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Abstract

We develop the notion of synthesizing, or constructing, a temporal structure over
the real numbers flow of time, from a given temporal or first-order specification.
We present a new notation for giving a manageable description of the compositional
construction of such a model and an efficient procedure for finding it from the speci-
fication.
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1 Introduction

Standard temporal logics are based on a discrete, natural numbers model of
time [8]. However, a dense, continuous or specifically real-numbers model of
time may be better for many applications, ranging from philosophical, natural
language and AI modelling of human reasoning to computing and engineering
applications of concurrency, refinement, open systems, analogue devices and
metric information.

The most natural and well-established such temporal logic is RTL, propo-
sitional temporal logic over real-numbers time using the Until and Since con-
nectives introduced in [5]. We know from [5] that, as far as defining properties
is concerned, this logic is as expressive as the first-order monadic logic of the
real numbers order, and so RTL is at least as expressive as any other standard
temporal logic which could be defined over real-numbers time.

Reasoning in RTL is fairly well understood: complete, Hilbert-style ax-
ioms systems for RTL are given in [4] and [11]. Satisfiability and validity in
RTL is decidable [1]. However, the decision procedure in [1] uses Rabin’s non-
elementarily complex decision procedure for the second-order monadic logic
of two successors, and so is far from practical. Furthermore, deciding valid-
ity in the equally expressive first-order monadic logic of the real order is a
non-elementary problem [17]. More recently, there has been some more pos-

1 The work was partially supported by the Australian Research Council.



218 Synthesis for Temporal Logic over the Reals

itive news as [15] showed that deciding (validity or satisfiability in) RTL is
PSPACE-complete.

Our task here, synthesis, is a harder problem than satisfiability checking.
It requires an algorithm which can output a complete description of a specific
model of the input formula, whenever the input formula is satisfiable. In this
paper we give the first synthesis result for RTL.

Towards this end, we first present a new suitable notation for describing
models in a concrete way. The compositional approach presented here was
hinted at in [12], and traces back to pioneering work in [6] and [1]. It uses a
small number of distinct operations for putting together a larger model from
one or more smaller ones, or copies thereof. For example, the shuffle construct
makes a new linear structure from a dense mixture of copies of a finite number
of simpler ones. A good overview of the mathematics of linear orders may be
found in [16].

We introduce a formal model expression language for defining a model via
these inductive operations. In fact, we first give a language for making gen-
eral linear structures in this way and then define a restricted sub-language
(the real model expression language) capable of specifying structures with the
real number flow of time. Having a formal model building language opens up
the possibility for workable definitions of such tasks as synthesis and model
checking for real-flowed structures. It also allows us to formalise questions of
expressibility and to assess the computational complexity of these reasoning
tasks.

One of our results here, echoing the earlier work of [6], [1] and others is that
the real model expression language is able to describe some real-flowed model
of every satisfiable RTL formula.

The major advance of this paper on that previously-known expressiveness
result, is that we also present an EXPTIME procedure for finding the real model
expression of a model from any given satisfiable RTL formula. EXPTIME is
best possible. The real model expression tells us exactly how to make a specific

real-flowed model of the formula 2 . This is our synthesis result.
Some of the proofs here use the mosaic techniques for temporal logic de-

veloped in [15]. These mosaics are small pieces of a real-flowed structure. In
that paper we try to find a finite set of small pieces which is sufficient to be
used to build a real-numbers model of a given formula. We showed that if a
formula was satisfiable then we could find a sufficient set of mosaics. In this
paper, we go further and show how to build a compositional model (i.e. one
corresponding to an expression in our model language) when there is such a
set of mosaics.

The extension here is built on a series of lemmas mirroring some of the
earlier results but keeping a much closer track on a relationship between mosaics
and some compositionally built structures which witness them. Thus there is
a series of quite long and detailed lemmas needed for this result. In the short

2 Of course, any isomorphic real-flowed structure will also be a model



French, McCabe-Dansted and Reynolds 219

version of this paper we only sketch some of the new proofs but the full proofs
can be found in [2].

In section 2 we present RTL and monadic logic. In section 3 we introduce
the compositional approach to building linear models. In section 4 we remind
ourselves of useful properties of mosaics from [15]. In section 5 we use mosaics to
give a proof of the previously-known expressiveness result for RTL: satisfiability
implies satisfiability in a compositional model. We apply this technique to
present the new synthesis result and we conclude in section 6.

2 The logic

Fix a countable set L of atoms. Here, frames (T,<), or flows of time, will
be irreflexive linear orders. Structures T = (T,<, h) will have a frame (T,<)
and a valuation h for the atoms i.e. for each atom p ∈ L, h(p) ⊆ T . Of
particular importance will be real structures T = (R, <, h) which have the
real numbers flow (with their usual irreflexive linear ordering). We will also
introduce structures over sub-orders of this standard model using < to mean
the usual ordering. For example, (]0, 1[, <, h) is some structure over the open
unit interval of the reals.

The language L(U, S) is generated by the 2-place connectives U and S along
with classical ¬ and ∧. That is, we define the set of formulas recursively to
contain the atoms and for formulas α and β we include ¬α, α∧β, U(α, β) and
S(α, β).

Formulas are evaluated at points in structures T = (T,<, h). We write
T, x |= α when α is true at the point x ∈ T . This is defined recursively as
follows. Suppose that we have defined the truth of formulas α and β at all
points of T. Then for all points x:

T, x |= p iff x ∈ h(p), for p atomic;
T, x |= ¬α iff T, x 6|= α;
T, x |= α ∧ β iff both T, x |= α and T, x |= β;
T, x |= U(α, β) iff there is y > x in T such that

T, y |= α and for all z ∈ T
such that x < z < y we have
T, z |= β; and

T, x |= S(α, β) iff there is y < x in T such that
T, y |= α and for all z ∈ T
such that y < z < x we have
T, z |= β.

The logic is discussed more fully in [13], [15] and [14], for example. See those
references for investigations of the “strict” versus “non-strict” connectives, infix
versus postfix operators, etc. We use the following abbreviations in illustrating
the logic: Fα = U(α,>), “alpha will be true (sometime in the future)”; Gα =
¬F (¬α), “alpha will always hold (in the future)”; and their mirror images P
and H. Particularly for dense time applications we also have: Γ+α = U(>, α),
“alpha will be constantly true for a while after now”; and K+α = ¬Γ+¬α,
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“alpha will be true arbitrarily soon”. They have mirror images Γ− and K−.

