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Abstract

We develop algebraic semantics of refinement modal logic using duality theory. Re-
finement modal logic has quantifiers that are interpreted using a refinement relation.
A refinement relation is like a bisimulation, except that from the three relational
requirements only ‘atoms’ and ‘back’ have to be satisfied. We study the dual notion
of refinement on algebras and present algebraic semantics of refinement modal logic.
To this end, we first present the algebraic semantics of action model logic quantifier,
and we then introduce an algebraic model based on the semantics of the refinement
quantifier in terms of the refinement relation. Then we show that refinement modal
logic is sound and complete with respect to this algebraic semantics.

Keywords: Refinement modal logic, arbitrary action model logic, dynamic
epistemic logic, algebraic semantics.

1 Introduction

In modal logic we attempt to formalize propositions about possibility and neces-
sity. In epistemic modal logics the modal operator is interpreted as knowledge
or belief [19], initially for a single knowing agent but later for a set of agents,
including their higher-order knowledge (i.e., what they know about each other)
[11]. The knowledge of agents is encoded in a relational structure known as a
Kripke model or relational structure, consisting of a domain of worlds, a binary
accessibility relation for each agent, and a valuation of atomic propositions
over the worlds. Informative updates can be formalized as yet another modal
operator, a dynamic modality, that is interpreted as a relation between such
Kripke models. A well-known form of informative updates are action models
[5], wherein the updates themselves also take the shape of a relational structure.

The Kripke model resulting from executing an action model in an initial
Kripke model can also can be seen as a refinement of that initial model. A
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refinement relation is like a bisimulation relation, except that from the three
relational requirements only ‘atoms’ and ‘back’ need to be satisfied. This there-
fore results in structural loss. From the perspective of knowledge change, this
implies that in the refined model agents know more, namely they are less un-
certain between different worlds. In [7] refinement modal logic (RML) is intro-
duced, wherein modal logic is augmented with a new operator 3 (and with its
dual V, they are interdefinable as usual), which quantifies over all refinements
of a given pointed model. In this logic the expression Jp stands for “there is
a refinement after which ¢.” In other words, Jy is true in a Kripke model M
with point s (we write M for such a pair) if there is a pointed model M/, such
that (M,, M.,) are a pair in the refinement relation, (we also say that M/, is a
refinement of M), and such that ¢ is true in M],. The logic is equally expres-
sive as basic modal logic. A well-known result is that action model execution
results in a refinement. We can similarly (although not trivially) augment the
logic of knowledge with refinement quantifiers, and also the multi-agent logic
of knowledge.

A different form of quantification is over action models. This has been
investigated in [18]. This logic is called arbitrary action model logic. It is an
extension of action model logic with an action model quantifier such that Jp
stands for “there is an action model such that after its execution ¢ (is true).”
Given such an expression Jy, in [18] Hales presents a method for synthesizing
a multi-pointed action model a7 after which ¢ is true (in the sense that Jp
is logically equivalent to (aT)p), and he also proved that the action model
quantifier is equivalent to the refinement quantifier.

In this paper we develop an algebraic semantics of refinement modal logic.
Already from close to the inception of dynamic epistemic logics, there has
been a strong current to model such logics in algebraic or coalgebraic settings
[3,4]. More recently, in [21,22] an algebraic semantics was proposed for public
announcement logic and action model logic. This methodology has further
been productively used in [9] for a probabilistic dynamic epistemic logic and in
[2] for epistemic updates on bilattices.

In [21,22], product updates are dually characterized through a construction
that transforms the complex algebra associated with a given Kripke model into
the complex algebra associated with the model updated by means of an action
model. Given a Kripke model M and an action model «, the result of executing
that action model can be seen as a submodel of a so-called intermediate model
that contains copies of M indexed by the domain of a. In this way, action model
logic can be endowed with an algebraic semantics that is dual (and equivalent)
to the relational one, via a Jénsson-Tarski-type duality [6]. In particular, this
holds for the multi-pointed action model cer such that Jp is equivalent to (o),
according [18] mentioned above.

We use this result to define the algebraic semantics of RML. Indeed, we
can dually characterize the algebraic notion of refinement relation as a lax-
morphism (named refinement morphism) between the complex algebras asso-
ciated with a given initial Kripke model and a ‘resulting’ Kripke model that
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is in the refinement relation with the initial model. Then, via the Jénsson-
Tarski duality, we associate that resulting Kripke model to a boolean algebra
with operators (BAO). Given the set of all refinements of the initial Kripke
model, we then take the product of all corresponding BAOs in order to de-
fine a unique algebra and the required refinement morphism. The motivation
behind our approach is to capture the non-constructive notion of refinement.
Whereas arbitrary action model logic approaches the notion of refinement with
brute force by having a witnessing action model that enforces the same post-
condition ¢ bound by the quantifier, refinement modal logic only needs the
existence of such an epistemic action (and thus the possibility of synthesizing
it) but not the actual construction.

Structure of the paper. In Section 2, we introduce modal logic, refinement
modal logic, action model logic, and arbitrary action model logic. In Section
3, we introduce relevant algebraic terminology. In Section 4, we present the
methodology to define the algebraic semantics of dynamic epistemic logics.
Finally, in Section 5, we present the algebraic semantics of refinement modal
logic. Section 6 describes our results in view of prior works and concludes. The
appendix contains the proofs of the results in Section 5.

