
Casting with Skewed Ejection Direction Revisited�

Hee-Kap Ahn Siu-Wing Cheng Otfried Cheong

Department of Computer Science
Hong Kong University of Science and Technology

E-mail: fpastel,scheng,otfriedg@cs.ust.hk

1 Introduction

The manufacturing industry has at its disposal a number of
processes for constructing objects, including gravity casting,
injection molding, stereolithography, NC-machining, defor-
mation, composition, and spray deposition. The survey by
Bose and Toussaint [3, 5] gives an overview of geometric
problems and algorithms arising in manufacturing processes.

Castingis one of the manufacuring processes in which
liquified material is poured into a cast that has a cavity formed
by two cast parts. After the material hardens, the movable
cast part first retracts from the fixed cast part carrying the
object with it. Afterwards, the object is ejected from the re-
tracted cast part. In most existing machinery, the retraction
and ejection directions are identical, and previous work on
this problem has assumed this restriction on casting. Exist-
ing technology for injection molding, however, already has
the flexibility to accommodate an ejection direction that is
different from the retraction direction of the moving cast
part. Exploiting this possibility allows to cast more parts,
or to cast parts with simpler moulds, and is the subject of the
present paper.

To simulate the retraction, the fixed cast part will first
be removed in a direction opposite to the retraction. Then
to simulate the ejection, the remaining cast part will be re-
moved in a direction opposite to the ejection. In our model
of casting, the two cast parts are to be removed in two given
directions and these directions need not be opposite. Note
that the ordering of removal is important.

The cast parts should be removed from the object without
destroying either cast parts or the object. This ensures that
the given object can be mass produced by re-using the same
cast parts. The casting process may fail in the removal of
the cast parts: if the cast is not designed properly, then one
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or more of the cast parts may be stuck during the removal
phase. The problem we address here concerns this aspect:
Given a 3-dimensional object, is there a cast for it whose
two parts can be removed after the liquid has solidified? An
object for which this is the case is calledcastable.

Some heuristic approaches [6, 7, 8] has been proposed to
solve the 3-dimensional castability problem. Bose et al. [4]
considered a special model of casting, thesand casting model,
where the partition of the cast into two parts must be done
by a plane. The first complete algorithm to determine the
castability of polyhedral parts for opposite directional cast
removal was proposed by Ahn et al. [2]. All the results for
opposite cast parts removal in [2, 8, 9] rely on the property
that an object is castable if its boundary surface is completely
visible from the two opposite removal directions. This is
not true when the removal directions are non-opposite: there
are polyhedra whose whole boundary is visible from the re-
moval directions but which are not castable with respect to
those directions [2]. Ahn et al. [1] gave a complete character-
ization of castability, under the assumption that the cast has
to consist of two parts that are to be removed in two not nec-
essarily opposite directions. They presented anO(n3 log n)
algorithm to determine the castability. In this paper we im-
prove the running time toO(n2 logn). We do not assume
any special separability of the two cast parts, and allow parts
of arbitrary genus.

2 Preliminaries

Throughout this paper,P denotes a polyhedron, that is, a
(not necessarily convex) solid bounded by a piecewise linear
surface. The union of vertices, edges, and facets on this sur-
face forms the boundary ofP , which we denote bybd(P).
We requirebd(P) to be a connected 2-manifold. Each facet
of P is a connected planar polygon, which is allowed to
have polygonal holes. Two facets ofP are calledadjacentif
they share an edge. We assume that adjacent facets are not
coplanar—they should be merged into one—but we do al-
low coplanar non-adjacent facets. We also assume thatP is
simple, which means that no two non-adjacent facets share
a point. Our assumptions imply thatP may contain tunnels,
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but no voids—a polyhedron with a void is not castable any-
way.

Our characterization of castability applies to general ob-
jectsQ. This is important since many industrial parts are not
polyhedral. However, our algorithms are only designed for
polyhedra.

