing internal states (e.g., MemoryAxons, 
delayed Synapses) will be set to zero prior to the next epoch (see "Zero state between epoch" 
within the DynamicControl Inspector). 
 
componentName  Name defined on the engine property page. 
 

Static Control 

StaticControl Macro Actions 
Overview Superclass Macro Actions  

Action Description 
activeDataSet  Returns the "Active Data Set" name. 
 
autoIncrement  Returns the "Auto Increment" setting. 
 
closeMacro  Returns the path of the macro that is run when the breadboard is closed. 
 
codeGenProjectPath Returns the path of the generated source code (*.cpp) file. 
 
codeGenTargetPath  Returns the path of the library definition (*.nsl) file. 
 
compileSourceCode  Compiles the C++ source code and saves the result to the executable 
file ("ProjectName.exe"). 
 
debugSourceCode  Launches the development environment and loads the makefile for the 
current project from which the user can build a debug version of the project. 
 

dither     Sets the "Dither" setting used by the sensitivity analysis 
function. 

 

dualName    Returns the name of the attached backprop control 
component. 

 
elapsedTimeInSeconds  Returns the amount of time (in seconds) the simulation has been run. 
 
epochCounter  Returns the number of epochs the simulation has been run. 
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epochs  Returns the "Epochs/Run" setting. 
 
epochsPerTest  Returns the "Epochs/Cross Val." setting. 
 
executableFilePath  Returns the path of the executable file ("ProjectName.exe") for the code 
generation project. 
 
exemplarCounter  Returns the number of exemplars the simulation has been run. 
 
exemplars  Returns the "Exemplars/Epoch" setting. 
 
forceWindowOnTop  Returns the "Force Window on Top" setting. 
 
jogNetworkWeights  Alters the weights by a small random value. 
 
learning Returns the state of learning for the entire network (enabled or disabled). 
 
loadWeights  Imports all adaptive network parameters from the specified weights file. 
 
openMacro  Returns the path of the macro that is automatically run when the breadboard is 
opened. 
 
pauseNetwork  Halts the simultation. 
 
postRunMacro  Returns the path of the macro that is automatically run when the simulation 
concludes. 
 
preRunMacro  Returns the path of the macro that is automatically run when the network is reset. 
 
randomizeNetworkWeights  Randomizes the network weights. 
 
resetNetwork  Randomizes the network weights, zeroes the counters and clears the activations. 
 
runCompiledCode  Runs the executable file ("ProjectName.exe") within a DOS window. 
 
runNetwork  Starts the simulation. 
 
runSensitivity  Performs the sensitivity analysis function. 
 
saveWeights  Exports all adaptive network parameters to the specified weights file. 
 
setActiveDataSet  Sets the "Active Data Set" name. 
 
setAutoIncrement  Sets the "Auto Increment" setting. 
 
setCloseMacro  Sets the path of the macro that is run when the breadboard is closed. 
 
setCodeGenProjectPath  Sets the path of the generated source code (*.cpp) file. 
 
setCodeGenTargetPath  Sets the path of the library definition (*.nsl) file. 
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setDither  Sets the "Dither" setting used by the sensitivity analysis function. 
 
setEpochCounter  Sets the current epoch of the experiment. 
 
setEpochs  Sets the "Epochs/Run" setting. 
 
setEpochsPerTest  Sets the "Epochs/Cross Val." Setting. 
 
setExemplarCounter  Sets the current exemplar of the experiment. 
 
setExemplars  Sets the "Exemplars/Epoch" setting. 
 
setForceWindowOnTop  Sets the "Force Window on Top" setting. 
 
setLearning  Sets the state of learning for the entire network (enabled or disabled). 
 
setOpenMacro  Sets the path of the macro that is automatically run when the breadboard is 
opened. 
 
setPostRunMacro  Sets the path of the macro that is automatically run when the simulation 
concludes. 
 
setPreRunMacro  Sets the path of the macro that is automatically run when the network is reset. 
 
setShowExemplars  Sets the "Show Exemplars" setting. 
 
setUpdateDisplayByEpoch  Set to TRUE to update the progress display based on epochs, 
and FALSE to update based on seconds. 
 
setUpdateDisplayEvery  Sets the "Update every" setting. 
 
setUseName  Sets the "Use Current File as Base Name" setting.  
 
setXValDataSet  Sets the data set used for the Cross Validation portion of the simulation. 
 
setZeroOnReset  Sets the "Zero on Reset" setting for the weights file name counter. 
 
showExemplars  Returns the "Show Exemplars" setting. 
 
stepEpoch  Runs the simulation for a duration of one epoch. 
 
stepExemplar  Runs the simulation for a duration of one exemplar. 
 
updateDisplayByEpoch  Runs the simulation for a duration of one epoch. 
 
updateDisplayEvery  Returns the "Update every" setting. 
 
useName  Returns the "Use Current File as Base Name" setting. 
 
xValDataSet  Returns the data set used for the Cross Validation portion of the simulation. 
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zeroOnReset  Returns the "Zero on Reset" setting for the weights file name counter. 
 
 

activeDataSet 
Overview Macro Actions 

Syntax 

componentName.activeDataSet() 

Parameters Type Description 
return string The name of the active data set (see "Active Data Set" within the StaticControl 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

autoIncrement 
Overview Macro Actions 

Syntax 

componentName.autoIncrement() 

Parameters Type Description 
return BOOL TRUE if the name counter is incremented each time the weights are loaded or 
saved (see the Weights Inspector). 
 
componentName  Name defined on the engine property page. 

closeMacro 
Overview Macro Actions 

Syntax 

componentName.closeMacro() 

Parameters Type Description 
return string The path of the macro that is run when the breadboard is closed (see the Auto 
Macros Inspector ). 
 
componentName  Name defined on the engine property page. 

codeGenProjectPath 
Overview Macro Actions 

Syntax 

componentName.codeGenProjectPath() 

Parameters Type Description 
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return String The path of the generated source code (*.cpp) file (see "Project" within the Code 
Generation Inspector). 
 
componentName  Name defined on the engine property page. 

codeGenTargetPath 
Overview Macro Actions 

Syntax 

componentName.codeGenTargetPath() 

Parameters Type Description 
return String The path of the library definition (*.nsl) file (see "Target" within the Code 
Generation Inspector). 
 
componentName  Name defined on the engine property page. 

 

compileSourceCode 
Overview Macro Actions 

Syntax 

componentName.compileSourceCode() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

debugSourceCode 
Overview Macro Actions 

Syntax 

componentName.debugSourceCode() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

dither 
Overview Macro Actions 

Syntax 
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componentName.dither() 

Parameters Type Description 
return float The dither value used to perform the sensitivity analysis function (see the Static 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

dualName 
Overview Macro Actions 

Syntax 

componentName.dualName() 

Parameters Type Description 
return string The name of the attached backprop control component. 
 
componentName  Name defined on the engine property page. 

 

elapsedTimeInSeconds 
Overview Macro Actions 

Syntax 

componentName.elapsedTimeInSeconds() 

Parameters Type Description 
return int The number of seconds that the simulation has been running. 
 
componentName  Name defined on the engine property page. 

epochCounter 
Overview Macro Actions 

Syntax 

componentName.epochCounter() 

Parameters Type Description 
return int The number of epochs that the simulation has completed (see the Simulation 
Progress Window). 
 
componentName  Name defined on the engine property page. 

 

epochs 
Overview Macro Actions 
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Syntax 

componentName.epochs() 

Parameters Type Description 
return int The maximum number of epochs to run before the simulation stops (see 
"Epochs/Run" within the Static Inspector). 
 
componentName  Name defined on the engine property page. 

epochsPerTest 
Overview Macro Actions 

Syntax 

componentName.epochsPerTest() 

Parameters Type Description 
return int The number of epochs between each cross validation cycle (see "Epochs/Cross 
Val" within the the Static Inspector). 
 
componentName  Name defined on the engine property page. 

executableFilePath 
Overview Macro Actions 

Syntax 

componentName.executableFilePath() 

Parameters Type Description 
return string The path of the executable file ("ProjectName.exe") for the code generation 
project. 
 
componentName  Name defined on the engine property page. 

exemplarCounter 
Overview Macro Actions 

Syntax 

componentName.exemplarCounter() 

Parameters Type Description 
return int The number of exemplars that the simulation has completed in the current epoch 
(see the Simulation Progress Window). 
 
componentName  Name defined on the engine property page. 

 

exemplars 
Overview Macro Actions 
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Syntax 

componentName.exemplars() 

Parameters Type Description 
return int The number of exemplars that comprise one epoch of the data set (see 
"Exemplars/Epoch" within the StaticControl Inspector). 
 
componentName  Name defined on the engine property page. 

forceWindowOnTop 
Overview Macro Actions 

Syntax 

componentName.forceWindowOnTop() 

Parameters Type Description 
return BOOL TRUE if the Simulation Progress Window is forced on top. 
 
componentName  Name defined on the engine property page. 

 

learning 
Overview Macro Actions 

Syntax 

componentName.learning() 

Parameters Type Description 
return BOOL TRUE if learning is enabled for the entire network (see "Learning" within the 
StaticControl Inpsector). 
 
componentName  Name defined on the engine property page. 
 

jogNetworkWeights 
Overview Macro Actions 

Syntax 

componentName.jogNetworkWeights() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

loadWeights 
Overview Macro Actions 
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Syntax 

componentName.loadWeights(weightsPath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightsPath string Path of the weights file to load (see the Weights Inspector). If the path is 
blank and the "useName" flag is set, then the current file path is used. 
 

openMacro 
Overview Macro Actions 

Syntax 

componentName.openMacro() 

Parameters Type Description 
return string The path of the macro that is run when the breadboard is opened (see the Auto 
Macros Inspector ). 
 
componentName  Name defined on the engine property page. 

 

pauseNetwork 
Overview Macro Actions 

Syntax 

componentName.pauseNetwork() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

 

postRunMacro 
Overview Macro Actions 

Syntax 

componentName.postRunMacro() 

Parameters Type Description 
return string The path of the macro that is run when the simulation concludes (see the Auto 
Macros Inspector ). 



 473

 
componentName  Name defined on the engine property page. 

preRunMacro 
Overview Macro Actions 

Syntax 

componentName.preRunMacro() 

Parameters Type Description 
return string The path of the macro that is run when the network is reset (see the Auto Macros 
Inspector ). 
 
componentName  Name defined on the engine property page. 

 

randomizeNetworkWeights 
Overview Macro Actions 

Syntax 

componentName.randomizeNetworkWeights() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

resetNetwork 
Overview Macro Actions 

Syntax 

componentName.resetNetwork() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

runCompiledCode 
Overview Macro Actions 

Syntax 

componentName.runCompiledCode() 

Parameters Type Description 
return void 
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componentName  Name defined on the engine property page. 

 

 

runNetwork 
Overview Macro Actions 

Syntax 

componentName.runNetwork() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

runSensitivity 
Overview Macro Actions 

Syntax 

componentName.runSensitivity() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

 

saveWeights 
Overview Macro Actions 

Syntax 

componentName.saveWeights(weightsPath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
weightsPath string Path of the weights file to save (see the Weights Inspector). If the path 
is blank and the "useName" flag is set, then the current file path is used. 
 

setActiveDataSet 
Overview Macro Actions 
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Syntax 

componentName.setActiveDataSet(activeDataSet) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
activeDataSet string The name of the active data set (see "Active Data Set" within the 
StaticControl Inspector). 
 

setAutoIncrement 
Overview Macro Actions 

Syntax 

componentName.setAutoIncrement(autoIncrement) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
autoIncrement BOOL TRUE if the name counter is incremented each time the weights are 
loaded or saved (see the Weights Inspector). 
 

setCloseMacro 
Overview Macro Actions 

Syntax 

componentName.setCloseMacro(closeMacro) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
closeMacro string The path of the macro that is run when the breadboard is closed (see 
the Auto Macros Inspector ). 

setCodeGenProjectPath 
Overview Macro Actions 

Syntax 

componentName.setCodeGenProjectPath(codeGenProjectPath) 

Parameters Type Description 
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return void 
 
componentName  Name defined on the engine property page. 
 
codeGenProjectPath String The path of the generated source code (*.cpp) file (see 
"Project" within the Code Generation Inspector). 
 

setCodeGenTargetPath 
Overview Macro Actions 

Syntax 

componentName.setCodeGenTargetPath(codeGenTargetPath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
codeGenTargetPath String The path of the library definition (*.nsl) file (see "Target" within 
the Code Generation Inspector). 

 

setDither 
Overview Macro Actions 

Syntax 

componentName.setDither(dither) 

Parameters Type Description 
return Float The dither value used to perform the sensitivity analysis function (see the Static 
Inspector). 
 
componentName  Name defined on the engine property page. 

 

setEpochCounter 
Overview Macro Actions 

Syntax 

componentName.setEpochCounter(epochCounter) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
epochCounter int The epoch number that the simulation will start at (see the Simulation 
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Progress Window). 

 

setEpochs 
Overview Macro Actions 

Syntax 

componentName.setEpochs(epoch) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
epochs int The maximum number of epochs to run (i.e., training cycles) before the 
simulation stops (see "Epochs/Run" within the StaticControl Inspector). 
 

setEpochsPerTest 
Overview Macro Actions 

Syntax 

componentName.setEpochsPerTest(epochsPerTest) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
epochsPerTest int The number of epochs between each cross validation cycle (see 
"Epochs/Cross Val" within the the Static Inspector). 

setExemplarCounter 
Overview Macro Actions 

Syntax 

componentName.setExemplarCounter(exemplarCounter) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
exemplarCounter int The exemplar number that the simulation will start at (see the 
Simulation Progress Window). 
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setExemplars 
Overview Macro Actions 

Syntax 

componentName.setExemplars(exemplars) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
exemplars int The number of exemplars that comprise one epoch of the data set (see 
"Exemplars/Epoch" within the StaticControl Inspector). 

setForceWindowOnTop 
Overview Macro Actions 

Syntax 

componentName.setForceWindowOnTop(forceWindowOnTop) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
forceWindowOnTop BOOL TRUE if the Simulation Progress Window is forced on top. 

 

setLearning 
Overview Macro Actions 

Syntax 

componentName.setLearning(learning) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
learning BOOL TRUE if learning is enabled for the entire network (see "Learning" within the 
StaticControl Inpsector). 

setOpenMacro 
Overview Macro Actions 

Syntax 

componentName.setOpenMacro(openMacro) 
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Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
openMacro string The path of the macro that is run when the breadboard is opened (see 
the Auto Macros Inspector ). 

setPostRunMacro 
Overview Macro Actions 

Syntax 

componentName.setPostRunMacro(postRunMacro) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
postRunMacro string The path of the macro that is run when the simulation concludes (see 
the Auto Macros Inspector ). 

setPreRunMacro 
Overview Macro Actions 

Syntax 

componentName.setPreRunMacro(preRunMacro) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
preRunMacro string The path of the macro that is run when network is reset (see the Auto 
Macros Inspector ). 

setShowExemplars 
Overview Macro Actions 

Syntax 

componentName.setShowExemplars(showExemplars) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
showExemplars BOOL TRUE if the exemplars are displayed in the Simulation Progress 
Window. 
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setUpdateDisplayByEpoch 
Overview Macro Actions 

Syntax 

componentName.setUpdateDisplayByEpoch(updateDisplayByEpoch) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
updateDisplayByEpoch BOOL TRUE if the display of the Simulation Progress Window is 
updated based on the number of epochs since the last display (see the Progress Display Inspector 
). 

setUpdateDisplayEvery 
Overview Macro Actions 

Syntax 

componentName.setUpdateDisplayEvery(updateDisplayEvery) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
updateDisplayEvery int The value used to specify how often the Simulation Progress 
Window is updated (see the Progress Display Inspector ). 

 

setUseName 
Overview Macro Actions 

Syntax 

componentName.setUseName(useName) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
useName BOOL Sets the base name for the auto-saving of the weights file (see "Use 
Name" within the Weights Inspector). 

setXValDataSet 
Overview Macro Actions 
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Syntax 

componentName.setXValDataSet(xValDataSet) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
xValDataSet string The name of the cross validation data set (see "Cross Validation Data 
Set" within the StaticControl Inspector). 
 

setZeroOnReset 
Overview Macro Actions 

Syntax 

componentName.setZeroOnReset(zeroOnReset) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
zeroOnReset BOOL TRUE if the file name counter is zeroed when the network is reset (see 
"Zero" within the Weights Inspector). 

showExemplars 
Overview Macro Actions 

Syntax 

componentName.showExemplars() 

Parameters Type Description 
return BOOL TRUE if the exemplars are displayed in the Simulation Progress Window). 
 
componentName  Name defined on the engine property page. 

 

stepEpoch 
Overview Macro Actions 

Syntax 

componentName.stepEpoch() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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stepExemplar 
Overview Macro Actions 

Syntax 

componentName.stepExemplar() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

stopNetwork 
Overview Macro Actions 

Syntax 

componentName.stopNetwork() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

updateDisplayByEpoch 
Overview Macro Actions 

Syntax 

componentName.updateDisplayByEpoch() 

Parameters Type Description 
return BOOL TRUE if the display of the Simulation Progress Window is updated based on the 
number of epochs since the last display (see the Progress Display Inspector ). 
 
componentName  Name defined on the engine property page. 

updateDisplayEvery 
Overview Macro Actions 

Syntax 

componentName.updateDisplayEvery() 

Parameters Type Description 
return int The value used to specify how often the Simulation Progress Window is updated 
(see the Progress Display Inspector ). 
 
componentName  Name defined on the engine property page. 
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useName 
Overview Macro Actions 

Syntax 

componentName.useName() 

Parameters Type Description 
return BOOL Sets the base name for the auto-saving of the weights file (see "Use Name" 
within the Weights Inspector). 
 
 
componentName  Name defined on the engine property page. 
 

xValDataSet 
Overview Macro Actions 

Syntax 

componentName.xValDataSet() 

Parameters Type Description 
return string The name of the cross validation data set (see "Cross Validation Data Set" within 
the StaticControl Inspector). 
 
componentName  Name defined on the engine property page. 
 

zeroOnReset 
Overview Macro Actions 

Syntax 

componentName.zeroOnReset() 

Parameters Type Description 
return BOOL TRUE if the file name counter is zeroed when the network is reset (see "Zero" 
within the Weights Inspector). 
 
componentName  Name defined on the engine property page. 
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ErrorCriteria Family 
L1Criterion 

 

 
 

 

Family: ErrorCriteria Family  

Superclass: NS Criterion Engine 

 

Description: 

The L1CriterionEngine implements the absolute value cost function. This criterion is mostly applied 
to networks processing binary data. The error reported to the supervised learning procedure will 
simply be the sign of the difference between the network's output and desired response. 

 

Cost Function: 

 

  

 

Error Function: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector 

Access points 

DLL Implementation 
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L2Criterion 
 

  

 

 

Family: ErrorCriteria Family  

Superclass: CriterionEngine 

 

Description: 

The L2Criterion implements the quadratic cost function. This is by far the most applied cost function 
in adaptive systems. The error reported to the supervised learning procedure is simply the squared 
Euclidean distance between the network's output and the desired response. 

 

Cost Function: 

 

  

 

Error Function: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 
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L2TemporalCriterion 
 

  

 

 

Family: ErrorCriteria Family  

Superclass: CriterionEngine 

 

Description: 

The L2TemporalCriterion is a variant of the L2Criterion that can weight different aspects of 
temporal (time-series) data differently. Descriptions of the various weighting factors are described 
within the L2TemporalCriterion Inspector. 

 

Cost Function: 

 

 

 

where w is the weighting factor.  

 

Error Function: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points 
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LpCriterion 
 

  

 

 

Family: ErrorCriteria Family  

Superclass: CriterionEngine 

 

Description: 

The LpCriterion is similar to the L2Criterion, except that the order of the cost function is determined 
by the user-defined constant, p. 

 

Cost Function: 

 

  

 

Error Function: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

LinfinityCriterion 
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Family: ErrorCriteria Family  

Superclass: CriterionEngine 

 

Description: 

The LinfinityCriterion is actually an approximation to the Linfinity norm. Instead of globally 
searching the output of a network for its maximum error, the LinfinityCriterion locally emphasizes 
large errors in each output. This is done by applying the tan function to the clipped error reported 
by the L2Criterion class. 

 

Cost Function: 

 

  

 

Error Function: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

SVML2Criterion 
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Family: ErrorCriteria Family  

Superclass: L2Criterion  

 

Description: 

This component is used to implement the "Large Margin Classifier" segment of the Support Vector 
Machine model. 

 

Cost Function: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points 

 

Access Points 

ErrorCriteria Access Points 

 

Family: ErrorCriteria Family  

Superclass Access Points: Axon Family Access Points 

 

Pre-Activity Access: 

Attaches the Access component to the network output vector (y). Note that this is the same as 
attaching to the Activity access point of the output Axon. 

Desired Signal Access: 
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Attaches an input Access component to the desired response vector (d). This access point is the 
only means for providing the ErrorCriteria component with its desired input. Typically network input 
components such as the Function or File will be attached here. 

Activity Access: 

Attaches the Access component to the network error vector (d-y). 

Cost Access: 

This access point reports one half of the cost of the network's output ((d-y)2) instantaneously with 
each input. Only output Access components should be attached here. 

Average Cost Access: 

This access point reports one half of the average cost of the network's output ((d-y)2) since the last 
weight update or epoch (depending on the ErrorCriteria Inspector property page settings). Only 
output Access components should be attached here. 

Raw Sensitivity Access: 

Produces a matrix of values containing the raw Sensitivity information for each input/output 
combination. 

Sensitivity Access: 

Produces a matrix of values containing the Sensitivity information for each input/output 
combination, computed as a percentage such that the sum of all sensitivity values for a particular 
output totals 100. 

Overall Sensitivity Access: 

Produces a vector of values containing the Sensitivity information for each input, averaged across 
all of the outputs and computed as a percentage such that the sum of all sensitivity values totals 
100. 

Confusion Matrix (Totals) Access: 

Produces a confusion matrix in which each cell contains the raw number of exemplars classified for 
the corresponding combination of desired and actual outputs. 

Confusion Matrix (Percentages) Access: 

Produces a confusion matrix in which each cell contains the percentage of exemplars classified for 
the corresponding combination of desired and actual outputs, relative to the total number of 
exemplars for the given desired output class. 

Correlation Access: 

This access point reports the correlation coefficients for each network output. 

ROC Access: 

This access point reports the Receiver Operating Characteristic (ROC) matrix for a given output 
channel. 

Performance Measures Access: 

This access point reports six different performance measures of the network for the given data set. 

 

 



 491

 

  See Also 

DLL Implementation 

L1Criterion DLL Implementation 

 

 

 

 

Component: L1Criterion  

Protocol: PerformCriterion 

 

Description: 

The L1CriterionEngine implements the absolute value cost function. The error reported to the 
supervised learning procedure (costDerivative) is simply the sign of the difference between the 
network's output and desired response, for each output PE. The cost returned is the accumulation 
of the absolute differences between the output and the desired response, for all output PEs. 

 

Code: 
 
NSFloat performCriterion( 
 DLLData *instance,       // Pointer to instance data (may be NULL) 
 NSFloat *costDerivative, // Pointer to output sensitivity vector 
 int     rows,            // Number of rows of PEs in the layer 
 int     cols,            // Number of columns of PEs in the layer 
 NSFloat *output,         // Pointer to output layer of the network 
 NSFloat *desired         // Pointer to desired output vector 
 ) 
{ 
 int i,length=rows*cols; 
 NSFloat cost=0.0f; 
 
 for (i=0; i<length; i++) { 
  costDerivative[i] = desired[i] - output[i] >= 0? (NSFloat)-
1.0 : (NSFloat)1.0; 
  cost += (NSFloat)fabs(desired[i] - output[i]); 
 } 
 return cost; 
} 
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L2Criterion DLL Implementation 

 

 

 

 

Component: L2Criterion  

Protocol: PerformCriterion 

 

Description: 

The L2CriterionEngine implements the quadratic cost function. The error reported to the supervised 
learning procedure (costDerivative) is simply the squared Euclidean distance between the net 
work's output and the desired response, for each output PE. The cost returned is the accumulation 
of the squared error, for all output PEs. 

 

Code: 
 
NSFloat performCriterion( 
 DLLData *instance,       // Pointer to instance data (may be NULL) 
 NSFloat *costDerivative, // Pointer to output sensitivity vector 
 int     rows,            // Number of rows of PEs in the layer 
 int     cols,            // Number of columns of PEs in the layer 
 NSFloat *output,         // Pointer to output layer of the network 
 NSFloat *desired         // Pointer to desired output vector 
 ) 
{ 
 int i,length=rows*cols; 
 NSFloat cost=0.0f; 
 
 for (i=0; i<length; i++) { 
  costDerivative[i] = desired[i] - output[i]; 
  cost += costDerivative[i]*costDerivative[i]; 
 } 
 return cost; 
} 

LinfinityCriterion DLL Implementation 
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Component: LinfinityCriterion  

Protocol: PerformCriterion 

 

Description: 

The LinfinityCriterionEngine implements an approximation to the Linfinity norm cost function. The 
error reported to the supervised learning procedure (costDerivative) is simply the hyperbolic 
tangent of the difference between the network's output and desired response, for each output PE. 
This results in a local emphasis on large errors. The cost returned is the accumulation of the error, 
for all output PEs. 

 

Code: 
 
NSFloat performCriterion( 
 DLLData *instance,       // Pointer to instance data (may be NULL) 
 NSFloat *costDerivative, // Pointer to output sensitivity vector 
 int     rows,            // Number of rows of PEs in the layer 
 int     cols,            // Number of columns of PEs in the layer 
 NSFloat *output,         // Pointer to output layer of the network 
 NSFloat *desired         // Pointer to desired output vector 
 ) 
{ 
 int i,length=rows*cols; 
 NSFloat cost=0.0f; 
 
 for (i=0; i<length; i++) { 
  costDerivative[i] = (NSFloat)tan(desired[i] - output[i]); 
  cost += (NSFloat)fabs(costDerivative[i]); 
 } 
 return cost; 
} 

DeltaBarDelta DLL Implementation 

 

 

 

 

Component: DeltaBarDelta  

Protocol: PerformDeltaBarDelta 
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Description: 

The implementation of the DeltaBarDelta component computes the step size for each of the 
weights based on the gradient from the backprop component, a smoothed version of the gradient 
(smoothedGradient), and three constants (beta, kappa, and zeta) defined by the user within the 
DeltaBarDelta inspector. This function is responsible for updating both the step and 
smoothedGradient vectors. Note that the updating of the weights uses the standard Momentum 
rule, and is performed by the component itself.  

 

Code: 
 
void performDeltaBarDelta( 
 DLLData *instance,         // Pointer to instance data 
 NSFloat *step,             // Pointer to vector of learning rates 
 int     length,            // Length of learning rate vector 
 NSFloat *smoothedGradient, // Smoothed gradient vector 
 NSFloat *gradient,         // Gradient vector from backprop comp. 
 NSFloat beta,              // Multiplicative constant 
 NSFloat kappa,             // Additive constant 
 NSFloat zeta               // Smoothing factor 
 ) 
{ 
 register int i; 
 
 for (i=0; i<length; i++) { 
  if (smoothedGradient[i]*gradient[i] > 0) 
   step[i] += kappa; 
  else 
   if (smoothedGradient[i]*gradient[i] < 0) 
    step[i] -= beta*step[i]; 
  smoothedGradient[i] = (1-zeta)*gradient[i] + 
zeta*smoothedGradient[i]; 
 } 
} 

Drag and Drop 

ErrorCriteria Drag and Drop 

 

ErrorCriteria are members of the Axon family, therefore they may also be dropped anywhere on a 
breadboard. However, members of the ErrorCriteria family must be connected to the output of the 
network. If the network has more than one output and more than one desired response, then there 
will be multiple ErrorCriteria. 

 

 

  See Also 
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Inspectors 

ErrorCriteria Inspector 

 

Family: ErrorCriteria Family 

Superclass Inspector: Axon Inspector 

 

 

 

Component Configuration: 
Average Cost for 

The number of weight updates or epochs, as defined by the network controller, per cost report.  
The individual cost estimates of each update/epoch are averaged over this period. 
Weight Updates 

Specifies the weight update as the metric for the cost report (default). 
Epochs 

Specifies the epoch as the metric for the cost report. This is useful for when you have the network 
weights, but still want to report the average cost using the trained network. 
Save Best 

Saves the set of weights with the lowest average cost to the Weights File "xxx.bst", where xxx is 
the name of the current breadboard. The weight file can instead be assigned within the Weights 
Inspector and it can be configured to increment the file name each time the file is saved. The saved 
weight file can then be loaded from the Weights Inspector. Note that the current breadboard must 
be assigned to a file (using Save As) before this feature can be activated. 
Sampling Every 

Specifies how often to check the error to see if it dropped below the Saved error. If the learning 
curve is very erratic, then this value should be low to avoid missing a set of weights with low error. 
If the error continually decreases, then this value should be higher so that there is less time spent 
writing the weights to disk. Note that the error is checked when the network is stopped regardless 
of this parameter setting. 



 496

On Increase 

Saves the weights only when the error of the current sampling is higher than the previous sampling, 
but still lower than the error from the previous save. In other words, the system only saves the 
weights as an increase in error is detected. This is often more efficient because the weights are 
only saved at the valleys of the learning curve.  
Training 

Saves the best weights based on the error of the training set. 
Cross Validation 

Saves the best weights based on the error of the cross validation set. 
Saved error 

Reports the error of the set of saved weights. 
Confusion Threshold 

When there is only one network output and there is a probe attached to one of the confusion matrix 
access points, this edit cell allows you to specify the threshold to use to differentiate between the 
two classes represented by the single output. 
ROC Channel 

The ROC matrix (produced by attaching a probe to the ROC access point) can only display the 
detections and false alarms for a singe output at a time. This edit cell allows you to specifiy which 
output PE to use. 
ROC Thresholds 

The ROC matrix (produced by attaching a probe to the ROC access point) consists of one row for 
each threshold generated. The thresholds are equally partitioned across the data range specified 
by the normalized data range of the input component (see the Stream inspector). The edit cell 
specifies the number of thresholds generated within the data range. 

 

L2TemporalCriterion Inspector 

 

Family: ErrorCriteria Family 

Superclass Inspector: ErrorCriteria Inspector  
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Component Configuration: 
Recency of Observation 

This criterion weights the error of the exemplars at the end of the data series more heavily than 
those at the beginning of the data series. This is useful when predicting time series in which the 
conditions may be changing over time, such as predictions based on long-term historical data. The 
amount of weighting is determined by the Discount Rate. 
Direction of Change 

This criterion weights the error of the exemplars whose output is the opposite sign of the desired 
output more heavily than those whose signs match. This is useful for applications such as trading, 
when being on the right side of the trade is the most important. There is one weighting specified for 
exemplars with outputs in the Right Direction and another weighting for exemplars with outputs in 
the Wrong Direction. 
Magnitude of Change 

This criterion weights the error of the exemplars whose output is far from the desired output more 
heavily than those with an output and desired output that are close. This is useful for learning 
infrequent data that has a desired value that is not the same as most of the desired values. 
However, this may result in less accuracy overall. There is one weighting specified for exemplars 
with outputs with a Large Change from the desired output and another weighting for exemplars with 
outputs with a Small Change from the desired output. 
Data Pre-Differenced 

Check this box if the output data is a measurement of the difference between the current exemplar 
and the previous exemplar. 
Discount Rate 

This parameter is used when the Recency of Observation box is checked. The higher this value, 
the more weight is given to the errors produced by the recent data (the data at the end of the 
series). 
Right Direction 

This parameter is used when the Direction of Change box is checked. The higher this value, the 
more weight is given to the errors produced by the output having the same sign as the desired 
output. 
Wrong Direction 
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This parameter is used when the Direction of Change box is checked. The higher this value, the 
more weight is given to the errors produced by the output having the opposite sign as the desired 
output. 
Large Change 

This parameter is used when the Magnitude of Change box is checked. The higher this value, the 
more weight is given to the errors produced by exemplars in which the difference between the 
output and the desired output is large. 
Small Change 

This parameter is used when the Magnitude of Change box is checked. The higher this value, the 
more weight is given to the errors produced by exemplars in which the difference between the 
output and the desired output is small. 

 

Macro Actions 

Criterion 

Criterion Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
autoSave  Returns the "Save Best" setting. 
 
averageOverUpdates  Returns TRUE when the "Weight Update" is the metric for the cost 
reporting, otherwise "Epochs" is the metric. 
 
bestCost  Returns the "Saved error" setting. 
 
checkCostEvery  Returns the "Sampling Every" setting.  
 
onIncrease  Returns the Auto-save weights "On Increase" setting.  
 
reportEvery  Returns "Average cost for" setting. 
 
setAutoSave  Sets the "Save Best" setting. 
 
setAverageOverUpdates  Set to TRUE when the "Weight Update" is the metric for the cost 
reporting, otherwise "Epochs" is the metric. 
 
setBestCost  Sets the "Saved error" setting. 
 
setCheckCostEvery  Sets the "Sampling Every" setting. 
 
setOnIncrease  Sets the Auto-save weights "On Increase" setting. 
 
setReportEvery  Sets "Average cost for" setting. 
 
setTrainTest  Sets to TRUE to auto-save on the "Training" set, or FALSE to auto-save on the 
"Cross Validation" set.  
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trainTest  Returns TRUE to auto-save on the "Training" set, or FALSE to auto-save on the 
"Cross Validation" set. 
 
 
 

autoSave 
Overview  Macro Actions 

Syntax 

componentName.autosave() 

Parameters Type Description 
return BOOL When TRUE, the weights with the lowest average cost are saved (see "Save 
Best" within the ErrorCriteria Inspector). 
 
componentName  Name defined on the engine property page. 
 

averageOverUpdates 
Overview  Macro Actions 

Syntax 

componentName.averageOverUpdates() 

Parameters Type Description 
return BOOL When TRUE, the weight update is the metric for the cost report (see "Weight 
Update" within the ErrorCriteria Inspector). Otherwise, the epoch is used as the metric. 
 
componentName  Name defined on the engine property page. 

bestCost 
Overview  Macro Actions 

Syntax 

componentName.bestCost() 

Parameters Type Description 
return float The lowest cost that has been achieved (see "Saved Error" within the 
ErrorCriteria Inspector). 
 
componentName  Name defined on the engine property page. 

checkCostEvery 
Overview Macro Actions 

Syntax 
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componentName.checkCostEvery() 

Parameters Type Description 
return int How often the error is sampled to see if it has dropped below the Saved error 
(see "Sampling Every" within the ErrorCriteria Inspector). 
 
componentName  Name defined on the engine property page. 

 

onIncrease 
Overview  Macro Actions 

Syntax 

componentName.onIncrease() 

Parameters Type Description 
return BOOL When TRUE, the weights are saved when an increase in error is detected (see 
"On Increase" within the ErrorCriteria Inspector). 
 
componentName  Name defined on the engine property page. 

 

reportEvery 
Overview  Macro Actions 

Syntax 

componentName.reportEvery() 

Parameters Type Description 
return int How often the cost is averaged (see "Average Cost for" within the ErrorCriteria 
Inspector). 
 
componentName  Name defined on the engine property page. 
 
 
 

setAutoSave 
Overview  Macro Actions 

Syntax 

componentName.setAutoSave(autoSave) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
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autoSave BOOL When TRUE, the weights with the lowest average cost are saved (see 
"Save Best" within the ErrorCriteria Inspector). 
 

setAverageOverUpdates 
Overview  Macro Actions 

Syntax 

componentName.setAverageOverUpdates(averageOverUpdates) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
averageOverUpdates BOOL When TRUE, the weight update is the metric for the cost report 
(see "Weight Update" within the ErrorCriteria Inspector). Otherwise, the epoch is used as the 
metric. 
 

setBestCost 
Overview  Macro Actions 

Syntax 

componentName.setBestCost(bestCost) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
bestCost float The lowest cost that has been achieved (see "Saved Error" within the 
ErrorCriteria Inspector). 
 
 

setCheckCostEvery 
Overview  Macro Actions 

Syntax 

componentName.setCheckCostEvery(checkCostEvery) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
checkCostEvery int How often the error is sampled to see if it has dropped below the Saved 
error (see "Sampling Every" within the ErrorCriteria Inspector). 
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setOnIncrease 
Overview  Macro Actions 

Syntax 

componentName.setOnIncrease(onIncrease) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
onIncrease BOOL When TRUE, the weights are saved when an increase in error is 
detected (see "On Increase" within the ErrorCriteria Inspector). 
 

setReportEvery 
Overview  Macro Actions 

Syntax 

componentName.setReportEvery(reportEvery) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
reportEvery int How often the cost is averaged (see "Average Cost for" within the 
ErrorCriteria Inspector). 
 

setTrainTest 
Overview  Macro Actions 

Syntax 

componentName.setTrainTest(trainTest) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
trainTest BOOL When TRUE, the auto-save will be performed on the "Training" set (see 
"Training" within the ErrorCriteria Inspector). Otherwise, the auto-save will be performed on the 
"Cross Validation" set. 
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trainTest 
Overview  Macro Actions 

Syntax 

componentName.trainTest() 

Parameters Type Description 
return BOOL When TRUE, the auto-save will be performed on the "Training" set (see 
"Training" within the ErrorCriteria Inspector). Otherwise, the auto-save will be performed on the 
"Cross Validation" set. 
 
componentName  Name defined on the engine property page. 
 

GradientSearch Family 
ConjugateGradient 

 

  

 

 

Family: GradientSearch Family 

Superclass: GradientEngine 

 

Description: 

NeuroSolutions ConjugateGradient gradient descent component uses the "scaled conjugate 
gradient" learning algorithm. It is a member of a class of learning algorithms called "second order 
methods".  

Standard gradient descent algorithms (like "step" and "momentum") use only the local 
approximation of the slope of the performance surface (error versus weights) to determine the best 
direction to move the weights in order to lower the error. Second order methods use or approximate 
second derivatives (the curvature instead of just the slope) of the performance surface to determine 
the weight update. If the performance surface is quadratic (which is only true in general for linear 
systems), then using a second order method can find the exact minimum in one step. In nonlinear 
systems like neural networks, you will generally still need multiple steps. Each step, however, will 
typically lower the error much more than a standard gradient descent step. 
The problem with second order methods is that they require many more computations for each 
weight update. An algorithm that makes many poor decisions may perform better on average than 
a much slower algorithm that makes very good decisions. 

 

Weight Update Equations: 

The conjugate gradient method is an excellent tradeoff between speed of computation and 
performance. The conjugate gradient method can move to the minimum of a N-dimensional 
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quadratic function in N steps. By always updating the weights in a direction that is conjugate to all 
past movements in the gradient, you can avoid all of the zig-zagging of 1st order gradient descent 
methods. At each step, you determine a new conjugate direction and move to the minimum error 
along this direction. Then you compute a new conjugate direction and do the same.  If the 
performance surface is quadratic, information from the Hessian can determine the exact position of 
the minimum along each direction, but for nonquadratic surfaces, a line search is typically used. In 
theory, there are only N conjugate directions in a space of N dimensions, so the algorithm is reset 
each N iterations. The advantage of conjugate gradient method is that you don’t need to store, 
compute, or invert the Hessian matrix (which requires many calculations and a lot of storage for 
large numbers of weights). The equations are: 

 

 

 

where w are the weights, p is the current direction of weight movement, g is the gradient (backprop 
information), β is a parameter that determines how much of the past direction is mixed with the 
gradient to form the new conjugate direction. The equation for α is a line search to find the 
minimum MSE along the direction p. The line search in the conjugate gradient method is critical to 
finding the right direction to move next. If the line search is inaccurate, then the algorithm may 
become brittle. This means that you may have to spend up to 30 iterations to find the appropriate 
step size. 
The Scaled Conjugate Gradient method (SCG) is the method used by NeuroSolutions and it avoids 
the line search  procedure. One key advantage of the SCG algorithm is that it has no real 
parameters. The algorithm is based on computing Hd where d is a vector. The Hessian times a 
vector can be efficiently computed in O(W) operations and contains only W elements. To ensure 
that the Hessian is positive definite, an offset is added to the Hessian, H+λI. The formula for the 
step size α as in the conjugate gradient is: 

 

 

 

where p is the direction vector and g is the gradient vector as in the CG method. The parameter λ 
varies from iteration to iteration – when λ is high, the learning rate is small (the Hessian cannot be 
trusted), and when it is low the learning rate is large.  

Doing a first order approximation, we can write: 
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which means that you can replace the Hessian calculations with one additional evaluation of the 
gradients (backprop pass). The parameter λ must be set to ensure that the H+λI is positive definite 
so that the denominator of α will always be positive. If the value of the denominator is negative, we 

increase λ by a value λ  so that it will be positive.  Additionally, we adjust λ based upon how 
closely the current point in the performance surface approximates a quadratic – if the performance 
surface is far from quadratic, we should increase λ resulting in a smaller step size. The value ∆ is 
used to determine "closeness to quadratic" and is estimated via: 

 

 

 
If ∆ is less than zero, the change in the MSE will rise and the algorithm says to not change the 
weights (in my experience, however, it seems to work better if you do change the weights). If ∆ is 
less than .25 you multiply λ by 4, if it is greater than .75 (very quadratic) you multiply λ by .5. 

This algorithm requires a number of global scalar computations. All matrix calculations can be done 
locally (parallel). It also requires one backprop pass to compute E’(w+sp) and one forward pass to 
compute E(w+αp). Conjugate Gradient learning in NeuroSolutions requires that the network learn 
in batch mode. In general, each Conjugate Gradient batch weight update will take twice as long as 
a standard batch weight update (using step or momentum gradient search). 

 

User Interaction: 

Drag and Drop  

 

DeltaBarDelta 
 

  
 

 

Family: GradientSearch Family  

Superclass: Step  

 

Description: 

Delta-Bar-Delta is an adaptive step-size procedure for searching a performance surface. The step 
size and momentum are adapted according to the previous values of the error at the PE. If the 
current and past weight updates are both of the same sign, it increases the learning rate linearly. 
The reasoning is that if the weight is being moved in the same direction to decrease the error, then 
it will get there faster with a larger step size. If the updates have different signs, this is an indication 
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that the weight has been moved too far. When this happens, the learning rate decreases 
geometrically to avoid divergence. 

 

Step Size Update Equation: 

 

 

 

where: 

 

 

κ= Additive constant 

β= Multiplicative constant 

λ= Smoothing factor 

 

Weight Update Equation: 

 

See Momentum 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

Macro Actions  

Momentum 
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Family: GradientSearch Family  

Superclass: Step  

 

Description: 

Step components try to find the bottom of a performance surface by taking steps in the direction 
estimated by the attached backprop component. Network learning can be very slow if the step size 
is small, and can oscillate or diverge if it is chosen too large. To further complicate matters, a step 
size that works well for one location in weight space may be unstable in another. 

The Momentum provides the gradient descent with some inertia, so that it tends to move along a 
direction that is the average estimate for down. The amount of inertia (i.e., how much of the past to 
average over) is dictated by the momentum parameter, ρ. The higher the momentum, the more it 
smoothes the gradient estimate and the less effect a single change in the gradient has on the 
weight change. The major benefit is the added ability to break out of local minima that a Step 
component might otherwise get caught in. Note that oscillations may occur if the momentum is set 
too high. 

The momentum parameter is the same for all weights of the attached component. An access point 
has been provided for the step size and momentum allowing access for adaptive and scheduled 
learning rate procedures. 

 

Weight Update Equation: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

Macro Actions  

 

Quickprop 
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Family: GradientSearch Family  

Superclass: Momentum  

 

Description: 

The Quickprop implements Fahlman's quickprop algorithm. It is a gradient search procedure that 
has been shown to be very fast in a multitude of problems. It basically uses information about the 
second order derivative of the performance surface to accelerate the search. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

 

Step 
 

  

 

 

Family: GradientSearch Family 

Superclass: GradientEngine 

 

Description: 

Gradient descent learning rules, e.g. backpropagation and real time recurrent learning, provide first 
order gradient information about the network's performance surface. In other words, they estimate 
which way is up. The most straightforward way of reaching the bottom (the minima) given which 
way is up, is to move in the opposite direction. With this scenario, the only variable is the step size, 
i.e. how far should it move before obtaining another directional estimate. If the steps are too small, 
then it will take too long to get there. If the steps are too large, then it may overshoot the bottom, 
causing it to rattle or even diverge. 
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The Step uses this procedure to adapt the weights of the Activation component that it is stacked 
on. The Step’s inspector allows the user to set a default step size for all weights within the 
Activation component. The step sizes of individual weights can be specified by attaching at 
MatrixEditor to the Learning Rate access point and modifying the default values. This access point 
can be used to adapt and/or schedule the step sizes during the simulation. 

 

Weight Update Equation: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

Macro Actions  

 

 

  See Also 

SVMStep 
 

 

  

 

 

Family: GradientSearch Family  

Superclass: Step  

 

Description: 

This component is used to implement the "Large Margin Classifier" segment of the Support Vector 
Machine model. 
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User Interaction: 

Drag and Drop 

Inspector  

 

Access Points 

Momentum Access Points 

 

Component: Momentum  

Superclass Access Points: Step Access Points  

 

Momentum Access: 

The Momentum Access provides a static access point to individually set the momentum of each 
weight, or to adaptively change the learning rates.  

Delta Gradient Access: 

The Delta Gradient Access provides a static access point to individually view the delta gradient of 
each weight.  

Quickprop Access Points 

 

Component: Quickprop  

Superclass Access Points: DeltaBarDelta  

 

Local Sensitivity Delta Access: 

The Local Sensitivity Access reports the current state sensitivity minus the last state sensitivity 
used by the quickprop algorithm. 

Step Access Points 

 

Family: Step 

Superclass Access Points: None 

 

Learning Rate: 

The Step Access provides a static access point to individually set the step size of each weight, or to 
adaptively change the learning rates.  

 



 511

 

  See Also 

DLL Implementation 

Momentum DLL Implementation 

 

 

 

 

Component: Momentum  

Protocol: PerformMomentum 

 

Description: 

The implementation of the Momentum component is similar to that of the Step component, except 
that there is the addition of a momentum term and a vector containing the previous weight change 
(delta). The delta for a given weight is computed by taking product of the momentum rate and the 
weight’s previous delta and adding it to the product of the step size and the weight’s gradient. Note 
that this function is responsible for updating the delta vector as well as the weights vector. 

 

Code: 
 
void performMomentum( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *weights,   // Pointer to the vector of weights 
 int     length,     // Length of the weight vector 
 NSFloat *gradient,  // Pointer to vector of gradients 
 NSFloat *step,      // Pointer to the learning rate/s 
 BOOL    individual  // Indicates whether there is one learning 
rate 
                     // for all weights (FALSE), or each weight has 
                     // its own learning rate (TRUE) 
 NSFloat *delta,     // Last weight Update 
 NSFloat momentum    // Momentum rate for all weights 
 ) 
{ 
 register int i; 
 
 for (i=0; i<length; i++) 
  weights[i] += delta[i] = momentum*delta[i] + 
step[individual?i:0]*gradient[i]; 
} 
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Quickprop DLL Implementation 

 

 

 

 

Component: Quickprop  

Protocol: PerformQuickprop 

 

Description: 

The implementation of the Quickprop component is similar to that of the Momentum component, 
except that the momentum rate is unique to each weight. This vector is computed from the gradient 
information from the previous (lastGradient) and current (gradient) weight updates. The absolute 
value of the individual momentum terms is limited by the defaultMomentum defined by the user 
within the inspector. Note that this vector could have been allocated as local storage, but it is 
passed as a parameter for efficiency reasons. This function is responsible for updating the 
lastGradient vector as well as the delta and weights vectors. 

 

Code: 
 
void performQuickprop( 
 DLLData *instance,       // Pointer to instance data 
 NSFloat *weights,        // Pointer to the vector of weights 
 int     length,          // Length of the weight vector 
 NSFloat *gradient,       // Pointer to vector of gradients 
 NSFloat *step,           // Pointer to the learning rate/s 
 BOOL    individual       // Indicates whether there is one 
learning 
                          // rate for all weights (FALSE), or each 
                          // weight has its own learning rate 
(TRUE) 
 NSFloat *delta,          // Last weight Update 
 NSFloat defaultMomentum, // Max momentum rate for all weights 
 NSFloat *momentum,       // Individual momentum rate for each 
weight 
 NSFloat *lastGradient    // Previous weight gradient vector 
 ) 
{ 
 register int i; 
 
 for (i=0; i<length; i++) { 
  momentum[i] = gradient[i]/(lastGradient[i] - gradient[i]); 
  if (momentum[i] > defaultMomentum) 
   momentum[i] = defaultMomentum; 
  if (momentum[i] < -defaultMomentum) 
   momentum[i] = -defaultMomentum; 
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  delta[i] = momentum[i]*delta[i] + 
lastGradient[i]*(gradient[i]<0?0:step[individual?i:0]*gradient[i]); 
  weights[i] += delta[i]; 
  lastGradient[i] = gradient[i]; 
 } 
} 

Step DLL Implementation 

 

 

 

 

Component: Step  

Protocol: PerformStep 

 

Description: 

The Step component simply increments each weight by its corresponding gradient times a step 
size. Note that the step size can either be specific to a particular weight or it can be the same for all 
weights. 

 

Code: 
 
void performStep( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *weights,   // Pointer to the vector of weights 
 int     length,     // Length of the weight vector 
 NSFloat *gradient,  // Pointer to vector of gradients 
 NSFloat *step,      // Pointer to the learning rate/s 
 BOOL    individual  // Indicates whether there is one learning 
rate 
                     // for all weights (FALSE), or each weight has 
                     // its own learning rate (TRUE) 
 ) 
{ 
 register int i; 
 
 if (!individual) 
  for (i=0; i<length; i++) 
   weights[i] += step[individual?i:0] * gradient[i]; 
} 
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Drag and Drop 

GradientSearch Drag and Drop 

 

Neural network topologies are constructed by dropping components from the Activation family 
directly onto the breadboard. Gradient descent learning dynamics are attached by dropping 
gradient descent components, e.g. components from the Backprop family, on top of their 
respective dual Activation component. The GradientSearch components are then dropped directly 
on top of these gradient descent components. In other words, three layers are required for 
networks using gradient descent learning. Each gradient descent learning family will have a 
controller within the Control family, e.g. the StaticBackpropControl component. Each controller is 
capable of automatically generating the gradient descent and GradientSearch layers once the 
Activation layer has been constructed. 

 

 

  See Also 

Inspectors 

DeltaBarDelta Inspector 

 

Component: DeltaBarDelta 

Superclass Inspector: NSEngineInspector 

 

 

 

Component Configuration: 
Additive (SetAdditive(float)) 
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This cell is used to specify the additive constant (κ), specified within the DeltaBarDelta component 
reference. 
Multiplicative (SetMult(float))  

This cell is used to specify the multiplicative constant (β), specified within the DeltaBarDelta 
component reference. 
Smoothing (SetSmoothing(float)) 

This cell is used to specify the smoothing factor (ζ), specified within the DeltaBarDelta component 
reference. 

Momentum Inspector 

 

Component: Momentum 

Superclass Inspector: Engine Inspector  

 

  

 

Component Configuration: 
Step Size (SetStepSize(float)) 

This cell sets the default step size for all weights within the Activation component. If the step size is 
adjusted during an experiment through an adaptive or scheduled procedure, then it will be reset to 
this default value each time the weights are randomized. Note that the individual step sizes can be 
modified by setting the Individual switch (see below), attaching a MatrixEditor to the Momentum 
component, and editing the values within the display window of the probe. 
Normalized 

When this switch is turned on, the step size is normalized by dividing the number entered in the 
Step Size cell (see above) by the number of exemplars/update (see BackStaticControl). 
Individual 

When this switch is turned on, the step sizes can be set individually by attaching a MatrixEditor to 
the Momentum component and editing the values within the display window of the probe. Note that 
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when this switch is set the step sizes are not restored to their default value when the network is 
reset. 
Momentum Rate (SetMomentum(float)) 

This cell sets the default momentum for all weights within the Activation component. If the 
momentum is altered during an experiment through an adaptive or scheduled procedure, then it will 
be reset to this default value whenever the weights of the Momentum component are randomized. 
Up 

Raises the step sizes of all Gradient Search components on the breadboard by the percentage 
specified within the cell. 
Down 

Lowers the step sizes of all Gradient Search components on the breadboard by the percentage 
specified within the cell. 
Decay Weights 

The idea in weight elimination is to create a driving force that will attempt to decrease all the 
weights to zero during adaptation. If the input-output map requires some large weights, learning will 
keep bumping up the important weights, but the ones that are not important will be driven to zero, 
thus reducing the number of free parameters in the network. This idea is called weight decay. 
When this switch is set, weight decay is enabled such that the product of the current weight and the 
Decay Rate (see below) is subtracted from the weight adaptation formula for the Momentum 
component. 
Decay Rate 

This cell specifies the decay rate to use in the weight decay algorithm described above. 

 

Step Inspector 

 

Component: Step 

Superclass Inspector: Engine Inspector  
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Component Configuration: 
Step Size (SetStepSize(float)) 

This cell sets the default step size for all weights within the Activation component. If the step size is 
adjusted during an experiment through an adaptive or scheduled procedure, then it will be reset to 
this default value each time the weights are randomized. Note that the individual step sizes can be 
modified by setting the Individual switch (see below), attaching a MatrixEditor to the Step 
component, and editing the values within the display window of the probe. 
Normalized 

When this switch is turned on, the step size is normalized by dividing the number entered in the 
Step Size cell (see above) by the number of exemplars/update (see BackStaticControl). 
Individual 

When this switch is turned on, the step sizes can be set individually by attaching a MatrixEditor to 
the Step component and editing the values within the display window of the probe. Note that when 
this switch is set the step sizes are not restored to their default value when the network is reset. 
Up 

Bumps up the step sizes of all Gradient Search components on the breadboard by the percentage 
specified within the cell. 
Down 

Bumps down the step sizes of all Gradient Search components on the breadboard by the 
percentage specified within the cell. 
Decay Weights 

The idea in weight elimination is to create a driving force that will attempt to decrease all the 
weights to zero during adaptation. If the input-output map requires some large weights, learning will 
keep bumping up the important weights, but the ones that are not important will be driven to zero, 
thus reducing the number of free parameters in the network. This idea is called weight decay. 
When this switch is set, weight decay is enabled such that the product of the current weight and the 
Decay Rate (see below) is subtracted from the weight adaptation formula for the Step component. 
Decay Rate 

This cell specifies the decay rate to use in the weight decay algorithm described above. 

 

Macro Actions 

Delta Bar Delta 

DeltaBarDelta Macro Actions 
Overview Superclass Macro Actions  

Action Description 

beta Returns the multiplicative constant (β). 
 

kappa  Returns the additive constant (κ). 
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setBeta Sets the multiplicative constant (β). 
 

setKappa  Sets the additive constant (κ). 
 

setZeta  Sets the smoothing factor (ζ). 
 

zeta  Returns the smoothing factor (ζ). 
 

 

beta 
Overview Macro Actions 

Syntax 

componentName.beta() 

Parameters Type  Description 

return float The multiplicative constant (β), specified within the DeltaBarDelta component 
reference (see "Multiplicative" within the DeltaBarDelta Inspector). 
 
componentName  Name defined on the engine property page. 
 

kappa 
Overview Macro Actions 

Syntax 

componentName.kappa() 

Parameters Type  Description 

return float The additive constant (κ), specified within the DeltaBarDelta component 
reference (see "Additive" within the DeltaBarDelta Inspector). 
 
componentName  Name defined on the engine property page. 
 

setBeta 
Overview Macro Actions 

Syntax 

componentName.setBeta(beta) 

Parameters Type  Description 
return void  
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componentName  Name defined on the engine property page. 
 

beta float The multiplicative constant (β), specified within the DeltaBarDelta component 
reference (see "Multiplicative" within the DeltaBarDelta Inspector). 
 
 

setKappa 
Overview Macro Actions 

Syntax 

componentName.setKappa(kappa) 

Parameters Type  Description 
return void  
 
componentName  Name defined on the engine property page. 
 

kappa float The additive constant (κ), specified within the DeltaBarDelta component 
reference (see "Additive" within the DeltaBarDelta Inspector). 
 

setZeta 
Overview Macro Actions 

Syntax 

componentName.setZeta(zeta) 

Parameters Type  Description 
return void  
 
componentName  Name defined on the engine property page. 
 

zeta float The smoothing factor (ζ), specified within the DeltaBarDelta component 
reference (see "Smoothing" within the DeltaBarDelta Inspector). 
 

zeta 
Overview Macro Actions 

Syntax 

componentName.zeta() 

Parameters Type  Description 

return float The smoothing factor (ζ), specified within the DeltaBarDelta component 
reference (see "Smoothing" within the DeltaBarDelta Inspector). 
 
componentName  Name defined on the engine property page. 
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Momentum 

Momentum Macro Actions 
Overview Superclass Macro Actions 

Action Description 
momentumRate  Returns the momentum setting. 
 
setMomentumRate  Sets the momentum setting. 

 

momentumRate 
Overview Macro Actions 

Syntax 

componentName.momentumRate() 

Parameters Type Description 
return float The default momentum for all weights within the Activation component (see 
"Momentum Rate" within the Momentum Inspector). 
 
componentName  Name defined on the engine property page. 
 

setMomentumRate 
Overview Macro Actions 

Syntax 

componentName.setMomentumRate(momentumRate) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
momentumRate float The default momentum for all weights within the Activation component 
(see "Momentum Rate" within the Momentum Inspector). 
 

Step 

Step Macro Actions 
Overview  Superclass Macro Actions   

Action Description 
broadcastBumpStep  Bumps the step size of all Gradient Search components on the 
breadboard up or down by a percentage. 
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bumpStep  Bumps the step size up or down by a percentage. 
 
individualSteps  Returns the "Individual" setting. 
 
normalized  Returns the "Normalize" setting. 
 
setIndividualSteps  Sets the "Individual" setting. 
 
setNormalized  Sets the "Normalize" setting. 
 
setStepSize  Sets the step size setting. 
 
stepSize  Returns the step size setting. 

 

broadcastBumpStep 
Overview Macro Actions 

Syntax 

componentName.broadcastBumpStep(percentage) 

Parameters Type Description 
return void   
 
componentName  Name defined on the engine property page. 
 
percentage float Percentage to change the step size for all the GradientSearch 
components (see "Up" and "Down" within the Step Inspector). 

 

bumpStep 
Overview Macro Actions 

Syntax 

componentName.bumpStep(percentage) 

Parameters Type Description 
return void   
 
componentName  Name defined on the engine property page. 
 
percentage float Percentage to change the step size (see "Up" and "Down" within the 
Step Inspector). 
 

individualSteps 
Overview Macro Actions 
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Syntax 

componentName.individualSteps() 

Parameters Type Description 
return BOOL TRUE if the step sizes can be set individually for each weight (see "Individual" 
within the Step Inspector). 
 
componentName  Name defined on the engine property page. 
 

normalized 
Overview Macro Actions 

Syntax 

componentName.normalized() 

Parameters Type Description 
return BOOL TRUE if the step size is divided by the number of exemplars/update (see 
"Normalized" within the Step Inspector). 
 
componentName  Name defined on the engine property page. 
 

setIndividualSteps 
Overview Macro Actions 

Syntax 

componentName.setIndividualSteps(individualSteps) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
individualSteps BOOL TRUE if the step sizes can be set individually for each weight (see 
"Individual" within the Step Inspector). 
 
 

setNormalized 
Overview Macro Actions 

Syntax 

componentName.setNormalized(normalized) 

Parameters Type Description 
return void 
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componentName  Name defined on the engine property page. 
 
normalized BOOL TRUE if the step size is divided by the number of exemplars/update 
(see "Normalized" within the Step Inspector). 
 

setStepSize 
Overview Macro Actions 

Syntax 

componentName.setStepSize(stepSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
stepSize float The default step size for all weights within the Activation component 
(see "Step Size" within the Step Inspector). 
 

stepSize 
Overview Macro Actions 

Syntax 

componentName.stepSize() 

Parameters Type Description 
return float The default step size for all weights within the Activation component (see "Step 
Size" within the Step Inspector). 
 
componentName  Name defined on the engine property page. 
 

 

Input Family 
Access 

 

Ancestor: Engine Family 

 

The purpose the Access family is to allow its members to access data provided by components 
through access points. This family uses an inspector to show which access points are available and 
provides a means for selecting one. 
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User Interaction: 

Access Points  

Access inspector 

Macro Actions  

Function 
 

 

 

 

Family: Input Family 

Superclass: MultiChannelStream 

 

Description: 

The Function component is used to create a variety of waveforms that can be used as input for 
neural networks. These inputs include impulses, square waves, sine waves, triangle waves, 
sawtooth waves, and user-defined functions via Dynamic Link Libraries (DLLs). The signals are 
specified by their amplitude, frequency, offset, and phase shift. 

Function is a multi-channel component that can produce a different waveform for each neuron. The 
number of channels is dictated by the size (the number of PEs) of the network component that is 
being accessed. Each channel can have different amplitude, offset, and phase shift. However, all 
channels of a given function component must have the same frequency. If different frequencies are 
desired for different channels, the Function components may be stacked on top of each other such 
that each provides a unique input frequency. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

Macro Actions  

Noise 
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Family: Input Family  

Superclass: MultiChannelStream 

 

Description: 

The Noise component is used to inject random noise sources into an attached component. This 
component is most often used to test a network’s sensitivity to noise. The noise sources can have a 
uniform or a Gaussian distribution, or a user-defined distribution via a Dynamic Link Library (DLL). 
The noise signals are specified by their mean and variance. 

Noise is a multi-channel component that can produce a different noise source for each neuron. The 
number of channels is dictated by the size (the number of PEs) of the network component that is 
being accessed. Each channel can have different mean and variance, as well as a different 
distribution. 

The stream of noise data (of a user-defined size) is usually generated once and recycled 
throughout the simulations. There is an option for the data to be continually regenerated so that the 
noise is more random. 

 

Noise Functions: 

 

Uniform:  

 

Gaussian:  

 

where 

 

x = a pseudo-random random floating point value between 0 and 1 

σ = is the square root of the variance 

µ = is the mean 

 

User Interaction: 

Drag and Drop 

Inspector 

DLL Implementation 
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Macro Actions  

DLLInput 
 

  

 

 

Family: Input Family  

Superclass: MultiChannelStream 

 

Description: 

The DLLInput component is used to inject data into the network from a DLL. This is similar to using 
the DLL capability of the Function component, except that this data is not cyclical. One important 
use for this feature is to retrieve input data from external hardware (such as a analog-to-digital 
converter) by including the data acquisition code within the performInput function call. 

DLLInput is a multi-channel component. The number of channels is dictated by the size (the 
number of PEs) of the network component that is being accessed. Each call to the performInput 
function requires that the implementation generate one sample of data for each channel. 

 

User Interaction: 

Drag and Drop 

Access Points 

DLL Implementation 

DLLPreprocessor 
 

  

 

 

Family: Input Family  

Superclass: MultiChannelStream 

 

Description: 

The DLLPreprocessor component is used to preprocess the data sent from the component stacked 
on the Preprocessor access point. It requires that a DLL be loaded within the Engine property page 
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of the component’s inspector. The DLL retrieves the data one sample at a time and passes the 
processed data to the component attached below. 

 

User Interaction: 

Drag and Drop 

Access Points 

DLL Implementation  

OLEInput 
 

  

 

 

Family: Input Family  

Superclass: MultiChannelStream 

 

Description: 

The OLEInput component is used to inject data into the network from an external program using 
the Object Linking and Embedding (OLE) protocol. To send data to the component you need to 
pass a variant array of floating point values to the sendDataToEngine function. 

OLEInput is a multi-channel component. The number of channels is dictated by the size (the 
number of PEs) of the network component that is being accessed. The number of elements in the 
array passed to the sendDataToEngine function should be equal to the number of PEs times the 
number of input samples (exemplars). 

 

User Interaction: 

Drag and Drop 

Access Points 

Macro Actions  

 

File 

File 
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Family: Input Family  

Superclass: MultiChannelStream 

 

Description: 

The File component reads data from the computer’s file system. Presently there is support for 
ASCII, column-formatted ASCII, binary, and bitmap file formats (see the Associate File  panel). 
Multiple files of mixed type can be translated simultaneously within the same File component. 
There are also provisions for normalization and segmentation of input files. 

Column-formatted ASCII is the most commonly used, since it is directly exportable from 
commercial spreadsheet programs. Each column of a column-formatted ASCII file represents one 
channel of data (i.e., input into one PE). The first line (row) of the file contains the column headings, 
and the remaining lines contain the samples of data. The data elements can be either numeric or 
symbolic. There is a facility to automatically convert symbolic data to numeric data (see Column-
Formatted ASCII Translator). 

The remaining three file types are simply read as a sequential stream of floating-point values. Non-
formatted ASCII files contain numeric value separated by delimeters (see ASCII Translator). Any 
non-numeric values are simply ignored. Bitmap files can be either 16-color or 256-color. Each pixel 
of the image is converted to a value from 0 to 1, based on its intensity level. Binary files contain raw 
data, such that each 4-byte segment contains a floating-point value. Many numerical software 
packages export their data to this type of format. 

The translation process for large ASCII files may be very time consuming. For this reason, each 
translated data stream is automatically stored in the same directory as the breadboard as a binary 
pattern file (.nsp). This way, the file(s) only need to be re-translated when the data set or 
component configuration has changed. 

Each unique data set within a File component has its own data stream. The data is read from the 
stream of the currently active data set and sequentially fed to the PEs of the component stacked 
below. A data set that is translated to a stream that has 100 data elements could be used to feed 
10 samples to a 10-PE axon, or 20 samples to a 5-PE axon. Note that it could also feed 9 samples 
to an 11-PE axon, but that the last data element would be discarded. 

The File component can be configured to normalize the data based on a set of normalization 
coefficients. These coefficients consist of an amplitude and an offset term for each channel of the 
File component, and they can be generated automatically or read from a previously generated 
and/or modified Normalization File.  

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

 

Macro Actions  
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Translators 

ASCII Translator 

 

This translator reads all numeric data from an ASCII file and ignores all non-numeric information. 
The numeric data must be separated by any of the delimiters listed below and may be in floating 
point, scientific, or integer format. 

 

Delimiters:  

 

ASCII Char 

-------- ------- 

9 <tab> 

10 <line break> 

32 <space> 

34 " 

44 , 

58 : 

59 ; 

96 ` 

 

There are also several other less common ASCII characters that are also interpreted as delimeters: 

0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
31, 127, 128, 129, 141, 142, 143, 144, 157, 158, 160 

 

  See Also 

Binary Translator 

 

This translator reads files that are in a standard binary format. This format specifies that each 
floating point value is stored within 4 bytes of the file. This is the same format used by the pattern 
files (*.nsp) generated for each data set of the file (see File). 
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  See Also 

Bitmap Translator 

 

This translator reads a 16-color, 256-color or 24-bit bitmap and translates the image into a stream 
of intensity values (i.e., gray levels) ranging from 0 to 1. These values are obtained by averaging 
the RGB values from each of the pixels and dividing by 255 (the maximum RGB value). 

 

 

  See Also 

Column-Formatted ASCII Translator 

 

Each column of a column-formatted ASCII file represents one channel of data (i.e., input into one 
PE). The first line (row) of the file should contain the column headings, and not actual data. Each 
group of delimiters (see ASCII Translator) indicates a break in the columns. In order for the 
program to detect the correct number of columns, the column headings must not contain any 
delimiters. 

The remaining lines contain the individual samples of data. The data elements (values) are 
separated by delimiters. The number of data elements for each line must match the number of 
column headings from the first line. The data elements can be either numeric or symbolic. 

When there are multiple data files within the same File component using the Column-Formatted 
ASCII Translator, the column selections apply to all of these files. For this reason, the column 
headings of the included columns must match across all files and be arranged in the same order. If 
NeuroSolutions detects that the ordering of the included columns differs between the files, then an 
option will be given to run a utility that will match the column ordering for you. 

The translator handles symbolic columns by reading the symbol definitions from the symbol 
translation file (*.nss), stored in the same directory as the breadboard. This file can be 
automatically generated from the columns that have been declared as symbolic (see Column 
Translator Customize). This file is generated by extracting the symbols from all of the data files 
associated with the Column-Formatted ASCII Translator. The format of the symbol translation file is 
as follows: 

 

Symb1 N1 Val1 Val2 . . . ValN1 Head1 Head2 . . . 

Symb2 N2 Val1 Val2  . . . ValN2 Head1 Head2 . . . 

: : : :  : : :  

: : : :  : : :  

SymbM NM Val1 Val2  . . . ValNM Head1 Head2 . . . 

#Labels         

Head1 N1 Symb1 Symb2 . . . SymbN1    

Head2 N2 Symb1 Symb2 . . . SymbN2    
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: : : :  :    

: : : :  :    

 

Variable Definition 

Symb The symbol being defined. Note that the symbols must not contain any 
delimiters. 

N The number of columns (channels) that the heading(s) expand into. Note that if 
the encoding scheme is unary then the number of expanded columns is simply 
the number of unique symbols contained within the particular column of the file. 

Val The actual value to be fed to the particular input channel. There should be one 
value defined for each of the N expansion columns. 

Head The column heading read from the input file. Note that when the symbol 
translation file is generated automatically, there is only one heading defined for 
any given symbol. However, by appending additional headings onto the end of 
the line, you will give the symbol the same definition for each of the headings 
listed. The main limitation is that the number of expansion columns (N) must be 
the same for all headings listed under a particular symbol definition. 

Labels This section is presently only used by the NeuralBuilder to specify the labeling 
of the probes. 

 

Below is a sample symbol translation file. This file was generated from the sample data file 
"Sleep2.asc" by selecting the last two columns as symbolic data and performing a Unary encoding. 
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  See Also 

DLL Translator 

 

The DLL translator uses a user-defined dynamic link library (DLL) to translate either a text or binary 
file into a data stream. The DLL is specified within the Engine property page of the File inspector. 
Note that the DLL must be loaded in order to use the DLL translator. 

 

 

  See Also 

Translator Customize 

 

This panel used to customize the way in which the translator translates the selected file. All 
translators have the ability to extract a segment of the file’s data. 

 

 

 
Segment 

When this switch is turned on, the first Offset exemplars are skipped, the next Duration exemplars 
are read from the file, and the remaining exemplars are skipped. 
Offset 

This cell is used to specify the number of exemplars to skip before reading the first exemplar. 
Duration 

This cell is used to specify the number of exemplars of the segment. 

Column Translator Customize  

 

This panel used to customize the way in which the Column-Formatted ASCII Translator translates 
the selected file. Like all other translators, this has the ability to extract a segment of the file’s data. 
It also provides a facility for selecting columns for inclusion to, or exclusion from, the translation 
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process. Included columns may be tagged as either numeric or symbolic data. Symbolic columns 
require the use of a symbol translation file. 

