
Chain-Monadic Second Order Logic over Regular
Automatic Trees and Epistemic Planning

Synthesis

Gaëtan Douéneau-Tabot 1

ENS Paris-Saclay, Université Paris-Saclay

Sophie Pinchinat 2

IRISA, Université de Rennes

François Schwarzentruber 3

IRISA, ENS Rennes

Abstract

We consider infinite relational structures that have a finite presentation by means of
a finite tuple of finite-state automata, and already known as automatic structures.
While it is well established that model checking against first-order logic is decidable
over automatic structures, we show how this seminal result can be adapted for a
restricted class of automatic structures called regular automatic trees and an extension
of the logic based on chain-MSO, and written cMSO (where MSO stands for monadic
second-order logic). The logic cMSO, as chain-MSO, is interpreted over trees, and
its second-order quantifiers range over subsets of branches. In the setting of regular
automatic trees, we relate cMSO and logics of knowledge and time, among which the
branching epistemic linear-time mu-calculus BLlin

µ K. We finally apply our results to
dynamic epistemic logic and its related epistemic planning problem: when restricting
to event models with propositional preconditions and postconditions, the relational
structures arising from epistemic planning problems turn out to be regular automatic
trees. This already established latter central property allows us to derive the (already
known) decidability of the epistemic planning problem as a mere corollary, but also
to enlarge the class of decidable epistemic planning problems to goals expressed in
BLlin

µ K, with an effective way of computing the set of all successful (possibly infinite)
plans.

Keywords: Automatic structures, chain Monadic Second-Order logic, Epistemic
planning synthesis.

1 gaetan.doueneau@ens-paris-saclay.fr
2 sophie.pinchinat@irisa.fr
3 francois.schwarzentruber@ens-rennes.fr

238 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

1 Introduction
In artificial intelligence, classical planning consists in generating a finite se-
quence of actions for achieving a given goal. The so-called epistemic planning
[6] generalizes classical planning with epistemic goal (agent a knows that...) and
complex actions (public announcements, private announcements, etc.). Epis-
temic planning is based on Dynamic epistemic logic ([2], [25]) and is undecidable
in the general case [7].

Actions are represented by event models 4 that are Kripke structures of
events, instead of possible worlds, equipped with a precondition and a post-
condition. When event preconditions and postconditions are propositional
(Boolean) only (intuitively, announcements are Boolean formulas and uncer-
tainty is only about the content of the messages and physical changes), epis-
temic planning has been shown to be decidable ([29],[15]).

Regrettably, epistemic planning as considered so far concerns finite plans,
and is in essence a reachability problem. However, real-life applications may
challenge infinite plans. We give three examples of planning goals that require
an infinite plan.

(i) safety properties, e.g. ‘invariantly, an intruder a does not know the location
of the piece of jewelry more than 3 consecutive steps’.

(ii) recurring bounded properties, e.g. ‘all drones know that the region is safe
every 20 steps’;

(iii) strategic reasoning, e.g. ‘with the current plan, the drone a never knows
the region is safe but every 10 steps, there is a(nother) plan to let the
drone a eventually know the region is safe’.

Nevertheless, infinite plans have been considered in [15] in the DEL (Dy-
namic Epistemic Logic) setting. In this approach, DEL structures, those aris-
ing from iterating ad infinitum the triggering of events, are seen as infinite
relational structures. Maubert has shown that, when all event preconditions
and postconditions are propositional, DEL structures are automatic structures
[5,18]. Automatic structures are relational structures which have a presentation
by means of a finite family of finite-state automata. As noticed by Maubert,
the decidability result of epistemic planning (for epistemic goals) relies on the
fact that model checking against first-order logic is decidable over automatic
structures: in a DEL structure, the skeleton is a tree whose nodes (or equiv-
alently finite branches) are finite plans, i.e. sequences of triggered events, and
this tree structure is augmented with “transverse” binary relations between
nodes in possibly different branches. These extra relations denote epistemic re-
lations between histories. In DEL structures, the existence of a plan reduces to
the existence of a point in this automatic (tree) structure where the epistemic
planning goal (hence expressible in FO) holds. After all, the whole epistemic
planning problem can be expressed in FO whose outermost quantifier is ex-

4 also called sometimes “action models” in the literature.

Doueneau-Tabot, Pinchinat and Schwarzentruber 239

istential. Additionally, automata constructions that answer the query of an
FO-formula on an automatic structure allow to synthesize an automaton that
recognizes the set of all (finite) plans achieving the goal. Regarding infinite
plans, Maubert relies on the involved theory of uniform strategies he has devel-
oped [15]. This theory enables him to deal with epistemic planning instances
whose goals are expressed in the branching-time epistemic logic CTL∗K, the
extension of temporal logic CTL∗ [12] with epistemic modalities. The setting
does lead to synthesizing infinite plans, but the synthesis relies on a bottom-up
technique over the goal formula that prevents the setting from being extended
to logics featuring fix-points; while statements (ii) and (iii) above cannot be
expressed in CTL∗K, a well-tuned logic with fix-point or monadic with second-
order quantifiers would suffice.

In an attempt to enlarge the specification language for epistemic planning
goals, that goes beyond CTL∗K while remaining decidable, one should observe
that using the fullmonadic second-order logic (MSO) is hopeless: by [22], model
checking against MSO over the binary tree equipped with the transverse binary
relation “equal level” is undecidable. Relation “equal level” is an instance of an
agent epistemic relation where the agent does not observe anything from the
current finite sequence of triggered events but its length. However, there are
variants of MSO, where second-order quantifications are constrained enough to
yield a decidable model checking problem over infinite trees of the kind of DEL
structures. For example, relying on [12], and as depicted in Figure 1, there exist
mainly three interpretations of the second-order quantifiers, yielding full MSO,
path-MSO, and chain-MSO. The full MSO logic can be interpreted over arbitrary
relational structures and the second-order quantifiers range over all subsets of
the structure domain. On the contrary, the path-MSO logic is interpreted on
(possibly infinite) trees and the quantifiers range over paths/branches 5 of the
tree. Finally, chain-MSO, also interpreted on trees only, requires the second-
order quantifier to range over chains, that are subsets of paths [12]. It is known
that the expressive power of chain-MSO strictly subsumes the one of path-MSO,
the former allowing to describe arbitrary ω-regular properties of branches, while
the latter captures only star-free properties, see [12].

In this paper, we extend chain-MSO of [21,12] with relations in the tree, e.g.
interpreting epistemic modalities, making statements (ii) and (iii) expressible.
This extension is written cMSO. We introduce regular automatic trees, a strict
but large subclass of automatic structures that encompass DEL structures with
propositional events. We then show that model checking against cMSO is de-
cidable over regular automatic trees. Our decidability result is strongly inspired
from the proof technique in [23, Th. 5.2] to show that chain-MSO with the “equal
level” predicate is decidable over n-ary trees. Our proof yields automata con-
structions that can be exploited to achieve the synthesis of plans in epistemic
planning.

