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Abstract

We prove two main Goldblatt-Thomason-style Theorems for graded modal language in Kripke semantics:
full Goldblatt-Thomason Theorem for elementary classes and relative Goldblatt-Thomason Theorem
within the class of finite transitive frames. Two different semantic views on GML allow us to prove these
results: neighborhood semantics and graph semantics. By neighborhood semantic view, we can define
a natural generalization of Jankov-Fine formula for GML and establish relative Goldblatt-Thomason
Theorem. By extracting graph semantics from Fine’s completeness proof of GML (1972), we introduce
a new notion of graded ultrafilter images and establish full Goldblatt-Thomason Theorem. Therefore
we revive Fine’s old idea in the new context of Goldblatt-Thomason-style characterization.
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1 Introduction

Graded modal logic (GML) is one of extended modal logics. It was originally proposed
by Kit Fine [10] to express modal analogues to counting quantifiers ∃kxP (x) in first-order
logic explored by A. Tarski [19]. The modal analogue to ∃kxP (x) is written as 3kp; it
is true at a state w in a Kripke model iff the number of accessible p-worlds is at least k.
In GML, we add the family {3k : k ∈ ω } of modal operators to the basic modal logic.
In particular, 3k is non-normal: 3k⊥ ↔ ⊥ (k > 1) and (3kp ∨ 3kq) → 3k(p ∨ q) are
valid but 3k(p ∨ q)→ (3kp ∨3kq) is not valid (k > 1). Such modalities are used when
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it comes to counting successors. For example, GML was applied to epistemic logic [25]
and description logic [1].

The model theory for GML has been explored since the 1970s. Some normal graded
modal logics were shown to be strongly complete by Kit Fine [10], and later canonical
models were constructed by M. Fattorosi-Barnaba and C. Cerrato [8,9], F. de Caro [6],
and C. Cerrato [3]. M. de Rijke [7] defined the notion of graded bisimulation and
proved Van Benthem-style Characterization Theorem. De Rijke also noted that graded
modalities 3n+2 are not definable in basic modal logic since they are not invariant under
ordinary notion bisimulations. Hence GML is a proper extension of basic modal logic
with more expressive power at the level of Kripke models. Recently, Ten Cate et.al. [21]
observed that GML can describe finite tree models up to isomorphism. If we turn to
Kripke frames, we can define the frame property “there exist at least two successors”,
by 32>, which is undefinable in basic modal logic. So, we can also state that GML is
more expressive than basic modal logic at the level of Kripke frames.

Goldblatt-Thomason Theorem [12] allows us to characterize the modal definabil-
ity of elementary classes by four frame constructions: generated subframes, disjoint
unions, bounded morphic images, and ultrafilter extensions. By this theorem, we can
state that the semantic essence for frame-definability of basic modal language consists
of these four frame constructions. Later, Van Benthem [24] gave a model-theoretical
proof of Goldblatt-Thomason Theorem. Since [12,24], Goldblatt-Thomason-style The-
orem has been investigated also for extended modal logics: difference logic [11], hy-
brid logic [20], etc. The first author and Sato [18] (see also [17]) provided a uniform
Goldblatt-Thomason-style characterization of frame definability for any modal language
extended with a set of normal modal operators, whose accessibility relations are defined
by Boolean combinations of a (binary) accessibility relation R and the equality, that is,
by quantifier-free formulas.

As for Goldblatt-Thomason-style characterization of definability in GML, de Rijke
asked the following question.

Obvious questions to be answered next include the following: Can g-bisimulations be
used to prove a Goldblatt-Thomason style results about the classes of frames definable
in LGML? [7, p.282]

As far as the authors know, we still lack Goldblatt-Thomason theorem for GML in
Kripke semantics. In this paper, we provide two Goldblatt-Thomason-style Theorems,
thus answering de Rijke’s question positively (though we will not use the notion of g-
bisimulation). One is Goldblatt-Thomason theorem for elementary classes of frames
(Theorem 6.3), and the other is relative Goldblatt-Thomason theorem within the class
of finite transitive frames (Theorem 4.3).

Our results for GML correspond to the results from [2, Theorem 3.21] and [2, The-
orem 3.19] for basic modal logic. This generalization, however, is not straightforward.
One of the main reasons is the non-normal character of 3k mentioned above. In order
to deal with modalities of this kind and obtain our main results, we need to apply two
different semantic approaches to GML: neighborhood semantics and graph semantics.
The neighborhood semantic view leads us to the notion of g-bounded morphism and to
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a natural generalization of Jankov-Fine formulas [2, pp.144-5] for GML. By applying
these formulas, we establish relative Goldblatt-Thomason Theorem for GML in terms
of generated subframes, (finite) disjoint unions, and g-bounded morphisms.

A difficulty for establishing full Goldblatt-Thomason Theorem for GML is also in
finding an appropriate notion of ultrafilter extension for GML. The method used in [17]
does not seem to work here, because of the non-normal behavior of 3k. However, follow-
ing the observation of [18] about the completeness proof and Goldblatt-Thomason-style
characterization, we can extract an appropriate frame construction from Kit Fine’s orig-
inal completeness proof for GML [10]. By analyzing his proof carefully, we demonstrate
that Fine’s construction allows us to define a new graph semantics for GML. Moreover,
we rewrite Fine’s notion of canonical mapping [10, p.518] as the new frame construction
graded ultrafilter image via a graph frame defined on the set of all ultrafilters on (W,R).
In other words, a key semantic idea for our full Goldblatt-Thomason-style Theorem al-
ready appeared implicitly in the first study of GML by Fine. So we revive Fine’s old
idea in the new context of Goldblatt-Thomason-style characterization for GML.

2 Kripke Semantics for Graded Modal Language

Graded modal language (GML, for short) consists of (i) a countable set Prop of proposi-
tion letters, (ii) ∧, ¬, ⊥, and (iii) a set {3k : k ∈ ω } of modal operators called graded
modalities. The set of formulas in GML is defined as follows:

ϕ ::= p | ⊥ | ¬ϕ |ϕ ∧ ψ |3kϕ,

where p ∈ Prop and k ∈ ω. The intuitive meaning of 3kϕ is ‘the number of accessible
ϕ-worlds is at least k’. In addition to the usual abbreviations like →, ∨, etc., we define
3ϕ := 31ϕ and �ϕ := ¬3¬ϕ. We also define �np inductively as: �0p := p and �n+1p

:= ��np. By the basic modal language, we mean the sublanguage {∧,¬,⊥,31 } ∪Prop

of GML.
GML is interpreted in Kripke structures. A Kripke frame F (or, just a frame) is a

pair (W,R) of a non-empty set W and a binary relation R ⊆ W 2. A Kripke model M

(or, just a model) consists of a frame F = (W,R) and a valuation V : Prop → P(W ).
The domain of a Kripke frame F (or a Kripke model M) is denoted by |F| (or |M|,
respectively).

Given any model M = (W,R, V ), any w ∈W and any formula ϕ of GML, we define
the satisfaction relation 
 as standard except the clause for graded modalities:

M, w 
 3kϕ iff #(R(w) ∩ JϕK) ≥ k,

where R(w) := { v ∈W : wRv }, JϕKM := { v ∈W : M, v 
 ϕ } (when the context is
clear, we usually drop the subscript), and #X means the cardinality of X. When k =
0, it is easy to see that 30ϕ is true at any state w of any model M. Remark that the
satisfaction for 3ϕ := 31ϕ is equivalent to R(w) ∩ JϕK 6= ∅. Based on the satisfaction
relation, we can define the notion of frame validity, frame definability, satisfiability, etc.
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as usual, cf. [2].