 

 

 
Column Selection 

This list contains all of the column headings extracted from the first line of the ASCII file. Each 
column can either be tagged as Numeric, Symbol or Skip. The tags can be toggled by double-
clicking on the items. 

Numeric indicates that all data elements in the column are valid floating point or integer values and 
that the column is to be included in the translation. Skip indicates that the column is to be excluded 
from the translation. 

Symbol indicates that each data element in the column is a string, which may or may not be 
numeric. When the file is translated, symbol columns are replaced by numeric representations of 
the symbols contained within the symbol translation file (*.nss). This file can be automatically 
generated or read from a previously generated file. This ASCII text file can be modified by the user 
to customize the symbol translation process. 
Numeric 
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This button is used to set the tags of the selected item(s) from the Column Selection list to 
Numeric. Numeric indicates that all data elements in the column are valid floating point or integer 
values and that the column is to be included in the translation. 
Symbol 

This button is used to set the tags of the selected item(s) from the Column Selection list to Symbol. 
Symbol indicates that each data element in the column is a string, which may or may not be 
numeric. When the file is translated, symbol columns are replaced by numeric representations of 
the symbols contained within the symbol translation file (*.nss). 
Skip 

This button is used to set the tags of the selected item(s) from the Column Selection list to Skip. 
Skip indicates that the column is to be excluded from the translation. 
GA 

There are times when you are not sure whether or not an input column provides useful information 
to the network. By tagging a set of inputs as "GA", a genetic algorithm will try various permutations 
of includes and skips among these inputs in an attempt to produce the lowest error. Once the 
optimization training run is complete and the best parameters are loaded into the network, the 
column list will reflect which genetically optimized input columns were included. Note that the 
GeneticControl component must have optimization enabled (see the GeneticControl inspector) 
before the selected inputs will be optimized on the next training run. 
File Name 

This button brings up a panel to enter the file name (including the extension) of the symbol 
translation file that is generated or read on translation. This ASCII file contains the definitions for 
each unique symbol contained within the tagged columns of all data files using the Column-
Formatted ASCII Translator). Note that there must be at least one column tagged as Symbol in 
order for this button to be enabled. 
Read Only 

If there is at least one column tagged as Symbol, then this switch specifies how the symbol file is 
used. If the switch is off (the default), the symbol file is generated when the Customize panel is 
closed, or after the associated data files are modified. If the switch is on, the symbols are read from 
an existing symbol file during translation (see Column-Formatted ASCII Translator). 
Unary 

This encoding scheme adds an additional channel for each unique symbol found in the column. 
Each expanded channel of a given symbol column represents one symbol; a 1 indicating the 
symbol is present and a 0 indicating the symbol is absent. In other words, each exemplar will have 
one channel set to 1 and the remaining columns will be set to 0. Note that this switch is only 
enabled when the Read Only switch is off and there is at least one column tagged as Symbol. 
Binary 

This encoding scheme adds log N (base 2) channels, where N is the number of unique symbols 
found in the column. Each symbol is represented by a unique binary number. Note that this switch 
is only enabled when the Read Only switch is off and there is at least one column tagged as 
Symbol. 
View 

This button is used to view the current state of the symbol translation file (see Column-Formatted 
ASCII Translator). The program used to view the file is determined based on the file’s extension 
and application associated with that extension defined within Windows. Click here for instructions 
on associating an editor with a file extension. 
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Generate 

This button generates the symbol translation file based on the columns tagged as Symbol and will 
overwrite the existing file if it exists. If the symbol file has not been generated by the time the 
Customize panel is closed, then the file is generated automatically. Note that this switch is only 
enabled when the Read Only switch is off and there is at least one column tagged as Symbol. 
Segment 

See Translator Customize 
Offset 

See Translator Customize 
Duration 

See Translator Customize 

 

 

  See Also 

DLL Implementation 

File DLL Implementation  

 

 

 

 

Component: File  

Protocol: PerformFile 

 

Description: 

The File component contains four base translators: 1) ASCII, 2) Column-formatted ASCII, 3) binary, 
and 4) bitmap. The DLL capability of the File component allows you to write your own translator. 
The default functionality of the DLL translator is a very basic ASCII translator. It will read a file 
containing only space-delimited numbers. 

 

Code: 
 
BOOL performFile( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 FILE     *file,      // Pointer to the opened file 
 NSFloat  *sample     // Location to place next sample 
 ) 
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{ 
 if (fscanf(file, "%f", sample) != EOF) 
  return TRUE; 
 fclose(file); 
 return FALSE; 
} 
 
FILE *openFile(DLLData *instance, const char *filePath) 
{ 
 return fopen(filePath, "r"); 
} 

Inspectors 

File Inspector 

 

Component: File 

Superclass Inspector: Data Sets 

 

 

 

This page displays the list of data files used to generate the input streams. Each data file has an 
associated translator and data set.  The translator specifies the format of the data file and the data 
set specifies what the data is to be used for (e.g., training, testing, cross validation). When multiple 
data files are assigned to the same data set, the files are concatenated together to generate the 
data set’s stream. 

 

Component Configuration: 
Add 
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This button displays a file selection panel for adding a file to the list. The Associate File panel is 
then displayed for you to specifiy the translator and data set to associate with the file. Each unique 
data set added will have an associated pattern file (.nsp) that contains the raw data stream. 
Remove 

This button removes the currently selected file from the file list. 
Replace 

This button displays a file selection panel for replacing the currently selected file from the list. 
Associate 

This button displays the Associate File panel. This panel is used to associate a translator and a 
data set with the selected data file. The file list displays the current associations. 
Customize 

This button displays a panel used to customize the way in which the translator translates the 
selected file. Some translators have different parameter settings than others (see the Translator 
Customize and Column Translator Customize panels). All translators have the ability to extract a 
segment of the file’s data. 
View 

This button is used to view the selected file. The program used to view the file is determined based 
on the file’s extension and application associated with that extension defined within Windows. Click 
here for instructions on associating an editor with a file extension. 

 

 

  See Also 

 

Data Sets Inspector  

 

Component: File 

Superclass Inspector: Stream 
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This page displays the list of data sets used to generate the Normalization File and the number of 
exemplars read from the active data set. The normalization coefficients will be computed across all 
data sets by default. To use multiple data sets for the normalization coefficients, hold down the 
Control key or Shift key while selecting the items from the list. 

 

Component Configuration: 
Generate Normalization File 

If the File component is configured to normalize the data (see the Stream Inspector), then this 
switch specifies how the Normalization File is used. If the switch is on (the default), the 
normalization file is generated when the File component performs a translation. If the switch is off, 
the normalization coefficients are read from an existing normalization file during translation. 
Norm. File 

This button brings up a panel to enter the file name (including the extension) of the Normalization 
File that is generated or read on translation (see above). Note that the Normalize switch (see the 
Stream Inspector) must be switched on in order for this button to be enabled. 
View 

This button is used to view the current state of the Normalization File. The program used to view 
the file is determined based on the file’s extension and application associated with that extension 
defined within Windows. Click here for instructions on associating an editor with a file extension. 
Translate 

This button translates the files for the active data set and generates the corresponding data stream. 
Once the file has been translated, the number of exemplars are displayed. 

File Macro Actions 

File Macro Actions 
Overview Superclass Macro Actions 

Action Description 



 539

activeDataSet  Returns the selected "Active Data Set". 
 
activeFileName  Returns the name of the currently selected file in the File List. 
 
activeFilePath  Returns the full path of the currently selected file in the File List. 
 
activeTranslatorName  Returns the translator name of the currently selected file in the File List.  
 
addFile  Adds a file to the File List. 
 
associateActiveFile  Associates a translator and a data set with the currently selected file in 
the File List. 
 
beginCustomizeOfActiveFile  This function is called before any changes are made to the 
parameters within the Translator Customize and Column Translator Customize panels. 
 
binaryEncodingForSymbols  Returns TRUE if the "Encoding Scheme" is set to "Binary" and 
FALSE if it is set to "Unary". 
 
columnCountForActiveFile  Returns the number of selected columns within the active file. 
 
columnTagForActiveFile  Returns a code based on how the specified column is tagged (0 = 
"Skip", 1 = "Numeric", 2 = "Symbol"). 
 
customizeActiveFile  Displays either the Translator Customize or Column Translator 
Customize panel depending on the translator used for the active file. 
 
dataSetCount  Returns the number of unique data sets within the File List. 
 
dataSetForActiveFile  Returns the data set of the file selected within the File List. 
 
dataSetNameAt  Returns the data set at the specified index, where 0 <= index < dataSetCount. 
 
dataSetUsedForNormalization  TRUE if the specified data set is used to calculate the 
normalization coefficients. 
 
durationForActiveFile  Returns the "Duration" setting for the currently selected file in the File 
List. 
 
endCustomizeOfActiveFile  This function is called after any changes are made to the 
parameters within the Translator Customize and Column Translator Customize panels. 
 
expandedColumnCountForActiveFile  Returns the number of selected columns, plus the 
number of additional columns added for symbolic data, within the active file. 
 
fileCount  Returns the number of files listed with the File List. 
 
filePathAt  Returns the full file path of a file in the File List, specified by an index number, 
where 0 <= index < fileCount. 
 
generateSymbolFile  Generates a symbol file based on the columns tagged as "Symbol". 
 



 540

matchPEsWithColumns  Sets the number of rows of the attached Axon component to match that 
of the number of selected columns. 
 
normalizationFileName  Returns the name of the "Normalization File" (with extension). 
 
normalizationFilePath  Returns the full path of the "Normalization File". 
 
normalizationFileReadOnly  Returns the "Read Only" setting. 
 
numericForActiveFile  Returns TRUE if the specified column of the active file is tagged as 
"Numeric". 
 
offsetForActiveFile  Returns the "Offset" setting for the currently selected file in the File List. 
 
removeActiveFile  Removes the currently selected file from the file list. 
 
removeAllFiles  Removes all files from the file list. 
 
segmentForActiveFile  Returns the "Segment" setting for the currently selected file in the File 
List. 
 
setActiveDataSet  Sets the "Active Data Set" selection. 
 
setActiveFileNameAndDataSet  Selects the active file in the File List given the file's name and 
data set. 
 
setActiveFilePath  Selects the active file in the File List given the file's path. 
 
setActiveTranslatorName  Associates the specified translator with the active file. 
 
setBinaryEncodingForSymbols  Set to TRUE to set the "Encoding Scheme" to "Binary" and 
FALSE to set it to "Unary". 
 
setColumnTagForActiveFile  Tags the specified column (0 = "Skip", 1 = "Numeric", 2 = 
"Symbol"). 
 
setDataSetForActiveFile  Sets the data set of the file selected within the File List. 
 
setDataSetUsedForNormalization  TRUE if the specified data set is used to calculate the 
normalization coefficients. 
 
setDurationForActiveFile  Sets the "Duration" setting for the currently selected file in the File List. 
 
setNormalizationFilePath  Sets the full path of the "Normalization File". 
 
setNormalizationFileReadOnly  Sets the "Read Only" setting. 
 
setNumericForActiveFile  Tags the specified columns of the active file as "Numeric". 
 
setOffsetForActiveFile  Sets the "Offset" setting for the active file. 
 
setSegmentForActiveFile  Sets the "Segment" setting for the currently selected file in the File List. 
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setSkipForActiveFile  Tags the specified columns of the active file as "Skip". 
 
setSymbolFilePath  Sets the path of the "Symbol Expansion" file. 
 
setSymbolFileReadOnly  Sets the "Read Only" setting of the "Symbol Expansion" file. 
 
setSymbolForActiveFile  Tags the specified columns of the active file as "Symbol". 
 
setUseDefaultTranslatorForActiveFile TRUE sets the "Set as default for all files of type" setting, 
and FALSE set the "Set only for file" setting.  
 
skipForActiveFile  Returns TRUE if the specified column of the active file is tagged as "Skip". 
 
symbolFileName  Returns the name (with extension) of the "Symbol Expansion" file. 
 
symbolFilePath  Returns the path of the "Symbol Expansion" file. 
 
symbolFileReadOnly  Returns the "Read Only" setting of the "Symbol Expansion" file. 
 
symbolForActiveFile  Returns TRUE if the specified column of the active file is tagged as 
"Symbol". 
 
toggleColumnForActiveFile  Toggles the column setting for the active file from "Skip" to 
"Numeric" to "Symbol". 
 
translate  Translates the files for the active data set and generates the corresponding data 
stream. 
 
translateIfNeeded  Performs the translate operation only if the data files have changed 
since the last translation.  
 
translatorCount  Returns the number of available translators. 
 
translatorNameAt  Returns the translator at the specified index, where 0 <= index < 
translatorCount. 
 
useDefaultTranslatorForActiveFile  Returns TRUE if the "Set as default for all files of type" setting 
is active, and FALSE if the "Set only for file" setting is active. 
 
verifiedSamples  Performs a translation if needed and returns the number of samples in the active 
data set.  

 

activeDataSet 
Overview Macro Actions 

Syntax 

componentName. activeDataSet() 

Parameters Type Description 
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return string The data set used when a "translate" operation is performed (see "Translate" 
within the Data Set Inspector ). 
 
componentName  Name defined on the engine property page. 

 

activeFileName 
Overview Macro Actions 

Syntax 

componentName. activeFileName() 

Parameters Type Description 
return string The name of the currently selected file in the File List (see the File Inspector ). 
 
componentName  Name defined on the engine property page. 

 

activeFilePath 
Overview Macro Actions 

Syntax 

componentName. activeFilePath() 

Parameters Type Description 
return string The path of the currently selected file in the File List (see the File Inspector ). 
 
componentName  Name defined on the engine property page. 

 

activeTranslatorName 
Overview Macro Actions 

Syntax 

componentName. activeTranslatorName() 

Parameters Type Description 
return string The translator name of the currently selected file in the File List (see the 
Associate File panel). 
 
componentName  Name defined on the engine property page. 

 

addFile 
Overview Macro Actions 

Syntax 
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componentName. addFile(path, dialogMode) 

Parameters Type Description 
return BOOL TRUE if the operation completed successfully. 
 
componentName  Name defined on the engine property page. 

 
path string The full path of the file to add to the File List (see "Add" within the File Inspector). 

 
dialogMode BOOL TRUE to display error and warning messages and FALSE to supress 
them. 

 

associateActiveFile 
Overview Macro Actions 

Syntax 

componentName. associateActiveFile() 

Parameters Type Description 
return BOOL Returns TRUE if the association was made and FALSE if the user cancelled the 
operation. 
 
componentName  Name defined on the engine property page. 

 

beginCustomizeOfActiveFile 
Overview Macro Actions 

Syntax 

componentName. beginCustomizeOfActiveFile() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

binaryEncodingForSymbols 
Overview Macro Actions 

Syntax 

componentName. binaryEncodingForSymbols() 

Parameters Type Description 
return BOOL TRUE uses an encoding scheme that adds log N (base 2) channels, where N is 
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the number of unique symbols found in the column. FALSE uses a unary encoding scheme that 
adds N channels (see "Encoding Scheme" within the Column Translator Customize panel). 
 
componentName  Name defined on the engine property page. 
 

columnCountForActiveFile 
Overview Macro Actions 

Syntax 

componentName. columnCountForActiveFile() 

Parameters Type Description 
return int The number of selected columns within the active file. 
 
componentName  Name defined on the engine property page. 

 

columnTagForActiveFile 
Overview Macro Actions 

Syntax 

componentName. columnTagForActiveFile(index) 

Parameters Type Description 
return int The code based on how the specified column is tagged (0 = "Skip", 1 = 
"Numeric", 2 = "Symbol"). 
 
componentName  Name defined on the engine property page. 

 
index int The column index (0 <= index < columnCountForActiveFile). 

 

customizeActiveFile 
Overview Macro Actions 

Syntax 

componentName. customizeActiveFile(aString) 

Parameters Type Description 
return string 
 
componentName  Name defined on the engine property page. 
 
aString string The window title for the customize panel (blank to use the default title). 
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dataSetCount 
Overview Macro Actions 

Syntax 

componentName. dataSetCount() 

Parameters Type Description 
return int The number of unique data sets defined (see the Data Set Inspector). 
 
componentName  Name defined on the engine property page. 

 

dataSetForActiveFile 
Overview Macro Actions 

Syntax 

componentName. dataSetForActiveFile() 

Parameters Type Description 
return string The data set of the file selected within the File List (see the File Inspector ). 
 
componentName  Name defined on the engine property page. 
 

dataSetNameAt 
Overview Macro Actions 

Syntax 

componentName. dataSetNameAt(index) 

Parameters Type Description 
return string The data set at the specified index (see the Data Set Inspector). 
 
componentName  Name defined on the engine property page. 
 
index int The index of the data set list (0 <= index < dataSetCount). 

 

dataSetUsedForNormalization 
Overview Macro Actions 

Syntax 

componentName. dataSetUsedForNormalization(dataset) 

Parameters Type Description 
return BOOL TRUE if the specified dataset has been selected to be included in the calculation 
of the normalization coefficients (see the Data Set Inspector). 
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componentName  Name defined on the engine property page. 
 
dataset string The data set name. 

 

durationForActiveFile 
Overview Macro Actions 

Syntax 

componentName. durationForActiveFile() 

Parameters Type Description 
return int The number of samples of the segment (see "Duration" within the Translator 
Customize and Column Translator Customize panels). 
 
componentName  Name defined on the engine property page. 

 

endCustomizeOfActiveFile 
Overview Macro Actions 

Syntax 

componentName. endCustomizeOfActiveFile() 

Parameters Type Description 
return BOOL TRUE if the customization operation was successful. 
 
componentName  Name defined on the engine property page. 

 

expandedColumnCountForActiveFile 
Overview Macro Actions 

Syntax 

componentName. expandedColumnCountForActiveFile() 

Parameters Type Description 
return int The number of selected columns, plus the number of additional columns added 
for symbolic data, within the active file. 
 
componentName  Name defined on the engine property page. 

fileCount 
Overview Macro Actions 

Syntax 
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componentName. fileCount() 

Parameters Type Description 
return int The number of files listed with the File List (see the File Inspector ). 
 
componentName  Name defined on the engine property page. 
 

filePathAt 
Overview Macro Actions 

Syntax 

componentName. filePathAt(index) 

Parameters Type Description 
return string The path of the specified file within the File List (see the File Inspector ). 
 
componentName  Name defined on the engine property page. 

 
index int The index of the file within the File List (0<= index < fileCount). 

 

generateSymbolFile 
Overview Macro Actions 

Syntax 

componentName. generateSymbolFile() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

matchPEsWithColumns 
Overview Macro Actions 

Syntax 

componentName. matchPEsWithColumns() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

normalizationFileName 
Overview Macro Actions 
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Syntax 

componentName. normalizationFileName() 

Parameters Type Description 
return string The name (with extension) of the file that stores the normalization coefficients 
(see "Generate Normalization File" within the Data Set Inspector ). 
 
componentName  Name defined on the engine property page. 

normalizationFilePath 
Overview Macro Actions 

Syntax 

componentName. normalizationFilePath() 

Parameters Type Description 
return string The full path of the file that stores the normalization coefficients (see "Generate 
Normalization File" within the Data Set Inspector ). 
 
componentName  Name defined on the engine property page. 

normalizationFileReadOnly 
Overview Macro Actions 

Syntax 

componentName. normalizationFileReadOnly() 

Parameters Type Description 
return BOOL FALSE if the normalization file is to be generated from the current data (see 
"Generate Normalization File" within the Data Set Inspector ). 
 
componentName  Name defined on the engine property page. 

 

numericForActiveFile 
Overview Macro Actions 

Syntax 

componentName. numericForActiveFile(index) 

Parameters Type Description 
return BOOL TRUE if the specified column of the active file is tagged as "Numeric" (see the 
Column Translator Customize panel). 
 
componentName  Name defined on the engine property page. 

 
index int The column index of the active file (0 <= index < columnCount). 
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offsetForActiveFile 
Overview Macro Actions 

Syntax 

componentName. offsetForActiveFile() 

Parameters Type Description 
return int The number of samples to offset the segment (see "Offset" within the Translator 
Customize and Column Translator Customize panels). 
 
componentName  Name defined on the engine property page. 

 

removeActiveFile 
Overview Macro Actions 

Syntax 

componentName. removeActiveFile() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

removeAllFiles 
Overview Macro Actions 

Syntax 

componentName. removeAllFiles() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 
 

segmentForActiveFile 
Overview Macro Actions 

Syntax 

componentName. segmentForActiveFile() 

Parameters Type Description 
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return BOOL TRUE if the active file is segmented (see "Segment" within the Translator 
Customize and Column Translator Customize panels). 
 
componentName  Name defined on the engine property page. 

 

setActiveDataSet 
Overview Macro Actions 

Syntax 

componentName. setActiveDataSet(activeDataSet) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
activeDataSet string The data set used when a "translate" operation is performed (see 
"Translate" within the Data Set Inspector ). 
 

setActiveFileNameAndDataSet 
Overview Macro Actions 

Syntax 

componentName. setActiveFileNameAndDataSet(name, dataSet) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
name string The name of the file to select from the File List (see the File Inspector ). 
 
dataSet string The data set of the file to select from the File List (see the File Inspector ). 
 

setActiveFilePath 
Overview Macro Actions 

Syntax 

componentName. setActiveFilePath(activeFilePath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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activeFilePath string The path of the currently selected file in the File List (see the File 
Inspector ). 
 

setActiveTranslatorName 
Overview Macro Actions 

Syntax 

componentName. setActiveTranslatorName(activeTranslatorName) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
activeTranslatorName string The translator name of the currently selected file in the File List 
(see the Associate File panel). 
 

setBinaryEncodingForSymbols 
Overview Macro Actions 

Syntax 

componentName. setBinaryEncodingForSymbols(binaryEncodingForSymbols) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
binaryEncodingForSymbols BOOL TRUE uses an encoding scheme that adds log N 
(base 2) channels, where N is the number of unique symbols found in the column. FALSE uses a 
unary encoding scheme that adds N channels (see "Encoding Scheme" within the Column 
Translator Customize panel). 
 

setColumnTagForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setColumnTagForActiveFile(beginIndex, endIndex, tag) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
beginIndex int The first column of the block to tag (0 <= beginIndex < columnCount). 
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endIndex int The last column of the block to tag (0 <= endIndex < columnCount). 
 
tag int A code indicating how to tag the block of columns (0 = "Skip", 1 = "Numeric", 2 = 
"Symbol" – see the Column Translator Customize panel). 
 

setDataSetForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setDataSetForActiveFile(dataSet) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
dataSet string The data set to associate with the active file (see the Associate File panel). 
 

setDataSetUsedForNormalization 
Overview Macro Actions 

Syntax 

componentName. setDataSetUsedForNormalization(dataSet, aBool) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
dataSet string The name of the data set to include/exclude from the normalization calculation 
(see the Data Set Inspector ). 
 
aBool BOOL TRUE includes the file and FALSE excludes the file. 
 

setDurationForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setDurationForActiveFile(duration) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
durationint The number of samples of the segment (see "Duration" within the Translator 
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Customize and Column Translator Customize panels). 
 

setNormalizationFilePath 
Overview Macro Actions 

Syntax 

componentName. setNormalizationFilePath(normalizationFilePath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
normalizationFilePath string The full path of the file that stores the normalization coefficients 
(see "Generate Normalization File" within the Data Set Inspector ). 
 

setNormalizationFileReadOnly 
Overview Macro Actions 

Syntax 

componentName. setNormalizationFileReadOnly(normalizationFileReadOnly) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
normalizationFileReadOnly BOOL FALSE if the normalization file is to be generated from 
the current data (see "Generate Normalization File" within the Data Set Inspector ). 
 

setNumericForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setNumericForActiveFile(beginIndex, endIndex) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
beginIndex int The column index of the first column of the block to tag as "Numeric" (0 
<= beginIndex < columnCount – see the Column Translator Customize panel). 
 
endIndex int The column index of the last column of the block to tag as "Numeric" (0 
<= endIndex < columnCount – see the Column Translator Customize panel). 
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setOffsetForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setOffsetForActiveFile(offsetForActiveFile) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
offsetForActiveFile int The number of samples to offset the segment (see "Offset" 
within the Translator Customize and Column Translator Customize panels). 
 

setSegmentForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setSegmentForActiveFile(segmentForActiveFile) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
segmentForActiveFile BOOL TRUE if the active file is segmented (see "Segment" within the 
Translator Customize and Column Translator Customize panels). 
 

setSkipForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setSkipForActiveFile(beginIndex, endIndex) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
beginIndex int The column index of the first column of the block to tag as "Skip" (0 <= 
beginIndex < columnCount – see the Column Translator Customize panel). 
 
endIndex int The column index of the last column of the block to tag as "Skip" (0 <= 
endIndex < columnCount – see the Column Translator Customize panel). 
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setSymbolFilePath 
Overview Macro Actions 

Syntax 

componentName. setSymbolFilePath(symbolFilePath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
symbolFilePath string The path of the file used to store the symbol translation table (see "File 
Name" with the Column Translator Customize panel). 
 

setSymbolFileReadOnly 
Overview Macro Actions 

Syntax 

componentName. setSymbolFileReadOnly(symbolFileReadOnly) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
symbolFileReadOnly BOOL FALSE if the symbol file is to be generated from the current 
data (see "Read Only" within the Column Translator Customize panel). 
 

setSymbolForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setSymbolForActiveFile(beginIndex, endIndex) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
beginIndex int The column index of the first column of the block to tag as "Symbol" (0 
<= beginIndex < columnCount – see the Column Translator Customize panel). 
 
endIndex int The column index of the last column of the block to tag as " Symbol" (0 
<= endIndex < columnCount – see the Column Translator Customize panel). 
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setUseDefaultTranslatorForActiveFile 
Overview Macro Actions 

Syntax 

componentName. setUseDefaultTranslatorForActiveFile(aBool) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
aBool BOOL TRUE sets the selected translator as the default translator for all files of the 
selected extension, and FALSE uses the selected translator only for the active file (see "Set as 
default for all files" and "Set only for file" within the Associate File panel). 
 

skipForActiveFile 
Overview Macro Actions 

Syntax 

componentName. skipForActiveFile(index) 

Parameters Type Description 
return BOOL TRUE if the specified column of the active file is tagged as "Skip" (see the 
Column Translator Customize panel). 
 
componentName  Name defined on the engine property page. 
 
index int The column index of the active file (0 <= index < columnCount). 

 

symbolFileName 
Overview Macro Actions 

Syntax 

componentName. symbolFileName() 

Parameters Type Description 
return BOOL The name (with extension) of the file used to store the symbol translation table 
(see "File Name" with the Column Translator Customize panel). 
 
componentName  Name defined on the engine property page. 

 

symbolFilePath 
Overview Macro Actions 

Syntax 
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componentName. symbolFilePath() 

Parameters Type Description 
return string The path of the file used to store the symbol translation table (see "File Name" 
with the Column Translator Customize panel). 
 
componentName  Name defined on the engine property page. 

 

symbolFileReadOnly 
Overview Macro Actions 

Syntax 

componentName. symbolFileReadOnly() 

Parameters Type Description 
return BOOL FALSE if the symbol file is to be generated from the current data (see "Read 
Only" within the Column Translator Customize panel). 
 
componentName  Name defined on the engine property page. 

 

symbolForActiveFile 
Overview Macro Actions 

Syntax 

componentName. symbolForActiveFile(index) 

Parameters Type Description 
return BOOL TRUE if the specified column of the active file is tagged as "Symbol" (see the 
Column Translator Customize panel). 
 
componentName  Name defined on the engine property page. 
 
index int The column index of the active file (0 <= index < columnCount). 

 

toggleColumnForActiveFile 
Overview Macro Actions 

Syntax 

componentName. toggleColumnForActiveFile() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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beginIndex int The column index of the first column of the block to toggle the selection 
from "Skip" to "Numeric" to "Symbol" (0 <= beginIndex < columnCount – see the Column Translator 
Customize panel). 
 
endIndex int The column index of the last column of the block to toggle the selection 
from "Skip" to "Numeric" to "Symbol"  (0 <= endIndex < columnCount – see the Column Translator 
Customize panel). 
 

translate 
Overview Macro Actions 

Syntax 

componentName. translate() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

translateIfNeeded 
Overview Macro Actions 

Syntax 

componentName. translateIfNeeded() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

translatorCount 
Overview Macro Actions 

Syntax 

componentName. translatorCount() 

Parameters Type Description 
return int The number of available translators 
 
componentName  Name defined on the engine property page. 
 

translatorNameAt 
Overview Macro Actions 

Syntax 



 559

componentName. translatorNameAt(index) 

Parameters Type Description 
return string The translator at the specified index (see the Associate File panel). 
 
componentName  Name defined on the engine property page. 

 
index int The index of the translator list (0 <= index < translatorCount). 

 

useDefaultTranslatorForActiveFile 
Overview Macro Actions 

Syntax 

componentName. useDefaultTranslatorForActiveFile() 

Parameters Type Description 
return BOOL TRUE indicates that the selected translator is used as the default translator for all 
files of the selected extension, and FALSE indicates that the selected translator is used only for the 
active file (see "Set as default for all files" and "Set only for file" within the Associate File panel). 
 
componentName  Name defined on the engine property page. 

 

verifiedSamples 
Overview Macro Actions 

Syntax 

componentName. verifiedSamples() 

Parameters Type Description 
return int The number of samples in the active data set. 
 
componentName  Name defined on the engine property page. 

 
 

 

Access Points 

Preprocessor Access Points 

 

Family: Access Family  

Superclass Access Points:  Access Points 
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Preprocessor Input: 

Members of the Access family that are stacked on a preprocessor component will report a 
Preprocessor Input access point. The component attached to this access point feeds its data to the 
preprocessor, which in turn processes the data and feeds the component attached below. 

 

 

  See Also 

Access Access Points 

 

Family: Access Family 

Superclass Access Points: None 

 

Stacked Access: 

Members of the NSAccess family stack on components that report an access point. NSAccess 
members themselves report an access point called Stacked Access. The stacked access point 
allows more than one NSAccess component to access data at the same access point. Therefore 
the user can stack other NSAccess components on top of this one. 

DLL Implementation 

Function DLL Implementation 

 

 

 

 

Component: Function  

Protocol: PerformFunction 

 

Description: 

The base Function component has five built-in waveforms. The default waveform for New DLLs of 
this type is the sinewave. The perform function simply returns the sine of the angle x. 

 

Code: 
 
NSFloat performFunction( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
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 NSFloat x          // Current angle in radians 
 ) 
{ 
 return (NSFloat)sin(x); 
} 

Noise DLL Implementation 

 

 

 

 

Component: Noise  

Protocol: PerformNoise 

 

Description: 

The base Noise component has two built-in waveforms. The default distribution for New DLLs of 
this type is uniform. The perform function simply generates a random number given the mean and 
variance. 

 

Code: 
 
NSFloat performNoise( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat variance,  // Variance set within components inspector 
 NSFloat mean       // Mean set within components inspector 
 ) 
{ 
 return 
((NSFloat)sqrt(3*variance)*(NSFloat)(((NSFloat)rand()/RAND_MAX)-
0.5)+mean); 
} 

DLLInput DLL Implementation 

 

 

 

 

Component: DLLInput  

Protocol: PerformInput 
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Description: 

The DLLInput component is used to inject data into the network from a DLL. This is similar to using 
the DLL capability of the Function component, except that this data is not cyclical. One important 
use for this feature is to retrieve input data from external hardware (such as an analog-to-digital 
converter) by including the data acquisition code within the performInput function call. 

The default implementation of this DLL simply fills the input buffer with zeros. 

 

Code: 
 
void performInput( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the data 
 int     rows,       // Number of rows of data 
 int     cols        // Number of cols of data 
 ) 
{ 
 int i,j; 
 for (i=0; i<rows; i++) 
  for (j=0; j<cols; j++) 
   data[i][j] = 0.0f;  // You define your own input 
source. 
} 

DLLPreprocessor & DLLPostprocessor DLL Implementation 

 

  

 

 

 

Components: DLLPreprocessor, DLLPostprocessor 

Protocol: PerformPrePost 

 

Description: 

The DLLPreprocessor and DLLPreprocessor components use the same protocol because their 
functionality is very similar. The DLLPreprocessor is an input component that processes the input 
data (using the Preprocessor access point) and injects it into the network. Conversely, the 
DLLPostprocessor is a probe that processes data coming out of the network before sending it to 
another probe (using the Postprocessor access point). 

The default implementation of these DLLs simply copies the data coming in to the data going out. 

 

Code: 
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BOOL performPrePost( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *input       // Pointer to the input data 
 NSFloat *output,     // Pointer to the output data 
 int     rows,        // Number of rows of data 
 int     cols         // Number of cols of data 
 ) 
{ 
 int i, length=rows*cols; 
 for (i=0; i<length; i++) 
  output[i] += input[i]; 
 return TRUE;         // Return whether to inject this sample or 
                      // to call performPrePost with another sample 
} 

Drag and Drop 

Access Drag and Drop 

 

Components in the Access family will extract, inspect, or inject data reported by components via 
access points. There are two basic forms of access points, static and temporal. An access point 
may also be restricted to injecting of extracting data. The user however, is sheltered from these 
complexities. When an Access component is dragged over top of another component, the mouse 
cursor will change from a "not" sign to a stamp if the component will be accepted. 

To find out what access points a component reports, reference its on-line help. Each component 
that has access points will have a section describing them. 

Input Drag and Drop 

 

The members of the Input family are designed to inject data into the network via component 
access points. These components can be dropped on any network component with an available 
static input access point. The members of this family can also be stacked, allowing accumulated 
input from multiple sources. Alternatively, stacking allows a probe to monitor the injected data. 

Inspectors 

Function Inspector 

 

Component: Function 

Superclass Inspector: Access inspector  
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Component Configuration: 
Amplitude FormCell (SetAmplitude(float)) 

This cell is used to specify the amplitude of the generated signal. 
Offset (SetOffset(float)) 

This cell is used to specify the offset of the generated signal. 
Phase (SetPhase(int)) 

This cell is used to specify the phase shift (in degrees) of the generated signal. 
Waveform (SetFunction(int)) 

These six buttons are used to select the waveform of the generated signal. The five base functions 
are the Sine, Square, Triangle, Sawtooth, and Impulse. The sixth button uses the loaded DLL 
defined within the Engine property page of the inspector (see Customizing a Function). This button 
is inactive if no DLL is loaded. 
Apply to Current Channel 

When the Channel Properties of the Function component are changed, those changes apply to all 
channels by default. When this radio button is selected, only the properties for a single channel are 
modified. This channel is specified using the Current Channel cell or slider. 
Thru Channel 

When this radio button is selected, the Channel Properties for a range of channels can be modified 
at once. The default range is all channels. This range can be modified using the Current Channel 
and Thru Channel cells or sliders. 
Samples/Cycle 

Each channel consists of one period (i.e., cycle) of its respective function. This cell specifies how 
many samples are generated for each channel. The total stream length is then the number of 
Channels times the number of Samples/Channel. Note that this parameter always applies to all 
channels, unlike the parameters within the Channel Properties box. 
Frequency (SetFrequency(float)) 
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This cell is used to compute the Samples/Cycle based on the Sampling Rate. Note that 
Samples/Cycle = Sampling Rate / Frequency. 
Sampling Rate 

This cell is used to compute the Frequency based on the Samples/Cycle. Note that Frequency = 
Sampling Rate / (Samples/Cycle). 

Noise Inspector 

 

Component: Noise  

Superclass Inspector: Stream 

 

 

 

Component Configuration 
Mean (SetMean(float)) 

This cell specifies the mean of the noise that is generated. See the Noise  reference for the use of 
the mean within the noise generation functions.  
Variance (SetVariance(float)) 

This cell specifies the variance of the noise that is generated. See the Noise reference for the use 
of the variance within the noise generation functions.  
Uniform, Gaussian, DLL (SetGaussian(bool)) 

The first two buttons (marked with a "U" and "G") are used to select between a uniform distribution 
and a Gaussian distribution for the generated noise. See the Noise  reference for the equations of 
these noise generation functions. The third button (marked with a "DLL") uses the loaded DLL 
defined within the Engine property page of the inspector (see Customizing a Noise). This button is 
inactive if no DLL is loaded. 
Apply to Current Channel 
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When the Channel Properties of the Noise component are changed, those changes apply to all 
channels by default. When this radio button is selected, only the properties for a single channel are 
modified. This channel is specified using the Current Channel cell or slider. 
Thru Channel 

When this radio button is selected, the Channel Properties for a range of channels can be modified 
at once. The default range is all channels. This range can be modified using the Current Channel 
and Thru Channel cells or sliders. 
Samples/Channel 

This cell specifies how many samples of noise are generated for each channel. The total stream 
length is then the number of Channels times the number of Samples/Channel. Note that this 
parameter always applies to all channels, unlike the parameters within the Channel Properties box. 
Regenerate 

The default setting for this switch is off, meaning that the generated noise stream will be continually 
recycled as it is fed through the network. By turning this switch on, the Noise component will re-
generate new random numbers each time the end of the noise stream has been reached. This 
assures a more random distribution but it is less efficient. 

Stream Inspector 

 

Family: Input Family  

Superclass Inspector: Access inspector  

 

 

 

Component Configuration: 
Exemplars 

This text reports the number of exemplars contained within the stream generated by the Input 
Family component. Note that this value is dependent on the number of Channels (Exemplars = 
Stream Length/Channels). 
Channels 
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This is the number of channels (i.e., PEs) reported by the component attached below. 
Current Exemplar 

This text reports the exemplar that is to be read next from the stream. Note that for efficiency 
reasons, this display is only updated when the inspector is switched to this property page. 
Stream Length 

This text reports the length of the stream (i.e., the number of floating point values) generated by the 
Input Family component. 
Reset 

This button resets the stream to start reading from the beginning. Note that the stream is also reset 
every time the network is reset. 
On, Off (SetOn(bool)) 

These radio buttons are used to turn the stream on or off. This is useful for when you want to 
temporarily stop the data flow without having to remove the Input component. 
Overwrite / Accumulate (SetOverwrite(bool)) 

These radio buttons specify whether or not the stream data is to overwrite the data within the 
access point of the attached component. If not, the stream data is added to (i.e., accumulated with) 
the accessed data. This is useful for stacking several inputs onto one access point. 
Save As 

This button displays a file selection panel, which is used to specify a file name for saving the 
stream in binary format. This is most useful for large ASCII files where the translation process may 
be very time consuming. Once the file is translated, the stream can be saved to a separate binary 
file and used in place of the ASCII file. Binary files are processed much more efficiently than ASCII 
files. 
Normalize 

This switch is used to turn the data normalization on or off. When using a File component, the 
normalization coefficients (amplitude and offset) for each channel are contained within the specified 
Normalization File. 
By Channel 

A series of numbers is normalized by first detecting the minimum and maximum values from the 
selected Data Sets. The resulting scale and offset is then applied to all data elements of the series. 
When this switch is turned on, each channel is an independent series with its own scaling and 
offset factor calculated from the channel’s minimum and maximum values. When this switch is 
turned off, the entire stream is the series and all numbers are normalized using the scaling and 
offset calculated from the stream’s minimum and maximum values. Note that this switch is only 
enabled when normalization is active and the Generate switch from the File Inspector  is set 
(applies only to the File component). 
Lower, Upper 

These cells define the upper and lower bounds of the normalization. Once the stream is 
normalized, all data elements from the selected Data Sets will fall within this range. Note that this 
switch is only enabled when the normalization is active and the Generate switch from the File 
Inspector  is set (applies only to the File component). 
Scale 
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This switch is used to turn the data scaling on or off. The scaling is defined for the entire stream 
using the Amplitude and Offset cells (see below). 
Amplitude, Offset 

These cells define the amplitude and offset of the scaling operation. When scaling is active, these 
cells are enabled so that the user can specify these parameters. When normalization is active, 
these cells cannot be modified. Instead, they report the offset and scaling that were applied to 
generate the normalized stream (unless the normalization is By Channel). 

Access Inspector 

 

Superclass Inspector: Engine Inspector  

 

 

 

 

Component Configuration: 
Available Access Points 
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The list on the left half of the inspector contains all available access points for the component 
attached below. The highlighted item is the access point that this component is currently attached 
to. To change the access point, simply single click on the item in the list. 
Rows 

This cell contains the number of rows that is reported by the access point of the attached 
component. This value can only be modified from the inspector of that component. 
Cols 

This cell contains the number of columns that is reported by the access point of the attached 
component. This value can only be modified from the inspector of that component. 
Auto Window 

When this switch is set, the component’s display window automatically hides itself whenever the 
Access Data Set (see below) is not the Active Data Set (see Static Inspector). 
Access Data Set 

Access components can display (and/or modify) the data of a single data set, "All" data sets, or the 
"Active" data set (specified from the Static Inspector). Normally the Probe components are 
configured to display the data for the active data set and the File components are configured to 
inject the data for all data sets. When a cross validation set is used, then an additional set of probe 
components can be added and configured to access only the cross validation data. 
ASCII 

This option is only applicable to the Probe and File components that are included within a Code 
Generation User Interface project. For probes, this specifies that the data passed through this 
component is written to an ASCII file. For inputs, this specifies that the input data is read from an 
ASCII file. Note that this input file is automatically created by NeuroSolutions when the source code 
is generated. 
Binary 

This option is only applicable to the Probe and Input components that are included within a Code 
Generation User Interface project. For probes, this specifies that the data passed through this 
component is written to a binary file. For inputs, this specifies that the input data is read from a 
binary file. Note that this input file is automatically created by NeuroSolutions when the source code 
is generated. 
Stdio 

This option is only applicable to the Probe components that are included within a Code Generation 
User Interface project. This specifies that the data passed through this component is sent to the 
standard output, which is normally a DOS shell. 
Function 

This option is only applicable to the Probe and Input components that are included within a Code 
Generation User Interface project. For probes, this specifies that its data is sent to a function 
instead of a file or the standard I/O. For each exemplar of output, a pointer to the output data is 
passed as a parameter within the function call. For inputs, this specifies that each exemplar of input 
data is retrieved by calling a function, instead of reading from a file. The implementation of the 
function computes and/or retrieves the data and stores it to the floating point array passed as a 
parameter. 

This option applies only to the Probe and Input components that are included within a Code 
Generation User Interface project. For probes, this specifies that its data is sent to a function. For 
each exemplar of output, a pointer to the output data is passed as a parameter within the function 
call. For inputs, this specifies that each exemplar of input data is retrieved by calling a function. The 
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function computes and/or retrieves the data and stores it to the floating point array passed as a 
parameter. 
Generated Code Normalizes the Data 

This option is only applicable to the Input components that are included within a Code Generation 
User Interface project. When this switch is set and "ASCII" is selected, the generated data file will 
not be normalized and the generated code will perform the normalization as the data is read. When 
this switch is set and "Function" is selected the data that is defined by the user-defined function will 
be normalized by the generated code after the function returns. Note that this switch is only 
enabled if the "Normalize" switch is turned on from the Stream Inspector and the Code Generation 
File Format is either "ASCII" or "Function".  
Normalize the Data File 

This option is only applicable to the Input components that are included within a Code Generation 
User Interface project. This switch specifies that the generated file will contain normalized data. 
This is always true for "Binary" files, so this switch is only enabled for "ASCII" files. Note that the 
switch is only enabled if the "Normalize" switch is turned on from the Stream Inspector. 
Denormalize 

This option is only applicable to the Probe components that are included within a Code Generation 
User Interface project. This switch specifies that the data passed through this component is 
denormalized before it is written to the file or sent to the function. Note that the "Denormalize from 
Normalization File" switch of the Probe Inspector must be on for this switch to be enabled. 

 

Associate File 

 

This panel is used to map a data file to one of the file translators provided and to select the data set 
that the data belongs to.  Select a translator by single-clicking on an item within the Available 
Translators list and select the data set by single-clicking on an item within the Data Sets list.  
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Set as default for all files 

When this button is set and the OK button is pressed, all input files with the same extension will use 
the selected translator for reading their data. 

 
Set only for file 

When this button is set and the OK button is pressed, only the selected file will use the selected 
translator for reading its data. 

 
New 

The default data sets are Testing, Training and Cross Validation. You may define your own data set 
by pressing this button and entering the data set name.  

 

Translators: 

ASCII Translator 

Binary Translator  

Bitmap Translator  

Column-Formatted ASCII Translator  

DLL Translator 
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  See Also 

Macro Actions 

Access 

Access Macro Actions 
Overview Superclass Macro Actions 

Action Description 
accessDataSet  Returns the "Access Data Set" setting. 
 
accessedComponent  Returns name of the component whose data is being accessed. 
 
activeAccessPoint  Returns the access point that the component is attached to. 
 
autoWindow  Returns the "Auto-Window" setting. 
 
codeNormalizesData  Returns the "Generated Code Normalizes the Data" setting for File 
components or the "Denormalize" setting for Probe components. 
 
flashFileMode  Returns the "Code Generation File Format" setting (0=ASCII, 1=Binary, 2=Stdio, 
3=Function). 
 
normalizeDataFile  Returns the "Normalize the Data File" setting. 
 
setAccessDataSet  Sets the "Access Data Set" setting. 
 
setActiveAccessPoint  Sets the access point that the component is attached to. 
 
setAutoWindow  Sets the "Auto-Window" setting. 
 
setCodeNormalizesData  Sets the "Generated Code Normalizes the Data" setting for File 
components or the "Denormalize" setting for Probe components. 
 
setFlashFileMode  Sets the "Code Generation File Format" setting (0=ASCII, 1=Binary, 
2=Stdio, 3=Function). 
 
setNormalizeDataFile  Sets the "Normalize the Data File" setting. 
 

accessDataSet 
Overview Macro Actions   

Syntax 

componentName. accessDataSet() 

Parameters Type Description 
return string The name of the data set to display and/or modify, or "All" for all data sets (see 
"Access Data Set" within the Access Inspector). 
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componentName  Name defined on the engine property page. 
 

accessedComponent 
Overview Macro Actions   

Syntax 

componentName. accessedComponent() 

Parameters Type Description 
return string The name of the component whose data is being accessed. 
 
componentName  Name defined on the engine property page. 

 

activeAccessPoint 
Overview Macro Actions   

Syntax 

componentName. activeAccessPoint() 

Parameters Type Description 
return string The access point that the component is attached to (see "Available Access 
Points" within the Access Inspector). 
 
componentName  Name defined on the engine property page. 
 

autoWindow 
Overview Macro Actions   

Syntax 

componentName. autoWindow() 

Parameters Type Description 
return BOOL When TRUE, the component’s display window automatically hides itself 
whenever the accessDataSet is not the active data set (see "Auto Window" within the Access 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

codeNormalizesData 
Overview Macro Actions   

Syntax 

componentName. codeNormalizesData() 



 574

Parameters Type Description 
return BOOL When TRUE and the component is a File, the generated data file will not be 
normalized and the generated code will perform the normalization as the data is read (see 
"Generated Code Normalizes the Data" within the Access Inspector). When TRUE and the 
component is a Probe, the data passed through the access point is denormalized before it is written 
to the file or sent to the function (see "Denormalize" within the Access Inspector). 
 
componentName  Name defined on the engine property page. 

 

flashFileMode 
Overview Macro Actions   

Syntax 

componentName. flashFileMode() 

Parameters Type Description 
return int The file format that is used by the generated code when writing/reading the data 
(0=ASCII, 1=Binary, 2=Stdio, 3=Function -- see "Binary", "ASCII", "Stdio", and "Function" within the 
Access Inspector). 
 
componentName  Name defined on the engine property page. 
 

normalizeDataFile 
Overview Macro Actions   

Syntax 

componentName. normalizeDataFile() 

Parameters Type Description 
return BOOL When TRUE, the generated file will contain normalized data (see "Normalize the 
Data File" within the Access Inspector). 
 
componentName  Name defined on the engine property page. 

 

setAccessDataSet 
Overview Macro Actions   

Syntax 

componentName. setAccessDataSet(accessDataSet) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
accessDataSet string The name of the data set to display and/or modify, or "All" for all data 
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sets (see "Access Data Set" within the Access Inspector). 
 

setActiveAccessPoint 
Overview Macro Actions   

Syntax 

componentName. setActiveAccessPoint(activeAccessPoint) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
activeAccessPoint string The access point that the component is attached to (see 
"Available Access Points" within the Access Inspector). 
 

setAutoWindow 
Overview Macro Actions   

Syntax 

componentName. setAutoWindow(autoWindow) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
autoWindow BOOL When TRUE, the component’s display window automatically hides itself 
whenever the accessDataSet is not the active data set (see "Auto Window" within the Access 
Inspector). 
 

setCodeNormalizesData 
Overview Macro Actions   

Syntax 

componentName. setCodeNormalizesData(normalize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
normalize BOOL When TRUE and the component is a File, the generated data file will 
not be normalized and the generated code will perform the normalization as the data is read (see 
"Generated Code Normalizes the Data" within the Access Inspector). When TRUE and the 
component is a Probe, the data passed through the access point is denormalized before it is written 
to the file or sent to the function (see "Denormalize" within the Access Inspector). 
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setFlashFileMode 
Overview Macro Actions   

Syntax 

componentName. setFlashFileMode(flashFileMode) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
flashFileMode int The file format that is used by the generated code when writing/reading 
the data (0=ASCII, 1=Binary, 2=Stdio, 3=Function -- see "Binary", "ASCII", "Stdio", and "Function" 
within the Access Inspector). 
 

setNormalizeDataFile 
Overview Macro Actions   

Syntax 

componentName. setNormalizeDataFile(normalize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
normalize BOOL When TRUE, the generated file will contain normalized data (see 
"Normalize the Data File" within the Access Inspector). 

 

Function 

Function Macro Actions 
Overview Superclass Macro Actions 

Action Description 
amplitude  Returns the "Amplitude" parameter. 
 
offset  Returns the "Offset" parameter. 
 
phaseShift  Returns the "Phase" parameter. 
 
setAmplitude  Sets the "Amplitude" parameter. 
 
setOffset Sets the "Offset" parameter. 
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setPhaseShift  Sets the "Phase" parameter. 
 

 

amplitude 
Overview Macro Actions 

Syntax 

componentName. amplitude() 

Parameters Type Description 
return float The amplitude of the generated signal (see "Amplitude Form Cell" within the 
Function Inspector). 
 
componentName  Name defined on the engine property page. 

 

offset 
Overview Macro Actions 

Syntax 

componentName. offset() 

Parameters Type Description 
return float The offset of the generated signal (see "Offset" within the Function Inspector). 
 
componentName  Name defined on the engine property page. 

 

phaseShift 
Overview Macro Actions 

Syntax 

componentName. phaseShift() 

Parameters Type Description 
return float The phase shift (in degrees) of the generated signal (see "Phase" within the 
Function Inspector). 
 
componentName  Name defined on the engine property page. 

 

setAmplitude 
Overview Macro Actions 

Syntax 
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componentName. setAmplitude(amplitude) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
amplitude float The amplitude of the generated signal (see "Amplitude Form Cell" within 
the Function Inspector). 
 

setOffset 
Overview Macro Actions 

Syntax 

componentName. setOffset(offset) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
offset float The offset of the generated signal (see "Offset" within the Function Inspector). 
 

setPhaseShift 
Overview Macro Actions 

Syntax 

componentName. setPhaseShift(phaseShift) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
phaseShift float The phase shift (in degrees) of the generated signal (see "Phase" within 
the Function Inspector). 
 

Noise 

Noise Macro Actions 
Overview Superclass Macro Actions 

Action Description 
mean  Returns the "Mean" parameter. 
 
regenerateData  Returns the "Regenerate" setting. 
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setMean  Sets the "Mean" parameter. 
 
setRegenerateData  Sets the "Regenerate" setting. 
 
setVariance  Sets the "Variance" parameter. 
 
variance  Returns the "Variance" parameter. 
 

mean 
Overview Macro Actions 

Syntax 

componentName. mean() 

Parameters Type Description 
return float The mean of the noise that is generated (see "Mean" within the Noise Inspector). 
 
componentName  Name defined on the engine property page. 

 

regenerateData 
Overview Macro Actions 

Syntax 

componentName. regenerateData() 

Parameters Type Description 
return BOOL TRUE will re-generate random numbers at the end of each noise stream (see 
"Regenerate" within the Noise Inspector). 
 
componentName  Name defined on the engine property page. 

 

setMean 
Overview Macro Actions 

Syntax 

componentName. setMean(mean) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
mean float The mean of the noise that is generated (see "Mean" within the Noise Inspector). 
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setRegenerateData 
Overview Macro Actions 

Syntax 

componentName. setRegenerateData(regenerateData) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
regenerateData BOOL TRUE will re-generate random numbers at the end of each noise stream 
(see "Regenerate" within the Noise Inspector). 
 

setVariance 
Overview Macro Actions 

Syntax 

componentName. setVariance(variance) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
variance float The variance of the noise that is generated (see "Variance" within the 
Noise Inspector). 
 

variance 
Overview Macro Actions 

Syntax 

componentName. variance() 

Parameters Type Description 
return float The variance of the noise that is generated (see "Variance" within the Noise 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

Multi Channel Stream 

MultiChannelStream Macro Actions 
Overview  Superclass Macro Actions  

Action Description 
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activeChannel  Returns the "Current Channel" parameter. 
 
amplitudeForChannel  Returns the normalization amplitude for the specified channel. 
 
broadcast  Returns TRUE if the "Thru Channel" radio button is set and FALSE if the "Apply 
to Current Channel" radio button is set. 
 
channels  Returns the number of data channels. 
 
dataSource  Returns the name of the data source for the active channel ("NGaussianNoise", 
"NUniformNoise", "NDLLNoise", "NSinWaveFunction",  "NSquareWaveFunction", 
"NTriangleWaveFunction",  "NSawtoothFunction", "NImpulseFunction", or "NDLLFunction"). 
 
endChannel  Returns the "Thru Channel" parameter. 
 
incrementActiveChannel  Increments the "Current Channel" parameter by the specified amount. 
 
incrementEndChannel  Increments the "Thru Channel" parameter by the specified amount. 
 
inject  Returns TRUE if the data injection is set to "Accumulate" and FALSE if it is set to 
"Overwrite". 
 
lowerBound  Returns the "Lower" bound parameter of the data normalization. 
 
networkReset  Resets the IO stream. 
 
normalize  Returns the "Normalize" setting. 
 
normalizeByChannel  Returns the "By Channel" setting. 
 
offsetForChannel  Returns the normalization offset for the specified channel. 
 
resetAll  Resets all input components on the breadboard. 
 
samples  Returns the number of "Samples/Channel" (Noise) or the "Samples/Cycle" 
(Function). 
 
saveStream  Saves the stream as a binary to file to specified path. 
 
scale Returns the "Scale" setting. 
 
setActiveChannel  Sets the "Current Channel" parameter. 
 
setAmplitude Sets the "Amplitude" setting for the active channel. 
 
setBroadcast  Set to TRUE to set the "Thru Channel" radio button and FALSE to set the "Apply 
to Current Channel" radio button. 
 
setDataSource  Sets the name of the data source for the active channel ("NGaussianNoise", 
"NUniformNoise", "NDLLNoise", "NSinWaveFunction",  "NSquareWaveFunction", 
"NTriangleWaveFunction",  "NSawtoothFunction", "NImpulseFunction", or "NDLLFunction"). 
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setEndChannel  Sets the "Thru Channel" parameter. 
 
setInject  Set to TRUE for the data injection to be set to "Accumulate" and FALSE if it is to 
be set to "Overwrite". 
 
setLowerBound  Sets the "Lower" bound parameter of the data normalization. 
 
setNormalize  Sets the "Normalize" setting. 
 
setNormalizeByChannel  Sets the "By Channel" setting. 
 
setOffset  Sets the "Offset" setting for the active channel. 
 
setSamples  Sets the number of "Samples/Channel" (Noise) or the "Samples/Cycle" 
(Function). 
 
setScale Sets the "Scale" setting. 
 
setStreamOn  TRUE sets the stream "On" and FALSE sets the stream "Off". 
 
setUpperBound  Sets the "Upper" bound parameter of the data normalization. 
 
streamOn  Returns TRUE if the stream is "On" and FALSE if the stream is "Off". 
 
upperBound  Returns the "Upper" bound parameter of the data normalization. 

 

activeChannel 
Overview Macro Actions 

Syntax 

componentName. activeChannel() 

Parameters Type Description 
return int The first channel of the specified range used to change the channel parameters 
(see "Apply to Current Channel" within the Function Inspector or Noise Inspector). 
 
componentName  Name defined on the engine property page. 

 

amplitudeForChannel 
Overview Macro Actions 

Syntax 

componentName. amplitudeForChannel(index) 

Parameters Type Description 
return float The normalization amplitude (stored in the Normalization File) for the specified 
channel, or the amplitude of the scaling operation (see "Amplitude/Offset" within the Stream 
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Inspector ). 
 
componentName  Name defined on the engine property page. 
 
index int The channel index (0 <= index < channels). 
 

broadcast 
Overview Macro Actions 

Syntax 

componentName. broadcast() 

Parameters Type Description 
return BOOL TRUE if the changes to the channel setting are made to a block of channels and 
FALSE if they are only to be made to the active channel (see "Apply to Current Channel" and "Thru 
Channel" within the Function Inspector or Noise Inspector). 
 
componentName  Name defined on the engine property page. 
 

channels 
Overview Macro Actions 

Syntax 

componentName. channels() 

Parameters Type Description 
return int The number of data channels. 
 
componentName  Name defined on the engine property page. 

 

dataSource 
Overview Macro Actions 

Syntax 

componentName. dataSource() 

Parameters Type Description 
return string The name of the data source for the active channel ("NGaussianNoise", 
"NUniformNoise", "NDLLNoise", "NSinWaveFunction",  "NSquareWaveFunction", 
"NTriangleWaveFunction",  "NSawtoothFunction", "NImpulseFunction", or "NDLLFunction" – see 
the function/noise buttons within the Function Inspector or Noise Inspector). 
 
componentName  Name defined on the engine property page. 

 



 584

endChannel 
Overview Macro Actions 

Syntax 

componentName. endChannel() 

Parameters Type Description 
return int The last channel of the specified range used to change the channel parameters 
(see "Apply to Current Channel" within the Function Inspector or Noise Inspector). 
 
componentName  Name defined on the engine property page. 

 

incrementActiveChannel 
Overview Macro Actions 

Syntax 

componentName. incrementActiveChannel(increment) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
increment int The amount to increment the activeChannel by. 
 

incrementEndChannel 
Overview Macro Actions 

Syntax 

componentName. incrementEndChannel(increment) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
increment int The amount to increment the endChannel by. 
 

inject 
Overview Macro Actions 

Syntax 

componentName. inject() 
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Parameters Type Description 
return BOOL TRUE to accumulate the injected data on the stream and FALSE to overwrite it 
(see "Overwrite" and "Accumulate" within the Stream Inspector ). 
 
componentName  Name defined on the engine property page. 

 

lowerBound 
Overview Macro Actions 

Syntax 

componentName. lowerBound() 

Parameters Type Description 
return float The lower bound of the normalization calculation (see "Lower" within the Stream 
Inspector ). 
 
componentName  Name defined on the engine property page. 

 

networkReset 
Overview Macro Actions 

Syntax 

componentName. networkReset() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

normalize 
Overview Macro Actions 

Syntax 

componentName. normalize() 

Parameters Type Description 
return BOOL TRUE if normalization is active (see "Normalize" within the Stream Inspector ). 
 
componentName  Name defined on the engine property page. 

 

normalizeByChannel 
Overview Macro Actions 
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Syntax 

componentName. normalizeByChannel() 

Parameters Type Description 
return BOOL TRUE if the normalization is calculated for each individual channel and FALSE if 
it is calculated across all channels (see "By Channel" within the Stream Inspector ). 
 
 
componentName  Name defined on the engine property page. 

 

offsetForChannel 
Overview Macro Actions 

Syntax 

componentName. offsetForChannel(index) 

Parameters Type Description 
return int The normalization offset (stored in the Normalization File) for the specified 
channel, or the offset of the scaling operation (see "Amplitude/Offset" within the Stream Inspector ). 
 
componentName  Name defined on the engine property page. 

 
index int The channel index (0 <= index < channels). 

 

resetAll 
Overview Macro Actions 

Syntax 

componentName. resetAll() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

samples 
Overview Macro Actions 

Syntax 

componentName. samples() 

Parameters Type Description 
return int The number of samples that defines the Function or Noise component (see 
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"Samples/Channel" within the Noise Inspector or "Samples/Cycle" within the Function Inspector). 
 
componentName  Name defined on the engine property page. 

 

saveStream 
Overview Macro Actions 

Syntax 

componentName. saveStream(path) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 

 
path string The full path of the file to save the binary stream to.  

 

scale 
Overview Macro Actions 

Syntax 

componentName. scale() 

Parameters Type Description 
return BOOL TRUE if scaling is active (see "Scale" within the Stream Inspector ). 
 
componentName  Name defined on the engine property page. 

 

setActiveChannel 
Overview Macro Actions 

Syntax 

componentName. setActiveChannel(activeChannel) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
activeChannel int The first channel of the specified range used to change the channel 
parameters (see "Apply to Current Channel" within the Function Inspector or Noise Inspector). 
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setAmplitude 
Overview Macro Actions 

Syntax 

componentName. setAmplitude(amplitude) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
amplitude float The amplitude of the scaling operation (see "Amplitude/Offset" within 
the Stream Inspector ). 
 

setBroadcast 
Overview Macro Actions 

Syntax 

componentName. setBroadcast(broadcast) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
broadcast BOOL TRUE if the changes to the channel setting are made to a block of 
channels and FALSE if they are only to be made to the active channel (see "Apply to Current 
Channel" and "Thru Channel" within the Function Inspector or Noise Inspector). 
 

setDataSource 
Overview Macro Actions 

Syntax 

componentName. setDataSource(dataSource) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
dataSource string The name of the data source for the active channel ("NGaussianNoise", 
"NUniformNoise", "NDLLNoise", "NSinWaveFunction",  "NSquareWaveFunction", 
"NTriangleWaveFunction",  "NSawtoothFunction", "NImpulseFunction", or "NDLLFunction" – see 
the function/noise buttons within the Function Inspector or Noise Inspector). 
 

setEndChannel 
Overview Macro Actions 
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Syntax 

componentName. setEndChannel(endChannel) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
endChannel int The last channel of the specified range used to change the channel 
parameters (see "Apply to Current Channel" within the Function Inspector or Noise Inspector). 
 

setInject 
Overview Macro Actions 

Syntax 

componentName. setInject(inject) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
inject BOOL TRUE to accumulate the injected data on the stream and FALSE to overwrite it 
(see "Overwrite" and "Accumulate" within the Stream Inspector ). 
 

setLowerBound 
Overview Macro Actions 

Syntax 

componentName. setLowerBound(lowerBound) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
lowerBound float The lower bound of the normalization calculation (see "Lower" within the 
Stream Inspector ). 
 

setNormalize 
Overview Macro Actions 

Syntax 

componentName. setNormalize(normalize) 

Parameters Type Description 
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return void 
 
componentName  Name defined on the engine property page. 
 
normalize BOOL TRUE if normalization is active (see "Normalize" within the Stream 
Inspector ). 
 

setNormalizeByChannel 
Overview Macro Actions 

Syntax 

componentName. setNormalizeByChannel(normalizeByChannel) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
normalizeByChannel BOOL TRUE if the normalization is calculated for each individual 
channel and FALSE if it is calculated across all channels (see "By Channel" within the Stream 
Inspector ). 
 

setOffset 
Overview Macro Actions 

Syntax 

componentName. setOffset(offset) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
offset float The offset of the scaling operation (see "Amplitude/Offset" within the Stream 
Inspector ). 
 

setSamples 
Overview Macro Actions 

Syntax 

componentName. setSamples(samples) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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samples int The number of samples that defines the Function or Noise component 
(see "Samples/Channel" within the Noise Inspector or "Samples/Cycle" within the Function 
Inspector). 
 

setScale 
Overview Macro Actions 

Syntax 

componentName. setScale(scale) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
scale BOOL TRUE if scaling is active (see "Scale" within the Stream Inspector ). 
 

setStreamOn 
Overview Macro Actions 

Syntax 

componentName. setStreamOn(streamOn) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
streamOn BOOL TRUE if the stream is turned on (see "On, Off" within the Stream 
Inspector ). 
 

setUpperBound 
Overview Macro Actions 

Syntax 

componentName. setUpperBound(upperBound) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
upperBound float The upper bound of the normalization calculation (see "Upper" within 
the Stream Inspector ). 
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streamOn 
Overview Macro Actions 

Syntax 

componentName. streamOn() 

Parameters Type Description 
return BOOL TRUE if the stream is turned on (see "On, Off" within the Stream Inspector ). 
 
componentName  Name defined on the engine property page. 

 

upperBound 
Overview Macro Actions 

Syntax 

componentName. upperBound() 

Parameters Type Description 
return float The upper bound of the normalization calculation (see "Upper" within the Stream 
Inspector ). 
 
componentName  Name defined on the engine property page. 

 

OLE Input 

OLEInput Macro Actions 
Overview Superclass Macro Actions 

Action Description 
setEngineData  Sets the input data to be injected into the network. 
 
setNormalizationFilePath  Sets the path of the file containing the normalization coeffiecients. 

 

setEngineData 
Overview Macro Actions 

Syntax 

componentName.setEngineData(data) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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data variant An array of single-precision floating point values that contains the input data to 
be injected into the network. 

 

setNormalizationFilePath 
Overview  Macro Actions 

Syntax 

componentName.setNormalizationFilePath(normalizationFilePath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
normalizationFilePath string The path of the file containing the normalization coeffiecients. 
Once this function is called with a valid normalization file the component is automatically configured 
to normalize the incoming data before injecting it into the network. If this function is not called then 
the data is not altered before being injected. 

 

Probe Family 
StaticProbe Family 

StaticProbe Family 

 

Ancestor: Probe Family  

 

The StaticProbe family is a collection of components that are used to observe instantaneous data 
at the various access points of the components. 

 

Members: 

BarChart  

DataGraph  

DataWriter  

DataStorage  

DLLPostprocessor  

Hinton  

ImageViewer 

MatrixEditor  
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MatrixViewer  

BarChart 

 

  

 

 

Family: StaticProbe Family  

Superclass: NSProbe 

 

Description: 

The BarChart probe creates a view for observing numeric data as a series of horizontal bars. The 
length of the bars is proportional to the magnitude of the data being probed. The scale used to 
display the bars may be changed manually, or automatically. Each bar can be labeled for clarity. 

BarCharts are useful for classification problems that have a reasonably small (less than 25) number 
of outputs. By attaching one to the system output and another to the desired output, one can 
compare the longest bar of the two probes to see if they match for each exemplar. 

Every time that data passes through the component attached below, the BarChart can refresh its 
display to reflect this data. This can consume a large percentage of the processing cycles used for 
the simulation. For this reason, there is a parameter used to specify how often the display is 
refreshed. 

 

User Interaction: 

Drag and Drop 

Inspector 

Window 

Access Points 

DLL Implementation  

 

Macro Actions  

 

 

  See Also 

DataGraph 
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Family: StaticProbe Family 

Superclass: NSProbe 

 

Description: 

The DataGraph displays temporal data as a set of signal traces -- values (vertical axis) over time 
(horizontal axis). It is similar in functionality to the MegaScope, except it is much easier to use and 
includes labels on the X and Y axes so that you can get a better quantitative perspective on the 
probed data. It is important to note that even though this displays temporal data, it is still a static 
probe, meaning that it does not need to be stacked on top of a DataStorage component.  

 

User Interaction: 

Drag and Drop 

Inspector  

Window  

Access Points 

DLL Implementation  

 

 

DataWriter 
 

  

 

 

Family: StaticProbe Family 

Superclass: NSProbe 

 

Description: 

The DataWriter provides a means to collect static data from network components during the 
simulations. This component displays the data using an editable window. Moreover, this data may 
then be edited and/or saved into ASCII or binary file. The DataWriter is useful in situations where 
one wants to save simulation data for further analysis or for report generation (by cutting and 
pasting in other documents).  

Data can be written to a file using the DataWriter in one of two ways. The first approach is to 
specify the file name and type (ASCII or binary) before the simulation is run. As data is fired 
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through the access point of the component attached below, it is simultaneously written to the 
specified file. Note that the display window does not need to be opened for the data to be collected. 

The second approach is to first run the simulation with the display window open. This text window 
displays the data as it is being fired through the attached component. Once the simulation is 
complete, the contents of the display window can be edited (if needed), then the file name is 
specified and window’s text is saved in ASCII format. 

Note that there is a limit to the amount of data that can be stored within the display window, thus 
limiting the size of file that can be generated by this second approach. The size of the file 
generated by the first approach is limited only by the amount of available disk space on the 
computer system. 

 

User Interaction: 

Drag and Drop 

Inspector 

Window 

Access Points 

DLL Implementation  

 

Macro Actions 

  

DataStorage 

 

 

  

 

 

Family: StaticProbe Family 

Superclass: NSProbe 

 

Description: 

Data flows through network simulations one sample at a time. Several probes display a sequence 
of data samples over time. Rather than requiring each of these TemporalProbes to store and 
maintain data, the DataStorage component was developed. 

The DataStorage component collects data from an access point of the component attached below 
and stores it in a circular buffer. A circular buffer of size n stores the most recent n samples of data. 
The size of the buffer is user-defined. This buffer is accessible to members of the TemporalProbe 
family by means of the Buffered Activity access point. A TemporalProbe uses this buffer to display 
the data over time. 



 597

The DataStorage component periodically sends a message to the components stacked above so 
that they can re-process the data or refresh their displays. How often this message is sent is 
specified within the DataStorage component. Note that if this message is sent too often, then the 
attached probes will consume a high percentage of the processing cycles of the simulation. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

Macro Actions  

 

 

  See Also 

Hinton 

 

 

 

 

Family: StaticProbe Family  

Superclass: NSProbe 

 

Description: 

The Hinton probe creates a view for observing numeric data as a matrix of squares. The size of the 
squares is proportional to the magnitude (the absolute value) of the data being probed. Positive 
values are displayed as solid squares while negative values are displayed as outlined squares. The 
scale used to display the squares may be changed manually, or automatically. 

This probe is often used to display a weight matrix. Its design makes it easy to detect patterns and 
symmetries in the data. 

 

User Interaction: 

Drag and Drop 

Inspector 

Window 

Access Points 
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DLL Implementation 

 

 

  See Also 

ImageViewer 

 

  

 

 

Family: StaticProbe Family  

Superclass: NSProbe 

 

Description: 

The ImageViewer component provides the ability to display static data reported by a network 
component as a 256-level gray-scale image. The dimensions of the component attached below 
dictate the dimensions of the image. The range of floating-point values within the probed data can 
be specified or automatically computed. The data is normalized based on this range and used to 
compute the intensity levels of the individual pixels. 

An image shown in the display window can be saved as a bitmap (.bmp) file. 