5 The difference between paths and branches is irrelevant by [12].

240 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

(a) MSO (b) path-MSO (c): cMSO
quantification over any subset. quantification over any

path in a tree.
quantification over any
chain in a tree.

Figure 1. Different restrictions of second-order quantifications.

Noticeably, the logic cMSO captures the linear-time mu-calculus ([4], [26])
enriched with path quantifiers and epistemic modalities, here written BLlin

µ K
(the acronym stands for ‘Branching Logic of the linear-time µ-calculus with
Knowledge). In essence, the logic BLlin

µ K is an epistemic extension of the logic
ECTL∗, for “extended CTL∗”, of [12], but in a mu-calculus style rather than with
the use of automata modalities, in the sense of [28]. Since CTL∗K can easily be
embedded into BLlin

µ K (the hard-coded linear-time temporal operators of CTL∗

are based on fix-points expressible in the linear-time mu-calculus), our result
significantly exceeds the one of [15] whose proof technique does not allow for
considering arbitrary fix-point formulas.

The presented contribution is derived from the preliminary work available
in [10]. In Section 2, we recall the notion of automatic structures and re-
sults on model checking against FO-formulas and MSO-formulas. In Section 3,
we present the logic cMSO, as well as the subclass of so-called regular auto-
matic trees. We prove that model checking against cMSO is decidable over
this subclass (Theorem 3.9). In Section 4, we compare cMSO with some log-
ics of knowledge and time, namely CTLK, CTL∗K and BLlin

µ K, with increasing
expressive power. Section 5 is dedicated to the application of our results to
the generalized epistemic planning problem (Definition 5.7) where goals are ar-
bitrary BLlin

µ K-statements and instances of the planning domain rely on DEL
specifications with propositional events.

2 Automatic structures and decidable theories
In this section we recall seminal results on automatic structures: namely that
first-order logic FO is decidable over these structures while monadic second-
order logic MSO is not. The interested reader may refer to [5,18] for further
details.

2.1 Structures and logics
Logics FO and MSO are interpreted over relation structures.

Definition 2.1 A relational structure is a structure of the form A =
〈D,R1 . . . Rp〉 where D is a non-empty set called the domain; R1 . . . Rp are
relations over D of arity r1 . . . rp, respectively; namely Ri ⊆ Dri .

Doueneau-Tabot, Pinchinat and Schwarzentruber 241

The set of symbols {R1 . . . Rp} is called the signature of A. We take the
convention to write Ri(d1, . . . , dri) for (d1, . . . , dri) ∈ Ri. We distinguish the
particular class of structures that are infinite trees of fixed finite degree n, called
n-ary trees, that are central in our contribution. These structures represent
computation trees (with a root of address ε, i-successor relations, and prefix
binary relation between addresses) augmented with additional relations, such
as epistemic relations.

Definition 2.2 Given a finite set E := {1, . . . , n} of directions, we call n-ary
tree a structure T = 〈D, r, S1, . . . , Sn, R1, . . . , Rp〉 where:
• D is a prefix-closed subset of E∗ (the addresses of the nodes);
• r is a unary relation that holds only for ε, the root address of the tree;
• Se(x, xe) whenever xe ∈ D;
• R1, . . . , Rp are additional relations on D.

In the particular case of a tree, elements of D are nodes.
Notice that in Definition 2.2 of a tree no condition was imposed on the re-

lations R1 . . . Rp . They may therefore correspond to transversal links between
nodes just as epistemic relations would do, e.g. the “equal level” binary relation.

Example 2.3 The structure T2 = 〈E∗, S1, S2〉 is a 2-ary tree called the infinite
full binary tree. Also the structure T el

2 = 〈E∗, S1, S2, el〉 obtained by augment-
ing T2 with the binary relation “at equal level in the tree” (el(x, y) holds if, and
only if, |x| = |y|) is another example of a 2-ary tree.

First-order logic (FO) over relational structures A = 〈D,R1 . . . Rp〉 concerns
formulas that conform to the following syntax: ϕ ::= Ri(x1 . . . xri) | ¬ϕ | (ϕ ∧
ϕ) | ∃xϕ, where x, x1, xri are first-order variables whose interpretation ranges
over the domain of relational structures.

When turning to the more expressive monadic second-order logic (MSO),
one allows for second-order variables that range over subsets of the domain
of relational structures. Formally, the syntax of MSO is given by: ϕ ::=
Ri(x1 . . . xri) |x ∈ X | ¬ϕ | (ϕ ∧ ϕ) | ∃xϕ | ∃Xϕ, where x is a first-order vari-
able and X is a second-order variable whose interpretation ranges over subsets
of the domain. In the following, we let V1 and V2 denote respectively the set
of first-order variables and second-order variables.

As usual, in a formula, a variable x ∈ V1 (resp. X ∈ V2) is free if it is not
under the scope of a quantifier, namely some Qx (resp. QX) with Q ∈ {∀,∃}.
A formula is closed if it contains no free variables. An assignment in domain D
is a function σ that maps a variable of V1 onto an element of D and a variable
of V2 onto a subset of D. Given an assignment σ in D, a variable x ∈ V1 and
d ∈ D, we let σ[x 7→ d] be the assignment on D that coincides with σ but maps
x onto d. Similarly, we define σ[X 7→ D′] where D′ ⊆ D for the second-order
variables.

Due to limited space, we do not provide the semantics of MSO, see for
example [11].

242 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

2.2 Automatic presentations
We now describe how some relational structures can be encoded using formal
languages, following the presentation of [18] . By alphabet we mean a finite set
of symbols, named letters. A word over Σ is a finite sequence of letters. We
denote by Σ∗ the set of such sequences. For u ∈ Σ∗ and n ≥ 0, let u[n] be
the n + 1-th letter of u (when defined). We assume familiarity with the basic
definitions of automata theory and the properties of regular languages.

Let � be a fresh padding symbol. If Σ is an alphabet, we define Σ� as
Σ] {�}. The following definition describes an encoding for k-tuples of words
as a word on the product alphabet Σn�; since words of the tuple may have
different length, the padding symbol � is used to align the words.

Definition 2.4 If u, v ∈ Σ∗, their convolution u⊗v is the word of (Σ�×Σ�)∗

of length max(|u|, |v|) such that (u ⊗ v)[n] = (u[n], v[n]) if n < min(|u|, |v|);
(u⊗v)[n] = (u[n],�) if |v| ≤ n < |u|; and (u⊗v)[n] = (�, v[n]) if |u| ≤ n < |v|.
Convolution is defined similarly for k-tuples of words.

Example 2.5 The convolution of aaba ⊗ b ⊗ ba over alphabet Σ = {a, b} is
the four-letter word

(
a
b
b

)(
a
�
a

)(
b
�
�

)(
a
�
�

)
over alphabet Σ3

�.