Fact 2.1 (Fine [10]) The following formulas are valid in all frames:

(i) �(p→ q)→ (�p→ �q),

(ii) 3kp→ 3lp (l < k),

(iii) 3kp↔
∨k

i=0(3i(p ∧ q) ∧3k−i(p ∧ ¬q)),
(iv) �(p→ q)→ (3kp→ 3kq).

Here is another form of the truth condition for 3kϕ at w ∈W in (W,R, V ):

#(R(w) ∩ JϕK) ≥ k iff ∃X ⊆ R(w). (#X = k and X ⊆ JϕK).

This form allows us to define neighborhood maps τk : W → PP(W ) (k ∈ ω) for any
given Kripke frame (W,R) as:

τk(w) := {Y ⊆W : ∃X ⊆ R(w). (#X = k and X ⊆ Y ) } .

τk is closed under unions, i.e., Y1, Y2 ∈ τk(w) implies Y1 ∪ Y2 ∈ τk(w), for any w ∈ W
and Y1, Y2 ⊆ W . Thus τk is monotonic, i.e., closed under set-inclusion ⊆. However,
τk(w) does not satisfy the following property in general (if k > 1): Y1 ∪ Y2 ∈ τk(w)
implies Y1, Y2 ∈ τk(w), for any w ∈W and Y1, Y2 ⊆W . For any valuation V , it is clear
that #(R(w) ∩ JϕK) ≥ k iff JϕK ∈ τk(w). This observation enables us to use the notion
of bounded morphism between neighborhood structures for GML in the next section.

3 Preservation under Frame Constructions

Definition 3.1 (g-bounded morphism) Given any F = (W,R) and F′ = (W ′, R′),
we say that f : W →W ′ is a g-bounded morphism if: for any k ∈ ω and any Y ⊆W ′,

#(R(w) ∩ f−1[Y ]) ≥ k iff #(R′(f(w)) ∩ Y ) ≥ k.

If there is a surjective g-bounded morphism from F and F′, then we say that F′ is a
g-bounded morphic image of F (notation: F �g F′).

In terms of derived neighborhood structures, this definition can be rewritten as:
f−1[Y ] ∈ τk(w) iff Y ∈ τk(f(w)) for any Y ⊆ W ′, where τk and τ ′k are the neigh-
borhood structures derived from F and F′, respectively. If we restrict our attention to
k = 1 in the definition of g-bounded morphism, then we can easily obtain the notion of
bounded morphism [2, p.59]:

Definition 3.2 Given any F = (W,R) and F′ = (W ′, R′), we say that f : W → W ′ is
a bounded morphism if f [R(w)] = R′(f(w)) for any w ∈W .

Proposition 3.3 Assume that F �g F′. If F 
 ϕ, then F′ 
 ϕ, for any ϕ of GML.

Proof. We show the contrapositive implication. Assume F′ 6
 ϕ. That is, (F′, V ′), w′ 6

ϕ for some w′ ∈ |F′| and some valuation V ′. Define a valuation V on F by: V (p) :=
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f−1[V ′(p)] for any p ∈ Prop. Put M := (F, V ) and M′ := (F′, V ′). Then we can establish
that JϕKM = f−1[JϕKM′ ] by induction on ϕ. Since f is surjective, f(w) = w′ for some
w ∈ |F|. Therefore, we obtain w /∈ JϕKM hence F 6
 ϕ. 2

When we try to check that a given mapping is a g-bounded morphism, the equivalent
notion of locally injective bounded morphism is quite helpful, since it does not involve
any quantification over Y ⊆W ′.

Definition 3.4 Given any F = (W,R) and F′ = (W ′, R′), we say that f : W → W ′ is
locally injective if f � R(w) is injective for any w ∈W .

Proposition 3.5 Given any F = (W,R), F′ = (W ′, R′), and f : W → W ′, f is a
g-bounded morphism iff f is a locally injective bounded morphism.

Proof. We only establish the left-to-right direction, since the converse direction is
obvious. Suppose that f is a g-bounded morphism. It is easy to show that f is a
bounded morphism (it suffices to use the clause of k = 1 in the definition of g-bounded
morphism). We show that f � R(w) is injective. Let us fix any w1, w2 ∈ R(w)
with w1 6= w2. Our goal is to establish that f(w1) 6= f(w2). Since {w1, w2 } =
R(w)∩{w1, w2 } ⊆ R(w)∩f−1[f [{w1, w2 }]], we obtain #(R(w)∩f−1[f [{w1, w2 }]]) ≥ 2.
From the clause of k = 2 in the definition of g-bounded morphism it follows that
#(R′(f(w))∩ f [{w1, w2 }]) ≥ 2. Since R′(f(w)) = f [R(w)] (here we use the fact that f
is a bounded morphism), we can establish that #(f [R(w)] ∩ f [{w1, w2 }]) ≥ 2. Equiva-
lently, #f [{w1, w2 }] ≥ 2. This means that f(w1) 6= f(w2), as required. 2

Surprisingly, this proof tells us that the clauses of k = 1 and 2 are enough to define
the notion of g-bounded morphism.

Given any cardinal κ, let us denote by NS(κ) (‘NS’ means the number of succes-
sors) the following property of Kripke frames: #R(w) ≥ κ for any w ∈ W . The next
proposition shows the expressive strength of GML over the basic modal language.

Proposition 3.6 Let k ∈ ω and k ≥ 2. Then, NS(k) is undefinable in the basic modal
language. However, NS(k) is definable in GML by 3k>.

Proof. The second part is easy to check. So we only show the first part. Define Fk

= (W,R) by: W = { 1, ..., k }<ω and 〈l1, ..., lm〉R〈r1, ..., rn〉 iff n = m + 1 and li = ri
for any i with 1 ≤ i ≤ m. So Fk is a tree with k-branches and ω-height. Define G as
a one-point reflexive frame ({ ∗ }, { (∗, ∗) }). Let f be the unique mapping from W to
{ ∗ }. It is easy to see that f is a surjective bounded morphism. Then by the validity-
preservation under bounded morphic images [2, Theorem 3.14 (iii)], we can establish the
undefinablity of NS(k). 2

Proposition 3.7 NS(ω) is definable in GML by {3k> : k ∈ ω }.

However, irreflexivity (wRw fails for any w ∈W ) is still undefinable in GML.

Proposition 3.8 Irreflexivity is undefinable in GML.

Proof. Let us use the frame F1 = (W,R) and G from the proof of Proposition 3.6 (we
fix k = 1 here). Note that F1 is irreflexive, but G is not irreflexive. Then we can show



Katsuhiko Sano and Minghui Ma 335

that the unique surjective f : W → {∗} is a g-bounded morphism from F1 to G. By
Proposition 3.3, we can establish the undefinability of irreflexivity in GML. 2

Definition 3.9 (Generated subframes) Given any frames F = (W,R) and F′ =
(W ′, R′), we say that F′ is a generated subframe of F if (i) W ′ ⊆W , (ii) R′ = R∩(W ′)2,
(iii) R(w′) ⊆ W ′ for any w′ ∈ W ′. We say that F′ is a point-generated subframe of
F by a root w in F (notation: Fw) if F′ is the smallest generated subframe of F whose
domain contains w.