2.1 Reasoning with RTL

A formula φ is R-satisfiable if it has a real model: i.e. there is a real structure
S = (R, <, h) and x ∈ R such that S, x |= φ. A formula is R-valid iff it is true at
all points of all real structures. Of course, a formula is R-valid iff its negation
is not R-satisfiable. We will refer to the logic of L(U,S) over real structures as
RTL.

Let RTL-SAT be the problem of deciding whether a given formula of L(U, S)
is R-satisfiable or not. The main result of [15] is:

Theorem 2.1 RTL-SAT is PSPACE-complete.

In order to help get a feel for the sorts of formulas which are valid in RTL
it is worth considering a few formulas in the language. U(>,⊥) is a formula
which only holds at a point with a discrete successor point so G¬U(>,⊥) is
valid in RTL. Fp → FFp is a formula which can be used as an axiom for
density and is also a valid in RTL.

(Γ+p ∧ F¬p) → U(¬p ∨ K+(¬p), p) was used as an axiom for Dedekind
completeness (in [11]) and is valid. Recall that a linear order is Dedekind
complete if and only if each non-empty subset which has an upper bound has a
least upper bound. The formula says that if p is true constantly for a while but
not forever then there is an upper bound on the interval in which it remains
true. This formula is not valid in the temporal logic with until and since over
the rational numbers flow of time.

One of the most interesting valid formulas of RTL is Hodkinson’s axiom
“Sep” (see [11]). It is

K+p ∧ ¬K+(p ∧ U(p,¬p))→ K+(K+p ∧K−p).

This can be used in an axiomatic completeness proof to enforce the separability
of the linear order:

Definition 2.2 A linear order is separable iff it has a countable suborder which
is spread densely throughout the order: i.e. between every two elements of the
order lies an element of the suborder.

The fact that the rationals are dense in them shows that the reals are
separable. There are dense, Dedekind complete linear orders with end points
which are not separable (e.g. , see [11]). The negation of Sep will be satisfiable
over them but not over the reals.

As we have noted in the introduction, there are complete axiom systems
for RTL in [4] and in [11]: the former using a special rule of inference and the
latter just using orthodox rules.

Rabin’s decision procedure for the second-order monadic logic of two suc-
cessors [10] is used in [1] to show that RTL is decidable. One of the two decision
procedures in that paper just gives us a non-elementary upper bound on the
complexity of RTL-SAT.
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2.2 Monadic Logic

The first-order monadic language of order, FOMLO, is a first order language
which can describe the structures we are dealing with and it is useful to trans-
late between it and the temporal language.

The relation symbols of FOMLO are 2-ary < and 1-ary, or monadic, P0,
P1, P2, . . . each corresponding respectively to the atoms p0, p1, p2, . . . of L. So
atomic propositions are xi < xj and Pk(xj) for each variable symbol xi and
each 1-ary relation symbol Pk. Formulas of the language are built up from the
atoms as follows: ¬α, α ∧ β, and ∀xiα.

The notions of free and bound variables and sentences are as usual.
Given a temporal structure (T,<, g) we can evaluate monadic formulas in

it by interpreting the 1-ary predicates Pi as 1-ary relations on (i.e. subsets of)
T using the valuation g(pi) to tell us where the interpretation of Pi holds as
follows:

(T,<, g), µ |= Pi(xj) iff tj ∈ g(pi)
(T,<, g), µ |= xi < xj iff ti < tj
(T,<, g), µ |= ¬α iff it is not the case that (T,<, g), µ |= α
(T,<, g), µ |= α1 ∧ α2 iff (T,<, g), µ |= α1 and (T,<, g), µ |= α2

(T,<, g), µ |= ∀xiα iff for every d ∈ T , (T,<, g), µ[xi 7→ d] |= α

Here µ is a (possibly partial) map from {x1, x2, . . . } to T and µ[xi 7→ d] is the
map which is the same as µ except that xi is mapped to d. We require that µ
is defined on all the free variables of α. The truth of (T,<, g), µ |= α does not
depend on the value of µ(xi) if xi is not free in α.

Definition 2.3 We say that the temporal language L(B) is expressively com-
plete over class K of linear orders iff for every FOMLO formula α(t), there is
some φ of the temporal language such that φ is equivalent to α over K.

Kamp showed in [5] that L(U, S) is expressively complete over R and over
N.

2.3 Isomorphisms

An isomorphism is a bijective mapping from one structure to another that
preserves the temporal relation < and the valuation h. This is an important
notion of equivalence for us, as we will show that equivalent structures satisfy
the same set of formulas in L(U, S).

Definition 2.4 We say two structures T = (T,<, h) and T′ = (T ′, <′, h′) are
isomorphic (written T ∼= T′) if and only if there is a bijection f : T −→ T ′

where for all x, y ∈ T x < y if and only if f(x) <′ f(y), and for all p ∈ P
x ∈ h(p) if and only if f(x) ∈ h′(p).

It is well known that isomorphisms between structures preserve the truth
of formulas of temporal logic.

Lemma 2.5 Suppose that T = (T,<, h), T′ = (T ′, <′, h′) and T ∼= T′, via
the bijection f . Then for any α ∈ L(U, S), for any t ∈ T , T, t |= α if and only
if T′, f(t) |= α.
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3 Building Structures

We introduce a notation which allows the description of a temporal structure
in terms of simple basic structures via a small number of ways of putting
structures together to form larger ones.

The general idea is simple: using singleton structures (the flow of time is
one point), we build up to more complex structures by the recursive application
of four operations. They are:

• concatenation or sum of two structures, consisting of one followed by the
other;

• ω repeats of some structure laid end to end towards the future;

• ω repeats laid end to end towards the past;

• and making a densely thorough shuffle of copies from a finite set of structures.

These operations are well-known from the study of linear orders (see, for ex-
ample, [6,16,1]).

Model Expressions are an abstract syntax for defining models that are con-
structed using the follow set of primitive operators:

I ::= a | I + J |
←−
I |
−→
I | 〈I0, . . . , In〉

where a ∈ Σ, where Σ is some alphabet 3 . We refer to these operators, respec-
tively, as a letter, concatenation, lead, trail, and shuffle.

Definition 3.1 (Correspondence) Given Σ = 2P , a model expression I cor-
responds to a structure as follows. A letter a corresponds to any single point
model ({x}, <, h) where < is the empty relation and h(p) = {x} if and only
if p ∈ a. For the inductive cases we require the notion of an isomorphism
(Definition 2.4). Then:

• I + J corresponds to a structure (T,<, h) if and only if T is the disjoint
union of two sets U and V where ∀u ∈ U , ∀v ∈ V , v < V and I corresponds
to (U,<U , hU ) and J corresponds to (V,<V , hV ). (<U , hU refers to the
restriction of the relations < and h to apply only to elements of U).