Definition 2.6 Let A = 〈D,R1 . . . Rp〉 be a relational structure. An auto-
matic presentation of A is a tuple of regular languages (LD, L1, . . . , Ln) meet-
ing the following conditions: (1) there exists a one-to-one encoding function
enc : D → LD, and (2) for all Ri (arity ri), Li = {u1 ⊗ · · · ⊗ uri | ∀j, uj ∈
LD and (enc−1(u1), . . . , enc−1(uri)) ∈ Ri}.

The alphabet Σ of LD is called the encoding alphabet. The inverse enc−1 of
the encoding function is the decoding function. We write enc(D) for LD, and
more generally, enc(R) for the set {enc(d1)⊗ . . .⊗ enc(dr) | (d1, . . . , dr) ∈ R},
for an arbitrary relation R ⊆ Dr.

A structure is automatic if it has (at least) an automatic presentation.
A presentation can effectively be described by a tuple of finite automata
(MD,M1, . . . ,Mp) recognizing (LD, L1, . . . , Ln).

Remark 2.7 We may assume that equality is among the relations Ri, repre-
sented by the regular language {u⊗u |u ∈ LD}. In the literature, the standard
definition of automatic presentations allows an element to have several encod-
ings, whenever equality can be presented by some regular language. However,
both definitions enable to present the same structures [5].

Example 2.8 (i) Finite structures are automatic, since finite languages are
regular.

(ii) 〈N,≤〉 is automatic, with an automatic presentation over the unary alpha-
bet {1} by letting enc(n) = 1n. AutomatonM≤ of Figure 2 verifies there
are less 1’s in the first component than in the second component.

(iii) Both trees T2 and T el
2 are automatic.

Doueneau-Tabot, Pinchinat and Schwarzentruber 243

state0start state1

(11), (�1)

(1�)

(11), (�1), (1�),
(
�
�

)

Figure 2. The finite-state automaton M≤ of Example 2.8 (ii).

We recall the known fundamental theorem of [18, Th. 3.1] regarding the
model checking problem against FO over automatic structures.

Definition 2.9 Model checking against FO
Input : A presentation (MD,M1, . . . ,Mp) of a relational
structure A and a closed FO-formula ϕ over the correspond-
ing signature.
Output : Yes if A |= ϕ, no otherwise.

Theorem 2.10 [18, Th. 3.1] Model checking against FO is decidable.

The main ingredient of the proof of Theorem 2.10 relies on the construction
of Proposition 2.11 which heavily relies on the closure of regular languages by
intersection, negation and projection over components.

Let ϕ(x1 . . . xn) ∈ FO where x1 . . . xn ∈ V1 are the only free variables, and
let A be a relational structure. We write ϕA := {(d1 . . . dn) ∈ Dn | A, [xi 7→
di]1≤i≤n |= ϕ[x1 . . . xn]} for the set of tuples that satisfy ϕ.

Proposition 2.11 There is an algorithm that given an automatic presentation
of a relational structure A with encoding function enc, and a first-order formula
ϕ(x1, . . . , xn), outputs an automaton that recognizes enc(ϕA).

Theorem 2.10 can sometimes be extended to MSO. For example, there are
very specific cases where MSO can be decided, among which the typical example
of the automatic structure (N, <).

Proposition 2.12 [3] The MSO-theory of a structure having an automatic
presentation based on a unary encoding alphabet is decidable.

Also, by Rabin’s Theorem [17], MSO is decidable over the full binary tree
with signature r, S1, S2. However, MSO becomes undecidable over the full
binary relation augmented with the “equal level” relation el (see Example 2.3),
although the obtained structure is automatic.

Theorem 2.13 [22] Model checking against MSO over the binary tree T el
2 is

undecidable.

We now focus on a subclass of automatic structures where the undecidability
frontier can be pushed back.

3 Model checking against cMSO over RA trees
We consider the variant of MSO stemming from “chain MSO”, written cMSO
in this paper, which contrary to FO and MSO, can only be interpreted over

244 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

infinite trees. The second-order quantifiers range over chains, namely subsets
of nodes along a branch, as depicted in Figure 1(c). The logic cMSO has already
been defined in [21,12,23] for n-ary trees and with a signature restricted to the
successor relations S1, . . . , Sn; the main results concern the decidability of the
model checking of chain-MSO over the full binary tree, and its expressivity. In
our setting, the signature of cMSO can be arbitrary, so that properties involving
e.g. knowledge and time can be expressed.

We also exhibit a subclass of automatic structures called regular automatic
trees that are automatic trees where the encoding of a node is its address in
the tree. This subclass is large and encompasses infinite models arising from
the unfolding of finite-state systems but also in dynamic epistemic logic. We
establish that model checking against cMSO is decidable over regular automatic
trees (Theorem 3.9).

3.1 The logic cMSO over trees
We recall a tree structure T = 〈D, r, S1, . . . , Sn, R1, . . . , Rp〉 over a finite set
E = {1, . . . , n} of directions (Definition 2.2), where D is a prefix-closed subset
of E∗ describing the nodes through their addresses in the tree. In the following,
we let S∗ be the reflexive and transitive closure of the generalized successor
relation S :=

⋃n
i=1 Si.

Definition 3.1 In a tree structure T of domain D ⊆ E∗, a subset C ⊆ D is
a chain if it is totally ordered with respect to S∗, i.e. for all d, d′ ∈ C, either
S∗(d, d′) or S∗(d′, d) holds.
We denote by Ch(T) the set of chains of the tree T .

Example 3.2 In the full binary tree T2, the set {12n | n ∈ N} is a chain,
whereas {1, 2} is not.

The notion of chains enables one to consider an interpretation of MSO for-
mulas in trees, named cMSO, where the second-order quantifiers are restricted
to chains.

Definition 3.3 The logic cMSO is interpreted in a tree T =
〈D, r, S1, . . . , Sn, R1, . . . , Rp〉 with an assignment σ in D for free variables as
follows.
T , σ |= Ri(x1 . . . xri) iff (σ(x1) . . . σ(xri)) ∈ Ri;
T , σ |= x ∈ X iff σ(x) ∈ σ(X);
T , σ |= ¬ϕ iff T , σ 6|= ϕ;
T , σ |= (ϕ ∧ ψ) iff T , σ |= ϕ and T , σ |= ψ;
T , σ |= ∃xϕ iff there exists d ∈ D such that T , σ[x 7→ d] |= ϕ;
T , σ |= ∃Xϕ iff there exists C ∈ Ch(T) s. th. T , σ[x 7→ C] |= ϕ.

For a closed formula ϕ, we simply write T |= ϕ without specifying the
assignment.