We call the two removal directions thered and theblue
direction, and we denote them by~dr and~db respectively. We
assume that the outer shape of the cast equals a box denoted
by B, which is large enough so that the object is contained
strictly in its interior. This assumption is necessary for pro-
ducing connected cast parts. Our goal is to decompose the
cast into two parts which only overlap along their bound-
aries. The cast part to be removed first is called thered part
and is denoted byCr. The other cast part is called theblue
part and is denoted byCb. The removal directions forCr and
Cb are ~dr and ~db respectively. Each ofCr andCb is a con-
nected subset ofB. The union ofQ andCr [ Cb equalsB.
Note thatB n (Cr [ Cb) is an open set andcl(B n (Cr [ Cb))
is the object to be manufactured.

3 A Characterization of Castability

We call an objectQ castablewith respect to(~dr ; ~db) if we
can translateCr to infinity in direction ~dr without collision
with int(Q) andint(Cb), and then translateCb to infinity in
direction~db without collision withint(Q). The order of re-
moval is important.

We illuminateQ with two sources of parallel light. The
red light source is at infinity in direction~dr and the blue light
source is at infinity in direction~db. We say that a pointp in
space is illuminated by red light if a red ray from direction
~dr can reachp without intersectingint(Q). The definition
for a pointp being illuminated by blue light is similar. Note
that we assume that a light ray will not stop when it grazes
the boundary ofQ.

We call the (possibly disconnected) subset ofB n Q not
illuminated by red light thered shadow volume. We denote
it by Vr. Similarly, We call the subset ofB n Q not illumi-
nated by blue light theblue shadow volume. We denote it
by Vb. If we sweepVb to infinity in direction ~dr, then we
will encounter a set of points inB and we denote this set of
points byV�

b
. Note thatV�

b
includesVb itself.

Lemma 1 If Q is castable, thenVr � Cb andV�

b
� Cr.

We are now ready to prove the necessary and sufficient con-
dition for an object to be castable. Its proof can be found in
the full paper.

Theorem 2 Given an objectQ and removal directions (~dr,~db),
Q is castable if and only ifVr lies in one connected compo-
nent ofcl(B n (V�

b
[ Q)).

The condition in Theorem 2 also implies thatVr \ Vb is
empty. However, unlike the case where the two removal di-
rections are opposites of each other, the emptiness ofVr\Vb

does not guarantee castability. Figure 1 shows an object that
is not castable, even thoughVr \ Vb is empty.

sweepingVb in ~dr

Vr

V�
b

Vr Vb

~dr
~db

Figure 1: An objectQ and its shadow volume.Vr intersects
two connected components ofB n int(V�

b
[ Q).

4 Feasibility Test for a Polyhedron

Throughout this section, we treat~dr as the positive vertical
direction and we assume thatP lies above thexy-plane. We
use`(p) to denote the vertical line through a pointp.

The red shadow, denoted bySr, is the complement of
the set of points onbd(P) that can be illuminated by red
light from ~dr without being obscured byint(P). Theblue
shadow, denoted bySb, is defined similarly for blue light
from ~dd, and the intersectionSr \ Sb is called theblack
shadow.

For each polyhedron edgee, let hb(e) denote the plane
throughe and parallel to~db. Thene is ablue silhouette edge
if it satisfies two requirements. The first requirement is that
the two facets incident toe lie in a closed halfspace bounded
by hb(e) and the dihedral angle throughint(P) is less than
�. The second requirement is that if a facet incident toe

is parallel to~db, thene should be behind that facet when
viewing from direction~db. A lower blue silhouette edgeis a
blue silhouette edgee whereP liesabovehb(e) locally ate.
Similarly, anupper blue silhouette edgeis a blue silhouette
edgee whereP liesbelowhb(e) locally ate.

For each lower blue silhouette edgee, imagine thate is a
neon tube shooting blue rays in direction�~db. We trace the
“sheet” of blue rays emanating frome until they hit int(P),
or hit an edge or facet parallel to~db and belowint(P) lo-
cally, or reach infinity in direction�~db. The union of these
intercepted or unintercepted blue rays define a subset of the
planehb(e) called alower blue curtain. Note that a lower
blue curtain may pass through a facet ofP parallel to ~db.
Such a facet must then be locally aboveP . For each up-
per blue silhouette edgee, we define anupper blue curtain
similarly.