2 Logical preliminaries

In this section, we succinctly introduce modal logic, action model logic [5],
arbitrary action model logic [18], and refinement modal logic [23,7]. As all
these logics are equally expressive, we can present them all as fragments of one
logical language. Throughout the paper, we assume a non-empty, countable
set of propositional atoms AtProp. We present here the single-agent version of
these logics. All results in this section generalize to the multi-agent setting.

Models. A (Kripke) frame is a pair F = (5, R) where S is the domain
consisting of worlds (or states), and R C S x S is a binary accessibility relation.
Given s € S, a pair (F, s), written as Fj, is a pointed frame, and a pair (F,T)
with T C S is a multi-pointed frame denoted Fr. A Kripke model is a triple
M = (S,R,V) where (S,R) is a frame and where V : AtProp — P(S) is a
valuation assigning to each propositional variable p € AtProp the subset of
the domain where the proposition p is true. Given a logical language £, an
action model over L is a triple @ = (S,R,Pre) where (S,R) is a frame and
where Pre : S — L is a precondition function. The elements of the domain of
an action model are called actions, or action points. Similarly to frames, we
also define (multi-)pointed action models: given s € S, a pair («, u), written as
ay, is a pointed action model, and a pair (a, T) with T C S is a multi-pointed
action model and denoted as at. A (multi-)pointed action model is also called
an epistemic action. The class of all action models with finite domains is AM.

Let M = (S,R,V) and M’ = (S’, R’, V') be given Kripke models. A non-
empty relation R C S x S’ is a bisimulation between M and M’ if for all
(s,8') € A
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atoms s € V(p) iff s’ € V/(p), for all p € AtProp;
forth vt € S, if R(s,t), 3t € S’ such that R'(s',t') and (¢,t') € R;
back V¢’ € S’ if R'(s',¢'), 3t € S such that R(s,t) and (¢,t') € R.

We write M ~ M’ (M and M’ are bisimilar) iff there is a bisimulation be-
tween M and M’, and we write M; ~ M/, (M, and M/, are bisimilar) iff this
bisimulation links s and s’. A relation R that satisfies atoms, back is called
a refinement. We say that M, refines M, and we write My = M/,

Languages. The language Ly is inductively defined as:

pu=pl-op|(eAe) | Op | VYo | [ae | Ve

where p € AtProp, (S,R,Pre) =a € AM and u € S.

We assume the usual abbreviations for propositional logical connectives,
and also Oy = —0-p, [at]e 1= A crlau]e, (auw)p == —la]-p (aT)p =
=[at]—p, Fp 1= VY-, and T 1= V.

The following fragments of the language will occur in the paper (with the
obvious restrictions): L£g of modal logic (K); Lag of action model logic (AML);

Ly gy of arbitrary action model logic (AAML); Loy of refinement modal logic
(RML).

Semantics. Let M = (S, R,V) be a Kripke model, s € S, (S,R,Pre) = « €
AM be an action model (note that it is finite), and u € S. The interpretation
of ¢ € Ly 1s defined inductively by

Ms Ep iff seV(p)

MsE=pny iff M;Eygand Mg =19

M = —-¢ iff M o

M, = Op iff forallte R(s): M; =

M =V iff for all M, : My > M!, implies M., |= ¢
M, = [og]e iff M = Pre(u) implies (M ® a)(s,u) = @
M, =V iff forall oy € AM : M, = o]

where M ® o = (5%, R*,V¢) is the product update defined as

S = {(s,u) € SxS| M Pre(u)}
(s,u)R*(s',u’") iff sRs and uRu’
velp) = (V(p) xS)nse

We say that M ® « is the model resulting from applying the epistemic action
« on the model M. The extension map [-ar : Loygy — P(S) for a p € Loyoy
is [p]lar i={s €S| Ms = p}. Aformula ¢ is valid on M, notation M [ ¢, if
for all s € S, M |E . A formula ¢ is valid, if for all M, M | ¢. Instead of
(M ® a)(s,uy we may write My ® .

Axiomatization AML. The axiomatization of AML consists of the rules and
axioms of K [18, Definition IV.1] along with the following axioms and the rule
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of necessitation for dynamic box modalities:

AP [oy]p < (Pre(u) — p) for all p € AtProp
AN [ay]—p < (Pre(u)i—]aw]e)

AC [ay](p A ) > ([ow]e A o))

AK [a,]0p ¢ (Pre(u) = A{Ofaw]e [ uRu'})

AU [at]p < Ajerlau)e
NecA From ¢ infer [a,]p

Axiomatization RML. The axiomatization of RML consists of the rules and

axioms of K and all substitution instances of the axioms and rules

R V(p =) = Vo = V) MP From ¢ — 1) and ¢ infer ¢
RProp Vp < p and V—p < —p NecK From ¢ infer O¢p
RK 3IVP < A <3P NecR From ¢ infer V¢

where for any finite set ® of Lyg formulas we define by abbreviation V& as
OViea ® A Npea Op and AOIP as A\ g OJp, where \ y¢ = L and
/\<p€@ p:=T.

Axiomatization AAML. The axiomatization of AAML is a substitution
schema consisting of the rules and axioms of the logics RML and AML.

Some results about K, RML, AAML, AML.

e [23, Prop. 4&5]: The result of executing an epistemic action in a pointed
model is a refinement of that model. Dually, for every refinement of a finite
pointed model there is an epistemic action such that its execution results in
a model bisimilar to that refinement.