Proposition 3.10 If F′ is a generated subframe of F, then F 
 ϕ implies F′ 
 ϕ, for
any ϕ of GML.

Definition 3.11 (Disjoint unions) Let {Fi : i ∈ I } be a pairwise disjoint family of
frames, where Fi = (Wi, Ri). We define the disjoint union

⊎
i∈I Fi = (W,R) of

{Fi : i ∈ I } as: W =
⋃

i∈I Wi and R =
⋃

i∈I Ri.

Proposition 3.12 For any pairwise disjoint family {Fi : i ∈ I } of frames and any ϕ
of GML, if Fi 
 ϕ (i ∈ I) then

⊎
i∈I Fi 
 ϕ.

Note that we may assume that, up to isomorphism, any family of frames is pairwise
disjoint.

Proposition 3.13 Any frame F is a g-bounded morphic image of the disjoint union of
some family of generated subframes of F.

Proof. It suffices to note that
⊎

w∈|F| Fw �g F. 2

4 Graded Modal Classes of Finite Transitive Frames

First, we define the graded Jankov-Fine formulas as follows.

Definition 4.1 Let Fw = (W,R) be a finite transitive frame with the root w. Put
W = {w0, . . . , wn} and w = w0. Associate each wi ∈ W with a new proposition letter
pi. Define pX :=

∨
{ pi : wi ∈ X } for each finite X ⊆ W . Let �+ϕ := ϕ ∧ �ϕ.

The graded Jankov-Fine formula ϕF,w is defined as the conjunction of all the following
formulas:

(i) p0

(ii) �(p0 ∨ · · · ∨ pn)

(iii)
∧
{�+(pi → ¬pj) : i 6= j }

(iv)
∧
{�+(pi → 3kpX) : X ∈ τk(wi) }

(v)
∧
{�+(pi → ¬3kpX) : X 6∈ τk(wi) }

Clearly, ϕF,w is true at w of (W,R) under the natural valuation V (pi) = {wi } (remark
that V (pX) = X for finite X ⊆W ).

Lemma 4.2 Let F = (W,R) be a finite transitive point-generated frame with the root
w. Then for any transitive G, the following are equivalent:

(A) ϕF,w is satisfiable in G,
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(B) there exists v ∈ |G| such that F is a g-bounded morphic image of Gv.

Proof. We can easily show the direction from (B) to (A) by Proposition 3.10 and 3.13,
since ϕF,w is satisfiable in F at w under the natural valuation V such that V (pi) = {wi }.
Conversely, let us assume (A). It follows that (Gv, U), v 
 ϕF,w for some v ∈ |G| and
some valuation U on |Gv|. Now put Gv = (G,S). By the conjuncts (ii) and (iii) of ϕF,w,
we have G =

⋃
0≤1≤n U(pi) and U(pi) ∩ U(pj) = ∅ for any i, j with i 6= j, respectively.

By the rootedness of F and (iv), we can also establish that U(pi) 6= ∅ for any i with
0 ≤ i ≤ n. This allows us to define a surjective mapping f : G→W .

Now we show that f is a g-bounded morphism. Consider k ∈ ω and X ⊆ W and
x ∈ G (note that X is finite). Let us put f(x) := wi. We show the equivalence:
#(S(x) ∩ f−1[X]) ≥ k iff #(R(wi) ∩ X) ≥ k. First, we establish the left-to-right
direction. We show the contrapositive implication. So, suppose #(R(wi)∩X) < k hence
X 6∈ τk(wi). Then, by the conjunct (v) of ϕF,w and our assumption: (Gv, U), v 
 ϕF,w,
we deduce that (Gv, U), v 
 �+(pi → ¬3kpX). Since x ∈ |Gv| and Gv is still transitive,
from x ∈ U(pi) we deduce that (Gv, U), x 1 3kpX , hence #(S(x) ∩ U(pX)) < k. It
is easy to show that f−1[X] = U(pX) (recall pX :=

∨
{ pi : wi ∈ X } and X is finite).

Therefore, #(S(x)∩f−1[X]) < k, as desired. Second, we can also establish the right-to-
left direction similarly to the argument above. It suffices to use the conjunct (iv) instead
of (v). 2

Theorem 4.3 Let C be the class of all finite transitive frames and F ⊆ C. Then F is
definable by a set of formulas in GML within C iff F is closed under taking (i) generated
subframes, (ii) (finite) disjoint unions, (iii) g-bounded morphic images.

Proof. We can easily establish the left-to-right direction by Propositions 3.3, 3.10 and
3.12. Conversely, suppose that F satisfies the closure conditions. Define Log(F) :=
{ϕ : F 
 ϕ }. Let us show that Log(F) defines F within C. Consider F ∈ C, i.e., F is
finite and transitive. We show the equivalence: F ∈ F iff F 
 Log(F). The left-to-right
direction is easy to show. Let us establish the right-to-left direction. Assume F 
 Log(F).
We subdivide our argument into the following two cases: (a) F is point-generated and
(b) F is not point-generated.

First, let us consider the case (a). Let w be the root of F. Consider the Jankov-
Fine formula ϕF,w of F and w (note that F is finite, transitive, and point-generated).
Since ϕF,w is satisfiable in F (i.e., F 6
 ¬ϕF,w), we have ¬ϕF,w 6∈ Log(F). Then there
exists G ∈ F such that ϕF,w is satisfiable in G. From Lemma 4.2 it follows that F is a
g-bounded morphic image of Gv for some v in G. Since G ∈ F, Gv ∈ F by the closure
property (i) of F. Therefore, from the closure property (iii) of F and Gv �g F we deduce
that F ∈ F, as required.

Second, let us consider the case (b). By Proposition 3.13 and our assumption, it is
enough to show that each point generated subframe of F is in F. But each of these frames
validates Log(F) by Proposition 3.10, and hence belongs to F by the same argument as
in the case (a). 2

Let us say that F = (W,R) is m-transitive if R≤m :=
⋃

1≤k≤mRk is transitive, where
Rn is defined inductively by: R1 = R and Rn+1 := Rn ◦R. We can define m-transitivity
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by �≤mp → �≤m�≤mp, where �≤mp := �p ∧ · · · ∧ �mp. We can easily generalize
Theorem 4.3 to cover the class C of all finite m-transitive frames, since it suffices to
modify our Jankov-Fine formula as follows: replace each occurrence of � with �≤m.

Van Benthem [23, p.29] showed that the assumption ‘C is transitive’ is crucial in the
corresponding theorem [2, Theorem 3.21] for basic modal logic. We can use the same
example to show that the transitivity assumption for C is also crucial in GML. Intuitively,
this is because his proof uses frames, where every world has at most one successor [23,
p.29], and so 3k (k > 1) does not matter. Let F be the class of finite linear orders
with immediate succession as in [23, p.29] and F′ be the finite disjoint union closure
of F. It is easy to see that F′ is closed under taking finite disjoint unions, generated
subframes and also g-bounded morphic images. By the same argument, however, we can
show that a one-point reflexive frame validates Log(F′) = {ϕ : F′ 
 ϕ }. This shows the
indispensability of transitivity in Theorem 4.3.

5 Graph Semantics and Graded Ultrafilter Images

5.1 Graph Semantics and Fine Mapping

Definition 5.1 Define X ⊆ω Y if X ⊆ Y and #X < ω.