 

User Interaction: 

Drag and Drop 

Inspector 

Window 

Access Points 

DLL Implementation 

Macro Actions  

MatrixEditor 
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Family: StaticProbe Family  

Superclass: NSProbe 

 

Description: 

The MatrixEditor is similar to the MatrixViewer in that it can be used to observe static data as a 
numerical matrix. However, this component also allows the user to modify the data at the attached 
access point. Any modifications will be reflected in the simulation. 

There are two consequences to this ability. First, the MatrixEditor slows down the simulations 
because it allows for user input. The MatrixViewer should be used for cases when the data only 
needs to be observed and not modified. Second, this probe allows for direct user interaction with 
the network simulations at any stage. This concept is very powerful, but can also be dangerous if 
unintended changes are made. Caution is recommended when using this probe, since it has the 
ability to overwrite previous values. 

 

User Interaction: 

Drag and Drop 

Inspector 

Window 

Access Points 

DLL Implementation 

 

 

  See Also 

MatrixViewer 

 

 

 

 

Family: StaticProbe Family  

Superclass: NSProbe 

 

Description: 

The MatrixViewer is used to observe instantaneous data as a numerical matrix. The dimensions of 
matrix is dictated by the dimensions of the component stacked below. The data may not be 
manipulated in any way. If editing is desired, the MatrixEditor should be used. Note that the 
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MatrixViewer does not slow down the simulations as much as the MatrixEditor, since it only 
displays the data. 

 

User Interaction: 

Drag and Drop 

Inspector 

Window 

Access Points 

DLL Implementation 

 

 

  See Also 

DLLPostprocessor 

 

  

 

 

Family: StaticProbe Family  

Superclass: NSProbe 

 

Description: 

The DLLPostprocessor component is used to process the data sent from the component stacked 
below, and send the processed data to the component attached above using the Postprocessor 
access point. This is a static probe, meaning that it processes the data of the attached component 
one sample at a time. It is implemented using DLLs, thus requiring that a DLL be loaded within the 
Engine Inspector  property page of the DLLPostprocessor inspector. 

 

User Interaction: 

Drag and Drop 

Access Points 

DLL Implementation  
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Access Points 

DataStorage Access Points 

 

Component: DataStorage  

Superclass: Probe 

 

Buffered Activity Access: 

This is an access point which is created by the DataStorage class which allow Temporal Probes to 
display a block of data. This block of data is collected and stored in a circular buffer for each 
iteration of the simulation. The user defines the size of this buffer. The buffer can be multi-channel 
depending upon the number of processing elements of the network component.  

 

 

  See Also 

Postprocessor Access Points 

 

Family: Access Family 

Superclass Access Points:  Access Points 

 

Postprocessor Output: 

Members of the Access family that are stacked on a postprocessor component will report a 
Postprocessor Output access point. A component attached to this access point retrieves processed 
data from a postprocessor component attached to the network. 

 

 

  See Also 

DLL Implementation 

Static Probe DLL Implementation 

 

Component: StaticProbe Family  

Protocol: PerformOutput 

 

Description: 
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The static probes are used to display instantaneous network data. DLLs can be used with these 
components to implement customized display routines or to send the output data to other 
processes/applications. 

Each call to performOutput contains the next exemplar of data accessed by the probe. The default 
implementation of this DLL simply copies each element of the data buffer to the local variable 
myOutput. The return value of TRUE indicates that the display of the base probe component 
should remain active. 

 

Code: 
 
performOutput( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *data,       // Pointer to the data 
 int     rows,        // Number of rows of data 
 int     cols         // Number of cols of data 
 ) 
{ 
 int i,j; 
 NSFloat myOutput; 
 
 for (i=0; i<rows; i++) 
  for (j=0; j<cols; j++) 
   myOutput = data(i,j); // You define your own 
output source. 
 // Return whether or not the output component should still work 
 return TRUE; 
} 

Drag and Drop 

Static Probe Family Drag and Drop 

 

The Static Probe Family was designed to examine instantaneous data that are presented by 
network components.  Hence, any network component that has an instantaneous access point 
accepts a probe from the Static Probe family.  Members of this family can be dropped on any of 
these components. 

 

 

  See Also 

Inspectors 

BarChart Inspector 

 

Component: BarChart 

Superclass Inspector: Label Inspector  
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Component Configuration  
Bar Size 

Specifies the height of the bars in the BarChart window.  This can be used to increase the number 
of bars shown in the same vertical space.  This number may be set to any integer equal to 5 or 
greater. 

DataGraph Inspector 

 

Component: DataGraph  

Superclass Inspector: Label Inspector  

 

 

 

Component Configuration: 
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Buffer Size 

The buffer size form cell sets the size of a circular buffer where samples of data are stored over 
time to be displayed in the window.  While there is no limit to the size of this buffer, be aware that 
memory will be allocated from the system to store the data.  This number can be any integer 
greater than one. Note that when the X-axis is set to "Epochs", "Exemplars" or "Samples", this cell 
is grayed out and the value is set automatically based on the size of the data set or the settings of 
the controller. 
Refresh Every 

Specifies how often to update the display with the latest data. 
Channel Visible 

All channels of data are displayed by default. To remove a channel from the display, select the 
channel number in the edit cell and uncheck the Visible switch. 
Attach Data 

This pull down menu contains a list of the other Label probes on the breadboard. When one of 
these probes is selected, the data from that probe is displayed in the DataGraph window along with 
the data probed directly by the DataGraph. This is useful for displaying the network output and the 
desired output in the same graph. 
Show Grid 

Displays horizontal and vertical gridlines on the graph. 
X-Axis 

There are several options available for specifying the X-axis of the graph: 

� Epochs – This is commonly used for probing the error curve, in which the X-axis corresponds to the epoch 
number. When this option is selected the Buffer Size is automatically set to the maximum number of epochs 
specified within the StaticControl inspector. 

� Exemplars – This is commonly used for probing the output, in which the X-axis corresponds to the exemplar 
number of the current epoch. When this option is selected the Buffer Size is automatically set to the number of 
exemplars per epoch shown within the StaticControl inspector. 

� Samples – This is commonly used for dynamic networks, in which there are multiple samples per exemplar. The 
X-axis corresponds to the sample number of the current epoch. When this option is selected the Buffer Size is 
automatically set to the number of samples per exemplar times the number of exemplars per epoch specified 
within the StaticControl inspector and the DynamicControl inspector. 

� Generations – This is commonly used for probing the error curve during a genetic training run, in which the X-
axis corresponds to the generation number. When this option is selected the Buffer Size must be specified 
manually. 

� Custom – This is commonly used for probing the cross validation set. The X-axis is an internal counter that is 
not tied to a counter on the controller. When this option is selected the Buffer Size must be specified manually. 

Reset At 

This option is only applicable when using a Custom X-axis. When the X-axis counter reaches the 
value specified in this cell, then the counter is reset to 1.  
Minimum X 

Specifies the left-most data point on the graph. This value can also be set using the zoom feature 
of the DataGraph window. 
Window 



 605

Specifies the window size, or the number of data points to display on the graph beginning with the 
Minimum. This value can also be set using the zoom feature of the DataGraph window.  
Auto-adjust 

This option automatically adjusts the scale of the Y-axis to fit the data being probed.  
Show Zero 

When the auto-adjust is active, this option specifies that 0 always be included in the Y-axis even if it 
is not part of the displayed data.  
Minimum Y 

Specifies the bottom of the Y-axis. This parameter is only available when the Auto-adjust switch is 
turned off.  
Maximum Y 

Specifies the top of the Y-axis. This parameter is only available when the Auto-adjust switch is 
turned off.  

 

DataWriter Inspector 

 

Component: DataWriter 

Superclass Inspector: Label Inspector  

 

 

 

Component Configuration: 
Clear Contents 

Clears the present edit buffer contents. 
Clear Before Run 



 606

Specifies whether or not the edit buffer is cleared each time a network simulation is run. 
Input Enabled 

Enables/disables the writing of the accessed data to the edit buffer. 
Buffer Size 

Sets the maximum number of data points that can be stored in the edit window at any given time. 
Note that the display window will simply ignore the new data once the buffer is full. 
Font Size 

Sets the point size of the font used in the edit window. 
Scientific Notation 

Displays and outputs the data using scientific notation. 
Transpose Matrix 

Most Axons are configured to be a one-dimensional vector with N rows and 1 column. However, 
you will most often want to display each exemplar of data as a single row, so that each PE is 
represented by a column of values. Setting this switch transposes the display matrix for this 
purpose. 
Save Text to File 

Opens a Save panel to select a file name. Once a name is selected, the ASCII text contained within 
the data buffer is written to this file. 
Dump Raw Data to File 

Opens a Save panel to select a file name. Once the name is selected and the switch is set, all data 
that passes through the attached access point is written to this file. This file may be of type ASCII 
or binary. 
Set 

Opens a Save panel to change the file used to store the probed data. 
ASCII 

Set the output file to be of type ASCII. 
Binary 

Set the output file to be of type binary. 
Attach Data From 

When a probe component name is selected from this combo-box, the data from that component is 
appended to the data from the DataWriter. This is normally used to display/write the output of the 
network side-by-side with the desired output. There are three requirements for activating this 
combo-box: 1) the DataWriter must be accessing the Desired Signal of an ErrorCriterion 
component, 2) the number of columns of the ErrorCriterion must be equal to 1, and 3) the 
"Transpose Matrix" option must be selected (see above). 

 

DataStorage Inspector 
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Component: DataStorage 

Superclass Inspector: Probe inspector  

 

 

 

Component Configuration: 
Buffer Size 

The buffer size form cell sets the size of a circular buffer where samples of data are stored for other 
components to examine.  While there is no limit to the size of this buffer, be aware that memory will 
be allocated from the system to store the data.  This number can be any integer greater than zero. 
Message Every 

The data storage class will send a message to all probes that are attached to it's Temporal Access 
point telling them that the data samples contained in the DataStorage are available.  The periodicity 
of this message is controlled by the number entered in the Message Every form cell.   Setting this 
value is very important for creating "animations" of the data as it changes.  This value will make 
attached probes respond to the changes in the data only as often as desired.  Since the probes 
tend to slow the computational process, it is helpful to increase the value of Message Every so that 
the probes respond less frequently.  It accepts any integer greater than or equal to one. 

Hinton Inspector 

 

Component: Hinton  

Superclass Inspector: Label Inspector 

 



 608

 

 

Component Configuration: 
Square Size 

Specifies the maximum size of the squares in the Hinton window.  This can be used to increase the 
number of squares shown in the same space.  This number may be set to any integer equal to 5 or 
greater. 

ImageViewer Inspector  

 

Component: ImageViewer  

Superclass Inspector: Probe inspector  

 

 

 

Component Configuration: 
TotalPixels 
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Reports how many data points are available in the network component for display as a bit map. We 
will refer to these data points as pixels.  
Load image palette before run 

Loads the gray-scale palette just before the simulation begins. This guarantees that the image will 
display correctly, but the components on the breadboard may change to gray during the simulation. 
Restore NS palette after run 

Loads the NeuroSolutions color palette just after the simulation stops. This will restore the 
components to their original colors, but the displayed image may become distorted. 
Save Bitmap 

This button allows the image shown by the ImageViewer to be saved as a BMP file. 

Label Inspector 

 

Superclass Inspector: Probe inspector  

 

  

 

Component Configuration: 
Active Neuron 

These controls are used to select a particular row or column of neurons.  The probes that are 
derived from this class have windows that display data in row and column format with labels down 
the side and across the top.  
Row and Column 

Use this control to choose between viewing the information regarding the probes rows or columns. 
Text 
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Displays the label that corresponds to the Active Neuron.  The Active Neuron is set using the Active 
Neuron slider/field and the Row and Column radio buttons as described above.  The labels may 
only be changed if the Enable Label Editing switch is set. 
Show Labels 

This switch enables the user to view, or remove, the labels in the probe window. 

 
Enable Label Editing 

This switch determines if user definable labels should be used in place of the computer generated 
ones.  Be careful when using this feature on probe windows that are displaying very large amounts 
of data.  When this switch is enabled, memory is allocated for each row and column showing in the 
probe window. 
Autosizing 

This switch controls the autosizing feature of the probes that are derived from this class.  By 
changing the size of the probes window, the maximum number of rows and columns can more 
easily be displayed.  This window will change size whenever the number of neurons being probed 
changes. 
Label Size 

This form cell determines how much space should be allocated for the row labels.  Choosing this 
number too small could place the probes main view over the labels, making them impossible to 
read.  This number is in pixels and can be any positive integer. 
Font Size 

This control allows the user to change the font size of the labels.  Sometimes the font size of the 
data shown in the probe window of this class can be changed as well.  
Load Labels from File Component 

This button will load the column headings from the selected File component into the label cells of 
the probe. Note that the Enable Label Editing switch must be switched on to enable this button.  
Name 

Selects the name of the File component that contains the column headings corresponding to the 
probed data. Note that the File must use the Column-Formatted ASCII Translator in order to extract 
the column headings. 

Windows 

BarChart Window 

 

 

 

 

Component: BarChart 

Superclass: TemporalProbe 
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Description: 

The BarChart view has the ability to resize and the contents of the view will automatically redraw 
and rescale to fit.  The bars shown in the window represent the magnitude of the values being 
probed.  There is one horizontal bar for each neuron. 

DataGraph Window  

 

 

 

 

Component: DataGraph  

Superclass: NSProbe 

 

  

 

Description: 

The DataGraph window allows the plotting of multi-channel variables over time. It has a feature 
built in that allows you to zoom in on the data. Just press the mouse button at the left of the desired 
region and drag the mouse (with the button pressed) towards the right until the end of the desired 
selection. To undo the zoom, simply right-click on the graph. Note that you can manually perform 
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the zoom and unzoom operations by changing the "Min" and "Window" parameters within the 
inspector. 

 

DataWriter Window  

 

 

 

 

Component: DataWriter  

Superclass: NSProbe 

 

  

 

Description: 

The DataWriter view is a full-fledged Editor Window, and as such it has the ability to be edited.  
Once the data has been collected, its contents may be cut, and pasted as desired.  Also, additional 
text may be added for comments.  Since this view may be saved as rich text, any font style and 
size may be used. 

Hinton Window 

 

  

 

 

Component: Hinton  
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Superclass: TemporalProbe 

 

 

 

Description 

The Hinton view has the ability to resize and the contents of the view will automatically redraw and 
rescale to fit. The squares shown in the window represent the magnitude of the values being 
probed. There is one square for each neuron.  

ImageViewer Window  

 

 

 

 

Component: ImageViewer  

Superclass: NSProbe 

 

 

 

Description: 
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The ImageViewer view has the ability to be resized and the contents of the view will automatically 
redraw and rescale to fit.  The image shown in the view can be saved as a BMP file. 

MatrixEditor Window 

 

  

 

 

Component: MatrixEditor   

Superclass: NSProbe 

 

 

 

Description: 

Each Cell in the MatrixEditor view can be selected and.  The changes will affect the corresponding 
parameters in the network component being probed. 

Let us assume that in this case the network component is a FullSynapse, and the MatrixEditor was 
attached to the Weights access point. So we are displaying the weight matrix between two layers.  

Row i show the weights connected to the i-th output processing element. Column j show the 
weights connected to the j-th input processing element. So this conforms to the traditional 
assignment used in neural networks.   

MatrixViewer Window 

 

  

 

 

Component: MatrixViewer  

Superclass: NSProbe 
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Description: 

The MatrixViewer view has the ability to resize and the contents of the view will automatically 
redraw and rescale to fit.  The contents of the view can not be changed.  The font of the view may 
be changed by highlighting the text and using the font Panel.  

Let us assume that in this case the network component is a FullSynapse, and the MatrixEditor 
access point was the Weights access point. So we are displaying the weight matrix between two 
layers.  

Row i show the weights connected to the i-th output processing element. Column j show the 
weights connected to the j-th input processing element. So this conforms to the traditional 
assignment used in neural networks. 

Macro Actions 

Bar Chart 

BarChart Macro Actions 
Overview Superclass Macro Actions 

Action Description 
barSize  Returns the "Bar Size" setting. 
 
setBarSize  Sets the "Bar Size" setting. 

barSize 
Overview Macro Actions 

Syntax 

componentName.barSize() 

Parameters Type Description 
return int The height of the bars in the BarChart window (see "Bar Size" within the 
BarChart Inspector). 
 
componentName  Name defined on the engine property page. 
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setBarSize 
Overview Macro Actions 

Syntax 

componentName.setBarSize(barSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
barSize int The height of the bars in the BarChart window (see "Bar Size" within the 
BarChart Inspector). 
 

Data Writer 

DataWriter Macro Actions 
Overview Superclass Macro Actions 

Action Description 
bufferSize  Returns the "Buffer Size" setting. 
 
clear  Clears the contents of the edit buffer. 
 
clearBeforeRun  Returns the "Clear Before Run" setting. 
 
dumpFile  Returns the "Dump Raw Data to File" setting. 
 
filePath  Returns the path of the dump file. 
 
fileType  Returns the file type of the dump file (0=Binary, 1=ASCII). 
 
fontSize Returns the "Font Size" setting. 
 
inputEnabled  Returns the "Input Enabled" setting. 
 
mergeProbeName  Returns the "Attach Data From" setting. 
 
saveText  Saves the ASCII text contained within the data buffer to the specified file. 
 

scientificNotation    Returns the "Scientific Notation" setting. 

 
setBufferSize  Sets the "Buffer Size" setting. 
 
setClearBeforeRun  Sets the "Clear Before Run" setting. 
 
setDumpFile  Sets the "Dump Raw Data to File" setting. 
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setFilePath  Sets the path of the dump file.  
 
setFileType  Sets the file type of the dump file (0=Binary, 1=ASCII). 
 
SetFontSize Sets the "Font Size" setting. 
 
setInputEnabled  Sets the "Input Enabled" setting. 
 
setMergeProbeName  Sets the "Attach Data From" setting. 
 
setScientificNotation  Sets the "Scientific Notation" setting. 
 
setTranspose  Sets the "Transpose" setting. 
 
transpose  Returns the "Transpose" setting. 
 
 

bufferSize 
Overview Macro Actions 

Syntax 

componentName.bufferSize() 

Parameters Type Description 
return int The maximum number of data points that can be stored in the edit window at any 
given time (see "Buffer Size" within the DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 
 

clear 
Overview Macro Actions 

Syntax 

componentName.clear() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

clearBeforeRun 
Overview Macro Actions 

Syntax 

componentName.clearBeforeRun() 
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Parameters Type Description 
return BOOL When TRUE, the edit buffer is cleared each time a network simulation is run (see 
"Clear Before Run" within the DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 
 

dumpFile 
Overview Macro Actions 

Syntax 

componentName.dumpFile() 

Parameters Type Description 
return BOOL When TRUE, all data that passes through the attached access point is written to 
the file path (see "Dump Raw Data to File" within the DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 
 

filePath 
Overview Macro Actions 

Syntax 

componentName.filePath() 

Parameters Type Description 
return string The path of the dump file (see "Save Text to File" and "Dump Raw Data to File" 
within the DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 
 

fileType 
Overview Macro Actions 

Syntax 

componentName.fileType() 

Parameters Type Description 
return int The file type of the dump file (0=Binary, 1=ASCII – see "Binary" and "ASCII' 
within the DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 
 

fontSize 
Overview Macro Actions 
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Syntax 

componentName.fontSize() 

Parameters Type Description 
return int The point size of the font used in the edit window (see "Font Size" within the 
DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 
 

inputEnabled 
Overview Macro Actions 

Syntax 

componentName.inputEnabled() 

Parameters Type Description 
return BOOL When TRUE, the accessed data is written to the edit buffer (see "Input Enabled" 
within the DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 

mergeProbeName 
Overview Macro Actions 

Syntax 

componentName.mergeProbeName() 

Parameters Type Description 
return string The component name of the probe that is attaching its data to the DataWriter 
(see "Attach Data From" within the DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 
 

saveText 
Overview Macro Actions 

Syntax 

componentName.saveText(filePath) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 
 
filePath string The ASCII text contained within the data buffer is written to this file (see "Save 
Text to File" within the DataWriter Inspector). 
 



 620

scientificNotation 
Overview Macro Actions 

Syntax 

componentName.scientificNotation() 

Parameters Type Description 
return BOOL When TRUE, the data is displayed and/or written in scientific notation (see 
"Scientific Notation" within the DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 
 

setBufferSize 
Overview Macro Actions 

Syntax 

componentName.setBufferSize(bufferSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
bufferSize int The maximum number of data points that can be stored in the edit 
window at any given time (see "Buffer Size" within the DataWriter Inspector). 
 

setClearBeforeRun 
Overview Macro Actions 

Syntax 

componentName.setClearBeforeRun(clearBeforeRun) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
clearBeforeRun BOOL When TRUE, the edit buffer is cleared each time a network simulation is 
run (see "Clear Before Run" within the DataWriter Inspector). 

setDumpFile 
Overview Macro Actions 

Syntax 

componentName.setDumpFile(dumpFile) 
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Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
dumpFile BOOL When TRUE, all data that passes through the attached access point is 
written to the file path (see "Dump Raw Data to File" within the DataWriter Inspector). 
 

setFilePath 
Overview Macro Actions 

Syntax 

componentName.setFilePath(filePath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
filePath string The path of the dump file (see "Save Text to File" and "Dump Raw Data to File" 
within the DataWriter Inspector). 
 

setFileType 
Overview Macro Actions 

Syntax 

componentName.setFileType(fileType) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fileType int The file type of the dump file (0=Binary, 1=ASCII – see "Binary" and "ASCII' 
within the DataWriter Inspector). 
 

setFontSize 
Overview Macro Actions 

Syntax 

componentName.setFontSize(fontSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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fontSize int The point size of the font used in the edit window (see "Font Size" within the 
DataWriter Inspector). 
 

setInputEnabled 
Overview Macro Actions 

Syntax 

componentName.setInputEnabled(inputEnabled) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
inputEnabled BOOL When TRUE, the accessed data is written to the edit buffer (see "Input 
Enabled" within the DataWriter Inspector). 
 

setMergeProbeName 
Overview Macro Actions 

Syntax 

componentName.setMergeProbeName(nameString) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
nameString string The component name of the probe that is attaching its data to the 
DataWriter (see "Attach Data From" within the DataWriter Inspector). 
 

setScientificNotation 
Overview Macro Actions 

Syntax 

componentName.setScientificNotation(scientificNotation) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
scientificNotation BOOL When TRUE, the data is displayed and/or written in scientific 
notation (see "Scientific Notation" within the DataWriter Inspector). 
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setTranspose 
Overview Macro Actions 

Syntax 

componentName.setTranspose(transpose) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
transpose BOOL When TRUE, the rows and columns are interchanged such that each 
PE is represented by a column of values in the display window (see "Transpose Matrix" within the 
DataWriter Inspector). 

transpose 
Overview Macro Actions 

Syntax 

componentName.transpose() 

Parameters Type Description 
return BOOL When TRUE, the rows and columns are interchanged such that each PE is 
represented by a column of values in the display window (see "Transpose Matrix" within the 
DataWriter Inspector). 
 
componentName  Name defined on the engine property page. 

 

 

Data Storage 

DataStorage Macro Actions 
Overview Superclass Macro Actions 

Action Description 
bufferLength  Returns the "Buffer Size" setting. 
 
messageEvery  Returns the "Message Every" setting. 
 
setBufferLength  Sets the "Buffer Size" setting. 
 
setMessageEvery  Sets the "Message Every" setting. 

 

bufferLength 
Overview Macro Actions 
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Syntax 

componentName.bufferLength() 

Parameters Type Description 
return int The size of the circular buffer in samples (see "Buffer Size" within the 
DataStorage Inspector). 
 
componentName  Name defined on the engine property page. 
 

messageEvery 
Overview Macro Actions 

Syntax 

componentName.messageEvery() 

Parameters Type Description 
return int The periodicity at which the attached probes are notified that the data samples 
contained in the DataStorage are available (see "Message Every" within the DataStorage 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

setBufferLength 
Overview Macro Actions 

Syntax 

componentName.setBufferLength(bufferLength) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
bufferLength int The size of the circular buffer in samples (see "Buffer Size" within the 
DataStorage Inspector). 
 

setMessageEvery 
Overview Macro Actions 

Syntax 

componentName.setMesageEvery(messageEvery) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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messageEvery int The periodicity at which the attached probes are notified that the data 
samples contained in the DataStorage are available (see "Message Every" within the DataStorage 
Inspector). 
 

Hinton 

Hinton Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
setSquareSize  Sets the "Square Size" setting. 
 
squareSize  Returns the "Square Size" setting. 
 

setSquareSize 
Overview Macro Actions 

Syntax 

componentName.setSquareSize(sqareSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
squareSize int The maximum size of the squares in the probe window (see "Square 
Size" within the Hinton Inspector). 
 

squareSize 
Overview Macro Actions 

Syntax 

componentName.squareSize() 

Parameters Type Description 
return int The maximum size of the squares in the probe window (see "Square Size" within 
the Hinton Inspector). 
 
componentName  Name defined on the engine property page. 

 

Image Viewer 

ImageViewer Macro Actions 
Overview  Superclass Macro Actions 
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Action Description 
loadPaletteBeforeRun  Returns the "Load image palette before run" setting. 
 
restorePaletteAfterRun  Returns the "Restore NS palette after run" setting. 
 
saveImageToBitmap  Saves the image shown in the display window to the specified BMP file. 
 
setLoadPaletteBeforeRun  Sets the "Load image palette before run" setting. 
 
setRestorePaletteAfterRun  Sets the "Restore NS palette after run" setting. 
 

loadPaletteBeforeRun 
Overview Macro Actions  

Syntax 

componentName.loadPaletteBeforeRun() 

Parameters Type Description 
return BOOL When TRUE, the gray-scale palette is loaded just before the simulation begins in 
an effort to guarantee that the image will display correctly (see "Load image palette before run" 
within the ImageViewer Inspector). 
 
componentName  Name defined on the engine property page. 
 

 

restorePaletteAfterRun 
Overview Macro Actions  

Syntax 

componentName.restorePaletteAfterRun() 

Parameters Type Description 
return BOOL When TRUE, the original NeuroSolutions palette will be restored at the 
completion of the simulation (see "Restore NS palette after run" within the ImageViewer Inspector). 
 
componentName  Name defined on the engine property page. 
 

saveImageToBitmap 
Overview Macro Actions  

Syntax 

componentName.saveImageToBitmap(filePath) 

Parameters Type Description 
return void Saves the image shown by the ImageViewer as a BMP file (see "Save Bitmap" 
within the ImageViewer Inspector). 
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componentName  Name defined on the engine property page. 
 
filePath string Saves the image shown by the ImageViewer to this BMP file (see "Save Bitmap" 
within the ImageViewer Inspector). 
 

setLoadPaletteBeforeRun 
Overview Macro Actions  

Syntax 

componentName.setLoadPaletteBeforeRun(loadPaletteBeforeRun) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
loadPaletteBeforeRun BOOL When TRUE, the gray-scale palette is loaded just before the 
simulation begins in an effort to guarantee that the image will display correctly (see "Load image 
palette before run" within the ImageViewer Inspector). 
 

setRestorePaletteAfterRun 
Overview Macro Actions  

Syntax 

componentName.setRestorePaletteAfterRun(restorePaletteAfterRun) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
restorePaletteAfterRun BOOL When TRUE, the original NeuroSolutions palette will be 
restored at the completion of the simulation (see "Restore NS palette after run" within the 
ImageViewer Inspector). 

 

Label 

Label Macro Actions 
Overview Superclass Macro Actions 

Action Description 
accessRows  Returns TRUE if the "Rows" radio button is set and FALSE if the "Cols" radio 
button is set. 
 
activeNeuron  Returns the "Active Neuron" setting. 
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autosizing  Returns the "Autosize" setting. 
 
decrementNeuron  Decreases the "Active Neuron" setting by one. 
 
enableLabels  Returns the "Enable Label Editing" setting. 
 
fileForColumnHeadings  Returns the "Auto Label Name" setting. 
 
fontHeight  Returns the "Font Size" setting. 
 
incrementNeuron  Increases the "Active Neuron" setting by one. 
 
label  Returns the label "Text" that corresponds to the active neuron. 
 
labelSize  Returns the "Size" setting. 
 
loadColumnHeadings Loads the column headings from the File component specifed by 
fileForColumnHeadings. 
 
setAccessRows  Set to TRUE to set the "Rows" radio button and "FALSE" to set the "Cols" radio 
button. 
 
setActiveNeuron  Sets the "Active Neuron" setting. 
 
setAutosizing  Sets the "Autosize" setting. 
 
setEnableLabels  Sets the "Enable Label Editing" setting. 
 
setFileForColumnHeadings  Sets the "Auto Label Name" setting. 
 
setFontHeight  Sets the "Font Size" setting. 
 
setLabel  Sets the label "Text" that corresponds to the active neuron. 
 
setLabelSize  Sets the "Size" setting. 
 
setShowLabels  Sets the "Show Labels" setting. 
 
setWantsColumn  Set to TRUE to force the probe to allow editing of the column labels. 
 
showLabels  Returns the "Show Labels" setting. 
 
wantsColumn  Returns TRUE if the probe is forced to allow editing of the column labels. 
 
 

accessRows 
Overview Macro Actions 

Syntax 
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componentName.accessRows() 

Parameters Type Description 
return BOOL TRUE if the active neuron pertains to the probe window's row and FALSE if it 
pertains to the window's column (see "Active Neuron" and "Row and Column" within the Label 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

activeNeuron 
Overview Macro Actions 

Syntax 

componentName.activeNeuron() 

Parameters Type Description 
return int The row or column which is being viewed/modified (see "Active Neuron" within 
the Label Inspector). 
 
componentName  Name defined on the engine property page. 
 

autosizing 
Overview Macro Actions 

Syntax 

componentName.autosizing() 

Parameters Type Description 
return BOOL When TRUE, the maximum number of rows and columns is more easily be 
displayed by changing the size of the probe's window (see "Autosizing" within the Label Inspector). 
 
componentName  Name defined on the engine property page. 
 

decrementNeuron 
Overview Macro Actions 

Syntax 

componentName.decrementNeuron() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

enableLabels 
Overview Macro Actions 
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Syntax 

componentName.enableLabels() 

Parameters Type Description 
return BOOL When TRUE, the labels are user definable as opposed to computer generated 
(see "Enable Label Editing" within the Label Inspector). 
 
componentName  Name defined on the engine property page. 

fileForColumnHeadings 
Overview Macro Actions 

Syntax 

componentName.fileForColumnHeadings() 

Parameters Type Description 
return string The name of the File component that contains the column headings 
corresponding to the probed data (see "Name" within the Label Inspector). 
 
componentName  Name defined on the engine property page. 

 

fontHeight 
Overview Macro Actions 

Syntax 

componentName.fontHeight() 

Parameters Type Description 
return int The font height of the labels (see "Font Size" within the Label Inspector). 
 
componentName  Name defined on the engine property page. 
 

incrementNeuron 
Overview Macro Actions 

Syntax 

componentName.incrementNeuron() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

label 
Overview Macro Actions 
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Syntax 

componentName.label() 

Parameters Type Description 
return string The label text corresponding to the Active Neuron (see "Text" within the Label 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

labelSize 
Overview Macro Actions 

Syntax 

componentName.labelSize() 

Parameters Type Description 
return int The amount of space allocated for the row labels (see "Label Size" within the 
Label Inspector). 
 
componentName  Name defined on the engine property page. 

loadColumnHeadings 
Overview Macro Actions 

Syntax 

componentName.loadColumnHeadings() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

setAccessRows 
Overview Macro Actions 

Syntax 

componentName.setAccessRows(accessRows) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
accessRows BOOL TRUE if the active neuron pertains to the probe window's row and 
FALSE if it pertains to the window's column (see "Active Neuron" and "Row and Column" within the 
Label Inspector). 
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setActiveNeuron 
Overview Macro Actions 

Syntax 

componentName.setActiveNeuron(activeNeuron) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
activeNeuron int The row or column which is being viewed/modified (see "Active Neuron" 
within the Label Inspector). 
 

setAutosizing 
Overview Macro Actions 

Syntax 

componentName.setAutosizing(autosizing) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
autosizing BOOL When TRUE, the maximum number of rows and columns is more easily 
be displayed by changing the size of the probe's window (see "Autosizing" within the Label 
Inspector). 
 

setEnableLabels 
Overview Macro Actions 

Syntax 

componentName.setEnableLabels(enableLabels) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
enableLabels BOOL When TRUE, the labels are user definable as opposed to computer 
generated (see "Enable Label Editing" within the Label Inspector). 
 

setFileForColumnHeadings 
Overview Macro Actions 
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Syntax 

componentName.setFileForColumnHeadings(fileForColumnHeadings) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fileForColumnHeadings string The name of the File component that contains the column 
headings corresponding to the probed data (see "Name" within the Label Inspector). 
 
 

setFontHeight 
Overview Macro Actions 

Syntax 

componentName.setFontHeight(fontHeight) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fontHeight int The font height of the labels (see "Font Size" within the Label 
Inspector). 
 

setLabel 
Overview Macro Actions 

Syntax 

componentName.setLabel(label) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
label string The label text corresponding to the Active Neuron (see "Text" within the Label 
Inspector). 
 

setLabelSize 
Overview Macro Actions 

Syntax 

componentName.setLabelSize(labelSize) 
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Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
labelSize int The amount of space allocated for the row labels (see "Label Size" 
within the Label Inspector). 
 

setShowLabels 
Overview Macro Actions 

Syntax 

componentName.setShowLabels(showLabels) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
showLabels BOOL When TRUE, the labels are displayed in the probe window (see "Show 
Labels" within the Label Inspector). 
 

setWantsColumn 
Overview Macro Actions 

Syntax 

componentName.setWantsColumn(wantsColumn) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
wantsColumn BOOL When TRUE, the probe is forced to allow editing of the column labels. 

showLabels 
Overview Macro Actions 

Syntax 

componentName.showLabels(labels) 

Parameters Type Description 
return BOOL When TRUE, the labels are displayed in the probe window (see "Show Labels" 
within the Label Inspector). 
 
componentName  Name defined on the engine property page. 
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wantsColumn 
Overview Macro Actions 

Syntax 

componentName.wantsColumn() 

Parameters Type Description 
return BOOL Forces the probe to allow editing of column labels. 
 
componentName  Name defined on the engine property page. 

 

TemporalProbe Family 

TemporalProbe Family  

 

Ancestor: Probe Family  

 

The TemporalProbe family is a collection of components for observing data that has been collected 
from a network component over a number of simulation iterations. This enables the TemporalProbe 
components to process or display data over time. TemporalProbes require that they be attached to 
a component having a temporal access point. 

 

Members: 

MegaScope  

ScatterPlot  

3DProbe Family  

Transformer Family  

 

User Interface: 

      Macro Actions  

MegaScope 
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Family: TemporalProbe Family  

Superclass: TemporalProbe 

 

Description: 

The MegaScope probe is a fully functional multi-channel oscilloscope. It has the ability to display 
temporal data as a set of signal traces -- values (vertical axis) over time (horizontal axis). These 
traces can be manipulated in a variety of ways (e.g., amplitude and time scales, position, and 
color). 

The length (number of samples) within each trace is specified by the size of the buffer within the 
attached temporal access point. The refresh rate of the display is specified by the DataStorage 
component used to collect the network data. 

Other TemporalProbes may attach to the Selection access point of the MegaScope to access a 
segment of the displayed data. This segment is specified by selecting (highlighting) a portion of the 
display window. 

 

User Interaction: 

Drag and Drop 

Inspector 

Window 

Access Points 

Macro Actions  

ScatterPlot 

 

  

 

 

Family: TemporalProbe Family 

Superclass: TemporalProbe 

 

Description: 

The ScatterPlot is a probe that takes the data from a temporal access point and plots one channel’s 
data against the data of one of the other channels. Multiple pairs of channels can be specified. The 
data from each pair is used as the X and Y coordinates of a two-dimensional graph. Since the 
points are displayed over a number of samples (i.e., across time), the data is represented as a 
scatter plot. 

 

User Interaction: 
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Drag and Drop 

Inspector 

Window 

Macro Actions  

Access Points 

MegaScope Access Points 

 

Component: MegaScope  

Superclass: TemporalProbe 

 

Selection Access: 

This is an access point to a region of data that has selected (highlighted) in the MegaScope view.  
The data that passes through this selected region will be passed to any component connected to 
this access point. 

Drag and Drop 

Temporal Probe Drag and Drop 

 

The Temporal Probe Family was designed to examine data that has been collected for a period of 
time.  This data block is presented as a temporal access point.  The primary component that is 
responsible for data collection is DataStorage. Any component in this family must be placed on a 
DataStorage or another TemporalProbe. 

Inspectors 

Scope Inspector 

 

Component: MegaScope  

Superclass Inspector: Sweep Inspector  
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Component Configuration: 
Channel 

The number of channels (or traces) is determined by the size of the data at the point being probed.  
Each element found at a probe point counts as 1 channel. 

The "active" channel refers to the channel that appears in the channel form cell.  Any adjustments 
made using the Channel Settings functions will affect only the channel which is "active."  (except 
when the "Change All Channels" switch is set. ) 

The channel may be selected by one of three methods.  Clicking on the left or right arrow button 
will decrement or increment the active channel one at a time.  The channel slider may be used to 
scan through all the possible channels.  Finally, a specific channel number may be entered directly 
into the channel form cell.  

Once the "active" channel has been selected, the inspector will display the specific settings for that 
channel. 
Change All Channels 

This switch allows all the channels parameters to be set concurrently.  When this switch is set, 
adjusting any of the "Channel Settings" will affect all channels. 
Autoset Channels 

Clicking on the autoset channels button will cause several operations to be performed on the 
settings of the visible channels (see Visible switch).  These operations include scaling, positioning, 
and setting the color.  If the Auto Set on Change Switch is set this Button will automatically be 
activated any time the number of channels being accessed changes.  
Vertical Scale 

The vertical scale may be set using one of two different methods.  The first method requires the 
use of the combination of the vertical scale button matrix and slider.  The button matrix will change 
the vertical scale by the factor of ten indicated.  A fraction of these values can be additionally set 
with the slider.  When using this method the form cell will report the exact value of vertical scale.  
The second method is to type the desired value into the form cell.  The slider and button matrix will 
automatically be set accordingly. 
Auto 
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Clicking on this button will automatically set the vertical scaling so that the active trace will vertically 
fill the view. 
Vertical Offset 

The vertical offset may be set in one of two ways.  First, the slider may be used to move the trace.  
Using this method the trace may only be moved from the top of the view to the bottom of the view.  
The vertical offset form cell will display the offset in the correct units specified by the vertical scale.  
The other way to set the vertical offset is by typing the offset directly into the vertical offset form 
cell.  The offset should be entered in terms of the scale currently being used.  For example, if the 
scale is set to10/div and 10 is entered into the vertical offset form cell, the trace will be shifted up 
one division. 
Horizontal Offset 

The horizontal offset is set in the same fashion as the vertical offset. The only difference is that 
here the samples/division are used to compute the value in the horizontal offset form cell. 

Sweep Inspector 

 

Component: MegaScope  

Superclass Inspector: Display Inspector  

 

  

 

Component Configuration: 
Samples/Division 

The number of samples per division is a control of the time scale. It sets the number of samples in 
each of the ten time divisions across the horizontal axis.  These divisions can be seen by displaying 
lines or a grid (see Grid Pull Down Menu ). 

The samples per division may be set using one of two different methods.  The first method requires 
the use of the combination of the samples/div button matrix and slider.  The button matrix will 
change the samples/div by the factor of ten indicated.  A fraction of these values can be additionally 
set with the slider.  When using this method the form cell will report the exact value of samples/div.  
The other way to set the samples/div is to type the desired value into the form cell.  The slider and 
button matrix will automatically be set accordingly. 
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The number of samples per division is a control of the time scale. It sets the number of samples in 
each of the ten time divisions across the horizontal axis.  These divisions can be seen by displaying 
lines or a grid.  

ScatterPlot Inspector 

 

Component: ScatterPlot  

Superclass Inspector: Display Inspector  

 

 

 

Component Configuration: 
Y Channel 

These controls are used to display the settings for the channels used as the Y axis. One can use 
either the slider, the increment/decrement buttons or enter a value. The value of the Y channel is 
an integer that must fall within the range of the total number of channels present at the access 
point. 
Y Channel Settings 

This box will perform selections based on the Y channel selected above. These selections refer to 
which channel is used for the X-axis, and the visibility/color/size of the corresponding point. The 
scatter plot is intrinsically a 2-D plot, so these controls assume a pair of channels, given that you 
selected the Y. 
X Channel 

These controls are used to set which channel will be used for the x-axis when plotting against the 
channel shown as the Y Channel.  The control of the X Channel is the same as the explained 
above for the Y axis.  The X Channel may be set to any of the possible channels including the 
current Y Channel. In this case, a 45 degree scatter will be obtained (x,y components are the 
same). 
Dot Size 
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Each point in the scatter plot will be shown using a square of width "size." Changing this value will 
change the width of the squares and automatically redisplay the plot. Enter integer values between 
1 and 20. 
Change All Channels 

When this switch is set, any changes made to the parameters of the Y channel will effect all Y 
channels. 
Autoset Channels 

Pushing this button will cause the following to occur: 

1)  Every odd channel will be plotted against the next even channel (assuming it exists). 

2)  Every even channel's visibility will be set to off. 

This configuration is considered to be the most likely usage for the ScatterPlot given a 2-D input 
space. 
X Scale 

The Max and Min are used to define the range of the x-axis used for the scatter plot. The user 
types in the required values. This field also shows the Max and Min values displayed. 
Y Scale 

The Max and Min are used to define the range of the y-axis used for the scatter plot. The user 
types in the required values. This field also shows the Max and Min values displayed. 
Autoscale 

Pressing this button will automatically set the Max and Min values for both the x-axis and y-axis 
such that all the points contained in the visible traces will fit within the bounds of the display. 

StateSpaceProbe Inspector 

 

Component: StateSpaceProbe 

Superclass Inspector: 3DProbe Inspector 
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Component Configuration: 
Displacement 

The displacement is used to select ?, i.e. how far apart the samples used to create the input matrix 
are taken from the original signal.  This value may be any integer greater than zero. Low values 
tend to create a state space plot that is elongated along the first quadrant bisector. Too large a 
value of displacement destroys the organization of the data.   
History 

The history is used to determine how many samples will be shown in the display.  This value may 
be any integer greater than zero. Normally it is related to the size of the buffer or features in the 
data that one wants to observe (such as periodicity’s). 

3DProbe Inspector 

 

Component: StateSpaceProbe 

Superclass Inspector: Display Inspector 

 

 

 

Component Configuration: 
Zoom 

The zoom sliders scale the image when projecting it in the 3DProbe.  Each dimension may be 
adjusted separately.  Pressing the reset button will return these values to the defaults.   
Offset 

The offset sliders create an offset when projecting the image in the 3DProbe.  Each dimension may 
be adjusted separately.  Pressing the reset button will return these values to the defaults. 

∆ 
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The ? slider allows control of the apparent viewing angle of the image within 3D probes. This 
occurs because the ∆ slider mimics the change of view with distance in the real world. 
Uniform Scale 

The Uniform Scale switch, when set, will create a uniform scale on all X, Y, and Z dimensions.  This 
is done so that the image contained within the 3D probes will not be distorted by varying scale. 
Show Cube 

The Show Cube switch, when set, will show a cube along the axis. This is known to increase the 
3D effect of the display.   
Autoscale 

The Autoscale switch, when set, will scale the X, Y, and Z dimensions independently so that the 
image will fill the cube. 
Reset 

The reset button will return all sliders to the default positions. 
Lines/Dots/Both 

The Lines/Dots/Both menu allows three different ways of viewing the data.  The image may be 
viewed by connecting the data samples with lines, drawing dots on the location of the data sample 
in space, or both. 
Projection Matrix 

The Projection Matrix shows the values of ??????and???used to project the 3 dimensional data 
onto the screen. The user can enter a selection directly into these fields. 

Windows 

MegaScope Window 

 

  

 

 

Component: MegaScope  

Superclass: TemporalProbe 

 



 644

  

 

Description: 

The MegaScope view allows the plotting of multi-channel variables over time. The MegaScope 
view accepts further selection of a portion of the plotted data, which is accomplished with the 
mouse. Just press the mouse button at the left of the desired region and drag the mouse (with the 
button pressed) towards the right until the end of the desired selection.  

The data in this region can be accessed by other probes.  All data that passes through this region 
will automatically be forwarded to attached temporal probes.  The Slider and Buttons at the bottom 
of the view allow the unseen data to be scrolled to the visible region. 

ScatterPlot Window 

 

  

 

 

Component: ScatterPlot  

Superclass: TemporalProbe 
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Description 

The ScatterPlot view has the ability to resize and the contents of the view will automatically redraw 
and rescale to fit.  The cross hairs shown in the view represent the x and y axes.  The point at 
which they meet is (0,0).  

StateSpaceProbe Window 

 

 

 

 

Component: StateSpaceProbe  
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Description: 

The StateSpaceProbe uses the above window to display its data. This window is opened by 
double-clicking on the StateSpaceProbe icon. 

 

Φ Slider 

The Φ slider (horizontal slider) allows the image in the StateSpaceProbe window to be rotated 
around the horizontal axis.  The image may be rotated 90 degrees in either direction. 

Θ Slider 

The Θ slider (vertical slider) allows the image in StateSpaceProbe window to be rotated around the 
vertical axis.  The image may be rotated 180 degrees in either direction. 

Macro Actions 

Mega Scope 

MegaScope Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
amplitude  Returns the "Vertical Scale" setting. 
 
autoscaleChannel  Automatically adjusts scale setting. 
 
autoSetUpChannels  Automatically adjusts the MegaScope settings so that all of the traces 
can be viewed at once. 
 
horizontalPos  Returns the value of the "Horizontal Offset" scroller. 
 
horizontalPosSamples  Returns the value of the "Horizontal Offset" edit cell. 
 
multiplier  Returns the "Vertical Scale" setting. 
 
scale  Returns the exponent of the "Vertical Scale" setting (3=1000, 2=100, 1=10, 0=1, -1=0.1, -
2=0.01, -3=0.001). 
 
setAmplitude  Sets the "Vertical Scale" setting and automatically adjusts the scale. 
 
setHorizontalPos  Sets the value of the "Horizontal Offset" scroller. 
 
setHorizontalPosSamples  Sets the value of the "Horizontal Offset" edit cell. 
 
setMultiplier  Sets the "Vertical Scale" setting.  
 
setScale  Sets the exponent of the "Vertical Scale" setting (3=1000, 2=100, 1=10, 0=1, -
1=0.1, -2=0.01, -3=0.001). 
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setSweepMult  Sets the sweep multiplier ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale]). 
 
setSweepRate  Sets the "Samples/Division" setting (sweep rate). 
 
setSweepScale  Sets the sweep scale ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale]). 
 
setVerticalPos  Sets the "Vertical Offset" scroller value. 
 
setVerticalPosVolts  Sets the "Vertical Offset" edit cell value. 
 
sweepMult  Returns the sweep multiplier (Sample/Division = [sweep multiplier] * 10 ^ [sweep 
scale]). 
 
sweepRate  Returns the "Samples/Division" setting (sweep rate). 
 
sweepScale  Returns the sweep scale ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale]). 
 
verticalPos  Returns the "Vertical Offset" scroller value. 
 
verticalPosVolts  Returns the "Vertical Offset" edit cell value. 
 
 
 
 

amplitude 
Overview Macro Actions 

Syntax 

componentName.amplitude() 

Parameters Type Description 
return float The vertical scaling factor (see "Vertical Scale" of the Scope Inspector). 
 
componentName  Name defined on the engine property page. 

 

autoscaleChannel 
Overview Macro Actions 

Syntax 

componentName.autoscaleChannel() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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autoSetUpChannels 
Overview Macro Actions 

Syntax 

componentName.autoSetUpChannels() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

horizontalPos 
Overview Macro Actions 

Syntax 

componentName.horizontalPos() 

Parameters Type Description 
return float The position of the scroller used to adjust the horizontal offset (see "Horizontal 
Offset" within the Scope Inspector). 
 
componentName  Name defined on the engine property page. 

 

horizontalPosSamples 
Overview Macro Actions 

Syntax 

componentName.horizontalPosSamples() 

Parameters Type Description 
return float The value of the edit cell used to set the horizontal offset (see "Horizontal Offset" 
within the Scope Inspector). 
 
componentName  Name defined on the engine property page. 

 

multiplier 
Overview Macro Actions 

Syntax 

componentName.multiplier() 

Parameters Type Description 
return float The vertical scaling factor (see "Vertical Scale" within the Scope Inspector). 
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componentName  Name defined on the engine property page. 

 

scale 
Overview Macro Actions 

Syntax 

componentName.scale() 

Parameters Type Description 
return int The exponent of the vertical scaling factor (3=1000, 2=100, 1=10, 0=1, -1=0.1, -
2=0.01, -3=0.001 – see "Vertical Scale" within the Scope Inspector). 
 
componentName  Name defined on the engine property page. 

 

setAmplitude 
Overview Macro Actions 

Syntax 

componentName.setAmplitude(amplitude) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
amplitude float The vertical scaling factor (see "Vertical Scale" of the Scope Inspector). 

setHorizontalPos 
Overview Macro Actions 

Syntax 

componentName.setHorizontalPos(horizontalPos) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
horizontalPos float The position of the scroller used to adjust the horizontal offset (see 
"Horizontal Offset" within the Scope Inspector). 

setHorizontalPosSamples 
Overview Macro Actions 

Syntax 
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componentName.setHorizontalPosSamples(horizontalPosSamples) 

Parameters Type Description 
return float 
 
componentName  Name defined on the engine property page. 
 
HorizontalPosSamples float The value of the edit cell used to set the horizontal offset (see 
"Horizontal Offset" within the Scope Inspector). 
 

setMultiplier 
Overview Macro Actions 

Syntax 

componentName.setMultiplier(multiplier) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
multiplier float The vertical scaling factor (see "Vertical Scale" within the Scope 
Inspector). 
 
 

setScale 
Overview Macro Actions 

Syntax 

componentName.setScale(scale) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
scale int The exponent of the vertical scaling factor (3=1000, 2=100, 1=10, 0=1, -1=0.1, -
2=0.01, -3=0.001 – see "Vertical Scale" within the Scope Inspector). 
 

setSweepMult 
Overview Macro Actions 

Syntax 

componentName.setSweepMult(sweepMult) 

Parameters Type Description 
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return void 
 
componentName  Name defined on the engine property page. 
 
sweepMult float The sweep multiplier ([sweep rate] = [sweep multiplier] * 10 ^ [sweep 
scale] – see "Samples/Division" with the Sweep Inspector). 
 

setSweepRate 
Overview Macro Actions 

Syntax 

componentName.setSweepRate(sweepRate) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
sweepRate float The sweep rate ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] – 
see "Samples/Division" with the Sweep Inspector). 
 

setSweepScale 
Overview Macro Actions 

Syntax 

componentName.setSweepScale(sweepScale) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
sweepScale int The sweep scale ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] 
– see "Samples/Division" with the Sweep Inspector). 
 

setVerticalPos 
Overview Macro Actions 

Syntax 

componentName.setVerticalPos(verticalPos) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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verticalPos float The position of the scroller used to adjust the vertical offset (see 
"Vertical Offset" within the Scope Inspector). 
 

setVerticalPosVolts 
Overview Macro Actions 

Syntax 

componentName.setVerticalPosVolts(verticalPosVolts) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
verticalPosVolts float The value of the edit cell used to define the vertical offset (see "Vertical 
Offset" within the Scope Inspector). 
 

sweepMult 
Overview Macro Actions 

Syntax 

componentName.sweepMult() 

Parameters Type Description 
return float The sweep multiplier ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] – see 
"Samples/Division" with the Sweep Inspector). 
 
componentName  Name defined on the engine property page. 

 

sweepRate 
Overview Macro Actions 

Syntax 

componentName.sweepRate() 

Parameters Type Description 
return float The sweep rate ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] – see 
"Samples/Division" with the Sweep Inspector). 
 
componentName  Name defined on the engine property page. 

 

sweepScale 
Overview Macro Actions 
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Syntax 

componentName.sweepScale() 

Parameters Type Description 
return int The sweep scale ([sweep rate] = [sweep multiplier] * 10 ^ [sweep scale] – see 
"Samples/Division" with the Sweep Inspector). 
 
componentName  Name defined on the engine property page. 

 

verticalPos 
Overview Macro Actions 

Syntax 

componentName.verticalPos() 

Parameters Type Description 
return float The position of the scroller used to adjust the vertical offset (see "Vertical Offset" 
within the Scope Inspector). 
 
componentName  Name defined on the engine property page. 

 

verticalPosVolts 
Overview Macro Actions 

Syntax 

componentName.verticalPosVolts() 

Parameters Type Description 
return float The value of the edit cell used to define the vertical offset (see "Vertical Offset" 
within the Scope Inspector). 
 
componentName  Name defined on the engine property page. 

 

Scatter Plot 

ScatterPlot Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
autoSetUpChannels Automatically sets every odd channel to be plotted against the next 
even channel (assuming it exists), and every even channel’s visibility will be set to off (see "Autoset 
Channels" within the ScatterPlot Inspector). 
 
decrementXChannel  Decreases the "X Channel" setting by one (see "X Channel" within the 
ScatterPlot Inspector). 



 654

 
dotSize  Returns the "Dot Size" setting. 
 
incrementXChannel  Increases the "X Channel" setting by one (see "X Channel" within the 
ScatterPlot Inspector). 
 
performAutoscale  Sets the Max and Min values for both the x-axis and y-axis such that all 
the points contained in the visible traces will fit within the bounds of the display (see "Autoscale" 
within the ScatterPlot Inspector). 
 
setDotSize  Sets the "Dot Size" setting. 
 
setXChannel  Sets the "X Channel" setting. 
 
setXMaxScale  Sets the "X Max" setting. 
 
setXMinScale  Sets the "X Min" setting. 
 
setYMaxScale  Sets the "Y Max" setting. 
 
setYMinScale   Sets the "Y Min" setting. 
 
xChannel  Returns the "X Channel" setting. 
 
xMaxScale  Returns the "X Max" setting. 
 
xMinScale  Returns the "X Min" setting. 
 
yMaxScale  Returns the "Y Max" setting. 
 
yMinScale  Returns the "Y Min" setting. 
 

 

autoSetUpChannels 
Overview Macro Actions 

Syntax 

componentName.autoSetUpChannels() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

decrementXChannel 
Overview Macro Actions 
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Syntax 

componentName. decrementXChannel() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

dotSize 
Overview Macro Actions 

Syntax 

componentName. dotSize() 

Parameters Type Description 
return int The width of the squares in the display window (see "Dot Size" within the 
ScatterPlot Inspector). 
 
componentName  Name defined on the engine property page. 

 

incrementXChannel 
Overview Macro Actions 

Syntax 

componentName. incrementXChannel() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

performAutoscale 
Overview Macro Actions 

Syntax 

componentName. performAutoscale() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 



 656

setDotSize 
Overview Macro Actions 

Syntax 

componentName. setDotSize(dotSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
dotSize int The width of the squares in the display window (see "Dot Size" within the 
ScatterPlot Inspector). 
 

setXChannel 
Overview Macro Actions 

Syntax 

componentName. setXChannel(xChannel) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
xChannel int The channel that will be used for the x-axis when plotting against the 
channel shown as the "Y Channel" (see "X Channel" within the ScatterPlot Inspector). 
 

setXMaxScale 
Overview Macro Actions 

Syntax 

componentName. setXMaxScale(xMaxScale) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
xMaxScale float The maximum value used to define the range of the x-axis on the 
scatter plot (see "X Scale" within the ScatterPlot Inspector). 

setXMinScale 
Overview Macro Actions 

Syntax 
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componentName. setXMinScale(xMinScale) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
xMinScale float The minimum value used to define the range of the x-axis on the scatter 
plot (see "X Scale" within the ScatterPlot Inspector). 
 

setYMaxScale 
Overview Macro Actions 

Syntax 

componentName. setYMaxScale(yMaxScale) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
yMaxScale float The maximum value used to define the range of the y-axis on the 
scatter plot (see "Y Scale" within the ScatterPlot Inspector). 
 

setYMinScale  
Overview Macro Actions 

Syntax 

componentName. setYMinScale(yMinScale) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
yMinScale float The minimum value used to define the range of the y-axis on the scatter 
plot (see "Y Scale" within the ScatterPlot Inspector). 
 

xChannel 
Overview Macro Actions 

Syntax 

componentName.xChannel() 

Parameters Type Description 
return int The channel that will be used for the x-axis when plotting against the channel 
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shown as the "Y Channel" (see "X Channel" within the ScatterPlot Inspector). 
 
componentName  Name defined on the engine property page. 
 

 

xMaxScale 
Overview Macro Actions 

Syntax 

componentName. xMaxScale() 

Parameters Type Description 
return float The maximum value used to define the range of the x-axis on the scatter plot 
(see "X Scale" within the ScatterPlot Inspector). 
 
componentName  Name defined on the engine property page. 

 

xMinScale 
Overview Macro Actions 

Syntax 

componentName. xMinScale() 

Parameters Type Description 
return float The minimum value used to define the range of the x-axis on the scatter plot (see 
"X Scale" within the ScatterPlot Inspector). 
 
componentName  Name defined on the engine property page. 

 

yMaxScale 
Overview Macro Actions 

Syntax 

componentName. yMaxScale() 

Parameters Type Description 
return float The maximum value used to define the range of the x-axis on the scatter plot 
(see "X Scale" within the ScatterPlot Inspector). 
 
componentName  Name defined on the engine property page. 

 

yMinScale 
Overview Macro Actions 
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Syntax 

componentName. yMinScale() 

Parameters Type Description 
return float The minimum value used to define the range of the y-axis on the scatter plot (see 
"Y Scale" within the ScatterPlot Inspector). 
 
componentName  Name defined on the engine property page. 

 

Temporal Probe 

TemporalProbe Macro Actions 
Overview Superclass Macro Actions 

Action Description 
activeChannel Returns the "Channel" setting. 
 
autoSetUpChannels  Automatically sets the scaling, positioning, color settings (see "Autoset 
Channels" within the Display Inspector). 
 
broadcast  Returns the "Change All Channels" setting. 
 
decrementChannel  Decreases the "Channel" setting by one (see "Channel" within the 
Display Inspector). 
 
grid  Returns the "Grid" setting (0="None", 1="Lines", 2="Grid"). 
 
incrementChannel  Increases the "Channel" setting by one (see "Channel" within the 
Display Inspector). 
 
setActiveChannel  Sets the "Channel" setting. 
 
setBroadcast  Sets the "Change All Channels" setting. 
 
setColor Sets the "Color" setting (Hex value 0x00bbggrr). 
 
setGrid  Sets the "Grid" setting (0="None", 1="Lines", 2="Grid").. 
 
setVisible  Sets the "Visible" setting. 
 
visible  Returns the "Visible" setting. 
 

activeChannel 
Overview Macro Actions 

Syntax 

componentName. activeChannel() 
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Parameters Type Description 
return int The current channel used by the "Channel Settings" (see "Channel" within the 
Display Inspector). 
 
componentName  Name defined on the engine property page. 

 

autoSetUpChannels 
Overview Macro Actions 

Syntax 

componentName. autoSetUpChannels() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

broadcast 
Overview Macro Actions 

Syntax 

componentName. broadcast() 

Parameters Type Description 
return BOOL TRUE if the changes made to the current channel are also made to all channels 
(see "Autoset Channels" within the Display Inspector). 
 
componentName  Name defined on the engine property page. 

 

decrementChannel 
Overview Macro Actions 

Syntax 

componentName. decrementChannel() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

grid 
Overview Macro Actions 
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Syntax 

componentName. grid() 

Parameters Type Description 
return int Specifies whether or not the view is segmented into 10 equal divisions 
(0="None", 1="Lines", 2="Grid" – see "Grid" within the Display Inspector). 
 
componentName  Name defined on the engine property page. 

 

incrementChannel 
Overview Macro Actions 

Syntax 

componentName. incrementChannel() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

setActiveChannel 
Overview Macro Actions 

Syntax 

componentName. setActiveChannel(activeChannel) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
activeChannel int The current channel used by the "Channel Settings" (see "Channel" 
within the Display Inspector). 
 

setBroadcast 
Overview Macro Actions 

Syntax 

componentName. setBroadcast(broadcast) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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broadcast BOOL TRUE if the changes made to the current channel are also made to all 
channels (see "Autoset Channels" within the Display Inspector). 
 

setColor 
Overview Macro Actions 

Syntax 

componentName. setColor(color) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
color int value has the following hexadecimal form: 0x00bbggrr. The low-order byte 
contains a value for the relative intensity of red; the second byte contains a value for green; and the 
third byte contains a value for blue. The high-order byte must be zero. The maximum value for a 
single byte is 0xFF. 
 

setGrid 
Overview Macro Actions 

Syntax 

componentName. setGrid(grid) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
grid int Specifies whether or not the view is segmented into 10 equal divisions 
(0="None", 1="Lines", 2="Grid" – see "Grid" within the Display Inspector). 
 

setVisible 
Overview Macro Actions 

Syntax 

componentName. setVisible(visible) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
visible int TRUE if the trace for the activeChannel is visible (see "Visible" within the Display 
Inspector). 
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visible 
Overview Macro Actions 

Syntax 

componentName. visible() 

Parameters Type Description 
return int TRUE if the trace for the activeChannel is visible (see "Visible" within the Display 
Inspector). 
 
componentName  Name defined on the engine property page. 

 

3DProbe Family 

3DProbe Family  

 

Ancestor: TemporalProbe Family  

 

The 3DProbe family is a collection of components for observing the data in a given network as a 
three dimensional projection. The members of the family determine the way in which the data is 
projected. Members of the 3DProbe family have the ability to rotate and scale the projection. The 
points can be plotted using dots, connected lines, or both. 

 

Members: 

StateSpaceProbe 

 

User Interaction:      

       Macro Actions  

StateSpaceProbe 

 

 

 

 

Family: 3DProbe Family  

Superclass: 3DProbe 
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Description: 

The StateSpaceProbe provides a 3D state space representation of a sequence x based on the 
matrix given below. This matrix is created using the history, n, of input data at some displacement, 
τ. The output of this matrix is displayed using the abilities inherited from 3DProbe. 

 

 

 aij  = x0 x? x2?  

  x1 x1+? x1+2? 

  . . . 

  . . . 

  xn-2? xn-? xn 

 

A state space trajectory represents a 3-D plot of the time evolution of the state of the system that 
generated the data. Here the generated data is that contained within the attached temporal access 
point. The StateSpaceProbe displays the signal against approximations of its first and second 
derivatives. This tool is very useful for dynamic system analysis. 

 

User Interaction: 

Drag and Drop 

Inspector 

Window 

Access Points 

Macro Actions  

Macro Actions 

3D Probe 

3DProbe Macro Actions 
Overview Superclass Macro Actions 

Action Description 
amplitude  Returns the "Amplitude" setting. 
 
autoscale  Returns the "Autoscale" setting. 
 
distance  Returns the "Delta" setting. 
 
offset Returns the "Offset" setting for the specified axis. 
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phi  Returns the "Phi setting. 
 
reset  Returns all dimension values to their original, default positions. 
 
setAmplitude  Sets the "Amplitude" setting. 
 
setAutoscale  Sets the "Autoscale" setting. 
 
setDistance  Sets the "Delta" setting. 
 
setOffset Sets the "Offset" setting for the specified axis. 
 
setPhi  Sets the "Phi setting. 
 
setShowCube  Sets the "Show Cube" setting. 
 
setShowDots  Set to TRUE for the "Dots" or "Both" settings. 
 
setShowLines  Set to TRUE for the "Lines" or "Both" settings. 
 
setSquareCube  Sets the "Uniform Scale" setting. 
 
setTheta  Sets the "Theta" setting. 
 
showCube  Returns the "Show Cube" setting. 
 
showDots  Returns TRUE for the "Dots" or "Both" settings. 
 
showLines  Returns TRUE for the "Lines" or "Both" settings. 
 
squareCube  Returns the "Uniform Scale" setting. 
 
theta  Returns the "Theta" setting. 
 
 
 
 

 

amplitude 
Overview Macro Actions 

Syntax 

componentName.amplitude(axis) 

Parameters Type Description 
return float Amplitude of the scaling function (see "Zoom" within the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 
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Axis int Axis to query (X=0, Y=1, Z=2). 
 

autoscale 
Overview Macro Actions 

Syntax 

componentName.autoscale() 

Parameters Type Description 
return BOOL When TRUE, the X, Y, and Z dimensions will scale independently so that the 
image will fill the cube (see "Autoscale" within the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 
 

distance 
Overview Macro Actions 

Syntax 

componentName.distance() 

Parameters Type Description 
return float The apparent viewing angle of the image (see "Delta" within the 3DProbe 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

offset 
Overview Macro Actions 

Syntax 

componentName.offset() 

Parameters Type Description 
return float Offset of the scaling function (see " Offset" within the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 
 
Axis int Axis to query (X=0, Y=1, Z=2). 
 

phi 
Overview Macro Actions 

Syntax 
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componentName.phi() 

Parameters Type Description 
return float Parameter used to project the 3 dimensional data onto the screen (see 
"Projection Matrix" within the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 

reset 
Overview Macro Actions 

Syntax 

componentName.reset() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

setAmplitude 
Overview Macro Actions 

Syntax 

componentName.setAmplitude(amplitude,axis) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
amplitude float Amplitude of the scaling function (see "Zoom" within the 3DProbe 
Inspector). 
 
Axis int Axis to change (X=0, Y=1, Z=2). 
 

setAutoscale 
Overview Macro Actions 

Syntax 

componentName.setAutoscale(autoscale) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
autoscale BOOL When TRUE, the X, Y, and Z dimensions will scale independently so 
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that the image will fill the cube (see "Autoscale" within the 3DProbe Inspector). 
 

setPhi 
Overview Macro Actions 

Syntax 

componentName.setPhi(phi) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
phi float Parameter used to project the 3 dimensional data onto the screen (see 
"Projection Matrix" within the 3DProbe Inspector). 

setShowCube 
Overview Macro Actions 

Syntax 

componentName.setShowCube(showCube) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
showCube BOOL When TRUE, a cube will be displayed along the axis (see "Show Cube" 
within the 3DProbe Inspector). 
 

setShowDots 
Overview Macro Actions 

Syntax 

componentName.setShowDots(showDots) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
showDots BOOL When TRUE, the location of the data samples in space are displayed 
through a series of dots (see "Lines/Dots/Both" within the 3DProbe Inspector). 
 

setShowLines 
Overview Macro Actions 
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Syntax 

componentName.setShowLines(showLines) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
showLines BOOL When TRUE, the location of the data samples in space are displayed 
through a series of lines connecting the points (see "Lines/Dots/Both" within the 3DProbe 
Inspector). 

setSquareCube 
Overview Macro Actions 

Syntax 

componentName.setSquareCube(squareCube) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
squareCube BOOL When TRUE, the image within the 3D probes will not be distorted by 
varying scale (see "Uniform Scale" within the 3DProbe Inspector). 
 
 

setTheta 
Overview Macro Actions 

Syntax 

componentName.setTheta(theta) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
theta float Parameter used to project the 3 dimensional data onto the screen (see 
"Projection Matrix" within the 3DProbe Inspector). 
 

showCube 
Overview Macro Actions 

Syntax 

componentName.showCube() 
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Parameters Type Description 
return BOOL When TRUE, a cube will be displayed along the axis (see "Show Cube" within 
the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 
 

showDots 
Overview Macro Actions 

Syntax 

componentName.showDots() 

Parameters Type Description 
return BOOL When TRUE, the location of the data samples in space are displayed through a 
series of dots (see "Lines/Dots/Both" within the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 
 

showLines 
Overview Macro Actions 

Syntax 

componentName.showLines() 

Parameters Type Description 
return BOOL When TRUE, the location of the data samples in space are displayed through a 
series of lines connecting the points (see "Lines/Dots/Both" within the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 
 

squareCube 
Overview Macro Actions 

Syntax 

componentName.squareCube() 

Parameters Type Description 
return BOOL When TRUE, the image within the 3D probes will not be distorted by varying 
scale (see "Uniform Scale" within the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 
 

theta 
Overview Macro Actions 
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Syntax 

componentName.theta() 

Parameters Type Description 
return float Parameter used to project the 3 dimensional data onto the screen (see 
"Projection Matrix" within the 3DProbe Inspector). 
 
componentName  Name defined on the engine property page. 
 

setDistance 
Overview Macro Actions 

Syntax 

componentName.setDistance(distance) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
distance float The apparent viewing angle of the image (see "Delta" within the 
3DProbe Inspector). 

setOffset 
Overview Macro Actions 

Syntax 

componentName.setOffset(offset) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
amplitude float Offset of the scaling function (see "Offset" within the 3DProbe 
Inspector). 
 
Axis int Axis to change (X=0, Y=1, Z=2). 
 

State Space Probe 

StateSpaceProbe Macro Actions 
Overview Superclass Macro Actions 

Action Description 
displacement  Returns the "Displacement" setting. 
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history  Returns the "History" setting. 
 
setDisplacement  Sets the "Displacement" setting. 
 
setHistory  Sets the "History" setting. 
 
 

displacement 
Overview Macro Actions 

Syntax 

componentName. displacement() 

Parameters Type Description 

return int The displacement τ, i.e. how far apart the samples used to create the input 
matrix are taken from the original signal (see "Displacement" within the StateSpaceProbe 
Inspector). 
 
componentName  Name defined on the engine property page. 

 

history 
Overview Macro Actions 

Syntax 

componentName. history() 

Parameters Type Description 
return int The number of samples that will be shown in the display (see "History" within the 
StateSpaceProbe Inspector). 
 
componentName  Name defined on the engine property page. 

 

setDisplacement 
Overview Macro Actions 

Syntax 

componentName. setDisplacement(displacement) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

displacement int The displacement τ, i.e. how far apart the samples used to create the 
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input matrix are taken from the original signal (see "Displacement" within the StateSpaceProbe 
Inspector). 
 

setHistory 
Overview Macro Actions 

Syntax 

componentName. setHistory(history) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
history int The number of samples that will be shown in the display (see "History" within the 
StateSpaceProbe Inspector). 
 

Drag and Drop 

Inspectors 

Probe Inspector 

 

Superclass Inspector: Access Inspector 
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Component Configuration  
Min 

The minimum data value that will be displayed. All data values smaller than this will be displayed as 
the minimum. 
Max 

The maximum data value that will be displayed. All data values larger than this will be displayed as 
the maximum. 
Automatic 

This feature will set the min and max values using the minimum and maximum values for all 
neurons being probed.  It is suggested that this switch be used to establish initial values and then it 
should be switched off.  Leaving it on during training could create confusion in the interpretation of 
the data being displayed and it may also slow down the simulation. 
Denormalize from Normalization File 

Applies the inverse scale and offset for each channel from the selected normalization file (see the 
Data Sets Inspector). This is most often used to display/write the network output in the same units 
as the desired output. 
Browse 

Displays an Open panel to select the file that contains the normalization coefficients used for the 
denormalization (see above). 
Display Every 

The update rate of the Probe may be user controlled so that it will occur once every so many 
samples.  This cell allows this number to be set to any integer greater than or equal to one. 
Window Title 

The text that appears on the top bar of the probe window. 
Fix 
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When this switch is set, the title of the probe window can be fixed to a user-specified string (see 
"Window Title" above). 