Doueneau-Tabot, Pinchinat and Schwarzentruber 245

The logic cMSO is close to the logic path-MSO [21,12] which restricts
second-order quantification to maximal branches only. Actually the latter
is a subsystem of the former: the cMSO-formula pathfrom[X,x0] := x0 ∈
X ∧ ∀x {x ∈ X → [(∃yS(x, y)→ ∃y(S(x, y) ∧ y ∈ X)) ∧ ¬S(x, x0)]} expresses
that chain X is a maximal path starting at note x0, which corresponds to
the very quantifier in path-MSO. This translation has already been noticed
many times in the literature.

3.2 Regular automatic trees
We now turn to a particular class of trees, called regular automatic trees, which
are automatic trees for the most intuitive encoding of nodes, that is by their
address in the tree. Since the domain is required to be regular, such trees arise
from the unfolding of some finite-state transition systems, hence the terminol-
ogy of regular trees.

Definition 3.4 A tree T = 〈D, r, S1, . . . , Sn, R1, . . . , Rp〉 on the set of direc-
tions E = {1, . . . , n} is a regular automatic (RA) tree if the identity function
enc : D → E∗ describes an automatic presentation of T over the encoding
alphabet E. This presentation is called the canonical presentation of T .

Since the encoding function of a RA tree is the identity function, the reg-
ularity of S1, . . . , Sn and � directly follows from that of D. Thus, a tree is a
regular automatic tree if, and only if, D ⊆ E∗ is regular, and for all Ri (of arity
ri), Li = {d1 ⊗ · · · ⊗ dri | (d1, . . . , dri) ∈ Ri} is regular.
Example 3.5 The tree T el

2 of Example 2.3 is a regular automatic tree.

As stated in the following proposition, RA trees form a strict subclass of
automatic trees.

Proposition 3.6 There are automatic trees that are not RA trees.

Proof
Let E = {1, 2} we consider the binary tree T auto

notreg = 〈D, r, S1, S2, el〉 of
Figure 3(a) where D = {1m2k | 0 ≤ k ≤ m} and el is the “equal level” relation
of Example 2.3.

ε

1

11

111 112

1122

12

(a) The tree T auto
notreg.

ε

(1�)

(0�) (1�)

(1�) (1�) (01) (1�)

(00) (11)

(01)

(b) Encodings of nodes of T auto
notreg.

Figure 3. An automatic tree that is not regular.

As D is not a regular language, T auto
notreg is not a RA tree, but it is automatic:

consider the encoding alphabet Σ = ({0, 1}�)2 and let enc(1m2k) = bin(m)⊗

246 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

bin(k) be the encoding function, as presented in Figure 3(b), where bin(m)
(resp. bin(k)) the binary representation of m (resp. k) with least significant
digit first. For example, enc(112) = enc(1221) = bin(2) ⊗ bin(1) = (01) (1�).
The reader should easily get convinced that enc(D), enc(S1), enc(S2) and
enc(el) are regular languages. 2

When restricting to RA trees, some usual relations over trees can be easily
captured by automata over the canonical encoding of nodes. We recall the
following additional binary relations over trees.
• The reflexive and transitive closure S∗ of the generalized successor binary
relation S;

• The binary relation (d, d′) ∈4 whenever node d is not deeper than node
d′ in T ;

• The binary relation el, where (d, d′) ∈ el whenever nodes d and d′ are at
the same depth in the tree.

• The binary equality relation =.

Lemma 3.7 Let 〈D, r, S1, . . . , Sn, R1, . . . , Rp〉 be a RA tree. Then the rela-
tional structure 〈D, r, S1, . . . , Sn, R1 . . . Rp, S

∗,4, el,=〉 is also an RA tree.

Restricting to the class of RA trees allows for decidability results of model
checking against logics that go beyond FO.

3.3 Model checking against cMSO
We now describe the main result of this section, as stated by Theorem 3.9,
where the model checking problem against cMSO is as follows.

Definition 3.8 Model checking against cMSO
Input : 〈MD,Mr, (M′i)1≤i≤n, (Mi)1≤i≤p〉 the canonical presentation
of a RA tree T and a closed cMSO-formula ϕ over the corresponding
signature.
Output : Yes if T |= ϕ, no otherwise.

Theorem 3.9 can be read as a variant of Theorem 2.10 where, on the one
hand, the logic FO is extended, and, on the other hand, the class of automatic
structures is restricted. It can also be read as a generalization of [23, Th. 5.2].

Theorem 3.9 Model checking against cMSO is decidable over RA trees.

The rest of this section is dedicated to the proof of Theorem 3.9. This
proof goes over the proof made in [23, Th. 5.2] to generalize the result to
arbitrary RA trees.

Before starting the proof, we may assume without loss of generality, that all
the variables occurring in the formulas are second-order variables. This means
to add an extra unary predicate Sing() which conveys that a set is a singleton,
and to add inclusion formulas of the form X ⊆ Y so as to capture previous
formulas of the form x ∈ X. The reader may refer to [23] for this routine

Doueneau-Tabot, Pinchinat and Schwarzentruber 247

transformation. The syntax then becomes as follows.

ϕ ::= Sing(X) |X ⊆ Y |Ri(X1 . . . Xri) | ¬ϕ | (ϕ ∧ ϕ) | ∃Xϕ,
where X,Y,X1, . . . ∈ V2

(1)

The new syntax requires to adjust the semantics of the formulas, and in
particular of those of the form Ri(X1, . . . , Xri), by imposing that each Xj is
interpreted as a singleton, this is routine. The logic resulting from (1) is expres-
sively equivalent to cMSO to the extent that a singleton is a chain. Therefore,
in the following, we still use cMSO when using the syntax of (1).

A key idea to develop automata construction to model check against cMSO
is that a set of addresses is a chain if, and only if, it is contained in the set of all
prefixes of some infinite word. Given a chain C ⊆ E∗, we let Branches(C) :=⋂
{uEω |u ∈ C} be the set of infinite words whose set of prefixes contains C.

In particular, Branches(C) is a singleton if, and only if, C is infinite.
For v ∈ Branches(C), we write mbranch(v, C) for the infinite word over

E × {0, 1} whose first component is v and whose second component is marked
by 1 if the current prefix of v belongs to C, and by 0 otherwise. For-
mally, mbranch(v, C) = m[0]m[1]m[2] . . . with m[i] = (v[i], b) where b = 1 if
v[0]v[1] . . . v[i] ∈ C, and b = 0 otherwise.

The words mbranch(v, C) are used to encode the chain C. We will overload
the encoding identity function enc of RA trees to denote the encoding of chains.
We letting enc(C) := {mbranch(v, C) | v ∈ Branches(C)}. Also, we extend
the notation to enc(C1, . . . , Cm) that contains infinite words over alphabet
(E × {0, 1})m by letting enc(C1, . . . , Cm) := enc(C1) ⊗ . . . ⊗ enc(Cm) where
⊗ is the convolution extended to sets of infinite words in a natural manner.
For m = 0, enc() is the singleton containing the unique infinite word over the
singleton alphabet (Σ× {0, 1})0.