Definition 5.2 (Graph semantics for GML) A (directed) graph frame is a pair of
a non-empty set W and a family (Rk)k∈ω of binary relations on W such that if k > l

then Rk ⊆ Rl. A graph model is a pair of a graph frame and a valuation on it. Given
any graph model (W, (Rk)k∈ω, V ), we define the satisfaction relation w |=V ϕ as follows:

w |=V p iff w ∈ V (p),

w |=V ⊥ Never,

w |=V ¬ϕ iff w 6|=V ϕ,

w |=V ϕ ∧ ψ iff w |=V ϕ, and w |=V ψ

w |=V 3kϕ iff ∃X ⊆ω W. ∃ l : X → ω.(∑
v∈X l(v) ≥ k and ∀ v ∈ X. (wRl(v)v and v ∈ |ϕ|)

)
,

where |ϕ| := {w ∈W : w |=V ϕ } (if X = ∅, we put
∑

v∈X l(v) = 0). If w |=V ϕ for all
w ∈W and all V : Prop→ P(W ), we say that ϕ is valid on (W, (Rk)k∈ω) and denote it
by (W, (Rk)k∈ω) |= ϕ.

For any k ∈ ω, we can easily check that w |=V 3kϕ is also equivalent to:

∃X ⊆ω W. ∃ l : X → ω \ { 0 }.
(∑

v∈X l(v) ≥ k and ∀ v ∈ X. (wRl(v)v and v ∈ |ϕ|)
)
.

In this sense, R0 does not play any role in the truth condition of 30ϕ. As in Kripke
semantics for GML, (W, (Rk)k∈ω) |= 30ϕ for any graph frame (W, (Rk)k∈ω), since it
suffices to take ∅ ⊆ω W and the empty function from ∅ to ω as our witness.
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The following notion is our renewal of Fine’s canonical mapping [10, pp.518-9].

Definition 5.3 (Fine mapping) Let (W, (Rk)k∈ω) be a graph frame and G = (G,S)
a Kripke frame. We say that f : G → W is a Fine mapping if, for any n ∈ ω, any
x ∈ G and any w ∈W ,

# { y ∈ G : f(y) = w and xSy } ≥ n iff f(x)Rnw.

We call the left-to-right direction (Forth) and the right-to-left direction (Back).

A surjective Fine mapping allows us to associate a graph frame with a Kripke frame
in a validity-preserving way (Proposition 5.7). Before showing this, let us see some
examples of Fine mapping.

Example 5.4 (Fine [10]) Let (W, (Rk)k∈ω) be a graph frame. Let us define a Kripke
frame G = (G,S1) by (i) G := W × ω and (ii) (w, l)S1(w′, k) iff k > l and wRk−lw

′.
Then the projection π1 : W × ω → W is a Fine mapping. This is verified as follows:
Consider any (w, l) ∈ G and w′ ∈W . Take any n ∈ ω. Then:

# { (w′, k) ∈ G : π1((w′, k)) = w′ and (w, l)S1(w′, k) } ≥ n
iff # { (w′, k) ∈ G : k > l and wRk−lw

′ } ≥ n iff wRnw
′

Let us check the latter equivalence. First, let us show the left-to-right direction. Assume
that # { (w′, k) ∈ G : k > l and wRk−lw

′ } ≥ n. Fix k1, . . . , kn such that (w′, ki) ∈ G
and ki > l and wRki−lw

′ (1 ≤ i ≤ n). Since max { ki − l : 1 ≤ i ≤ n } ≥ n, we
have wRnw

′ by Rk1 ⊆ Rk2 (k1 > k2). In order to establish the right-to-left di-
rection, assume wRnw

′. From Rk1 ⊆ Rk2 (k1 > k2) we deduce that wRn−1w
′,

· · · , wR1w
′. Then it is easy to see that (w′, l + 1), . . . , (w′, l + n) belong to

{ (w′, k) ∈ G : k > l and wRk−lw
′ }.

Example 5.5 (Fine [10]) In Example 5.4, we can replace S1 with the following S2:
(w, l)S2(w′, k) iff wRkw

′. Then the projection π1 : W ×ω →W is still a Fine mapping.
This is verified as follows: Consider any (w, l) ∈ G and w′ ∈W . Take any n ∈ ω. Then:

# { (w′, k) ∈ G : π1((w′, k)) = w′ and (w, l)S2(w′, k) } ≥ n
iff # { (w′, k) ∈ G : wRkw

′ } ≥ n iff wRnw
′ (by Rk1 ⊆ Rk2 (k1 > k2))

We will see some specific application of these constructions later on, in Examples
5.22 and 5.24.

Lemma 5.6 Let (W, (Rk)k∈ω) be a graph frame and G = (G,S) a Kripke frame, and
V a valuation on W . Assume that f : G → W is a Fine mapping. Define a valuation
V ′ on G by V ′(p) = f−1[V (p)]. Then for any formula ϕ and x ∈ G,

(G, V ′), x 
 ϕ iff f(x) |=V ϕ.
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Proof. By induction on ϕ. It suffices to check the case where ϕ ≡ 3kψ. Consider any
x ∈ G and put w : = f(x). First, assume that w |=V 3kψ. That is,

∃X ⊆ω W. ∃ l : X → ω.
(∑

v∈X
l(v) ≥ k and ∀ v ∈ X. (wRl(v)v and v ∈ |ψ|))

)
.

By definition of f and I.H. (JψK(G,V ′) = f−1[|ψ|], the inverse image of |ψ| by f), it
follows that:

∃X ⊆ω W. ∃ l : X → ω. (†)(∑
v∈X

l(v) ≥ k and ∀ v ∈ X.
(
#(S(x) ∩ f−1[{ v }]) ≥ l(v) and f−1[{ v }] ⊆ JψK(G,V ′)

))
.

Then it follows that #(S(x) ∩ JψK(G,V ′)) ≥ k hence (G, V ′), x 
 3kψ, as required.
Conversely, assume that (G, V ′), x 
 3kψ, i.e., #(S(x) ∩ JψK(G,V ′)) ≥ k (we drop

the subscript (G, V ′) from JψK(G,V ′) below and write JψK′). It suffices to derive (†).
Note that S(x) ∩ JψK′ consists of the partitions

{
f−1[{ v }] : v ∈ f [S(x) ∩ JψK′]

}
. The

number of these partitions is α := #f [S(x)∩ JψK′]. If α ≥ k, we can easily derive (†): it
suffices to choose some X ⊆ω f [S(x)∩ JψK′] such that #X = k and define l : X → ω by
l(v) := #(S(x)∩ f−1[{ v }]). So, assume that α < k. Then #(S(x)∩ JψK′) ≥ k allows us
to derive (†): let us put X := f [S(x) ∩ JψK′] and define l(v) := #(S(x) ∩ f−1[{ v }]). 2

Proposition 5.7 Let (W, (Rk)k∈ω) be a graph frame and G = (G,S) a frame. If f :
G→W is a surjective Fine mapping and G 
 ϕ, then (W, (Rk)k∈ω) |= ϕ.

Proof. Assume w 6|=V ϕ for some V on W and some w ∈ W . Since f is surjective,
f(x) = w for some x ∈ G. Define V ′ on G by V ′(p) := f−1[V (p)] for all p ∈ Prop. By
Proposition 5.6, (G, V ′), x 6
 ϕ hence G 6
 ϕ. 2

This proposition shows soundness of graph semantics for GML.