* [18, Theorem V.3]: Let ¢ € Ly gy. Then = Vo <> Y.
* [5,7,18]: The logics K, RML, AAML, AML are all equally expressive.
Given a logic L, I ¢ means that ¢ is a theorem of the logic L, namely one can

derive ¢ from the axioms and rules of L. In the Section 5, we use extensively
the following theorem and lemma.

Theorem 2.1 [18, Theorem V.3]: Let ¢ € Logy. Then there exists a multi-
pointed action model of such that - [a¥]e and b (aX)p < Jp.

In [18] an algorithm is given to compute af from ¢. In this construction a
normal form is used that is called cover disjunctive form [20].

Lemma 2.2 Let M be a pointed Kripke model and ¢ € Logy. Then there
exists a multi-pointed action model off = ((S,R, Pre), T) such that M, |= (a¥)¢

iff M, = Jo.

Proof. Suppose that M, |= 3p. Then by [18, Theorem V.3], there exists a
multi-pointed action model at = ((S, R, Pre), T) such that M, = (aT)p, which
means My = \/ cr(au)e with T C S. Therefore M, |= (as)e.
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For the other direction, suppose that there is a multi-pointed action model
at = ((S,R, Pre), T) such that My |= (a1)p. Then there exists u € T such that
M; E (au)p, ie. Ms; @ oy |= . 0

3 Preliminaries on Algebras

In this section, we introduce relevant definitions and results on boolean alge-
bras.

Boolean algebras. A Boolean algebra (BA) A = (A,V,A,—, L, T) is an
algebra with two binary operations V (called ‘join’ or ‘or’) and A (called ‘meet’
or ‘and’), one unary operation — (called ‘not’ or ‘complement’), and two nullary
operations L and T (called ‘bottom’ and ‘top’) which satisfy the following
equations:

aNb=bAa aVb=>bVa (commutativity)
aVvV(bve)=(aVb) Ve aN(bAc)=(anb)Ac (associativity)
aN(aVb)=a aV(aAb)=a (absorption)
anNT =a aVl=a (identity)
anN(dVe)=(anb)V(aAc) aV(bAc)=(aVbd)A(aVe) (distributivity)
aN-a=_1 aV-a=T (complementation)

Let X be a set and P(X) be the set of all the subsets of X. Denote with
U, N and (—)¢ the operations union, intersection and complement on P(X),
respectively. Then (P(X),U,N, (—)¢,0, X) forms a BA.

Underlying poset of a boolean algebra. A BA A = (A,V,A,—, 1, T)
can also be seen as a poset (partially ordered set) (A, <) where the order < is
defined as follows: z <y iff zAy=z if zVy=y, for any z,y € A.
We call (4, <) the underlying poset of A. Let (A, <) be a poset, a € A and
S C A, ais an upper bound (resp. lower bound) of S, if s < a (resp. a < s) for
every s € S. The element a € A is the least upper bound of S if it is an upper
bound of S and if a < s for every upper bound s of S. The element a € A is
the greatest lower bound of S if it is a lower bound of S and if s < a for every
lower bound s of S. If they exist, the least upper bound of S is denoted by \/ S
and the greatest lower bound of S by A S. For any BA A = (A,V,A,—, L, T),
\/ S and A S of a finite subset S C A always exist and are unique, however
they may not exist if S is infinite.

Complete boolean algebras. A BA A is complete if \/ .S and A S exist for
every S C A. The BA (P(X),U,N,(—)0,X) is complete. The underlying
order is given by the inclusion C, and for S C P(X), \/ S and A S are respec-
tively given by the union and the intersection. Formally, if I is an index set
and X; C X for all i € I, then \/,; X; = U;c; Xi and A\, ; X = ;X

Boolean algebras with operators.
A boolean algebra with operators (BAO) is a structure (A, {<;}ier) such
that A is a BA, [ is a non-empty finite set and &; : A — A for every i € I. A
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normal boolean algebra with operators is a BAO (A, {<;}ier) such that the
unary operations {<; }ier on A satisfy &; L = 1 and O;(aVb) = CzaVv Ob, for
all a,b € A. The following definitions for boolean algebras are given for only
one operator <. This can be done without loss of generality.

Congruence. A congruence # on a BAO A is an equivalence relation which
satisfies this compatibility property: for all a,a’,b,b’" € A, if afb and a’6b’ then:

(=a)0(=b), (avad)bVY), (and)dbAY) and (Ca)f(Ob).

We denote by A/6 the set of the equivalence classes defined by the congruence
6, namely A/0 = {[a]g | a € A} with [a]s = {b € a | aBb}. There is a natural
way to define the operations V', A’, =" on the set A/6 of equivalence classes of
A over #. Namely, for all a,b € A, we define

[alo V' [blg :=[a V blg, [alo A" [Blg :=[a ADlg, and —'[a]s := [—ale.

It can be shown that A/0 := (A/0,V' N, =" [L]e,[T]e) is a BA. We call it the
quotient algebra of A modulo 6.