 

Macro Actions 

Access 

Probe 

Probe Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
autoNormalize  Returns the "Automatic" setting. 
 
dataLength  Returns the number of rows of formatted data. 
 
dataWidth  Returns the number of columns of formatted data. 
 
denormalizeFromFile  Returns the "Denormalize from Normalization File" setting. 
 
displayEvery  Returns the "Display Every" setting.  
 
fixWindowTitle  Returns the "Fix Window Title" setting. 
 
getProbeData  Returns the probe data as a variant array. 
 
maxNormValue  Returns the "View Range Max" setting. 
 
minNormValue  Returns the "View Range Min" setting. 
 
normalizationFilePath  Returns the normalization file path used for the denormalization. 
 
setAutoNormalize  Sets the "Automatic" setting. 
 
setDenormalizeFromFile  Sets the "Denormalize from Normalization File" setting 
 
setDisplayEvery  Sets the "Display Every" setting. 
 
setFixWindowTitle  Sets the "Fix Window Title" setting. 
 
setMaxNormValue  Sets the "View Range Max" setting. 
 
setMinNormValue  Sets the "View Range Min" setting. 
 
SetNormalizationFilePath Sets the normalization file path used for the denormalization. 
 
 

setWindowTitle    Sets the title of the probe window. 
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tileWindow  Sizes and positions the probe window based on the position parameters given. 
 
tileWindowBelow  Sizes and positions the probe window based on the position parameters given 
and the name of the probe to be placed below. 
 
tileWindowNextTo 
 

  Sizes and positions the probe window based on the position parameters 
given and the name of the probe to be placed next to. 

 

windowTitle  Returns the title of the probe window. 

 

autoNormalize 
Overview  Macro Actions 

Syntax 

componentName.autoNormalize() 

Parameters Type Description 
return BOOL When TRUE, the min and max values are automatically determined from the 
data being probed (see "Automatic" within the Probe Inspector). 
 
componentName  Name defined on the engine property page. 

 

dataLength 
Overview  Macro Actions 

Syntax 

componentName.dataLength() 

Parameters Type Description 
return int The number of rows of formatted data. 
 
componentName  Name defined on the engine property page. 

 

dataWidth 
Overview  Macro Actions 

Syntax 

componentName.dataWidth() 

Parameters Type Description 
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return int The number of columns of formatted data. 
 
componentName  Name defined on the engine property page. 

denormalizeFromFile 
Overview  Macro Actions 

Syntax 

componentName.denormalizeFromFile() 

Parameters Type Description 
return BOOL When TRUE, the inverse scale and offset is applied to each channel based on 
the normalization file (see "Denormalize from Normalization File" within the Probe Inspector). 
 
componentName  Name defined on the engine property page. 

displayEvery 
Overview  Macro Actions 

Syntax 

componentName.displayEvery() 

Parameters Type Description 
return int The update rate of the probe (see "Display Every" within the Probe Inspector). 
 
componentName  Name defined on the engine property page. 

fixWindowTitle 
Overview  Macro Actions 

Syntax 

componentName.fixWindowTitle() 

Parameters Type Description 
return BOOL When TRUE, the title of the probe window can be fixed to a user-specified string 
(see "Fix" within the Probe Inspector). 
 
componentName  Name defined on the engine property page. 

 

getProbeData 
Overview  Macro Actions 

Syntax 

componentName.getProbeData() 

Parameters Type Description 
return variant Variant array of floating point values containing the data being probed. For static 
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probes, the dimensions of the array are dataWidth by dataLength. For the DataStorage component, 
the dimensions of the array are dataWidth by dataLength by bufferLength. 
 
componentName  Name defined on the engine property page. 
 

maxNormValue 
Overview  Macro Actions 

Syntax 

componentName.maxNormValue() 

Parameters Type Description 
return float The maximum data value that will be displayed (see "Max" within the Probe 
Inspector). 
 
componentName  Name defined on the engine property page. 
 

minNormValue 
Overview  Macro Actions 

Syntax 

componentName.minNormValue() 

Parameters Type Description 
return float The minimum data value that will be displayed (see "Min" within the Probe 
Inspector). 
 
componentName  Name defined on the engine property page. 

 

normalizationFilePath 
Overview  Macro Actions 

Syntax 

componentName.normalizationFilePath() 

Parameters Type Description 
return string The path of the normalization file used for denormalization (see "Denormalize 
from Normalization File" within the Probe Inspector). 
 
 
componentName  Name defined on the engine property page. 
 

setAutoNormalize 
Overview  Macro Actions 
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Syntax 

componentName.setAutoNormalize(autoNormalize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page . 
 
autoNormalize BOOL When TRUE, the min and max values are automatically determined 
from the data being probed (see "Automatic" within the Probe Inspector). 
 

setDenormalizeFromFile 
Overview  Macro Actions 

Syntax 

componentName.setDenormalizeFromFile(denormalizeFromFile) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
denormalizeFromFile BOOL When TRUE, the inverse scale and offset is applied to each 
channel based on the normalization file (see "Denormalize from Normalization File" within the 
Probe Inspector). 
 
 

setDisplayEvery 
Overview  Macro Actions 

Syntax 

componentName.setDisplayEvery(displayEvery) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
displayEvery int The update rate of the probe (see "Display Every" within the Probe 
Inspector). 
 
 

setFixWindowTitle 
Overview  Macro Actions 

Syntax 
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componentName.setFixWindowTitle(fixWindowTitle) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fixWindowTitle BOOL When TRUE, the title of the probe window can be fixed to a user-
specified string (see "Fix" within the Probe Inspector). 
 

 

setMaxNormValue 
Overview  Macro Actions 

Syntax 

componentName.setMaxNormValue(maxNormValue) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
maxNormValue float The maximum data value that will be displayed (see "Max" within the 
Probe Inspector). 
 
 

setMinNormValue 
Overview  Macro Actions 

Syntax 

componentName.setMinNormValue(minNormValue) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
minNormValue float The minimum data value that will be displayed (see "Min" within the 
Probe Inspector). 
 
 

setNormalizationFilePath 
Overview  Macro Actions 

Syntax 

componentName.setNormalizationFilePath(normalizationFilePath) 
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Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
normalizationFilePath string The path of the normalization file used for denormalization (see 
"Denormalize from Normalization File" within the Probe Inspector). 
 

setWindowTitle 
Overview  Macro Actions 

Syntax 

componentName.setWindowTitle(windowTitle) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
windowTitle String The title of the probe window (see "Window Title" of the Probe Inspector 
page). 

 

tileWindow 
Overview  Macro Actions 

Syntax 

componentName.tileWindow(probeNumHoriz, totalProbesHoriz, probeNumVert, 
totalProbesVert) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 

 
probeNumHoriz int The horizontal position of the probe window. This value can be between 
1 (the left side of the screen) and totalProbesHoriz (the right side of the screen).  
 
totalProbesHoriz int The inverse horizontal width of the probe window. A value of 1 
would be the width of the entire screen, 2 would be 1/2 of the screen width, 3 would be 1/3 of the 
screen width, etc. 
  
probeNumVert int The vertical position of the probe window. This value can be between 1 
(the top of the screen) and totalProbesVert (the bottom of the screen).  
 
totalProbesVert int The inverse vertical height of the probe window. A value of 1 would be 
the height of the entire screen, 2 would be 1/2 of the screen height, 3 would be 1/3 of the screen 
height, etc.  
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tileWindowBelow 
Overview  Macro Actions 

Syntax 

componentName.tileWindowBelow(aboveName, probeNum, totalProbes, height) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
aboveName string Name of the probe whose window will be directly above this probe 
window. 
 
probeNum int The horizontal position of the probe window. This value can be between 
1 (the left side of the screen) and totalProbesHoriz (the right side of the screen).  
 
totalProbes int The inverse horizontal width of the probe window. A value of 1 would be 
the width of the entire screen, 2 would be 1/2 of the screen width, 3 would be 1/3 of the screen 
width, etc. 
 
height int The height as a percentage of the horizontal width. A value of 100 will produce a 
square window, a value of 200 will produce a rectangular window that is twice as high as it is wide, 
and a value of 0 will use a default height. 
 

tileWindowNextTo 
Overview  Macro Actions 

Syntax 

componentName.tileWindowNextTo(nextName, probeNum, totalProbes, height) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
nextName string Name of the probe whose window will be directly to the left of this probe 
window. 
 
probeNum int The horizontal position of the probe window. This value can be between 
1 (the left side of the screen) and totalProbesHoriz (the right side of the screen).  
 
totalProbes int The inverse horizontal width of the probe window. A value of 1 would be 
the width of the entire screen, 2 would be 1/2 of the screen width, 3 would be 1/3 of the screen 
width, etc. 
 
height int The height as a percentage of the horizontal width. A value of 100 will produce a 
square window, a value of 200 will produce a rectangular window that is twice as high as it is wide, 
and a value of 0 will use a default height. 
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windowTitle 
Overview  Macro Actions 

Syntax 

componentName.windowTitle() 

Parameters Type Description 
return String The title of the probe window (see "Window Title" of the Probe Inspector page). 
 
componentName  Name defined on the engine property page. 

 

Transformer Family 
Transformer Family 

 

Ancestor: TemporalProbe Family  

 

The Transformer family is a collection of components that transform temporal data. The data may 
be transformed into any format. An example of a transform is a periodogram (a spectral estimator 
based on the Fast Fourier Transform). The results of the transformations are presented as a 
temporal access point to attached components. The dimensionality of the data at this access point 
is completely defined by the specific Transformer component. 

The actual segment of data used for the transformation is contained within the temporal access 
point of the component attached below. If the Transformer is attached to a MegaScope (at the 
Selection access point), then the segment of data is specified by the selection made within the 
MegaScope’s display window. 

 

Members: 

SpectralTransform  

Transformer  

SpectralTransform 
 

  

 

 

Family: Transformer Family  
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Superclass: Transformer  

 

Description: 

The SpectralTransform is used to compute periodograms from temporal data.   These 
periodograms are generated using an averaging of windowed Fast Fourier Transforms (FFT's). The 
FFT is computed based on a number of parameters (e.g., FFT size, window size, percentage 
overlap and number of segments). This component is normally used in conjunction with a 
MegaScope by attaching to its Selection access point to access a segment of the displayed data. 
This segment is specified by selecting (highlighting) a portion of the MegaScope’s display window. 

The problem of spectral estimation is the resolution/stability dilemma. One needs more (averaged) 
segments to improve the variance of the estimator (which improves with N, the number of 
segments being averaged). But when doing this for the same spectral resolution (number of points 
of the FFT) there is a need for more data samples. If there is not enough data, you may need to 
overlap the segments and/or augment (pad) each data window with zeros. You may have to settle 
for a worse spectral estimate by decreasing either the FFT size or number of segments. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

Macro Actions  

Transformer 
 

  

 

 

Family: Transformer Family 

Superclass: Transformer 

 

Description: 

The Transformer is a temporal probe that receives a copy of the buffered data sent from the 
component stacked below, and transforms this data. This transformed data is then used by the 
component attached to its Transform access point. It is implemented using DLLs, thus requiring 
that a DLL be loaded within the Engine Inspector property page of the Transformer inspector. 

 

User Interaction: 

Drag and Drop 

Access Points 
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DLL Implementation 

Access Points 

Transformer Access Points  

 

Component: Transformer 

Superclass: TemporalProbe 

 

Transform Access: 

This access point is created by all subclasses of the transformer class.  It presents the result of the 
conversion performed by subclasses on temporal data.  The dimensions of this access point are 
completely determined by the subclass. 

 

 

  See Also 

DLL Implementation 

Transformer DLL Implementation 

 

 

 

 

Component: Transformer  

 

Protocol: PerformTransform 

 

Description: 

The Transformer component is used to transform the data sent from the component stacked below, 
and send the transformed data to the component attached above using the Transform access 
point. This is a temporal probe meaning that it processes the data stored within the attached 
DataStorage. 

The default DLL implementation of this component simply transforms all of the data to zeros. 

 

Code: 
 
BOOL performTransform( 
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 DLLData *instance,  // Pointer to instance data 
 NSFloat *data,      // Pointer to the buffered data 
 int     length,     // Length of the buffer to be transformed 
 int     channel     // Current channel number 
 ) 
{ 
 int i; 
 
 for (i=0; i<length; i++) 
  data[i] = 0.0f; // transform the data here 
 // Return whether or not to display this channel 
 return TRUE; 
} 

Inspectors 

SpectralTransform Inspector 

 

Component: SpectralTransform  

Superclass Inspector: Display Inspector 

 

 

 

Component Configuration: 
FFT Size 

The FFT Size may be set to any power of 2 greater than 2 and less than or equal to 4096.  If a 
value that is not a power of 2 is entered into the form cell, the next largest power of 2 will be used.  
If the amount of data specified by the window size is smaller than the FFT size, zero padding will 
be used to get the appropriate number of points (power of 2). 
Overlap 
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This value is used to determine how much the position of successive windows of data will overlap.  
This is commonly set to 50% for periodograms.  This may be any integer greater than zero and less 
than or equal to100. 
Segments 

The number of segments determines how many windows of data can be taken from the given data.  
This will be determined by the total size of the data, the overlap, and the size of the window used.  
This number may be an integer greater than zero.  
Window Size 

The window size determines how many samples are used for each segment of the periodogram.  
This number may be any integer greater than zero and less than or equal to the size of the data 
being probed. 
Output 

This menu allows the user to choose between linear data or logarithmic data for the FFT output. 
Window 

This menu allows the user to choose which type of windowing function should be applied to the 
data before transformation to the frequency domain.  Typically the Hamming window is used to 
reduce ringing in the frequency domain. 

Display Inspector 

 

Component: TemporalProbe Family   

Superclass Inspector: Access Inspector  

 

 

 

Component Configuration: 
Channel 
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The number of channels (or traces) is determined by the size of the data at the point being probed.  
Each neuron found at an access point counts as 1 channel. 

The "active" channel refers to the channel that appears in the channel form cell.  Any adjustments 
made using the Channel Settings functions will affect only the channel which is "active."  (except 
when the "Change All Channels" switch is set)  

The channel may be selected by one of three methods.  Clicking on the left or right arrow button 
will decrement or increment the active channel one at a time.  The channel slider may be used to 
scan through all the possible channels.  Finally, a specific channel number may be entered directly 
into the channel form cell.  

Once the "active" channel has been selected, the inspector will display the specific settings for that 
channel. 
Change All Channels 

This switch allows all the channels parameters to be set concurrently.  When this switch is set, 
adjusting any of the "Channel Settings" will affect all channels. 
Autoset Channels 

Clicking on the autoset channels button will cause several operations to be performed on the 
settings of the visible channels.  These operations include scaling, positioning, and setting the 
color.  

Each of the visible channels is scaled and positioned so that each can be observed while not 
interfering with the others.  The color of each channel is also set uniquely. 
Grid 

The None/Lines/Grid pull down menu allows the view to be segmented into 10 equal divisions.  
These divisions are used by the scaling and position to determine a relative placement of the data. 
Visible 

This is a switch (toggle) that makes the current channel appear in the view. 
Set Color 

The color may be set by activating the color panel and choosing a color. To activate the color panel 
click once on the Set Color button. When the color panel appears, select the color of your 
preference. The color of the view will change accordingly. 
Window Title 

The text that appears on the top bar of the probe window. 
Fix 

When this switch is set, the title of the probe window can be fixed to a user-specified string (see 
"Window Title" above). 
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Drag and Drop 

Macro Actions 

Spectral Transform 

SpectralTransform Macro Actions 
Overview Superclass Macro Actions  

Action Description 
fftSize  Returns the "FFT Size" setting. 
 
linear  Returns TRUE if the output is "Linear", FALSE if the output is "Log". 
 
overlap  Returns the "Percentage Overlap" setting. 
 
segments  Returns the "Number of Segments" setting. 
 
setFFTSize  Sets the "FFT Size" setting. 
 
setLinear  Set to TRUE if the output is "Linear", FALSE if the output is "Log". 
 
setOverlap  Sets the "Percentage Overlap" setting. 
 
setSegments  Sets the "Number of Segments" setting. 
 
setWindowSize  Sets the "Window Size" setting. 
 
windowSize  Returns the "Window Size" setting. 
 

fftSize 
Overview Macro Actions 

Syntax 

componentName. fftSize() 

Parameters Type Description 
return int This value may be any power of 2 greater than 2 and less than or equal to 4096 
(see "FFT Size" within the SpectralTransform Inspector). 
 
componentName  Name defined on the engine property page. 

 

linear 
Overview Macro Actions 

Syntax 
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componentName. linear() 

Parameters Type Description 
return BOOL TRUE if the output is "Linear and FALSE if the output is "Log" (see "Output" 
within the SpectralTransform Inspector). 
 
componentName  Name defined on the engine property page. 

 

overlap 
Overview Macro Actions 

Syntax 

componentName. overlap() 

Parameters Type Description 
return int The value used to determine how much the position of successive windows of 
data will overlap (see "Overlap" within the SpectralTransform Inspector). 
 
componentName  Name defined on the engine property page. 

 

segments 
Overview Macro Actions 

Syntax 

componentName. segments() 

Parameters Type Description 
return int The number of windows of data that can be taken from the probed data (see 
"Segments" within the SpectralTransform Inspector). 
 
componentName  Name defined on the engine property page. 

 

setFFTSize 
Overview Macro Actions 

Syntax 

componentName. setFFTSize(fftSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fftSize int This value may be any power of 2 greater than 2 and less than or equal to 4096.  
If the value is not a power of 2, the next largest power of 2 will be used (see "FFT Size" within the 



 691

SpectralTransform Inspector). 
 

setLinear 
Overview Macro Actions 

Syntax 

componentName. setLinear(linear) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
linear BOOL TRUE if the output is "Linear and FALSE if the output is "Log" (see "Output" 
within the SpectralTransform Inspector). 
 

setOverlap 
Overview Macro Actions 

Syntax 

componentName. setOverlap(overlap) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
overlap int The value used to determine how much the position of successive windows of 
data will overlap (see "Overlap" within the SpectralTransform Inspector). 
 

setSegments 
Overview Macro Actions 

Syntax 

componentName. setSegments(segments) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
segments int The number of windows of data that can be taken from the probed data 
(see "Segments" within the SpectralTransform Inspector). 
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setWindowSize 
Overview Macro Actions 

Syntax 

componentName. setWindowSize(windowSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
windowSize int The number of samples are used for each segment of the periodogram 
(see "Window Size" within the SpectralTransform Inspector). 
 
 

windowSize 
Overview Macro Actions 

Syntax 

componentName. windowSize() 

Parameters Type Description 
return int The number of samples are used for each segment of the periodogram (see 
"Window Size" within the SpectralTransform Inspector). 
 
componentName  Name defined on the engine property page. 

 

Access 

Schedule Family 
ExpScheduler 

 
 

 

 

Family: Schedule Family  

Superclass: NSSchedule 

 

Description: 
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The ExpScheduler receives a parameter and modifies it exponentially (either using an increasing or 
decreasing value) during a predetermined number of epochs. It has a maximum and minimum 
constraint that will be met at all times during the scheduling operation. 

 

Schedule Equation: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

 

 

  See Also 

LinearScheduler 
 

  

 

 

Family: Schedule Family  

Superclass: NSSchedule 

 

Description: 

The linear scheduler receives a parameter and modifies it linearly (increase or decrease) during a 
predetermined number of epochs. It has a maximum and minimum constraint that will be met at all 
times during the scheduling operation.  

 

Schedule Equation: 
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User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

 

 

  See Also 

LogScheduler 
 

  

 

 

Family: Schedule Family  

Superclass: NSSchedule 

 

Description: 

The LogScheduler receives a parameter and modifies it logarithmically (either using an increasing 
or decreasing value) during a predetermined number of epochs. It has a maximum and minimum 
constraint that will be met at all times during the scheduling operation.  

 

Schedule Equation: 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 



 695

 

 

  See Also 

DLL Implementation 

ExpScheduler DLL Implementation 

 
 

 

 

Component: ExpScheduler   

Protocol: PerformScheduler 

 

Description: 

This function is called after each epoch that has scheduling active (specified by the user within the 
Scheduler inspector). It simply multiplies each PE within data by beta and copies the result back 
into data. Note that the component itself handles the clipping if the data exceeds the boundaries 
specified by the user. 

 

Code: 
 
BOOL performScheduler( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,     // Pointer to the data to be scheduled 
 int     length,    // Number of elements in scheduled data vector 
 NSFloat beta       // Scheduler parameter (specified by user) 
 ) 
{ 
 int i; 
 
 for (i=0; i<length; i++) 
  data[i] = beta*data[i]; 
} 
 

LinearScheduler DLL Implementation 
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Component: LinearScheduler  

Protocol: PerformScheduler 

 

Description: 

This function is called after each epoch that has scheduling active (specified by the user within the 
Scheduler inspector). It simply increments each PE within data by beta. Note that the component 
itself handles the clipping if the data exceeds the boundaries specified by the user. 

 

Code: 
 
BOOL performScheduler( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,     // Pointer to the data to be scheduled 
 int     length,    // Number of elements in scheduled data vector 
 NSFloat beta       // Scheduler parameter (specified by user) 
 ) 
{ 
 int i; 
 
 for (i=0; i<length; i++) 
  data[i] += beta; 
} 
 

LogScheduler DLL Implementation 

 
 

 

 

Component: LogScheduler   

Protocol: PerformScheduler 

 

Description: 

This function is called after each epoch that has scheduling active (specified by the user within the 
Scheduler inspector). It simply decrements each PE within data by beta over data. Note that the 
component itself handles the clipping if the data exceeds the boundaries specified by the user. 

 

Code: 
 
BOOL performScheduler( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,     // Pointer to the data to be scheduled 
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 int     length,    // Number of elements in scheduled data vector 
 NSFloat beta       // Scheduler parameter (specified by user) 
 ) 
{ 
 int i; 
 
 for (i=0; i<length; i++) 
  data[i] -= beta / data[i]; 
} 

Inspectors 

Schedule Inspector 

 

Family: Schedule Family   

Superclass Inspector: Access inspector  

 

 

 

Component Configuration: 
Start at Epoch (SetStartAt(int)) 

This cell is used to specify when the scheduling is to begin based on the epoch count. 
Until Epoch (SetUntil(int)) 

This cell is used to specify when the scheduling is to end based on the epoch count. 
Beta (SetBeta(float)) 

This cell is used to specify β. This parameter determines the rate of change of the scheduled 
variable. The schedule equation of the component reference defines how this parameter is used to 
compute the variable’s current value based on its previous value. 
Minimum (SetMin(float)) 
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The cell specifies the minimum value at which the scheduled variable will be set. 
Maximum (SetMax(float)) 

The cell specifies the maximum value at which the scheduled variable will be set. 

Drag and Drop 

Access Points 

Macro Actions 

Scheduler 

Scheduler Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
beta Returns the "Beta" (β) setting. 
 
maximum  Returns the "Maximum" setting. 
 
minimum  Returns the "Minimum" setting. 
 
setBeta Sets Returns the "Beta" (β) setting. 
 
setMaximum  Sets the "Maximum" setting. 
 
setMinimum  Sets the "Minimum" setting. 
 
setStart  Sets the "Start at Epoch" setting. 
 
setStop  Sets the "Until Epoch" setting. 
 
start  Returns the "Start at Epoch" setting. 
 
stop  Returns the "Until Epoch" setting. 
 
 

beta 
Overview  Macro Actions 

Syntax 

componentName. beta() 

Parameters Type Description 
return float The rate of change of the scheduled variable, or β (see "Beta" within the 
Schedule Inspector). 
 
componentName  Name defined on the engine property page. 
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maximum 
Overview  Macro Actions 

Syntax 

componentName. maximum() 

Parameters Type Description 
return float The maximum value at which the scheduled variable will be set (see "Maximum" 
within the Schedule Inspector ). 
 
componentName  Name defined on the engine property page. 
 

minimum 
Overview  Macro Actions 

Syntax 

componentName. minimum() 

Parameters Type Description 
return float The minimum value at which the scheduled variable will be set (see "Minimum" 
within the Schedule Inspector). 
 
componentName  Name defined on the engine property page. 

 

setBeta 
Overview  Macro Actions 

Syntax 

componentName. setBeta(beta) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
beta float The rate of change of the scheduled variable, or β (see "Beta" within the 
Schedule Inspector). 
 

setMaximum 
Overview  Macro Actions 

Syntax 

componentName. setMaximum(maximum) 
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Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
maximum float The maximum value at which the scheduled variable will be set (see 
"Maximum" within the Schedule Inspector ). 
 

setMinimum 
Overview  Macro Actions 

Syntax 

componentName. setMinimum(minimum) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
minimum float The minimum value at which the scheduled variable will be set (see 
"Minimum" within the Schedule Inspector). 
 

setStart 
Overview  Macro Actions 

Syntax 

componentName. setStart(start) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
start int The number of epochs to run before the scheduling begins (see "Start at Epoch" 
within the Schedule Inspector). 

setStop 
Overview  Macro Actions 

Syntax 

componentName. setStop(stop) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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stop int The number of epochs to run before the scheduling ends (see "Until Epoch" 
within the Schedule Inspector). 
 

start 
Overview  Macro Actions 

Syntax 

componentName. start() 

Parameters Type Description 
return int The number of epochs to run before the scheduling begins (see "Start at Epoch" 
within the Schedule Inspector). 
 
componentName  Name defined on the engine property page. 
 

 

stop 
Overview  Macro Actions 

Syntax 

componentName. stop() 

Parameters Type Description 
return int The number of epochs to run before the scheduling ends (see "Until Epoch" 
within the Schedule Inspector). 
 
componentName  Name defined on the engine property page. 
 

Access 

Transmitter Family 
ControlTransmitter Family 

ControlTransmitter Family 

 

Ancestor: Transmitter Family  

 

The ControlTransmitter family provides the ability to transmit control messages to components on 
the breadboard. Members of the ControlTransmitter family monitor the data at the access point of 
the attached component. When the data meets the set of conditions specified by the 
ControlTransmitter, it will send one or more control messages to one or more components on the 
breadboard. 
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The action taken for a particular message is determined by the receiving components. This enables 
a component to have an outside source control its actions during an experiment. 

 

Members: 

ThresholdTransmitter  

DeltaTransmitter  

DeltaTransmitter 

 

  

 

 

Family: ControlTransmitter Family  

Superclass: ThresholdTransmitter  

 

Description: 

The DeltaTransmitter sends control messages to other network components on the breadboard 
based on the change in the data of the attached component from one iteration to the next. The 
control messages are sent when the change in the data between successive iterations crosses a 
specified threshold. There are several ways to specify this boundary based on the type and value 
of the threshold and the filtering performed on the accessed data. The threshold can be specified to 
move (i.e., incremented, decremented, or scaled by a constant) each time the boundary is crossed. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

ThresholdTransmitter 

 

  

 

 

Family: ControlTransmitter Family  

Superclass: Transmitter 
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Description: 

The ThresholdTransmitter sends control messages to other network components on the 
breadboard based on the data of the attached component. The control messages are sent when 
the data crosses a specified threshold. There are several ways to specify this boundary based on 
the type and value of the threshold and the filtering performed on the accessed data. The threshold 
can be specified to move (i.e., incremented, decremented, or scaled by a constant) each time the 
boundary is crossed. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

Macro Actions  

Access Points 

ThresholdTransmitter Access Points 

 

Component: ThresholdTransmitter  

Superclass: Access Points 

 

Weighted Average Access: 

The Weighted Average Access reports the output of the smoothing filter used to estimate the point 
at which the threshold is crossed.  The smoothing filter is constructed using parameters defined in 
the ThresholdTransmitter Inspector 

Threshold Access: 

This provides access to the value of threshold used to initiate message transmission.  This value 
may be adapted during training by using a Scheduler. 

 

 

  See Also 

DLL Implementation 

ThresholdTransmitter DLL Implementation 
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Component: ThresholdTransmitter  

Protocol: PerformThresholdTransmitter 

 

Description: 

The ThresholdTransmitter sends control messages to other network compo nents on the 
breadboard based on the data of the attached component. The con trol messages are sent when 
the function below returns a YES. This function scans through the data and returns a YES if the 
data has crossed the threshold specifications contained within the last three parameters. 
Otherwise, the function returns a NO. 

 

Code: 
 
BOOL performThresholdTransmitter( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,     // Pointer to the data at the access point 
 int     rows,      // Number of rows of PEs in the layer 
 int     cols,      // Number of columns of PEs in the layer 
 NSFloat threshold, // Threshold specified by user 
 BOOL    lessThan,  // Less than/greater than state (user-
specified) 
 int     type       // Threshold type, 0=All 1=One 2=Average 
 ) 
{ 
 int length=rows*cols; 
 
 switch (type) { 
  case 0: 
   if (lessThan) 
    return allLessThan(data,length,threshold); 
   return !oneLessThan(data,length,threshold); 
   break; 
  case 1: 
   if (lessThan) 
    return oneLessThan(data,length,threshold); 
   return !allLessThan(data,length,threshold); 
   break; 
  case 2: 
   if (lessThan) 
    return averageLessThan(data,length,threshold); 
   return !averageLessThan(data,length,threshold); 
   break; 
 } 
 return NO; 
} 
 
BOOL oneLessThan(NSFloat *data, int length, NSFloat threshold) 
{ 



 705

 register int i; 
 
 for (i=0; i<length; i++) 
  if (data[i] < threshold) 
   return YES; 
 return NO; 
} 
 
BOOL allLessThan(NSFloat *data, int length, NSFloat threshold) 
{ 
 register int i; 
 
 for (i=0; i<length; i++) 
  if (data[i] > threshold) 
   return NO; 
 return YES; 
} 
 
BOOL averageLessThan(NSFloat *data, int length, NSFloat threshold) 
{ 
 register int i; 
 register NSFloat average = (NSFloat)0.0; 
 
 for (i=0; i<length; i++) 
  average += data[i]; 
 return (average /= length) < threshold; 
} 

Inspectors 

ThresholdTransmitter Inspector 

 

Component: ThresholdTransmitter 

Superclass Inspector: Transmitter Inspector  
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Component Configuration: 
All, One, Mean (SetElements(int)) 

This radio button specifies whether All elements, One element, or the Mean element of the 
attached access point are used to determine if the threshold has been crossed. 
Add To 

When this radio button is set and the specified threshold has been crossed, then the value within 
the Threshold Adjustment cell will be added to the current threshold to produce a new threshold. 
This provides the facility for defining multiple thresholds at once. 
Mult By (SetAdjustment(float)) 

When this radio button is set and the specified threshold has been crossed, then the value within 
the Threshold Adjustment cell will be multiplied by the current Threshold to produce a new 
Threshold. This provides the facility for defining multiple Thresholds at once. 
Threshold Adjustment (SetAdjustment(float)) 

When the specified threshold has been crossed, then the value within this cell will be multiplied by 
or added to (depending on the radio buttons described above) the current Threshold to produce a 
new Threshold. This provides the facility for defining multiple Thresholds at once. 
Beta (SetBeta(float)) 

When this cell contains a value that is greater than 0 (but less than one), a filtering operation is 
used to smooth (i.e., average) the data being monitored. The higher the β, the more that the past 
values are averaged in. The smoothing function is defined as: 

 

y(n+1) = (1- β)x(n) + β y(n) 

 

For the ThresholdTransmitter, x(n) is defined as the current data at the access point of the attached 
component. For the DeltaTransmitter, x(n) is defined as the difference between the current data at 
the access point and the data from the previous sample. 
Initial (SetInitial(float)) 
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This cell specifies y(0), the initial value of the filtering operation (see above). 
<, > (SetLessThan(bool)) 

These radio buttons specify whether the crossing occurs when the data is greater than or less than 
the Threshold value. 
Abs (SetAbs(bool)) 

When this switch is on, the threshold is based on the absolute value of the data. 
Threshold (SetThreshold(float)) 

This cell is used to specify the initial value of the threshold. This value may change during the 
course of the simulation using the Threshold Adjustment parameters described above. 

Macro Actions 

Threshold Transmitter 

ThresholdTransmitter Macro Actions 
Overview Superclass Macro Actions 

Action Description 
absoluteValue  Returns the "Abs." setting. 
 
beta Returns the "Beta" setting. 
 
initialValue  Returns the "Initial Value" setting. 
 
lessThan  Returns TRUE if the crossing occurs when the data is less than the Threshold 
value and FALSE if the crossing occurs when the data is greater than the Threshold value. 
 
multBy  Returns TRUE if the "Mult. By" switch is on and FALSE if the "Add To" switch is on. 
 
setAbsoluteValue  Sets the "Abs." setting. 
 
setBeta Sets the "Beta" setting. 
 
setInitialValue  Sets the "Initial Value" setting. 
 
setLessThan  Set to TRUE if the crossing occurs when the data is less than the Threshold 
value and FALSE if the crossing occurs when the data is greater than the Threshold value. 
 
setMultBy  Set to TRUE to turn the "Mult. By" switch on and FALSE to turn the "Add To" 
switch on. 
 
setThreshold  Sets the "Threshold" setting. 
 
setThresholdDecay  Sets the "Threshold Adjustment" setting. 
 
setThresholdType  Sets the "Elements of Vector" setting (0 = "All", 1 = "One", 2 = 
"Average"). 
 
threshold  Returns the "Threshold" setting. 
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thresholdDecay  Returns the "Threshold Adjustment" setting. 
 
thresholdType  Returns the "Elements of Vector" setting (0 = "All", 1 = "One", 2 = "Average"). 
 

absoluteValue 
Overview Macro Actions 

Syntax 

componentName. absoluteValue() 

Parameters Type Description 
return BOOL TRUE if the threshold is based on the absolute value of the data (see "Abs." 
within the ThresholdTransmitter Inspector). 
 
componentName  Name defined on the engine property page. 

 

beta 
Overview Macro Actions 

Syntax 

componentName. beta() 

Parameters Type Description 
return float The smoothing factor of the filtering operation (see "Beta" within the 
ThresholdTransmitter Inspector). 
 
componentName  Name defined on the engine property page. 
 

initialValue 
Overview Macro Actions 

Syntax 

componentName. initialValue() 

Parameters Type Description 
return float Specifies y(0), the initial value of the filtering operation (see "Initial Value" within 
the ThresholdTransmitter Inspector). 
 
componentName  Name defined on the engine property page. 

 

lessThan 
Overview Macro Actions 
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Syntax 

componentName. lessThan() 

Parameters Type Description 
return int TRUE specifies that crossing occurs when the data is less than the Threshold 
value and FALSE specifies that crossing occurs when the data is greater than the Threshold value 
(see "<,>" within the ThresholdTransmitter Inspector). 
 
componentName  Name defined on the engine property page. 

 

multBy 
Overview Macro Actions 

Syntax 

componentName. multBy() 

Parameters Type Description 
return BOOL When TRUE and the specified threshold has been crossed, then the Threshold 
Adjustment value will be multiplied by the current Threshold to produce a new Threshold. When 
FALSE and the specified threshold has been crossed, then the Threshold Adjustment value will be 
added to the current Threshold to produce a new Threshold. (see "Mult By" and "Add to" within the 
ThresholdTransmitter Inspector). 
 
componentName  Name defined on the engine property page. 

 

setAbsoluteValue 
Overview Macro Actions 

Syntax 

componentName. setAbsoluteValue(absoluteValue) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
absoluteValue BOOL TRUE if the threshold is based on the absolute value of the data (see 
"Abs." within the ThresholdTransmitter Inspector). 
 

setBeta 
Overview Macro Actions 

Syntax 

componentName. setBeta(beta) 
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Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
beta float The smoothing factor of the filtering operation (see "Beta" within the 
ThresholdTransmitter Inspector). 
 

setInitialValue 
Overview Macro Actions 

Syntax 

componentName. setInitialValue(initialValue) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
initialValue float Specifies y(0), the initial value of the filtering operation (see "Initial 
Value" within the ThresholdTransmitter Inspector). 
 

setLessThan 
Overview Macro Actions 

Syntax 

componentName. setLessThan(lessThan) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
lessThan int TRUE specifies that crossing occurs when the data is less than the 
Threshold value and FALSE specifies that crossing occurs when the data is greater than the 
Threshold value (see "<,>" within the ThresholdTransmitter Inspector). 
 

setMultBy 
Overview Macro Actions 

Syntax 

componentName. setMultBy(multBy) 

Parameters Type Description 
return void 
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componentName  Name defined on the engine property page. 
 
multBy BOOL When TRUE and the specified threshold has been crossed, then the Threshold 
Adjustment value will be multiplied by the current Threshold to produce a new Threshold. When 
FALSE and the specified threshold has been crossed, then the Threshold Adjustment value will be 
added to the current Threshold to produce a new Threshold. (see "Mult By" and "Add to" within the 
ThresholdTransmitter Inspector). 
 

setThreshold 
Overview Macro Actions 

Syntax 

componentName. setThreshold(threshold) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
threshold float The threshold value (see "Threshold" within the ThresholdTransmitter 
Inspector). 
 

setThresholdDecay 
Overview Macro Actions 

Syntax 

componentName. setThresholdDecay(thresholdDecay) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
thresholdDecay float The amount to muliply by or add to the Threshold value when the 
threshold has been crossed (see "Threshold Adjustment" within the ThresholdTransmitter 
Inspector). 
 

setThresholdType 
Overview Macro Actions 

Syntax 

componentName. setThresholdType(thresholdType) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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thresholdType int Specifies whether All elements, One element, or the Mean element of 
the attached access point are used to determine if the threshold has been crossed (0 = "All", 1 = 
"One", 2 = "Average" -- see "All, One, Mean" within the ThresholdTransmitter Inspector). 

threshold 
Overview Macro Actions 

Syntax 

componentName. threshold() 

Parameters Type Description 
return float The threshold value (see "Threshold" within the ThresholdTransmitter Inspector). 
 
componentName  Name defined on the engine property page. 
 

 

thresholdDecay 
Overview Macro Actions 

Syntax 

componentName. thresholdDecay() 

Parameters Type Description 
return float The amount to muliply by or add to the Threshold value when the threshold has 
been crossed (see "Threshold Adjustment" within the ThresholdTransmitter Inspector). 
 
componentName  Name defined on the engine property page. 

 

thresholdType 
Overview Macro Actions 

Syntax 

componentName. thresholdType() 

Parameters Type Description 
return int Specifies whether All elements, One element, or the Mean element of the 
attached access point are used to determine if the threshold has been crossed (0 = "All", 1 = "One", 
2 = "Average" -- see "All, One, Mean" within the ThresholdTransmitter Inspector). 
 
componentName  Name defined on the engine property page. 
 
 



 713

DataTransmitters Family 

DataTransmitter Family  

 

Ancestor: Transmitter Family  

 

DataTransmitters provide a means of globally transmitting data between various network access 
points. This is most often used as a means of displaying data from separate network locations 
within the same probe window. 

 

Members: 

DataStorageTransmitter  

DataStorageTransmitter  

 

 

 

 

Family: DataTransmitter Family  

Superclass: Transmitter 

 

Description: 

The DataStorageTransmitter acts as a remote data collector for one or more DataStorage 
components. A single DataStorage component can collect data from a number of 
DataStorageTransmitters placed anywhere on the breadboard. This feature is useful when 
comparing the signals of various points of the network by displaying all of the data within the same 
probe window. 

As the DataStorageTransmitter accesses the data of its attached component, this data is 
transmitted to the DataStorage components. Each DataStorage component uses this transmitted 
data as if it were obtained from additional channels of its attached component. 

Note that there is a limitation to the use of the DataStorageTransmitter. A DataStorageTransmitter 
will not work properly if a DataStorage component is accessing its data at a different interval than 
that which the DataStorageTransmitter is receiving.  

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 
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Inspectors 

Transmitter Inspector  

 

Family: Transmitter Family  

Superclass Inspector: Access inspector 

 

 

 

Component Configuration: 
Receivers List 

This list contains all possible receiver components that exist on the breadboard.  To select a 
receiver, simply single-click on the corresponding item in the list.  If the selected receiver has any 
actions (messages) which can be sent by this transmitter they will be listed in the Actions Browser. 
Note that the receiver components connected to the transmitter are marked with an asterisk ('*'). 
Actions List 

This list contains all possible actions (messages) that can be sent to the selected component in the 
Receivers List (see above). To select which action messages are to be sent, simply double-click on 
the corresponding items in the Actions List. A "C" should appear to the left of the selected actions. 
This indicates that a connection from the transmitter to the receiver has been made. To disconnect 
an action, double-click on an item marked with a "C". Note that only one connection can be made 
for a specific receiver. To send multiple actions to the same receiver component you need to use 
multiple transmitters. 
Parameter 

This cell is used to specify a parameter for those actions that require a value.  This value may be a 
floating point number, (i.e. 34.5322 or -3.21e5) an integer number, (i.e. 1322, -5, -132) or a boolean 
(i.e. TRUE or FALSE). The parameter’s type is determined by the message. The value from the 
Parameter cell is copied to the parameter of the selected action when the Set button is clicked. 
Set 

The value from the Parameter cell is copied to the parameter of the selected action when this 
button is clicked. 
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Drag and Drop 

Access Points 

Transmitter Macro Actions 

Transmitter Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
toggleConnection  Connects or disconnects the specified action of the specified 
component. 
 
setParameter Sets a parameter for those actions that require a value. 
 

toggleConnection 
Overview  Macro Actions   

Syntax  

componentName. toggleConnection(name, action) 

Parameters Type Description 
return BOOL TRUE if the action is connected upon completion and FALSE if it is not. 
 
componentName  Name defined on the engine property page. 
 
name string The name of the component to connect to (see "Receivers List" within the 
Transmitter Inspector ). 
 
action string The action (function name) to connect to (see "Actions List" within the 
Transmitter Inspector ). 
 

setParameter 
Overview  Macro Actions   

Syntax  

componentName. setParameter(name, action, parameter) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 
name string The name of the component to connect to (see "Receivers List" within the 
Transmitter Inspector ). 
 
action string The action (function name) to connect to (see "Actions List" within the 
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Transmitter Inspector ). 

 
parameter string The parameter associated with the specified component and action (see 
"Parameter" within the Transmitter Inspector ). 

 

Unsupervised Family 
HebbianFull 

 

  

 

 

Family: Unsupervised Family  

Superclass: NSUnsupervised 

 

Description: 

Hebbian learning adjusts a synapse's weights such that its output reflects its familiarity with an 
input. The more probable an input, the larger the output will become, at least on average. 
Unfortunately, plain Hebbian learning continually strengthens its weights without bound (unless the 
input data is properly normalized). There are only a few applications for plain Hebbian learning; 
however, almost every unsupervised and competitive learning procedure can be considered 
Hebbian in nature.  

The HebbianFull component adapts its weights according to either the plain Hebbian or forced 
Hebbian learning rules. In forced Hebbian, the output of the component is substituted by a desired 
response for the purpose of weight update. The desired response is accepted via an access point. 
Forced Hebbian learning is clearly not an unsupervised routine, but in the context of data flow and 
control it fits nicely into the unsupervised family. This type of learning has been applied to 
heteroassociation. 

Anti-Hebbian learning is simply Hebbian with a negative step size, h. It is interesting to note that the 
least mean squares (LMS) adaptation procedure, which is commonly used in engineering, is simply 
the sum of anti-Hebbian and forced Hebbian learning. 

 

Weight Update Function: 
Plain Hebbian: 
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Forced Hebbian: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

OjasFull 
 

 

 

 

Family: Unsupervised Family  

Superclass: NSUnsupervised 

 

Description: 

Oja's unsupervised learning is simply a procedure for plain Hebbian learning with constrained 
weight vector growth. This procedure adds a weight decay proportional to the output squared. Oja's 
rule finds a unit weight vector that maximizes the mean square output. For zero mean data this is 
equivalent to principal component analysis. 

 

Weight Update Function: 

 

 

 



 718

where xj is the input, yi is the output, O is the set of all output indices, wij the weight and h the step 
size. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

 

SangersFull 
 

  

 

 

Family: Unsupervised Family 

Superclass: NSUnsupervised 

 

Description: 

Sanger's unsupervised learning is simply a procedure for plain Hebbian learning with constrained 
weight vector growth. This learning procedure is known to perform principal component analysis. 
Furthermore, the principal components are extracted in order, with respect to the output unit 
ordering. 

 

Weight Update Function: 

 

  

 

User Interaction: 

Drag and Drop 

Inspector 



 719

Access Points 

DLL Implementation 

SVMInputSynapse 
 

  

 

 

Family: Unsupervised Family 

Superclass: NSUnsupervised 

 

Description: 

This component is used to implement the "RBF Dimensionality Expansion" segment of the Support 
Vector Machine model. 

 

User Interaction: 

Drag and Drop 

Inspector  

Access Points 

 

Competitive Family 

StandardFull 

 

 

 

 

Family: Competitive Family 

Superclass: NSCompetitive 
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Description: 

The StandardFull is a component that implements competitive learning. The weights of a single 
winning neuron will be moved towards the input. 

 

Weight Update Function: 

 

i* = maxi (yi) 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

ConscienceFull 

 

 

 

 

Family: Competitive Family  

Superclass: Standard 

 

Description: 

The ConscienceFull is a special type of competitive learning that keeps track of how often the 
outputs win the competition with the goal of equilibrating the winnings (i.e., each unit in a set of N 
will win the competition 1/N on average). This implements a second level of competition among the 
elements to determine which PE is going to be updated. It avoids the common occurrence in 
competitive learning that one element (or a subset) may always win the competition.  

 

Weight Update Function: 
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where b is a bias vector created by the conscience mechanism. The bias for each output is 
computed based upon the output’s frequency of winning, 

 

 

 

Here Γ is a parameter on the inspector that controls the amount of bias to apply, K is the number of 

outputs, and  is the output’s frequency of winning. Running frequency estimates are 
given by, 

 

 

 

where β is a smoothing parameter also set by the component’s inspector. 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

Macro Actions  

Access Points 

ConscienceFull Access Points 

 

Component: ConscienceFull  

Superclass: Unsupervised Access Points 

 

Bias Access: 

This Access point the bias that each processing element has against it’s winning the competition. 

Frequency Access: 

The current estimate of how often each PE is winning the competition. 
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DLL Implementation 

Competitive DLL Implementation 

 

   

 

 

Components: StandardFull, ConscienceFull 

Protocol: PerformCompetitive 

 

Description: 

The StandardFull and ConscienceFull components implement competitive learning.  The 
ConscienceFull component differs from the StandardFull in that the former adds a bias (i.e., a 
"conscience") to the competition with the goal of equilibrating the winnings. Note that this second 
level of competition is performed by the ConscienceFull component to determine the winner, and is 
not part of code below. This code updates the weights that are connected to the winning output PE. 

 

Code: 
 
void performCompetitive( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *input,     // Pointer to the input layer of PEs 
 int     inRows,     // Number of rows of PEs in the input layer 
 int     inCols,     // Number of columns of PEs in the input layer 
 NSFloat *output,    // Pointer to the output layer 
 int     outRows,    // Number of rows of PEs in the output layer 
 int     outCols     // Number of columns of PEs in the output 
layer 
 NSFloat *weights    // Pointer to the fully-connected weight 
matrix 
 NSFloat step        // Learning rate 
 int     winner      // Index of winning PE  
 ) 
{ 
 int i, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols; 
 
 for (i=0; i<inCount; i++)  
  W(winner,i) += step*(input[i] - W(winner,i)); 
} 
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Inspectors 

Conscience Inspector  

 

Component: ConscienceFull 

Superclass Inspector: Competitive Inspector  

 

 

 

 

Component Configuration: 
Beta (SetBeta(float)) 

This cell specifies the smoothing parameter, β.  See the ConscienceFull reference for its use within 
the winning index function. 
Gamma (SetGamma(float)) 

This cell specifies the bias term, ?.  See the ConscienceFull reference for its use within the winning 
index function. 

Competitive Inspector 

 

Superclass Inspector: Rate Inspector 
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Component Configuration: 
Metric 

This pull-down menu is used to select the distance metric used by the competitive algorithm. See 
the Competitive Family reference for a summary of the available metrics. 

Macro Actions 

Competitive Full 

CompetitiveFull Macro Actions 
Overview Superclass Macro Actions 

Action Description 
setMetric  Sets the "Metric" setting. 
 
metric  Returns the "Metric" setting. 
 

metric 
Overview Macro Actions  

Syntax  

componentName. metric() 

Parameters Type Description 
return int The distance metric used by the competitive algorithm (0 = " Dot Product", 1 = " 
Euclidean", 2 = " Box Car" -- see "Metric" within the Competitive Inspector ). 
 
componentName  Name defined on the engine property page. 
 

setMetric 
Overview Macro Actions  
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Syntax  

componentName. setMetric(metric) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 

 
metric int The distance metric used by the competitive algorithm (0 = " Dot Product", 1 = " 
Euclidean", 2 = " Box Car" -- see "Metric" within the Competitive Inspector ). 

 

Conscience Full 

ConscienceFull Macro Actions 
Overview Superclass Macro Actions 

Action Description 

beta  Returns the smoothing parameter, β. 
 

gamma  Returns the bias term, γ. 
 

setBeta  Sets the smoothing parameter, β. 
 

setGamma  Sets the bias term, γ. 

 

beta 
Overview Macro Actions 

Syntax 

componentName. beta() 

Parameters Type Description 

return float The smoothing parameter, β (see "Beta" within the ConscienceFull Inspector). 
 
componentName  Name defined on the engine property page. 

 

gamma 
Overview Macro Actions 

Syntax 

componentName. gamma() 
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Parameters Type Description 

return float The bias term, γ (see "Gamma" within the ConscienceFull Inspector). 
 
componentName  Name defined on the engine property page. 

 

setBeta 
Overview Macro Actions 

Syntax 

componentName. setBeta(beta) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

beta float The smoothing parameter, β (see "Beta" within the ConscienceFull Inspector). 
 

setGamma 
Overview Macro Actions 

Syntax 

componentName. setGamma(gamma) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 

gamma float The bias term, γ (see "Gamma" within the ConscienceFull Inspector). 
 

Kohonen Family 

DiamondKohonen 
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Family: Kohonen Family 

Superclass: NSConscience 

 

Description: 

The DiamondKohonen implements a 2D self-organizing feature map (SOFM) with a diamond 
neighborhood. The dimensions of the map are dictated by the rows and columns of the axon that 
the DiamondKohonen feeds. The neighborhood size is selected from the component’s inspector. 

 

Neighborhood Figure (Size=2): 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

LineKohonen 

 

  

 

 

Family: Kohonen Family 

Superclass: NSConscience 

 

Description: 
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The LineKohonen implements a 1D self-organizing feature map (SOFM) with a linear 
neighborhood. The dimensions of the map are dictated by the rows and columns of the axon that 
the LineKohonen feeds. Since this neighborhood is linear, the axons PEs are interpreted as one 
long vector of length rows*columns. The neighborhood size is selected from the component’s 
inspector. 

 

Neighborhood Figure (Size=2): 

 

 

 

User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

SquareKohonen 

 

 

 

 

Family: Kohonen Family  

Superclass: NSConscience 

 

Description: 

The SquareKohonen implements a 2D self-organizing feature map (SOFM) with a square 
neighborhood. The dimensions of the map are dictated by the rows and columns of the axon that 
the SquareKohonen feeds. The neighborhood size is selected from the component’s inspector. 

 

Neighborhood Figure (Size=2): 
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User Interaction: 

Drag and Drop 

Inspector 

Access Points 

DLL Implementation 

Access Points 

Kohonen Access Points 

 

Family: Kohonen Family  

Superclass: ConscienceFull Access Points 

 

Neighborhood Radius Access: 

The size of the Neighborhood currently being used. This value may be adapted during training by 
using a Scheduler. 

Component Plane Access: 

This access point allows you to view only the weights from a single input (from the multi-
dimensional input vector) to all the PEs, in order to see how that input varies from cluster to cluster. 
For example, if there are regions in the Self-Organizing Map (SOM) where the weights for a 
particular input are very high, then we can say that all the inputs clustered in that PE have a high 
value for that input.  If all of the values for a particular input are approximately the same, then this 
particular input has no influence on the clustering. Note that the plane number is selected from the 
Kohonen inspector page. 

Frequency Access: 
When evaluating the clustering in a Self-Organizing Map (SOM) it is important to understand the 
mapping done. Typically, the number of SOM PEs is much larger than the number of clusters 
expected. This allows multiple PEs to capture one logical cluster. What you expect to see in the 
SOM map is groups of PEs representing a single cluster of the input. The question is how to 
determine where the clusters are in your SOM. This access point provides a histogram of win 
frequencies, which gives information to help determine the clustering. 

You can think of the SOM as stretching its 2-D grid of PEs over the range of inputs (input space). 
Inside a cluster, the PEs will be close together since all the inputs in that area are similar. Often 
times you will have "dead PEs" that will get left in "empty" areas of the input space because they do 
not win any competitions. By finding these dead PEs, you can locate the borders of the clustering 
inside your SOM.  
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Unified Distance Access: 
Another way to determine the clustering in a Self-Organizing Map (SOM) is by looking at the 
distance between PE cluster centers. The weights from the input to each PE gives the PE cluster 
centers of the SOM. Inside a cluster of inputs, SOM PEs will be close to each other. Between SOM 
PEs the SOM map will have to stretch its PEs to map from one input cluster to the next. By finding 
large distances between neighboring PEs we should be able to find where inputs are clustered in 
the SOM. Large distances imply an input cluster boundary. Remember, in a square SOM, there are 
distances from one PE to each of its 8 neighbors. 

This access point produces the distance from each PE to its neighbors. Looking for large distances 
(light values on an ImageViewer probe, or large black squares on a Hinton probe) shows input 
cluster boundaries. 

Quantization Metric Access: 
This access point produces the average quantization error, which measures the "goodness" of fit of 
a clustering algorithm. It is the average distance between each input and the winning PE. If the 
quantization error is large, then the winning PE is not a good representation of the input. If it is 
small, then the input is very close to the winning PE. Remember, that by increasing the number of 
PEs you will almost always get lower quantization errors even though the clustering may logically 
not be much better. Also, changing the input will affect the best quantization error possible. The 
quantization error is best for comparing the clustering capabilities between multiple trainings of the 
same Self-Organizing Map (SOM) on the same input. 

 

 

  See Also 

DLL Implementation 

DiamondKohonen DLL Implementation 

 

 

 

 

Component: DiamondKohonen  

Protocol: PerformKohonen 

 

Description: 

The DiamondKohonen component implements a 2D self-organizing feature map (SOFM) with a 
diamond neighborhood. The dimensions of the map are dictated by the dimensions of the axon that 
the LineKohonen feeds (outRows and outCols). The neighborhood size is defined by the user 
within the component’s inspector. 

 

Code: 
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void performKohonen( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *input,     // Pointer to the input layer of PEs 
 int     inRows,     // Number of rows of PEs in the input layer 
 int     inCols,     // Number of columns of PEs in the input layer 
 NSFloat *output,    // Pointer to the output layer 
 int     outRows,    // Number of rows of PEs in the output layer 
 int     outCols     // Number of columns of PEs in the output 
layer 
 NSFloat *weights    // Pointer to the fully-connected weight 
matrix 
 NSFloat step        // Learning rate 
 int     winningRow, // Index of winning row  
 int     winningCol, // Index of winning column  
 int     size        // Size of the neighborhood 
 ) 
{ 
 int i,j,k, 
  inCount = inRows*inCols, 
  startRow = winningRow - size, 
  stopRow = winningRow + size, 
  startCol = winningCol - size, 
  stopCol = winningCol + size; 
 
 if (startRow < 0) 
  startRow = 0; 
 if (stopRow >= outRows) 
  stopRow = outRows-1; 
 if (startCol < 0) 
  startCol = 0; 
 if (stopCol >= outCols) 
  stopCol = outCols-1; 
 for (i=startRow; i<stopRow; i++) 
  for (j=startCol; j<stopCol; j++) 
   if (abs(i-winningRow) + abs(j-winningCol) <= size) 
    for (k=0; k<inCount; k++) 
     W(j+i*outCols,k) += step*(input[k] - 
W(j+i*outCols,k)); 
} 

LineKohonen DLL Implementation 

 

 

 

 



 732

Component: LineKohonen  

Protocol: PerformKohonen 

 

Description: 

The LineKohonen component implements a 1D self-organizing feature map (SOFM) with a linear 
neighborhood. The dimensions of the map are dictated by the vector length (outRows*outCols) of 
the axon that the LineKohonen feeds. The neighborhood size is defined by the user within the 
component’s inspector. 

 

Code: 
 
void performKohonen( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *input,     // Pointer to the input layer of PEs 
 int     inRows,     // Number of rows of PEs in the input layer 
 int     inCols,     // Number of columns of PEs in the input layer 
 NSFloat *output,    // Pointer to the output layer 
 int     outRows,    // Number of rows of PEs in the output layer 
 int     outCols     // Number of columns of PEs in the output 
layer 
 NSFloat *weights    // Pointer to the fully-connected weight 
matrix 
 NSFloat step        // Learning rate 
 int     winningRow, // Index of winning row  
 int     winningCol, // Index of winning column  
 int     size        // Size of the neighborhood 
 ) 
{ 
 int i,j, 
  inCount = inRows*inCols, 
  outCount = outRows * outCols, 
  winner = winningCol + winningRow*outCols, 
  start = winner - size, 
  stop = winner + size; 
 
 if (start < 0) 
  start = 0; 
 if (stop >= outCount) 
  stop = outCount-1; 
 for (i=start; i<=stop; i++) 
  for (j=0; j<inCount; j++) 
   W(i,j) += step*(input[j] - W(i,j)); 
} 

SquareKohonen DLL Implementation 
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Component: SquareKohonen  

Protocol: PerformKohonen 

 

Description: 

The SquareKohonen component implements a 2D self-organizing feature map (SOFM) with a 
square neighborhood. The dimensions of the map are dictated by the dimensions of the axon that 
the LineKohonen feeds (outRows and outCols). The neighborhood size is defined by the user 
within the component’s inspector. 

 

Code: 
 
void performKohonen( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *input,     // Pointer to the input layer of PEs 
 int     inRows,     // Number of rows of PEs in the input layer 
 int     inCols,     // Number of columns of PEs in the input layer 
 NSFloat *output,    // Pointer to the output layer 
 int     outRows,    // Number of rows of PEs in the output layer 
 int     outCols     // Number of columns of PEs in the output 
layer 
 NSFloat *weights    // Pointer to the fully-connected weight 
matrix 
 NSFloat step        // Learning rate 
 int     winningRow, // Index of winning row  
 int     winningCol, // Index of winning column  
 int     size        // Size of the neighborhood 
 ) 
{ 
 int i,j,k, 
  inCount = inRows*inCols, 
  startRow = winningRow - size, 
  stopRow = winningRow + size, 
  startCol = winningCol - size, 
  stopCol = winningCol + size; 
 
 if (startRow < 0) 
  startRow = 0; 
 if (stopRow >= outRows) 
  stopRow = outRows-1; 
 if (startCol < 0) 
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  startCol = 0; 
 if (stopCol >= outCols) 
  stopCol = outCols-1; 
 for (i=startRow; i<=stopRow; i++) 
  for (j=startCol; j<=stopCol; j++) 
   for (k=0; k<inCount; k++) 
    W(j+i*outCols,k) += step*(input[k] - 
W(j+i*outCols,k)); 
} 

Inspectors 

Kohonen Inspector 

 

Superclass Inspector: Conscience Inspector  

 

 

 

Component Configuration: 
Neighborhood (SetNeighborhood(int)) 

This cell specifies the size of the spatial neighborhood used by the Kohonen algorithm. See the 
Neighborhood Figure section of the component reference for its use of this parameter. 
Beta (SetBeta(float)) 

See Conscience Inspector 
Gamma (SetGamma(float)) 

See Conscience Inspector 
Component Plane (setComponentPlane(int)) 

Used to select the plane displayed by the probe attached to the Component Plane access point. 
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Macro Actions 

Kohonen Full 

KohonenFull Macro Actions 
Overview Superclass Macro Actions 

Action Description 
neighborhood  Returns the "Neighborhood" setting. 
 
setNeighborhood  Sets the "Neighborhood" setting. 

 

neighborhood 
Overview Macro Actions 

Syntax 

componentName. neighborhood() 

Parameters Type Description 
return int The size of the spatial neighborhood used by the Kohonen algorithm (see 
"Neighborhood" within the Kohonen Inspector). 
 
componentName  Name defined on the engine property page. 

 

setNeighborhood 
Overview Macro Actions 

Syntax 

componentName. setNeighborhood(neighborhood) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
neighborhood int The size of the spatial neighborhood used by the Kohonen algorithm 
(see "Neighborhood" within the Kohonen Inspector). 
 

Access Points 

Unsupervised Access Points 

 

Family: Unsupervised Family  

Superclass: None 
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Activity Access: 

Attaches the Access component to the vector of activity immediately after the function map 
 

Weights Access: 

All adaptive weights within the axon are reported by attaching to Weight Access. This data may be 
reported in vector or matrix form, depending on how the axon stores it.  If a component does not 
have any weights, this access point will not appear in the inspector. 

Unsupervised Step Size: 

This Access point reports the step size being used by the Unsupervised component.  This value 
may be adapted during training by using a Scheduler. 

Forced Access: 

This access point is used to input a desired response to an unsupervised component. It is currently 
only implemented for the Hebbian and StandardFull components. For the Hebbian component, the 
learning rule becomes Forced Hebbian. For the StandardFull component, the learning rule 
becomes Learning Vector Quantization (LVQ), if the desired signal is the class labels of the 
clusters. 

 

 

  See Also 

HebbianFull Access Points 

 

Component: HebbianFull  

Superclass: Unsupervised Access Points 

 

Forced Access: 

This Access point allows a desired response to be input to the Hebbian component, transforming 
the learning rule to Forced Hebbian. 

DLL Implementation 

HebbianFull DLL Implementation 
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Component: HebbianFull  

Protocol: PerformUnsupervised 

 

Description: 

The HebbianFull component implements Plain Hebbian and Forced Hebbian learning. Each weight 
of the fully-connected matrix is adjusted by adding the product of the activity at the output PE, the 
activity at the input PE, and the step size.  

 

Code: 
 
void performUnsupervised( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,    // Pointer to the input layer of PEs 
 int     inRows,    // Number of rows of PEs in the input layer 
 int     inCols,    // Number of columns of PEs in the input layer 
 NSFloat *output,   // Pointer to the output layer 
 int     outRows,   // Number of rows of PEs in the output layer 
 int     outCols    // Number of columns of PEs in the output layer 
 NSFloat *weights   // Pointer to the fully-connected weight matrix 
 NSFloat step       // Learning rate 
 ) 
{ 
 int i, j, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols; 
 
 for (j=0; j<inCount; j++) 
  for (i=0; i<outCount; i++) 
   W(i,j) += step*input[j]*output[i]; 
} 

OjasFull DLL Implementation 

 

 

 

 

Component: OjasFull  

Protocol: PerformUnsupervised 
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Description: 

OjasFull implements plain Hebbian learning with constrained weight vector growth. This procedure 
adds a weight decay proportional to the output squared. The implementation is similar to that of the 
DLL Implementation component, except that each input PE term used to compute the weight 
change is reduced by the sum of products of the output PEs and the weights connected to the 
given input. 

 

Code: 
 
void performUnsupervised( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,    // Pointer to the input layer of PEs 
 int     inRows,    // Number of rows of PEs in the input layer 
 int     inCols,    // Number of columns of PEs in the input layer 
 NSFloat *output,   // Pointer to the output layer 
 int     outRows,   // Number of rows of PEs in the output layer 
 int     outCols    // Number of columns of PEs in the output layer 
 NSFloat *weights   // Pointer to the fully-connected weight matrix 
 NSFloat step       // Learning rate 
 ) 
{ 
 int i, j, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols; 
 NSFloat partialSum; 
 
 for (j=0; j<inCount; j++) { 
  partialSum = (NSFloat)0; 
  for (i=0; i<outCount; i++) 
   partialSum += output[i] * W(i,j); 
  for (i=0; i<outCount; i++) 
   W(i,j) += step*output[i]*(input[j] - partialSum); 
 } 
} 

SangersFull DLL Implementation 

 

 

 

 

Component: SangersFull  

Protocol: PerformUnsupervised 
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Description: 

SangersFull implements principal component analysis. It does this with a plain Hebbian weight 
update rule while constraining the growth of the weight vector, similar to the DLL Implementation 
component. The difference is that the range of the summation has changed, resulting in an 
ordering of the principal components. 

 

Code: 
 
void performUnsupervised( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,    // Pointer to the input layer of PEs 
 int     inRows,    // Number of rows of PEs in the input layer 
 int     inCols,    // Number of columns of PEs in the input layer 
 NSFloat *output,   // Pointer to the output layer 
 int     outRows,   // Number of rows of PEs in the output layer 
 int     outCols    // Number of columns of PEs in the output layer 
 NSFloat *weights   // Pointer to the fully-connected weight matrix 
 NSFloat step       // Learning rate 
 ) 
 int i, j, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols; 
 NSFloat partialSum; 
 
 for (j=0; j<inCount; j++) { 
  partialSum = (NSFloat)0; 
  for (i=0; i<outCount; i++) { 
   partialSum += output[i] * W(i,j); 
   W(i,j) += step*output[i]*(input[j] - partialSum); 
  } 
 } 
} 

Drag and Drop 

Unsupervised Drag and Drop 

 

All components in the Unsupervised family must be dropped directly on a component from the 
Synapse family. The unsupervised component will then be positioned in the upper left corner of 
the synapse.  

 

 

  See Also 
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Inspectors 

Rate Inspector 

 

Superclass Inspector: Synapse Inspector 

 

 

 

Component Configuration: 
Step Size (SetStepSize(float)) 

This cell is used to specify the step size parameter, η. See the component reference for its use 
within the weight update function. 
Learning (Turn learning on(); Turn learning off(); Toggle learning()) 

When this switch is turned on, the weights of this unsupervised component will be adapted. When 
this switch is turned off, the weights are frozen. This is most often used to synchronize the training 
of hybrid supervised/unsupervised networks. 

This switch will be turned on when the network is reset provided the Learn after RESET switch is 
turned on (see below). For standard unsupervised learning, both the Learn and the Learn after 
RESET switches should be turned on. Note that when the learning is off, the icon changes to that 
of the FullSynapse to indicate the freezing of the weights. The learning mode can be switched 
during the simulation using one or more Transmitters. 
Learn after RESET 

This switch specifies whether the Learn switch (see above) is turned on or off when the network is 
reset. 
Normalize Weights 

This switch is only active for the HebbianFull, OjasFull, and SangersFull components. If activated, 
then each weight vector in the weight matrix is normalized to have an L2 norm of unity after each 
weight update. It is most commonly used with the OjasFull and SangersFull components, with a 
negative learning rate, to compute the smallest principal component. 
Store Hopefield Weights 
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This button works only with the HebbianFull component with a desired signal at the forced access 
point. It is used to calculate, in a single pass, the weights of a Hopefield net. 

 

SVMInputSynapse Inspector 

 

Superclass Inspector: Step Inspector  

 

 

 

Component Configuration: 

The output vector y is a measure of the distance between the input and the output neurons’ weight 
vectors. This distance is dependent on the particular metric chosen: 
Dot Product 

 
Euclidean 

 

 

Macro Actions 

Unsupervised Full 

UnsupervisedFull Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
learning Returns the "Learning" setting. 
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learningOnReset  Returns the "Learning on Reset" setting. 
 
setLearning Sets the "Learning" setting. 
 
setLearningOnReset  Sets the "Learning on Reset" setting. 
 

setStepSize  Sets the "Step Size" parameter, η. 
 

stepSize  Returns the "Step Size" parameter, η. 
 

 

learning 
Overview  Macro Actions 

Syntax 

componentName. learning() 

Parameters Type Description 
return BOOL TRUE if the weights of the unsupervised component are adapted (see "Learning" 
within the Learning Rate Inspector). 
 
componentName  Name defined on the engine property page. 

 

learningOnReset 
Overview  Macro Actions 

Syntax 

componentName. learningOnReset() 

Parameters Type Description 
return BOOL TRUE forces the Learn switch on when the network is reset (see "Learn after 
RESET" within the Learning Rate Inspector). 
 
componentName  Name defined on the engine property page. 

 

setLearning 
Overview  Macro Actions 

Syntax 

componentName. setLearning(learning) 

Parameters Type Description 
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return void 
 
componentName  Name defined on the engine property page. 
 
learning BOOL TRUE if the weights of the unsupervised component are adapted (see "Learning" 
within the Learning Rate Inspector). 
 

setLearningOnReset 
Overview  Macro Actions 

Syntax 

componentName. setLearningOnReset(learningOnReset) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
learningOnReset BOOL TRUE forces the Learn switch on when the network is reset 
(see "Learn after RESET" within the Learning Rate Inspector). 
 

setStepSize 
Overview  Macro Actions 

Syntax 

componentName. setStepSize(stepSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page.  

stepSize float The step size parameter, η (see "Step Size" within the Learning Rate 
Inspector). 
 
 

stepSize 
Overview  Macro Actions 

Syntax 

componentName. stepSize() 

Parameters Type Description 

return float The step size parameter, η (see "Step Size" within the Learning Rate Inspector). 
 
componentName  Name defined on the engine property page. 
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Inspectors 
Genetic Parameters Inspector 

 

Superclass Inspector: None 

 

 

 

Description: 

This inspector is used to select which component parameters are to be optimized using a genetic 
algorithm. Note that this page is only shown if there is GeneticControl component stamped on the 
breadboard. 

 

Component Configuration: 
Parameter List 

This list box contains all of the component’s parameters that can be genetically optimized. 
Checking the box next to a parameter name specifies that it will be optimized during the next 
genetic run. Note that the GeneticControl component must have optimization enabled (see the 
GeneticControl inspector) before the selected parameters will be optimized on the next training run. 
Lower Bound 

This cell is displayed when a parameter is checked and selected from the Parameter List. It is used 
to specify the lowest value that the genetic algorithm can set the optimized parameter to. 
Upper Bound 

This cell is displayed when a parameter is checked and selected from the Parameter List. It is used 
to specify the highest value that the genetic algorithm can set the optimized parameter to. 
Mutation Type 
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Mutation is a genetic operator that alters one or more gene values in a chromosome from its initial 
state. This can result in entirely new gene values being added to the gene pool.  With these new 
gene values, the genetic algorithm may be able to arrive at a better solution than was previously 
possible.  Mutation is an important part of the genetic search as it helps to prevent the population 
from stagnating at any local optima. Mutation occurs during evolution according to a user-definable 
mutation probability, set within the Genetic Operators inspector page. There are four different 
mutation operators (types) available: 

• Uniform - Replaces the value of the chosen gene with a uniform random value selected between 
the user-specified upper and lower bounds for that gene. 