•
←−
I corresponds to the structure (T,<, h) if and only if T is the disjoint union
of sets {Ui|i ∈ ω} where for all i, for all u ∈ Ui, for all v ∈ Ui+1, v < u, and
I corresponds to (Ui, <

Ui , hUi).

•
−→
I corresponds to the structure (T,<, h) if and only if T is the disjoint union
of sets {Ui|i ∈ ω} where for all i, for all u ∈ Ui, for all v ∈ Ui+1, u < v, and
I corresponds to (Ui, <

Ui , hUi).

• 〈I0, . . . , In〉 corresponds to the structure (T,<, h) if and only if T is the
disjoint union of sets {Ui|i ∈ Q} where

(i) for all i ∈ Q (Ui, <
Ui , hUi) corresponds to some Ij for j ≤ n,

3 Typically, we will let Σ = ℘(L) so the letter indicates the atoms true at a point
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. . .
I1I1I1

Fig. 1. The lead operation, where I =
←−
I1

I1 I2
. . .

In

I1
. . .

...

In I1
. . .

...

In I1
. . .

...

In I1
. . .

...

In I1
. . .

...

In

Fig. 2. The shuffle operation, where I = 〈I1, . . . , In〉

(ii) for every j ≤ n, for every a 6= b ∈ Q, there is some k ∈ (a, b) where Ij
corresponds to (Uk, <

Uk , hUk),
(iii) for every a < b ∈ Q for all u ∈ Ua, for all v ∈ Ub, u < v.

We will give an illustration of the non-trivial operations below. The lead

operation, I =
←−
I1 corresponds to ω submodels, each corresponding to I, and

each preceding the last, as illustrated in Figure 1.

The trail operator is the mirror image of the lead operation, whereby I =
−→
I1

corresponds to ω structures, each corresponding to I1 and each proceeding the
earlier structures.

The shuffle operator is harder to represent with a diagram. The model ex-
pression I = 〈I1, . . . In〉 corresponds to a dense, thorough mixture of intervals
corresponding to I1, . . . , In, without endpoints.

Model expressions give us a grammar that corresponds to structures over
general linear frames in a similar manner to the way regular expressions cor-
responds to words over a given alphabet. Our particular interest in this paper
is for frames that are isomorphic to the real numbers so we are required to
identify a sublanguage of model expressions. However, the recursive definition
of correspondence given in Definition 3.1 is restricted to countable frames. To
address this we:

(i) define a Dedekind closure of a structure.
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(ii) show that there is a sublanguage of model expressions that correspond
to dense, separable structures without endpoints, which agree with their
Dedekind closures on the interpretation of L(U, S) formulas.

As every real valued structure is isomorphic to a dense, separable, Dedekind
complete structure without end-points, and vice-versa (see [11]) this is sufficient
to justify the use of (some) model expressions as the base artefact for synthesis
and model checking results.

To define a sublanguage of separable, dense structures without endpoints,
we must address the fact that some of the operators of model expressions, such
as concatenation, naturally imply a discrete gap in the linear order. We build
real model expressions via induction using the definitions above:

R ::= 〈a0, . . . , am,R1, . . . ,Rn〉 | R0 + a+R1|
←−−−
a+R |

−−−→
R+ a

where a, ai ∈ Σ, and m,n ≥ 0. The letter a0 is used as a sort of background
filler to ensure that the shuffle is Dedekind complete. The abstract syntax
for real model expressions is a direct sub-language for the abstract syntax for
general model expressions. We note that their syntax will always define open
intervals and that the base element of this recursion is a shuffle containing
only points. This will define a dense, separable linear order with all the letters
homogeneously distributed across the linear order.

Such a sublanguage is suggested in [1] where similar refinements of the [6]
operations were applied to provide a decidability result for the monadic theory
of the reals. The following lemmas are implicit in that work, but we include
them here for completeness.

Lemma 3.2 Every real model expression corresponds to some structure whose
frame is dense, separable and without end-points.

It is important to note that the corresponding structures are not based on a
real frame. In fact, any structure corresponding to a model expression I must
be countable and therefore cannot be isomorphic to the reals. However, real
model expressions are sufficient for our purposes as the set of formulas satisfi-
able over the reals is exactly the set of formulas satisfiable over dense, separable,
Dedekind complete linear orders without endpoints [3]. As real model expres-
sions correspond to dense, separable linear orders without endpoints, we must
show that we can take a further step to a related Dedekind complete order
without affecting the interpretation of L(U, S) formulas.

To address this we define a Dedekind closure of a structure, and show that
any model corresponding to a real model expression agrees with its Dedekind
closures on the interpretation of L(U, S) formulae.

Definition 3.3 Given a structure T = (T,<, h), we say a Dedekind gap is
pair of sequences in T , `0, `1, . . . and u0, u1, . . ., where for all i, `i < `i+1,
ui > ui+1 and for all j, `i < uj, and there is no point x ∈ T where for all i,
`i < x < ui.
Given a point x ∈ T , we say a context of x is the triple (a,A,B) where a ∈ Σ
and A,B ⊆ Σ where:
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(i) x ∈ h(a),

(ii) A = {b | ∀t < x∃u, t < u < x, and u = h(b)}
(iii) B = {b | ∀t > x∃u, x < u < t, and u = h(b)}.
A Dedekind gap is curable if there is a context (a,A,A) such that for all i there
are points xi and yi where for all j, `i < xi < uj, `j < yi < ui, and the context
of xi and yi is (a,A,A).
If every Dedekind gap in T is curable, the Dedekind closure of T is the structure
T∗ = (T ∪X,<∗, h∗) where:

(i) X is a set of new points, one for each Dedekind gap of T,

(ii) <∗ is the extension of < such that if x is a new point corresponding to a
gap defined by `0, `1, . . . and u0, u1, . . . then for all i, `i <

∗ x and x <∗ ui.

(iii) h∗ is the extension of h such that for each new point x, x ∈ h∗(a) where
(a,A,A) is some context for x.

Note that not every structure has a Dedekind closure. However, we have
defined real model expressions in such a way that they guarantee that every
Dedekind gap will be curable, and furthermore, the cure will not affect the
interpretation of any formula.

Lemma 3.4 Every structure corresponding to a real model expression agrees
with its Dedekind closures on the interpretation of L(U, S) formulae.