Complex algebras. Let F := (S, R) be a Kripke frame. The complez algebra
of F, denoted F*, is the power set algebra (P(S),U,N,(—)%,0,S) enriched
with the operator Og : PS — PS defined as Op(X) := {s € S | sRt for some
t € X} = R7'[X] for every X € PS. We note that 7 is a normal BAO.
Complex algebras are the concrete BAOs that algebraize relational seman-
tics [6, Theorem 5.25]. By means of complex algebras one can construct a
BAO from a frame. For the other direction we need to construct the ultrafilter
frame [6, Definition 5.34]. By transforming this frame in a complex algebra we
get the Jonson-Tarski Theorem underlying the algebraization of modal logic:

Every BAO can be embedded in the complex algebra of its ultrafilter frame
[6, Theorem 5.43].

Adjunction. A map f: (4,<4)— (B,<p) between two posets is monotone
if a <4 bimplies f(a) <p f(b) for all a,b € A. A pair (f, g) of monotone maps
f:A—Band g:B — A between two posets forms an adjunction (denoted
f -1 g) between A and B if f(a) <p b is equivalent to a <4 g(b), for all a € A
and b € B. If f - g, then g is a right adjoint and f a left adjoint.

Let (A, <) be a complex algebra of some Kripke frame, and O := =<,
then < is a left adjoint and O is a right adjoint. Moreover, there exist ¢ and
M such that & W and ¢ - O.

Algebraic models.

An algebraic model is a tuple A = (A, V') such that A is a normal BAO and
V . AtProp — A. Let M := (F,V) with V : AtProp — PS be a Kripke model,
the algebraic model associated with M is the tuple A = (F*,V) where F* is
the complex algebra of F. Notice that the valuation V' (resp. the extension
map [-]ar) sends atomic propositions (resp. formulas) to elements in A.
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We will rely on the duality between Kripke frames and normal boolean
algebras with operators to define the algebraic semantics of arbitrary action
model logic and refinement modal logic.

4 Algebraic semantics of Arbitrary Action Model Logic

In this section, first we present the methodology to define epistemic updates
on algebras (Section 4.1), and then we give the algebraic semantics of Action
Model Logic (Section 4.2). Sections 4.1 and 4.2 report on results introduced in
[21,22].

4.1 Epistemic update on algebras

We first describe the methodology to define the epistemic update on normal
boolean algebras with operators, and then the mathematical steps to compute
the updated algebra.

Methodology. Let M = (S, R, V) be a Kripke model and o = (S, R, Pre) be
an action model over Log. The product update M ® « defined in Section 2
can be built in an algebraic way in two steps as follows.

STEP 1. We define the following intermediate model
[TM=]srxR]]V)
a S «

where

(i) [IgS ~ S x S is the |S|-fold coproduct of S, which is set-isomorphic to
cartesian product of S x S,

(i) R x R is the binary relation on [[¢ S defined as
(s,u)(RxR)(s',u") iff sRs" and uRU/,
(iii) [,V : AtProp = P(]Is S) such that for every p € AtProp
[Tve) =TJve) =vp) xs.

STEP 2. M @« is the submodel of ], M that contains the tuples (s,u) € [[¢ S
such that M, = Pre(u).

This two-step-account of the product update construction can be seen as a
pseudo-coproduct, as illustrated by the following diagram

M‘—>HM<—’M®05.

This perspective makes it possible to use the duality between products and co-
products in category theory (cf. [10,1]): coproducts can be dually characterized
as products, and subobjects as quotients. Using this result, the update of M
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with the action model «, regarded as a “subobject after coproduct” concatena-
tion, can be dually characterized on its algebraic counterpart (A, V') by means
of a “quotient after product” concatenation, as illustrated in the following di-
agram:

A«—HA—»A".

Indeed, the pseudo-coproduct [ [, M is dually characterized as a pseudo-product
1. A and an appropriate quotient of [, A is then taken to dually characterize
the submodel step. This construction we now define.

Product on Sets. Recall that, in the category of sets, the product is the
Cartesian product. Namely, given a family of sets (X;)ier, as [[,c; Xi =
{(:ri)ig | Viel,x; € Xi} with the canonical projections 7; : [[..; X; — X
defined as 7;((x;)icr) == ;.

icl

Dual characterization of the intermediate structure.

Definition 4.1 [Action model on algebras| For every algebra A, we define an
action model over A as a tuple a = (S, R, Pre,) such that S is a finite nonempty
set, RC S xS and Pre, : S — A. As for Kripke models, one can define pointed
action models (a,u) over A with u € a denoted a,,.

Clearly, for every Kripke model M = (S, R,V), each action model
a = (S,R,Pre) over Lpg induces a corresponding action model a over the
complex algebra A of the underlying frame (S, R) of M, via the valuation
V . AtProp — A, namely, a is defined as a = (S, R, Pre,), with Pre, = V o Pre,.

For every BA A and every action model a = (S, R, Pre,) over A, let [, A
be the |S|-fold product of A, which is set-isomorphic to the collection AS of the
set maps f : S — A. The set AS can be canonically endowed with the same
algebraic structure as A by pointwise lifting the operations on A#; as such, it
satisfies the same equations as A.

Definition 4.2 Let (A, <) be a normal BAO, O := =-{0- and a = (S, R, Pre,)
be an action model over A, we define the operations Glla 4 and OIle A on the
product [T, A as follows: for every f:S — A,

Oollabf. g 5 A olledf.5 5 A
U \/{<>Af(u/) | uRu’} u— /\{DAf(u/) | uRu'}.