• Boundary - Replaces the value of the chosen gene with either the upper or lower bound for that 
gene (chosen randomly). 

• Gaussian - Adds a unit Gaussian distributed random value to the chosen gene. The new gene 
value is clipped if it falls outside of the user-specified lower or upper bounds for that gene. 

• Non-Uniform - Increases the probability that the amount of the mutation will be close to 0 as the 
generation number increases. This mutation operator keeps the population from stagnating in the 
early stages of the evolution, then allows the genetic algorithm to fine tune the solution in the later 
stages of evolution. The chosen gene is mutated according to the following equations: 

 

 

Engine Macro Actions 
Engine Macro Actions 

Overview Superclass Macro Actions 

Action Description 
activateDLL  Sets the "Use DLL" setting. 
 
baseEngineOnDocument  Returns the name of the component within the stack that is stamped 
directly on the breadboard. 
 
bottom  Returns the vertical position of the bottom edge of the component icon. 
 
className  Returns the class name of the object. 
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closeEngineWindow  Closes the window associated with the component (e.g., the display 
window of a probe). 
 
connectTo  Establishes a connection to the specified component on the breadboard. 
 
delete  Deletes the component. 
 
dllActive  Returns the "Use DLL" setting. 
 
dllName  Returns the name (excluding extension) of the DLL associated with the component. 
 
dllPath  Returns the full file path of the DLL associated with the component. 
 
engineAtAccessPoint  Returns the name of the component attached to the specified access 
point. 
 
fixName  Returns the "Fix Name" setting. 
 
fixToSuperengine  Returns the "Fix to superengine" setting. 
 
isDescendant  Returns TRUE if the specified component is directly or indirectly attached below.  
 
isKindOf  Returns TRUE if the component is a member of the specified class or is a 
member of a sub-class of the specified class. 
 
isMemberOf  Returns TRUE if the component is a member of the specified class. 
 
isOfLevel  Returns TRUE if the component is a member of the specified level. 
 
isSubengine  Returns TRUE if the specified component is directly or indirectly attached above. 
 
keepWindowActive  Returns the "Keep Window Active" setting. 
 
left  Returns the horizontal position of the left edge of the component icon. 
 
moveBy  Moves the component icon by the specified x and y offsets. 
 
moveEngineWindow  Moves the component's associated window to the specified location on 
the screen. 
 
moveOn  Detaches the component from its existing location and re-attaches it to the 
specified component. 
 
moveTo  Moves the component icon to the specified location on the breadboard. 
 
name  Returns the "Component Name". 
 
openEngineWindow  Opens the window associated with the component (e.g., the display 
window of a probe). 
 
right  Returns the horizontal position of the right edge of the component icon. 
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setDLLName  Sets the name of the DLL to associate with the component. The directory is 
specifed within the Options Window.  
 

setFixName  Sets the "Fix Name" setting. 

 
setFixToSuperengine  Sets the "Fix to superengine" setting. 
 
setKeepWindowActive  Sets the "Keep window active" setting. 
 
setName  Sets the "Component name" setting. 
 
sizeEngineWindow  Sets the height and width of the window associated with the component. 
 
subengines  Returns a variant array containing the names of all components attached on top 
of the component. 
 
top  Returns the vertical position of the top edge of the component icon. 
 
 
 

activateDLL 
Overview Macro Actions 

Syntax 

componentName. activateDLL(setSwitch, perform) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 
setSwitch BOOL TRUE to turn the "Use DLL" switch on and FALSE to turn the switch off 
(see " Use DLL" within the Engine Inspector ). 

 
perform BOOL TRUE to perform the load/unload operation at the time the switch is set. This is 
normally set to TRUE. 

 

baseEngineOnDocument 
Overview Macro Actions 

Syntax 

componentName. baseEngineOnDocument() 
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Parameters Type Description 
return string The name of the component within the stack that is stamped directly on the 
breadboard. 
 
componentName  Name defined on the engine property page. 

 

bottom 
Overview Macro Actions 

Syntax 

componentName. bottom() 

Parameters Type Description 
return int The vertical position of the bottom edge of the component icon 
 
componentName  Name defined on the engine property page. 
 

className 
Overview Macro Actions 

Syntax 

componentName. className() 

Parameters Type Description 
return string The class name of the object. 
 
componentName  Name defined on the engine property page. 
 

closeEngineWindow 
Overview Macro Actions 

Syntax 

componentName. closeEngineWindow() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

connectTo 
Overview Macro Actions 
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Syntax 

componentName. connectTo(name) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
name string The name of the component to connect to. 
 

delete 
Overview Macro Actions 

Syntax 

componentName. delete() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

dllActive 
Overview Macro Actions 

Syntax 

componentName. dllActive() 

Parameters Type Description 
return BOOL TRUE if the associated DLL is being used (see " Use DLL" within the Engine 
Inspector ). 
 
componentName  Name defined on the engine property page. 

 

dllName 
Overview Macro Actions 

Syntax 

componentName. dllName() 

Parameters Type Description 
return string The name (excluding extension) of the DLL associated with the component. 
 
componentName  Name defined on the engine property page. 
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dllPath 
Overview Macro Actions 

Syntax 

componentName. dllPath() 

Parameters Type Description 
return string The full path of the DLL associated with the component. 
 
componentName  Name defined on the engine property page. 

 

engineAtAccessPoint 
Overview Macro Actions 

Syntax 

componentName. engineAtAccessPoint(access) 

Parameters Type Description 
return string The name of the component attached to the specified access point. 
 
componentName  Name defined on the engine property page. 

 
access string The name of the access point. 

 

fixToSuperengine 
Overview Macro Actions 

Syntax 

componentName. fixToSuperengine() 

Parameters Type Description 
return BOOL TRUE if the component cannot be moved from the attached component (see "Fix 
to Superengine" within the Engine Inspector). 
 
componentName  Name defined on the engine property page. 
 

fixName 
Overview Macro Actions 

Syntax 
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componentName. fixName() 

Parameters Type Description 
return BOOL TRUE if the component's cannot be modified automatically by NeuroSolutions 
(see "Fix Name" within the Engine Inspector). 
 
componentName  Name defined on the engine property page. 

 

isDescendant 
Overview Macro Actions 

Syntax 

componentName. isDescendant(name) 

Parameters Type Description 
return BOOL TRUE if the specified component is directly or indirectly attached below. 
 
componentName  Name defined on the engine property page. 

 
name string The component name. 

 

isKindOf 
Overview Macro Actions 

Syntax 

componentName. isKindOf(class) 

Parameters Type Description 
return BOOL TRUE if the component is a member of the specified class or is a member of a 
sub-class of the specified class. 
 
componentName  Name defined on the engine property page. 

 
class string The class name. 

 

isMemberOf 
Overview Macro Actions 

Syntax 

componentName. isMemberOf(class) 

Parameters Type Description 
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return BOOL TRUE if the component is a member of the specified class. 
 
componentName  Name defined on the engine property page. 

 
class string The class name. 

 

isMemberOf 
Overview Macro Actions 

Syntax 

componentName. isOfLevel(level) 

Parameters Type Description 
return BOOL TRUE if the component is a member of the specified level. 
 
componentName  Name defined on the engine property page. 

 
level string The component level. Possible values are: "Activity", "Backprop", "Control" and 
"Gradient". 

 

isSubengine 
Overview Macro Actions 

Syntax 

componentName. isSubengine(name) 

Parameters Type Description 
return BOOL TRUE if the specified component is directly or indirectly attached above. 
 
componentName  Name defined on the engine property page. 

 
name string The component name. 

 

keepWindowActive 
Overview Macro Actions 

Syntax 

componentName. keepWindowActive() 

Parameters Type Description 
return BOOL TRUE if the window associated with this component will stay open (see "Keep 
window active" within the Engine Inspector). 
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componentName  Name defined on the engine property page. 

 

left 
Overview Macro Actions 

Syntax 

componentName. left() 

Parameters Type Description 
return int The horizontal position of the left edge of the component icon. 
 
componentName  Name defined on the engine property page. 

 

moveBy 
Overview Macro Actions 

Syntax 

componentName. moveBy(x, y) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 
x int The horizontal offset to move the component icon by. 

 
y int The vertical offset to move the component icon by. 

 

moveEngineWindow 
Overview Macro Actions 

Syntax 

componentName. moveEngineWindow(x, y) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 
x int The new horizontal location of the left edge of the window associated with the 
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component. 

 
y int The new vertical location of the top edge of the window associated with the 
component. 

 

moveOn 
Overview Macro Actions 

Syntax 

componentName. moveOn(name) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 
name string The name of the component to attach to. 

moveTo 
Overview Macro Actions 

Syntax 

componentName. moveTo(x, y) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
x int The new horizontal location of the left edge of the component icon. 

 
y int The new vertical location of the top edge of the component icon. 
 

name 
Overview Macro Actions 

Syntax 

componentName. name() 

Parameters Type Description 
return string The name of the component (see "Component name" within the Engine Inspector 
). 
 
componentName  Name defined on the engine property page. 
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openEngineWindow 
Overview Macro Actions 

Syntax 

componentName. openEngineWindow() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

right 
Overview Macro Actions 

Syntax 

componentName. right() 

Parameters Type Description 
return int The horizontal position of the right edge of the component icon. 
 
componentName  Name defined on the engine property page. 

 

setDLLName 
Overview Macro Actions 

Syntax 

componentName. setDLLName(dllName, dllPath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
dllName string The name (without extension) of the DLL associated with the component. 
 
dllPath string The full path of the DLL associated with the component. 
 

setFixName 
Overview Macro Actions 

Syntax 
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componentName. setFixName(fixName) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fixName BOOL TRUE if the component's cannot be modified automatically by NeuroSolutions 
(see "Fix Name" within the Engine Inspector). 
 

setFixToSuperengine 
Overview Macro Actions 

Syntax 

componentName. setFixToSuperengine(fixToSuperengine) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fixToSuperengine BOOL TRUE if the component cannot be moved from the attached 
component (see "Fix to Superengine" within the Engine Inspector). 
 

setKeepWindowActive 
Overview Macro Actions 

Syntax 

componentName. setKeepWindowActive(keepWindowActive) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
keepWindowActive BOOL TRUE if the window associated with this component will stay 
open (see "Keep window active" within the Engine Inspector). 
 

setName 
Overview Macro Actions 

Syntax 

componentName. setName(name) 

Parameters Type Description 
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return void 
 
componentName  Name defined on the engine property page. 
 
name string The name of the component (see "Component name" within the Engine Inspector 
). 
 

sizeEngineWindow 
Overview Macro Actions 

Syntax 

componentName. sizeEngineWindow(cx, cy) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
cx int The new width of the window associated with the component. 

 
cy int The new height of the window associated with the component. 

 

subengines 
Overview Macro Actions 

Syntax 

componentName. subengines() 

Parameters Type Description 
return variant An array containing the names of all components attached on top of the 
component. 
 
componentName  Name defined on the engine property page. 
 

 

top 
Overview Macro Actions 

Syntax 

componentName. top() 

Parameters Type Description 
return int The vertical position of the top edge of the component icon. 
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componentName  Name defined on the engine property page. 
 

Dialog Components 
DialogEngine Family 
DialogEngine Family 

 

 

DialogEngine family palette. 

 

 

Ancestor:  Engine Family  

 

This family allows you to enhance a breadboard with user interface components. These 
components can be used to build presentations, demonstrations, or a high-level interface for the 
end users of the network. 

 

Members: 

MacroEngine Family  

ArrowEngine  

ArrowEngine 
 

  

 

 

Family: MacroEngine Family 

Superclass: NEngine 

 

Description: 
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This component acts as a pointing device and is mainly used for demonstration purposes. 

 

User Interaction: 

Drag and Drop 

Inspector 

 

MacroEngine Family 

MacroEngine Family 

 

Ancestor:  DialogEngine Family  

 

Each of these components can have a macro associated with them. The component can be 
configured to run the macro whenever the user single-clicks on it. The associated macro can also 
be triggered using a Transmitter and the "runMacro" action. 

Most NeuroSolutions components are selected by single-clicking on them. By default, the 
MacroEngine components are configured to either run a macro or switch to edit mode after a 
single-click. To select a MacroEngine component when it is in this state, select the region around 
the component by pressing the mouse button while pointing at the upper left corner, dragging it 
down to the lower right corner, and releasing (see Logic of the Interface). 

 

Members: 

TextBoxEngine  

ButtonEngine  

EditEngine  

 

User Interface: 

       Macro Action  

 

 

  See Also 

TextBoxEngine 
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Family: MacroEngine Family 

Superclass: NEditEngine 

 

Description: 

This component is used to place descriptive text on the breadboard, often for demonstration 
purposes. The border around the text can be modified, as well as the background color. 

 

User Interaction: 

Drag and Drop 

Inspector 

ButtonEngine 

 

  

 

 

Family: MacroEngine Family 

Superclass: NEditEngine 

 

Description: 

This component is a button that is normally associated with a macro. By default, the macro is run 
when the user single-clicks on the button. 

 

User Interaction: 

Drag and Drop 

Inspector 
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EditEngine 

 

  

 

 

Family: MacroEngine Family 

Superclass: NMacroEngine 

 

Description: 

This component is an edit cell that allows the user to enter in a value. The value entered can be 
obtained by calling the ‘text()’ macro function of the EditEngine component. 

 

User Interaction: 

Drag and Drop 

Inspector 

Macro Actions  

Drag and Drop 

MacroEngine Family Drag and Drop 

 

MacroEngines are base components on the breadboard. This means that they must be dropped 
directly onto an empty breadboard location. 

Inspectors 

Text Box Inspector  

 

Superclass Inspector: Edit Inspector  
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Component Configuration: 
Border 

Selects the type of border drawn around the text box.  
Transparent 

Sets the background of the text box to be transparent. 
Color 

Opens a color selection panel and sets the background of the text box to the selected color. 

Edit Inspector  

 

Superclass Inspector: Macro Inspector  
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Component Configuration: 
Height 

The height of the edit area. 
Width 

The width of the edit area. 
Left 

Sets the text to be left justified within the edit area. 
Center 

Sets the text to be centered within the edit area. 
Right 

Sets the text to be right justified within the edit area. 
Autosize 

Sizes the edit area based to the size of the text. As the text is edited, the window resizes with each 
keystroke. 
Padding 

Sets the amount of spacing between the text and the edit area border. 
Bold 

Sets the font to be bold. 
Italic 

Sets the font to be italic. 
Underlined 

Sets the font to be underlined. 
Size 

Sets the font size. 
Color 

Opens a color selection panel and sets the text to the selected color. 

Macro Inspector  

 

Superclass Inspector: Engine Inspector  
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Component Configuration: 
Browse 

Displays a file selection panel for setting the macro to associate with this object. The associated 
macro is run whenever this object is clicked on (provided that the "Run" switch is set – see below). 
Edit 

Displays the MacroWizard_Debug_Page for the associated macro. 
Select 

When this switch is set, the component is selected when it is clicked on. To select the component 
when this switch is not set, select the region around the component (see Logic of the Interface). 
Run 

When this switch is set, the associated macro is run when the component is clicked on.  
Edit 

When this switch is set, the edit mode is activated when the component is clicked on.  

 

Macro Actions 

Edit Engine 

EditEngine Macro Actions 
Overview  Superclass Macro Actions 

Action Description 
autosize  Returns the "Edit Area Autosize" setting. 
 
bold  Returns the "Font Bold" setting. 
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borderType  Returns the "Border" setting (0=None, 5=Raised, 6=Etched Edge, 9=Bumped 
Edge, 10=Sunken). 
 
editModeEnabled  Returns the "Edit Mode Enabled" setting. 
 
fontSize  Returns the "Font Size" setting. 
 
height  Returns the "Edit Area Height" setting. 
 
italic  Returns the "Font Italic" setting. 
 
padding  Returns the "Edit Area Padding" setting. 
 
position  Returns the position setting for the text within the edit area (0=Left, 1=Center, 2=Right). 
 
setAutosize  Sets the "Edit Area Autosize" setting.  
 
setBackgroundColor  Sets the "Background Color" setting. 
 
setBold  Sets the "Font Bold" setting. 
 
setBorderType  Sets the "Border" setting (0=None, 5=Raised, 6=Etched Edge, 9=Bumped Edge, 
10=Sunken). 
 
setColor  Sets the "Font Color" setting.  
 
setEditModeEnabled  Sets the "Edit Mode Enabled" setting. 
 
setFontSize  Sets the "Font Size" setting. 
 
setHeight  Sets the "Edit Area Height" setting. 
 
setItalic  Sets the "Font Italic" setting. 
 
setPadding  Sets the "Edit Area Padding" setting. 
 
setPosition  Sets the position setting for the text within the edit area (0=Left, 1=Center, 
2=Right). 
 
setText  Sets the text to be placed within the edit box. 
 
setTextFromFile  Allows the user to read the text to be placed within the text box from an ASCII 
text file. 
 
setTransparent  Sets the "Background Transparent" setting. 
 
setUnderlined  Sets the "Font Underlined" setting. 
 
setWidth  Sets the "Edit Area Width" setting. 
 
sizeToFit  Sizes the edit area based on the size of the text. 
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Text  Returns the edit box text. 
 
transparent  Returns the "Background Transparent" setting. 
 
underlined  Returns the "Font Underlined" setting. 
 
width  Returns the "Edit Area Width" setting. 

 
 
 

autosize 
Overview  Macro Actions 

Syntax 

componentName. autosize() 

Parameters Type Description 
return BOOL When TRUE, the edit box size automatically adjusts based on the amount of text 
(see "Autosize" within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 

bold 
Overview  Macro Actions 

Syntax 

componentName. bold() 

Parameters Type Description 
return BOOL When TRUE, the font type is bold (see "Bold" within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 
 

borderType 
Overview  Macro Actions 

Syntax 

componentName. borderType() 

Parameters Type Description 
return int The border type of a text box (0=None, 5=Raised, 6=Etched Edge, 9=Bumped 
Edge, 10=Sunken -- see "Border" within the TextBoxEngine Inspector). 
 
componentName  Name defined on the engine property page. 
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editModeEnabled 
Overview  Macro Actions 

Syntax 

componentName. editModeEnabled() 

Parameters Type Description 
return BOOL When TRUE, the text of the edit box may be edited (see "Edit Mode Enabled" 
within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 

fontSize 
Overview  Macro Actions 

Syntax 

componentName. fontSize() 

Parameters Type Description 
return int The point size of the font (see "Size" within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 

height 
Overview  Macro Actions 

Syntax 

componentName. height() 

Parameters Type Description 
return int The height of the edit area (see "Height" within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 

italic 
Overview  Macro Actions 

Syntax 

componentName. italic() 

Parameters Type Description 
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return BOOL When TRUE, the font type is italic (see "Italic" within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 

padding 
Overview  Macro Actions 

Syntax 

componentName. padding() 

Parameters Type Description 
return int The amount of spacing between the text and the edit area border (see "Padding" 
within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 

position 
Overview  Macro Actions 

Syntax 

componentName. position() 

Parameters Type Description 
return int The position of the text within the edit area (0=Left, 1=Center, 2=Right -- see 
"Left", "Center", and "Right" within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 

setAutosize 
Overview  Macro Actions 

Syntax 

componentName. setAutosize(autosize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
autosize BOOL When TRUE, the edit box size automatically adjusts based on the 
amount of text (see "Autosize" within the EditEngine Inspector). 
 

setBackgroundColor 
Overview  Macro Actions 
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Syntax 

componentName. setBackgroundColor(red, green, blue) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
red int The amount of red (0 to 255) in the background color of the text box (see "Color" 
within the TextBoxEngine Inspector). 
green int The amount of green (0 to 255) in the background color of the text box (see 
"Color" within the TextBoxEngine Inspector). 
blue int The amount of blue (0 to 255) in the background color of the text box (see 
"Color" within the TextBoxEngine Inspector). 
 
 

setBold 
Overview  Macro Actions 

Syntax 

componentName. setBold(bold) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
bold BOOL When TRUE, the font type is bold (see "Bold" within the EditEngine Inspector). 
 

setBorderType 
Overview  Macro Actions 

Syntax 

componentName. setBorderType(borderType) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
borderType int The border type of a text box (0=None, 5=Raised, 6=Etched Edge, 
9=Bumped Edge, 10=Sunken -- see "Border" within the TextBoxEngine Inspector). 
 
 

setColor 
Overview  Macro Actions 
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Syntax 

componentName. setColor(red, green, blue) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
red int The amount of red (0 to 255) in the font color of the text (see "Color" within the 
EditEngine Inspector). 
green int The amount of green (0 to 255) in the font color of the text (see "Color" within the 
EditEngine Inspector). 
blue int The amount of blue (0 to 255) in the font color of the text (see "Color" within the 
EditEngine Inspector). 

setEditModeEnabled 
Overview  Macro Actions 

Syntax 

componentName. setEditModeEnabled(editModeEnabled) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
editModeEnabled BOOL When TRUE, the text of the edit box may be edited (see "Edit 
Mode Enabled" within the EditEngine Inspector). 

 

setFontSize 
Overview  Macro Actions 

Syntax 

componentName. setFontSize(fontSize) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
fontSize int The point size of the font (see "Size" within the EditEngine Inspector). 
 

setHeight 
Overview  Macro Actions 

Syntax 
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componentName. setHeight(height) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
height int The height of the edit area (see "Height" within the EditEngine Inspector). 
 

setItalic 
Overview  Macro Actions 

Syntax 

componentName. setItalic(italic) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
italic BOOL When TRUE, the font type is italic (see "Italic" within the EditEngine Inspector). 
 
 

setPadding 
Overview  Macro Actions 

Syntax 

componentName. setPadding(padding) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
padding int The amount of spacing between the text and the edit area border (see "Padding" 
within the EditEngine Inspector). 
 

setPosition 
Overview  Macro Actions 

Syntax 

componentName. setPosition(position) 

Parameters Type Description 
return void 
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componentName  Name defined on the engine property page. 
 
position int The position of the text within the edit area (0=Left, 1=Center, 2=Right -- see 
"Left", "Center", and "Right" within the EditEngine Inspector). 
 

setText 
Overview  Macro Actions 

Syntax 

componentName. setText(text) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
text string The text to be placed within the edit box. 

setTextFromFile 
Overview  Macro Actions 

Syntax 

componentName. setTextFromFile(path, index) 

Parameters Type Description 
return void  
 
componentName  Name defined on the engine property page. 

 
path string The full path name of the ASCII file that contains the edit box text. 
index int The index indicating which string to extract. The strings are delimited by a '#' 
immediately followed by the name of the EditEngine component that will use the text. For example, 
an index of 3 will find the string following the fourth (because it is zero-based) occurance of #name 
where name is the engine name found within the Engine Inspector. 

 

setTransparent 
Overview  Macro Actions 

Syntax 

componentName. setTransparent(transparent) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
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transparent BOOL When TRUE, the background color of the text box is transparent (see 
"Transparent" within the TextBoxEngine Inspector). 
 

setUnderlined 
Overview  Macro Actions 

Syntax 

componentName. setUnderlined(underlined) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
underlined BOOL When TRUE, the font type is underlined (see "Underlined" within the 
EditEngine Inspector). 
 

setWidth 
Overview  Macro Actions 

Syntax 

componentName. setWidth(width) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
width int The width of the edit area (see "Width" within the EditEngine Inspector). 
 

sizeToFit 
Overview  Macro Actions 

Syntax 

componentName. sizeToFit() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

text 
Overview  Macro Actions 



 774

Syntax 

componentName. text() 

Parameters Type Description 
return string The text to be placed within the text box. 
 
componentName  Name defined on the engine property page. 

 

transparent 
Overview  Macro Actions 

Syntax 

componentName. transparent() 

Parameters Type Description 
return BOOL When TRUE, the background color of the text box is transparent (see 
"Transparent" within the TextBoxEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 

underlined 
Overview  Macro Actions 

Syntax 

componentName. underlined() 

Parameters Type Description 
return BOOL When TRUE, the font type is underlined (see "Underlined" within the EditEngine 
Inspector). 
 
componentName  Name defined on the engine property page. 

 

width 
Overview  Macro Actions 

Syntax 

componentName. width() 

Parameters Type Description 
return int The width of the edit area (see "Width" within the EditEngine Inspector). 
 
componentName  Name defined on the engine property page. 
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Macro Engine 

MacroEngine Macro Actions 
Overview Superclass Macro Actions 

Action Description 
macroAction  Returns the "On single-click" setting (0="Select", 1="Run", 2="Edit"). 
 
macroPath  Returns the full file path of the macro associated with the dialog component. 
 
runMacro  Runs the macro specified by macroPath. 
 
setMacroAction  Sets the "On single-click" setting (0="Select", 1="Run", 2="Edit"). 
 
setMacroPath  Sets the full file path of the macro associated with the dialog component. 
 

macroAction 
Overview Macro Actions 

Syntax 

componentName. macroAction() 

Parameters Type Description 
return int The action to be taken when the dialog component is clicked on (0="Select", 
1="Run", 2="Edit"  -- see "On single-click" within the MacroEngine Inspector). 
 
componentName  Name defined on the engine property page. 
 

macroPath 
Overview Macro Actions 

Syntax 

componentName. macroPath() 

Parameters Type Description 
return string The full file path of the macro associated with the dialog component (see "Macro 
Path" within the MacroEngine Inspector). 
 
componentName  Name defined on the engine property page. 

 
 

runMacro 
Overview Macro Actions 

Syntax 
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componentName. runMacro() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

setMacroAction 
Overview Macro Actions 

Syntax 

componentName. setMacroAction(macroAction) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
macroAction int The action to be taken when the dialog component is clicked on 
(0="Select", 1="Run", 2="Edit"  -- see "On single-click" within the MacroEngine Inspector). 
 

setMacroPath 
Overview Macro Actions 

Syntax 

componentName. setMacroPath(macroPath) 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 
 
macroPath string The full file path of the macro associated with the dialog component 
(see "Macro Path" within the MacroEngine Inspector). 
 

Drag and Drop 

ArrowEngine Drag and Drop 

 

ArrowEngines are unique in that they can stamp on top of an existing component, or they can be 
dropped directly onto an empty breadboard location. 

 



 777

The Theory 
The Theory  

 

 

NeuroSolutions 

 

NeuroDimension, Incorporated. 

Gainesville, Florida 

 

 

 
Purpose 

The purpose of this chapter is to present the theoretical contributions of NeuroSolutions for the 
simulation of artificial neural networks. We will discuss how the global network dynamics and the 
learning dynamics are broken down into local rules of interaction. We also show the equations 
implemented at the processing level for activation and error backpropagation, and how they are 
encapsulated in objects. Finally, we show how the objects communicate with each other in planes 
of activation and how orchestration of the data flow implements the learning paradigms. 

 

Contributions to the Theory of Neural Networks 
 

NeuroSolutions was designed based on the principle of local rules of interactions among simple 
neural components. This is one of the principles generally accepted in biological neural networks, 
but very seldom do artificial simulations effectively explore the idea. Moreover, it was necessary to 
formulate the equation based neural network theory into this new formalism.  

Another contribution to the theory of neural computation is the division of neural networks into 
functional blocks. NeuroSolutions builds neural networks from families of components, and 
implements simulations using planes of activations and a data flow concept. The families of 
components naturally translate the parameters needed to configure neural networks and learning 
paradigms. This is a crucial aspect in the integration of the user interface with the simulation code. 
The planes of activation implement, for ultimate efficiency, both the neural network dynamics and 
the learning dynamics. 

Due to its object-oriented nature, NeuroSolutions specifies what components do and how 
components interact with each other, rather than specifying rigid implementation of functions as in 
conventional programming. Therefore a simulation environment of unparalleled versatility and 
power has been achieved. This part of the manual presents, in sufficient detail, the contributions. 

Introduction to the Theory Chapter 
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The simulation of artificial neural networks (ANNs) is an increasingly important research area. This 
is due to the demanding computer bandwidth of ANN implementations coupled with the need to 
experimentally test topologies and parameters. This compensates, in part, a lack of thorough 
theoretical characterization of ANNs. The need to address real world applications implies a 
requirement for simulating very large networks. The simulation environments must not only be fast 
and efficient, but also user friendly and upgradeable, enabling thorough experimental validation. 
With the computational bandwidth requirements, brute force implementation can give unrealistic 
computation times, even using supercomputers. Careful planning and fine-tuning of the code has 
been a necessity for ANN implementations in digital computers.  

At first we looked at the problem from a mere engineering perspective, i.e. to find what 
computational models were most natural for an efficient implementation of ANN topologies. Our 
conclusion is that an object-oriented programming paradigm conforms to topologies made up of 
aggregates of similar elements instantiated as many times as necessary. Along the way we found 
out that object-oriented concepts provide an alternate and equivalent description of ANN paradigms 
much more appropriate for simulating ANN topologies.  

An ANN model is described by a set of dynamic equations. Being adaptive systems, ANNs require 
a second set of dynamic equations for learning. Although these equations translate the potential 
and concepts of the theoretical model very well, they suffer from a key shortcoming. ANNs are 
implemented in digital computers or other hardware through topologies. A given ANN model may 
produce several topologies. For each topology the equation-based description applies, but at the 
expense of brute force calculations and exaggerated storage requirements.  

Consider the multilayer perceptron (MLP) [Lippman, 1987] and Hopfield network [Hopfield, 1982]. 
As topologies, they differ substantially (one is feedforward while the other is recurrent), but they are 
two implementations for the additive model (in the sense of Grossberg [Grossberg, 1983]). 
Therefore, if a useful implementation for the additive model is developed in a digital computer, it 
can implement an MLP and a Hopfield network indiscriminately (or any other recurrent topology). 
The implementations, however, will be very inefficient since, in the MLP, the feedback connections 
are set at zero, while the connections in recurrent networks are normally sparse. The same 
argument applies to learning dynamics, i.e. gradient descent learning for these two networks. 
Furthermore, when implementing the learning rules one ends up with two distinctly different 
learning procedures, since the MLP is static and the Hopfield network is recurrent.  

This example may be generalized to show that learning equations are specific to topologies and 
becomes obvious when the transpose network is used to propagate errors and compute gradients 
(one of the leading contributions from neural network theory to gradient descent learning). It may 
seem that for the sake of efficiency we are restricted to customized simulation environments, with 
code specifically written for each network topology and learning paradigm. But we think otherwise, 
and NeuroSolutions is a "living proof" of such beliefs. 

The major goal of this document is to present a simulation environment for neural networks which 
consists of a mixture of feedforward and recurrent sub-networks, trained with static 
backpropagation, fixed point learning, or backpropagation through time (BPTT). In our opinion, the 
equation based modeling, so widespread in ANNs, has an alternate and equivalent formulation, 
which we call object-oriented modeling, and which is far more natural for computer, based 
simulations of ANNs. Object-oriented modeling is achieved by the execution of an ordered 
sequence of formal procedures. At present, we utilize digital computers as the engines for object-
oriented modeling. This equivalence is predicated on the well known but often overlooked fact that 
ANN interactions are BOTH local to space (finite elemental topologies) and to time neighborhoods 
(finite data operators), which we refer to as being local in time and in space. The equation-based 
modeling does not explore this natural fact, but object-oriented modeling does. Neural network 
behavior can be easily encoded into local dynamic rules of interaction. These elementary rules are 
simply replicated across the network. In this sense the ANN with its learning rules operates as a 
cellular automaton or a lattice in time and space.  

A lattice in mathematics is a partially ordered set (with some constraints [Birkhoff, 1948]). Here we 
will be using the term to represent an ensemble of ordered computations that can be mapped to 
sites in a graph. Some of these sites may also require ordered computations in time (such as linear 
filtering operations), so the overall simulation structure is a coupled lattice.  
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Equation-based Modeling 
 

Every neural network researcher has been faced with the problem of translating equations that 
describe ANN dynamics to computer programs that implement the network topology. The synthetic 
power and formalism embedded in a mathematical expression is hard to beat, and has been 
extensively used for characterizing the global dynamics of neural models. Until the advent of 
computers, mathematics was the most utilized formal descriptive system. We should remember, 
however, that computer languages are also formal systems and possess the same properties.  

A computer algorithm describes a relationship as precisely as a mathematical formula. The 
problem is one of choosing the representation that best suits our needs. We do not dispute that at 
the modeling level, equations are the best way to translate global dynamic properties of the 
interactions. But does this extrapolate to implementations, i.e. to neural network simulations? Let 
us examine this point in more detail using the additive model as an example [Amari, 1972, 
Grossberg, 1973]. In modeling, dynamics are described by coupled sets of first order nonlinear 
differential equations of the form, 

 

 

 

where  is the systems state vector,  is a dynamic map,  is an external input, 

 represents internal system parameters and  is a desired trajectory for the 
system’s state. A neural model is adopted by selecting a distributed set of dynamic mapping 

functions  for the system’s state vector. For the additive model, we have, 

 

 

 

where  is the time constant of the ith processing element and  is its input-output 
transfer function. 

In a block diagram this can be illustrated as the block additive model in the figure below (all 
quantities are vectors). Although this model is very general, notice that the activation at node i only 
depends explicitly on the present input. This feature is undesirable for a large class of problems 
such as the classification of time varying signals (speech, control, and prediction). One way of 
modifying the additive model is to substitute the multiplications by convolutions in time  
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This model has been called the convolution model [deVries and Principe, 1992], and allows the 
ANN activations to depend explicitly upon the past of the input signal and/or model states. The 
convolution is a linear operation, so conceptually one can picture the neural activations being 
stored into a general linear filter, which unfortunately has a growing number of coefficients.  

 

 

Gamma neural model as a prewired additive model 

 

The convolution model can be approximated by fixed order structures [deVries and Principe, 1992]. 
They showed that the gamma neural model, 

 

 

 

for sufficiently large K can approximate the convolution model as close as necessary. These 
equations can be easily extended to discrete time [deVries and Principe, 1992]. Special cases of 
this recursive memory structure are the tapped delay line for µ =1 (utilized in the time domain 
neural network- TDNN, [Lang et al, 1990]), and context unit for K=1 [Jordan, 1986].  

A neural network is an implementation of a neural model. Normally a topology is assigned by 
choosing specific forms of the weight matrix (i.e. fully populated weight matrices give rise to 
recurrent nets, and when all the weights with i?j are zero, feedforward nets). 

The learning dynamics in the N-dimensional dynamic system of the equation above also involves 
translating equations to network topologies, although some papers have been written with the word 
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"general" in the title [Thrun and Smieja, 1991]. When present, the vector  is used to represent 
the target values for the desired output. In this framework, learning consists of adjusting the weight 
values such that the desired output is obtained. Notice that this output can be a function of time, or 
a constant value.  

When the goal is to match a desired response, a metric must be established in the error, i.e. the 
difference between the desired and actual output. This problem has been extensively studied in 
adaptive signal processing [Haykin, 1991] and optimal control [Bryson and Ho, 1975]. The standard 
metric chosen is the L2 norm (mean square error), and the method normally used to minimize this 
error is gradient descent. In gradient descent learning, network coefficients are updated according 
to the formula, 

 

 

 

where E is an error functional, and η is the learning rate.  

In order to proceed we must know more about the problem under different learning methods (static 
backpropagation [Rumelhart et al, 1986], fixed point learning [Pineda, Almeida, 1987], 
backpropagation through time [Werbos, 1990], and real time recurrent learning [William and Zipser, 
1989). For one thing, the error is a function of the network output, which is coupled directly to the 
network topology. The desired signal can be a constant (fixed point) or time varying (a trajectory). 
This implies two possibilities: either the network is feedforward and the desired signal and network 
inputs are static, in which case the gradient computations are independent of time; or the network 
is recurrent and/or the desired signal is time dependent in which case the gradient computation 
becomes time dependent. Normally in the ANN literature, these cases are divided into the learning 
methods mentioned above. A detailed discussion of the methods is outside the scope of this work. 
What we want to stress is the following facts: First, the network topology affects the equations that 
compute the gradients. Second, in all these methods, the gradient can be computed with local 
information, both spatially and temporally.  

Let us summarize what we have reviewed. In the figure below (left half) we show diagrammatically 
how the analysis progressed, from the model to the topology (network), to the learning system. The 
network is a special implementation of the model. Since learning uses the network it will also 
become a special case for each topology. For this reason we believe that if a new topology 
encapsulates a unique feature of the neural model, it will always require a special set of equations 
to describe it.  
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Equation vs. object-oriented based methodology 

 

Also in the figure above (right half) we present an alternate route that we call object-oriented 
modeling. Due to the fact that interactions are local, let us first capture the simplest dynamic 
interactions at the processing element level, which we called the elemental neural dynamics. From 
the elemental neural dynamics we can glue together elemental topologies, or full-blown neural 
networks. The elemental dynamics will define local rules of interaction relating the processing of 
neural activity. Additional rules of interaction will have to be defined which allow these elemental 
topologies to exist in a data flow machine.  

These rules of interaction will be solving the equations that we have seen for ANN models, but in 
object-oriented modeling we do not need to write them explicitly. This is the main difference 
between the two approaches. Our point is that once the quantitative and theoretical aspects of 
neural modeling are understood, we do not need to go back to the equations every time we 
implement an ANN simulation. We can construct topologies and, for efficiency, fully utilize the local 
structure of the networks. The number of elementary dynamics required by this method to simulate 
all topologies for a neural model turned out to be small, and different neural models will decompose 
into the same elementary dynamics [Lefebvre and Principe, 1993]. A final comment relates to the 
coding of this scheme in a computer language. Notice that we propose building networks by placing 
together similar elements. This is the software equivalent of building electronic circuits. Therefore, 
an object oriented paradigm where a hierarchy of classes recursively encapsulate standard rules of 
interaction makes perfect sense. Network topologies will be constructed by simply interconnecting 
a small number of instantiated classes. The user can simply arrange neural elements on 
breadboards. 

Object-oriented Modeling of Neural Networks 
Object-oriented Modeling of Neural Networks 

 

The first step in object-oriented modeling of ANNs is to characterize an abstract set of elements 
which constitute arbitrary neural functions and which standardize rules for local interaction. 
Therefore we must analyze what is the most general element that one may wish to construct. The 
fundamental element in artificial neural networks is the processing element (PE) based on the 



 783

abstraction of the biological neuron proposed by McCulloch and Pitts. The PE used in neural 
networks has two primary responsibilities: it receives a sum of weighted input activations, and then 
passes the accumulated activity through a nonlinear instantaneous mapping to produce its output. 
A neural network can be viewed as a coupled lattice of PEs, i.e. an ordered set of computations.  

We define the Axon class which receives the activity from other network elements, implements a 
nonlinear mapping to its own activity (usually a sigmoid) and holds the resulting activation for other 
elements to acquire. Since artificial neural networks are so highly interconnected, we will consider 
for efficiency each Axon to consist of a vector of functionally identical PEs. In other words, there will 
be a vector of activity associated with each Axon, and our rules of local interaction are 
mathematically expressed in vector notation (all capitals refer to vectors). The standard local 
interaction defined by the Axon class can be represented as, 

 

 

 

where  is the input ,  is a set of weights for the Axon’s activity (i.e. biases) and 

 is an arbitrary mapping (usually nonlinear). 

A second class of elements called Synapse will take the activity presented by an Axon, apply 
another mapping (usually the linear weighted sum) and present the result to another Axon. A 
Synapse is the element that performs linking between lattice sites, and will be represented by a 
labeled arrow on diagrams. For now we will assume the linear mapping required in additive models 
when representing the standard interaction defined by the Synapse class, 

 

 

 

where  and  are the respective Axon activity vectors,  is a set of 

weights for the Synapse class (normally the network weights) and  is an arbitrary 
mapping (usually linear). 

All neural elements implemented in NeuroSolutions will belong to either the Axon or Synapse class. 
For practical reasons we will define the Soma class as representing all neural elements and the 
ordering of the computations. Thus Axon and Synapse are both subclasses of Soma. We have 
seen that Axon and Synapse implement the basic McCulloch and Pitts neuron defining rules for 
computing and passing local activity. As an illustration, the Static ANNs section addresses the 
construction of a static network, the multilayer perceptron, with our basic elements. 

 

 
Details Behind Object-Oriented Modeling of Neural Networks: 

Static ANNs 

Dynamic ANNs 

Learning Dynamics 
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Error Criterion 

Gradient Search Methodology 

Implications for ANN Simulations 

Ideal Simulation Environments 

Static ANNs 
 

A MLP is a layered feedforward network belonging to the additive model (see additive model 
equation). The equation in discrete time that defines this topology can be re-written for each PE, 
yielding 

 

 

 

where there are  PEs in layer l. If we examine this equation we see two elementary mappings. A 
linear map between adjacent layers (represented by the weight matrix W), and a nonlinear map 
(represented by the nonlinearity σ ()) between activity received and activity stored at a single layer. 
Notice that the form of these maps exactly fit those defined by Axon and Synapse. Implementing 
the maps for Axon and Synapse as, 

 

 

 

where  =  and  is a fully populated matrix of weights, provides all of the 
elementary dynamics required to construct any MLP. The figure below illustrates the lattice 
arrangement for a one hidden layer MLP. Note that in this figure we are representing vector 
quantities.  
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MLP on a spatial lattice 

 

Our goal was to implement an MLP, however the elementary dynamics given by the equation 
above are all that is needed to simulate all topologies within the additive neural model. Learning will 
be discussed for the more general case of dynamic networks. 

Dynamic ANNs 
 

The object-oriented modeling class structure that we have just presented must be enhanced to 
accommodate interactions that exist in time. Recall that static ANNs must be extended with short 
term memory mechanisms for many applications. 

This constitutes the most general additive model, substituting multiplications with a convolution 
operation. In order to implement memory elements we will give Soma the responsibility for storing 
an Axon’s activity over time. In other words, Soma will add a third dimension to the spatial lattice 
figure. The third dimension arises from temporally coupling spatial planes. The ordering of the 
computations can be geometrically viewed in a lattice of PEs according to the following rules. The 
lattice will exist in three dimensions with two spatial axes (x and y) lying within the plane of the 
paper, and one temporal axis going into the page. The present time is at the top of the stack of 

planes, and each following plane is delayed by one sample (we will use  to denote a delay of 
one sample). This is the reason we prefer to view our neural network as a coupled lattice (in time 
and in space). 

The standard local interaction defined by the Axon class will remain the same with an added 
restriction that its nonlinear mapping be instantaneous. This can be represented for each 
processing element as the mapping 

 

 

 

where the index i runs over the number of processing elements of the Axon (see figure below). The 
Soma class may have temporally coupled the Axon to other PEs in the lattice, but the Axon itself 
will have no access to them. 
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The mapping for the PE of the Axon class 

 

The Synapse class will now take the activity presented by one of the coupled PEs for an Axon, 
apply its linear mapping and present the result to an Axon in the present temporal plane, i.e. the 
front face of the lattice. This interaction can be represented as, 

 

 

 

where d is a delay that represents which temporal plane the Synapse attaches to (see figure 
below). For each processing element of the Synapse we will have the mapping 

 

 

 

 

 

The mapping for the PE of the Synapse Class 

 

Recall that Axon and Synapse are both subclasses of Soma. Since Soma performed temporal 
coupling of the Axon, it can provide Synapse with access to coupled sites. It is important to realize 
that the temporal coupling performed by Soma is inherent to all network elements and it is hidden 
from each one of them. Axon and Synapse have no explicit understanding of time. Axon performs a 
mapping from a node on the lattice to that same node, while Synapse performs its mapping from a 
node on the lattice to another node on the lattice. As far as Axon and Synapse are concerned, 
these mappings are between static nodes. 
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As an illustration, lets implement the focused gamma neural network using this coupled lattice. A 
focused gamma network is a topology that has a gamma memory structure in the input layer 
(storing traces of the input signal) followed by an MLP [Principe et al, 1992]. If we examine the 
gamma neural model equation, we see that the gamma neural model is simply an additive model 
with gamma memory structures inserted for arbitrary states. Let us take a closer look at a discrete 
version of the gamma memory structure, 

 

 

 

Within this equation we see two delayed synaptic maps, one between adjacent memory states (  
is a function of activation  at the previous time) and one recurrently feeding each memory 
state onto itself (  is a function of  at the previous time). However both of these maps follow 
the same elementary form given by, 

 

 

 

where  is a vector of coefficients. In other words, this Synapse will apply a bijective (one-to-
one and onto) linear map between Axon sites in the lattice. We can immediately construct the 

lattice for a focused gamma network as in the figure below. In this figure, (t) is the input, (t) 

represents the hidden layer and (t) is the network output.  

Notice that the recursive nature of the gamma memory could in principle require an extension of 
the instantaneous mapping properties of the Axon class. In the proposed distribution of dynamics 
the Axon has no knowledge of temporal information, the Soma is responsible for handling time.  
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Focused gamma network on coupled lattice 

 

This simple trick allows each elementary map to be applied over spatial and/or temporal 
displacements without modification; i.e. all elements are implemented as if they were instantaneous 
mappers. An Axon will fire when all contributions from the present and delayed inputs are received. 
This implies that all sites in the delayed spatial planes will fire immediately at each increment in 
time. 

We just presented two examples of topologies belonging to the additive model. In so doing we have 
defined ALL the operators that are needed to build ANY topology conforming to the additive model 
dynamics. This can be demonstrated in general for most neural models and mathematically proven 
using the formalism of graph theory [Lefebvre, 1992], but probably a more insightful discussion 
would be to relate this to other areas where similar procedures are used.  

For instance in electronics, with capacitors, resistors, inductors and amplifiers, one can build any 
linear filter by topologically arranging the elements. The same has been accomplished through 
object-oriented modeling for artificial neural networks. We now have a library of elements that can 
construct any ANN topology belonging to the additive model. Our examples have not explicitly 
addressed globally recurrent networks, so as a final example lets consider the most general (linear 
for simplicity) feedback model. The multivariate state variable model is probably the most widely 
used description for recurrent systems,  

 

 

 

where  is the system’s state vector,  is its input and  is the output. 
Notice that because of linearity, the only mapping used by this model is that of our fully connected 

Synapse. If we create  as instances of the fully connected 
Synapse class, then the figure below will implement this state variable description. The state 
variable description given above can be considered a specific topology belonging to the additive 
model, where  (this is the reason the Axon is not utilized).  

We have accomplished an alternate description of ANNs as aggregates of McCulloch and Pitts 
processing elements living in an ordered space of computations (the coupled lattice). This 
description is equivalent to the equation-based description and is much more appropriate for 
computer implementations. Notice that we can mix static and recurrent elements in a network 
without the hassle of simulating global dynamic equations. 
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State variable implementation on a coupled lattice 

 

As we are about to see, when learning dynamics are addressed with the same object-oriented 
framework we can derive learning rules directly from the elementary neural dynamics. We can 
therefore mix static and recurrent components in a network and simulate without ever deriving 
network learning equations. However it should be noted that object-oriented based modeling will 
not provide information about global issues such as stability, descriptive power, etc., thus equation 
based models cannot be ignored. 

Learning Dynamics 
 

Learning dynamics are easily understood if one recalls the contribution of neural network research 
to gradient descent methods, namely the use of a transpose system to backpropagate errors. The 
transpose (or dual) network is simply a network where the input and output are interchanged, 
nodes are substituted by summing junctions and summing junctions by nodes. For the Axon class 
the corresponding transpose will be called the BackAxon and its mapping is shown in the figure 
below. 

 

 

BackAxon map 
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For the Synapse class the transpose element is called the BackSynapse and its mapping is shown 
in the figure below. You should compare these figures to the ones for the Axon mapping and the 
Synapse mapping to see the transpose relationship. 

 

 

BackSynapse map 

 

The error is fed into the transpose system, and the propagating activities correspond to the error 
gradient with respect to activities of the forward network which will be denoted by, 

 

 

 

Proof that activities in the transpose system correspond to  follow directly from application of 
the chain rule for ordered partial derivatives backwards through all nodes of the forward system 
[Werbos, 1990] or from system theoretic concepts [Almeida, 1987]. The chain rule is given by, 

 

 

 

where i indexes space and t indexes time. Notice that the gradient at node i can be computed by 
adding a direct contribution from the gradient at each internal node with the sum of indirect 
contributions flowing to that node. Therefore, one can always compute the gradient at each node in 
the lattice by information available in the neighboring nodes.  

Gradient descent learning will require two tasks for each of our elementary dynamics: each must 
add their effect to the error gradient being propagated, which we call its sensitivity function (this can 
be described by the transpose system), and each must use that gradient to determine the effect its 
internal coefficient had on the error, which we call the gradient function (this is what is used for 
weight update). Therefore deriving learning rules for the elementary dynamic maps requires two 
applications of the chain rule, one from the map’s output to its input (sensitivity function) and one 
from its output to its coefficients (gradient function). For the BackAxon we get, 
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for its sensitivity function and 

 

 

 

for the gradient function. While the fully connected Synapse gives us, 

 

 

 

for the sensitivity function and 

 

 

 

for the gradient function. 

These local learning equations provide everything that is needed to train any topology for the 
gamma neural model, which is equivalent in descriptive power to the convolution additive model. 
These are the elementary dynamics required; they can now be recursively combined, forming a 
hierarchy of increasingly specialized elemental topologies. Since all the methods of gradient 
descent learning (except RTRL) can utilize the transpose network they can be implemented with 
the elements created. The case of RTRL is slightly different since it computes the gradient using a 
"brute force" approach, i.e. a direct computation of each partial derivative. This corresponds to 
modeling dynamics associated with sensitivity equations. But these dynamics are also created from 
an application of the chain rule for ordered partial derivatives and thus can also be described 
through similar object-oriented modeling. 
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There are several important benefits to this approach that we have tried to illustrate through these 
examples. First, learning was derived directly from the elementary maps (of the Axon and Synapse 
classes). Therefore, once you have arranged elements on the lattice, the learning dynamics can be 
implemented by simply reversing the direction of data flow and replacing each elementary dynamic 
with its learning equivalent.  

 

 

Backpropagation network on coupled lattice 

 

The figure above illustrates the transpose network for the focused gamma network figure. Notice 
that time runs backwards in this network. This process of constructing the learning network can be 
automated by the simulation environment, thus the user simply constructs the feedforward network 
without ever having to address learning. 

When modeling is based on equations, one generally wants to characterize the dynamics for a 
broad class of systems. But, when implementing the individual systems, these models are 
constrained by assigning a specific topology. In object-oriented modeling one always assigns only 
those elemental maps which are required, thus the implementations are always efficient. 

Error Criterion 
 

Another aspect that should be emphasized in the proposed object-oriented modeling is that as long 
as gradient descent is used, only the output errors injected into the network depend upon the error 
criterion. The output error depends intrinsically on the cost function used, but the criterion does not 
say how errors are propagated inside the net. Our method therefore uncouples error propagation 
inside the net from the error criterion. This is very important because the network elements used for 
learning do not change with a change in criterion (e.g. mean square error to Kulback Liebler, Lp 
norms, etc.). The elements only know how to map input signals to output signals, independent of 
the methods used to create these signals. This is due to the separation of functions achieved 
through local rules of interaction.  

Conceptually, variants of this implementation can lead to other types of learning such as 
reinforcement learning [Sutton] and the local rules of interaction fit naturally unsupervised learning 
methods. 
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Gradient Search Methodology 
 

Another aspect crucial to neural network learning is the choice of gradient search methodology. 
The theory of gradient descent learning (a method of unconstrained optimization) is full of 
strategies to search a performance surface. Basically, they all revolve around the idea of how to 
use the gradient information to compute the weight update. Backpropagation directly utilizes the 
product of the error and the input activation at the processing element to compute the weight 
update. But in neural networks, several methods have been proposed to speed up backpropagation 
and undoubtedly many more will be devised in the future.  

NeuroSolutions encapsulates gradient search methodology in a plane - the gradient search plane - 
which also corresponds to a family of components. Presently, we have only implemented the most 
common search methods, such as simple gradient, momentum learning, and Fahlman’s quickprop 
[Fahlman]. But other first order methods such as conjugate gradient and pseudo second order 
methods such the diagonal approximations to the Hebbian [LeCun] can be easily implemented. 

Implications for ANN Simulations 
 

Effectively, the ANN and learning dynamics exist in two parallel, disjoint planes, the forward plane 
and the backpropagation plane. They use the same elements, and their topology is related by the 
adjoining theorem. The user specifies only the forward topology, because this topology 
unequivocally defines the backpropagation plane (the adjoining network).  

Moreover, the two planes are uncoupled throughout the network. They only become coupled 
externally at the output by the error criterion. The error criterion injects into the backpropagation 
plane the composite error determined by the instantaneous error (difference between the desired 
signal and the network output). The error criterion therefore has the role of supervisor between the 
two planes. 

In order to adapt the weights, a method of computing the weight update is needed. We saw that 
this is the role of the gradient search components. 

These facts lead to a very appealing representation of elements in our simulation model. Each 
learning neural network can be thought of as a juxtaposition of three independent planes, the 
activation (forward) plane, the learning (backward) plane, and the gradient search plane with the 
first two coupled through the error criterion (see figure below). 

We believe that this natural division of functionality derived from an in-depth analysis of neural 
network theory, provides unparalleled power for neural network simulations. It makes neural 
network construction conceptually easy and basically does not impose unnecessary constraints.  
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Organization of learning by functional planes 

 

It also makes simulations very efficient, since after the network is trained, the backprop plane can 
be taken out of the network, speeding up testing, without needing to construct another network with 
the trained weights. Moreover, we do not specify what the neural networks are that the user can 
construct as most of the other packages do.  

We give the user the RULES and ELEMENTS to construct neural networks. Most programming 
styles have to define by extension what the program can do. This is reasonable for packages with a 
specific goal, but limits the power of applications such as simulation environments, where the user 
must have the freedom to experiment unseen combinations of components and methods.  

Our approach, of breaking down the global network dynamics into local rules of interaction, was the 
crucial step for the flexibility and power of NeuroSolutions. We further utilized an object-oriented 
methodology to define the rules of interaction and to construct families of components. This is the 
equivalent of a definition by comprehension, which leads to a much more efficient and powerful 
simulation environment.  
How general is this structure? 

The amazing thing regarding the breaking down of global dynamics into local rules of interaction is 
that it uncovered several important principles for neural network simulations. We refer here to the 
generality achieved in learning.  

The conventional approach in equation based modeling is the derivation of new learning rules for 
each neural network. For instance, the simple incorporation of a recurrent processing element into 
the hidden layer of a feedforward topology implies the derivation of new learning equations. While 
static backpropagation was applicable without the recurrent processing element, when the 
recurrent element is incorporated in the hidden layer, the learning of the weights in the first layer is 
no longer static, so new learning equations (based on RTRL or BPTT) must be derived. This is not 
only a time consuming process, but leads to inefficient implementations.  

What we verified in our object-oriented modeling approach is that the local rules of interaction are 
ALWAYS the same whether static or recurrent networks are used. This also applies to the learning 
rules. Static backpropagation, recurrent backpropagation (also called fixed-point learning), or 
backpropagation through time are implemented with the same local rules of interaction. What 
differs is the data flow control in each case. After some thinking, this is obvious, since all of these 
learning paradigms are based on the delta rule, i.e. the gradient is computed by multiplying locally 
at the PE level the activation at the PE and the error that is propagated back (affected by the 
derivative of the nonlinearity at the operating point).  
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In static backpropagation, only the present time activation and error are used, so learning 
progresses by alternating toward propagation of the activations and backward propagating of the 
instantaneous errors.  

In recurrent backpropagation, activations are fed forward UNTIL a fixed value is achieved. Only 
then is the error computed and propagated backwards. Again, the error activations must be stable 
before the delta rule is applied, so relaxation of the error is also needed. But once these two 
conditions are met, the delta rule is used at the PE level to adapt the weights. 

In backpropagation through time, the goal is to compute the gradient over the trajectory. Since the 
gradient decomposes over time, this can be achieved by computing instantaneous gradients at 
each component and summing the effect over time. So during BPTT the activation is sent through 
the net and each PE stores its activation locally for the entire length of the trajectory. At each step 
the network output is also computed and stored. At the end of the trajectory the errors are 
generated at the output and a vector of errors is input to the transpose networks. The local error 
activation is then multiplied to the corresponding activation obtained in the feedforward flow, and 
the delta rule applied at the component level. The net weight update is composed of instantaneous 
weight updates. 

Therefore, in NeuroSolutions these three procedures became one in terms of local rules of 
interaction (the delta rule). This does not depend on whether the network is static or recurrent. 
What differs is the firing of activation and errors through the network, a global data control issue.  

Another remarkable feature of the local rules of interaction is that supervised and unsupervised 
learning rules can be INTERMIXED anywhere in the network. These mixed learning rules have only 
now attracted the attention of neural researchers. 

Ideal Simulation Environments 
 

Let us now consider an ideal neural network simulation environment. If we had such an 
environment, it would have to be flexible. We would want to be able to construct any network 
topology (static or recurrent), and then train with any learning rule. We want a single network to be 
able to simultaneously learn under more than one learning rule. Finally, when determining an error, 
for learning rules that belong to a supervised learning paradigm, we want to be able to assign 
arbitrary and user-defined criteria.  

This ideal simulation environment should also be efficient. It should minimize its storage 
requirements and maximize code efficiency based upon the network topology we present it. 
Furthermore, it should allow us to interface with faster hardware platforms. 

User friendliness is also very important. Even though some users may want to develop their own 
network elements by writing source code, others will want to use elements that were provided with 
the environment, or elements that more ambitious users give them, by simply grabbing their icon off 
some component palette. Analogous to prototyping electronic circuits, we want to construct network 
topologies by placing neural components on a breadboard and establishing connections.  

We should then be allowed to inspect and alter each element on a breadboard, as well as place 
runtime probes to graphically monitor any activations or adapting coefficients within the network. In 
particular, in experimental research areas such as neural networks where the theory is being 
developed, the user should have extended probing facilities to understand and control the quality of 
the simulations. 

Finally, this environment should inherently demand constructive development. User defined 
network components should utilize all source code previously developed for similar elements. After 
a breadboard has been developed, we would like to be able to collapse it and use it as a 
component in another network on a separate breadboard. This process could continue indefinitely, 
providing an inherently modular simulation environment. 

Although this ideal environment may seem unrealistic, we have created it in NeuroSolutions. 
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Code Generation 
Code Generation 

 

 

NeuroSolutions 

 

NeuroDimension, Incorporated. 

Gainesville, Florida 

 

 

 
Purpose 

This chapter describes the Code Generation facility available within the Professional and 
Developers versions of NeuroSolutions. This feature enables the user to compile and run a neural 
network on another platform. In addition, the generated code can be integrated into custom C/C++ 
user applications. 

 

Introduction to Code Generation 
 

The Code Generation facility of NeuroSolutions produces ANSI-compatible C++ source code for 
any breadboard, including learning. This allows a simulation prototyped within the GUI of Windows 
to be run on other hardware platforms. In addition, NeuroSolutions' networks can be easily 
integrated into user applications. 

It is important to note that the generated code is not completely self-contained. For any given 
platform that you are compiling under, you must have the corresponding libraries that the source 
code is compiled against. The libraries for Visual C++ are included with the Professional and 
Developer levels, while the libraries for other platforms must be compiled by the user after 
purchasing the Source Code License. 

 

System Requirements for Code Generation 
 

NeuroSolutions was developed using Microsoft’s Visual C++. The interface for the code generation 
has been tightly integrated with this development environment. This allows you to compile, run, and 
debug your C++ application right from NeuroSolutions. Please contact NeuroDimension for a list of 
other C++ compilers that are supported. 

The generated C++ code is portable to other platforms and other compilers (provided that you are 
licensed for the NeuroSolutions Source Code License). This version of NeuroSolutions is not able 
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to communicate with those compilers, so you will be required to integrate the generated source 
code into the development environment manually. 

 

Code Generation User Interface 
 

The interface to the Code Generation facility is contained within the Code Generation property 

page of the StaticControl  or DynamicControl  inspector. This page allows you to 
Compile, Run, and Debug the C++ project right from NeuroSolutions.  

Behind the Scenes of C++ Code Generation 
 

Within the NeuroSolutions directory is a sub-directory named "CodeGen". It contains the 
configuration files for each of the supported compilers. For each compiler there are several 
configuration files. Here is a summary of these files for Visual C++ 6.0: 

 

Msvc60.cmp Commands issued to the Windows 95 operating system when the "Compile" button is 
pressed. 

Msvc60.cmp.NT Commands issued to the Windows NT operating system when the "Compile" button is 
pressed. 

Msvc60.dbg Makefile used when the "Debug" button is pressed. 

Msvc60.h The header file for the NeuroSolutions class library that the generated code links against. 

Msvc60.lib The NeuroSolutions class library that the generated code links against. 

Msvc60.mak The makefile used when the "Compile" button is pressed. 

Msvc60.nsl Contains the configuration information for the Visual C++ compiler. This is the file that is 
selected when choosing the "Target" from the Code Generation property page. 

Msvc60.run Commands issued to the operating system when the "Run" button is pressed. 

  

Whenever a new project is created the library ("NS.lib"), header file ("NSLib.h") and makefile 
("BreadboardName.mak") are copied to the project directory. The makefile is modified slightly to 
include the appropriate files and directories for the project. 

 

Network Input/Output for Generated Code 
 

Since the Input and Probe components are dependent on the Windows environment, special 
consideration must be given to the network input/output when generating portable source code. 
Inputs 
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When the code for a breadboard is generated, NeuroSolutions stores a binary file for each Input 
component on the breadboard by default. These binary files contain the data that is feed into the 
network on the breadboard. The generated source code includes statements to read from these 
files.  

This default may be overridden from the Access property page of the Input component (see the on-
line help). By switching the Code Generation File Format switch to Function, the generated code 
will call a user-defined function for its input instead. This function is called every time a new sample 
of data is required by the attached component. The implementation of the function computes and/or 
retrieves the data sample and stores it within the floating point array passed as a parameter. 
Outputs 

During a simulation, each probe on the breadboard will send its output to one of four locations, 
based on the settings of the Code Generation File Format switches from the Access property page 
of the component. The Stdio switch sends the output to the standard output, which is normally a 
DOS window. The ASCII and Binary switches will write the probe’s output to a file of the 
corresponding type. The Function switch is similar to that of the Input component, except the 
implementation of the function reads from the floating-point array instead of writing to it. This data 
may then be displayed, processed, and/or sent to another application. 
File Names used within the Generated Code 

When a file type is selected (ASCII or Binary) from the Access page of either an Input or Probe 
component, the data associated with this component is written to a file. The prefix of the file name 
is "in" for Inputs and "out" for Probes. Appended onto the prefix is the component's name (see the 
Engine property page within the on-line help of the component’s inspector). The file extension is 
"bin" for binary files and "asc" for ASCII files. 
Function Prototype 

void axonXXXAccess( 
 NSFloat *data,  // Buffer to read from/write to 
 int   rows,  // Number of rows in buffer 
 int   cols  // Number of cols in buffer 
); 
 

where, 
data 

Pointers to a block of floating point numbers that contain the processing elements (PEs) of the attached 
component. For Input components this buffer is written to and for Probe components it is read from. The size of 
this buffer is rows*cols*sizeof(NSFloat). 
rows 

The number of rows of processing elements (PEs) of the component attached below. 
cols 

The number of columns of processing elements (PEs) of the component attached below. 

 

An empty function is automatically generated for every Input or Probe component on the 
breadboard that has Function specified as its Code Generation File Format within the Access 
property page. The prototype for the functions are identical for both Input components and Probe 
components. The function implementations differ in that Input components write to the data buffer 
and Probe components read from this buffer. Note that the "XXX" of the function name corresponds 
to the name of the component attached below (the one accessing the data buffer). 
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A Simple Example of Code Generation 
 

The following example demonstrates how you would go about generating and compiling the code 
for a simple MLP. 

 
Step 1: Build the Network 

Use the NeuralBuilder to build a 1-hidden-layer MLP. Set the input file to "xor.asc" such that the x 
and y columns are the input and the z column is the output. From the Probe Configuration panel, 
disable all probes except the MegaScope at the error. 

 
Step 2: Configure the Network Output 

Select the Access property page from the DataStorage inspector and verify that the Code 
Generation File Format is set to stdio. This will send the mean squared error (MSE) from each 
epoch to the standard output (a DOS window). Also verify that the probes at the networks input, 
output and desired access points are all sending their data to binary files. 
Step 3: Create the Project 

From the Code Generation property page of the StaticControl inspector, press the New button. 
Select the directory and file name of the source code to be generated (it must have a ".cpp" 
extension). It is highly recommended that you create the project in an empty directory, since a 
number of files will be created along with the source file. This will make clean up much easier. Click 
the Edit button to view the generated code. 

 

 

 
Step 4: Compile and Run 

Press the Compile button. A DOS window displays the status of the compile, then prompts you to 
press any key to close the window. Now press the Run button. This brings up another DOS window 
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and displays a series of floating point numbers. These numbers are the decreasing error values for 
each epoch, indicating that the network was able to learn the XOR problem. Try sending the 
networks input and output to stdio as well, then press the Generate, Compile and Run buttons (in 
that order) to observe how your changes affected the running of the network from the command 
line. 

Limitations of Code Generation 
 

The source code generation facility was designed to produce a self-contained block of code that 
can easily be ported to faster platforms. This code can also be easily integrated within a C/C++ 
application by implementing input/output functions. Both the porting and the integration tasks 
should not require any modification to the generated code. However, since you have the header file 
("NSLib.h") and the NeuroSolutions class library ("NS.lib"), you can experiment with manual 
modifications to the generated code. For this version of NeuroSolutions, there is no documentation 
for the class library and NeuroDimension will not be able to provide technical support for code 
modifications that you make. 

The only components that are not supported are the probes, since they use Windows-specific 
functions for their displays. Instead, the probes write to either the standard output, an ASCII file, a 
binary file, or a floating point array passed as a function parameter. 

There is also a limitation with the use of the transmitters when generating code, in that not all of the 
actions are supported. If you try to generate code for a breadboard containing a transmitter, 
NeuroSolutions will check to make sure that all of the items selected within the Actions List of the 
Transmitter property page are supported. If not, a panel will be displayed to warn you that the 
unsupported action will be ignored. 

Generating DLL Source Code 
 

If the current breadboard contains one or more DLLs, then NeuroSolutions will automatically 
integrate those customized components into the generated source code. It does this by extracting 
the code from the DLL source, and copying it into the source code for the code generation project. 
An additional statement is generated within the main() routine (setDLL), which establishes the link 
between the base component and the DLL functions. 

The function names have the component’s name (from the Engine property page of the 
component’s inspector) appended to them. This forces each DLL implementation to use unique 
function names to prevent overlap between DLLs using the same protocol. 

There is one limitation to this feature: the only functions that are copied are the perform, alloc, and 
free. These are the only functions that will get called automatically by the NeuroSolutions classes. 
Any additional functions or global variables that are used by the DLL implementation must be 
copied to the generated source file by hand. This limitation will be removed for the next release. 

Porting the Generated Code 
 

The Code Generation feature of NeuroSolutions produces C++ code that can be compiled on a 
number of ANSI-compatible compilers under various hardware platforms. However, this code does 
require the source code for the NeuroSolutions class library ("NS.lib"). Contact NeuroDimension for 
information on purchasing a license for this code. 

Some operating systems store the bytes of binary files in reverse from MS DOS/Windows. This 
may require that the binary input files generated by NeuroSolutions be byte-swapped in order for 
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these files to be read correctly on another platform. This operation is performed automatically when 
these lines are commented out of the header file ("NSLib.h"):  

#define PC 

#define MS_VISUAL 

 

The library source code includes a template makefile, which enable you to easily import the 
generated source code and compile the project from the command line. Please refer to the readme 
file of the library source code for instructions on compiling the NeuroSolutions class library. 

Examples of Integrating the Generated C++ Code 
Examples of Integrating the Generated C++ Code 

 

The Code Generation feature of NeuroSolutions produces C++ code that will run a neural network 
simulation without making any modifications to the code. However, if you want to integrate the 
network into another application then some code modifications will be required. This section offers 
three simple examples using an MLP to solve the XOR problem. All of the files needed for these 
examples are contained within the directory "CodeGen\Examples". 

To see an overview of the three example programs, run the program "MainMenu.exe". The files 
you will be prompted for are "XorInput.asc", "Xor2Out.asc", and "XorDesir.asc" (for the input, 
network output, and desired output, respectively). 

 
Getting Started 

Before integrating a network into an application, you most often will train the network within the 
graphical user environment of NeuroSolutions. Open the breadboard "xortrain.nsb". Reset and run 
the network to verify that the error approaches zero and the network output approaches either -1 or 
1. 

After 100 epochs, the weights are ready for use. From the StaticControl property page, save the 
weights to the file "xor.nsw". This Weights File will be used by all three example programs. 

 

 

Example 1: Keyboard Input using Function Calls (recall)  

Example 2: ASCII File Input using Function Calls (recall)  

Example 3: ASCII File Input using File Component (learning)  

Code Generation Example - Keyboard Input using Function Calls 
 

The following example demonstrates how to generate code for a recall network (one with no 
learning). Two functions are added to the code to read the input from the keyboard and write the 
network output to the screen. The initial weights are obtained by running the network from the 
Example Introduction  or Example 3.  
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Step 1: Load the Network 

Open the breadboard "xor1and2.nsb". This is the same topology as "xortrain.nsb", except all of the 
components used for learning have been removed. 
Step 2: Configure the Network Input 

Select the Access property page from the File inspector and verify that the Code Generation File 
Format is set to Function. This will create an empty function named inInputFileAccess ("inputFile" is 
the component's name), which will be called every time the network needs an exemplar of input 
data. 

 

 

 
Step 3: Configure the Network Output 

Select the Access property page from the DataWriter inspector and verify that the Code Generation 
File Format is set to Function. This will create an empty function named outDataWriterAccess, 
which will be called every time the network generates an exemplar of output data. 
Step 4: Create the Project 

From the Code Generation property page of the StaticControl inspector, press the New button. 
Select the directory and enter the name of the new source code file to be generated (Note: do not 
overwrite the existing source files "xor1.cpp", "xor2.cpp", or "xor3.cpp"). Note that the Load weights 
before run switch is set, so that code will be included to read from the default weights file 
("xor1.nsw"). Click the Edit button to view the generated code. 
Step 5: Modify the Code 

The generated functions need to be written in order to inject data into and extract data out of the 
network. Open the file "xor1.cpp" within an ASCII editor. Note that code has been added to read 
the input from the standard input (the keyboard) and write the output to the standard output (the 
screen). The weights file to load has been changed to "xor.nsw". You could insert this code into the 
project you created, but to save time you should instead Open this project from the Code 
Generation property page. Note that if you click the Generate button, then the modified code will be 
deleted. 
Step 6: Compile and Run 
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Press the Compile button. If the program is not up to date, a DOS window displays the status of the 
compile, then prompts you to press any key to close the window. Now press the Run button. This 
brings up another DOS window and prompts you for the next exemplar of input data. Enter "1 -1" 
and the program will display the corresponding network output. Type "exit" when you finish entering 
the input data. 