Proof. (Sketch)
We show a structure corresponding to a real model expression agrees with

its Dedekind closure on the interpretation of L(U, S) formulae by induction over
the complexity of formulae. We must show that the addition of the new points
in a Dedekind closure does not affect to interpretation of any L(U, S) formula
at any of the original points of the structure. This is clearly only relevant in
the case of the U and S operators.

Suppose T = (T,<, h) is a structure and T∗ = (T ∪̇X,<∗, h∗) is its
Dedekind closure. Let U(α, β) be given, and suppose that for all x ∈ T
T∗, x |= α if and only if T, x |= α, and for all x ∈ X, T∗, x |= α if and
only if both for all t < x there is some ` ∈ T where t < l < x and T, ` |= α
and for all t > x there is some u ∈ T where x < u < t and T, u |= α, (and the
same conditions hold for β). Where α and β are propositional, these conditions
follow from the definition of Dedekind closure.

Suppose that x ∈ T . If T∗, x |= U(α, β), then there is some point y > x
and T∗, y |= α, and for all z where x < z < y, T∗, z |= β. Therefore, there
must be some point y′ ∈ T where x < y′ < z where T, y′ |= α, and for every
point, t ∈ T , where x < t < y′ where must have T, t |= β by the induction
hypothesis. Conversely, suppose that T, x |= U(α, β). Therefore there is some
y ∈ T where y > x and T, y |= α, and for all z ∈ T where x < z < y, T, z |= β.
By the induction hypothesis, we have T∗, y |= α and for all z ∈ T ∪X where
x <∗ z <∗ y, we have T∗, z |= β, so T∗, x |= U(α, β).

Suppose now that x /∈ T . If T∗, x |= U(α, β), then there is some point
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y > x and T∗, y |= α, and for all z where x < z < y, T∗, z |= β. By the
induction hypothesis there must be some x′ ∈ T where x′ <∗ x and for all
z where x′ <∗ z < y, T∗, z |= β. Hence there must be some y′ ∈ T , where
y′ <∗ y, T, y |= α and for all z ∈ T where x′ ≤ z′ < y′, T, z |= U(α, β).
Conversely, if for all t < x there is some ` ∈ T where T, ` |= U(α, β) then there
must be some y > x where T, y |= α and for all z ∈ T , ` < z < y, T, z |= β.
By the induction hypothesis, T∗, y |= α, and for all z ∈ T ∪ X, ` < z < y,
T∗, z |= β so we must have T∗, x |= U(α, β).

As the case for S is symmetric, we can see that all points x ∈ T main-
tain their interpretation of L(U, S) formulas in the Dedekind closure of T, as
required. 2

Finally we must show that every real model expression corresponds to some
real valued structure.

Lemma 3.5 Every structure corresponding to a real model expression is dense,
separable, without endpoints and agrees with its Dedekind closure on the inter-
pretation of L(U, S) formulae.

Proof. We can see every structure, T, corresponding to a real model expres-
sion has a Dedekind closure by construction. Every concatenation, lead and
trail operation in a real model expression explicitly includes a single point be-
tween the two sub-expressions, so the only place a Dedekind gap may occur
is in the shuffle operation. As every shuffle must include at least one single
point structure, and the shuffle is dense, then there is a dense set of points
in a structure corresponding to the shuffle, where each point has a consistent
context. These points can be used to cure all Dedekind defects in T without
affecting the interpretation of any L(U, S) formulae. From Lemma 3.2 we have
that T is dense separable and without end-points so the result follows. 2

It is straightforward to make the notation completely formal in the case of a
finite set of atoms, and this is the case when we are considering a particular tem-
poral formula. For example, let [p,¬q] represent a singleton structure with the
obvious valuation. We might then suggest 〈([p, q])〉+ [p, q] + 〈([p, q], [p,¬q])〉+
[p, q] + 〈([p, q])〉 , as a model expression for Gp ∧ U(q,¬U(q,¬q) ∧ ¬U(q, q)).

p p p p
p

q q
q qa dense mixture

of q and ¬q

Fig. 3. Diagram representing: 〈([p, q])〉+ [p, q] + 〈([p, q], [p,¬q])〉+ [p, q] + 〈([p, q])〉

Definition 3.6 We say that a real-flowed structure (R, <, h) is a composi-
tional real structure (or model) iff it is isomorphic to the Dedekind closure of
a structure which corresponds to some real model expression. In that case, we
say that it realizes the expression.
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Thus, a compositional real structure is real-flowed by definition. Note also
that the real model expression tells us exactly what the model looks like (up
to isomorphism).

One of our main results in this paper is that an RTL formula has a real-
flowed model iff it has a compositional real model. In the next two sections we
briefly describe the proof which uses the mosaic technique for temporal logics.

Before we do so it may be worth noting that there is a similar sort of result
in [1] where it is shown that a RTL formula has a real-flowed model iff it has a
model with the valuation of each atom being a Borel set, i.e. one obtained from
open sets by iterated application of complementation and countable union.

The second half of that paper [1] presents a series of operations correspond-
ing to those of the real model expressions, to show the decidability of the
monadic theory of the reals.

The important advantages of our new result are that we provide an explicit
notation that is adequate for representing real structures, we are able to give
a finite representation in this notation for a model that supports a given sat-
isfiable L(U, S) formula, and we are able to give an efficient means for finding
it.

4 Mosaics for U and S

Much of the hard work for us is done by a theorem (4.15 below) from [15] which,
unfortunately, must come after a large host of definitions. Our new work also
needs these definitions. Due to space considerations the definitions (from that
40 page paper) are selectively presented and only sketched.

In [15], we decided the satisfiability of formulas by considering sets of small
pieces of real structures. The idea is based on the mosaics seen in [7] and
applied to modal logics. Satisfiability can be decided by checking to see if
there exists a finite set of mosaics sufficient to build a model of the formula.

For us, a mosaic is a small piece of a model consisting of three sets of
formulas representing those true at each of two points (called the start and end
of the mosaic) and those true at all points in-between (called the cover of the
mosaic). There are coherence conditions on the mosaic which are necessary for
it to be part of a model. Note that in the context of a particular formula, φ
say, (whose satisfiability we might be investigating) we can limit our attention
to a finite closure set of formulas and so make these mosaics finite in size. The
set of subformulas of φ and their negations are a sufficient closure set and will
be denoted Clφ.