The operators Olla# and OIla4 are normal modal operators such that
DIl & = -0lla 2~ and the product algebra ([, A, ¢Ile#) is a normal BAO
[21, Proposition 3.2]. Also, if A is the complex algebra of the underlying frame
of the Kripke model (F,V) and if the action model a over A is derived from
the action model e = (S, R, Pre) over L, then ([], A, ©Ila#) is isomorphic to

4 For all f,g:S — A, the maps (f Alla® g) “IlaA 7 1TlaA .S — A are respectively defined
as follows: (f Alla g)(u) := f(u) A% g(u), (=a 2 f)(u) := =4 f(u) and LTTaA(u) := L.
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the complex algebra of the underlying frame [], F of the intermediate model
1, M [21, Proposition 3.1].

Quotient of the intermediate structure. Let A be a normal BAO and
a = (S,R,Pre,) be an action model over A. The equivalence relation =, on
I1, A is defined as follows: for all f, g € AS,

f=ag ift fAPre,=gAPre,.

For any f € AS, we denote by [f], its equivalence class. The subscript will
be dropped whenever it causes no confusion. Let the quotient algebra AS /=a
be denoted by A%. This quotient is compatible with the boolean operations,
however it is not compatible with the modal operators, indeed f = g does not
imply that & f = Og. So we need to choose a definition for the modalities on
A% let for every f € AS,

Of] =[Ol (f APre,)]  and  O°[f] = [OHa®(f — Pre,)].

The operators &% and 0% are normal modal operators such that (0% = 0%
and (A% ©%) is a normal BAQO. Moreover, if (A, V) = (FT,V) for some
Kripke model M = (F,V), and if the action model a over A is derived from
some action model a = (S,R,Pre) over Lng, then A a0 FT, in which
F is the underlying frame of the updated model M ® a.

Definition 4.3 Let (A, ©) be a normal BAO and a = (S, R, Pre,) be an action
model over A. The update of A with a is A® := (AS/ =,, ©%), where (AS/ =,)
is the quotient algebra and < is the normal modality, as above.

4.2 Algebraic semantics of action model logic

In this section we report on the algebraic semantics of action model logic pro-
posed by [21,22]. We recall that that an algebraic model is a tuple A = (A, V)
such that A is a normal BAO and V : AtProp — A.

Definition 4.4 Let A = (A, V) be an algebraic model, a = (S,R,Pre,) an
action model over Log and a = (S, R, Pre,) the action model induced by « via
V.

The intermediate algebraic model [], A is defined as

JIESSIEN IS

where, for any p € AtProp, the map ([[,V)(®) : S — [[, A is such that
(IT, V)(p)) (u) = V(p).

The updated algebraic model A% is defined as
A(l — (A(L’ V[L)

where V* : AtProp — A® is the map such that V*(p) = [[], V(p)]a-
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Let A= (A, V) be an algebraic model, a = (S, R, Pre,) be an action model
over Lpg, and @ the action model induced by « via V. Let m, : [[, A — A be
the projection on the u-indexed coordinate that maps every f € [[, A to f(u),
and let ¢ : A® — [, A be defined as i'([f]) = f A Preg for all [f] € A®. Then:

Definition 4.5 For every algebraic model A = (A, V), its extension map [.] 4 :
Log — A is defined recursively as

[P = v(p)

[1]a:= 1%
[op]a := OAHQO]]A for o € {—,<,0}
[0 ® Y] =[] o* [¢]a for e € {V,A, =}

[{e)ela := [Pre(u)]a A* my 04/ ([ 4= )
[lew]pla == [Pre(u)]a —* my 04’ (9] 4e)

5 Algebraic semantics of refinement modal logic

In this section, we present our main result, namely an algebraic semantics for
RML. First we introduce the notion of refinement morphism. It is the analogue
on normal boolean algebras with operators of the notion of refinement between
Kripke models. Then we define refinement algebra. This is used in the definition
of the algebraic semantics of refinement modal logic. Finally we prove that RML
is sound and complete w.r.t. this semantics.

Throughout this section we adopt the following notational conventions.

¢ A is a complete normal BAOQO;
e A= (A V) is an algebraic model;

* af = (S,R,Pre”) denotes the multi-pointed action model obtained by using
Hales algorithm on the formula ¢ (cf. Lemma 2.2 and [18, Lemmas V.I and
V.II));

* a? = (S,R, Pre,) denotes the action model over A induced by af via V;
o A? denotes the algebraic model A% (Definition 4.4);
¢ A¥ denotes the BAO underlying the algebraic model A%;

* [Ja:y € Lyygy — Ais the extension map of V on A such that [¢] 4 follows
Definition 4.5 for all logical connectives except quantifiers and such that

[Bela = [3e]a == Viesl{af)ela = Ves([Pre? (w)]a Ay o @' ([]av))
[Ve]a == [-3-¢]a
[Vela = [~3-¢]a

Refinement morphisms and their adjoints. The dual notion of re-
finement on algebras is the refinement morphism. We prove that refinement
morphisms are right adjoints.
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Definition 5.1 Let A and A’ be two normal BAOs. A map f: A — A’ is
a refinement morphism if it is monotone, preserves 1 and V, and satisfies the
inequality 4% o f¥ < f¥ o ¢* where ¢ 4 0 (cf. page 44).

The inequality *»¥o % < f% o is the dual notion on algebras of the back
condition in the refinement relation (cf. page 41).