 

 

 Next Example 

Code Generation Example - ASCII File Input using Function Calls 
 

The following example demonstrates how to generate code for a recall network (one with no 
learning). Two functions are added to the code to read the input from an ASCII File and write the 
network output to another ASCII file. There is also code added outside of the functions to open and 
close the files. The initial weights are obtained by running the network from either the Example 
Introduction or Example 3.  

 
Step 1: Load the Network 

See Example 1 
Step 2: Configure the Network Input 

See Example 1 
Step 3: Configure the Network Output 

See Example 1 
Step 4: Create the Project 

See Example 1 
Step 5: Modify the Code 

The generated functions need to be written in order to inject data into and extract data out of the 
network. Open the file "xor2.cpp" within an ASCII editor. Note that code has been added in several 
places within the source file. Search on the strings "(Begin)" and "(End)" to find these code 
segments. You could insert this code into the project you created, but to save time you should 
instead Open this project from the Code Generation property page. Note that if you click the 
Generate button, then the modified code will be deleted. 
Step 6: Compile and Run 

Press the Compile button. If the program is not up to date, a DOS window displays the status of the 
compile, then prompts you to press any key to close the window. Now press the Run button. This 
brings up another DOS window and prompts you for the name of input file. Type in "XorInput.asc" 
and press enter. Enter "Xor2Out.asc" as the output file. The network runs until the end of the input 
file is reached (or 100 epochs, whichever comes first). Open the output file within an editor to 
observe the network output for the 4 exemplars of input data. 

 
Special Note 
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The purpose of this example is to demonstrate how to inject data using a global variable. In this 
case the variable was a file pointer, but it could have just as easily been a pointer to external data. 
You do not have to write these functions to simply read from and write to a file (see Example 
Introduction or Example 3). 

 

 
Next Example 

 Next Example 

Code Generation Example - ASCII File Input using a File Component 
 

The following example demonstrates how to generate code for a network with learning. This is 
useful for when you want to train a network on a faster computer, use the trained weights within a 
recall network (one without learning). The code for the File components has been modified to read 
ASCII instead of binary data. There is also code added to prompt the user to load the weights and 
to set the number of training epochs. The weights are automatically saved to "xor.nsw". 

 
Step 1: Load the Network 

Open the breadboard "xor3.nsb". This is the same topology as "xortrain.nsb", except that there is 
only one probe used to monitor the error. Select the Access property page from the DataWriter 
inspector and verify that the Code Generation File Format is set to Stdio. This will write the average 
cost for each epoch to the standard output. 
Step 2: Configure the Network Input/Output 

Select the Access property page from the input File inspector and verify that the Code Generation 
File Format is set to Binary. This will later be modified within the code to read from an ASCII 
instead of a binary file. Repeat for the desired output file. 
Step 3: Create the Project 

From the Code Generation property page of the StaticControl inspector, press the New button. 
Select the directory and enter the name of the new source code file to be generated (Reminder: do 
not overwrite the existing source files "xor1.cpp", "xor2.cpp", or "xor3.cpp"). Note that both the 
Load weights before run and the Save weights after run switches are set, so that code will be 
included to read from and write to the default weights file ("xor3.nsw"). Click the Edit button to view 
the generated code. 
Step 4: Modify the Code 

We would like to modify the generated code so that the program reads from ASCII files instead of 
binary ones. We would also like to use the same weights file as the recall networks ("xor.nsw" 
instead of the default of "xor3.nsw"). Open the file "xor3.cpp" within an ASCII editor. Note that code 
has been added and removed in several places within the source file. Search on the strings 
"(Begin)" and "(End)" to find these code segments. You could insert this code into the project you 
created, but to save time you should instead Open this project from the Code Generation property 
page. Note that if you click the Generate button, then the modified code will be deleted. 
Step 5: Compile and Run 

Press the Compile button. If the program is not up to date, a DOS window displays the status of the 
compile, then prompts you to press any key to close the window. Now press the Run button. This 
brings up another DOS window and prompts you for the name of input file. Type in "XorInput.asc" 
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and press enter. Enter "XorDesir.asc" as the desired output file. Run the first simulation with 
randomized weights for 500 epochs. Run the program again using the same training files, but load 
the weights from the previous simulation. Note that the error starts out where the last simulation 
started and drops further from there. 

 
Things to Try 

Run one of the recall networks (Example 1 or Example 2) again. Observe the network response 
with the set of weights that you just trained. 

Dynamic Link Libraries (DLLs) 
Dynamic Link Libraries (DLLs) 

 

 

NeuroSolutions 

 

NeuroDimension, Incorporated. 

Gainesville, Florida 

 

 

 
Purpose 

This chapter describes the Dynamic Link Library facility available within the Developers versions of 
NeuroSolutions. This feature extends NeuroSolutions with a set of utilities that enable the user to 
customize neural components by writing C functions. These new components can utilize all of the 
basic features of the package, creating an extensible and flexible simulation environment. 

 

Introduction to DLLs 
 

NeuroSolutions utilizes an object oriented design methodology. This design is responsible for the 
power and flexibility of the package, and it also allows for a user extensible simulation environment. 
The need for an open simulation environment is clear. During the design process, the user is 
confronted with a large number of unknowns that may require new solutions. It would be impossible 
to develop a set of neural components that would meet every user’s needs. An alternate approach 
is to let the user define their own modifications to the base components included within the 
environment. Dynamic Link Libraries (DLLs) are the mechanism used for these component 
modifications. 

Dynamic Link Libraries are used to create user-defined components. This is done by writing one or 
more C functions belonging to the base component’s protocol, thus overriding the component’s 
functionality. The DLLs are typically implemented as C functions, but C++ may also be used. The 
source code files for all customized components are included within the "DLLSys" directory. When 
you create a new DLL, the default source code for the overridden component is copied to the 
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"DLLCust" directory. This allows the user to start from familiar ground, providing the source code 
for how the current component was implemented. The user then simply modifies this source code 
to meet his or her particular needs, and re-compiles. 

A word of caution should be raised. Since the user is able to modify the data variables used by 
NeuroSolutions, some C programming knowledge is certainly required. Care must be taken when 
working with pointers to data vectors in order to prevent errors from occurring outside of the scope 
of the DLL.  

System Requirements for creating DLLs 
 

NeuroSolutions was developed using Microsoft’s Visual C++. The interface for the creation of DLLs 
has been tightly integrated with this development environment. This allows you to compile, run, and 
debug your DLLs within NeuroSolutions. 
 

Structure of a DLL 
 

Every neural component within NeuroSolutions is implemented as a C++ object. Each object 
shares much of its code with other objects belonging to the same family. The unique functionality of 
an object is normally contained within a couple of C++ functions.  

NeuroSolutions developers extends each base component with a DLL protocol and the 
corresponding default DLL source code that conforms to this protocol. This means that the user 
has access to a source code implementation of the component selected. This source code can be 
used as a starting point to make your modifications. 

There are three sub-protocols available to each DLL implementation: 

� Perform sub-protocol 

� Memory management sub-protocol 

� Breadboard sub-protocol 

The perform sub-protocol (required on every DLL) handles the actual functionality of the 
component. The prototype function name is prefixed with perform, followed by the component’s 
protocol name. The memory management sub-protocol (optional in the DLL) handles the allocation 
and freeing of any data stored within a particular instance of a DLL. The two prototype function 
names are prefixed with alloc and free, followed by the component’s protocol name. The 
breadboard sub-protocol (optional in the DLL) contains function prototypes used for synchronizing 
a DLL with the various stages of the simulation. The prototype function names are the same for all 
DLLs. The ability to modify NeuroSolutions components increases with each one of the sub-
protocols, but it is also coupled with a more detailed and complex interaction that requires more 
programming skills. 

How to Use DLLs 
 

The first step towards utilizing DLLs is to select a NeuroSolutions component that has a 
functionality similar to the one you seek. Most of the times this is an easy task. However, a 
thorough knowledge of the NeuroSolutions components is necessary.  

We suggest that you consult the Components chapter of NeuroSolutions Manual Volume II, where 
we provide a mathematical description of the functionality of each component in NeuroSolutions. 
You should select the component that has the closest mathematical description to the one you 
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want to build. In particular, you should seek a component with the same number of parameters. For 
instance, the Axon family has several components. If you want to create a new nonlinearity without 
a bias term, you can select the Axon. If you want your new nonlinearity to have a bias, you should 
use the BiasAxon instead. If you want to create a new memory structure, you should use the 
TDNNAxon. 

Once you have found the component, bring it to the breadboard and go to the Engine level of its 
Inspector. Clicking on the New button will create source code for a new DLL with an 
implementation that is identical to that of the selected component. Details will be given below. Here 
we will simply address the steps of the design. 

Next, simply open the new DLL for the component (the Edit button) to observe the DLL 
implementation of the selected component. Looking at the perform sub-protocol, try to figure out 
how the source code implements the selected component, and then identify the piece that you want 
to modify to create your new component.  

Modify the C code to implement the functionality that you desire. Compile the C code and make 
sure that the code compiles without error. Finally, link the new component with the package (with 
the Use DLL switch). Once properly linked, the component’s icon will have DLL stamped on it. Your 
new component contains all of the features of its base component, so it can utilize all the 
NeuroSolutions features, e.g. probes.  

If you want to not only modify the functionality of a component but also add new variables, or 
deeper modifications, you also can. As you might expect the procedure is more involved, but we 
designed an environment that is very flexible. Please see the examples for a more in depth look at 
DLL design. 

User Interface of the DLL Feature 
 

The interface to the Dynamic Link Library facility is contained within the Engine property page of 
every component’s inspector.  

Behind the Scenes of DLLs 
 

Within the NeuroSolutions directory are two sub-directories used for DLLs: DLLCust and DLLSys. 
DLLSys contains the source code and compiled DLLs for most of the base components within 
NeuroSolutions. These files are arranged based on the protocol that they conform to. 

The DLLCust directory is where the user-defined DLLs are stored. When a new DLL is created, the 
DLL and source code file of the base component are copied from the DLLSys directory to the 
DLLCust directory. Note that the sub-directory structure is preserved such that the user-defined 
DLLs are arranged based on the protocol that they conform to. 

The DLLSys directory also contains a few other files that are used to compile the DLLs: 

 
DebugMakefile.v60 Visual C++ 6.0 makefile used to compile the DLL after the "Debug" 
button is pressed. 
DebugMakefile.v50 Visual C++ 5.0 makefile used to compile the DLL after the "Debug" 
button is pressed. 

DLLTest.dsp The Visual C++ project file used when the "Debug" button is pressed. 

Global.h Global variables included by NSDLL.h. 
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Makefile.v60 Visual C++ 6.0 makefile used to compile the DLL after the "Compile" button is 
pressed. 

Makefile.v50 Visual C++ 5.0 makefile used to compile the DLL after the " Compile " button is 
pressed. 

NSDLL.h Header file included by all DLLs.  

Perform Sub-Protocol 
Perform Sub-Protocol 

 

The modifications to the base NeuroSolutions components have several degrees, depending on 
how extensive the new properties differ from the old ones. The perform sub-protocol implements 
the component’s basic functionality. Hence, the simplest type of modification involves a change of 
the functionality of the base component’s perform function without altering the structure of the 
component parameters or data.  

Every DLL must have at least one perform sub-protocol. You can recognize the perform sub-
protocol in the code by the function: 
 
void performComponentName(...) 
{ 
... 
} 
 

which is normally followed by only a few lines of code that implement the component functionality. 
This is the part you have to concentrate on rewriting. In order to make the code more readable, the 
beginning and end of the block are commented. 

DLL Example 
 

One of the more common uses of DLLs is to customize the activation function of an Axon. Suppose 
that the TanhAxon component were not included within NeuroSolutions. The following example 
demonstrates how you would go about adding this component. 

 
Step 1: Build a Network 

Use the NeuralBuilder to build a 1-hidden-layer MLP. Set the input file to "xor.asc" such that the x 
and y columns are the input and the z column is the desired response. Change the transfer function 
of the layers from a TanhAxon to a LinearAxon. Build the network, and try running it. As expected, 
the network is not able to solve the xor problem when the simulation was run. 
Step 2: Create a New Component 

You need to enhance the LinearAxon in order to have the network solve this problem. You will do 
this by implementing a hyperbolic tangent transfer function. 

Select the LinearAxon at the hidden layer and open its inspector. From the Engine property page, 
click the New button. A panel for the new DLLs name will open. Enter "MyTanh" as the DLL name. 
A copy of the LinearAxon’s DLL source code has been saved under this new name. 
NeuroSolutions created automatically the file bkMyTanh for backpropagation support for this new 
component.  
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Step 3: Edit the Activation Component 

Click the Edit button to bring up the source code for the DLL. The implementation of the 
performLinearAxon function looks like this: 
 
__declspec(dllexport) void performLinearAxon( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,     // Pointer to the layer of processing elements (PEs) 
 int rows,          // Number of rows of PEs in the layer 
 int cols,          // Number of columns of PEs in the layer 
 NSFloat *bias,     // Pointer to the layer's bias vector, one for each PE 
 NSFloat beta       // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 for (i=0; i<length; i++) 
  data[i] = beta*data[i] + bias[i]; 
} 
 

which simply multiplies the input data by a constant and adds a bias (implementing a linear input-
output map). To change the transfer function to a hyperbolic tangent, you need to edit the code as 
follows: 
 
__declspec(dllexport) void performLinearAxon( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,     // Pointer to the layer of processing elements (PEs) 
 int rows,          // Number of rows of PEs in the layer 
 int cols,          // Number of columns of PEs in the layer 
 NSFloat *bias,     // Pointer to the layer's bias vector, one for each PE 
 NSFloat beta       // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 for (i=0; i<length; i++) 
  data[i] = (float)tanh(beta*data[i] + bias[i]); 
}  
 

The transfer function of the new component will be now the hyperbolic function of the input plus the 
bias, implementing the tanh static nonlinearity. Save your changes and return to NeuroSolutions. 
Step 4: Edit the Backprop Component 

If we want to use this new component in a network that is trained with backpropagation, we also 
have to create the corresponding backpropagation component. To implement this modification, you 
need to Edit the code of the BackLinearAxon by selecting the BackLinearAxon, clicking on the Edit 
button to edit the file bkMyTanh, and replacing: 
 
error[i] *= beta; 
 

with: 
 
error[i] *= beta*(1.0f - data[i]*data[i]); 

Step 5: Link your new Components 
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Select the LinearAxon and click the Use DLL switch from the Engine property page. Notice that 
NeuroSolutions automatically detected that you had modified the DLLs source code and is 
prompting you to first compile it. Press YES to compile the source code. Once this step is 
completed you will be prompted to compile the DLL for the BackLinearAxon. Your new components 
are now linked with the rest of the package, as illustrated by the DLL stamps on their icons. 
Step 6: Use DLL for the Output Layer 

Select the LinearAxon at the output layer and click the Load button. Select "MyTanh.dll" from the 
file selection panel. The corresponding backprop DLL is automatically loaded as well. Now both 
layers have the LinearAxon overridden with the hyperbolic tangent transfer function. Click on the 
Transfer Function property page of the Inspector to verify that the transfer function has changed. 
When you run the simulation, the network will now solve the xor problem. 

Memory Management Sub-Protocol 
Memory Management Sub-protocol 

 

When a new instance of a component is created, NeuroSolutions automatically creates the 
variables needed to implement the component. If the modifications do not change the component’s 
data structure, as in the previous example, we do not have to worry about memory management. 
However, for more in-depth DLLs, the developer may want to add to the component’s data 
structure. The purpose of this section is to explain the concepts and the details needed to add 
variables to a base component. 

 

The DLLData Structure 

Adding Adaptable Weights to the Instance Data 

Adding Parameters to the Instance Data 

Adding User-Defined Data 

Memory Management of Instance Data 

Creating Global Variables 

The DLLData Structure 
 

The DLLData structure is used to store the weights, parameters, and user-defined data that is 
specific to a particular instance of a DLL component. A pointer to this structure is passed by 
NeuroSolutions to all implementation functions of the DLL. This data structure is divided in three 
parts:  

� the weights 

� the parameters 

� the user-defined data 

The reason for this division in the data structure is due to the way components interact within the 
NeuroSolutions environment. Weights are updated by the gradient descent components, and we 
would like developers to be able to add adaptable weights to their components without having to 
write the code for gradient search procedures, which are already implemented with NeuroSolutions. 
Likewise, parameters are displayed and modified within NeuroSolutions’ Inspector window, so 
there is no point in requiring developers to write their own code for this purpose. In general, user 
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defined data structures cannot be supported by NeuroSolutions, so you will have to write the code 
associated with this data. Next we present the general DLL data structure. 

 
Data Structure 
typedef struct { 
 NSFloat *data; 
 int length; 
} DLLWeights; 
typedef struct { 
 char parameters[5][3][64]; 
 char parameterNames[5][3][64]; 
} DLLParameters; 
typedef struct { 
 DLLWeights *weights; 
 DLLParameters *parameters; 
 void *userData; 
} DLLData; 

 

The data variables that are available to the user are: 
data 

Pointer to a floating point array containing the user-defined weights. This pointer is accessed by 
calling the getWeights function defined within "NSDLL.H". Note that the memory is allocated and 
freed within NeuroSolutions. 
length 

The number of weights stored within data. This number is specified when the weights are allocated 
(by calling the setWeights function defined within "NSDLL.H"). 
parameters 

Storage for 15 parameter values -- 5 rows and 3 columns. The values are set using the 
setBoolParameter, setIntParameter, setFloatParameter, and setStringParameter functions defined 
within "NSDLL.H". These values are converted if needed and stored as strings. The parameter 
values are retrieved using the getBoolParameter, getIntParameter, getFloatParameter, and 
getStringParameter functions. 
parameterNames 

Storage for 15 parameter names, corresponding to the 15 parameter values. These are used as 
labels within the DLL property page of the Inspector window. 
weights 

Pointer to the DLLWeights structure that holds the user-defined weights. This structure is allocated 
by calling the setWeights function defined within "NSDLL.H" 
parameters 

Pointer to the DLLParameters structure that holds the user-defined parameters. This structure is 
allocated during the first call to the setParameterName function defined within "NSDLL.H". 
userData 
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Pointer to a user-defined block of data. The memory is allocated and freed by the user, and the 
pointer is updated by calling the setUserData function defined within "NSDLL.H". 

 

 

  See Also 

Adding Adaptable Weights to the Instance Data 
 

There may be times when you want to add an adaptable weight vector to a component that already 
has a set of adaptable weights. Recall that a TanhAxon has a bias vector (because it is a subclass 
of BiasAxon), which may be adapted during learning. The beta term (the slope of the tanh function) 
is not adaptable and is the same for all PEs. Suppose that you want to have a unique beta for each 
PE and that these terms should be adaptable. This is a case where an instance weight vector is 
needed (see Adjustable Transfer Function Slope DLL Example). 

An instance weight vector is defined by making a call to the setWeights function within the alloc 
function of the DLL: 
 
__declspec(dllexport) DLLData *allocLinearAxon( 
 DLLData* oldInstance, // Pointer to the last instance if reallocating 
 int rows,             // Number of rows of PEs in the layer 
 int cols              // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setWeights(instance, rows*cols); 
 return instance; 
} 
 

The setWeights function simply allocates a vector of weights of the specified size, and inserts it 
within the instance of DLLData. The memory for the weights is automatically freed when the 
instance is freed (by calling freeDLLInstance from the freeInstance function of the DLL). Note that 
the implementation of all DLL functions can be found within the "NSDll.h" header file. 

The weights are automatically adapted the same way as the base component’s weights. The 
attached Backprop component will compute the gradients and sensitivities for both sets of weights, 
and the Gradient Search component will update all of the weights based on the computed 
gradients. Note that adaptable instance weights only apply to members of the Axon and Synapse 
families. 

If an Axon or Synapse has a vector of adaptable weights, then the component’s backpropagation 
dual must have a corresponding set of gradients. These gradients are treated as weights in an 
identical manner to that of the activation dual. 

Within the perform function of a DLL, you obtain a pointer to the weight vector by using the 
getWeights function call: 

 
NSFloat *beta = getWeights(instance); 
 

From there you access the individual weights by indexing into the array (e.g., beta[i]). 
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Adding Parameters to the Instance Data 
 

Each component has a set of parameters that are specified by the user within the various property 
pages of the inspector window. The creation of custom components using DLLs will often require 
additional user-defined parameters. For this reason, a facility has been included for you to specify 
up to 15 parameters that are accessible to the user from the DLL property page of the Inspector. 

A parameter set is initialized by making calls to the setParameterName functions within the alloc 
function of the DLL: 
 
__declspec(dllexport) DLLData *allocProtocolName( 
 DLLData *oldInstance, // Pointer to the last instance if reallocating 
 int rows,             // Number of rows of PEs in the layer 
 int cols              // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 1, 1, "Amplitude", FALSE); 
 setFloatParameter(instance, 1, 1, 11.0f, FALSE); 
 setParameterName(instance, 2, 1, "Phase", FALSE); 
 setIntParameter(instance, 2, 1, 180, FALSE); 
 return instance; 
} 
 

The protocol for the setParameterName function is as follows: 
 
void setParameterName( 
 DLLData *instance, // Pointer to instance data storing parameters 
 int row,           // Inspector row to display parameter 
 int col,           // Inspector column to display parameter 
 char *name,        // Inspector label for parameter 
 BOOL realloc       // Reallocate instance data when value changes 
 ); 
 

The parameter names and values are stored as part of the instance data structure. The row and col 
refer to the parameter’s position within the inspector. The number of parameters stored is static (5 
rows and 3 columns), but only the ones initialized with this function are displayed within the 
inspector. The name is used to label the parameter within the inspector. The realloc flag is used to 
indicate whether or not this parameter affects the structure of the instance data. If realloc is set to 
TRUE, then the instance data is reallocated (i.e., the DLL receives a call to the alloc function) every 
time the value of the parameter changes. Note that the implementation of setParameterName, as 
well as all other DLL functions, can be found within the "NSDLL.H" header file. 

A default value for each parameter is normally set within the alloc function as well, using one of the 
following function calls: 
 
void setBoolParameter 
 (DLLData *instance, int row, int col, BOOL boolValue, BOOL force); 
void setIntParameter 
 (DLLData *instance, int row, int col, int intValue, BOOL force); 
void setFloatParameter 
 (DLLData *instance, int row, int col, NSFloat floatValue, BOOL force); 
void setStringParameter 
 (DLLData *instance, int row, int col, char *stringValue, BOOL force); 
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If the force flag is set to FALSE, then the parameter is only assigned if the current setting is 
undefined (blank). Otherwise, the parameter is always set to the specified value. This flag should 
always be set for FALSE for parameter initialization in order to avoid overwriting a previously 
specified value. 

Here is an example of how a parameter’s value is retrieved and used:  
 
int i, length=rows*cols; 
NSFloat amplitude = getFloatParameter(instance, 1, 1); 
for (i=0; i<length; i++) 
 data[i] = (NSFloat)amplitude*data[i]; 
 

The function prototypes for retrieving the parameter values are similar to those used to set them: 
 
int getIntParameter(DLLData *instance, int row, int col); 
BOOL getBoolParameter(DLLData *instance, int row, int col); 
NSFloat getFloatParameter(DLLData *instance, int row, int col); 
char *getStringParameter(DLLData *instance, int row, int col); 

 

 

  See Also 

Adding User-Defined Data 
 

During the definition of your new components you may have necessity to define instance variables 
and data. NeuroSolutions will maintain a pointer to this data for each instance of the DLL 
component. You are responsible for allocating this data during the alloc sub-protocol, freeing it 
during the free sub-protocol, and interpreting it during the perform sub-protocol. NeuroSolutions 
only maintains a single pointer, so all user-defined data must be organized within a single data 
structure. 

For example, if you wanted each instance of your component to contain an integer variable called 
length and a floating point array called dataArray, then you should define the following data 
structure within your DLL: 

 
typedef struct { 
 int length; 
 float *dataArray; 
} MyData; 

Memory Management of Instance Data 
Allocation 

An instance of a DLL is allocated when the DLL is first loaded, and it is reallocated whenever the 
component itself is reallocated (e.g., the number of PEs change), or the instance data is reallocated 
due to a change in a specially-tagged instance parameter. (Note that the instance parameter is 
tagged by setting realloc=TRUE when calling the setParameterName function.) Whenever a DLL 
instance is allocated or reallocated, the DLL’s instance allocation function is called. 
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There are three types of instance data that are available within the DLLData structure: weights, 
parameters, and user data. The following instance allocation implementation is an example of a 
DLL that uses all three types: 
 
__declspec(dllexport) DLLData *allocLinearAxon( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int rows,              // Number of rows of PEs in the layer 
 int cols               // Number of columns of PEs in the layer 
 ) 
{ 
 int i, length = rows*cols; 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setWeights(instance, rows*cols); 
 setParameterName(instance, 2, 1, "Gain", TRUE); 
 setFloatParameter(instance, 2, 1, 1.0f, FALSE); 
 NSFloat *myData = (NSFloat *)calloc(rows*cols, sizeof(NSFloat)); 
 setUserData(instance, myData); 
 return instance; 
} 
 

The call to allocDLLInstance allocates a new DLLData structure. If it is allocated for the first time, 
then the three members of the structure are all set to NULL. If it is a reallocation (oldInstance != 
NULL), then the parameters and weights of the old instance are preserved in the new structure. 

The call to setWeights sets the number of instance weights that NeuroSolutions will allocate. The 
first call to setParameterName allocates the memory needed to store 15 instance parameters (5 
rows and 3 columns). Only the first call to setFloatParameter sets the parameter value (since the 
force flag is set to FALSE). This preserves the parameter values during a reallocation. 

The memory management for the user data is the responsibility of the DLL author. Any block of 
data may be allocated for use by a particular instance. The call to setUserData stores the pointer to 
the data block within the DLLData structure. The prototype for this function as defined within 
"NSDLL.H" is: 
 
void setUserData(DLLData *instance, void *userData); 

Deallocation 

An instance of a DLL is deallocated when the DLL is unloaded, or when the instance has been 
reallocated. 

The following instance deallocation implementation corresponds to the allocation implementation 
above: 
 
__declspec(dllexport) void freeLinearAxon(DLLData *instance) 
{ 
 free(getUserData(instance)); 
 freeDLLInstance(instance); 
} 
 

The prototype for the getUserData function as defined within "NSDLL.H" is: 
 
void *getUserData(DLLData *instance); 
 

Note that the user data is the only memory that the DLL author is responsible for freeing directly; 
the freeDLLInstance function handles the rest. 
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  See Also 

Creating Global Variables 
 

A very powerful concept that is supported in the DLLs is the global variable. Global variables allow 
several component DLLs to share the same memory. The user must declare global variables at the 
top of the DLL. When there are several components using the same DLL, the system only loads the 
DLL into memory once. In other words, all of those components share the same memory space 
when accessing the DLL. For this reason, any global variables that are declared within the DLL are 
global to all instances using the DLL. 

 
Example 

Stamp two TanhAxons on a blank breadboard and bring up the inspector for one of them. From the 
Engine property page click the New button and enter "MyAxon" as the DLL name. Edit the code as 
follows: 
 
NSFloat myBeta = 0.01f; 
__declspec(dllexport) void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the layer of processing elements (PEs) 
 int rows,           // Number of rows of PEs in the layer 
 int cols,           // Number of columns of PEs in the layer 
 NSFloat *bias,      // Pointer to the layer's bias vector, one for each PE 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 for (i=0; i<length; i++) { 
  data[i] = (NSFloat)tanh(myBeta*data[i] + bias[i]); 
  myBeta += 0.01f; 
 } 
} 
 

In this code myBeta is a global variable since it is defined before the perform function. Click the 
Compile button to create and load this DLL. Select the other TanhAxon and click the Load button 
from the Engine property page. Select the "MyAxon" DLL that you have just compiled. Now both 
components are sharing the same DLL. Select the Transfer Function property page to observe the 
effect of the global variable. Note that NeuroSolutions computes this graph by making consecutive 
calls to performLinearAxon, thus the slope of the hyperbolic tangent function (myBeta) increases 
with every point that is plotted. Now view the Transfer Function property page of the other 
TanhAxon. It plotted the function based on the value of myBeta computed by the first TanhAxon. 
Switch back and forth between the two components to observe the increasing slope of the transfer 
function. 

If these two DLL instances were placed in a network, then the slope would increase twice for each 
sample of data run through the network because each instantiated object would be incrementing 
the same variable. 
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  See Also 

Breadboard Sub-Protocol 
Breadboard Sub-Protocol 

 

The breadboard sub-protocol addresses the need to synchronize DLLs with the rest of the 
simulation environment. This is an important feature for the functionality of the reconfigured 
component since there are a lot of messages from the simulation environment that have to be 
attended to by any component, such as reset, zeroing of counters at the end of epoch, updating of 
weights in batch mode, etc.  

NeuroSolutions will call all of the functions that are implemented during the appropriate times, and 
pass a pointer to The DLLData Structure as the first parameter. Below we present the 
synchronization function calls available to the DLLs.  

 
// Called after the current epoch has completed 
  __declspec(dllexport) void epochEnded( 
   DLLData *instance, 
   int epoch // Current epoch count 
  ); 
 
// Called after the current exemplar has completed 
  __declspec(dllexport) void exemplarEnded( 
   DLLData *instance, 
   int exemplar // Current exemplar count 
  ); 
 
// Called after the Run button is pressed 
  __declspec(dllexport) void fireGetReady(DLLData *instance);  
 
// Called after fireGetReady(); return FALSE to abort the Run 
  __declspec(dllexport) BOOL fireIsReady(DLLData *instance);  
 
// Called after the simulation has stopped 
  __declspec(dllexport) void fireConclude(DLLData *instance); 
 
// Called after the weights have been jogged (Controller button) 
  __declspec(dllexport) void networkJog(DLLData *instance); 
// Called after the network weights are randomized (Controller button) 
  __declspec(dllexport) void networkRandomize(DLLData *instance); 
 
// Called after the network has been reset (Controller button) 
  __declspec(dllexport) void networkReset(DLLData *instance); 
 
// Called before the network weights are updated 
  __declspec(dllexport) void prepareToUpdateWeights(DLLData 
*instance); 
 
// Called after the network weights have been updated 
  __declspec(dllexport) void updateWeights(DLLData *instance); 
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DLL Examples 
DLL Examples 

 

In the following we will present several important examples to illustrate the use of DLL features. For 
each example we explicitly state the feature that is being illustrated, and the code is compared with 
the base NeuroSolutions component to emphasize the differences, and how the new functionality 
was implemented. We present examples to reconfigure components belonging to all the 
NeuroSolutions families. The following summarizes all of the examples: 

 
Axon 

� Adjustable sigmoid - illustrates the addition of adaptable weights 

� Adjustable hyperbolic tangent - illustrates the addition of adaptable weights 

� Adjustable linear - illustrates the addition of adaptable weights 

� TanhAxon with gain - illustrates the addition of a parameter 
Synapse 

� Subset FullSynapse - illustrates the addition of adaptable weights 

� Locally-Connected Synapse - illustrates configuration 
ErrorCriterion 

� Loser learn all - illustrates configuration 
GradientSearch 

� DeltaBarDelta with limited step - illustrates configuration 

� DeltaBarDelta with exponential step - illustrates configuration 
General Input and Postprocessor 

� Strange attractor - illustrates configuration 

� Logistic function - illustrates configuration 

� Discriminant function - illustrates configuration 

� Scaling - illustrates configuration 
Function Generator 

� Sawtooth - illustrates configuration 

� Triangle - illustrates configuration 

� Square - illustrates configuration 

� Decayed Sine - illustrates configuration 

� Pulse - illustrates configuration 
Noise Generator 

� Gaussian - illustrates configuration 

� Decayed Gaussian - illustrates configuration 

� Decayed Uniform  - illustrates configuration 
File  
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� Binary - illustrates configuration 

� Binary float - illustrates configuration 

� Binary Integer  - illustrates configuration 

� Binary Short - illustrates configuration 

� Binary character - illustrates configuration 
Preprocessor 

� Averaging filter - illustrates configuration 

� Decimator filter  - illustrates configuration 

� Extractor - illustrates configuration 
Postprocessor and Probe 

� Confusion matrix - illustrates global variables 
Transformer 

� Derivative - illustrates configuration 

� Autocorrelation - illustrates configuration 

� Crosscorrelation  - illustrates configuration 

Axon 

Adjustable Transfer Function Slope DLL Example 

 

Within the "DLLCUST/BiasAxon" directory are three DLL examples entitled "adjtana", "adjsiga", and 
"adjlina". These DLLs implement specialized versions of the TanhAxon, SigmoidAxon, and 
LinearAxon, respectively, to demonstrate the use of instance weights. 

Each of the base components has a bias vector (because they are subclasses of BiasAxon) that 
may be adapted during learning. However, the beta term (the slope of the transfer function) is not 
adaptable and is the same for all PEs. These DLLs use adaptable instance weights to maintain a 
unique beta for each PE. The backpropagation dual components ("bkadjtan", "bkadjsig", and 
"bkadjlin") have a corresponding set of weights that store the gradient information, which is used to 
adapt the beta terms of the activation dual. 

The instance weight vectors for both the activation and backpropagation components are allocated 
and freed as follows: 
 
DLLData *allocBiasAxon( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int rows,              // Number of rows of PEs in the layer 
 int cols               // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setWeights(instance, rows*cols); 
 return instance; 
} 
void freeBiasAxon (DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
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All three DLLs have very similar implementations, so only the code for hyperbolic tangent will be 
shown here. Refer to the sample source code for the implementations of the other two. 

The implementation for the activation DLL ("adjtana") is as follows: 
 
void performBiasAxon( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *data,      // Pointer to the layer of processing elements (PEs) 
 int rows,           // Number of rows of PEs in the layer 
 int cols,           // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector, one for each PE 
 ) 
{ 
 int i, length=rows*cols; 
 NSFloat *beta = getWeights(instance); 
 for (i=0; i<length; i++) { 
  if (beta[i] < 0.5f) 
   beta[i] = 0.5f; 
  data[i] = (NSFloat)tanh(beta[i]*data[i] + bias[i]); 
 } 
} 
 

Compare this with the implementation for the base component (TanhAxon): 
 
int i, length=rows*cols; 
for (i=0; i<length; i++) 
 data[i] = (NSFloat)tanh(beta*data[i] + bias[i]); 
 

The weight vector is stored within the DLLData structure and the pointer is obtained with the 
getWeights function. The weights are accessed by indexing the floating point array. 

Note that there is minimum value forced on each beta term. When the network is reset, the weights 
are randomized to a value between -1 and 1. The beta term must be greater than zero. The higher 
the beta, the steeper the slope and the more discriminating the function becomes. A value of 0.5 
was chosen as a minimum value for this starting point. Most often, the network will adapt to a 
higher value. 

The implementation for the backpropagation DLL ("bkadjtan") is as follows: 
 
void performBackBiasAxon( 
 DLLData *instance,      // Pointer to instance data 
 DLLData *dualInstance,  // Pointer to the forward axons instance data 
 NSFloat *data,          // Pointer to the layer of processing elements 
(PEs) 
 int rows,               // Number of rows of PEs in the layer 
 int cols,               // Number of columns of PEs in the layer 
 NSFloat *error,         // Pointer to the sensitivity vector 
 NSFloat *gradient       // Pointer to the bias gradient vector 
 ) 
{ 
 int i,length=rows*cols; 
 NSFloat *beta = getWeights(dualInstance); 
 NSFloat *betaGradient = getWeights(instance); 
 for (i=0; i<length; i++) { 
  error[i] *= beta[i]*(1.0f - data[i]*data[i] + 0.1f); 
  if (gradient) 
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   gradient[i] += error[i]; 
  if (betaGradient) 
   betaGradient[i] += error[i]*data[i]; 
 } 
} 
 

Compare this with the implementation for the base component (BackTanhAxon): 
 
int i, length=rows*cols; 
for (i=0; i<length; i++) { 
 error[i] *= beta*(1.0f - data[i]*data[i] + 0.1f); 
 if (gradient) 
  gradient[i] += error[i]; 
}  
 

The only differences are that the beta term is unique to each PE and that the gradient information 
for the beta vector is computed along with the gradient information for the Axon’s weights. 

 

 

  See Also 

TanhAxon with Gain DLL Example 

 

Within the "DLLCUST/LinAxon" directory is a DLL example entitled "gaintanh" and its 
corresponding backprop dual "bkgainta". This DLL implements a specialized version of the 
TanhAxon to demonstrate the use of instance parameters. 

The transfer function of the base TanhAxon produces an output that ranges from -1 to 1. There are 
cases when you may want to have the output scaled to match that of the original data. This would 
be one use for a TanhAxon component that is enhanced with a gain factor. 

The gain parameter is stored within the instance data of the activation component (the TanhAxon). 
It is initialized within the allocLinearAxon function as follows: 
 
DLLData *allocLinearAxon( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int rows,              // Number of rows of PEs in the layer 
 int cols               // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 2, 1, "Gain"); 
 setFloatParameter(instance, 2, 1, 1.0f, FALSE); 
 return instance; 
} 
 

The two function calls set the label on the inspector to "Gain" and set the default value to 1.0. The 
call to setParameterName must occur before the call to setFloatParameter in order to allocate 
memory for the parameters. Note that since the parameters are stored with the instance data, that 
memory is automatically freed when the freeDllInstance function is called. 
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The implementation for the activation DLL ("gaintanh") is as follows: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *data,      // Pointer to the layer of processing elements (PEs) 
 int rows,           // Number of rows of PEs in the layer 
 int cols,           // Number of columns of PEs in the layer 
 NSFloat *bias,      // Pointer to the layer's bias vector, one for each PE 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ) 
{ 
 int i, length=rows*cols; 
 NSFloat gain = getFloatParameter(instance, 2, 1); 
 for (i=0; i<length; i++) 
  data[i] = (NSFloat)gain*tanh(beta*data[i] + bias[i]); 
} 
 

Compare this with the implementation for the base component (TanhAxon): 
 
 int i, length=rows*cols; 
 for (i=0; i<length; i++) 
  data[i] = (NSFloat)tanh(beta*data[i] + bias[i]); 
 

The gain parameter is stored within the DLLData structure and the value is obtained with the 
getFloatParameter function. The activation function is simply multiplied by this parameter to 
produce the scaled result. 

The implementation for the backpropagation DLL ("bkgainta") is as follows: 
 
void performBackLinearAxon( 
 DLLData *instance,      // Pointer to instance data 
 DLLData *dualInstance,  // Pointer to the forward axons instance data 
 NSFloat *data,          // Pointer to the layer of processing elements 
(PEs) 
 int rows,               // Number of rows of PEs in the layer 
 int cols,               // Number of columns of PEs in the layer 
 NSFloat *error,         // Pointer to the sensitivity vector 
 NSFloat *gradient,      // Pointer to the bias gradient vector 
 NSFloat beta            // Slope gain scalar, same for all PEs 
 )  
{ 
 int i, length=rows*cols; 
 NSFloat gain = getFloatParameter(dualInstance, 2, 1); 
 for (i=0; i<length; i++) { 
  error[i] *= gain*beta*(1.0f - data[i]*data[i] + 0.1f); 
  if (gradient) 
   gradient[i] += error[i]; 
 }  
} 
 

Compare this with the implementation for the base component (BackTanhAxon): 
 
 int i, length=rows*cols; 
 for (i=0; i<length; i++) { 
  error[i] *= beta*(1.0f - data[i]*data[i] + 0.1f); 
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  if (gradient) 
   gradient[i] += error[i]; 
 }  
 

The backprop component does not need to store its own gain parameter. Instead, it retrieves it 
from the activation dual component by passing the dualInstance pointer to the getFloatParameter 
function. 

 

 

  See Also 

Synapse 

Subset FullSynapse DLL Example 

 

Within the "DLLCUST/Synapse" directory is a DLL example entitled "subsyn" and its corresponding 
backprop DLL, "bksubsyn". These DLLs implement a specialized version of the Synapse 
component to demonstrate connectivity customization using instance parameters. 

When connecting two Axons of differing size together using the base Synapse component, all N 
PEs of the smaller Axon are connected to the first N PEs of the larger Axon. This DLL provides 
more flexibility by letting the user specify a subset of PEs from one Axon that is to be connected to 
the other Axon. 

The user has three parameters to work with from the DLL property page of the inspector. The Input 
parameter specifies which Axon to select the segment of PEs from -- the input (Input=TRUE) or 
output (Input=FALSE). The segment begins with the Start PE and ends with the Start+Length-1 PE. 
These PEs are connected to the other Axon in order starting with PE 0. 
 
DLLData *allocSynapse( 
 DLLData  *oldInstance,  // Pointer to the last instance if reallocating 
 int      inRows,        // Number of rows of PEs in the input layer 
 int      inCols,        // Number of columns of PEs in the input layer 
 int      outRows,       // Number of rows of PEs in the output layer 
 int      outCols        // Number of columns of PEs in the output layer 
 ) 
{ 
 BOOL subInput; 
 int maxLength, start, length; 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 1, 1, "Input", TRUE); 
 setBoolParameter(instance, 1, 1, TRUE, FALSE); 
 setParameterName(instance, 2, 1, "Start", TRUE); 
 setIntParameter(instance, 2, 1, 0, FALSE); 
 setParameterName(instance, 3, 1, "Length", TRUE); 
 setIntParameter(instance, 3, 1, 1, FALSE); 
 subInput = getBoolParameter(instance, 1, 1); 
 maxLength = subInput? inRows*inCols: outRows*outCols; 
 start = getIntParameter(instance, 2, 1); 
 if (inRows && inCols && outRows && outCols) { 
  if (start >= maxLength) 
   start = maxLength-1; 
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  length = getIntParameter(instance, 3, 1); 
  if (start+length > maxLength) 
   length = maxLength-start; 
  if (!subInput) 
   if (length > inRows*inCols) 
    length = inRows*inCols; 
 } else 
  start = length = 0; 
 setBoolParameter(instance, 1, 1, subInput, TRUE); 
 setIntParameter(instance, 2, 1, start, TRUE); 
 setIntParameter(instance, 3, 1, length, TRUE); 
 return instance; 
} 
 

The call to freeDLLInstance handles the freeing of the instance parameters: 
 
void freeInstance(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
}  
 

The implementation for the activation DLL ("subsyn") is as follows: 
 
void performSynapse( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *input,     // Pointer to the input layer of PEs 
 int     inRows,     // Number of rows of PEs in the input layer 
 int     inCols,     // Number of columns of PEs in the input layer 
 NSFloat *output,    // Pointer to the output layer 
 int     outRows,    // Number of rows of PEs in the output layer 
 int     outCols     // Number of columns of PEs in the output layer 
 ) 
{ 
 BOOL subInput = getBoolParameter(instance, 1, 1); 
 int i, 
  inCount = subInput? getIntParameter(instance, 3, 1): inRows*inCols, 
  outCount = !subInput? getIntParameter(instance, 3, 1): 
outRows*outCols, 
  start = getIntParameter(instance, 2, 1), 
  count = inCount<outCount? inCount: outCount; 
 if (subInput) 
  for (i=0; i<count; i++) 
   output[i] += input[i+start];  
 else 
  for (i=0; i<count; i++) 
   output[i+start] += input[i];  
} 
 

Compare this with the implementation for the base component (Synapse): 
 
int i, 
 inCount=inRows*inCols, 
 outCount=outRows*outCols, 
 count = inCount<outCount? inCount: outCount; 
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for (i=0; i<count; i++) 
 output[i] += input[i];  
 

The implementation for the backpropagation DLL ("bksubsyn") is as follows: 
 
void performBackSynapse( 
 DLLData *instance,     // Pointer to instance data 
 DLLData *dualInstance  // Pointer to the forward synapses instance data 
 NSFloat *errorIn,      // Pointer to the input error layer of PEs 
 int     inRows,        // Number of rows of PEs in the input layer 
 int     inCols,        // Number of columns of PEs in the input layer 
 NSFloat *errorOut,     // Pointer to the output error layer  
 int     outRows,       // Number of rows of PEs in the output layer 
 int     outCols,       // Number of columns of PEs in the output layer 
 NSFloat *input         // Pointer to output layer of forward synapse 
 ) 
{ 
 BOOL subInput = getBoolParameter(dualInstance, 1, 1); 
 int i, 
  inCount = !subInput? getIntParameter(dualInstance, 3, 1): 
     inRows*inCols, 
  outCount = subInput? getIntParameter(dualInstance, 3, 1): 
     outRows*outCols, 
  start = getIntParameter(dualInstance, 2, 1), 
  count = inCount<outCount? inCount: outCount; 
 if (subInput) 
  for (i=0; i<count; i++) 
   errorOut[i+start] += errorIn[i];  
 else 
  for (i=0; i<count; i++) 
   errorOut[i] += errorIn[i+start];  
} 
 

Compare this with the implementation for the base component (BackSynapse): 
 
 int i, 
  inCount=inRows*inCols, 
  outCount=outRows*outCols, 
  count=inCount<outCount? inCount: outCount; 
 for (i=0; i<count; i++) 
  errorOut[i] += errorIn[i]; 

 

 

  See Also 

Locally-Connected Synapse DLL Example 

 

Within the "DLLCUST/Synapse" directory is a DLL example entitled "localsyn" and its 
corresponding backprop DLL, "bklocals". These DLLs implement a specialized version of the 
Synapse component to demonstrate connectivity customization using instance weights. 
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A common problem with using a fully-connected neural network for image processing problems is 
that even a modest sized image requires an enormous number of weights. One way to solve this 
problem is to replace the fully-connected matrix of weights at the first layer with one that is only 
locally-connected.  For instance, if the input image is 400x400 pixels and the first hidden layer is a 
40x40 PE Axon, then each PE of the hidden layer would be fed by a 10x10 matrix of weighted 
connections from the input. In this way, much of the spatial information of the image is preserved 
while the number of weights is drastically reduced (from 256,000,000 for the fully-connected case 
down to 160,000 for the locally-connected case). 

The instance weight vectors for both the activation and backpropagation components are allocated 
and freed as follows: 

 
DLLData *allocSynapse( 
 DLLData  *oldInstance,  // Pointer to the last instance if reallocating 
 int      inRows,        // Number of rows of PEs in the input layer 
 int      inCols,        // Number of columns of PEs in the input layer 
 int      outRows,       // Number of rows of PEs in the output layer 
 int      outCols        // Number of columns of PEs in the output layer 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 int colSize = (int)inCols/outCols, 
  colRemainder = inCols-outCols*colSize, 
  rowSize = (int)inRows/outRows, 
  rowRemainder = inRows-outRows*rowSize, 
  totalWeights = outRows*outCols*rowSize*colSize + 
    outRows*rowSize*colRemainder + 
outCols*colSize*rowRemainder + 
    rowRemainder*colRemainder; 
 setWeights(instance, totalWeights); 
 return instance; 
} 
 

The number of weights to allocate is based on ratio of input PEs to output PEs. This algorithm 
takes into account the case when the rows or columns do not divide evenly. 

The call to freeDLLInstance handles the freeing of the instance weights: 
 
void freeSynapse(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

The implementation for the activation DLL ("localsyn") is as follows: 
 
void performSynapse( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *input,     // Pointer to the input layer of PEs 
 int     inRows,     // Number of rows of PEs in the input layer 
 int     inCols,     // Number of columns of PEs in the input layer 
 NSFloat *output,    // Pointer to the output layer 
 int     outRows,    // Number of rows of PEs in the output layer 
 int     outCols     // Number of columns of PEs in the output layer 
 ) 
{ 
 int i, j, k, l, startRow, stopRow, startCol, stopCol, 
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  colSize = (int)inCols/outCols, 
  colRemainder = inCols-outCols*colSize, 
  rowSize = (int)inRows/outRows, 
  rowRemainder = inRows-outRows*rowSize; 
 NSFloat *weights = getWeights(instance); 
 for (i=0; i<outRows; i++) 
  for (j=0; j<outCols; j++) { 
   startRow = rowSize*i; 
   if (i == outRows-1) 
    stopRow = inRows; 
   else 
    stopRow = rowSize*(i+1); 
   startCol = colSize*j; 
   if (j == outCols-1) 
    stopCol = inCols; 
   else 
    stopCol = colSize*(j+1); 
   for (k=startRow; k<stopRow; k++) 
    for (l=startCol; l<stopCol; l++) 
     out(i,j) += *weights++ * in(k,l); 
  } 
} 
 

Compare this with the implementation for the base component (Synapse): 
 
int i, 
 inCount=inRows*inCols, 
 outCount=outRows*outCols, 
 count = inCount<outCount? inCount: outCount; 
for (i=0; i<count; i++) 
 output[i] += input[i];  
 

The implementation for the backpropagation DLL ("bklocals") is as follows: 
 
void performBackSynapse( 
 DLLData *instance,     // Pointer to instance data 
 DLLData *dualInstance  // Pointer to the forward synapses instance data 
 NSFloat *errorIn,      // Pointer to the input error layer of PEs 
 int     inRows,        // Number of rows of PEs in the input layer 
 int     inCols,        // Number of columns of PEs in the input layer 
 NSFloat *errorOut,     // Pointer to the output error layer  
 int     outRows,       // Number of rows of PEs in the output layer 
 int     outCols,       // Number of columns of PEs in the output layer 
 NSFloat *input         // Pointer to output layer of forward synapse 
 ) 
{ 
 int i, j, k, l, startRow, stopRow, startCol, stopCol, 
  colSize = (int)outCols/inCols, 
  colRemainder = outCols-inCols*colSize, 
  rowSize = (int)outRows/inRows, 
  rowRemainder = outRows-inRows*rowSize; 
 NSFloat *weights = getWeights(dualInstance); 
 NSFloat *gradients = getWeights(instance); 
 for (i=0; i<inRows; i++) 
  for (j=0; j<inCols; j++) { 
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   startRow = rowSize*i; 
   if (i == inRows-1) 
    stopRow = outRows; 
   else 
    stopRow = rowSize*(i+1); 
   startCol = colSize*j; 
   if (j == inCols-1) 
    stopCol = outCols; 
   else 
    stopCol = colSize*(j+1); 
   for (k=startRow; k<stopRow; k++) 
    for (l=startCol; l<stopCol; l++) { 
     out(k,l) += *weights++ * in(i,j); 
     *gradients++ += in(i,j) * activity(k,l); 
    } 
  } 
} 
 

Compare this with the implementation for the base component (BackSynapse): 
 
int i, 
 inCount=inRows*inCols, 
 outCount=outRows*outCols, 
 count=inCount<outCount? inCount: outCount; 
for (i=0; i<count; i++) 
 errorOut[i] += errorIn[i]; 

 

 

  See Also 

ErrorCriterion 

Loser Learn All DLL Example 

 

Within the "DLLCUST/ErrCrit" directory is a DLL example entitled "loserlrn". This DLL implements a 
modified version of the L2Criterion. Instead of backpropagating the sensitivities for all output PEs, 
this algorithm only passes back the sensitivity data for the PE that has the highest error. The rest of 
the sensitivity vector is forced to zero. 
 
NSFloat performCriterion( 
 DLLData *instance,        // Pointer to instance data (may be NULL) 
 NSFloat *costDerivative,  // Pointer to the cost derivative vector, 
                           // i.e. output sensitivity 
 int rows,                 // Number of rows of PEs in the layer 
 int cols,                 // Number of columns of PEs in the layer 
 NSFloat *output,          // Pointer to the output layer of the network 
 NSFloat *desired          // Pointer to the desired output vector, same 
                           // length as output layer 
 ) 
{ 
 int i,maxInt=0,length=rows*cols; 
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 NSFloat cost = 0.0f; 
 for (i=0; i<length; i++) { 
  costDerivative[i] = desired[i] - output[i]; 
  cost += costDerivative[i]*costDerivative[i]; 
  if (fabs(costDerivative[i]) > fabs(costDerivative[maxInt])) 
   maxInt = i; 
 } 
 for (i=0; i<length; i++)  
  if (i != maxInt) 
   costDerivative[i] = 0.0f; 
 return cost; 
} 
 

Compare this with the implementation for the base component (L2Criterion): 
 
int i,length=rows*cols; 
NSFloat cost=0.0f; 
for (i=0; i<length; i++) { 
 costDerivative[i] = desired[i] - output[i]; 
 cost += costDerivative[i]*costDerivative[i]; 
} 
return cost; 

 

 

  See Also 

GradientSearch 

DeltaBarDelta with Limited Step DLL Example 

 

Within the "DLLCUST/DeltaBar" directory is a DLL example entitled "limitdbd". This DLL 
implements a modified version of the DeltaBarDelta. The base DeltaBarDelta component has an 
adaptive step size. In some cases, this step size may grow too large and make the network 
unstable. This DLL uses an instance parameter to allow the user to specify the maximum step size 
that any PE can have. This parameter is defined within the allocation function: 
 
DLLData *allocDeltaBarDelta( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int     length,        // Length of the weight vector 
 BOOL    individual     // Indicates whether their is one learning rate for  
                        //all weights (FALSE), 
                        // or each weight has its own learning rate 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 2, 1, "Max Step", TRUE); 
 setFloatParameter(instance, 2, 1, 0.1f, FALSE); 
 if (getFloatParameter(instance, 2, 1) < 0) 
  setFloatParameter(instance, 2, 1, 0.0f, TRUE); 
 return instance; 
} 
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The parameter (stepMax) is then used to limit the step size of each PE: 
 
void performDeltaBarDelta( 
 DLLData *instance,                        // Pointer to instance data (may 
be NULL) 
 NSFloat *step,                            // Pointer to vector of learning 
rates for each  
                                              // weight 
 int     length,                           // Length of learning rate 
vector 
 NSFloat momentum,                         // Momentum rate for all weights 
 NSFloat *delta,                           // Last weight Update 
 NSFloat *gradient,                        // Gradient vector from backprop 
component 
 NSFloat *smoothedGradient,                // Smoothed gradient vector 
 NSFloat beta,                             // Multiplicative constant 
 NSFloat kappa,                            // Additive constant 
 NSFloat zeta                              // Smoothing factor 
 ) 
{  
 int i; 
 NSFloat stepMax = getFloatParameter(instance, 2, 1);  
 for (i=0; i<length; i++) { 
  if (smoothedGradient[i]*gradient[i] > 0) 
   step[i] += kappa; 
  else 
   if (smoothedGradient[i]*gradient[i] < 0) 
    step[i] -= beta*step[i];  
  if (step[i] > stepMax) 
   step[i] = stepMax; 
  smoothedGradient[i] = (1-zeta)*gradient[i] + 
zeta*smoothedGradient[i]; 
 } 
} 
 

Compare this with the implementation for the base component (DeltaBarDelta): 
 
int i; 
for (i=0; i<length; i++) { 
 if (smoothedGradient[i]*gradient[i] > 0) 
  step[i] += kappa; 
 else 
  if (smoothedGradient[i]*gradient[i] < 0) 
   step[i] -= beta*step[i]; 
 smoothedGradient[i] = (1-zeta)*gradient[i] + zeta*smoothedGradient[i]; 
} 

 

 

  See Also 
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DeltaBarDelta with Exponential Step DLL Example 

 

Within the "DLLCUST/DeltaBar" directory is a DLL example entitled "expdbd". This DLL further 
modifies the DeltaBarDelta with Limited Step example. It simply multiplies kappa by an exponential 
term when computing the step sizes. 
 
void performDeltaBarDelta( 
 DLLData *instance,                        // Pointer to instance data (may 
be NULL) 
 NSFloat *step,                            // Pointer to vector of learning 
rates for each  
                                              // weight 
 int     length,                           // Length of learning rate 
vector 
 NSFloat momentum,                         // Momentum rate for all weights 
 NSFloat *delta,                           // Last weight Update 
 NSFloat *gradient,                        // Gradient vector from backprop 
component 
 NSFloat *smoothedGradient,                // Smoothed gradient vector 
 NSFloat beta,                             // Multiplicative constant 
 NSFloat kappa,                            // Additive constant 
 NSFloat zeta                              // Smoothing factor 
 ) 
{  
 int i; 
 NSFloat gamma = getFloatParameter(instance, 2, 1);  
 NSFloat stepMax = getFloatParameter(instance, 3, 1);  
 for (i=0; i<length; i++) {  
  if (smoothedGradient[i]*gradient[i] > 0) 
   step[i] += kappa * (NSFloat)exp(-
gamma*fabs(smoothedGradient[i])); 
  else 
   if (smoothedGradient[i]*gradient[i] < 0) 
    step[i] -= beta*step[i];  
  if (step[i] > stepMax) 
   step[i] = stepMax; 
  smoothedGradient[i] = (1-zeta)*gradient[i] + 
zeta*smoothedGradient[i]; 
 } 
} 

 

 

  See Also 

General Input and Postprocessor 

Strange Attractor DLL Example 

 

Within the "DLLCUST/PrePost" directory is a DLL example entitled "strange". This DLL implements 
a strange attractor using the DLLInput component. 
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A strange attractor is a chaotic system whose path in phase space is fully determined, but never 
recurs. The particular attractor implemented by this DLL is represented by the following 3 
equations: 

 

    x[n+1] = sin(a*y[n]) - z[n]cos(b*x[n]) 

    y[n+1] = z[n]sin(c*x[n]) - cos(d*y[n]) 

    z[n+1] = sin(x[n]) 

 

The user specifies the 4 constants (a, b, c, and d) and the starting point (x[0], y[0], and z[0]). The 
system state described by the 3-D point and the constants will ultimately converge to the attractor 
after enough iterations. 

The implementation of the strange attractor requires the use of 7 user-defined parameters (the 4 
constants and the starting point) and 3 instance variables (the previous x, y, and z). 
 
void performInput( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the data 
 int     rows,       // Number of rows of data 
 int     cols        // Number of cols of data 
 ) 
{ 
 int i; 
 NSFloat a = getFloatParameter(instance, 1, 1); 
 NSFloat b = getFloatParameter(instance, 2, 1); 
 NSFloat c = getFloatParameter(instance, 3, 1); 
 NSFloat d = getFloatParameter(instance, 4, 1); 
 NSFloat *lastResult = (NSFloat*)getUserData(instance); 
 data[0] = (NSFloat)(sin(a*lastResult[1]) - 
    lastResult[2]*cos(b*lastResult[0])); 
 if (rows*cols > 1) { 
  data[1] = (NSFloat)(lastResult[2]*sin(c*lastResult[0]) - 
     cos(d*lastResult[1])); 
  if (rows*cols > 2) { 
   data[2] = (NSFloat)sin(lastResult[0]); 
   lastResult[2] = data[2]; 
  } 
  lastResult[1] = data[1]; 
 } 
 lastResult[0] = data[0]; 
} 
 
void networkReset( 
 DLLData   *instance   // Pointer to instance data (may be NULL)  
 ) 
{ 
 int i; 
 NSFloat Xo = getFloatParameter(instance, 1, 2); 
 NSFloat Yo = getFloatParameter(instance, 2, 2); 
 NSFloat Zo = getFloatParameter(instance, 3, 2); 
 NSFloat *lastData = (NSFloat*)getUserData(instance); 
 lastData[0] = Xo; 
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 lastData[1] = Yo; 
 lastData[2] = Zo; 
} 
 
DLLData *allocInput( 
 DLLData  *oldInstance,  // Pointer to the last instance if reallocating 
 int      rows,          // Number of rows of data 
 int      cols           // Number of cols of data 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setUserData(instance, calloc(3, sizeof(NSFloat))); 
 setParameterName(instance, 1, 1, "a", FALSE); 
 setFloatParameter(instance, 1, 1, 2.24f, FALSE); 
 setParameterName(instance, 2, 1, "b", FALSE); 
 setFloatParameter(instance, 2, 1, 0.43f, FALSE); 
 setParameterName(instance, 3, 1, "c", FALSE); 
 setFloatParameter(instance, 3, 1, -0.65f, FALSE); 
 setParameterName(instance, 4, 1, "d", FALSE); 
 setFloatParameter(instance, 4, 1, -2.43f, FALSE); 
 setParameterName(instance, 1, 2, "Xo", FALSE); 
 setFloatParameter(instance, 1, 2, 0.0f, FALSE); 
 setParameterName(instance, 2, 2, "Yo", FALSE); 
 setFloatParameter(instance, 2, 2, 0.0f, FALSE); 
 setParameterName(instance, 3, 2, "Zo", FALSE); 
 setFloatParameter(instance, 3, 2, 0.0f, FALSE); 
 networkReset(instance); 
 return instance; 
} 
 
void freeInput(DLLData *instance) 
{ 
 if (getUserData(instance)) 
  free(getUserData(instance)); 
 freeDLLInstance(instance);  
} 

 

 

  See Also 

Logistic Map DLL Example 

 

Within the "DLLCUST/PrePost" directory is a DLL example entitled "logistic". This DLL implements 
a logistic map using the DLLInput component. 

This logistic map is a simple difference equation that produces widely varying time series (constant 
periodic, quasi-periodic, and chaotic) depending upon the value of the parameter R: 

 

    R=0.8 - Signal decays to 0 

    R=2.9 - Alternating decay to a value greater than 0 
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    R=3.2 - Cycle of period 2 

    R=3.5 - Cycle of period 4 

    R>4   - Chaos 

 

The user specifies the value of R and the initial value of the series (seed). The implementation 
requires the use of 2 user-defined parameters and an instance data structure that stores the result 
from the last computation. 
 
typedef struct { 
 NSFloat *data; 
 int length; 
} ResultData; 
 
void performInput( 
 DLLData   *instance,  // Pointer to instance data (may be NULL) 
 NSFloat   *data,      // Pointer to the data 
 int       rows,       // Number of rows of data 
 int       cols        // Number of cols of data 
 ) 
{ 
 int i; 
 NSFloat constant = getFloatParameter(instance, 2, 1); 
 ResultData *results = (ResultData*)getUserData(instance); 
 for (i=0; i<results->length; i++) 
  data[i] = results->data[i] = constant * results->data[i] * 
    (1 - results->data[i]); 
} 
 
void networkReset( 
 DLLData   *instance   // Pointer to instance data (may be NULL)  
 ) 
{ 
 int i; 
 NSFloat seed = getFloatParameter(instance, 3, 1); 
 ResultData *results = (ResultData*)getUserData(instance); 
 for (i=0; i<results->length; i++) 
   results->data[i] = seed; 
} 
 
DLLData *allocInput( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int     rows,          // Number of rows of data 
 int     cols           // Number of cols of data 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 ResultData *results = calloc(1,sizeof(ResultData)); 
 results->length = rows*cols; 
 results->data = calloc(results->length, sizeof(NSFloat)); 
 setUserData(instance, results); 
 setParameterName(instance, 2, 1, "Constant", FALSE); 
 setFloatParameter(instance, 2, 1, 4.0f, FALSE); 
 setParameterName(instance, 3, 1, "Seed", FALSE); 
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 setFloatParameter(instance, 3, 1, 0.4f, FALSE); 
 networkReset(instance); 
 return instance; 
} 
 
void freeInput(DLLData *instance) 
{ 
 ResultData *results = (ResultData*)getUserData(instance); 
 if (results) { 
  free(results->data); 
  free(results); 
 } 
 freeDLLInstance(instance);  
} 

 

 

  See Also 

Discriminant Function DLL Example 

 

Within the "DLLCUST/PrePost" directory is a DLL example entitled "discrim". This DLL is used to 
map the discriminant function between two input channels. It does this by scanning through a range 
of input values and plotting the network’s output. This example demonstrates the customization of 
the Postprocessor and Input components. It is also a good example of how global variables are 
used to share data between two DLLs. 

 
Using the DLL 

In order to understand the source code for this DLL, you should start by seeing it in action. Using 
the NeuralBuilder, build a MLP using the file "XOR.ASC" as the input file. Tag the x and y columns 
as Input and the z column as Desired. Leave the rest of the default settings and Build the network. 
Run the simulation to verify that the network easily learns the XOR problem. 

Remove all of the probes except the MegaScope/DataStorage at the error. Attach a 
DLLPostprocessor at the Activity access point of the output TanhAxon. From the Engine property 
page of the DLLPostprocessor, load the "discrim" DLL. From the DLL property page, set the 
number of Steps to 30. From the Access property page, set the Access During switch to Testing. 
Stamp an ImageViewer on top of the DLLPostprocessor at the Postprocessor Output access point 
and open its window. This will display a 30x30 image. 

Stamp a StaticTestSetControl on top of the BackStaticControl. Set the Training Epochs / Test to 1 
(to display after every epoch) and the Exemplars / Epoch to 900 (the number of points that are 
plotted). 

Stack a DLLInput on top of the input File. From the Engine property page of the DLLInput, load the 
same DLL ("DLLCUST\PrePost\discrim.dll"). Keep the default settings of the DLL property page. 
From the Access property page, set the Access During switch to Testing. Reset and run the 
network. 
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Discriminant function of the XOR problem 

 

The corners of this graph represent the input data. As expected, the lower-left (-1,-1) and upper-
right (1,1) corners have an output of 0, and the other to two corners have an output of 1. The plot 
shows how the network responds to every combination of values in between (in increments of 
0.066667). 

 
Functions used by the DLLPostprocessor 

The DLLPostprocessor has two parameters defined by the user. The Plot Channel specifies which 
PE to use as the output. The number of Steps specifies the resolution of the function. Note that the 
number of output channels is Steps squared. 
 
#define matrix(i,j) output[j+(i)*buffer.steps] 
 
typedef struct { 
 int steps; 
 int currentX, currentY; 
 int xChannel, yChannel; 
 int plotChannel; 
 NSFloat minX, maxX; 
 NSFloat minY, maxY; 
} BufferData; 
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BufferData buffer = {0, 0, 0, 0, 0, 0, 0.0f, 0.0f, 0.0f, 0.0f}; 
 
BOOL performPrePost( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *input,      // Pointer to the input data 
 NSFloat *output,     // Pointer to the output data 
 int     rows,        // Number of rows of data 
 int     cols,        // Number of cols of data 
 BOOL    preprocessor // Flag to indicate whether this is a preprocessor 
                      // or postprocessor 
 ) 
{ 
 matrix(buffer.currentX++, buffer.currentY) = input[buffer.plotChannel]; 
 if (buffer.currentX >= buffer.steps) { 
  buffer.currentX = 0; 
  if (++buffer.currentY >= buffer.steps) { 
   buffer.currentY = 0; 
   return TRUE; 
  } 
 } 
 return FALSE;        // Return whether to inject this sample or to call 
                      // performPrePost with another sample 
} 
 
void networkReset( 
 DLLData  *instance   // Pointer to instance data (may be NULL)  
 ) 
{ 
 buffer.currentX = 0; 
 buffer.currentY = 0; 
} 
 
DLLData *allocPrePost( 
 DLLData *oldInstance,      // Pointer to the last instance if reallocating 
 int   *rows,               // Number of rows of data attached above -- can 
be 
                            // changed. The default is the number of rows 
                            // attached below. 
 int   *cols,               // Number of cols of data attached above -- can 
be 
                            // changed. The default is the number of cols 
                            // attached below. 
 BOOL  preprocessor         // Flag to indicate whether this is a 
preprocessor 
                            // or postprocessor 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 if (preprocessor) 
  MessageBox(NULL, 
   "Confusion matrix should only be used as a postprocessor", 
   "Warning", MB_OK); 
 setParameterName(instance, 2, 1, "Steps", TRUE); 
 setIntParameter(instance, 2, 1, 10, FALSE); 
 setParameterName(instance, 3, 1, "Plot Channel", TRUE); 
 setIntParameter(instance, 3, 1, 0, FALSE); 
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 buffer.steps = getIntParameter(instance, 2, 1); 
 buffer.plotChannel = getIntParameter(instance, 3, 1); 
 if (buffer.steps < 2) 
  buffer.steps = 2; 
 if (buffer.plotChannel >= *rows * *cols) 
  buffer.plotChannel = *rows * *cols - 1; 
 setIntParameter(instance, 2, 1, buffer.steps, TRUE); 
 setIntParameter(instance, 3, 1, buffer.plotChannel, TRUE); 
 *rows = *cols = buffer.steps; 
 networkReset(instance); 
 return instance; 
} 
 
void freePrePost(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 
 

Functions used by the DLLInput 

The DLLInput has six parameters defined by the user. The X Channel and Y Channel parameters 
specify which two PEs to use as the function’s input. The Min X, Min Y, Max X and Max Y 
parameters specify the range of values to scan across. Note that the resolution of the scan is 
defined by the Steps parameter of the DLLPostprocessor. 
 
void performInput( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *data,       // Pointer to the data 
 int     rows,        // Number of rows of data 
 int     cols         // Number of cols of data 
 ) 
{ 
 data[buffer.xChannel] = buffer.minX + 
    buffer.currentX*(buffer.maxX-
buffer.minX)/(buffer.steps-1); 
 data[buffer.yChannel] = buffer.minY + 
    buffer.currentY*(buffer.maxY-
buffer.minY)/(buffer.steps-1); 
} 
 
DLLData *allocInput( 
 DLLData *oldInstance,   // Pointer to the last instance if reallocating 
 int     rows,           // Number of rows of data 
 int     cols            // Number of cols of data 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 2, 0, "X Channel", TRUE); 
 setIntParameter(instance, 2, 0, 0, FALSE); 
 setParameterName(instance, 2, 1, "Min X", TRUE); 
 setFloatParameter(instance, 2, 1, -1.0f, FALSE); 
 setParameterName(instance, 2, 2, "Max X", TRUE); 
 setFloatParameter(instance, 2, 2, 1.0f, FALSE); 
 setParameterName(instance, 3, 0, "Y Channel", TRUE); 
 setIntParameter(instance, 3, 0, 1, FALSE); 
 setParameterName(instance, 3, 1, "Min Y", TRUE); 
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 setFloatParameter(instance, 3, 1, -1.0f, FALSE); 
 setParameterName(instance, 3, 2, "Max Y", TRUE); 
 setFloatParameter(instance, 3, 2, 1.0f, FALSE); 
 buffer.xChannel = getIntParameter(instance, 2, 0); 
 buffer.minX = getFloatParameter(instance, 2, 1); 
 buffer.maxX = getFloatParameter(instance, 2, 2); 
 buffer.yChannel = getIntParameter(instance, 3, 0); 
 buffer.minY = getFloatParameter(instance, 3, 1); 
 buffer.maxY = getFloatParameter(instance, 3, 2); 
 if (buffer.minX >= buffer.maxX) 
  buffer.maxX = buffer.minX + 0.1f; 
 if (buffer.minY >= buffer.maxY) 
  buffer.maxY = buffer.minY + 0.1f; 
 if (buffer.xChannel >= rows*cols) 
  buffer.xChannel = rows*cols-1; 
 if (buffer.yChannel >= rows*cols) 
  buffer.yChannel = rows*cols-1; 
 setIntParameter(instance, 2, 0, buffer.xChannel, TRUE); 
 setFloatParameter(instance, 2, 2, buffer.maxX, TRUE); 
 setIntParameter(instance, 3, 0, buffer.yChannel, TRUE); 
 setFloatParameter(instance, 3, 2, buffer.maxY, TRUE); 
 networkReset(instance); 
 return instance; 
} 
 
void freeInput(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 

 

 

  See Also 

Scaling DLL Example 

 

Within the "DLLCUST/PrePost" directory is a DLL example entitled "scale". This DLL provides the 
ability to apply a scale and an offset to either the input or output data. This is most commonly used 
to denormalize the network output to match the units of the desired response data. 