Corollary 5.8 All the formulas from Fact 2.1 are valid in any graph frame
(W, (Rk)k∈ω).

Proof. By Proposition 5.7 and Example 5.4. 2

5.2 Ultrafilter Graph Model and Graded Ultrafilter Images

Given any F = (W,R) and any k ∈ ω, define mk : P(W ) → P(W ) by mk(X) :=
{w ∈W : #(R(w) ∩X) ≥ k }. Let us write mR(X) := m1(X) and define lR : P(W )→
P(W ) by lR(X) := W \mR(W \X).

Definition 5.9 Let X,Y ⊆W . We define X ⇒ Y := (W \X) ∪ Y .

Proposition 5.10 For any X ⊆W ,

(i) lR(X ⇒ Y ) ∩ lR(X) ⊆ lR(Y ).

(ii) mk(X) ⊆ ml(X) (l < k).

(iii) mk(X) =
⋃k

i=0(mi(X ∩ Y ) ∩mk−i(X ∩ (W \ Y ))) for any Y ⊆W .
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(iv) lR(X ⇒ Y ) ∩mk(X) ⊆ mk(Y ).

Proof. It is easy to see that M, w 
 3kϕ iff w ∈ mk(JϕK), i.e., J3kϕK = mk(JϕK).
Then all four items are clear from Fact 2.1. 2

Definition 5.11 We define the binary relation Rue
k on the set Uf(W ) of all ultrafilters

on W as: URue
k U ′ iff X ∈ U ′ implies mk(X) ∈ U , for any X ⊆W .

Proposition 5.12 (Uf(W ), (Rue
k )k∈ω) is a graph frame.

Proof. It suffices to check that Rk ⊆ Rl (l < k). This follows trivially from Proposition
5.10 (ii). 2

Then we can define the final frame construction to characterize the definability of
GML for elementary classes as follows.

Definition 5.13 (Graded ultrafilter images) Let F = (W,R) and G = (G,S) be
frames. We say that f : G → Uf(W ) is a graded ultrafilter mapping if f is a Fine
mapping from G to (Uf(W ), (Rue

k )k∈ω). F is a graded ultrafilter image of G if there
exists a graded ultrafilter mapping f : G→ Uf(W ) such that f is surjective.

The rest of this subsection is devoted to establishing the preservation result for
graded ultrafilter images. Our strategy is as follows. First, we show the implication:
if (Uf(W ), (Rue

k )k∈ω) |= ϕ then (W,R) 
 ϕ (Proposition 5.20). Only for this purpose,
we use the notion called truth-set function originating from Fine [10] 1 . Second, by
combining Proposition 5.7 with the implication above, we will establish our desired
preservation result (Theorem 5.21).

Definition 5.14 (Fine [10]) Given any frame (W,R) and an ultrafilter U on W , we
define the truth-set function TU (−) : P(W )→ P(Uf(W )× ω) by:

TU (X) := { (U ′, l) : l > 0 and X ∈ U ′ and URue
l U ′ } .

Proposition 5.15 For any X,Y ⊆W ,

(i) TU (X ∩ Y ) ∩ TU (X ∩ (W \ Y )) = ∅.
(ii) TU (X) = TU (X ∩ Y ) ∪ TU (X ∩ (W \ Y )).

Lemma 5.16 For any (k,U) ∈ ω ×Uf(W ), mk(X) ∈ U implies #TU (X) ≥ k.

Proof. See Appendix A. 2

Lemma 5.17 For any (k,U) ∈ ω ×Uf(W ), #TU (X) ≥ k implies mk(X) ∈ U .

Proof. See Appendix A. 2

Lemma 5.18 For any k ∈ ω and any U ∈ Uf(W ), #TU (X) ≥ k iff :

∃X ⊆ω Uf(W ). ∃ l : X→ ω.
(∑

V∈X
l(V) ≥ k and ∀V ∈ X. (V, l(V)) ∈ TU (X)

)
.

1 If the reader checks Fine’s paper [10], he might first feel that the truth-set function TU (−) plays the
main role in Fine’s completeness proof. However, from our viewpoint the graph semantics is the most
essential in his proof.
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Proof. The right-to-left direction is easy to show by Proposition 5.10 (ii). So let us
establish the left-to-right direction. Assume #TU (X) ≥ k. Remark that TU (X) consists
of the partitions

{
π−1

1 [{ V }] ∩ TU (X) : V ∈ π1[TU (X)]
}

, where π1 : Uf(W ) × ω →
Uf(W ) is the projection 2 . We can regard #π1[TU (X)] as the number of all these
partitions. If #π1[TU (X)] ≥ k, we are done: it suffices to choose some X ⊆ω π1[TU (X)]
such that #X = k and define l : X → ω such that (V, l(V)) ∈ π−1

1 [{ V }] ∩ TU (X).
So let us consider the case where #π1[TU (X)] < k. Define X := π1[TU (X)]. We
divide our argument into the following two cases: (a) there exists V ∈ X such that
#π−1

1 [{ V }] ∩ TU (X) ≥ ω, (b) for all V ∈ X, #π−1
1 [{ V }] ∩ TU (X) < ω. First, let us

consider the case (a). Fix such V ∈ X. Then for our purpose, it suffices to choose some
l : X → ω such that l(V) ≥ k. Finally, let us turn to the case (b). For any V ∈ X, we
can define l(V) := max {n : (V, n) ∈ TU (X) }. Then from #TU (X) ≥ k it is clear that∑
V∈X l(V) ≥ k. 2

Proposition 5.19 Given any Kripke model M := (W,R, V ), define the graph model
(Uf(W ), (Rue

k )k∈ω, V
ue), where V ue(p) := {U ∈ Uf(W ) : V (p) ∈ U }. Then for any ϕ

and any U ∈ Uf(W ),

JϕK ∈ U iff U |=V ue ϕ.

Proof. By induction on ϕ. It suffices to consider the case where ϕ ≡ 3kψ. Then
J3kψK ∈ U iff mk(JψK) ∈ U iff #TU (JψK) ≥ k by Lemma 5.16 and Lemma 5.17.
Equivalently, by Lemma 5.18 and the definition of TU , we obtain:

∃X ⊆ω Uf(W ). ∃ l : X→ ω.

(∑
V∈X

l(V) ≥ k and ∀V ∈ X. (URue
l(V)V and JψK ∈ V)

)
.

By I.H. (JψK ∈ V iff V ∈ |ψ|), we establish U |=V ue 3kϕ, as required. 2

Proposition 5.20 For any F = (W,R), if (Uf(W ), (Rue
k )k∈ω) |= ϕ, then F 
 ϕ.

Proof. Assume F 6
 ϕ, i.e., (F, V ), w 6
 ϕ for some V and some w ∈ W . Take the
principal ultrafilter Uw := {D ⊆W : w ∈ D }. It follows that JϕK 6∈ Uw. It follows from
Proposition 5.19 that Uw 6|=V ue ϕ; hence (Uf(W ), (Rue

k )k∈ω) 6|= ϕ. 2

Theorem 5.21 If F is a graded ultrafilter image of G, then G 
 ϕ implies F 
 ϕ.