Definition 5.2 For any algebraic model A = (A, V) and any formula ¢ € Lgy,
we define the maps f¥ and g% as follows:

fP:A— A% g?  A¥ — A
b [f] [1] = \/ (h(u) A Preg(u))
uesS

where f; : S — A is the map such that f;(u) := bAPre,(u) and a = (S, R, Pre,)
is the action model induced by af via V.

Lemma 5.3 For any algebraic model A and any formula ¢ € Lgy,
(i) the map f¥ is a refinement morphism,
(ii) the map g® is monotone and preserves arbitrary joins,
(iil) g% - fe.
Lemma 5.4 Let M = (S,R,V) and M' = (5',R', V") be Kripke models, and
let, respectively, A and A’ be their algebraic models.
(There ezists a refinement morphism f: A — A") iff M, > M.,.

Lemma 5.5 For any algebraic model A and any formula ¢ € Lgy,
[Fe]a = g7 ([elae). (1)

Refinement. We aim at proposing an algebraic semantics for the refinement
modality 3, i.e. for any algebraic model A = (A, V), we want to find a normal
BAO 24 and a map G : 24 — A such that for any ¢ € Loy,

[Bela = G(lela)-

To do so, we introduce a normal BAO 2[4 such that A% is a subalgebra of 2 4
for any ¢ € Laoy. Hence, for every algebraic model A = (A, V), we define the
following algebraic structure:

Ay = H A%,

YELny

Elements of 2 4 are tuples (b%),cc., where b¥ € A¥. When there is no risk of
confusion, we write (b¥), instead of (b¥),er., and A instead of A 4.

Recall that the product of any family {A;};c; of normal BAOs, where I
may be an uncountable set, is a normal BAO [8, Section 7]. The operations



50 Algebraic Semantics of Refinement Modal Logic
on the algebra

A= | J[ ArvHA% 2 L2 T 0%,
pELpy

are the following, where 0% := =% 0=, For all (b¥),, (c?), € 2,

Constants Negation

1% = (J—v)w T = (Tw)w ﬁm(bw)@ = (ﬁbSa)w
Join and meet Modal operators
(07)p V¥ (c?)p = (9 V ), O (b%), = (OAwbw)«J
(6%)p A* (c®)p = (0¥ A c®)y 0%(b%), = (Djvb@)so

One can easily verify that 2 is a normal boolean algebra. We call 2 the
refinement algebra of the algebraic model A = (A, V). One can also define
the modal operators % and W as QQ[(bS")(P = (Q‘Vb‘”)w and .Ql(bv)(p =

(W7b#) , for any (b%), € A such that 4" 4 0% and O™ - W™

Definition 5.6 For every algebraic model A = (A, V), the maps F4 and G4
are defined as

Fpa:A—2Ay Gyg: Aqx — A
ars [T (£%(a)) (1) = \ 9?([0]?)
pELpy 2

where f?: A — A¥ and g¥ : A¥Y — A are the maps of Def. 5.2.
Lemma 5.7 A= (A, V) be an algebraic model and 2 4 its refinement algebra.
Then

(i) the map F4 is a refinement morphism,

(ii) the map G 4 is monotone and preserves L, T and finite joins,
(iil) G4 4 F4.

Unless confusion results we write F' for F 4 and G for G 4.

Algebraic semantics of refinement modal logic. We now conclude

with the algebraic semantics of refinement modal logic and the corresponding
completeness result.

Definition 5.8 Let A = (A, V) be an algebraic model and 2 its refinement

algebra. Let A’ be the algebraic model (,V) with V : AtProp — 2 and
V(p) = (F o V)(p). The extension map [.J’y : Lov — A is defined as follows.

[Pl == V(p)
AL = 1*
[oe]'s == OA[[ga]]iA for o € {—,<,0}
[0 o ]/ := [ela o [¥] for e € {V,A, =}

[Bella == G(lela)
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Theorem 5.9 The aziomatization of RML (cf. page 42) is sound and complete
with respect to the algebraic semantics defined above.

6 Conclusion and further research

We have proposed an algebraic semantics for refinement modal logic. Using ac-
tion model synthesis and the algebraic characterization of epistemic updates,
we have introduced the abstract notion of refinement on normal boolean alge-
bras, and showed the soundness and completeness of refinement modal logic
with respect to this algebraic semantics.

Our methodology builds on and further develops recent work [21,22] apply-
ing duality theory to dynamic epistemic logic. As part of this research program,
proof systems for intuitionistic AML have been introduced [17,15], and gave rise
to the novel methodology of multi-type display calculi [14], which has been ap-
plied not only to AML [13], but also to propositional dynamic logic [12] and
inquisitive logic [16]. A natural direction is to pursue this research program
also on refinement modal logic. We plan to weaken the classical propositional
modal logical base to a non-classical propositional modal logical base, and to
develop multi-type calculi for such non-classical modal logics with refinement
quantiers, for example refinement intuitionistic (modal) logic.

An other step to take would be to generalize the algebraic semantics of RML
to the multi-agent framework. In this framework, the refinement modality 3
is indexed by a agent, hence we have modalities {Eli}ieAg where Ag is the set
of agents. The only difficulty to generalize our result is to prove, algebraically,
the soundness of the additional axioms:

EIlVJQ d Vj{Eligo}@eq) where i ;éj

3 /\ V;® + \ 3:V;®  where J C Ag.
JjeJ JjeJ

Indeed, as the reader can see in the appendix, the soundness proofs can be quite
involved. This step is however very useful to propose a good proof system for
the multi-agent refinement modal logic.