Definition 4.1 Suppose φ is from L(U, S). A φ-mosaic is a triple (A,B,C) of
subsets of the closure set of φ such that A and C are maximally propositionally
consistent, and B is closed under adding or removing double negations (within
the closure set) and the following four coherency conditions hold:
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C1. if ¬U(α, β) ∈ A and β ∈ B then we have:
C1.1. ¬α ∈ C;
C1.2. either ¬β ∈ C or ¬U(α, β) ∈ C (or both);
C1.3. ¬α ∈ B; and
C1.4. ¬U(α, β) ∈ B.

C2. if U(α, β) ∈ A and ¬α ∈ B then we have:
C2.1. α 6∈ C implies both β ∈ C and U(α, β) ∈ C;
C2.2. β ∈ B; and
C2.3. U(α, β) ∈ B.

C3-4 mirror images of C1-C2.

Conceptually, A represents the start of the mosaic, C represents the end,
and B represents all the points between. We want to show the equivalence of
the existence of a model to the existence of a certain set of mosaics: enough
mosaics to build a whole model. So the whole set of mosaics also has to obey
some conditions. Such conditions are often called saturation conditions.

We say that two mosaics compose if the end of the first is the same set as
the start of the second. We can then define their composition as the mosaic
corresponding to the first point of the first mosaic through to the second point
of the second mosaic. Composition is associative.

Definition 4.2 We say that φ-mosaics (A′, B′, C ′) and (A′′, B′′, C ′′) compose
iff C ′ = A′′. In that case, their composition is (A′, B′ ∩ C ′ ∩B′′, C ′′).

4.1 Defects

Most of the hard work of finding a saturated set of mosaics is done by breaking
up, or decomposing, mosaics into composing sequences of other mosaics. We
use a notion of a full decomposition which means that the sequence includes
witnesses to all the appropriate formulas in the starts and end of the decom-
posed mosaic. Eg, if U(α, β) is in the start of a mosaic but β is not in its cover
then in any full decomposition of the mosaic we should find an initial sequence
of mosaics with β in their covers and ends followed by a mosaic with β in its
cover and α in its end.

Definition 4.3 A defect in a mosaic (A,B,C) is either

1. a formula U(α, β) ∈ A with either
1.1 β 6∈ B,
1.2 (α 6∈ C and β 6∈ C), or
1.3 (α 6∈ C and U(α, β) 6∈ C);

2. mirror for S(α, β) ∈ C; or
3. a formula β ∈ Clφ with ¬β 6∈ B.

We refer to defects of type 1 to 3 (as listed here). Note that the same
formula may be both a type 1 or 2 defect and a type 3 defect in the same
mosaic. In that case we count it as two separate defects.

We can talk of sequences of mosaics composing and then find their compo-
sition. We define the composition of a sequence of length one to be just the
mosaic itself. We leave the composition of an empty sequence undefined.
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Definition 4.4 A decomposition for a mosaic (A,B,C) is any finite se-
quence of mosaics (A1, B1, C1), (A2, B2, C2), . . . , (An, Bn, Cn) which composes
to (A,B,C).

It will be useful to introduce an idea of fullness of decompositions. This is
intended to be a decomposition which provides witnesses to the cure of every
defect in the decomposed mosaic.

Definition 4.5 The decomposition above is full iff the following three condi-
tions all hold:

1. for all U(α, β) ∈ A we have
1.1. β ∈ B and either
(β ∈ C and U(α, β) ∈ C) or α ∈ C,
1.2. or there is some i with 1 ≤ i < n such that
α ∈ Ci, β ∈ Bj (all j ≤ i)

and β ∈ Cj (all j < i);
2. the mirror image of 1.; and
3. for each β ∈ Clφ such that ¬β 6∈ B there is some i

such that 1 ≤ i < n
and β ∈ Ci.
If 1.2 above holds in the case that U(α, β) ∈ A is a type 1 defect in (A,B,C)

then we say that a cure for the defect is witnessed (in the decomposition) by the
end of (Ai, Bi, Ci) (or equivalently by the start of (Ai+1, Bi+1, Ci+1)). Similarly
for the mirror image for S(α, β) ∈ C. If β ∈ Ci is a type 3 defect in (A,B,C)
then we also say that a cure for this defect is witnessed (in the decomposition)
by the end of (Ai, Bi, Ci). If a cure for any defect is witnessed then we say that
the defect is cured.

Lemma 4.6 If m1, . . . ,mn is a full decomposition of m then every defect in
m is cured in the decomposition.

4.2 Tactics

We would like to introduce an idea of mosaics being fully decomposed in terms
of simpler ones. However, sometimes it is allowed that mosaics are decomposed
in terms of themselves or equally complicated mosaics. Some recursion is al-
lowed. In order to specify which types of recursion are allowed, we introduce
several “tactics” as a sort of meta-level description of how mosaics can be de-
composed. There are three tactics with the familiar names of lead, trail and
shuffle.

We will see in the next section that by repeated use of a particular tactic to
decompose a mosaic we end up showing more or less that it has a model built
compositionally via the construction technique with the same name. For exam-
ple, a mosaic which can be decomposed via a lead tactic into simpler mosaics
has a model which is built from simpler structures via a lead construction.

We shall write 〈p1, . . . , pn〉 for the sequence of mosaics containing p1, . . . , pn
in that order. We shall write π∧ρ for the sequence resulting from the concate-
nation of sequences π and ρ in that order. Sequences will always be finite.
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Definition 4.7 We say that m is fully decomposed by the tactic lead σ, for
some sequence σ of mosaics iff 〈m〉∧σ is a full decomposition of m.

The trail σ tactic is mirror.

4.3 Shuffles

The term shuffle has been used in the literature (see, for example, [6] or [1]) to
refer to a certain method of constructing a linear structure (often a monadic
one) from a thorough mixture of smaller linear structures. A formal definition
was given in Section 3.

The intention here is similar except now we need to deal with mosaics
corresponding to linear structures. We consider a shuffle S of linear structures
U0, U1, . . . , Us, V1, V2, . . . , Vr where each Ui is a singleton structure and each Vi
is a non-singleton structure consisting of a finite sequence of other structures.
Thus, we actually only consider an MPC set Pi instead of Ui and a non-empty
composing sequence λi of mosaics instead of Vi. In this case it is possible to
construct a certain set {o,m′,m′′, x0, . . . , xr, y0, . . . , ys} of mosaics such that
one, o, corresponds to S and each one in the set has a full decomposition in
terms of others in the set and/or the mosaics which decompose each λi.