Proof. By Proposition 5.7 and Proposition 5.20. 2

Example 5.22 By definition of S1 in Example 5.4, G is irreflexive. Let us con-
sider an example of graded ultrafilter images. Take a one-point reflexive frame F =
({ ∗ }, { (∗, ∗) }). Then Uf(|F|) consists only of the principal ultrafilter U∗ generated by
∗. We have U∗Rue

0 U∗ and U∗Rue
1 U∗ by definition. However, if k ≥ 2, U∗Rue

k U∗ fails. By
the construction of Example 5.4, we can construct Kripke frame G := ({U∗ } × ω, S1).

2 Remark that TU (X) is contained in (the union of)
{
π−1
1 [{V }] : V ∈ π1[TU (X)]

}
. However,{

π−1
1 [{V }] ∩ TU (X) : V ∈ π1[TU (X)]

}
gives us a partition of TU (X).
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It is easy to see that G is isomorphic to (ω, Suc−1), where Suc−1 is the inverse of the
successor relation Suc on ω.

This example also shows the undefinability of irreflexivity in GML by Theorem 5.21.
Also by Example 5.22 and Theorem 5.21, we can establish:

Proposition 5.23 The existence of a distinct predecessor (for any w, there exists w′

such that w′Rw and w 6= w′) is undefinable in GML.

Example 5.24 In Example 5.22, let us start from the one point irreflexive frame F′ :=
({ ∗ }, ∅). While Uf(|F|) consists only of the principal ultrafilter U∗ generated by ∗ as
before, U∗Rue

0 U∗ holds but U∗Rue
k U∗ fails (k > 0). Here let us use the definition S2 of

Example 5.5. Then G := ({U∗ } × ω, S2) is isomorphic to (ω,R′), where nR′m iff m =
0. Therefore a reflexive state is accessible from all the states in G. However, this is not
the case in F′. This example uses the relation Rue

0 crucially.

By Example 5.24 and Theorem 5.21, we can establish:

Proposition 5.25 ∀w. ∃w′. (wRw′ andw′Rw′) is undefinable in GML.

6 Goldblatt-Thomason-style Characterization of El-
ementary Graded Modal Classes

In this section we use some notions from first-order model theory, e.g., elementary em-
bedding, ω-saturation, etc. The reader unfamiliar with them can refer to [4]. The
original Goldblatt-Thomason Theorem for basic modal logic was proved via duality be-
tween algebras and frames [12]. The proof of our Goldblatt-Thomason Theorem for
GML modifies the model-theoretic proof given by Van Benthem [24] for basic modal
logic.

Definition 6.1 Let F = (W,R) be a generated subframe with a root w. We expand our
language GML with the (possibly uncountable) set { pX : X ⊆W } of new proposition
letters. Let ∆ be the set consisting of:

pX∩Y ↔ pX ∧ pY ,

pW\X ↔ ¬pX ,

pmk(X) ↔ 3kpX ,

pW ,

where X,Y ⊆W and k ∈ ω. Then we define ∆F as follows:

∆F := { p{w } } ∪ {�nϕ : ϕ ∈ ∆ and n ∈ ω } .

Note that ∆F is satisfiable in F under the natural valuation V such that V (pX) =
X. Let F be an elementary class of frames. Similarly to our graded Jankov-Fine formula
in Definition 4.2, by this ‘complete description’ of F, for a given G ∈ F such that ∆F is
satisfiable in G, we can extract the following semantic information.
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Lemma 6.2 Let F be an elementary class of frames and F = (W,R) a generated sub-
frame with a root w. Also let G ∈ F. If ∆F is satisfiable in G, then there exists some
v ∈ |G| and some elementary extension (Gv)∗ of Gv such that F is a graded ultrafilter
image of (Gv)∗.

Proof. Let us assume that ∆F is satisfiable in G. Thus we have (G, V ), v 
 ∆F for some
valuation V and v ∈ |G|. It follows that (Gv, V1), v 
 ∆F, where V1(p) := V (p) ∩ |Gv|.
By construction of ∆F, we can show that (Gv, V1) 
 ∆ and (Gv, V1), v 
 pX for any
X with w ∈ X ⊆ W . Let us take some ω-saturated elementary extension ((Gv)∗, V ∗1 )
of (Gv, V1). Let v∗ be the element in (Gv)∗ corresponding to v. Then, we obtain
((Gv)∗, V ∗1 ), v∗ 
 ∆F. We can also establish that ((Gv)∗, V ∗1 ) 
 ∆ and ((Gv)∗, V ∗1 ), v∗ 

pX for any X with w ∈ X ⊆W .

Let us define a mapping f : |(Gv)∗| → Uf(W ) by

f(s) := {X ⊆W : ((Gv)∗, V ∗1 ), s 
 pX } .

Now we are going to show the following: (a) f(s) is an ultrafilter; (b) f is surjective; (c)
f is a Fine mapping. Of course, the most important step for our purpose is to establish
(c). So, we concentrate on showing (c). For the proof of (a) and (b), the reader can refer
to [24]. Let us denote the accessibility relation of (Gv)∗ by S. We establish (Forth)- and
(Back)-conditions for a Fine mapping (recall Definition 5.3). Consider any s ∈ |(Gv)∗|
and any V ∈ Uf(W ).

First, let us show (Forth). Assume that # { s′ : f(s′) = V and sSs′ } ≥ k. We
want to show f(s)Rue

k V. So, consider any X ∈ V. We show mk(X) ∈ f(s), or equiv-
alently, ((Gv)∗, V ∗1 ), s 
 pmk(X). Since f(s′) = V and X ∈ V implies X ∈ f(s′), we
obtain: { s′ : f(s′) = V and sSs′ } ⊆ { s′ : X ∈ f(s) and sSs′ }. By our assumption,
# { s′ : X ∈ f(s) and sSs′ } ≥ k. This gives us

# { s′ : ((Gv)∗, V ∗1 ), s 
 pX and sSs′ } ≥ k.

Thus ((Gv)∗, V ∗1 ), s 
 3kpX . Since ∆ is valid on ((Gv)∗, V ∗1 ), we can deduce that
((Gv)∗, V ∗1 ), s 
 pmk(X), as desired. We have shown (Forth).

Next, let us establish (Back). In what follows, we assume for simplicity that k = 3.
Our assumption is f(s)Rue

3 V. We show that # { s′ : f(s′) = V and sSs′ } ≥ 3. Define

Γ :={R(s, z1) ∧R(s, z2) ∧R(s, z3) ∧ z1 6= z2 ∧ z1 6= z3 ∧ z2 6= z3 }
∪ {PY (z1) ∧PY (z2) ∧PY (z3) : Y ∈ V } ,

where R(x, y) is the binary symbol corresponding to S and each PY (x) is the unary
predicate symbol corresponding to pY . By ω-saturation of ((Gv)∗, V ∗1 ), it suffices to
show that Γ is finitely satisfiable. Consider Y1, . . . , Yn ∈ V. We show:

Γ′ :={R(s, z1) ∧R(s, z2) ∧R(s, z3) ∧ z1 6= z2 ∧ z1 6= z3 ∧ z2 6= z3 }
∪ {PYi(z1) ∧PYi(z2) ∧PYi(z3) : 1 ≤ i ≤ n }
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is satisfiable in ((Gv)∗, V ∗1 ). Clearly, Y1∩· · ·∩Yn ∈ V. From f(s)Rue
k V we have: m3(Y1∩

· · · ∩Yn) ∈ f(s), i.e., ((Gv)∗, V ∗1 ), s 
 pm3(Y1∩···∩Yn). Since ∆ is valid on ((Gv)∗, V ∗1 ), we
can deduce that ((Gv)∗, V ∗1 ), s 
 33(pY1∧· · ·∧pYn), i.e., #(S(s)∩JpY1 ∧ · · · ∧ pYnK) ≥ 3.
This means that Γ′ is satisfiable. So we can conclude that Γ is finitely satisfiable in
((Gv)∗, V ∗1 ). We can easily generalize the above argument to other cases, where k 6= 3.