We now provide an automata-theoretic approach for model checking against
cMSO formulas. We first establish the existence of a Büchi automaton Cm that
verifies if an infinite word over alphabet (E × {0, 1})m denotes a m-tuple of
chains, as stated by Lemma 3.10.

Lemma 3.10 One can effectively construct a Büchi automaton Cm that
recognizes the encoding of m-tuples of chains, namely the language⋃
C1,...,Cm∈Ch(T)

enc(C1, . . . , Cm).

The automaton Cm of Lemma 3.10 runs m copies of the domain automaton
MD. Each copy reads one of the m infinite words over E extracted from the
infinite input word over (E × {0, 1})m. Automaton Cm rejects if one of these
copies rejects.

Let T = 〈D, r, S1, . . . , Sn, R1, . . . , Rp〉 be a RA tree over the set of direc-
tions E = {1, . . . , n} with T = 〈MD,Mr, (M′i)1≤i≤n, (Mi)1≤i≤p〉 its canonical
presentation, and let ϕ be a cMSO-formula 6 , with free variables X1, . . . , Xm.

6 in the language defined by the grammar (1)

248 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

We define the set

enc(ϕT) :=
⋃

C1, . . . , Cm ∈ Ch(T)
T , [Xi → Ci]1≤i≤m |= ϕ

enc(C1, . . . , Cm) (2)

Proposition 3.11 Given ϕ a cMSO-formula 7 with free variables X1, . . . , Xm,
one can effectively construct a Büchi automaton Bϕ,T that recognizes enc(ϕT).

We can now conclude the proof of Theorem 3.9. Observe that model check-
ing against formula ϕ over the RA tree T amounts to deciding whether the
language of the Büchi automaton Bϕ,T of Proposition 3.11 is non-empty. In-
deed, this language is not empty if, and only if, there is some assignment σ of
the second order-variables X1, . . . , Xm such that T , σ |= ϕ. In particular, if ϕ
is closed (m = 0), by convention we have:
• If T 6|= ϕ, the union in Equation (2) is empty as it ranges over an empty
set;

• If T |= ϕ, the union in Equation (2) is not empty as it is equal to enc().

Notice that Proposition 2.12 from [3] regarding the decidablity of the full
MSO-theory (and not only cMSO) for automatic presentations based on a sin-
gleton alphabet is now a direct corollary of Theorem 3.9 since every set of words
over a singleton alphabet is a chain.

From Theorem 3.9 on the decidability of cMSO over RA trees, and be-
cause binary relations S∗,4, el,= come for free with automata constructions
(Lemma 3.7), we have the following.

Corollary 3.12 Model checking against cMSO[r, S1, . . . , Sn, R1, . . . , Rp, S
∗,4

, el,=] is decidable over a RA trees.

Notice that if we restrict to trees with only relations S1 . . . Sn, model check-
ing against the full logic MSO becomes decidable (Rabin’s Theorem [17]). How-
ever, considering extra relations (e.g. “equal level”) makes the model checking
against MSO undecidable over RA trees, as we already saw in Theorem 2.13 of
Section 2, which is not the case for cMSO by Corollary 3.12.

Also, since every path quantifier in a path-MSO-formula can be translated in
cMSO, and since considering extra arbitrary relations in trees, such as epistemic
relations, does not harm this translation, we obtain the following result, which
to our knowledge has not been considered in the literature.

Corollary 3.13 Given a RA tree T = 〈D, r, S1, . . . , Sn, R1, . . . , Rp〉 and a
close path-MSO-formula ϕ over the signature of T , it can be decided if T |= ϕ.

We now turn to logical formalisms that combine knowledge and time in the
spirit of [13].

7 with syntax of (1)

Doueneau-Tabot, Pinchinat and Schwarzentruber 249

4 Logics of knowledge and time over RA trees
We now exploit the peculiarities of RA trees to consider extensions of several
classic formalisms and study their expressivity. We first recall our criterion for
expressivity.

Definition 4.1 A logic L is embedded into a logic L′, whenever there is an
effective translation that maps every L-formula onto an equivalent L′-formula,
namely for every regular automatic tree T , we have: T |= ϕ if, and only if,
T |= ϕ′.

Notice that when L is embedded into L′, the decidability of the model
checking against L′ entails the decidability of the model checking against L.

In tree structures, time is captured by the generalized successor binary
relation S :=

⋃n
i=1 Si, as in computation trees for temporal logics such as CTL

[8], CTL∗ [12], etc. Depending on their arities, the other relations R1, . . . , Rp
have different roles. Unary relations label nodes with atomic propositions that
range over some fixed set AP = {p, q, . . .}. Binary relations, written K1 . . .Km

as the epistemic modalities in multi-agent epistemic logic, will play the role of
knowledge modalities as in classic epistemic logic. On this basis, we shortly
write cMSOK for the logic cMSO[r, S1, . . . , Sn, (p)p∈AP ,K1 . . .Km].

The ability to quantify over chains allows us to capture properties along
branches of the trees that are naturally stated in linear-time mu-calculus. Re-
call that MSO along linear orders, hence branches, is expressively equivalent to
Büchi automata that capture all ω-regular properties, as shown by [24], and so
does the linear-time mu-calculus [9]. We therefore introduce the logic BLlin

µ K
that is based on the linear-time mu-calculus [4,26], equipped with knowledge
modalities but also with second order quantifications over branches of the tree,
just as CTL∗ extends LTL to the branching-time semantics.

The logic BLlin
µ K is called the branching epistemic linear-time mu-calculus;

in the spirit of CTL∗, it relies on two kinds of formulas: state formulas (Φ) and
path formulas (ϕ).

Definition 4.2 The syntax of BLlin
µ K is as follows.

• State formulas: Φ ::= p |KiΦ | ¬Φ | (Φ ∧ Φ) |Eϕ where i ∈ {1, . . . ,m}.
• Path formulas: ϕ ::= Z |Φ | ¬ϕ | (ϕ ∧ ϕ) |Xϕ |µZ. ϕ[Z] where ϕ is closed
in Eϕ, Z ∈ V is under the scope of an even number of negations in ϕ[Z].

State formula KiΦ is read as ‘Agent i knows Φ’ and state formula Eϕ
is read as ‘there is a path starting from the current state that satisfies
ϕ’. Path formula Xϕ is read as ‘ϕ holds in the next state’. Path formula
µZ. ϕ[Z] is the linear mu-calculus fix-point construction. State formula Aϕ
is an abbreviation of ¬E¬ϕ and is read as ‘ϕ holds in all paths starting
from the current state’. All formulas of BLlin

µ K are interpreted in a tree
T = 〈D, r, S1, . . . , Sn,K1 . . .Km, (p)p∈AP 〉. State formulas are interpreted on
nodes, while path formulas are interpreted on branches.