The mosaic m′ corresponds to any proper initial interval of S ending at a
copy of U0 while m′′ corresponds to any proper final interval of S beginning at
a copy of U0. Each xi is satisfied by any interior interval of S starting at the
end of a copy of Vi (or a copy of U0 if i = 0) and ending at the start of a copy
of Vi+1 (or a copy of U0 if i = r). There are a lot of intervals of this form, for
each i, but each one satisfies xi. Each yi is satisfied by any interior interval
of S starting at a copy of Ui and ending at a copy of Ui+1 (or a copy of U0 if
i = s).

It can be shown that these mosaics can be used to mutually decompose each
other according to the patterns described in F1 to F6 in the following definition.
We do not need to prove this so we will not. However, this observation does
provide the intuition behind this rather involved construct. The fact that we
have these mutual full decompositions, means that the mosaic o can be fully
decomposed by the others mentioned and they in turn can be fully decomposed
and so on: i.e. this provides a tactic for iterative full decompositions.

Definition 4.8 Suppose 0 ≤ r, each λi(1 ≤ i ≤ r) is a non-empty composing
sequence of φ-mosaics, and P0, . . . , Ps (0 ≤ s) are maximally propositionally
consistent subsets of Clφ.

Suppose φ-mosaic o = (A,B,C) and:

m′ = (A,B, P0);
yi = (Pi, B, Pi+1) (0 ≤ i ≤ s− 1);
ys = (Ps, B, P0);
m′′ = (P0, B, C); and
µ = 〈y0, . . . , ys〉.

If r = 0 suppose λ = 〈〉, the empty sequence, but otherwise, if r > 0,
suppose:
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Fig. 4. Full decompositions in a shuffle

Ai is the start of the first mosaic in λi(1 ≤ i ≤ r);
Ci is the end of the last mosaic in λi(1 ≤ i ≤ r);
x0 = (P0, B,A1);
xi = (Ci, B,Ai+1), (1 ≤ i ≤ r − 1);
xr = (Cr, B, P0);
λ = 〈x0〉∧λ∧1 〈x1〉∧ . . . ∧λ∧r 〈xr〉.

Further suppose that m′, m′′, and each yi and xi are mosaics.
Then, we say that o is fully decomposed by the tactic shuffle

(〈P0, . . . , Ps〉, 〈λ1, . . . , λr〉) iff the following conditions all hold:

F1. o is fully decomposed by 〈m′〉∧λ∧µ∧〈m′′〉;
F2. if r > 0, x0 is fully decomposed by λ∧µ∧〈x0〉;
F3. if 0 < i < r, xi is fully decomposed by

〈xi〉∧λ∧i+1〈xi+1〉∧ . . . ∧λ∧r 〈xr〉∧µ∧〈x0〉∧λ∧1 〈x1〉∧ . . . ∧λ∧i 〈xi〉;
F4. if r > 0, xr is fully decomposed by 〈xr〉∧µ∧λ;
F5. if 0 ≤ i < s, yi is fully decomposed by 〈yi, yi+1, . . . , ys〉∧λ∧〈y0, . . . , yi〉;
F6. ys is fully decomposed by 〈ys〉∧λ∧µ.

The order of the mutual full decompositions specified in F1-F6 in the defi-
nition is illustrated in the circular diagram in figure 4 (borrowed from [15]).

Note that as s ≥ 0 there is at least one Pi involved in the shuffle. In a
general linear order setting we could define a shuffle with no Pis (provided that
then r > 0) but over the reals it turns out to be crucial to require at least one
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Pi. This is because, as it is not too hard to see, a shuffle of only non-singleton
closed intervals of the reals cannot be both Dedekind complete and separable
(i.e. having a countable dense suborder).

4.4 Real Mosaic Systems

Finally (in [15]) we are able to introduce the notion of a real mosaic system
(RMS): one in which each mosaic can be fully decomposed in terms of the three
tactics and of simpler mosaics. This is our version of a saturated set of mosaics.

Definition 4.9 For φ ∈ L(U, S), suppose S is a set of φ-mosaics and n ≥ 0.
A φ-mosaic m is a level n+ member of S iff m is the composition of a

sequence of mosaics, each of them being either a level n member of S or fully
decomposed by the tactics lead σ or trail σ with each mosaic in σ being a level
n member of S.

A φ-mosaic m is a level (n+ 1)− member of S iff m is the composition of a
sequence of mosaics, each of them being either a level n+ member of S or fully
decomposed by the tactics lead σ or trail σ with each mosaic in σ being a level
n+ member of S.

A φ-mosaic m ∈ S is a level n member of S iff m is the composition of a
sequence of mosaics with each of them being either a level n− member of S or
a mosaic which is fully decomposed by the tactic shuff 〈P0, . . . , Ps〉, 〈σ1, . . . , σr〉
with each mosaic in each σi being a level n− member of S.

Note that it is generally possible for mosaics to be level 0 members of some S
provided that they are compositions of mosaics which can be fully decomposed
by shuffles in which there are no sequences (i.e. , r = 0).

Definition 4.10 For φ ∈ L(U, S), a real mosaic system of φ-mosaics is a set
S of φ-mosaics such that for every m ∈ S there exists some n such that m is a
level n member of S. For any n we say that S is a real mosaic system of depth
n iff every m ∈ S is a level n member of S.

4.5 Relativization

We will now relate the satisfiability of a formula φ to that of certain mosaics.
Obviously, a formula will be satisfiable over the reals iff it is satisfiable over the
]0, 1[ flow. Furthermore, this happens iff a relativized version of the formula
is satisfiable somewhere in the interior of a model over [0, 1]. To define this
relativization we need to use a new atom to indicate points in the interior.
Hence the next few definitions.

Definition 4.11 Given φ and an atom q which does not appear in φ, we define
a map ∗ = ∗φq on formulas in Clφ recursively:

1. ∗p = p ∧ q,
2. ∗¬α = ¬(∗α) ∧ q,
3. ∗(α ∧ β) = ∗(α) ∧ ∗(β) ∧ q,
4. ∗U(α, β) = U(∗α, ∗β) ∧ q, and
5. ∗S(α, β) = S(∗α, ∗β) ∧ q.



French, McCabe-Dansted and Reynolds 233

So ∗φq (φ) will be a formula using only q and atoms from φ.

Lemma 4.12 ∗φq (φ) is at most 3 times as long as φ.

With the relativization machinery we can then define a relativized mosaic
to be one which could correspond to the whole of a [0, 1] structure in which q
is true of exactly the interior ]0, 1[ and the interior is a model of φ.

Definition 4.13 We say that a ∗φq (φ)-mosaic (A,B,C) is (φ, q)-relativized iff

1. ¬q is in A and no S(α, β) is in A;

2. q ∈ B and ¬ ∗φq (φ) 6∈ B; and

3. ¬q ∈ C and no U(α, β) is in C.