Therefore we have established the desired statement. 2

Theorem 6.3 An elementary class F of frames is definable by a set of formulas in GML
iff F is closed under taking (i) generated subframes, (ii) disjoint unions, (iii) g-bounded
morphic images, and (iv) graded ultrafilter images.

Proof. The left-to-right direction is easy to show by Propositions 3.3, 3.10, 3.12 and
Theorem 5.21. Conversely, assume that F satisfies the closure properties. Define Log(F)
:= {ϕ : F 
 ϕ }. We show that, for any F ∈ F, F ∈ F iff F 
 Log(F). Consider F ∈ F.
It is trivial to show the Only-If-direction. Let us show the If-direction. Assume that
F 
 Log(F). Similarly to the proof of Theorem 4.3, by our assumptions (i), (ii), (iii) and
Proposition 3.13, we can assume without any loss of generality that F is point-generated
by a root w ∈ |F|.

Construct the ‘complete description’ ∆F of F (see Definition 6.1) 3 . Then we show
that ∆F is satisfiable in F as follows. It suffices to show that ∆F is finitely satisfiable
in F, because F is elementary. Let Γ be a finite subset of ∆F. To get a contradiction,
suppose F 
 ¬

∧
Γ. Then ¬

∧
Γ ∈ Log(F). Since F 
 Log(F), F 
 ¬

∧
Γ. However,∧

Γ is clearly satisfiable in F under the natural valuation, which implies a contradiction.
Therefore, ∆F is satisfiable in some G ∈ F.

By Lemma 6.2, there exists some v ∈ |G| and some elementary extension (Gv)∗of Gv

such that F is a graded ultrafilter image of (Gv)∗. By our closure properties and G ∈ F,
we can conclude that F ∈ F as required. 2

In our proof of Theorem 6.3 (esp. Lemma 6.2), we require that a class F of frames is
elementary. We essentially use a compactness argument that requires F to be elementary.
So we can replace the assumption that F is elementary with closure under ultraproducts.
Moreover, we can also reduce this condition to closure under ultrapowers as in the
case of basic modal language as follows (cf. [13, Proposition 85]): an ultraproduct of
frames is isomorphic to a generated subframe of the ultrapower, with respect to the
same ultrafilter, of the disjoint union of the original frames. Since any graded modally
definable class is closed under taking disjoint unions, we can apply the same argument
to GML.

In basic modal language, we can also get even weaker closure condition: closure under
ultrafilter extensions. Closure under ultrafilter extensions implies closure under ultra-
products, provided the intended class F is also closed under disjoint unions, generated
subframes and isomorphisms. Thus, we can regard closure under ultrafilter extensions
as the essential assumption of F in the proof of Goldblatt-Thomason Theorem in basic

3 Remark that we can still assume that F 
 Log(F) in spite of our expansion of the original language in
Definition 6.1. This is intuitively clear, because the choice of Prop is irrelevant, whenever we consider
frame validity.
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modal language. Then, the next question is: can we get a similar kind of closure con-
dition even in GML? As we explained in the introduction, however, it seems difficult to
find an appropriate notion of ultrafilter extension for GML in Kripke semantics. One
possible way to avoid this difficulty is to change the semantics into the coalgebraic one
4 .

7 Further Directions

7.1 The Scope of Our Guiding Idea

The first author and Sato [18,17] observed that there is a strong connection between
the (strong) completeness proof of an extended modal logic and Goldblatt-Thomason
characterization for it and they extracted an essential part of this connection, the notion
of realizer [18]. The result of this paper gives us a further evidence of this observation.
We can regard the notion of Fine mapping as the corresponding notion of realizer. Then
our next question is: what is the scope of this observation? For example, we have not
obtained a well-established model-theoretical study of conditional logic for preference
frames [22]. Is it possible to apply the idea of [18] to obtain Goldblatt-Thomason-style
results for conditional logic over preference frames?

7.2 Extensions of GML

We may consider extensions of GML with more expressive power. One general problem
is definability of frame classes in extended GMLs. Lethinen [16] studied the extension
of GML obtained by adding the path quantifier, which allows us to talk about the truth
on all paths starting from a certain state, the modal µ-extension, and an infinite GML.
Some excellent results on relative definability of frame classes are proved there. Another
nice extension is graded hybrid logic (GHL). Kaminski, et. al. [14] studied terminating
tableaux for graded hybrid logic. However we still lack a Goldblatt-Thomason-style
characterization for GHL. Is it possible to merge our idea from this paper with Ten
Cate’s Goldblatt-Thomason-style characterization for hybrid logic [20], in particular,
his idea of ultrafilter morphic images [20, Definition 4.2.5]? This would be a promising
further direction.

7.3 Coalgebraic GML

We have shown that there is an alternative semantics which interprets GML on directed
graphs. Another excellent (but related) alternative semantics is the coalgebraic one.
This was shown by D’Agostino and Visser [5] and it was claimed that graded modal
logic is subsumed under coalgeraic modal logics. We may define a functor Ω on the
category of sets such that Ω(X) = (ω + 1)X , the set of all functions from X to ω + 1.
A Ω-coalgebra is a pair (X,σ) where σ : X → Ω(X) is a transition map. Recently the
second author has found out that there is a natural Goldblatt-Thomason theorem for

4 Recently, the second author has found the notion of ultrafilter extension in the coalgebraic semantics
and proved a natural Goldbatt-Thomason Theorem for GML (see also Section 7.3)
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coalgebraic GML, by applying duality between algebras and Ω-coalgebras. Remark that
this is not a consequence of the general Goldblatt-Thomason theorem given by Kurz and
Rosický [15], because they restrict functors to those preserving finiteness, i.e., mapping
finite sets to finite sets, while the functor Ω above does not preserve finiteness.
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A Proofs of Lemmas

The proof of Lemmas 5.16 and 5.17 adapts and extends the proof of Theorem 1 from [10].

A.1 Proof of Lemma 5.16

By induction on k.