250 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

• State formulas:
T , d |= p iff d ∈ p ;
T , d |= KiΦ iff for all d′ ∈ D s.t. (d, d′) ∈ Ki we have T , d′ |= Φ ;
T , d |= ¬Φ iff T , d 6|= Φ ;
T , d |= (Φ ∧Ψ) iff T , d |= Φ and T , d |= Ψ ;
T , d |= Eϕ iff there exists a maximal chain C with least element d

(i.e. a branch starting from d) such that T , C |= ϕ;
• Path formulas: we add a valuation σ : V → 2N for the free second-order
variables in the formulas, and write σ+i for the valuation σ+i(Z) = {n |n+
i ∈ σ(Z)}.
T , π, σ |= Z iff 0 ∈ σ(Z)
T , π, σ |= Φ iff T , π(0) |= Φ;
T , π, σ |= (ϕ ∧ ψ) iff T , π, σ |= ϕ and T , π, σ |= ψ ;
T , π, σ |= ¬ϕ iff T , π, σ 6|= ϕ ;
T , π, σ |= Xϕ iff T , π(1)π(2) . . . , σ+1 |= ϕ;
T , π, σ |= µZ. ϕ[Z] iff 0 is in the least-fix point of Jϕ[Z]Kσπ
where

{
Jϕ[Z]Kσπ : 2N → 2N

P 7→ {i ∈ N| π(i)π(i+ 1) . . . , (σ[Z 7→ P])+i |= ϕ[Z]}.
A tree (resp. a forest) satisfies a state formula if it satisfies it from its

root node (resp. from all its distinguished root nodes).

Notice that the least fix-point always exists. Indeed, the function Jϕ[Z]Kσπ is
monotone (recall that we have required that every variable to occur under the
scope of an even number of negations) and the Knaster-Tarski Theorem [20]
applies in the complete lattice (2N,⊆). Besides, we can alternatively define the
least fix-point of Jϕ[Z]Kσπ as

⋂
{F ⊆ 2N | Jϕ[Z]Kσπ(F) ⊆ F}.

Example 4.3 • T , π |= µZ. p if, and only if, T , π(0) |= p.
• T , π |= µZ. (XZ ∨ p) if, and only if, there exists a node π(i) along π such
that T , π(i) |= p.

• T , π |= µZ. (ψ ∨ (ϕ ∧ XZ)) if, and only if, there exists a node π(j) such
that T , π(j) |= ψ and T , π(i) |= ϕ for every 0 ≤ i < j.

By means of fix-points in BLlin
µ K, we capture the linear-time logic LTL [16],

and since we also have the existential path quantifier E, we can embed the full
logic CTL∗ of [12] in BLlin

µ K.
Now the epistemic modalities Ki allow us to capture CTL∗K, the logic CTL∗

equipped with knowledge modalities. More precisely, we introduce the following
macro for ‘ϕ until ψ’: ϕUψ is an abbreviation of formula µZ.(ψ ∨ (ϕ ∧ XZ)).

Definition 4.4 CTL∗K is the syntactic fragment of BLlin
µ K defined by:

• State formulas: Φ ::= Φ ∧ Φ | ¬Φ |Eϕ |KiΦ | p where i ∈ {1, . . . ,m}.
• Path formulas: ϕ ::= Φ | ¬ϕ |ϕ ∧ ϕ |Xϕ |ϕUϕ.

The syntactic fragment CTLK of CTL∗K has only state formulas:

Φ ::= Φ ∧ Φ | ¬Φ |EXϕ |E(ΦUΦ) |A(ΦUΦ) |KiΦ | p

Doueneau-Tabot, Pinchinat and Schwarzentruber 251

Proposition 4.5 CTLK is embedded into FO[K1 . . .Km, (p)p∈AP, S, S
∗,4,=].

We end this section with the main Theorem 4.6 that states the decidability
of model checking against BLlin

µ Kover RA trees. First of all, it should be clear
that the following holds.

Theorem 4.6 BLlin
µ K is embedded into cMSOK.

Corollary 4.7 Model checking against BLlin
µ K is decidable over automatic reg-

ular trees.

Figure 4 is a recap of the expressivity results we have obtained (arrows
resulting from transitivity are omitted), where an arrow L → L′ means that L
is embedded into L′.

Logics of knowledge and time

CTLK CTL∗K BLlin
µ K cMSOK

FO[K1 . . .Km, (p)p∈AP, S, S
∗,4,=]

Th. 4.6

Th. 4.5

Figure 4. Embeddings between the various logics.

5 Application to epistemic planning synthesis
As announced, we show that Theorem 3.9 together with Proposition 3.11 have
an interesting impact in the domain of epistemic planning. The epistemic
planning setting as introduced by [6] relies on Dynamic epistemic logic, that
we recall here. Next we explain how the original problem can be generalized to
attain more expressive planning goals, such as statements (i)–(iii) of the intro-
duction, while maintaining the decidability frontier for free. Our results gener-
alize the ones obtained in [15,1], but make great use of the already established
property [15, Lemma 22, p. 109] that, under the assumption that precondi-
tions and postconditions of events are propositional, the relational structure
that contains all plan candidates is automatic, and actually it is a RA tree (see
Theorem 5.5).

5.1 Preliminaries on Dynamic epistemic logic
As earlier, AP denotes the set of atomic propositions with typical elements
p, q, . . . , and Ag is finite set of agents with typical elements a, b, The
propositional language is denoted by LProp and the language of multi-agent
epistemic modal logic is denoted by LEL.

Definition 5.1 A Kripke model M = (W, (Ka)a∈Ag, V) is defined by a non-
empty set W of epistemic worlds, epistemic relations (Ka)a∈Ag ⊆W ×W and
a valuation function V : W → 2AP .

A pair (M, w) is called a pointed epistemic model.

Figure 5 bottom left shows a pointed epistemic model.
The dynamic of the system is captured by event models. An event model

is like a Kripke model but possible worlds are instead events equipped with a

252 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

E , ee : pre : p
post : p ← ⊥ f : pre : >

post : /
b

a a, b

M, w

w : {p}

u : ∅

a, b

a, b

a, b

M⊗E , (w, e)

(w, e) : ∅ (w, f) : {p}

(u, f) : ∅

b

b

a

a, b

a, b

a, b

Figure 5. Example of a DEL product.

precondition and a postcondition. We intentionally denote the set of events E
with the same notation that the set of directions in trees (Definition 2.2), as
they will denote directions in the DEL structure (see Definition 5.4).

Definition 5.2 An event model E = (E, (KEa)a∈Ag, pre, post) is defined by a
non-empty set of events E, epistemic relations (KEa)a∈Ag ⊆ E × E, a precon-
dition function pre : E → LEL and a postcondition function post : E ×AP →
LProp. When pre : E → LProp, the event model E is propositional.

A pair (E , e) is called a pointed event model, where e represents the actual
event.