Here we confirm that φ is satisfiable over the reals exactly when we can find
such a relativized mosaic.

Lemma 4.14 Suppose that φ is a formula of L(U, S) and q is an atom not
appearing in φ. Then φ is R-satisfiable iff there is some fully [0, 1]-satisfiable
(φ, q)-relativized ∗φq (φ)-mosaic.

Proof. Let ∗ = ∗φq and let ζ :]0, 1[→ R be any order preserving bijection.
Suppose that φ is R-satisfiable. Say that S = (R, <, g), s0 ∈ R and S, s0 |=

φ. Let T = ([0, 1], <, h) where for atom p 6= q, h(p) = {t ∈]0, 1[|ζ(t) ∈ g(p)};
and h(q) =]0, 1[. An easy induction on the construction of formulas in Cl ∗ φ
shows that T, ζ−1(s0) |= ∗φ and so mos∗φT (0, 1) is the right mosaic.

Suppose mosaic (A,B,C) = mos(0, 1) from structure T = ([0, 1],
<, h) is a (φ, q)-relativized ∗(φ)-mosaic. Thus q ∈ B and ¬q ∈ A ∩ C. De-
fine S = (R, <, g) via s ∈ g(p) iff ζ−1(s) ∈ h(p) for any atom p (including
p = q). As ¬ ∗ φ 6∈ B, there is some z such that 0 < z < 1 and T, z |= ∗φ. It is
easy to show that S, ζ(z) |= φ. 2

Our satisfiability procedure in [15] is to guess a relativized mosaic (A,B,C)
and then check that (A,B,C) is fully [0, 1]-satisfiable. Thus we now turn to
the question of deciding whether a relativized mosaic is satisfiable.

4.6 Satisfiability of Mosaics

For us, in this paper, the important result from [15] is that which shows the
equivalence of satisfiability of a formula to the fact of its negation not being in
the cover of some mosaic in some RMS. The negation is not in the cover of a
mosaic if the mosaic represents a pair of points in a model with a witness to φ
in between. There is actually a slight further complication in that we need to
deal with mosaics (relativized ones) which (by virtue of the formulas contained
within each end) must be covering the whole of the structure of which they
are part. This idea of relativization allows us to take care of formulas such
as U(α, β) lying in the end of a mosaic: this cannot happen in a relativized
mosaic.

Theorem 4.15 ([15] Theorem 72) Suppose φ is a formula of L(U, S) and q is
an atom not appearing in φ. Suppose ψ = ∗φq (φ) has length N .
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Then the following are equivalent:

1. φ is R-satisfiable;

2. there is a (φ, q)-relativized ψ-mosaic which is a level N member of some
RMS.

5 Expressiveness

In this section we use mosaics to show that if a formula is satisfiable over
the reals then it is satisfiable in a compositional real model. This shows that
the compositional model building method has adequate expressiveness for de-
scribing models of temporal specifications. Despite this first result not being
surprising given earlier precedents [6], the new technique here allows us to to
establish the new synthesis theorem later in the section.

In order to work with open intervals of the reals and match mosaics to such
structures, we need to rework some definitions and several of the lemmas from
[15]. The first definition gives us something like a Hintikka structure to witness
a mosaic, at least as far as possible internal structure is concerned.

Definition 5.1 Suppose φ is a formula of L(U, S) and m = (A,B,C) is a
φ-mosaic.

Suppose x, y ∈ R with x < y.
Say that structure (]x, y[, <, h) supports m iff there is a map µ :]x, y[→

℘(Clφ) satisfying:

R0. for each z ∈]x, y[, p ∈ µ(z) iff z ∈ h(p) ∩ Clφ ;
R1. for each z ∈]x, y[, µ(z) is a maximally propositionally consistent subset

of Clφ;
R2. Suppose z ∈]x, y[. Then U(α, β) ∈ µ(z) iff either

R2.1, there is u such that z < u < y and α ∈ µ(u) and for all v,
if z < v < u then β ∈ µ(v) or

R2.2, α ∈ C and for all v,
if z < v < y then β ∈ µ(v) or

R2.3, β ∈ C, U(α, β) ∈ C and for all v, if z < v < y,
then β ∈ µ(v);

R3. the mirror image of R2 for S(α, β);
R4. U(α, β) ∈ A iff either

R4.1, there is u such that x < u < y and α ∈ µ(u) and for all v,
if x < v < u then β ∈ µ(v) or

R4.2, α ∈ C and for all v,
if x < v < y then β ∈ µ(v) or

R4.3, β ∈ C, U(α, β) ∈ C and for all v, if x < v < y,
then β ∈ µ(v);

R5. the mirror image of R4 for S(α, β); and
R6. for each β ∈ Clφ, β is in the cover of m iff for all u, if x < u < y,

β ∈ µ(u).

(Also say that m is supported by (]x, y[, <, h), via µ.)
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A straightforward induction on the construction of formulas tells us the
following.

Lemma 5.2 If m is supported by S and that is isomorphic to T then m is also
supported by T.

As we have seen, the class of compositional real structures is closed under
appropriate semantic sum, trail, lead and shuffle operations. Thus we can pro-
ceed through an induction on mosaics in an RMS, relating them to successively
more complex compositional structures.

For the full proofs see [2].

Lemma 5.3 If m is the composition of m′ and m′′ with each of m′ and m′′

being supported by a compositional real structure then m is supported by a
compositional real structure.

Lemma 5.4 If m is fully decomposed by the tactic lead (σ) with each mosaic
in σ being supported by a compositional real structure, then m is supported by
a compositional real structure. There is a mirror image result for trail (σ).

Lemma 5.5 If m is fully decomposed by the tactic

shuff (〈P0, . . . , Ps〉, 〈λ1, . . . , λr〉)

with each mosaic in each λi being supported by a compositional real structure,
then m is supported by a compositional real structure.

We have shown that each of the operations of composition and using lead,
trail or shuffle tactics preserves compositional supportedness of mosaics. A
simple induction allows us to conclude that any mosaic in a real mosaic system
is supported by a compositional real structure.

Lemma 5.6 Suppose φ is a formula of L(U, S) and m is a φ-mosaic.
If m appears in an RMS then m is supported by a compositional real struc-

ture.

Proof. Given the real mosaic system S of φ-mosaics, we can easily proceed
by induction on k to show that any level k member m′ ∈ S is supported by a
compositional real structure. Each step of the induction is just a use of one or
two of the preceding lemmas 5.3, 5.4, its mirror image and 5.5.