 
Using the DLL 

This DLL is public to all versions of NeuroSolutions. Below is a procedure for using this DLL to 
denormalize your output data. From a working neural network, perform the following steps: 

 

Remove the probe attached to the Activity access point of the Axon at the network output. 

Stamp a DLLPostprocessor probe where the old probe was. 

Stamp a copy of the old probe on the DLLPostprocessor and move it to the Postprocessor Output 
access point. 
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� From the Engine property page of the DLLPostprocessor inspector, click the Load button. 

� Select the file "Scale.dll". 

� Open the inspector for the File component attached to the ErrorCriterion component. 

� Switch to the Stream property page set the Normalize switch to ON and the By Channel switch to OFF. 

� Switch to the File property page and press the Translate button if it is present (otherwise, the number of 
exemplars should be displayed). 

� Switch back to the Stream property page and record the values for Amp and Offset. 

 

 

 

� Open the DLLPostprocessor inspector and switch to the DLL property page. 

� Set the Offset parameter to be -1 times the Offset from the File inspector and set the Gain parameter to be 
1/Amp. 
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� Run the network. The displayed output data should be denormalized to match the desired output data. 

 
How the DLL is Implemented 

This DLL has 2 instance parameters. The Gain specifies the multiplicative constant and the Offset 
specifies the additive constant. 
 
BOOL performPrePost( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *input       // Pointer to the input data 
 NSFloat *output,     // Pointer to the output data 
 int     rows,        // Number of rows of data 
 int     cols,        // Number of cols of data 
 BOOL    preprocessor // Flag to indicate whether this is a preprocessor or 
postprocessor 
 ) 
{ 
 int i, length=rows*cols; 
 float gain = getFloatParameter(instance, 2, 1); 
 float offset = getFloatParameter(instance, 3, 1); 
 
 for (i=0; i<length; i++) 
  output[i] += gain*(input[i] + offset); 
 return TRUE; 
} 
 
DLLData *allocPrePost( 
        DLLData *oldInstance,  // Pointer to the last instance if reallocating 
        int     *rows,         // Number of rows of data attached above -- can be 
                               // changed. The default is the number of rows 
                               // attached below. 
        int     *cols,         // Number of cols of data attached above -- can be 
                               // changed. The default is the number of cols 
                               // attached below. 
        BOOL    preprocessor   // Flag to indicate whether this is a preprocessor 
                               // or postprocessor 
 ) 
{ 



 842

 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 2, 1, "Gain", FALSE); 
 setFloatParameter(instance, 2, 1, 1.0f, FALSE); 
 setParameterName(instance, 3, 1, "Offset", FALSE); 
 setFloatParameter(instance, 3, 1, 0.0f, FALSE); 
 return instance; 
} 
 
void freePrePost(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 

 

 

  See Also 

Function Generator 

Sawtooth DLL Example 

 

Within the "DLLCUST/Function" directory there is an example entitled "sawtooth". This DLL 
implements a sawtooth waveform that is built into the base Function component. Note that the sine 
is the default waveform for the Function DLLs and is defined within the "DLLSYS/Function" 
directory. 

The implementation of this function is very straight forward -- given the angle in radians, compute 
the output of the function. 
 
NSFloat performFunction( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat x          // Current angle in radians 
 ) 
{ 
 return (NSFloat)((x - PI)/PI); 
} 

 

 

  See Also 

Triangle DLL Example 

 

Within the "DLLCUST/Function" directory there is an example entitled "triangle". This DLL 
implements a triangle waveform that is built in to the base Function component. Note that the sine 
is the default waveform for the Function DLLs and is defined within the "DLLSYS/Function" 
directory. 

The implementation of this function is very straight forward -- given the angle in radians, compute 
the output of the function. 
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NSFloat performFunction( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat x          // Current angle in radians 
 ) 
{ 
 return (NSFloat)(x<PI? x/PI: (-x + 2*PI)/PI); 
} 

 

 

  See Also 

Square DLL Example 

 

Within the "DLLCUST/Function" directory there is an example entitled "square". This DLL 
implements a square waveform that is built in to the base Function component. Note that the sine is 
the default waveform for the Function DLLs and is defined within the "DLLSYS/Function" directory. 

The implementation of this function is very straight forward -- given the angle in radians, compute 
the output of the function. 
 
NSFloat performFunction( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat x          // Current angle in radians 
 ) 
{ 
 return x<PI? 1.0f: -1.0f; 
} 

 

 

  See Also 

Decayed Sine DLL Example 

 

The "decaysin" DLL implements a decayed sinewave function. This requires the use of two 
additional user parameters and an additional instance variable. The cycles parameter specifies how 
many sub-cycles are contained within each cycle of the function. The decay parameter is a floating 
point number between 0 and 1 that specifies how fast the output decays (decay rate). The 
amplitudeDecay variable is used to store the current level of decay. 
 
NSFloat performFunction( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 NSFloat  x           // Current angle in radians 
 ) 
{ 
 int cycles = getIntParameter(instance, 3, 1); 
 NSFloat decay = getFloatParameter(instance, 2, 1); 
 NSFloat *amplitudeDecay = getUserData(instance); 
 NSFloat function = (NSFloat)(*amplitudeDecay*sin(cycles*x)); 
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 *amplitudeDecay *= decay; 
 return function; 
} 
 
void getReadyToFire( 
 DLLData  *instance  // Pointer to instance data (may be NULL)  
 ) 
{ 
 NSFloat *amplitudeDecay = getUserData(instance); 
 *amplitudeDecay = 1.0f; 
} 
 
DLLData *allocFunction( 
 DLLData  *oldInstance  // Pointer to the last instance if reallocating  
 )  
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 3, 1, "Cycles", FALSE); 
 setIntParameter(instance, 3, 1, 5, FALSE); 
 setParameterName(instance, 2, 1, "Decay", FALSE); 
 setFloatParameter(instance, 2, 1, 0.9f, FALSE); 
 setUserData(instance, malloc(sizeof(NSFloat))); 
 return instance; 
} 
 
void freeFunction(DLLData *instance) 
{ 
 free((NSFloat*)getUserData(instance)); 
 freeDLLInstance(instance); 
} 

 

 

  See Also 

Pulse DLL Example 

 

The "pulse" DLL implements a pulse function.  This requires the use of an additional user 
parameter. The width parameter is a floating point number between 0 and 1. The function returns a 
1 if the current angle (x) is less than the width and 0 otherwise. 
 
NSFloat performFunction( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 NSFloat  x           // Current angle in radians 
 ) 
{ 
 NSFloat width = getFloatParameter(instance, 2, 1); 
 return x<width? 1.0f: 0; 
} 
 
DLLData *allocFunction( 
 DLLData  *oldInstance  // Pointer to the last instance if reallocating 
 ) 
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{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 2, 1, "Width", FALSE); 
 setFloatParameter(instance, 2, 1, 0.1f, FALSE); 
 return instance; 
} 
 
void freeFunction(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 

 

 

  See Also 

Noise Generator 

Gaussian DLL Example 

 

Within the "DLLCUST/Noise" directory is a DLL example entitled "gaussian". This DLL implements 
one of the noise generators built into the base Noise component. Note that the uniform is the 
default distribution for the Noise DLLs and is defined within the "DLLSYS/Noise" directory. 

The implementation of this function is very straightforward; given the mean and variance specified 
by the user, generate a random number. 
 
NSFloat performNoise( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 NSFloat  variance,   // Variance set within components inspector 
 NSFloat  mean        // Mean set within components inspector 
 ) 
{ 
 return (variance*(NSFloat)(sqrt(-2*log((NSFloat)rand()/ 
   RAND_MAX))*cos(2*PI*((NSFloat)rand()/RAND_MAX))) + mean); 
} 

 

 

  See Also 

Decayed Gaussian DLL Example 

 

Within the "DLLCUST/Noise" directory is a DLL example entitled "decgaus". The "decgaus" DLL 
implements a decayed version of its base counterpart. This requires the use of one additional user 
parameter and an additional instance variable. The decay parameter is a floating point number 
between 0 and 1 that specifies how fast the variance decays (decay rate). The varianceDecay 
variable is used to store the current level of decay. 
 
NSFloat performNoise( 
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 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 NSFloat  variance,   // Variance set within components inspector 
 NSFloat  mean        // Mean set within components inspector 
 ) 
{ 
 NSFloat decay = getFloatParameter(instance, 2, 1); 
 NSFloat *varianceDecay = getUserData(instance); 
 NSFloat noise = (variance * *varianceDecay* 
    (NSFloat)(sqrt(-2*log((NSFloat)rand()/RAND_MAX))* 
    cos(2*PI*((NSFloat)rand()/RAND_MAX))) + mean); 
 *varianceDecay *= decay; 
 return noise; 
} 
 
void getReadyToFire( 
 DLLData  *instance  // Pointer to instance data (may be NULL)  
 ) 
{ 
 NSFloat *varianceDecay = getUserData(instance); 
 *varianceDecay = 1.0f; 
} 
 
DLLData *allocNoise( 
 DLLData  *oldInstance  // Pointer to the last instance if reallocating  
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 2, 1, "Decay", FALSE); 
 setFloatParameter(instance, 2, 1, 0.9f, FALSE); 
 setUserData(instance, malloc(sizeof(NSFloat))); 
 return instance; 
} 
 
void freeNoise(DLLData *instance) 
{ 
 free((NSFloat*)getUserData(instance)); 
 freeDLLInstance(instance); 
} 

 

 

  See Also 

Decayed Uniform DLL Example 

 

Within the "DLLCUST/Noise" directory is a DLL example entitled "decunifm". The "decunifm" DLL 
implements a decayed version of its base counterpart. The structure of the implementation 
matches that of the decayed gaussian DLL. 
 
NSFloat performNoise( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 NSFloat  variance,   // Variance set within components inspector 
 NSFloat  mean        // Mean set within components inspector 
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 ) 
{ 
 NSFloat decay = getFloatParameter(instance, 2, 1); 
 NSFloat *varianceDecay = getUserData(instance); 
 NSFloat noise = ((NSFloat)sqrt(3*variance * *varianceDecay)* 
     (NSFloat)(((NSFloat)rand()/RAND_MAX)-
0.5)+mean); 
 *varianceDecay *= decay; 
 return noise; 
} 

 

 

  See Also 

File 

Binary DLL Example 

 

Within the "DLLCUST/File" directory is a DLL example entitled "binary". This DLL implements the 
binary translator that is built into the base File component. Note that the ASCII translator is the 
default for the File DLLs and is defined within the "DLLSYS/File" directory. 

The implementation of this function is very straightforward -- the fileOpen function opens the file 
and the performFile function reads the next floating point number. 
 
BOOL performFile( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 FILE     *file,      // Pointer to the opened file 
 NSFloat  *sample     // Location to place next sample 
 ) 
{ 
 if (fread(sample, sizeof(NSFloat), 1, (FILE*)file)) 
  return TRUE; 
 fclose((FILE*)file); 
 return FALSE; 
} 
 
FILE *openFile(DLLData *instance, const char *filePath) 
{ 
 return fopen(filePath, "rb"); 
} 

 

 

  See Also 

Binary Float DLL Example 
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Within the "DLLCUST/File" directory is a DLL example entitled "binfloat". The "binfloat" DLL is a 
specialized version of the binary translator. It allows the user to specify a segment of the data to 
read. This requires the use of two additional integer parameters and an additional instance 
variable. The offset parameter specifies how many samples to skip from the beginning of the file 
and the duration parameter specifies how many samples to read. The durationCount variable is 
used to store the number of samples that have been skipped so far. 
 
BOOL performFile( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 FILE     *file,      // Pointer to the opened file 
 NSFloat  *sample     // Location to place next sample 
 ) 
{ 
 int duration = getIntParameter(instance, 2, 1); 
 int *durationCount = (int*)getUserData(instance); 
 if ((!duration || ((*durationCount)++ < duration)) && fread(sample, 
sizeof(NSFloat), 1, (FILE*)file)) 
  return TRUE; 
 *durationCount = 0; 
 fclose((FILE*)file); 
 return FALSE; 
} 
 
FILE *openFile( 
 DLLData    *instance,  // Pointer to instance data (may be NULL) 
 const char *filePath   // Full path of file to be opened 
 ) 
{ 
 NSFloat *buffer; 
 FILE *file = fopen(filePath, "rb"); 
 int offset = getIntParameter(instance, 1, 1); 
 if (offset) { 
  buffer = malloc(offset*sizeof(NSFloat)); 
  fread(buffer, sizeof(NSFloat), offset, file); 
  free(buffer); 
 } 
 return file; 
} 
 
DLLData *allocFile( 
 DLLData  *oldInstance  // Pointer to the last instance if reallocating 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 1, 1, "Offset", FALSE); 
 setIntParameter(instance, 1, 1, 0, FALSE); 
 setParameterName(instance, 2, 1, "Duration", FALSE); 
 setIntParameter(instance, 2, 1, 0, FALSE); 
 setUserData(instance, calloc(1,sizeof(int))); 
 return instance; 
} 
 
void freeFile(DLLData *instance) 
{ 
 free((int*)getUserData(instance)); 
 freeDLLInstance(instance); 
} 
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  See Also 

Binary Integer DLL Example 

 

Within the "DLLCUST/File" directory is a DLL example entitled "binint". The "binint" DLL is a 
specialized version of the binary translator. It allows the user to specify a segment of the data to 
read. This requires the use of two additional integer parameters and an additional instance 
variable. The offset parameter specifies how many samples to skip from the beginning of the file 
and the duration parameter specifies how many samples to read. The durationCount variable is 
used to store the number of samples that have been skipped so far. This translator reads binary 
data stored as integers (4-bytes). 
 
BOOL performFile( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 FILE     *file,      // Pointer to the opened file 
 NSFloat  *sample     // Location to place next sample 
 ) 
{ 
 int duration = getIntParameter(instance, 2, 1); 
 int *durationCount = (int*)getUserData(instance); 
 int typedSample; 
 if ((!duration || ((*durationCount)++ < duration)) && 
    fread(&typedSample, sizeof(int), 1, (FILE*)file)) { 
  *sample = (NSFloat)typedSample; 
  return TRUE; 
 } 
 *durationCount = 0; 
 fclose((FILE*)file); 
 return FALSE; 
} 

 

 

  See Also 

Binary Short DLL Example 

 

Within the "DLLCUST/File" directory is a DLL example entitled "binshort". The "binshort" DLL is a 
specialized version of the binary translator. It allows the user to specify a segment of the data to 
read. This requires the use of two additional integer parameters and an additional instance 
variable. The offset parameter specifies how many samples to skip from the beginning of the file 
and the duration parameter specifies how many samples to read. The durationCount variable is 
used to store the number of samples that have been skipped so far. This translator reads binary 
data stored as short integers (2-bytes). 
 
BOOL performFile( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 FILE     *file,      // Pointer to the opened file 
 NSFloat  *sample     // Location to place next sample 
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 ) 
{ 
 int duration = getIntParameter(instance, 2, 1); 
 int *durationCount = (int*)getUserData(instance); 
 short typedSample; 
 if ((!duration || ((*durationCount)++ < duration)) && 
    fread(&typedSample, sizeof(short), 1, (FILE*)file)) 
{ 
  *sample = (NSFloat)typedSample; 
  return TRUE; 
 } 
 *durationCount = 0; 
 fclose((FILE*)file); 
 return FALSE; 
} 

 

 

  See Also 

Binary Character DLL Example 

 

Within the "DLLCUST/File" directory is a DLL example entitled "binchar". The "binchar" DLL is a 
specialized version of the binary translator. It allows the user to specify a segment of the data to 
read. This requires the use of two additional integer parameters and an additional instance 
variable. The offset parameter specifies how many samples to skip from the beginning of the file 
and the duration parameter specifies how many samples to read. The durationCount variable is 
used to store the number of samples that have been skipped so far. This translator reads binary 
data stored as characters (1-byte). 
 
BOOL performFile( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 FILE     *file,      // Pointer to the opened file 
 NSFloat  *sample     // Location to place next sample 
 ) 
{ 
 int duration = getIntParameter(instance, 2, 1); 
 int *durationCount = (int*)getUserData(instance); 
 char typedSample; 
 if ((!duration || ((*durationCount)++ < duration)) && 
    fread(&typedSample, sizeof(char), 1, (FILE*)file)) { 
  *sample = (NSFloat)typedSample; 
  return TRUE; 
 } 
 *durationCount = 0; 
 fclose((FILE*)file); 
 return FALSE; 
} 

 

 

  See Also 
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Preprocessor 

Averaging Filter DLL Example 

 

Within the "DLLCUST/PrePost" directory is a DLL examples entitled "average". This DLL 
implements an averaging filter, which averages the last N samples of input for each channel and 
writes the result to the output for each call to performPrePost. This requires the use of a user-
defined parameter (N) and a vector of instance data (bufferData) to store the past samples. 
 
#define buffer(i, j) bufferData->data[j+(i)*bufferData->length] 
 
typedef struct { 
 int length; 
 NSFloat *data; 
} AverageData; 
 
BOOL performPrePost( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *input       // Pointer to the input data 
 NSFloat *output,     // Pointer to the output data 
 int     rows,        // Number of rows of data 
 int     cols         // Number of cols of data 
 BOOL    preprocessor // Flag to indicate preprocessor or postprocessor 
 ) 
{ 
 int i, j; 
 int N = getIntParameter(instance, 2, 1); 
 AverageData *bufferData = getUserData(instance); 
 NSFloat result; 
 for (i=N-1; i>0; i--) 
  for (j=0; j<bufferData->length; j++)  
   buffer(i,j) = buffer(i-1,j); 
 for (j=0; j<bufferData->length; j++) 
  buffer(0,j) = input[j]; 
 if (!preprocessor) //Zero output buffer if postprocessor (since it is 
local) 
  for (j=0; j<bufferData->length; j++) 
   output[j] = 0.0f; 
 for (j=0; j<bufferData->length; j++) { 
  result = 0.0f; 
  for (i=0; i<N; i++) 
   result += buffer(i,j); 
  output[j] += result/N; 
 } 
 return TRUE; 
} 
 
void networkReset( 
 DLLData *instance  // Pointer to instance data (may be NULL)  
 ) 
{ 
 int i, j; 
 int N = getIntParameter(instance, 2, 1); 
 AverageData *bufferData = getUserData(instance); 
 for (i=0; i<N; i++) 
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  for (j=0; j<bufferData->length; j++)  
   buffer(i,j) = 0.0f; 
} 
 
DLLData *allocPrePost( 
 DLLData *oldInstance,   // Pointer to the last instance if reallocating 
 int     *rows,          // Number of rows of data attached above -- can be 
                         // changed. The default is the number of rows 
                         // attached below. 
 int     *cols,          // Number of cols of data attached above -- can be 
                         // changed. The default is the number of cols 
                         // attached below. 
 BOOL    preprocessor    // Flag to indicate whether this is a preprocessor 
                         // or postprocessor 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 AverageData *bufferData = calloc(1,sizeof(AverageData)); 
 setParameterName(instance, 2, 1, "N", TRUE); 
 setIntParameter(instance, 2, 1, 4, FALSE); 
 bufferData->length = *rows * *cols; 
 bufferData->data = calloc(bufferData->length* 
      getIntParameter(instance, 2, 1), 
sizeof(NSFloat)); 
 setUserData(instance, bufferData); 
 return instance; 
} 
 
void freePrePost(DLLData *instance) 
{ 
 AverageData *bufferData = getUserData(instance); 
 if (bufferData) { 
  free(bufferData->data); 
  free(bufferData); 
 } 
 freeDLLInstance(instance);  
} 

 

 

  See Also 

Decimator Filter DLL Example 

 

Within the "DLLCUST/PrePost" directory is a DLL examples entitled "decimate". This DLL 
implements a decimator filter, which reduces the amount of input data by skipping samples. In 
order to keep as much of the input information as possible, the samples are averaged together to 
produce the output. This is similar to the averaging filter except that the implementation passes the 
results to the output one out of every N calls to performPrePost instead of every call. For the other 
N-1 calls, it simply stores the input into the bufferData vector. The boolean value returned is used 
to specify when to process the output. 
 
#define buffer(i, j) bufferData->data[j+(i)*bufferData->length] 
 



 853

typedef struct { 
 int length; 
 NSFloat *data; 
} AverageData; 
 
BOOL performPrePost( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *input       // Pointer to the input data 
 NSFloat *output,     // Pointer to the output data 
 int     rows,        // Number of rows of data 
 int     cols,        // Number of cols of data 
 BOOL    preprocessor // Flag to indicate a preprocessor or postprocessor 
 ) 
{ 
 int i, j; 
 int N = getIntParameter(instance, 2, 1); 
 DecimatorData *bufferData = getUserData(instance); 
 NSFloat result; 
 for (i=N-1; i>0; i--)   
  for (j=0; j<bufferData->length; j++)  
   buffer(i,j) = buffer(i-1,j); 
 for (j=0; j<bufferData->length; j++) 
  buffer(0,j) = input[j]; 
 if (++bufferData->count >= N) { 
  bufferData->count = 0; 
  if (!preprocessor) //Zero buffer if postprocessor (since it is 
local) 
   for (j=0; j<bufferData->length; j++) 
    output[j] = 0.0f; 
  for (j=0; j<bufferData->length; j++) { 
   result = 0.0f; 
   for (i=0; i<N; i++) 
    result += buffer(i,j); 
   output[j] = result/N; 
  } 
  return TRUE; 
 } 
 return FALSE; 
} 
 
void networkReset( 
 DLLData *instance  // Pointer to instance data (may be NULL)  
 ) 
{ 
 int i, j; 
 int N = getIntParameter(instance, 2, 1); 
 DecimatorData *bufferData = getUserData(instance); 
 for (i=0; i<N; i++) 
  for (j=0; j<bufferData->length; j++)  
   buffer(i,j) = 0.0f; 
 bufferData->count = 0; 
} 
 
DLLData *allocPrePost( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int     *rows,         // Number of rows of data attached above -- can be 
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                        // changed. The default is the number of rows 
                        // attached below. 
 int     *cols,         // Number of cols of data attached above -- can be 
                        // changed. The default is the number of cols 
                        // attached below. 
 BOOL    preprocessor   // Flag to indicate whether this is a preprocessor 
                        // or postprocessor 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 DecimatorData *bufferData = calloc(1,sizeof(DecimatorData)); 
 setParameterName(instance, 2, 1, "N", TRUE); 
 setIntParameter(instance, 2, 1, 4, FALSE); 
 bufferData->length = *rows * *cols; 
 bufferData->data = calloc(bufferData->length* 
      getIntParameter(instance, 2, 1), 
sizeof(NSFloat)); 
 setUserData(instance, bufferData); 
 return instance; 
} 
 
void freePrePost(DLLData *instance) 
{ 
 DecimatorData *bufferData = getUserData(instance); 
 if (bufferData) { 
  free(bufferData->data); 
  free(bufferData); 
 } 
 freeDLLInstance(instance);  
} 

 

 

  See Also 

Extractor DLL Example 

 

Within the "DLLCUST/PrePost" directory is a DLL example entitled "extract". This DLL provides the 
ability to extract a subset of channels from the input and copy them to a subset of output channels. 
This example also demonstrates how on-line parameter verification is implemented. 

This DLL has 4 instance parameters. The fromLength or toLength (depending on the value of the 
preprocessor flag of the allocPrePost function) specifies the number of channels for the component 
stacked above by setting the rows and cols of the allocPrePost function. The fromStart parameter 
specifies the first channel of input to extract and the fromStop parameter specifies the last channel 
of input (the rest of the input channels are ignored). The toStart parameter specifies the channel of 
output that will be mapped to the fromStart channel of input. The remaining extracted input 
channels are mapped sequentially to the output from this point. Therefore, there is no need to 
specify a toStop parameter (since toStop = toStart + fromStop - toStop). 
 
BOOL performPrePost( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *input       // Pointer to the input data 
 NSFloat *output,     // Pointer to the output data 
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 int     rows,        // Number of rows of data 
 int     cols,        // Number of cols of data 
 BOOL    preprocessor // Flag to indicate preprocessor or postprocessor 
 ) 
{ 
 int i; 
 int fromLength = getIntParameter(instance, 2, 0); 
 int fromStart = getIntParameter(instance, 2, 1); 
 int fromStop = getIntParameter(instance, 2, 2); 
 int toStart = getIntParameter(instance, 3, 1); 
 if (!preprocessor) //Zero buffer if postprocessor (since it is local) 
  for (i=0; i<bufferData->length; i++) 
   output[i] = 0.0f; 
 for (i=0; i<=fromStop-fromStart; i++) 
  output[toStart+i] += input[fromStart+i]; 
 return TRUE; 
} 
 
DLLData *allocPrePost( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int     *rows,         // Number of rows of data attached above -- can be 
                        // changed. The default is the number of rows 
                        // attached below. 
 int     *cols,         // Number of cols of data attached above -- can be 
                        // changed. The default is the number of cols 
                        // attached below. 
 BOOL    preprocessor   // Flag to indicate whether this is a preprocessor 
                        // or postprocessor 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 int fromLength, toLength, fromStart, fromStop, toStart, returnMax; 
    
 setParameterName(instance, 2, 1, "From Start", TRUE); 
 setIntParameter(instance, 2, 1, 0, FALSE); 
 setParameterName(instance, 2, 2, "From Stop", TRUE); 
 setIntParameter(instance, 2, 2, 0, FALSE); 
 setParameterName(instance, 3, 1, "To Start", TRUE); 
 setIntParameter(instance, 3, 1, 0, FALSE); 
 if (preprocessor) { 
  setParameterName(instance, 2, 0, "From Length", TRUE); 
  setIntParameter(instance, 2, 0, 1, FALSE); 
  returnMax = fromLength = getIntParameter(instance, 2, 0); 
  toLength = *rows * *cols; 
 } else { 
  setParameterName(instance, 2, 0, "To Length", TRUE); 
  setIntParameter(instance, 2, 0, 1, FALSE); 
  fromLength = *rows * *cols; 
  returnMax = toLength = getIntParameter(instance, 2, 0); 
 } 
 if (fromLength < 1)  
  fromLength = 1; 
 fromStart = getIntParameter(instance, 2, 1); 
 if (fromStart >= fromLength)  
  fromStart = fromLength - 1; 
 fromStop = getIntParameter(instance, 2, 2); 
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 if (fromStop < fromStart)  
  fromStop = fromStart; 
 if (fromStop >= fromLength)  
  fromStop = fromLength - 1; 
 toStart = getIntParameter(instance, 3, 1); 
 if (toStart >= toLength)  
  toStart = toLength - 1; 
 if (toStart > toLength - (fromStop-fromStart+1))  
  fromStop = fromStart + (toLength-toStart-1); 
 setIntParameter(instance, 2, 1, fromStart, TRUE); 
 setIntParameter(instance, 2, 2, fromStop, TRUE); 
 setIntParameter(instance, 3, 1, toStart, TRUE); 
 setIntParameter(instance, 2, 0, returnMax, TRUE); 
 *rows = returnMax; 
 *cols = 1; 
 return instance; 
} 
 
void freePrePost(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 

 

 

  See Also 

Postprocessor and Probe 

Confusion Matrix DLL Example 

 

Within the "DLLCUST/PrePost" directory is a DLL example entitled "confuse". This DLL is used to 
determine the percentage of correctly classified exemplars for each output class. This example 
demonstrates the customization of the Postprocessor and Probe components. It is also a good 
example of how global variables are used to share data between two DLLs. 

 
Using the DLL 

In order to understand the source code for this DLL, you should start by seeing it in action. Run the 
Character Recognition example from the NeuroSolutions Demo Panel (press Run Demo from the 
Utilities menu). Quit the demo after the network has run the first experiment. You now have a fully 
functioning network to work from. 

Remove all of the probes except the MegaScope/DataStorage at the error. Attach a 
DLLPostprocessor at the Activity access point of the SoftMaxAxon (the network output). From the 
Engine property page of the DLLPostprocessor, load the "confuse" DLL. Switch to the DLL page of 
the inspector and enter "TRUE" if you want the output classes computed as percentages or 
"FALSE" if you want the raw tallies for each output class. Attach a MatrixViewer on top of the 
DLLPostprocessor at the Postprocessor Output access point and open its window. Stack a Hinton 
on top of the MatrixViewer and open its window. Reset and run the network. 
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Confusion Matrix of the Character Recognition Example 

 

As the network learns, you will see the output of the confusion matrix form a diagonal line (after 
about 100 epochs). This indicates that the network has fully learned the problem. Normally, this 
matrix will consist of output percentages (if the "Percentages" DLL parameter of the 
DLLPostprocessor is set to "TRUE"), but since the training set consists of only one exemplar per 
output class, the percentage is either 100 or 0 for each channel. Note that the x-axis represents the 
network output and the y-axis represents the correct output class.  

This type of classification problem is a special case. It requires that the exemplars be ordered by 
the output class, and that there is the same number of exemplars for each class. This example 
contained only one exemplar per output class, but there could have been several sets of digits of 
differing fonts. 

Since most classification problems do not fit within these constraints, this use of the DLL may not 
be that useful. However, this same DLL can be used by a Probe at the desired output to implement 
a confusion matrix for any classification problem that has each output class represented by the 
activity of a single PE. 

Run the Sleep Staging example from the NeuroSolutions Demo Panel. Quit the demo after the 
network has run the first experiment. Remove all of the probes except for the error and the desired 
output, and set the Epochs/Experiment to 100. Attach to the network output a DLLPostprocessor, a 
Hinton, and a MatrixViewer, and configure them the same way as described above. Select the 
BarChart stacked on top of the desired output File, switch to the Engine property page of the 
inspector, and load the same DLL ("DLLCUST\PrePost\Confuse.dll"). Reset and run the network. 
After about 60 epochs, the confusion matrix should look something like this: 
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Confusion Matrix of the Sleep Staging Example 

 

In the first example, the DLLPreprocessor knew which PE was supposed to be active because the 
exemplars were ordered. For this example, it is the job of the Probe DLL attached to the desired 
output File to communicate with the DLLPreprocessor to tell it the active PE for each exemplar. 
This is done by sharing global variables within the same DLL source file. 

 
Functions used by the DLLPostprocessor 
#define matrix(i,j) buffer.output[j+i*buffer.length] 
 
typedef struct { 
 int length; 
 int currentClass; 
 int currentOutput; 
 BOOL report, zero; 
 BOOL outputProbe; 
 NSFloat *output; 
} BufferData; 
 
BufferData buffer = {0, 0, 0, FALSE, FALSE, FALSE, NULL}; 
 
/*****************************************/ 
/* Activation of Postprocessor component */ 
__declspec(dllexport) BOOL performPrePost( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,  // Pointer to the input data 
 NSFloat *output,  // Pointer to the output data 
 int rows,    // Number of rows of data 
 int cols,    // Number of cols of data 
 BOOL preprocessor // Flag to indicate whether this is a preprocessor 
or postprocessor 
 ) 
{ 
 int i, j; 
 NSFloat total; 
 BOOL percentFlag = getBoolParameter(instance, 1, 1); 
 
 buffer.output = output; 
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 buffer.currentOutput = 0; 
 if (buffer.zero) { 
  for (i=0; i<buffer.length; i++)  
   for (j=0; j<buffer.length; j++) 
    matrix(i,j) = 0.0f; 
  buffer.zero = FALSE; 
 } 
 for (i=1; i<buffer.length; i++) 
  if (input[i] > input[buffer.currentOutput]) 
   buffer.currentOutput = i; 
 if (!buffer.outputProbe) { 
  matrix(buffer.currentClass++, buffer.currentOutput) += 1; 
  if (buffer.currentClass >= buffer.length) 
   buffer.currentClass = 0; 
 } 
 if (buffer.report) { 
  buffer.report = FALSE; 
  buffer.zero = TRUE; 
  if (percentFlag) { 
   for (i=0; i<buffer.length; i++) { 
    total = 0.0f; 
    for (j=0; j<buffer.length; j++) 
     total += matrix(i,j); 
    if (total  > 0) 
     for (j=0; j<buffer.length; j++) 
      matrix(i,j) = 100*matrix(i,j)/total; 
   } 
  }  
  return TRUE; 
 }  
 return FALSE; // Return whether to inject this sample or to call 
performPrePost with another sample 
} 
 
/******************************************/ 
/* Called every time the network is reset */ 
__declspec(dllexport) void networkReset( 
 DLLData *instance // Pointer to instance data (may be NULL)  
 ) 
{ 
 int i,j; 
 if (buffer.output) { 
  for (i=0; i<buffer.length; i++)  
   for (j=0; j<buffer.length; j++) 
    matrix(i,j) = 0.0f; 
 } 
 buffer.zero = FALSE; 
 epochEnded(instance); 
} 
 
/******************************************/ 
/* Management of instance data (OPTIONAL) */ 
__declspec(dllexport) DLLData *allocPrePost( 
 DLLData *oldInstance, // Pointer to the last instance if reallocating 
 int *rows,   // Number of rows of output data, can be changed to 
reflect a diffenent number for the input data 
 int *cols,   // Number of cols of output data, can be changed to 
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reflect a diffenent number for the input data 
 BOOL preprocessor // Flag to indicate whether this is a preprocessor 
or postprocessor 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 int size = *rows * *cols; 
 
 if (preprocessor) 
  MessageBox(NULL, "Confusion matrix should only be used as a 
postprocessor", "Warning", MB_OK); 
 *rows = *cols = size; 
 buffer.length = size; 
 buffer.report = FALSE; 
 buffer.zero = FALSE; 
 
 setParameterName(instance, 1, 1, "Percent", FALSE); 
 setBoolParameter(instance, 1, 1, FALSE, FALSE); 
 return instance; 
} 
 
__declspec(dllexport) void freePrePost(DLLData *instance) 
{ 
 buffer.output = NULL; 
} 
 

Functions used by the Probe 
/**********************************/ 
/* Activation of output component */ 
__declspec(dllexport) BOOL performOutput( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,   // Pointer to the data 
 int rows,   // Number of rows of data 
 int cols   // Number of cols of data 
 ) 
{ 
 int i,j; 
 
 if (buffer.zero) { 
  for (i=0; i<buffer.length; i++)  
   for (j=0; j<buffer.length; j++) 
    matrix(i,j) = 0.0f; 
  buffer.zero = FALSE; 
 } 
 
 if (buffer.output) { 
  buffer.currentClass = 0; 
  for (i=1; i<buffer.length; i++) 
  if (data[i] > data[buffer.currentClass]) 
   buffer.currentClass = i; 
  matrix(buffer.currentClass, buffer.currentOutput) += 1; 
 } 
 return TRUE; 
} 
 
/************************************/ 
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/* Called at the end of every epoch */ 
__declspec(dllexport) void epochEnded( 
 DLLData *instance // Pointer to instance data (may be NULL)  
 ) 
{ 
 if (!buffer.outputProbe) 
  buffer.currentClass = 0; 
 buffer.report = TRUE; 
} 
 
__declspec(dllexport) DLLData *allocOutput( 
 DLLData *oldInstance, // Pointer to the last instance if reallocating 
 int rows,   // Number of rows of data 
 int cols   // Number of cols of data 
 ) 
{ 
 buffer.outputProbe = TRUE; 
 return NULL; 
} 
 
__declspec(dllexport) void freeOutput(DLLData *instance) 
{ 
 buffer.outputProbe = FALSE; 
} 

 

 

 

  See Also 

Transformer 

Derivative DLL Example 

 

Within the "DLLCUST/transfrm" directory there is a DLL example entitled "deriv". This DLL 
demonstrates how to implement a signal transformer. The "deriv" DLL performs a simple derivative 
approximation by outputting the difference between each pair of successive samples. It performs 
this operation on each channel independently. 

There is no instance data required for this operation, so the instance allocation and deallocation 
functions are omitted. The implementation for the perform function is as follows: 
 
BOOL performTransform( 
 DLLData *instance,   // Pointer to instance data 
 NSFloat *data,       // Pointer to the buffered data 
 int     length,      // Length of the buffer to be transformed 
 int     channel      // Current channel number 
 ) 
{ 
 int i; 
 for (i=length-1; i>0; i--) 
  data[i] = data[i] - data[i-1]; 
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 // Return whether or not to display this channel 
 return TRUE; 
} 
 

This algorithm simply starts at the last sample in the buffer and scans backward while computing 
the difference between the samples. Note that this function is called once for each channel, since 
each channel has its own data buffer. The function returns TRUE to indicate that the probe 
attached to this DLL should display all channels. 

 

 

  See Also 

Autocorrelation DLL Example 

 

Within the "DLLCUST/transfrm" directory there is a DLL example entitled "autocorr". This DLL 
demonstrates how to implement a signal transformer. The "autocorr" DLL performs an 
autocorrelation operation on each channel independently. There is no instance data required for 
this operation, so the instance allocation and deallocation functions are omitted. The 
implementation for the perform function is as follows: 
 
BOOL performTransform( 
 DLLData *instance,   // Pointer to instance data 
 NSFloat *data,       // Pointer to the buffered data 
 int     length,      // Length of the buffer to be transformed 
 int     channel      // Current channel number 
 ) 
{ 
 int i,j, start=0, stop=length; 
 NSFloat *corr = (NSFloat*)calloc(length, sizeof(NSFloat)); 
 for (i=0; i<length; i++) { 
  for (j=start; j<stop; j++)  
   corr[i] += data[j]*data[j-start]; 
  start++; 
 } 
 for (i=0; i<length; i++) 
  data[i] = corr[i]; 
 free(corr); 
 // Return whether or not to display this channel 
 return TRUE;  
} 
 

This algorithm scans through the data buffer while storing the computed correlation information in 
the corr buffer. Then the corr buffer is copied to the data buffer to produce the output of the 
Transformer. The function returns TRUE to indicate that the probe attached to this DLL should 
display all channels. 

 

 

  See Also 
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Crosscorrelation DLL Example 

 

Within the "DLLCUST/transfrm" directory there is a DLL example entitled "crosscor". This DLL 
demonstrates how to implement a signal transformer. The "crosscor" DLL performs a 
crosscorrelation operation between two channels of the data buffer to produce a single channel of 
output. The two channels are selected by the user from the DLL property page of the inspector. 
These instance parameters are defined within the instance allocation function: 
 
DLLData *allocTransform( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int     length,        // Length of the buffer to be transformed 
 int     channels       // Number of channels to be transformed 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 setParameterName(instance, 2, 1, "Chan X"); 
 setIntParameter(instance, 2, 1, 0, FALSE); 
 setParameterName(instance, 2, 2, "Chan Y"); 
 setIntParameter(instance, 2, 2, 1, FALSE); 
 return instance; 
} 
 

The perform function is implemented as follows: 
BOOL performTransform( 
 DLLData *instance,   // Pointer to instance data 
 NSFloat *data,       // Pointer to the buffered data 
 int     length,      // Length of the buffer to be transformed 
 int     channel      // Current channal number 
 ) 
{ 
 NSFloat *corr, *firstChannel=(NSFloat*)getUserData(instance); 
 BOOL displayChannel=FALSE; 
 int i, j, start=0, 
  channel1=getIntParameter(instance, 2, 1), 
  channel2=getIntParameter(instance, 2, 2); 
 if ((channel == channel1) || (channel == channel2)) { 
  if (channel1 == channel2) 
   firstChannel = data; 
  if (firstChannel) { 
   corr = (NSFloat*)calloc(length, sizeof(NSFloat)); 
   for (i=0; i<length; i++) { 
    for (j=start; j<length; j++)  
     corr[i] += data[j]*firstChannel[j-start]; 
    start++; 
   } 
   for (i=0; i<length; i++) 
    data[i] = corr[i]; 
   setUserData(instance, NULL);  
   displayChannel = TRUE; 
   free(corr); 
  } else 
   setUserData(instance, data); 
 } 
 return displayChannel; 
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} 
 

This algorithm is similar to that of the autocorrelation, except that the correlation is based on two 
channels instead of one. The two channel numbers are defined by the user and stored as instance 
parameters. Also, there is only one channel displayed by the Probe attached to the DLL instead of 
displaying an output channel for every input channel. 

Recall that each call to performTransform represents only one channel of data. In order to use the 
data from two channels at once, the DLL must store a pointer to the data of the first correlation 
channel. The call to setUserData stores this pointer as part of the instance data. When 
performTransform is called during the second correlation channel, then getUserData is called to 
retrieve the data pointer of the first correlation channel. 

Once the correlation is computed based on the two channels, the corr buffer is copied the data 
buffer. This is the only time that the data should be displayed by the probe attached to the DLL. 
This is why displayChannel is set to TRUE after the correlation has been computed. Note that this 
only occurs when channel is equal to the second correlation channel. 

 

 

  See Also 

Customizing NeuroSolutions Components using 
DLLs 
Customizing an Activation Component 

Customizing an Activation Component using DLLs 
Introduction 

Activation components consist of the Axon and Synapse families. Customizing any of these 
components for supervised learning requires the creation of a DLL for both the activation 
component and the corresponding backprop dual. 

To get started, simply build a breadboard that contains an activation/backprop pair that closely 
resembles the components that you want to create. Select the activation component and press the 
New button from the Engine Inspector property page of the inspector. This will create a DLL that 
matches the functionality of the base component. Edit the source code to change the functionality 
and press the Compile button. 

When an activation DLL is created, the default DLL for the corresponding backprop component is 
automatically created (assuming that the backprop component is attached). Edit and Compile the 
source code for the backprop component. Run the network to test your new components. 
Activation 

Within the DLLData structure containing The DLLData Structure, there is a mechanism for storing 
Adding Adaptable Weights to the Instance Data . These weights are in addition to any weights that 
are contained within the base component.  
Backprop 

The responsibility of the backprop component is to compute the gradients and sensitivities (the 
gradient and error vectors) for the activation component. If the activation component contains 
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adaptable weights within its instance data, then the backprop component must also allocate a 
corresponding weight vector and use it to store the computed gradients. 

 

 

  See Also 

Customizing an Axon using DLLs 
Protocols: 

Activation 

PerformAxon DLL Protocol   

PerformBiasAxon DLL Protocol   

PerformContextAxon DLL Protocol  

PerformGammaAxon DLL Protocol   

PerformLinearAxon DLL Protocol   

PerformTDNNAxon DLL Protocol   

 

Backprop 

PerformBackAxon DLL Protocol  

PerformBackBiasAxon DLL Protocol  

PerformBackContextAxon DLL Protocol  

PerformBackGammaAxon DLL Protocol  

PerformBackLinearAxon DLL Protocol  

PerformBackTDNNAxon DLL Protocol  

 
Examples: 

Adjustable sigmoid 

Adjustable hyperbolic tangent 

Adjustable linear 

TanhAxon with gain 

Customizing a Synapse using DLLs 
Protocols: 

Activation 

PerformSynapse DLL Protocol   
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PerformFullSynapse DLL Protocol   

 

Backprop 

PerformBackSynapse DLL Protocol  

PerformBackFullSynapse DLL Protocol  

 
Examples: 

Locally-Connected Synapse DLL Example  

Subset FullSynapse DLL Example  

Customizing an ErrorCriterion Component 

Customizing an ErrorCriterion using DLLs 
Description: 

ErrorCriteria DLLs are used to customize the computation of the backpropagated sensitivities and 
the cost (error). 

 
Protocols: 

PerformCriterion DLL Protocol  

 
Examples: 

Loser Learn All DLL Example  

Customizing a Gradient Search Component 

Customizing a Gradient Search component using DLLs 
Description: 

ErrorCriterion DLLs are used to customize the computation of the backpropagated sensitivities and 
the cost (error). 

 
Protocols: 

PerformDeltaBarDelta DLL Protocol  

PerformMomentum DLL Protocol  

PerformQuickprop DLL Protocol  

PerformStep DLL Protocol  

 



 867

Examples: 

DeltaBarDelta with Limited Step DLL Example  

DeltaBarDelta with Exponential Step DLL Example  

Customizing an Input Component 

Customizing an Input Component using DLLs 
Introduction: 

The base components of the Input family consist of a function generator (Function), a noise 
generator (Noise), and a file reader (File). Each of these components can be customized by 
implementing a DLL. There are two additional input components that require the use of a DLL in 
order to function: the DLLInput and the DLLPreprocessor. The first allows you to inject any data 
into the network through a function call and the second is used to preprocess the data from another 
Input source before it is injected into the network. 

To get started, simply stamp an Axon on the breadboard, then stamp one of the Input components 
on the PreActivity access point of the Axon. Stamp a StaticControl on the breadboard and set the 
Exemplars/Epoch to 1000. Stamp a MegaScope/DataStorage pair on the Activity access point of 
the Axon. Select the Input component and press the New button from the Engine Inspector 
property page of the inspector. This will create a copy of the default DLL for the base component. 
Edit the source code to change the functionality and press the Compile button. Run the network 
and monitor the MegaScope display to test your DLL. 

 

 

  See Also 

Customizing a General Input using DLLs 
Protocols: 

PerformInput DLL Protocol  

 
Examples: 

Strange attractor 

Logistic function  

Discriminant Function DLL Example 

Customizing a Function using DLLs 
Protocols: 

PerformFunction DLL Protocol  

 
Examples: 

Sawtooth 
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Triangle 

Square 

Decayed Sine 

Pulse 

Customizing a Noise using DLLs 
Protocols: 

PerformNoise DLL Protocol   

 
Examples: 

Gaussian 

Decayed Gaussian 

Decayed Uniform  

Customizing a File using DLLs 
Protocols: 

PerformFile DLL Protocol   

 
Examples: 

Binary 

Binary float 

Binary Integer  

Binary Short 

Binary character 

Customizing a Preprocessor or Postprocessor using DLLs 
Protocols: 

PerformPrePost DLL Protocol  
 

Examples: 

Averaging Filter DLL Example  

Extractor DLL Example  

Scaling 

Confusion Matrix DLL Example  



 869

Discriminant Function DLL Example  

Customizing  a Probe Component 

Customizing a Probe Component using DLLs 
Introduction: 

Any data that is accessed by a Static Probe can be forwarded on to a function within a DLL 
conforming to thePerformOutput DLL Protocol . This protocol is passive, meaning that it does not 
alter the network data. To process static data for further use by other static probes, the 
DLLPostprocessor component is used in conjunction with a DLL conforming to the PerformPrePost 
DLL Protocol To process buffered data for use by the TemporalProbe Family , the Transformer 
component is used in conjunction with a DLL conforming to the PerformTransform DLL Protocol . 

 

 

  See Also 

Customizing a General Probe using DLLs 
Protocols: 

PerformOutput DLL Protocol   

 
Examples: 

Confusion Matrix DLL Example 

Customizing a Transformer using DLLs 
Protocols: 

PerformTransform DLL Protocol   

 
Examples: 

Derivative 

Autocorrelation 

Crosscorrelation  

Customizing a Scheduler Component 

Customizing a Scheduler using DLLs 
Description: 

Scheduler DLLs are used to customize the scheduling of internal network parameters (i.e., 
processing elements). The DLL implementation applies a function of beta to the vector of PEs. 

 
Protocols: 
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PerformScheduler DLL Protocol   

 
Examples: 

There are no DLL examples available for the Schedulers. Instead, use the DLL implementations of 
the base components as a reference: 

LinearScheduler DLL Implementation   

LogScheduler DLL Implementation   

ExpScheduler DLL Implementation   

Customizing a Transmitter Component 

Customizing a Transmitter using DLLs 
Description: 

DLLs for Transmitters are currently restricted to the ThresholdTransmitter. The DLL implementation 
returns a boolean value indicating whether or not the user-defined threshold has been crossed 
during a particular exemplar. 

 
Protocols: 

PerformThresholdTransmitter DLL Protocol   

 
Examples: 

There are no DLL examples available for the ThresholdTransmitter. Instead, use the DLL 
implementation of the base component as a reference: 

ThresholdTransmitter DLL Implementation   

Customizing an Unsupervised Component 

Customizing an Unsupervised component using DLLs 

 

The Unsupervised components are Synapses that update their own weights. The basis for 
implementing an Unsupervised DLL is to modify the matrix of weights given a matrix of PEs at the 
input, a matrix of PEs at the output, and a user-defined step size. The performCompetitive and 
performKohonen protocols pass additional parameters that are specific to those algorithms. 

 
Protocols: 

PerformUnsupervised DLL Protocol   

PerformCompetitive DLL Protocol   

PerformKohonen DLL Protocol   
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Examples: 

There are no DLL examples available for the Unsupervised family. Instead, use the DLL 
implementations of the base components as a reference: 

Competitive DLL Implementation   

LineKohonen DLL Implementation   

SquareKohonen DLL Implementation   

DiamondKohonen DLL Implementation   

HebbianFull DLL Implementation   

OjasFull DLL Implementation   

SangersFull DLL Implementation  

DLL Protocols 
Axon Family Protocols 
PerformAxonProtocol 

 

Description: 

This protocol is used for members of the Axon family that do not contain any adaptable weights, 
nor parameters. 

 

DLL Prototype: 

 
void performAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
data 
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Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The 
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in 
row-major order. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 

 

Memory Management Protocol: 

 
DLLData *allocAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 

 

Component Implementations: 

Axon DLL Implementation  

WinnerTakeAllAxon DLL Implementation   

 

 

  See Also 

PerformBiasAxon Protocol 
 

Description: 

This protocol is used for members of the Axon family that contain an adaptable bias vector, one 
bias term for each of the Axon’s PEs. 
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DLL Prototype: 
 
void performBiasAxon( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 ); 
 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
data 

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The 
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in 
row-major order. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
bias 

Pointer to a block of floating point numbers that contain the bias term for each of the Axon’s 
processing elements (PEs). The size and structure of the block match that of data. 

 

Memory Management Protocol: 
 
DLLData *allocBiasAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBiasAxon(DLLData *instance) 
{ 
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 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BiasAxon DLL Implementation   

ThresholdAxon DLL Implementation   

 

 

  See Also 

PerformLinearAxon Protocol 
 

Description: 

This protocol is used for members of the Axon family that have all of the parameters contained 
within the PerformBiasAxon DLL Protocol  protocol, in addition to a beta term. This term is the 
same for all PEs and is used to specify the slope of the Axon’s transfer function. 

 

DLL Prototype: 
 
void performLinearAxon( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *data,      // Pointer to the layer of PEs 
 int     rows,       // Number of rows of PEs in the layer 
 int     cols        // Number of columns of PEs in the layer 
 NSFloat *bias       // Pointer to the layer's bias vector 
 NSFloat beta        // Slope gain scalar, same for all PEs 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData 
structure. 
data 

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The 
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in 
row-major order. 
rows 
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The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
bias 

Pointer to a block of floating point numbers that contain the bias term for each of the Axon’s 
processing elements (PEs). The size and structure of the block match that of data. 
beta 

A scalar that is applied to all PEs to provide the slope of the transfer function. 

 

Memory Management Prototypes: 
 
DLLData *allocLinearAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeLinearAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

LinearAxon DLL Implementation   

LinearSigmoidAxon DLL Implementation   

LinearTanhAxon DLL Implementation  

SigmoidAxon DLL Implementation   

TanhAxon DLL Implementation   

GaussianAxon DLL Implementation   

 

 

  See Also 
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MemoryAxon Family Protocols 
PerformContextAxon Protocol 

 

Description: 

This protocol is used for members of the MemoryAxon family that have a vector of adaptable time 
constants, one for each processing element (PE), and a user-defined scaling factor that is applied 
to all PEs. 

 

DLL Prototype: 
 
void performContextAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 NSFloat *tau,         // Pointer to a vector of time constants 
 NSFloat beta          // Linear scaling factor (user-defined) 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData 
structure. 
data 

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements 
(PEs). The size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are 
arranged in row-major order. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
delayedData 

Pointer to a block of floating point numbers that contains the state of data one time step back. The 
size and structure of the block match that of data. 
tau 
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Pointer to a vector of adaptable time constants, one for each processing element. Each of these 
constants determines the memory depth for the corresponding PE. 
beta 

Scaling factor that is specified by the user within the ContextAxon inspector. 

 

Memory Management Protocol: 
 
DLLData *allocContextAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeContextAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

ContextAxon DLL Implementation 

IntegratorAxon DLL Implementation   

SigmoidContextAxon DLL Implementation  

TanhContextAxon DLL Implementation   

SigmoidIntegratorAxon DLL Implementation   

TanhIntegratorAxon DLL Implementation   

 

 

  See Also 

PerformGammaAxon Protocol 
 

Description: 

This protocol is used for members of the MemoryAxon family that have a vector of memory taps 
and an adaptable Gamma coefficient for each input channel. Components conforming to this 
protocol are responsible for updating the data vector, given the gamma coefficient vector and the 
delayedData vector. The latter contains the state of the taps τ time steps back. The tap delay τ is 
specified by the user within the TDNNAxon’s inspector and is not included within the prototype. 
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DLL Prototype: 
 
void performGammaAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 int     taps          // Number of memory taps 
 NSFloat *gamma        // Pointer to vector of gamma coefficients 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
data 

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements 
(PEs). The number of input channels is rows*cols. The number of outputs, which is the number of 
floats within the data vector, is channels*taps. The following diagram illustrates the structure of the 
data. This example has 4 channels and 3 taps. 

 

 

 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
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cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
delayedData 

Pointer to a block of floating point numbers that contains the state of data τ time steps back. The 
tap delay τ is specified by the user within the TDNNAxon’s inspector and is not included within the 
prototype. The size and structure of the block match that of data. 
taps 

The number of memory taps stored for each channel. Note that the total number of PEs is 
rows*cols*taps. 
gamma 

Pointer to the vector of adaptable Gamma coefficients, one for each input channel (rows*cols). 

 

Memory Management Prototypes: 
 
DLLData *allocGammaAxon ( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 int     taps           // Number of taps attached to each channel 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeGammaAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

GammaAxon DLL Implementation   

LaguarreAxon DLL Implementation   

 

 

  See Also 

PerformTDNNAxon Protocol 
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Description: 

This protocol is used for members of the MemoryAxon family that have a vector of memory taps for 
each input channel. Components conforming to this protocol are responsible for updating this 
vector, given a second vector that contains the state of the taps τ time steps back. The tap delay τ 
is specified by the user within the TDNNAxon’s inspector and is not included within the prototype. 

 

DLL Prototype: 
 
void performTDNNAxon( 
 DLLData *instance,    // Pointer to instance data (may be NULL) 
 NSFloat *data,        // Pointer to the layer of PEs 
 int     rows,         // Number of rows of PEs in the layer 
 int     cols          // Number of columns of PEs in the layer 
 NSFloat *delayedData, // Pointer to a delayed PE layer  
 int     taps          // Number of memory taps 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
data 

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements 
(PEs). The number of input channels is rows*cols. The number of outputs, which is the number of 
floats within the data vector, is channels*taps. The following diagram illustrates the structure of the 
data. This example has 4 channels and 3 taps. 
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rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
delayedData 

Pointer to a block of floating point numbers that contains the state of data τ time steps back. The 
tap delay τ is specified by the user within the TDNNAxon’s inspector and is not included within the 
prototype. The size and structure of the block match that of data. 
taps 

The number of memory taps stored for each channel. Note that the total number of PEs is 
rows*cols*taps. 

 

Memory Management Prototypes: 
 
DLLData *allocTDNNAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 int     taps           // Number of taps attached to each channel 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeTDNNAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

TDNNAxon DLL Implementation   

 

Example: 
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A TDNNAxon with 1 channel and three taps is fed 6 samples of data. The first row of the table is 
tap[0], which is the Axon’s input. Each column of the table shows that state of the 3 taps at a given 
instant in time. Compare the two tables and note how the tap delay τ determines the memory 
depth. 

It is worth pointing out how the delayedData vector fits into this example. If τ is set to 1, then 
delayedData would point to a block containing the values found in the time=4 column of the first 
table. Likewise, If τ is set to 2, then delayedData would point to a block containing the values found 
in the time=3 column of the second table. 

 

 

  See Also 

FuzzyAxon Family Protocols 
PerformFuzzyAxon Protocol 

 

Description: 

This protocol is used for members of the FuzzyAxon family that have all of the parameters 
contained within the PerformAxon DLL Protocol  protocol, with the addition of four parameters.  

 

DLL Prototype: 
 
void performFuzzyAxon( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,   // Pointer to the layer of processing elements (PEs) 
 int  rows,  // Number of rows of PEs in the layer 
 int  cols,  // Number of columns of PEs in the layer 
 NSFloat *param,  // Pointer to the layer of parameters for the MFs 
 int  paramIndex, // Index into the param array 
 int  PEIndex, // Index into the processing elements of the 
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Axon 
      // (the data array) 
 NSFloat *returnVal // Value to return after applying the MF 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData 
structure. 
data 

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The 
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in 
row-major order. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
param 

Pointer to a block of floating point numbers that contain the set of membership function parameters 
for each of the Axon’s input processing elements (PEs).  
paramIndex 

The base index into the parameter array. 
PEIndex 

The index of the current input PE that is being calculated. 
returnVal 

Pointer to a floating point value, used to store the result of the membership function calculation. 

 

Memory Management Prototypes: 
 
DLLData *allocFuzzyAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
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} 
 
void freeFuzzyAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BellFuzzyAxon DLL Implementation   

GaussianFuzzyAxon DLL Implementation   

 

Synapse Family Protocols 
PerformFullSynapse Protocol 

 

Description: 

This protocol is similar to the PerformSynapse DLL Protocol  protocol except that the Synapse also 
contains a matrix of adaptable weights. This matrix is used to provide a fully-connected linear 
mapping between the PEs of the Axon at the input of the Synapse and the PEs of the Axon at the 
output of the Synapse. 

 

DLL Prototype: 
 
void performFullSynapse( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,    // Pointer to the input layer of PEs 
 int     inRows,    // Number of rows of PEs in the input layer 
 int     inCols,    // Number of columns of PEs in the input layer 
 NSFloat *output,   // Pointer to the output layer 
 int     outRows,   // Number of rows of PEs in the output layer 
 int     outCols    // Number of columns of PEs in the output layer 
 NSFloat *weights   // Pointer to the fully-connected weight matrix 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard. Memory Management of Instance Data for documentation on the 
DLLData structure. 
input 
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Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements 
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values 
are arranged in row-major order. 
inRows 

The number of rows of processing elements contained within the feeding Axon, as specified within 
its inspector. 
inCols 

The number of columns of processing elements contained within the feeding Axon, as specified 
within its inspector. 
output 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon 
that is being fed by the Synapse. The size of the block in bytes is 
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order. 
outRows 

The number of rows of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
outCols 

The number of columns of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
weights 

Pointer to a block of floating point numbers that contain the adaptable weights of the Synapse. The 
size of the block in bytes is inRows*inCols*outRows*outCols*sizeof(NSFloat), and the floating point 
values are arranged in input-major order. 

 

Memory Management Prototypes: 
 
DLLData *allocFullSynapse( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     inRows,       // Number of rows of PEs in the input layer 
 int     inCols,       // Number of columns of PEs in input layer 
 int     outRows,      // Number of rows of PEs in the output layer 
 int     outCols       // Number of columns of PEs in output layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeFullSynapse(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
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Component Implementations: 

FullSynapse DLL Implementation   

 

 

  See Also 

PerformSynapse Protocol 
 

Description: 

This protocol is used for members of the Synapse family that simply provide a one-to-one mapping 
from the inputs to the outputs. The delay between the input and output is defined by the user within 
the Synapse Inspector (see Synapse Family). 

 

DLL Prototype: 
 
void performSynapse( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,    // Pointer to the input layer of PEs 
 int     inRows,    // Number of rows of PEs in the input layer 
 int     inCols,    // Number of columns of PEs in the input layer 
 NSFloat *output,   // Pointer to the output layer 
 int     outRows,   // Number of rows of PEs in the output layer 
 int     outCols    // Number of columns of PEs in the output layer ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
input 

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements 
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values 
are arranged in row-major order. 
inRows 

The number of rows of processing elements contained within the feeding Axon, as specified within 
its inspector. 
inCols 

The number of columns of processing elements contained within the feeding Axon, as specified 
within its inspector. 
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output 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon 
that is being fed by the Synapse. The size of the block in bytes is 
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order. 
outRows 

The number of rows of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
outCols 

The number of columns of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 

 

Memory Management Prototypes: 
 
DLLData *allocSynapse( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     inRows,       // Number of rows of PEs in the input layer 
 int     inCols,       // Number of columns of PEs in input layer 
 int     outRows,      // Number of rows of PEs in the output layer 
 int     outCols       // Number of columns of PEs in output layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeSynapse(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

Synapse DLL Implementation   

 

 

  See Also 

BackAxon Family Protocols 
PerformBackAxon Protocol 

 

Description: 
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This protocol is used to backpropagate the error of its dual Axon component. Note that the Axon 
does not contain any adaptable weights. 

 

DLL Prototype: 
 
void performBackAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *data,         // Pointer to the layer of PEs in the axon 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *error         // Pointer to the sensitivity vector 
 ) 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the Axon). See The DLLData Structure for documentation on the DLLData structure. 
data 

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The 
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in 
row-major order. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
error 

Pointer to a block of floating point numbers that contain the sensitivity information for each of the 
Axon’s processing elements (PEs). In other words, this is the error that gets backpropagated 
through the network. The size and structure of the block match that of data. 
 

Memory Management Prototypes: 
 
DLLData *allocBackAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
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 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBackAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BackAxon DLL Implementation   

 

 

  See Also 

PerformBackBiasAxon Protocol 
 

Description: 

This protocol is used to compute the backpropagated error vector and the bias gradient vector of its 
dual Axon component, which conforms to the PerformBiasAxon DLL Protocol . 

 

DLL Prototype: 
 
void performBackBiasAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *data,         // Pointer to the layer of PEs in the axon 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *error         // Pointer to the sensitivity vector 
 NSFloat *gradient      // Pointer to the bias gradient vector 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
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using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the BiasAxon). See The DLLData Structure for documentation on the DLLData structure. 
data 

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The 
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in 
row-major order. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
error 

Pointer to a block of floating point numbers that contain the sensitivity information for each of the 
Axon’s processing elements (PEs). In other words, this is the error that gets backpropagated 
through the network. The size and structure of the block match that of data. 
gradient 

Pointer to a block of floating point numbers that contain the gradient information for each of the 
Axon’s weights (i.e., bias terms). Note that this is the vector that is used by the Gradient Search 
components. The size and structure of the block match that of bias. 

 

Memory Management Prototypes: 
 
DLLData *allocBackBiasAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBackBiasAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BackBiasAxon DLL Implementation   
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  See Also 

PerformBackLinearAxon Protocol 
 

Description: 

This protocol is used to compute the backpropagated error vector and the bias gradient vector of its 
dual Axon component, which conforms to the PerformLinearAxon DLL Protocol  protocol. 

 

DLL Prototype: 
 
void performBackLinearAxon( 
 DLLData *instance,     // Pointer to instance data 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *data,         // Pointer to the layer of PEs 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *error         // Pointer to the sensitivity vector 
 NSFloat *gradient      // Pointer to the bias gradient vector 
 NSFloat beta           // Slope gain scalar, same for all PEs 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the LinearAxon). See The DLLData Structure for documentation on the DLLData structure. 
data 

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The 
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in 
row-major order. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 
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The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
error 

Pointer to a block of floating point numbers that contain the sensitivity information for each of the 
Axon’s processing elements (PEs). In other words, this is the error that gets backpropagated 
through the network. The size and structure of the block match that of data. 
gradient 

Pointer to a block of floating point numbers that contain the gradient information for each of the 
Axon’s weights (i.e., bias terms). Note that this the vector that is used by the Gradient Search 
components. The size and structure of the block match that of bias. 
beta 

A scalar that is applied to all PEs to provide the slope of the Axon’s transfer function. 

 

Memory Management Prototypes: 
 
DLLData *allocBackLinearAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBackLinearAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BackLinearAxon DLL Implementation   

BackTanhAxon DLL Implementation   

BackSigmoidAxon DLL Implementation   

 

 

  See Also 

PerformBackFuzzyAxon Protocol 
 

Description: 
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This protocol is used to compute the gradient for the specified parameter of the membership 
function of its dual Axon component, which conforms to the PerformFuzzyAxon DLL Protocol  
protocol. 

 

DLL Prototype: 
 
void performBackFuzzyAxon( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data (may be 
NULL) 
 NSFloat *data,    // Pointer to the layer of processing 
elements (PEs) 
 int  rows,   // Number of rows of PEs in the layer 
 int  cols,   // Number of columns of PEs in the layer 
 NSFloat *error,   // Pointer to the sensitivity vector 
 NSFloat *param,   // Pointer to the layer of parameters for 
the MFs 
 int  paramIndex,  // Index of the MF parameter 
 int  winnerIndex, // Index of the winning MF 
 NSFloat winnerVal,  // Value of the winning Input 
 NSFloat *returnVal  // Return value 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the LinearAxon). See The DLLData Structure for documentation on the DLLData structure. 
data 

Pointer to a block of floating point numbers that contain the Axon’s processing elements (PEs). The 
size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in 
row-major order. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
error 
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Pointer to a block of floating point numbers that contain the sensitivity information for each of the 
Axon’s processing elements (PEs). In other words, this is the error that gets backpropagated 
through the network. The size and structure of the block match that of data. 
param 

Pointer to a block of floating point numbers that contain the set of membership function parameters 
for each of the dual Axon’s input processing elements (PEs).  
paramIndex 

The index into the parameter array that specifies the parameter whose derivative needs to be 
calculated. 
winnerIndex 

The index of the dual Axon's membership function which produced the minimum value (i.e., the 
winning MF). 
winnerVal 

The dual Axon's input PE value corresponding to the membership function which produced the 
minimum value (i.e., the winning MF). 
returnVal 

The return value, which is the gradient (derivative) for the specified membership function 
parameter. 

 

Memory Management Prototypes: 
 
DLLData *allocBackFuzzyAxon( 
 DLLData *oldInstance, // Pointer to the last instance if reallocating 
 DLLData *dualInstance, // Pointer to forward axon’s instance data (may be 
NULL) 
 int  rows,   // Number of rows of PEs in the layer 
 int  cols   // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 return instance; 
} 
 
void freeBackFuzzyAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BackBellFuzzyAxon DLL Implementation   

BackGaussianFuzzyAxon DLL Implementation   
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BackMemoryAxon Family Protocols 
PerformBackContextAxon Protocol 

 

Description: 

This protocol is used to compute the backpropagated error vector and the gamma gradient vector 
of its dual MemoryAxon component, which conforms to the PerformContextAxon DLL Protocol 
protocol. 

 

DLL Prototype: 
 
void performBackContextAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 NSFloat *data,         // Pointer to the layer of PEs 
 NSFloat *tau,          // Pointer to a vector of time constants 
 NSFloat beta,          // Linear scaling factor (user-defined) 
 NSFloat *gradient      // Pointer to the tau gradient vector 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the ContextAxon). See The DLLData Structure for documentation on the DLLData structure. 
error 

Pointer to a block of floating point numbers that contain the sensitivity information for each of the 
MemoryAxon’s processing elements (PEs). In other words, this is the error that gets 
backpropagated through the network. The size and structure of the block match that of data. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 
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The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
delayedError 

Pointer to a block of floating point numbers that contains the state of error one time step back. The 
size and structure of the block match that of error. 
data 

Pointer to a block of floating point numbers that contain the PEs of the activation dual (i.e., the 
ContextAxon). The size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating point 
values are arranged in row-major order. 
tau 

Pointer to the vector of adaptable time constants contained within the activation dual (i.e., the 
ContextAxon). These constants are adapted by the attached Gradient Search component by using 
the gradient vector. 

beta 

Scaling factor that is specified by the user within the ContextAxon inspector. 
gradient 

Pointer to a block of floating point numbers that contain the gradient information for each of the 
ContextAxon’s time constants. Note that this is the vector that is used by the Gradient Search 
components. The size and structure of the block match that of tau. 

 

Memory Management Prototypes: 
 
DLLData *allocBackContextAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBackContextAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BackContextAxon DLL Implementation   

BackIntegratorAxon DLL Implementation   

BackSigmoidContextAxon DLL Implementation   

BackTanhContextAxon DLL Implementation   
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BackSigmoidIntegratorAxon DLL Implementation   

BackTanhIntegratorAxon DLL Implementation   

 

 

  See Also 

PerformBackGammaAxon Protocol 
 

Description: 

This protocol is used to compute the backpropagated error vector and the gamma gradient vector 
of its dual MemoryAxon component, which conforms to the PerformGammaAxon DLL Protocol  
protocol. 

 

DLL Prototype: 
 
void performBackGammaAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
 NSFloat *delayedError, // Pointer to the delayed error vector 
 int     taps,          // Number of memory taps (user-defined) 
 NSFloat *data          // Pointer to the layers of (PEs) 
 NSFloat *gamma,        // Pointer to vector of gamma coefficients 
 NSFloat *gradient      // Pointer to the gamma gradient vector 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the GammaAxon). See The DLLData Structure for documentation on the DLLData structure. 
error 

Pointer to a block of floating point numbers that contain the sensitivity information for each of the 
MemoryAxon’s processing elements (PEs). In other words, this is the error that gets 
backpropagated through the network. The size and structure of the block match that of data. 
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rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
delayedError 

Pointer to a block of floating point numbers that contains the state of error τ time steps back. The 
tap delay τ is specified by the user within the TDNNAxon’s inspector and is not included within the 
prototype. The size and structure of the block match that of error. 
taps 

The number of memory taps stored for each channel. Note that the total number of PEs is 
rows*cols*taps. 
data 

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements 
(PEs). The number of input channels is rows*cols. The number of outputs, which is the number of 
floats within the data vector, is channels*taps. The following diagram illustrates the structure of the 
data. This example has 4 channels and 3 taps. 

 

  

 
gamma 

Pointer to the vector of adaptable Gamma coefficients of the GammaAxon, one for each input 
channel (rows*cols). 
gradient 
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Pointer to a block of floating point numbers that contain the gradient information for each of the 
GammaAxon’s gamma coefficients. Note that this is the vector that is used by the Gradient Search 
components. The size and structure of the block match that of gamma. 

 

Memory Management Prototypes: 
 
DLLData *allocBackGammaAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 int     taps           // Number of taps attached to each channel 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBackGammaAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BackGammaAxon DLL Implementation   

BackLaguarreAxon DLL Implementation   

 

 

  See Also 

PerformBackTDNNAxon Protocol 
 

Description: 

This protocol is used to compute the backpropagated error vector of its dual MemoryAxon 
component, which conforms to the PerformTDNNAxon DLL Protocol  protocol. 