Definition 5.3 Let M = (W, (Ka)a∈Ag, V) be a Kripke model. Let E =
(E, (KEa)a∈Ag, pre, post) be an event model. The product of M and E is
M⊗E = (W ′, (Ka)′, V ′) where:
• W ′ = {(w, e) ∈W × E | M, w |= pre(e)};
• ((w, e), (w′, e′)) ∈ K ′a iff (w,w′) ∈ Ka and (e, e′) ∈ KEa ;
• V ′((w, e)) = {p ∈ AP | M, w |= post(e, p)}.
Figure 5 top shows an example of a pointed event model with two events e

and f . The actual event is e but agent b imagines event f as the sole possible
event. Also, the product is given in bottom right.

5.2 DEL structures
In this subsection, following [15], we incorporate the initial epistemic model
M and the infinitely many the products M⊗ En := M⊗ E ⊗ · · · ⊗ E︸ ︷︷ ︸

n times

into a

single structure, called a DEL structure, denoted byME∗. Worlds ofM⊗En,
called histories, are naturally denoted by words of the form we1 . . . en where
w is a world of M and e1, . . . , en are events of E . E.g. the world ((w, e1), e2)
is denoted we1e2. The pair (M, E) is called the DEL presentation ofME∗. A
DEL presentation (M, E) is propositional if E is propositional.

Doueneau-Tabot, Pinchinat and Schwarzentruber 253

Definition 5.4 [15, , Def. 54, p. 105] The DEL structure denoted by (M, E) is
the structureME∗ = (H, (Se)e∈E , (Ka)a∈Ag, (p)p∈AP), where H is the disjoint
union of the sets of worlds of M⊗ En – namely, the histories; (h, h′) ∈ Se
whenever h′ = he for all events e; (h, h′) ∈ Ka whenever h and h′ are worlds
ofM⊗En, for some n, and (h, h′) ∈ K ′a where K ′a is the epistemic relation for
agent a inM⊗En; and finally, h ∈ p whenever p ∈ V (h) inM⊗En.

From the proof of [15, Lemma 22, p. 109], one can easily show that:

Theorem 5.5 Propositional DEL structures ME∗ are finite sets (forests) of
RA trees, and their presentation is effectively computable from (M, E).

We now turn to the epistemic planning problems.

5.3 Generalized epistemic planning and plan synthesis
The epistemic planning problem, as originally stated by [6] is defined as follows.

Definition 5.6 Epistemic planning problem
Input: a pointed epistemic modelM, w, an event model E , an LEL-formula

ψ;
Output: Yes, if there is a sequence of events e1, . . . , en in E such that

MEn, we1 . . . en |= ψ.

We generalize this epistemic planning problem by considering a model
checking problem against BLlin

µ K over DEL structures.

Definition 5.7 Generalized Epistemic planning problem
Input: a pointed epistemic model M, w, an event model E , an BLlin

µ K-
formula ϕ;

Output: Yes, ifME∗ |= ϕ.

The problem of Definition 5.7 is indeed a generalization of epistemic
planning problem of Definition 5.6 in the sense that the latter can be reduced
to the former by model checking the formula ϕ := EFψ, where ψ is the
planning goal.

The following example shows the relevance of generalized epistemic planning.

Example 5.8 We give BLlin
µ K-formulas ϕ for the three statements (i)–(iii) of

the introduction.

(i) ‘invariantly, an intruder a does not know the location of the piece of jewelry
more than 3 consecutive steps’ can be expressed as EG(Θ→ (X¬Θ∨X2¬Θ∨
X3¬Θ) where Θ :=

∨
`∈LocKapieceOfJewelleryIn(`).

(ii) ‘all drones know that the region is safe every 20 steps’ can be expressed
as EνZ.(

∧
a∈AgKaregionSafe ∧ X20Z).

(iii) ‘with the current plan, the drone a never knows the region is safe but every
10 steps, there is a(nother) plan to let the drone a eventually know the re-
gion is safe’ can be expressed as EG[¬KaregionSafe∧νZ.(EFKaregionSafe∧
X10Z)].

254 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

The following result subsumes the decidability result for the epistemic plan-
ning problem for propositional DEL presentations ([29],[15]), and is a mere
corollary of Theorems 5.5, 4.6 and 3.9.

Theorem 5.9 The generalized epistemic planning problem is decidable for
propositional DEL presentations.

In other terms, in the literature, decidability was established for reachabil-
ity goals and Theorem 5.9 says that the problem remains decidable for goals
that are arbitrary BLlin

µ K-formulas ϕ. However, when considering planning,
only formulas ϕ of the form Eϕ′ are relevant. For such formulas, we can effec-
tively build an automaton that recognizes exactly all plans achieving ϕ′. This
automaton arises from the automata constructions for BLlin

µ K-formulas, made
possible by the automata constructions for cMSO-formulas, and the fact that
every BLlin

µ K-formula can be effectively translated into a cMSO-formula. The
algorithm to obtain this “plan automaton” is as follows.

(i) Compute the cMSOK-formula χ equivalent to ϕ′ (Th. 4.6). By the transla-
tion of BLlin

µ K into cMSO, formula χ has a single free second-order variable
X, interpreted as a path, i.e. a plan;

(ii) Compute Bχ (Proposition 3.11) which accepts all paths achieving goal χ,
or equivalently ϕ′.

Actually, automaton Bχ reads infinite words over alphabet E×{0, 1}, where
the second component of the letters is always equal to 1, since the specified
chain is required to be a path. Projecting a word accepted by Bχ onto the first
components of its letters provides a plans.

6 Discussion
We have adapted the seminal result of the decidability of the FO-theory of
every automatic structure by augmenting the logic up to cMSO, a logic relying
on chain-MSO of [12,21], but by restricting to the subclass of RA trees. A
nice application of this result is the decidability of the generalized epistemic
planning problem for propositional DEL presentations.

Regarding the computational complexity of our algorithms, it should be ob-
served that the automata construction to model check against cMSO (Proposi-
tion 3.11) is non elementary in the number of alternations between existential
and universal quantifiers in the formula (each underlying negation yields an
exponentiation blow-up for the complementation). Still, it would be relevant
to investigate in practice, if the automata have particular shapes that do not
reach this non-elementary worst-case upper-bound complexity.

Compared to the work of Maubert [15] with CTL∗K, we offer the entire
logic cMSO (or BLlin

µ K) that strictly subsumes CTL∗K, and yet allowing to
solve the epistemic planning problems over the same class of planning domains
(i.e. propositional DEL presentations). However, it should be noticed that
[15] also considers a different problem called the epistemic protocol synthesis
problem, which differs from the generalized epistemic planning problem: in the

Doueneau-Tabot, Pinchinat and Schwarzentruber 255

epistemic protocol synthesis problem, one has to prune the tree structure so
that the remaining satisfies a CTL∗K-goal. This subject is out of the scope of
this paper, but suggests some comments.