Appendix
A  Proofs Section 5

This section contains the proof of lemmas and theorems from section 5.

Proof of Lemma 5.3. (i). That f¢ is monotone and preserves L and V
follows from [21, Fact 11.4]. That (" o f#) < (f¥ o #*) follows from the



52 Algebraic Semantics of Refinement Modal Logic

following chain of inequalities. For every b € A and every u € S,
(%7 0 £2(0))(u) = 7 ([fs])(u) = [T 4 (fy A Preg)] (u)
— (@11 A(fy A Preg) A Pre, ) (u) = (#114(f, A Pre,)(u)) A Preq (u)
= \/{#"(fs A Pre,)(t) | uRt} A Pre, (u)
< \/{#" fo(t) A #"Pre,(t) | tRu} A Pre,(u)
= \/{(#*(b A Pre,(t)) A #*Pre,(t)) | tRu} A Preg(u)
< \/{OAb A #Pre, (t) A #4Pre,(t) | tRu} A Prey(u)
< \/{#"b A #"Pre,(t) | tRu} A Pre,(u) < \/{#"D | tRu} A Pre,(u)
< #%b A Pre,(u) = #*b A Pre,(u) A Pre,(u) = (fory A Pres)(u) = [forp)(u)
= [7(#"0)(u) = (f¥ o #"b)(u).
(i) Let [h], [k] € A¥, assume that [h] < [k]. Hence, h(u) A Pre,(u) < k(u) A
Pre,(u) for every u € S. Then, \/ g (h(u) A Preq(u)) <V, cs (k(u) A Prey(u)),

which proves that g?([h]) < ¢g¥([k]).
Let [h;] € A¥?, where ¢ € I for an index set I. Then we have that

g? (V) = g7 ((\/ i) = (\/ hiu) A Prea(U)>

iel el uesS \iel
=V (\/(hi(u) A Prea(u)> =\/ (\/(hi(u) A Prea(u)> =\/(g?(h))
ueS \iel i€l \u€S el

(S is finite)

(iii) Let [h] € A¥ and b € A, then we need to show that [h] < f¥(b) iff
g% ([h]) < b. By definition of %, [h] < f¢(b) iff [h] < [fp]. It follows from [21,
Fact 9.2] that [h] < [fp] iff h A Pre, < fi A Pre,. From this we obtain: for every
ues,

h(u) A Preg(u) < fp(u) APreg(u) iff  h(u) APreg(u) < (bAPreg(u)) APreg(u)
iff  h(u) APreg(u) <bAPre,(u) <b
iff \/ h(u) A Preg(u) <b
ues

iff g”([h]) <b

Proof of Lemma 5.4. Assume that f: A — A’ is a refinement morphism.
Define the relation R = {(s,8') € S x 8" | s’ € f({s})}. It is easy to see that
fR is a refinement.

For the other direction, assume that M, = M/,. Hence the is a refinement
relation R from M, to M.,. Define f : A — A’ such that f(X) = R[X], for
every X C S. It is easy to see that f is a refinement morphism.
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Proof of Lemma 5.7. (i) We show that F' is a refinement morphism. Since

for each ¢ € Loy, f¥ is monotone, and preserves 147 and VA it follows that
[1 f¥ also satisfies those conditions. It remains to prove that ¢% o F <

pELpy

F o %, Now note that QM(f“”) < f‘P(QA) for every ¢ € Loy. Let b € A, then

we have that

O P (D) = 02 (F20) o p. =

o ) e
(72 80D o, = 1T (741 -1 f“”)(OA(b)) Fo#%(b).

pELny

(i) It is easy to see that G is monotone and preserves L. Also, G preserves
T, since the action model constructed for T is defined as follows: a' =
(ST,RT,PreT)7 where ST = {skip}, RT = {(skip, skip)}, PreT(skip) = T.
Then, we have g ([T]a7) = [Pre(skip)]s = T». We proceed to show that
G preserves binary joins and then by induction we can easily prove that it

preserves finite joins. Let ([A]?)pesay, ([€]?)pesoy € 2. Then

(v @92) = V709V (6 oecr) )

pELny

= \/ g”([h]“")wvg‘”([k}“’)w

pELDY
=\ (1) v V97K = G(([W]?), v G(([K)y)-
pELpy pELDy

(iii) F - G follows from the fact that f# - g%, for each ¢ € Lay.
Lemma A.1 For any formula ¢ € Lyn, we have: G([Op]y) < OG([¢]'s)-

Proof. Fix an algebraic model A and a formula ¢ € Lyg. We want to prove
G([Oelu) < OG([el)-

G([Cels) = \/g [Cellay) = \/ (ad,)0pl’s)  (definition of G and g7)
2! 8!

=V V [Pyl \ <) (A1)

v uesy VER’Y(u)
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<V ¥wﬂ y O(ad)elu (anb<a)

< \}:4 <>€[[ i/) (al)ela (Ol V) = Op v Op)

s\} \4<>[[Vl223>w]1;4 (R7(u) €5

- \/\4 o ([olle) (defnition of )

= \}:fg”(ﬂwﬂkw) =0\ 9 ([¢ls)

- <:G(|Icp]]:4/) ' (definition of G)
O

Equivalence (A.1) follows from (o) <+ Pre(u) AV, gy () [21, Page 14].