Suppose this is true for k ≥ −1: it is true for k = −1 because there are
no level −1 members of S. Lemma 5.4 tells us that any mosaic which can be
fully decomposed by lead (σ) is supported if each of the mosaics in σ are. By
lemma 5.3 this (and its mirror image) means that any level k+ member of S
is supported. By lemma 5.3 and lemma 5.4 and its mirror image we have that
any level (k+ 1)− member of S is supported. By lemmas 5.3 and 5.5 it follows
that any level k + 1 member of S is supported as required. 2

5.1 Relativized and Supported means Modeled

Lemma 5.7 Suppose φ is a formula of L(U, S) and q is an atom not appearing
in φ. Suppose ψ = ∗φq (φ) has length N .
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Suppose that ψ-mosaic m is (φ, q)-relativized and is supported by a real
structure T = (R, <, h).

Then there is r ∈ R such that T, r |= φ.

Proof. Suppose φ is a formula of L(U, S) and q is an atom not appearing in
φ. Suppose ψ = ∗φq (φ) has length N .

Suppose that ψ-mosaic m = (A,B,C) is (φ, q)-relativized and is supported
by a real structure (R, <, h).

By lemma 5.2, m is also supported by T = (]0, 1[, <, h′) for some h′. Let
f : R→]0, 1[ be the bijection such that for all p ∈ P , for all t ∈]0, 1[, t ∈ h′(p)
iff f(t) ∈ h(p).

Let µ :]0, 1[→ ℘(Clφ) satisfy R1-R6 in the definition of supporting.
First, we claim that for all α ≤ φ, for all x ∈]0, 1[, T, x |= α iff ∗α ∈ µ(x).

The proof is by induction on construction of α, and has a series of cases (each
with forward and converse arguments) but is straightforward.

Now as m is (φ, q)-relativized, ¬ ∗ φ 6∈ B.
By R6, there must be some u ∈]0, 1[ such that ∗φ ∈ µ(u). By our induction

result, T, u |= φ.
By lemma 2.5, (R, <, h), f(u) |= φ as required. 2

5.2 Finding a model of a formula

The main result is that we can use such an RMS to describe a model in our
new notation.

Theorem 5.8 A formula φ from L(U, S) is R-satisfiable iff there is a com-
positional real model of φ. There is some c such that, for R-satisfiable φ, a
satisfying model can be described by an expression of shuffles, leads, trails and
sums of length < 2c|φ|

2

(this bound is best possible).
Furthermore, there is an EXPTIME procedure for finding such an expres-

sion.

Proof. Suppose φ is a formula of L(U, S) and q is an atom not appearing in
φ. Suppose ψ = ∗φq (φ) has length N .

One direction of the theorem is immediate: by Definition 3.6, any compo-
sitional real model of φ is a real model of φ.

For the other direction assume φ is R-satisfiable.
By theorem 4.15, there is a (φ, q)-relativized ψ-mosaic m which is a level N

member of some RMS.
By lemma 5.6, m is supported by a compositional real structure T, say,

corresponding to compositional real expression I.
By lemma 5.7, there is r ∈ R such that T, r |= φ.
The bound follows from consideration of the level of the relativized mosaic

in the RMS, a level which from consideration of arguments in [15] can be
shown to be at most six times the length of φ. We also show that the length
of decomposition sequences at each level is bounded by an exponential in |φ|.

We can also show that bound is best possible by considering a formula
describing a binary counter. Given n, use n atoms to describe a counter which
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increases at discrete intervals. A formula of quadratic length (in n) can be
used to specify such a model but a description of the model in our construction
notation needs to be of exponential length.

Suppose that the atom p marks discrete points (so δ = G(p → U(p,¬p) is
true), b = b1, . . . , bn are the n bits of a counter that counts modulo 2n and:

φi = (p ∧
i−1∧
j=1

bj)→ (bi → U(¬bi,¬p) ∧ ¬bi → U(bi,¬p))

ψi = (p ∧ ¬
i−1∧
j=1

bj)→ (bi → U(bi,¬p) ∧ ¬bi → U(¬bi,¬p))

The formula φi specifies if all bits less significant than bi are true, then bi will
invert its valuation the next time p is true, and ψi specifies that if any less
significant bit is not true, bi will retain its current valuation at the next point
that p is true.

Clearly δ ∧G
∧n
i=1(φi ∧ ψi) is satisfiable, and is of length O(n2). However,

any real model expression describing a structure that satisfies this formula
would have to contain at least 2n distinct letters.

2

Note that thanks to the expressive completeness result in [5], we know that
any satisfiable sentence of the first-order monadic logic of the reals also has a
compositional real model. To find a description of a model from the sentence
must be a hard problem as deciding validity in this logic is non-elementarily
complex [17].

Theorem 5.9 There is an EXPTIME procedure which given a formula φ from
L(U, S) will decide whether φ is R-satisfiable or not and if so will provide an
expression for a compositional model of φ.

Proof. Finally, we can give an EXPTIME procedure for finding and printing
out a model of any satisfiable RTL formula. The set of all φ-mosaics is of size
exponential in the length of φ. There is a fairly straightforward procedure (in
the style of [9]) for going through the set repeatedly and removing mosaics
which can not be fully decomposed in terms of other simpler ones in the set.
If φ is satisfiable we will eventually end up with an RMS and another straight-
forward EXPTIME procedure reads out the description of a model of φ. By
repeatedly decomposing mosaics as specified in the RMS we can produce the
expression in a top-down manner. 2

Other results from [15] allow us to conclude that if we find all possible
starting points (i.e. relativized mosaics in the RMS) and follow all possible
ways of decomposing the mosaics (as given in the RMS) then we will eventually
output a list of possible models of the formula which is in a certain sense
exhaustive. Any real model of φ will be back-and-forth equivalent to one of the
compositional models which is listed.
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6 Conclusion

We have investigated a compositional approach to building linear temporal
structures as a way of working with models on a continuous (real numbers)
flow of time. Structures are built by putting together smaller structures in a
recursive way, with copies of the smaller ones occupying successive intervals of
time. We have formalised the approach so that such models can be described
clearly and efficiently.

We have identified a sub-language of the formal compositional model build-
ing language which can be used (in a slightly modified way) to build real-flowed
structures. Any RTL formula satisfiable in the reals is satisfiable in such a com-
positional real-flowed model. We presented an efficient method for building a
real-flowed model of any given a satisfiable formula.

The approaches here may generalise to general linear models of time [2].
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