(Base) Since #TU (X) ≥ 0, there is nothing to prove in the case where k = 0.
Consider the case where k = 1. Assume that m1(X) ∈ U . Since m1(X) :=
{w ∈W : R(w) ∩X 6= ∅ }, we can identify (Uf(W ), Rue

1 ) with the ultrafilter exten-
sion of F for the basic modal language. Then from m1(X) ∈ U we easily deduce that
there exists an ultrafilter U ′ such that U ′ ⊆ {Y ⊆W : m1(Y ) ∈ U } and X ∈ U ′. So
we have URue

1 U ′. This yields us (U ′, 1) ∈ TU (X), hence #TU (X) ≥ 1.

(Induction Step) Consider the case where k > 1. First, note that our induction
hypothesis is: ∀ l < k. ∀X ⊆W. ml(X) ∈ U implies #TU (X) ≥ l. Assume that
mk(X) ∈ U . By Proposition 5.10 (iii), we have:

∀Y ⊆W. ∃ i ≤ k.mi(X ∩ Y ) ∩mk−i(X ∩ (W \ Y )) ∈ U . (∗)

For simplicity, let us abbreviate (∗) as ∀Y ⊆W. ∃ i ≤ k.ΨU (Y, i). We subdivide our
argument into the following two cases:
(a) ∃Y ⊆W. ∃ i ≤ k. (ΨU (Y, i) and i 6= 0 and i 6= k);
(b) ∀Y ⊆W. ∀ i ≤ k. (ΨU (Y, i) implies (i = 0 or i = k)).
First, let us consider the easier case (a). Fix Y and i with ΨU (Y, i). Then we have
1 < i < k. So by our I.H. and ΨU (Y, i), we can state that: #TU (X ∩ Y ) ≥ i and
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#TU (X ∩ (W \ Y )) ≥ k − i. By Proposition 5.15, we can calculate as follows:

#TU (X) = #TU (X ∩ Y ) + #TU (X ∩ (W \ Y )) ≥ i+ (k − i) = k,

as desired. This finishes the case (a).
Let us consider the case (b). First, we show the following claim:

Claim A.1 For any Y ⊆W , lR(X ⇒ (W \ Y )) ∪ lR(X ⇒ Y ) ∈ U .

(Proof of Claim) Let us consider any Y ⊆W . By our assumption (∗), we can find
j ≤ k such that ΨU (Y, j), i.e., mj(X∩Y ) ∈ U and mk−j(X∩ (W \Y )) ∈ U . Then, (b)
teaches us that we have j = 0 or j = k. Here we only check the desired conclusion in
the case j = 0, because we can similarly show it in the case j = k. Let us assume that
j = 0. Then we have mk(X ∩ (W \Y )) ∈ U (note: m0(X ∩Y ) ∈ U always holds). We
are going to establish lR(X ⇒ (W \ Y )) ∈ U , i.e., W \mR(X ∩ Y ) ∈ U . So suppose
that on the contrary, mR(X ∩ Y ) ∈ U , hence m1(X ∩ Y ) ∈ U . But by Proposition
5.10 (ii) and mk(X ∩ (W \ Y )) ∈ U , we obtain mk−1(X ∩ (W \ Y )) ∈ U (note that
k > 1). Together with m1(X ∩ Y ) ∈ U , this means that we have shown ΨU (Y, 1).
Then from (b) it follows that 1 = 0 or 1 = k. Both of the disjuncts, however, are
impossible. So we get the desired contradiction. Therefore, lR(X ⇒ (W \ Y )) ∈ U
hence lR(X ⇒ (W \ Y )) ∪ lR(X ⇒ Y ) ∈ U . a

By this claim, we can also establish the following.

Claim A.2 {X } ∪ {Y ⊆W : W \mk(W \ Y ) ∈ U } satisfies the finite intersection
property.

(Proof of Claim) Suppose the contrary — that this set does not have the finite
intersection property. It follows that there exists finite Y1, . . .Yn such that W \mk(W \
Yi) ∈ U (1 ≤ i ≤ n) and X ∩ Y1 ∩ · · · ∩ Yn = ∅. We subdivide our argument into the
following two cases:
(i) ∀ i. (1 ≤ i ≤ n implies lR(X ⇒ Yi) ∈ U);
(ii) ∃ i. (1 ≤ i ≤ n and lR(X ⇒ Yi) /∈ U).
First, let us consider the case (i). Then from (i) we derive that lR(X ⇒ (Y1 ∩ · · · ∩
Yn)) ∈ U . By our assumption X ∩ Y1 ∩ · · · ∩ Yn = ∅ (i.e., Y1 ∩ · · · ∩ Yn ⊆ (W \X)),
however, we have: lR((Y1∩· · ·∩Yn)⇒ (W \X)) ∈ U . Thus we obtain lR(W \X) ∈ U
hence W \mR(X) ∈ U . Recall that our assumption for the induction step is mk(X) ∈
U , which implies a contradiction by Proposition 5.10 (ii). This finishes the case (i).

Finally, consider the case (ii). Fix i with lR(X ⇒ Yi) /∈ U . By Claim A.1, lR(X ⇒
(W \ Yi)) ∈ U . Recall that Yi satisfies W \ mk(W \ Yi) ∈ U . Then by Proposition
5.10 (iv), we can establish that W \mk(X) ∈ U , which gives us a contradiction to our
assumption: mk(X) ∈ U . This finishes the case (ii). a

By Claim A.2, we can find an ultrafilter U ′ such that X ∈ U ′ and Y ∈ U ′ for any
Y with W \mk(W \ Y ) ∈ U . Thus, we have URue

k U ′ and X ∈ U ′. From Proposition
5.10 (ii) it follows that URue

l U ′ for any l with 1 ≤ l ≤ k, i.e., (U ′, l) ∈ TU (X) for any l
with 1 ≤ l ≤ k. Therefore we have shown #TU (X) ≥ k, as required. This completes
our proof for the induction step. 2
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A.2 Proof of Lemma 5.17

By induction on k.

(Base) Since m0(X) ∈ U always holds, there is nothing to prove in the case where k
= 0. Consider the case k = 1 and assume that l > 1 and #TU (X) ≥ 1. So we can
find (U ′, l) ∈ TU (X). Equivalently, URue

l U ′ and X ∈ U ′. From Proposition 5.10 (ii)
we can derive that URue

1 U ′ and X ∈ U ′ hence m1(X) ∈ U , as required.

(Induction Step) Consider the case k > 1. Assume that #TU (X) ≥ k. We split our
argument into the following cases:
(a) ∃ (U1, l1) ∈ TU (X). ∃ (U2, l2) ∈ TU (X). (U1 6= U2).
(b) ∀ (U1, l1) ∈ TU (X). ∀ (U2, l2) ∈ TU (X). (U1 = U2).
First, we consider the case (b). Our assumption #TU (X) ≥ k and (b) allow us to
establish (U1, l1) ∈ TU (X) for some ultrafilter U1 and some l1 ≥ k. Fix such U1 and
l1 ≥ k. Since URue

l1
U1 and X ∈ U1, from Proposition 5.10 (ii) we deduce that URue

k U1

and X ∈ U1 hence mk(X) ∈ U , as desired.
Second, let us consider the case (a). Take some (U1, l1), (U2, l2) ∈ TU (X) with

U1 6= U2. From U1 6= U2 it follows that Y ∈ U1, but W \ Y ∈ U2 for some Y ⊆ W .
Since (U1, l1), (U2, l2) ∈ TU (X), we can state that: (i) URue

l1
U1 and X ∩ Y ∈ U1; (ii)

URue
l2
U2 and X ∩ (W \Y ) ∈ U2. So TU (X ∩Y ) 6= ∅ and TU (X ∩ (W \Y )) 6= ∅. Hence

by Proposition 5.15 (ii), we can establish the following:

∃ i. (0 < i < k and #TU (X ∩ Y ) ≥ i and #TU (X ∩ (W \ Y )) ≥ k − i).

Then from I.H. it follows that mi(X∩Y ) ∈ U and mk−i(X∩(W \Y )) ∈ U . Therefore,
by Proposition 5.10 (iii), mk(X) ∈ U , as required. This finishes our proof of the
induction step. 2
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