Proof of Theorem 5.9.

Soundness. The definition of -]’y for £y is identical to the algebraic seman-
tics proposed in [21]. Hence the axioms and rules of K are sound w.r.t. this
semantics.

(i)

(i)

Axiom RProp. We need to prove [Ip]’y = [p]’4 and [F-p]’y = [-p]4-
For every p € AtProp, ¢¥([p]4») < [pl'4, so that \/Weﬁnv g?([pl'se) <
[pl's- So, G([pl4) < [pl’4- For the other direction, according to the
construction of multi-pointed action model agp for the atomic proposition
p [18, Lemma V.2], [(aZ,)p]’s = [p]’s. This implies that [p]’y = ¢”([p]'4»)
and [p]’y <Voero, 97 (IP]ar) = G([P]'y) as required. The other equality
can be proved in a similar way.
Axiom R. We need to show [V(¢ — )] < [V — V] .
First, observe that [V(¢ — ¢)]’y = [-3-(¢ = )]sy = “G([~(¢ = V)]'s)
and [V — V)4 = [3-o V 239 = G([~¢]4) V ~G([-¢1 4 )-
Hence, it is enough to show that

~G([~(p = P)[a) < G([~¢)a) V ~G([~¢] )
First note that ~pV—1) <> 2pV-(p — ¥). So, [V, = [~eV-(p —
]y Then, G([~¢V—9]'y) = G([~¢V-(¢ = ¥)]'4/)). Since G preserves
V, we get

G([~ela) Vv G([¥]a) = G(I-¢ela) v G([=(e = ¥)]a)-
By applying negation and DeMorgan laws, we get
—G([-ella) A ~G([~¢]4) = ~G([~¢]a) A =G([=(e = )]
The equality above implies
—G([=)a) A =G = 9)]) < ~G([=lla) A =G([¢]0)-

It is easy to see that in any BA, aAb < aAc implies that b < —aV ¢, which
implies ~G([~(¢ = ¥)]'4) < G([~¢l's) V ~G([4]'y), as required.
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(iii) Axiom RK. We need to show that [3V®]’, = [A 3], for every alge-
braic model A. Fix an algebraic model .A.
Proof of [3V®]’, < [A ©32]/,.

Evel, =G (o \ o] r A ool (with G : A4 — A)

wed wed

<G ([[ /\ Ocp]]im) < /\ G([©¢]'4)  (monotonicity of G)

ped ped

< N\ ©G([ela) = [\ 03014 (Lemma A.1)
ped

Proof of [A ¢390], < [AVP],.
Let ® be a finite set of formulas. We first show that A CG([P]y,) <
gvfb([[VCI)}];‘w,). In order to show this we use the inductive structure of
formulas V@ that may contain action models [18, Lemma V.2] and the
algebraic semantics of AML. Let ® C Lgy be a set of formulas, and for
each ¢ € ®, a® = (S¥,R?,Pre?), aV® = (SV® RV® PreV?) be action
models for the formulas ¢ € ® and V®, respectively. Note that SV® =
{ut UlUges S7, RV® = {(u*,u) | ¢ € ®,u € S?} UJR? and PreV® =
{(u*, 03 A OFY)} UJPre?. Then,

gV ([Ve)ywe) =\ V") Vel

ueSVve
—LeSnvel, v\ \ [al") Vel
pEed uesSw
Also,
oY)Vl = [aX®) O\ 2) A A\ 0B)]s
— IO\ B A [(0TF) A\ 02l
Moreover,
oYM 91y = Prev @Al A Ola¥?I )l
UERY® (ur)
S PO ATE A [PV @)
u€RV® (u*)
— [Pre¥® ()4 A DA( NN LY, @)ﬂ’A)
pedP uesSy
— PreY® (W) A DA( A A Tegl(V @)1114)
@ED uesSy

— [Pre¥® (1), A DA( N, @)]114)

ped
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It follows from the definition of the structure of action models aV® and

a® that - [a¥]p, for every ¢ € ®. So, we have F [a?](\/ ®) which means
that [[a?](\/ ®)]’y = T. Therefore,

[ ®)O(\ @)1 = [Pre¥® (u)]y = [\ ©32] 4 (A2)
For every pointed action model o, = (S, R, Pre) over A,
[(au) 4 = [Hlow] =] = [- (Pre(u) = —law]y)] = [Pre(u) Alow]v]’y

So we have [(aY®)0¢]y = [Pre¥* ()], A [[af®]0¢] Since
AlaY.2]0® [18, proof of Lemma V.2], we can deduce that for every ¢ € ®,
F [aY.2]Op. We then get that for every ¢ € @,

[(a:®)Oells = [Pre¥® (u*)a
which together with (A.2) yields that
[(:®) V@] = [PreV® (u")]y = [O3¢]4 A [0

To complete the proof, we have

G(Ivelu) =\ g (IVel4) = g7 (V] yvs)

~YELvo
> [(ag ") Vel = AloFe]Ly = A\ ©G([®]4)

Completeness. RML contains all the axioms of K. The algebraic semantics
is complete w.r.t. K. RML is equivalent to K, hence the algebraic semantics is
complete w.r.t. RML.
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