 

DLL Prototype: 
 
void performBackTDNNAxon( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *error,        // Pointer to the current sensitivity vector 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols,          // Number of columns of PEs in the layer 
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 NSFloat *delayedError, // Pointer to the delayed error vector 
 int     taps,          // Number of memory taps (user-defined) 
 NSFloat *data          // Pointer to the layers of (PEs) 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the TDNNAxon). See The DLLData Structure for documentation on the DLLData structure. 
error 

Pointer to a block of floating point numbers that contain the sensitivity information for each of the 
MemoryAxon’s processing elements (PEs). In other words, this is the error that gets 
backpropagated through the network. The size and structure of the block match that of data. 
rows 

The number of rows of processing elements contained within the Axon, as specified within the 
component’s inspector. 
cols 

The number of columns of processing elements contained within the Axon, as specified within the 
component’s inspector. 
delayedError 

Pointer to a block of floating point numbers that contains the state of error τ time steps back. The 
tap delay τ is specified by the user within the TDNNAxon’s inspector and is not included within the 
prototype. The size and structure of the block match that of error. 
taps 

The number of memory taps stored for each channel. Note that the total number of PEs is 
rows*cols*taps. 
data 

Pointer to a block of floating point numbers that contain the MemoryAxon’s processing elements 
(PEs). The number of input channels is rows*cols. The number of outputs, which is the number of 
floats within the data vector, is channels*taps. The following diagram illustrates the structure of the 
data. This example has 4 channels and 3 taps. 

 



 901

  

 

 

Memory Management Prototypes: 
 
DLLData *allocBackTDNNAxon( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 int     taps           // Number of taps attached to each channel 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBackTDNNAxon(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BackTDNNAxon DLL Implementation   

 

 

  See Also 
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BackSynapse Protocols 
PerformBackFullSynapse Protocol 

 

Description: 

This protocol is used to compute the weight gradient matrix and the backpropagated error vector of 
its dual Synapse component, which conforms to the PerformFullSynapse DLL Protocol protocol. 
Note that the input and output are reversed from that of the activation dual component. 

 

DLL Prototype: 
 
void performBackFullSynapse( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *errorIn,      // Pointer to the input error layer of PEs 
 int     inRows,        // Number of rows of PEs in the input layer 
 int     inCols,        // Number of columns of PEs at the input 
 NSFloat *errorOut,     // Pointer to the output error layer  
 int     outRows,       // Number of rows of PEs in the output layer 
 int     outCols,       // Number of columns of PEs at the output 
 NSFloat *input         // Pointer to output PEs of forward synapse 
 NSFloat *weights,      // Pointer to fully-connected weight matrix 
 NSFloat *gradients     // Pointer to the weight gradient matrix  ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the Synapse). The DLLData Structure for documentation on the DLLData structure. 
errorIn 

Pointer to the sensitivity vector of the PerformBackAxon DLL Protocol component that is feeding 
the BackSynapse. The size and structure of the block match that of output from the activation dual 
component. 
inRows 

The number of rows of processing elements associated with the BackAxon component that is 
feeding the BackSynapse, as specified within the corresponding Axon’s inspector. 
inCols 
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The number of columns of processing elements associated with the BackAxon component that is 
feeding the BackSynapse, as specified within the corresponding Axon’s inspector. 
errorOut 

Pointer to the sensitivity vector of the PerformBackAxon DLL Protocol component the 
BackSynapse is feeding. In other words, this is the error that gets backpropagated through the 
network.  The size and structure of the block match that of input from the activation dual 
component. 
outRows 

The number of rows of processing elements associated with the BackAxon component that the 
BackSynapse is feeding, as specified within the corresponding Axon’s inspector. 
outCols 

The number of columns of processing elements associated with the BackAxon component that the 
BackSynapse is feeding, as specified within the corresponding Axon’s inspector. 
input 

Pointer to a block of floating point numbers that contain the PEs of the activation dual (i.e., the 
Synapse) at its output. The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the 
floating point values are arranged in row-major order. 
weights 

Pointer to a block of floating point numbers that contain the adaptable weights of the activation dual 
component (see PerformFullSynapse DLL Protocol ).  
gradient 

Pointer to a block of floating point numbers that contain the matrix of gradients for each of the 
Synapse’s weights. Note that this is the matrix that is used by the Gradient Search components. 
The size and structure of the block match that of weights. 

 

Memory Management Prototypes: 
 
DLLData *allocBackFullSynapse( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     inRows,       // Number of rows of PEs in the input layer 
 int     inCols,       // Number of columns of PEs in input layer 
 int     outRows,      // Number of rows of PEs in the output layer 
 int     outCols       // Number of columns of PEs in output layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBackFullSynapse(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
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Component Implementations: 

BackFullSynapse DLL Implementation   

 

 

  See Also 

PerformBackSynapse Protocol 
 

Description: 

This protocol is used to compute the backpropagated error vector of its dual Synapse component, 
which conforms to the PerformSynapse DLL Protocol  protocol. The delay between the output and 
input is defined by the user within the inspector of the activation dual (see BackSynapse Family). 
Note that the input and output are reversed from that of the activation dual component. 

 

DLL Prototype: 
 
void performBackSynapse( 
 DLLData *instance,     // Pointer to instance data (may be NULL) 
 DLLData *dualInstance, // Pointer to forward axon’s instance data 
 NSFloat *errorIn,      // Pointer to the input error layer of PEs 
 int     inRows,        // Number of rows of PEs in the input layer 
 int     inCols,        // Number of columns of PEs at the input 
 NSFloat *errorOut,     // Pointer to the output error layer  
 int     outRows,       // Number of rows of PEs in the output layer 
 int     outCols,       // Number of columns of PEs at the output 
 NSFloat *input         // Pointer to output PEs of forward synapse 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
dualInstance 

Pointer to data that may have been allocated for the dual component in the activation plane (i.e., 
the Synapse). See The DLLData Structure for documentation on the DLLData structure. 
errorIn 

Pointer to the sensitivity vector of the PerformBackAxon DLL Protocol component that is feeding 
the BackSynapse. The size and structure of the block match that of output from the activation dual 
component. 
inRows 
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The number of rows of processing elements associated with the BackAxon component that is 
feeding the BackSynapse, as specified within the corresponding Axon’s inspector. 
inCols 

The number of columns of processing elements associated with the BackAxon component that is 
feeding the BackSynapse, as specified within the corresponding Axon’s inspector. 
errorOut 

Pointer to the sensitivity vector of the PerformBackAxon DLL Protocol component the 
BackSynapse is feeding. In other words, this is the error that gets backpropagated through the 
network.  The size and structure of the block match that of input from the activation dual 
component. 
outRows 

The number of rows of processing elements associated with the BackAxon component that the 
BackSynapse is feeding, as specified within the corresponding Axon’s inspector. 
outCols 

The number of columns of processing elements associated with the BackAxon component that the 
BackSynapse is feeding, as specified within the corresponding Axon’s inspector. 
input 

Pointer to a block of floating point numbers that contain the PEs of the activation dual (i.e., the 
Synapse) at its output. The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the 
floating point values are arranged in row-major order. 

 

Memory Management Prototypes: 
 
DLLData *allocBackSynapse( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     inRows,       // Number of rows of PEs in the input layer 
 int     inCols,       // Number of columns of PEs in input layer 
 int     outRows,      // Number of rows of PEs in the output layer 
 int     outCols       // Number of columns of PEs in output layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeBackSynapse(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

BackSynapse DLL Implementation  
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  See Also 

ErrorCriteria Family Protocols 
PerformCriterion Protocol 

 

Description: 

This protocol is used for members of the ErrorCriterion family. Implementations of this protocol are 
responsible for computing the output sensitivity vector, which is the error used for the 
backpropagation. The function returns the accumulated cost based on the particular criterion. 

 

DLL Prototype: 
 
NSFloat performCriterion( 
 DLLData *instance,       // Pointer to instance data (may be NULL) 
 NSFloat *costDerivative, // Pointer to output sensitivity vector 
 int     rows,            // Number of rows of PEs in the layer 
 int     cols,            // Number of columns of PEs in the layer 
 NSFloat *output,         // Pointer to output layer of the network 
 NSFloat *desired         // Pointer to desired output vector 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard. The DLLData Structure for documentation on the DLLData 
structure. 
error 

Pointer to a block of floating point numbers that contain the sensitivity information for each of the 
processing elements (PEs) of the Axon at the output of the network. In other words, this is the error 
that gets backpropagated through the network. The size and structure of the block match that of 
output. 
rows 

The number of rows of processing elements contained within the ErrorCriterion component. Note 
that this should match the number of rows of the feeding Axon. 
cols 

The number of columns of processing elements contained within the ErrorCriterion component. 
Note that this should match the number of columns of the feeding Axon. 
output 
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Pointer to a block of floating point numbers that contain the processing elements (PEs) at the 
output of the network. The size of the block in bytes is rows*cols*sizeof(NSFloat), and the floating 
point values are arranged in row-major order. 
desired 

Pointer to a block of floating point numbers that contain the desired response of the corresponding 
processing elements (PEs) at the output of the network. The size and structure of the block match 
that of output. 

 

Memory Management Protocol: 
 
DLLData *allocCriterion( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeCriterion(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

L1Criterion DLL Implementation  

L2Criterion DLL Implementation  

LinfinityCriterion DLL Implementation  

 

 

  See Also 

GradientSearch Family Protocols 
PerformDeltaBarDelta Protocol 

 

Description: 

The implementation of this protocol is responsible for computing the step size for each of the 
weights based on the gradient from the backprop component, a smoothed version of the gradient 
(smoothedGradient), and three constants (beta, kappa, and zeta) defined by the user within the 
DeltaBarDelta inspector. The implementation is also responsible for computing the 
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smoothedGradient vector. Note that the component itself implements the standard Momentum DLL 
Implementation rule using the step sizes computed within the function.  

 

DLL Prototype: 
 
void performDeltaBarDelta( 
 DLLData *instance,         // Pointer to instance data 
 NSFloat *step,             // Pointer to vector of learning rates 
 int     length,            // Length of learning rate vector 
 NSFloat *smoothedGradient, // Smoothed gradient vector 
 NSFloat *gradient,         // Gradient vector from backprop comp. 
 NSFloat beta,              // Multiplicative constant 
 NSFloat kappa,             // Additive constant 
 NSFloat zeta               // Smoothing factor 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
step 

Pointer to a block of floating point numbers that contain the learning rates (i.e., step sizes) for each 
of the weights. This vector is computed within the protocol implementation and is used by the 
component itself for the standard Momentum weight update. 
length 

The number of weights. 
smoothedGradient 

Pointer to a block of floating point numbers that contain the gradient information applied to a 
smoothing filter. This vector is computed by the protocol implementation. The size and structure of 
the block match that of gradient. 
gradient 

Pointer to a block of floating point numbers that contain the gradient information for each of the 
weights of the attached activation component. This vector is used in conjunction with the 
smoothedGradient vector to compute the step vector. 
beta 

Multiplicative constant specified by the user within the DeltaBarDelta inspector (see equation within 
DeltaBarDelta). 
kappa 

Additive constant specified by the user within the DeltaBarDelta inspector (see equation within 
DeltaBarDelta). 
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zeta 

Smoothing factor specified by the user within the DeltaBarDelta inspector (see equation within 
DeltaBarDelta). 

 

Memory Management Prototypes: 
 
DLLData *allocDeltaBarDelta( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     length,       // Length of the weight vector 
 BOOL    individual    // Indicates whether their is one learning  
                       // rate for all weights (FALSE), or each 
                       // weight has its own learning rate (TRUE) 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeDeltaBarDelta(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

DeltaBarDelta DLL Implementation  

 

 

  See Also 

PerformMomentum Protocol 
 

Description: 

This protocol is similar to the PerformStep DLL Protocol protocol, except that there is the addition 
of a momentum term and a vector containing the previous weight change (delta). These terms are 
used in conjunction with the step size and gradient information to adjust the weights. This weight 
adjustment is the new delta and the implementation of this function is responsible for updating this 
vector as well as the weights vector. 

 

DLL Prototype: 
 
void performMomentum( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *weights,   // Pointer to the vector of weights 
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 int     length,     // Length of the weight vector 
 NSFloat *gradient,  // Pointer to vector of gradients 
 NSFloat *step,      // Pointer to the learning rate/s 
 BOOL    individual  // Indicates whether there is one learning rate 
                     // for all weights (FALSE), or each weight has 
                     // its own learning rate (TRUE) 
 NSFloat *delta,     // Last weight Update 
 NSFloat momentum    // Momentum rate for all weights 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
weights 

Pointer to a block of floating point numbers that contain the weights of the attached activation 
component. This vector is adjusted by the GradientSearch component. The size of the block in 
bytes is length*sizeof(NSFloat). 
length 

The number of elements contained within the weights vector. 
gradient 

Pointer to a block of floating point numbers that contain the gradient information for each of the 
weights of the attached activation component. This vector is used to determine the amount to 
adjust the weights. The size and structure of the block match that of weights. 
step 

Pointer to a block of floating point numbers that contain the learning rates (i.e., step sizes) for each 
of the weights. If individual is set to TRUE, then this block contains only one floating-point number, 
which is the step size for all of the weights. 
individual 

Flag to indicate whether the step pointer contains only one floating point number, which is the step 
size for all of the weights (individual=FALSE), or length floating point numbers, which are the 
individual step sizes for each of the weights (individual=TRUE).  
delta 

Pointer to a block of floating point numbers that contain the previous update (i.e., delta) for each of 
the weights. The implementation of this function is responsible for updating this vector before 
returning. 
momentum 

Scalar containing the momentum rate applied to all weight updates.  
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Memory Management Prototypes: 
 
DLLData *allocMomentum( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     length,       // Length of the weight vector 
 BOOL    individual    // Indicates whether their is one learning  
                       // rate for all weights (FALSE), or each 
                       // weight has its own learning rate (TRUE) 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeMomentum(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

Momentum DLL Implementation  

 

 

  See Also 

PerformQuickprop Protocol 
 

Description: 

This protocol is similar to the PerformMomentum DLL Protocol protocol, except that the momentum 
rate is unique to each weight. Note that this vector could have been allocated as local storage, but 
it is passed as a parameter for efficiency reasons. The defaultMomentum is defined by the user 
within the inspector. The lastGradient is a pointer to a block containing the previous state of 
gradient. This function is responsible for updating the lastGradient vector as well as the delta and 
weights vectors. 

 

DLL Prototype: 
 
void performQuickprop( 
 DLLData *instance,       // Pointer to instance data 
 NSFloat *weights,        // Pointer to the vector of weights 
 int     length,          // Length of the weight vector 
 NSFloat *gradient,       // Pointer to vector of gradients 
 NSFloat *step,           // Pointer to the learning rate/s 
 BOOL    individual       // Indicates whether there is one learning 
                          // rate for all weights (FALSE), or each 
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                          // weight has its own learning rate (TRUE) 
 NSFloat *delta,          // Last weight Update 
 NSFloat defaultMomentum, // Max momentum rate for all weights 
 NSFloat *momentum,       // Individual momentum rate for each weight 
 NSFloat *lastGradient    // Previous weight gradient vector 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
weights 

Pointer to a block of floating point numbers that contain the weights of the attached activation 
component. This vector is adjusted by the GradientSearch component. The size of the block in 
bytes is length*sizeof(NSFloat). 
length 

The number of elements contained within the weights vector. 
gradient 

Pointer to a block of floating point numbers that contain the gradient information for each of the 
weights of the attached activation component. This vector is used to determine the amount to 
adjust the weights. The size and structure of the block match that of weights. 
step 

Pointer to a block of floating point numbers that contain the learning rates (i.e., step sizes) for each 
of the weights. If individual is set to TRUE, then this block contains only one floating-point number, 
which is the step size for all of the weights. 
individual 

Flag to indicate whether the step pointer contains only one floating point number, which is the step 
size for all of the weights (individual=FALSE), or length floating point numbers, which are the 
individual step sizes for each of the weights (individual=TRUE).  
delta 

Pointer to a block of floating point numbers that contain the previous update (i.e., delta) for each of 
the weights. The implementation of this function is responsible for updating this vector before 
returning. 
defaultMomentum 

Scalar containing the momentum rate entered by the user within the inspector. The quickprop 
algorithm uses this parameter as the maximum that the absolute value of each element within the 
momentum vector can be.   
momentum 
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Pointer to a block of floating point numbers used to store the momentum rates for each of the 
weights. Note that this vector could have been allocated as local storage, but it is passed as a 
parameter for efficiency reasons. 
lastGradient 

Pointer to a block of floating point numbers that contain the previous state of the gradient vector. 
This pointer must be maintained by the protocol’s implementation.  

 

Memory Management Prototypes: 
 
DLLData *allocQuickprop( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     length,       // Length of the weight vector 
 BOOL    individual    // Indicates whether their is one learning  
                       // rate for all weights (FALSE), or each 
                       // weight has its own learning rate (TRUE) 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeQuickprop(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

Quickprop DLL Implementation  

 

 

  See Also 

PerformStep Protocol 
 

Description: 

This protocol is used to update the weight vector of the attached Activation component given the 
gradient information from the corresponding Backprop component. The learning rate is solely 
determined by the step size, which can be unique to each weight or the same for all weights. 

 

DLL Prototype: 
 
void performStep( 
 DLLData *instance,  // Pointer to instance data 



 914

 NSFloat *weights,   // Pointer to the vector of weights 
 int     length,     // Length of the weight vector 
 NSFloat *gradient,  // Pointer to vector of gradients 
 NSFloat *step,      // Pointer to the learning rate/s 
 BOOL    individual  // Indicates whether there is one learning rate 
                     // for all weights (FALSE), or each weight has 
                     // its own learning rate (TRUE) 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
weights 

Pointer to a block of floating point numbers that contain the weights of the attached activation 
component. This vector is adjusted by the GradientSearch component. The size of the block in 
bytes is length*sizeof(NSFloat). 
length 

The number of elements contained within the weights vector. 
gradient 

Pointer to a block of floating point numbers that contain the gradient information for each of the 
weights of the attached activation component. This  vector is used to determine the amount to 
adjust the weights. The size and structure of the block match that of weights. 
step 

Pointer to a block of floating point numbers that contain the learning rates (i.e., step sizes) for each 
of the weights. If individual is set to TRUE, then this block contains only one floating-point number, 
which is the step size for all of the weights. 
individual 

Flag to indicate whether the step pointer contains only one floating point number, which is the step 
size for all of the weights (individual=FALSE), or length floating point numbers, which are the 
individual step sizes for each of the weights (individual=TRUE).  

 

Memory Management Prototypes: 
 
DLLData *allocStep( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     length,       // Length of the weight vector 
 BOOL    individual    // Indicates whether their is one learning  
                       // rate for all weights (FALSE), or each 
                       // weight has its own learning rate (TRUE) 
 ) 
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{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeStep(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

Step DLL Implementation  

 

 

  See Also 

Input Family Protocols 
PerformFile Protocol  

 

Description: 

This protocol is used to implement a customized file translator. The responsibility of the performFile 
implementation is to read the next floating-point value from the file. The function returns a TRUE if 
a value was read and a FALSE if the end-of-file was reached. 

 

DLL Prototype: 
 
BOOL performFile( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 FILE     *file,      // Pointer to the opened file 
 NSFloat  *sample     // Location to place next sample 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters and user defined structures for each copy of a component using a particular 
DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData structure. 
file 

Pointer returned by the openFile function of the DLL. 
sample 
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Pointer to the storage used to return the next floating-point value read from the file.  

 

Initialization Prototype: 

This function takes in the path name of the input file and returns a pointer to the opened file.  
 
FILE *openFile( 
 DLLData    *instance,  // Pointer to instance data (may be NULL) 
 const char *filePath   // Full path of file to be opened 
 ); 

 

Memory Management Protocol: 
 
DLLData *allocFile( 
 DLLData *oldInstance // Pointer to the last instance if reallocating 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeFile(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 
 

Component Implementations: 

File DLL Implementation  

 

 

  See Also 

PerformFunction Protocol 
 

Description: 

This protocol is used to define a periodic wave to be used as an input source. 

 

DLL Prototype: 
 
NSFloat performFunction( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat x          // Current angle in radians 
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 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters and user defined structures for each copy of a component using a particular 
DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData structure. 

x 

The current angle in radians. Each time the perform function is called, this angle is incremented by 
NeuroSolutions based on the number of Samples/Cycle specified by the user within the Function 
inspector. 

 

Initialization Prototype: 

This function is used to initialize any instance variables before a new cycle of input is generated. 
Note that this is different from (and called before) the global prototype, fireGetReady(). 
 
void getReadyToFire( 
 DLLData *instance  // Pointer to instance data (may be NULL)  
 ); 

 

Memory Management Protocol: 
 
DLLData *allocFunction( 
 DLLData *oldInstance  // Pointer to the last instance if reallocating 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeFunction(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 
 

Component Implementations: 

Function DLL Implementation  

 

 

  See Also 
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PerformNoise Protocol 
 

Description: 

This protocol is used to generate a noise source. 

 

DLL Prototype: 
 
NSFloat performNoise( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat variance,  // Variance set within components inspector 
 NSFloat mean       // Mean set within components inspector 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters and user defined structures for each copy of a component using a particular 
DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData structure. 
variance 

The variance of the generated noise defined by the user within the Noise inspector. 
mean 

The mean of the generated noise defined by the user within the Noise inspector. 

 

Initialization Prototype: 

This function is used to initialize any instance variables before a new segment of noise data is 
generated. Note that this is different from (and called before) the global prototype, fireGetReady(). 
 
void getReadyToFire( 
 DLLData *instance  // Pointer to instance data (may be NULL)  
 ); 

 

Memory Management Protocol: 
 
DLLData *allocNoise( 
 DLLData *oldInstance // Pointer to the last instance if reallocating 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
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void freeNoise(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 
 

Component Implementations: 

Noise DLL Implementation  

 

 

  See Also 

PerformInput Protocol 
 

Description: 

This protocol is used to inject data into the network. The implementation of the performInput 
function computes the next sample of data for each of the input channels (PEs of the attached 
component) and writes the floating-point values to the data vector. 

 

DLL Prototype: 
 
void performInput( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *data,      // Pointer to the data 
 int     rows,       // Number of rows of data 
 int     cols        // Number of cols of data 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters and user defined structures for each copy of a component using a particular 
DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData structure. 
data 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the 
attached component. This is where the next sample of data is written to. The size of the block in 
bytes is rows*cols*sizeof(NSFloat), and the floating point values are arranged in row-major order. 
rows 

The number of rows of processing elements contained within the attached component, as specified 
within the component’s inspector. 
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cols 

The number of columns of processing elements contained within the attached component, as 
specified within the component’s inspector. 

 

Memory Management Protocol: 
 
DLLData *allocInput( 
 DLLData *oldInstance   // Pointer to the last instance if reallocating 
 int     rows,          // Number of rows of data 
 int     cols           // Number of cols of data 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 return instance; 
} 
 
void freeInput(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 
 

Component Implementations: 

DLLInput DLL Implementation  

 

 

  See Also 

PerformPrePost Protocol 
 

Description: 

This protocol is used for both preprocessing of network input as well as postprocessing of network 
output. The implementation of the performPrePost function reads the data from input and writes the 
processed data to output. The function returns a TRUE if the output is to be passed on to the next 
component, or FALSE if more data needs to be processed (more calls to performPrePost). 

It is important to understand the distinction between the preprocessor and postprocessor modes. 
The preprocessor gets its input from an Input component stacked above, and its output is the 
vector of processing elements of the component stacked below. The preprocessed output is 
normally accumulated to the existing activity (e.g., data[i] = data[i] + preprocessedData[i]), in order 
allow other components to inject data into the same component. The postprocessor’s input is the 
vector of PEs of the component stacked below and its output is a locally-stored vector, which is 
used by a Probe attached above. Note that this vector is not automatically zeroed, so that it can be 
used to store the postprocessed data from the previous call to performPrePost. 
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DLL Prototype: 
 
BOOL performPrePost( 
 DLLData *instance,   // Pointer to instance data (may be NULL) 
 NSFloat *input,      // Pointer to the input data 
 NSFloat *output,     // Pointer to the output data 
 int     rows,        // Number of rows of data 
 int     cols,        // Number of cols of data 
 BOOL    preprocessor // Flag to indicate whether this is a preprocessor 
                      // or postprocessor 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters and user defined structures for each copy of a component using a particular 
DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData structure. 
input 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the 
attached component that is feeding data into the processor. For the DLLPreprocessor, this is the 
component stacked above (using the Preprocessor access point) and for the DLLPostprocessor, 
this is the component stacked below. Note that for the DLLPostprocessor, the size of this vector is 
fixed based on the size of the component stacked below (rows*cols*sizeof(NSFloat). For the 
DLLPreprocessor, the size of this vector defaults to the size of output, but can be modified within 
the allocPrePost function. 
output 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the 
attached component that is retrieving data from the processor. For the DLLPostprocessor, this is 
the component stacked above (using the Postprocessor access point) and for the 
DLLPreprocessor, this is the component stacked below. Note that for the DLLPreprocessor, the 
size of this vector is fixed based on the size of the component stacked below 
(rows*cols*sizeof(NSFloat). For the DLLPostprocessor, the size of this vector defaults to the size of 
input, but can be modified within the allocPrePost function. 
rows 

The number of rows of processing elements contained within the attached component that is fixed 
in size (i.e., the component stacked below). 
cols 

The number of columns of processing elements contained within the attached component that is 
fixed in size (i.e., the component stacked below). 
preprocessor 

Flag to indicate if the component using the DLL is a DLLPreprocessor (TRUE) or a 
DLLPostprocessor (FALSE). 

 

Memory Management Protocol: 
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DLLData *allocPrePost( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int     *rows,         // Number of rows of data attached above -- can be 
                        // changed. The default is the number of rows 
                        // attached below. 
 int     *cols,         // Number of cols of data attached above -- can be 
                        // changed. The default is the number of cols 
                        // attached below. 
 BOOL    preprocessor   // Flag to indicate whether this is a preprocessor 
                        // or postprocessor 
 ); 
 
void freePrePost(DLLData *instance) 
{ 
 freeDLLInstance(instance);  
} 
 

Component Implementations: 

DLLPreprocessor and DLLPostprocessor DLL Implementation   

 

 

  See Also 

StaticProbe Family Protocols 
PerformOutput Protocol 

 

Description: 

This protocol is used to extract the data accessed by a static Probe. Each call to performOutput 
contains a single sample (of rows*cols PEs) of output data. This DLL is intended to be passive, 
meaning that the data vector should not be modified. The return value indicates whether the base 
Probe component is active (TRUE) or not (FALSE). 

 

DLL Prototype: 
 
BOOL performOutput( 
 DLLData  *instance,  // Pointer to instance data (may be NULL) 
 NSFloat  *data,      // Pointer to the data 
 int      rows,       // Number of rows of data 
 int      cols        // Number of cols of data 
 ); 
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Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters and user defined structures for each copy of a component using a particular 
DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData structure. 
data 

Pointer to a block of floating point numbers containing one sample of output for all channels 
(rows*cols). 
rows 

The number of rows contained within data. 
cols 

The number of cols contained within data. 

 

Memory Management Protocol: 
 
DLLData *allocOutput( 
 DLLData *oldInstance,  // Pointer to the last instance if reallocating 
 int     rows,          // Number of rows of data 
 int     cols           // Number of cols of data 
 ) 
{ 
 DLLData *instance = allocDLLInstance(oldInstance); 
 return instance; 
} 
 
void freeOutput(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

Static Probe DLL Implementation   

 

 

  See Also 

Transformer Family Protocols 
PerformTransform Protocol 
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Description: 

This protocol is used to transform temporal output data. For each sample of data to be processed, 
the performTransform function is called once for each channel. The caller copies its buffer (of 
length samples) to the data buffer for that particular channel. The implementation then processes 
the data and writes the transformed data back to the same buffer. The return value specifies 
whether or not the data for the particular channel is to be displayed by the component stacked on 
the Transformer Access Points  access point. 

 

DLL Prototype: 
 
BOOL performTransform( 
 DLLData *instance,  // Pointer to instance data 
 NSFloat *data,      // Pointer to the buffered data 
 int     length,     // Length of the buffer to be transformed 
 int     channel     // Current channel number 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters and user defined structures for each copy of a component using a particular 
DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData structure. 
data 

Pointer to a block of floating point numbers containing the output for a single channel over time. 
This buffer is also used for writing the transformed data. The size of the buffer is 
length*sizeof(NSFloat). 
length 

The number of samples stored in the data buffer. 
channel 

The channel number that corresponds to the data buffer. Note that for each sample of output, the 
performTransform function is called once for each channel. 

 

Memory Management Protocol: 
 
DLLData *allocTransform( 
 int  length,   // Length of the buffer to be transformed 
 int  channels  // Number of channels to be transformed 
 ) 
 
void freeTransform(DLLData *instance) 
{ 
 if (instance) 
  free(instance); 
} 
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Component Implementations: 

Transformer DLL Implementation   

 

 

  See Also 

Schedule Family Protocols 
PerformScheduler Protocol 

 

Description: 

This protocol is implemented by members of the Scheduler family. The function is called during 
each epoch that has scheduling active (specified by the user within the Scheduler inspector). The 
implementation simply applies a function of beta to the vector of data. Note that the base 
component automatically handles the clipping if the data exceeds the boundaries specified by the 
user. 

 

DLL Prototype: 
 
BOOL performScheduler( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,     // Pointer to the data to be scheduled 
 int     length,    // Number of elements in scheduled data vector 
 NSFloat beta       // Scheduler parameter (specified by user) 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
data 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the 
attached component at a particular access point. This is the data that is modified (i.e., scheduled) 
by the Scheduler component. The size of the block in bytes is length*sizeof(NSFloat). 
length 

The number of processing elements contained within the attached component at a particular 
access point. 
beta 
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User-specified parameter that is used to define the rate of change of the scheduling function. 

 

Memory Management Protocol: 
 
DLLData *allocScheduler( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     length         // Number of PEs in scheduled data vector 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeScheduler(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

LinearScheduler DLL Implementation   

LogScheduler DLL Implementation   

ExpScheduler DLL Implementation   

 

 

  See Also 

ControlTransmitter Family Protocols 
PerformThresholdTransmitter Protocol 

 

Description: 

This protocol is used by ThresholdTransmitter components to signal when a threshold has been 
crossed by returning a TRUE from the function. The implementation of this protocol scans through 
the values within data, and determines if the user-defined threshold (specified by the threshold, 
lessThan, and type parameters) has been crossed. 

 

DLL Prototype: 
 
BOOL performThresholdTransmitter( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *data,     // Pointer to the data at the access point 
 int     rows,      // Number of rows of PEs in the layer 
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 int     cols,      // Number of columns of PEs in the layer 
 NSFloat threshold, // Threshold specified by user 
 BOOL    lessThan,  // Less than/greater than state (user-specified) 
 int     type       // Threshold type, 0=All 1=One 2=Average 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
data 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the 
attached component at a particular access point. The size of the block in bytes is 
rows*cols*sizeof(NSFloat), and the floating point values are arranged in row-major order. 
rows 

The number of rows of processing elements contained within the attached component at a 
particular access point. 
cols 

The number of cols of processing elements contained within the attached component at a particular 
access point. 
threshold 

Threshold value specified by the user within the ThresholdTransmitter inspector. 
lessThan 

Flag to indicate whether the crossing occurs when the data is greater than (lessThan=FALSE) or 
less than (lessThan=TRUE) the threshold value. This flag is specified by the user within the 
ThresholdTransmitter inspector. 
type 

Flag to indicate whether All elements (type=0), One element (type=1), or the Mean element 
(type=2) of the attached access point are used to determine if the threshold has been crossed. This 
flag is specified by the user within the ThresholdTransmitter inspector. 

 

Memory Management Protocol: 
 
DLLData *allocThresholdTransmitter( 
 DLLData *oldInstance,  // Pointer to last instance if reallocating 
 int     rows,          // Number of rows of PEs in the layer 
 int     cols           // Number of columns of PEs in the layer 
 ) 
{ 
 DLLData *instance = NULL; 



 928

 return instance; 
} 
 
void freeThresholdTransmitter(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

ThresholdTransmitter DLL Implementation   

 

 

  See Also 

Unsupervised Family Protocols 
PerformUnsupervised Protocol 

 

Description: 

This protocol is similar to the PerformSynapse DLL Protocol  protocol, except that there is an 
additional parameter for the learning rate (for all PEs). Note that the weight matrix is adapted by the 
DLL implementation of the Unsupervised component, instead of an attached BackSynapse 
component as required by supervised learning. 

 

DLL Prototype: 
 
void performUnsupervised( 
 DLLData *instance, // Pointer to instance data (may be NULL) 
 NSFloat *input,    // Pointer to the input layer of PEs 
 int     inRows,    // Number of rows of PEs in the input layer 
 int     inCols,    // Number of columns of PEs in the input layer 
 NSFloat *output,   // Pointer to the output layer 
 int     outRows,   // Number of rows of PEs in the output layer 
 int     outCols    // Number of columns of PEs in the output layer 
 NSFloat *weights   // Pointer to the fully-connected weight matrix 
 NSFloat step       // Learning rate 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
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using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
input 

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements 
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values 
are arranged in row-major order. 
inRows 

The number of rows of processing elements contained within the feeding Axon, as specified within 
its inspector. 
inCols 

The number of columns of processing elements contained within the feeding Axon, as specified 
within its inspector. 
output 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon 
that is being fed by the Synapse. The size of the block in bytes is 
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order. 
outRows 

The number of rows of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
outCols 

The number of columns of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
weights 

Pointer to a block of floating point numbers that contain the adaptable weights of the Synapse. The 
size of the block in bytes is inRows*inCols*outRows*outCols*sizeof(NSFloat), and the floating point 
values are arranged in input-major order. Note that this matrix is adapted by the Unsupervised 
component itself. 
step 

A scalar used to specify the learning rate of the unsupervised procedure. 

 

Memory Management Prototypes: 
 
DLLData *allocUnsupervised( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     inRows,       // Number of rows of PEs in the input layer 
 int     inCols,       // Number of columns of PEs in input layer 
 int     outRows,      // Number of rows of PEs in the output layer 
 int     outCols       // Number of columns of PEs in output layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
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} 
 
void freeUnsupervised(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

HebbianFull DLL Implementation   

OjasFull DLL Implementation   

SangersFull DLL Implementation  

 

 

  See Also 

Competitive Family Protocols 
PerformCompetitive Protocol 

 

Description: 

This protocol is similar to the PerformUnsupervised DLL Protocol  protocol, except that there is an 
additional parameter that contains the winning PE at the output. Implementations of this protocol 
are responsible for updating the weights, which are normally only those connected to the winning 
PE. Note that this protocol is used for both Standard Competitive learning and Competitive with a 
Conscience, since the computation of the winning PE is made by the component itself. 

 

DLL Prototype: 
 
void performCompetitive( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *input,     // Pointer to the input layer of PEs 
 int     inRows,     // Number of rows of PEs in the input layer 
 int     inCols,     // Number of columns of PEs in the input layer 
 NSFloat *output,    // Pointer to the output layer 
 int     outRows,    // Number of rows of PEs in the output layer 
 int     outCols     // Number of columns of PEs in the output layer 
 NSFloat *weights    // Pointer to the fully-connected weight matrix 
 NSFloat step        // Learning rate 
 int     winner      // Index of winning PE  
 ); 

 

Variables: 
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instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
input 

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements 
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values 
are arranged in row-major order. 
inRows 

The number of rows of processing elements contained within the feeding Axon, as specified within 
its inspector. 
inCols 

The number of columns of processing elements contained within the feeding Axon, as specified 
within its inspector. 
output 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon 
that is being fed by the Synapse. The size of the block in bytes is 
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order. 
outRows 

The number of rows of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
outCols 

The number of columns of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
weights 

Pointer to a block of floating point numbers that contain the adaptable weights of the Synapse. The 
size of the block in bytes is inRows*inCols*outRows*outCols*sizeof(NSFloat), and the floating point 
values are arranged in input-major order. Note that this matrix is adapted by the Unsupervised 
component itself. 
step 

A scalar used to specify the learning rate of the unsupervised procedure. 
winner 

The index of the winning PE within output. 

 

Memory Management Prototypes: 
 
DLLData *allocCompetitive( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     inRows,       // Number of rows of PEs in the input layer 
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 int     inCols,       // Number of columns of PEs in input layer 
 int     outRows,      // Number of rows of PEs in the output layer 
 int     outCols       // Number of columns of PEs in output layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeCompetitive(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

StandardFull 

ConscienceFull 

 

 

  See Also 

Kohonen Family Protocols 
PerformKohonen Protocol 

 

Description: 

This protocol is similar to the PerformUnsupervised DLL Protocol  protocol, except that there are 
two parameters to specify the location of the winning PE, and a third that contains the 
neighborhood size specified by the user within the component’s inspector. 

 

DLL Prototype: 
 
void performKohonen( 
 DLLData *instance,  // Pointer to instance data (may be NULL) 
 NSFloat *input,     // Pointer to the input layer of PEs 
 int     inRows,     // Number of rows of PEs in the input layer 
 int     inCols,     // Number of columns of PEs in the input layer 
 NSFloat *output,    // Pointer to the output layer 
 int     outRows,    // Number of rows of PEs in the output layer 
 int     outCols     // Number of columns of PEs in the output layer 
 NSFloat *weights    // Pointer to the fully-connected weight matrix 
 NSFloat step        // Learning rate 
 int     winningRow, // Index of winning row  
 int     winningCol, // Index of winning column  
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 int     size        // Size of the neighborhood 
 ); 

 

Variables: 
instance 

Pointer to data that is specific to a particular instance (copy) of a component. Instance data is used 
to store parameters, adaptive weights, and user defined structures for each copy of a component 
using the DLL on the breadboard.  See The DLLData Structure for documentation on the DLLData 
structure. 
input 

Pointer to a block of floating point numbers that contain the feeding Axon’s processing elements 
(PEs). The size of the block in bytes is inRows*inCols*sizeof(NSFloat), and the floating point values 
are arranged in row-major order. 
inRows 

The number of rows of processing elements contained within the feeding Axon, as specified within 
its inspector. 
inCols 

The number of columns of processing elements contained within the feeding Axon, as specified 
within its inspector. 
output 

Pointer to a block of floating point numbers that contain the processing elements (PEs) of the Axon 
that is being fed by the Synapse. The size of the block in bytes is 
outRows*outCols*sizeof(NSFloat), and the floating point values are arranged in row-major order. 
outRows 

The number of rows of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
outCols 

The number of columns of processing elements contained within the Axon that is being fed by the 
Synapse, as specified within the Axon’s inspector. 
weights 

Pointer to a block of floating point numbers that contain the adaptable weights of the Synapse. The 
size of the block in bytes is inRows*inCols*outRows*outCols*sizeof(NSFloat), and the floating point 
values are arranged in input-major order. Note that this matrix is adapted by the Unsupervised 
component itself. 
step 

A scalar used to specify the learning rate of the unsupervised procedure. 
winningRow 

The row index of the winning PE within output. 
winningCol 
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The column index of the winning PE within output. 
size 

The neighborhood size specified by the user within the component’s inspector. 

 

Memory Management Prototypes: 
 
DLLData *allocKohonen( 
 DLLData *oldInstance, // Pointer to last instance if reallocating 
 int     inRows,       // Number of rows of PEs in the input layer 
 int     inCols,       // Number of columns of PEs in input layer 
 int     outRows,      // Number of rows of PEs in the output layer 
 int     outCols       // Number of columns of PEs in output layer 
 ) 
{ 
 DLLData *instance = NULL; 
 return instance; 
} 
 
void freeKohonen(DLLData *instance) 
{ 
 freeDLLInstance(instance); 
} 
 

Component Implementations: 

LineKohonen DLL Implementation   

SquareKohonen DLL Implementation   

DiamondKohonen DLL Implementation   

 

 

  See Also 
 

Macros 
Macro Introduction 

 

The NeuroSolutions' macro language consists of hundreds of function calls, which are available to 
you as the user to create and run very elaborate scripts of operations. To see the power of the 
macros, try Running the Demos – they were created entirely with macros. 

 

It is usually quite simple to create these scripts using the "Record at Cursor" button of the 
MacroWizard Edit Page. However, more complex macros require that you write some commands 
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manually. For this reason, you will need to become familiar with the reference pages of the Macro 
Language. 

 

  See Also 

 

Macro Language 
Macro Language 
 

Each component on the breadboard has a set of macro commands that are associated with it. The 
easiest way to bring up the reference page for these commands is to perform the following steps: 

 
� Click on the "Context Help" button of the Help Toolbar. 

� Click on the desired component to display its main help page. 

� Scroll down to the bottom of the page and click on "Macro Actions". Note: if there is not a "Macro Actions" 
link then you will want to go to the help page for the component's superclass (the superclass link is at the top of 
the page). 

� From there you see a summary of each function specific to that component. You can click on a particular 
function to view its syntax and parameter descriptions. You can also click on the "Superclass Macro Actions" 
link at the top to view the other functions that are supported by the component. 

 

To issue a component-specific command from a macro you simply need to precede the function name by the 
component name (see "Component Name" within the Engine Inspector ) and a period ('.'). 

 

In addition to the component-specific macro commands, there are commands that allow you to control the active 
breadboard and the NeuroSolutions application. To issue these commands from a macro you simply need to 
precede the function name by "activeBreadboard." or "application." respectively. 

 

  See Also 

Active Breadboard Macro Actions 
Overview   

Action Description 
alignBottom  Moves the selected components so that the bottom borders all have the same y 
coordinate on the breadboard. 
 
alignLeft  Moves the selected components so that the left borders all have the same x 
coordinate on the breadboard. 
 
alignRight  Moves the selected components so that the right borders all have the same x 
coordinate on the breadboard. 
 
alignTop  Moves the selected components so that the top borders all have the same y 
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coordinate on the breadboard. 
 
animatePointX  Returns the x-coordinate of the animate point (the location of the next stamped 
component). 
 
animatePointY  Returns the y-coordinate of the animate point (the location of the next stamped 
component). 
 
centerHorizontal  Moves the selected components horizontally to the center of the visible portion of 
the breadboard. 
 
centerObjects  Moves the selected components so that their centers all have the same x 
coordinate on the breadboard. 
 

centerVertical   Moves the selected components vertically to the center of the visible 
portion of the breadboard.  

 
copySelection  Assigns the currently selected component(s) to the pasteboard. 
 
copyToFile  Copies the currently selected components to the specified Clipboard file (*.nsc). 
 
cutSelection  Assigns the currently selected component(s) to the pasteboard and removes the 
components from the breadboard. 
 
deleteObject  Removes the specified named component from the breadboard. 
 
deleteSelection  Removes the currently selected component(s) from the breadboard. 
 
distributeHorizontal  Distributes the selected components within the horizontal space 
between the left-most selected component and the right-most selected component. 
 
distributeVertical  Distributes the selected components within the vertical space between the top 
selected component and the bottom selected component. 
 
isModified  Returns TRUE if the breadboard has been modified since the last save. 
 
lockWindowUpdate  Puts the breadboard in a state such that the display is not updated as 
the macro statements are being executed. Returns TRUE if the statement executed successfully. 
 
maximize  Maximizes the breadboard window within the NeuroSolutions window. 
 
minimize  Minimizes the breadboard window within the NeuroSolutions window. 
 
moveAnimatePointBy  Moves the animate point (the location of the next stamped component) 
by the specifed horizontal and vertical offsets. 
 
moveSelectionBy  Moves the selected components by the specifed horizontal and vertical 
offsets. 
 
moveToBack  Moves selected component behind all other components sharing the same 
space. 
 



 937

moveToFront  Moves selected component in front of all other components sharing the same 
space. 
 
onBreadboard  Returns TRUE if the specified named component exists on the breadboard.  
 
pasteFromFile  Places the contents of the specified Clipboard file (*.nsc) at the animate point. 
 
pasteToSelection  Copies the contents of the pasteboard to the breadboard at the animate 
point. 
 
pathName  Returns the full path of the breadboard file. 
 
promptToSaveModifications  Returns TRUE if the user is to be prompted to save the 
breadboard modifications when closing the document. 
 
replaceWith  Replaces the specified named component with a new component of the specified 
class. 
 
restore  Restores the breadboard window to its original size. 
 
runMacro  Runs the specified macro file. 
 
save  Saves the breadboard file. If the breadboard has not yet been saved then a Save As 
dialog box opens to specify the file name and location. 
 
saveAs  Saves the breadboard to the specified file path. 
 
select  Selects the named component. The previously selected components can either be 
included or not. 
 
selectKind  Selects all components that are members of a specified class, or members a 
sub-class of that class. 
 
selectMembers  Selects all components that are members of a specified class. 
 
selectRespondingTo  Selects all components that respond to the specified function name. 
 
sendDataToEngine  Passes data to the setEngineData function of the specified component. 
 
setAnimatePoint  Sets the animate point (the location of the next stamped component). 
 
setAnimatePointBottomLeft  Sets the animate point (the location of the next stamped 
component) relative to the bottom-left corner of the breadboard. 
 
setEditModeEnabledForTextAndButtons Set to TRUE to enable the text of the TextBoxEngine and 
the ButtonEngine components to be edited by the user.  
 
setPathName  Sets the full path of the breadboard file. 
 
setPromptToSaveModifications  Set to TRUE if the user is to be prompted to save the 
breadboard modifications when closing the document. 
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setTitle  Sets the breadboard's title (the string displayed in the title bar of a frame 
window).  

 
showOpenProbes  Set to TRUE to display the windows of all probes on the breadboard, 
and set to FALSE to hide them. 
 
sizeWindow  Sizes the breadboard window to the specified width and height. 
 
stampAndMove  Creates a new component of the specified class and sets the component name. 
 
stampOnAndMove  Creates a new component of the specified class and stamps it on top of 
the specified named component. 
 
stampOnMoveAndName  Creates a new component of the specified class, stamps it on top of the 
specified named component and names the new component. 
 
stampOnAndMoveAtAccessPoint  Creates a new component of the specified class and stamps it 
on top of the specified named component at the specified access point. 
 
title  Returns the breadboard's title (the string displayed in the title bar of a frame window). 
 
unlockWindowUpdate  Puts the breadboard in a state such that the display is updated as the 
macro statements are being executed. 
 
unselect  Unselects the name component from those that are selected. 
 

Application Macro Actions 
Overview    

Action Description 

activateBreadboard  Sets the breadboard with the specified name (with extension) as the 
active document. 

 
breadboards  Sets the breadboard with the specified name (without extension) as the active 
document. 
 
closeApplication  Closes the NeuroSolutions program. 
 
closeBreadboard  Closes the active breadboard. 
 
displayInspector  Opens or closes the inspector window. 
 
horizontalResolution  Returns the number of horizontal pixels of the user's desktop area. 
 
maximize  Maximizes the NeuroSolutions window. 
 
minimize  Minimizes the NeuroSolutions window. 
 
moveWindow  Moves the upper-left corner of the NeuroSolutions window to the specified 
location. 
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newBreadboard  Creates an empty breadboard window. 
 
openApplicationDocument  Opens a file into an application based on the file's extension. 
 
openBreadboard  Opens a breadboard given the full path of the file. 
 
openDefaultEditorWithFile  Opens a file into an application based on the file's extension, and allows 
the user to select an application if one is not associated. 
 
pathFromActiveBreadboard  Returns the full path of a file given the path relative to the 
active breadboard. 
 
pathFromMacro  Returns the full path of a file given the path relative to the current macro file. 
 
pathFromNS  Returns the full path of a file given the path relative to the NeuroSolutions 
executable. 
 
pathFromWizard  Returns the full path of a file given the path relative to the executable of the 
specifed wizard (found in the Tools Menu of NeuroSolutions). 
 
restore  Restores the NeuroSolutions window. 
 
runExecutable  Lauches an executable file given its path. 
 
runWizard  Lauches a wizard given its name (found in the Tools Menu of NeuroSolutions). 
 
runSubMacro  Runs the specified macro within the currently running macro. 
 
setUserParameter  Sets one of 10 user-defined string parameters. 
 
sizeWindow  Sizes the NeuroSolutions window to the specified height and width. 
 
sleep  Halts processing for a set number of milliseconds. 
 
strcat  Returns the concatenation of the two passed strings. 
 
verticalResolution  Returns the number of vertical pixels of the user's desktop area. 
 

MacroWizard Window 
MacroWizard Window 

 

This window is used to select, edit, record, run and debug NeuroSolutions macro files (*.nsm). 
Macro files contain a series of macro commands, each of which correspond to a user interface 
command (e.g., stamping a component or changing a component parameter). This very powerful 
yet simple programming language allows you to write very elaborate scripts, which can be run from 
within NeuroSolutions or from other OLE server applications such as Excel. 
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  See Also 

MacroWizard List Page 
 

 

 

 

This page serves as a file browser for macros. All macro files (ones with a "nsm" extension) in the 
current directory are displayed in the list box. Single-click on the item to select the macro or double-
click to run it. Double-click on a directory labeled with a plus (+) (or single-click on the plus) to 
expand the directory tree. 

 
New 

Displays a window to enter the name of a new macro. A blank macro file (*.nsm) is created with the 
specified name and placed in the current directory of the macro browser. 
Delete 

Deletes the selected macro from the file system. 
Stamp 

Creates a graphical button for the selected macro and stamps it on the breadboard. When this 
macro button is pressed, the corresponding macro is run. To move this button you must first select 
a rectangular region around the button to highlight it.  
Editor 
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Opens a text editor for the selected macro. The editor used is determined based on the application 
associated with the "nsm" extension defined within Windows. Click here for instructions on 
associating an editor with a file extension. 
Copy as VB 

Generates VBA (Visual Basic for Applications) code for the selected macro and copies it to the 
Windows clipboard. This code can then be pasted into an Excel module sheet as a user-defined 
script. This code can also be used within Visual Basic or any other development environment that 
supports OLE (some syntax differences may exist). 
Run 

Executes the entire macro. 

 

  See Also 

MacroWizard Edit Page 
 

 

 

 

This page serves as a macro editor. The edit box allows you to directly modify the ASCII text of the 
macro file (*.nsm). If the button is pressed, NeuroSolutions internally translates all of the user 
interface commands (e.g., stamping components and changing component parameters) into the 
macro language. Once the stop button is pressed from the Macro Toolbar, the recording stops and 
the recorded macro commands are inserted into the macro. 
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Toggle Breakpoint 

Sets a breakpoint at the line where the cursor is currently located. When a breakpoint is set and the 
macro is run (see MacroWizard List Page) the execution stops just before the tagged line and the 
MacroWizard Debug Page is displayed. From there you can single step through the macro to track 
down any bugs. 
Record at Cursor 

Starts the macro recording process and inserts the recorded macro commands into the macro file 
once the Stop button has been pressed (from the Macro Toolbar). The macro commands are 
inserted beginning at the current cursor position. Note that if you are inserting commands in the 
middle of the macro then you will want to insert a carriage return to put the cursor on a blank line. 

 

  See Also 

MacroWizard Debug Page 
 

 

 

 

This page serves as a macro debugger. The edit box displays the macro command to be executed 
next. Change the selected command by single-clicking within the edit box. The buttons below allow 
you to single step through the commands one at a time, or execute the remainder of the macro.  

 
Single Step 
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Executes the macro command that is selected within the edit box and selects the next command in 
the list. 
Continue 

Executes from the selected command through the end of the macro, or until a breakpoint is 
reached. 

 

  See Also 

MacroWizard Watch Page 
 

 

 

 

This page displays the values of all active variables. This is most commonly used to find out the 
result returned by the previous macro command (using the "lastResult" variable). 

 
Value 

Displays the value for the variable selected within the Variables list box above. Change the variable 
to examine by single-clicking on the item in the list. 

 

  See Also 
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Application Macro Actions 
breadboards 

Overview MacroActions 

Syntax 

application. breadboards(name) 

Parameters Type Description 
return void 
 
name string The name of the breadboard (without extension) to activate. 

 

closeBreadboard 
Overview MacroActions 

Syntax 

componentName. closeBreadboard() 

Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

horizontalResolution 
Overview MacroActions 

Syntax 

componentName. horizontalResolution() 

Parameters Type Description 
return int The number of horizontal pixels of the user's desktop area. 
 
componentName  Name defined on the engine property page. 

 

maximize 
Overview MacroActions 

Syntax 

componentName. maximize() 
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Parameters Type Description 
return void 
 
componentName  Name defined on the engine property page. 

 

minimize 
Overview MacroActions 

Syntax 

application. minimize() 

Parameters Type Description 
return void 

 

moveWindow 
Overview MacroActions 

Syntax 

application. moveWindow(x, y) 

Parameters Type Description 
return void 
 
x int The new x-coordinate for the upper-left corner of the NeuroSolutions window. 

 
y int The new y-coordinate for the upper-left corner of the NeuroSolutions window. 

 

newBreadboard 
Overview MacroActions 

Syntax 

application. newBreadboard() 

Parameters Type Description 
return void 
 

openBreadboard 
Overview MacroActions 

Syntax 
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application. openBreadboard(path) 

Parameters Type Description 
return void 
 
path string The full path of the breadboard file to open. 

 

pathFromActiveBreadboard 
Overview MacroActions 

Syntax 

application. pathFromActiveBreadboard(relativePath) 

Parameters Type Description 
return string The full path of the file. 
 
relativePath string The file path relative to the active breadboard. 

 

pathFromMacro 
Overview MacroActions 

Syntax 

application. pathFromMacro(relativePath) 

Parameters Type Description 
return string The full path of the file. 
 
relativePath string The file path relative to the currently running macro. 

 

pathFromNS 
Overview MacroActions 

Syntax 

application. pathFromNS(relativePath) 

Parameters Type Description 
return string The full path of the file. 
 
relativePath string The file path relative to the NeuroSolutions executable. 
 

pathFromWizard 
Overview MacroActions 
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Syntax 

application. pathFromWizard(wizardName, relativePath) 

Parameters Type Description 
return string The full path of the file. 
 
wizardName string The name of a wizard found within the Tools Menu of NeuroSolutions. 

 
relativePath string The file path relative to the named wizard. 

 

restore 
Overview MacroActions 

Syntax 

application. restore() 

Parameters Type Description 
return void 
 

runSubMacro 
Overview MacroActions 

Syntax 

application. runSubMacro(path) 

Parameters Type Description 
return void 
 
path string The path of the macro file to run. 

 

runWizard 
Overview MacroActions 

Syntax 

application. runWizard(wizardName) 

Parameters Type Description 
return void 
 
wizardName string The name of the wizard to run (found within the Tools Menu of 
NeuroSolutions). 
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setUserParameter 
Overview MacroActions 

Syntax 

application. setUserParameter(index, aString) 

Parameters Type Description 
return void 
 
index int The index of the parameter array (0 <= index <= 9). 

 
aString string The user-defined parameter. 

 

sizeWindow 
Overview MacroActions 

Syntax 

application. sizeWindow(cx, cy) 

Parameters Type Description 
return void 

 
cx int The new width of the NeuroSolutions window. 

 
cy int The new height of the NeuroSolutions window. 

 

sleep 
Overview MacroActions 

Syntax 

application. sleep(time) 

Parameters Type Description 
return void 
 
time int The number of milliseconds to halt the processing for. 

 

verticalResolution 
Overview MacroActions 

Syntax 
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application. verticalResolution() 

Parameters Type Description 
return int The number of vertical pixels of the user's desktop area. 
 

strcat 
Overview MacroActions 

Syntax 

application. strcat(str1, str2) 

Parameters Type Description 
return string The concatenation of str1 and str2. 
 
str1 string The left half of the concatenated string. 

 
str2 string The right half of the concatenated string. 

 

displayInspector 
Overview MacroActions 

Syntax 

application. displayInspector(show) 

Parameters Type Description 
return void 
 
show BOOL TRUE to show the inspector window and FALSE to hide it. 

 

openApplicationDocument 
Overview MacroActions 

Syntax 

application. openApplicationDocument(path) 

Parameters Type Description 
return void  
 
path string Full path of the document file to open. 
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closeApplication 
Overview MacroActions 

Syntax 

application. closeApplication() 

Parameters Type Description 
return void 
 

activateBreadboard 
Overview MacroActions 

Syntax 

application. activateBreadboard(name) 

Parameters Type Description 
return void 
 
name string The name of the breadboard (with extension) to activate. 

 

runExecutable 
Overview MacroActions 

Syntax 

application. runExecutable(path) 

Parameters Type Description 
return voie 
 
path string The full path of the executable file to run. 

 

openDefaultEditorWithFile 
Overview MacroActions 

Syntax 

application. openDefaultEditorWithFile(path) 

Parameters Type Description 
return void 
 
path string Full path of the document file to open. 
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Active Breadboard Macro Actions 
alignBottom 

Overview Macro Actions 

Syntax 

activeBreadboard. alignBottom() 

Parameters Type Description 
return void  

 

alignLeft 
Overview Macro Actions 

Syntax 

activeBreadboard. alignLeft() 

Parameters Type Description 
return void  

 

alignRight 
Overview Macro Actions 

Syntax 

activeBreadboard. alignRight() 

Parameters Type Description 
return void  
 

alignTop 
Overview Macro Actions 

Syntax 

activeBreadboard. alignTop() 

Parameters Type Description 
return void  

 

animatePointX 
Overview Macro Actions 
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Syntax 

activeBreadboard. animatePointX() 

Parameters Type Description 
return int The x-coordinate of the animate point (the location of the next stamped 
component). 
 

animatePointY 
Overview Macro Actions 

Syntax 

activeBreadboard. animatePointY() 

Parameters Type Description 
return int The y-coordinate of the animate point (the location of the next stamped 
component). 

 

centerHorizontal 
Overview Macro Actions 

Syntax 

activeBreadboard. centerHorizontal() 

Parameters Type Description 
return void  

 

centerObjects 
Overview Macro Actions 

Syntax 

activeBreadboard. centerObjects() 

Parameters Type Description 
return void  
 

centerVertical 
Overview Macro Actions 

Syntax 

activeBreadboard. centerVertical() 
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Parameters Type Description 
return void  

 

copySelection 
Overview Macro Actions 

Syntax 

activeBreadboard. copySelection() 

Parameters Type Description 
return void 

 

copyToFile 
Overview Macro Actions 

Syntax 

activeBreadboard. copyToFile(path) 

Parameters Type Description 
return void  

 
path string The path of the clipboard file (*.nsc) to copy the currently selected components to 
(see "Copy to File" within the Edit Menu and Toolbar Commands page). 

 

cutSelection 
Overview Macro Actions 

Syntax 

activeBreadboard. cutSelection() 

Parameters Type Description 
return void 
 

deleteObject 
Overview Macro Actions 

Syntax 

activeBreadboard. deleteObject() 

Parameters Type Description 
return void  
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deleteSelection 
Overview Macro Actions 

Syntax 

activeBreadboard. deleteSelection() 

Parameters Type Description 
return void 

 

distributeHorizontal 
Overview Macro Actions 

Syntax 

activeBreadboard. distributeHorizontal() 

Parameters Type Description 
return void 

 

distributeVertical 
Overview Macro Actions 

Syntax 

activeBreadboard. distributeVertical() 

Parameters Type Description 
return void 
 

isModified 
Overview Macro Actions 

Syntax 

activeBreadboard. isModified() 

Parameters Type Description 
return BOOL TRUE if the breadboard has been modified since it was last saved. 

 

lockWindowUpdate 
Overview Macro Actions 
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Syntax 

activeBreadboard. lockWindowUpdate() 

Parameters Type Description 
return void Returns TRUE if the statement executed successfully. 

 

maximize 
Overview Macro Actions 

Syntax 

activeBreadboard. maximize() 

Parameters Type Description 
return void 

 

minimize 
Overview Macro Actions 

Syntax 

activeBreadboard. minimize() 

Parameters Type Description 
return void 

 

moveAnimatePointBy 
Overview Macro Actions 

Syntax 

activeBreadboard. moveAnimatePointBy(x, y) 

Parameters Type Description 
return void 
 
x int The horizontal offset to move the animate point by. 
 
y int The vertical offset to move the animate point by. 
 

moveSelectionBy 
Overview Macro Actions 

Syntax 
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activeBreadboard. moveSelectionBy(x, y) 

Parameters Type Description 
return void 

 
x int The horizontal offset to move the selected components by. 
 
y int The vertical offset to move the selected components by. 

 

moveToBack 
Overview Macro Actions 

Syntax 

activeBreadboard. moveToBack() 

Parameters Type Description 
return void 

 

moveToFront 
Overview  Macro Actions 

Syntax 

activeBreadboard. moveToFront() 

Parameters Type Description 
return void 
 

onBreadboard 
Overview Macro Actions 

Syntax 

activeBreadboard. onBreadboard(name) 

Parameters Type Description 
return BOOL TRUE if the named component is on the breadboard. 
 
name string The component name. 

 

pasteFromFile 
Overview Macro Actions 
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Syntax 

activeBreadboard. pasteFromFile(path) 

Parameters Type Description 
return void  
 
path string The Clipboard file (*.nsc) path that contains the components to paste (see "Paste 
from File" within the Edit Menu and Toolbar Commands page). 
 

pasteToSelection 
Overview Macro Actions 

Syntax 

activeBreadboard. pasteToSelection() 

Parameters Type Description 
return void 
 

pathName 
Overview Macro Actions 

Syntax 

activeBreadboard. pathName() 

Parameters Type Description 
return string The full path of the breadboard file. 

 

replaceWith 
Overview Macro Actions 

Syntax 

activeBreadboard. replaceWith(name, class) 

Parameters Type Description 
return void 
 
name string The name of the component to replace. 

 
class string The class of the new component. 
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restore 
Overview Macro Actions 

Syntax 

activeBreadboard. restore() 

Parameters Type Description 
return void 
 

runMacro 
Overview Macro Actions 

Syntax 

activeBreadboard. runMacro(path) 

Parameters Type Description 
return void 
 
path string The full path of the macro file to run. 
 

save 
Overview Macro Actions 

Syntax 

activeBreadboard. save() 

Parameters Type Description 
return void 
 

saveAs 
Overview Macro Actions 

Syntax 

activeBreadboard. saveAs(path) 

Parameters Type Description 
return void 
 
path string The full path of the breadboard file. 

 

select 
Overview Macro Actions 
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Syntax 

activeBreadboard. select(name, keep) 

Parameters Type Description 
return void 
 
name string The name of the component to select. 
 
keep BOOL TRUE to add the component to the previous selection and FALSE to make the 
component the only selection. 
 

selectKind 
Overview Macro Actions 

Syntax 

activeBreadboard. selectKind(class, keep) 

Parameters Type Description 
return void 
 
class string The class name of the components to select. 
 
keep BOOL TRUE to add the component to the previous selection and FALSE to make the 
component the only selection. 
 

selectMembers 
Overview Macro Actions 

Syntax 

activeBreadboard. selectMembers(class, keep) 

Parameters Type Description 
return void 
 
class string The class name of the components to select. 
 
keep BOOL TRUE to add the component to the previous selection and FALSE to make the 
component the only selection. 

selectRespondingTo 
Overview Macro Actions 

Syntax 

activeBreadboard. selectRespondingTo(forYes, action, keep) 

Parameters Type Description 
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return void 
 
forYes BOOL TRUE to select only those components that return a non-null value from the 
function. 
 
action string The name of the function. 
 
keep BOOL TRUE to add the component to the previous selection and FALSE to make the 
component the only selection. 
 

sendDataToEngine 
Overview Macro Actions 

Syntax 

activeBreadboard. sendDataToEngine(data, component) 

Parameters Type Description 
return void 
 
data variant Data to pass to the setEngineData function (see the reference pages for the 
OLEInput, Soma, and the GaussianAxon). 
 
component string The name of the component to pass the data to. 
 

setAnimatePoint 
Overview Macro Actions 

Syntax 

activeBreadboard. setAnimatePoint(x, y) 

Parameters Type Description 
return void 
 
x int The horizontal location of the animate point (the location of the next stamped 
component).  
 
y int The vertical location of the animate point (the location of the next stamped 
component). 
 

setAnimatePointBottomLeft 
Overview Macro Actions 

Syntax 

activeBreadboard. setAnimatePointBottomLeft(x, y) 

Parameters Type Description 
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return void 
 
x int The horizontal location of the animate point (the location of the next stamped 
component). 
 
y int The vertical location of the animate point (the location of the next stamped 
component) relative to the bottom of the breadboard window. 
 

setPromptToSaveModifications 
Overview Macro Actions 

Syntax 

activeBreadboard. setPromptToSaveModifications(aBool) 

Parameters Type Description 
return void 
 
aBool BOOL TRUE if the user is to be prompted to save the breadboard modifications when 
closing the document. 
 

showOpenProbes 
Overview Macro Actions 

Syntax 

activeBreadboard. showOpenProbes(aBool) 

Parameters Type Description 
return voie 
 
aBool BOOL TRUE to display the windows of all probes on the breadboard, and FALSE to 
hide them. 

 

sizeWindow 
Overview Macro Actions 

Syntax 

activeBreadboard. sizeWindow(cx, cy) 

Parameters Type Description 
return void 
 
cx int The new width of the breadboard window. 
 
cy int The new height of the breadboard window. 
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stampAndMove 
Overview Macro Actions 

Syntax 

activeBreadboard. stampAndMove(class, name) 

Parameters Type Description 
return void 
 
class string The class of the new component to be created. 
 
name string The name of the new component. 
 

stampOnAndMove 
Overview Macro Actions 

Syntax 

activeBreadboard. stampOnAndMove(class, name) 

Parameters Type Description 
return void 
 
class string The class of the new component to be created. 
 
name string The name of the component to stamp the new component on top of. 
 

stampOnMoveAndName 
Overview Macro Actions 

Syntax 

activeBreadboard. stampOnMoveAndName(class, onName, newName) 

Parameters Type Description 
return void 
 
class string The class of the new component to be created. 
 
onName string The name of the component to stamp the new component on top of. 
 
newName string The name of the new component. 
 

title 
Overview Macro Actions 
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Syntax 

activeBreadboard. title() 

Parameters Type Description 
return string The breadboard's title (the string displayed in the title bar of a frame window). 
 

unlockWindowUpdate 
Overview  Macro Actions 

Syntax 

activeBreadboard. unlockWindowUpdate() 

Parameters Type Description 
return void 
 

unselect 
Overview  Macro Actions 

Syntax 

activeBreadboard. unselect(name) 

Parameters Type Description 
return void 
 
name string The name of the component to remove from the selection group. 
 

stampOnAndMoveAtAccessPoint 
Overview Macro Actions 

Syntax 

activeBreadboard. stampOnAndMoveAtAccessPoint(class, name, access) 

Parameters Type Description 
return void  
 
class string The class of the new component to be created. 
 
name string The name of the component to stamp the new component on top of. 
 
access string The name of the access point to attach the new component to. 
 

setTitle 
Overview Macro Actions 
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Syntax 

activeBreadboard. setTitle(title) 

Parameters Type Description 
return void 
 
title string The new title of the breadboard window. 
 

setPathName 
Overview Macro Actions 

Syntax 

c activeBreadboard. setPathName(pathName) 

Parameters Type Description 
return void 
 
pathName string The new pathname of the breadboard file. 
 

setEditModeEnabledForTextAndButtons 
Overview Macro Actions 

Syntax 

activeBreadboard. setEditModeEnabledForTextAndButtons(bool) 

Parameters Type Description 
return void 
 
bool BOOL TRUE to allow the user to change the text of the TextBoxEngine and 
ButtonEngine components. 

promptToSaveModifications 
Overview Macro Actions 

Syntax 

activeBreadboard. promptToSaveModifications() 

Parameters Type Description 
return BOOL TRUE if the user is to be prompted to save changes when closing the 
breadboard. 
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OLE Automation 
OLE Automation Introduction 

 
NeuroSolutions is a fully-compliant OLE Automation Server. This means that NeuroSolutions can 
receive control messages from OLE Automation Controllers, such as Visual Basic, Microsoft Excel, 
Microsoft Access, and Delphi. All of the functions that are accessible through the NeuroSolutions 
Macro Language are also accessible from other applications by means OLE automation. 

Writing a fully-functioning VB program is as simple as recording a NeuroSolutions macro, clicking 
the "Convert to VB" button (see the MacroWizard List Page), and pasting the converted VB code 
into the desired VB application. A VB application might be written to set a network’s parameters, 
run the network, then retrieve the network’s output. The NeuroSolutions Demos include a sample 
VB application that communicates with NeuroSolutions via OLE and there is a complete Visual 
Basic Project included with the NeuroSolutions installation. 

Writing a Visual C++ program to interface with NeuroSolutions is a little more difficult, because 
there is no facility for directly converting from a macro to C++ code. However, the code generated 
from the "Convert to VB" operation can be used as a starting point for writing the C++ code. You 
may want to use the sample Visual C++ Project included with the NeuroSolutions installation as a 
starting point for your own OLE application. 

 

  See Also 

 

Sample Visual Basic Project Demonstrating OLE 
Automation 

 

The complete installation of NeuroSolutions includes a subdirectory named "OLE\Visual Basic". 
This contains a Visual Basic project, which injects data into a NeuroSolutions breadboard 
("OLE\Breadboard\MLPXor.nsb") and extracts the network output. The breadboard is a 1-hidden-
layer MLP trained with the exclusive-or data. 

To open the project, simply double-click on the file "OLEShellProject.vbp" from your Windows 
Explorer (Note: this project requires Visual Basic 5.0 or higher). Pressing the Start button of the 
Visual Basic toolbar should run the program and bring up the following dialog: 
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Click the "Open Breadboard" button, enter two values between –1 and 1, then click the "Compute 
Output" button. Notice that the network output displayed on the NeuroSolutions probe is copied to 
the dialog box. 

The code is pretty self-explanatory, however there are a few points worth mentioning: 

 

� The "NSApp" variable is the NeuroSolutions Application object. 

� The "NSBB" variable is the Active Breadboard object. 

� The sendDataToEngine function is what is used to inject the X and Y values into the network. 

� The getProbeData function is what is used to extract the Z value from the network. 

 

  See Also 
 

Sample Visual C++ Project Demonstrating OLE 
Automation 

 

The complete installation of NeuroSolutions includes a subdirectory named "OLE\VC++". This 
contains a Visual C++ project, which injects data into a NeuroSolutions breadboard 
("OLE\Breadboard\MLPXor.nsb") and extracts the network output. The breadboard is a 1-hidden-
layer MLP trained with the exclusive-or data. 

To open the project simply double-click on the file " OLEShell.dsw" from your Windows Explorer 
(Note: this project requires Visual C++ 5.0 or higher). Press F7 to build the project, then press F5 to 
run the program, which should bring up the following dialog: 

 

 

Click the "Open Breadboard" button, enter two values between –1 and 1, then click the "Compute 
Output" button. Notice that the network output displayed on the NeuroSolutions probe is copied to 
the dialog box. 

The code is pretty self-explanatory, however there are a few points worth mentioning: 
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� The " m_nsApp" variable is the NeuroSolutions Application object. 

� The " m_nsObject" variable is the Active Breadboard object. 

� The sendDataToEngine function is what is used to inject the X and Y values into the network. 

� The getProbeData function is what is used to extract the Z value from the network. 

 

  See Also 
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