The existence of a pruning, i.e. a sub-tree, that satisfies the protocol
goal, requires the use of second-order quantifiers ranging over arbitrary subsets
of nodes, that is the full logic MSO which cannot be model checked (Theo-
rem 2.13). It is a open question whetherthere is a logic in between cMSO and
full MSO to solve the epistemic protocol synthesis problem with BLlin

µ K spec-
ifications. The existence of a pruning of the tree that satisfies the protocol
goal, requires the use of second-order quantifiers ranging over arbitrary subsets
of nodes, that is the full logic MSO which cannot be model checked (Theo-
rem 2.13). It is an open question whether or not there is room for a logic in
between cMSO and full MSO to solve the epistemic protocol synthesis problem
with BLlin

µ K specifications. Also, the synthesis technique deployed by [15] ac-
tually applies to a family of tree structures that is larger than the one of RA
trees. At the moment, the technique does not adapt to logics which involve
arbitrary fix-points. It is an open question whether or not the work of [15] can
be faithfully extended to deal the entire alternation-free fragment of BLlin

µ K.
Acknowledgments We thank the anonymous reviewers for their careful
reading of our manuscript and their many insightful comments and sugges-
tions.

References

[1] Aucher, G., B. Maubert and S. Pinchinat, Automata techniques for epistemic protocol
synthesis, in: Proceedings 2nd International Workshop on Strategic Reasoning, Grenoble,
France, 2014, pp. 97–103.

[2] Baltag, A., L. S. Moss and S. Solecki, The logic of public announcements and common
knowledge and private suspicions, in: Proceedings of the 7th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK-98), Evanston, IL, USA, 1998, pp. 43–56.

[3] Barany, V., “Automatic Presentations of Infinite Structures.” Ph.D. thesis, RWTH
Aachen University (2007).

[4] Barringer, H., R. Kuiper and A. Pnueli, A really abstract concurrent model and its
temporal logic, in: Conference Record of the Thirteenth Annual ACM Symposium on
Principles of Programming Languages, St. Petersburg Beach, Florida, USA, 1986, pp.
173–183.

[5] Blumensath, A. and E. Grädel, Automatic structures, in: 15th Annual IEEE Symposium
on Logic in Computer Science, Santa Barbara, California, USA, 2000, pp. 51–62.

[6] Bolander, T., A gentle introduction to epistemic planning: The DEL approach, in:
Proceedings of the Ninth Workshop on Methods for Modalities, M4M@ICLA 2017, Indian
Institute of Technology, Kanpur, 2017, pp. 1–22.

[7] Bolander, T. and M. B. Andersen, Epistemic planning for single and multi-agent
systems, Journal of Applied Non-Classical Logics 21 (2011), pp. 9–34.

[8] Clarke, E. M. and E. A. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic, in: Workshop on Logic of Programs, Springer, 1981,
pp. 52–71.

[9] Dam, M., Fixed points of Büchi automata, in: International Conference on Foundations
of Software Technology and Theoretical Computer Science, Springer, 1992, pp. 39–50.

[10] Douéneau, G., Sur les propriétés régulières des arbres (2015), internship report, IRISA
Rennes.

256 Chain-MSO Logic over Regular Automatic Trees and Epistemic Planning Synthesis

[11] Enderton, H., “A Mathematical Introduction to Logic,” Academic press, 2001.
[12] Hafer, T. and W. Thomas, Computation tree logic CTL* and path quantifiers in the

monadic theory of the binary tree, in: Automata, Languages and Programming, 14th
International Colloquium, ICALP87, Karlsruhe, Germany, Proceedings, 1987, pp. 269–
279.

[13] Halpern, J. Y. and M. Y. Vardi, The complexity of reasoning about knowledge and time.
I. Lower bounds, J. Comput. System Sci. 38 (1989), pp. 195–237, 18th Annual ACM
Symposium on Theory of Computing (Berkeley, CA, 1986).

[14] Kozen, D., Results on the propositional µ-calculus, Theoretical Computer Science 27
(1983), pp. 333–354.

[15] Maubert, B., “Logical Foundations of Games with Imperfect Information: Uniform
strategies. (Fondations logiques des jeux à information imparfaite: Stratégies uniformes),”
Ph.D. thesis, University of Rennes 1, France (2014).

[16] Pnueli, A., The temporal logic of programs, in: Foundations of Computer Science, 1977.,
18th Annual Symposium on, IEEE, 1977, pp. 46–57.

[17] Rabin, M. O., Decidability of second-order theories and automata on infinite trees,
Transactions of the American Mathematical Society 141 (1969), pp. 1–35.

[18] Rubin, S., Automata presenting structures: A survey of the finite string case, Bulletin
of Symbolic Logic 14 (2008), pp. 169–209.

[19] Schwarzentruber, F., Hintikka’s world: agents with higher-order knowledge (demo), in:
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI)
and the 23rd European Conference on Artificial Intelligence (ECAI), Stockholm, 2018.

[20] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of
Mathematics 5 (1955), pp. 285–309.

[21] Thomas, W., On chain logic, path logic, and first-order logic over infinite trees, in:
Proceedings of the Symposium on Logic in Computer Science (LICS ’87), Ithaca, New
York, USA, 1987, pp. 245–256.

[22] Thomas, W., Automata on infinite objects, in: Handbook of formal languages, Volume B
(1990), pp. 133–191.

[23] Thomas, W., Infinite trees and automaton-definable relations over ω-words, Theoretical
Computer Science 103 (1992), pp. 143–159.

[24] Thomas, W., Languages, automata, and logic, in: Handbook of Formal Languages,
Springer, 1997 pp. 389–455.

[25] Van Ditmarsch, H., W. van Der Hoek and B. Kooi, “Dynamic Epistemic Logic,” Springer
Science & Business Media, 2007.

[26] Vardi, M. Y., A temporal fixpoint calculus, in: Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM, 1988, pp. 250–259.

[27] Vardi, M. Y., The Büchi complementation saga, in: Annual Symposium on Theoretical
Aspects of Computer Science, Springer, 2007, pp. 12–22.

[28] Wolper, P., Temporal logic can be more expressive, Information and Control 56 (1983),
pp. 72–99.

[29] Yu, Q., X. Wen and Y. Liu, Multi-agent epistemic explanatory diagnosis via reasoning
about actions, in: IJCAI 2013, Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, 2013, pp. 1183–1190.

	Introduction
	Automatic structures and decidable theories
	Structures and logics
	Automatic presentations

	Model checking against cMSO over RA trees
	The logic cMSO over trees
	Regular automatic trees
	Model checking against cMSO

	Logics of knowledge and time over RA trees
	Application to epistemic planning synthesis
	Preliminaries on Dynamic epistemic logic
	DEL structures
	Generalized epistemic planning and plan synthesis

	Discussion
	References