Given a blue silhouette edgee, we use�(e) to denote
the blue curtain defined bye. If �(e) is nonempty, then it is
bounded by a silhouette edgee called the head, two edges
parallel to ~db and incident to the endpoints ofe called the
side edges, edges parallel to~db but not incident to the end-
points ofe called thefinger edgesand a set�(e) of polygonal
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chains opposite toe called thetail. Note that the head and
tail of a blue curtain lie onbd(P)

We divide castability testing into three steps. We first
verify that the boundary ofP is completely illuminated by
red and blue light. That is,Sr \ Sb is empty. Once this test
is passed, we then check whetherVr \ Vb is empty. If this
test is passed, then we construct the red and blue cast parts
and verify that they are connected.

4.1 Testing emptiness of black shadow

We can determine the parts ofbd(P) illuminated by red light
in time O(n2 logn) by computing the visibility map from
~dr. Similarly, we can determine the parts ofbd(P) illumi-
nated by blue light. We can then decide whetherSr \ Sb is
empty by testing the intersection separately on every facet of
bd(P), for instance with a plane sweep algorithm. In total,
this test takes timeO(n2 logn). Details of the testing can be
found in the full paper.

4.2 Testing emptiness of black shadow volume

Once we know thatSr \ Sb is empty, we can determine if
the black shadow volume is empty by examining the lower
envelope, denoted byL, of blue shadow facets and lower
blue curtains. This is more efficient than computingVr \ Vb

directly. We show how this is done in the following. Let�
be the projection function.

Lemma 3 LetL� be the set of points inB encountered while
we sweepL to infinity vertically upward. ThenL� = V�

b
.

The emptiness of the black shadow volume is now deter-
mined by the necessary and sufficient condition stated in the
following result. Its proof can be found in the full paper.

Lemma 4 Suppose thatSr \ Sb is empty. ThenVr \ Vb is
non-empty if and only if for two lower blue silhouette edge
e andf , `(p) \ e is not below`(p) \ �(f) for some pointp
in �(e) \ int(�(�(f))) or �(e) \ �(�(f)).

To test the condition in Lemma 4, we identify all lower blue
silhouette edges and construct the lower blue curtains. Then
we identify all blue shadow facets and constructL, the lower
envelope of all lower blue curtains and all blue shadow facets.
While we constructL we check whetherVr \ Vb is empty.
This implies that we can construct the swept volumeV�

b
in

timeO(n2 logn) by computing this lower envelopeL.

Lemma 5 Suppose thatSr \ Sb is empty. Then the lower
envelopeL has complexityO(n2).

Proof. (Sketch) There are three different kinds of edges:
shadow facet edges including heads and tails of lower blue
curtains, side edges and finger edges. The complexity ofL
is determined by the number of these edges and new vertices
generated by these edges.

By the absence of black shadow, it can be shown that
shadow facet edges do not cross each other in the projection,
that is, they do not introduce any new vertex inL.

Now consider a finger edge of a lower blue curtain�(e).
It can be divided intoO(n) segments of two types : segments
lying on facets ofP which are parallel to~db, and segments
lying on the other blue curtains. The segments of the former
type are shadow facet edges and there areO(n2) of them. So
we only consider the segments of the latter type. A segment
of the latter type is the intersection of�(e) and a blue cur-
tain, say�(f). If �(f) is a lower blue curtain, then one of
two facets incident tof is a red shadow facet. Since a lower
blue curtain�(e) intersect this red shadow facet, it contains
a black point, which contradictsSr \ Sb = ;. So the sege-
ment is on an upper blue curtain. Since upper blue curtains
do not appear inL they do not introduce any new vertex in
L.

Now we only need to check how many new vertices are
generated by side edges and shadow facet edges. Lete be a
side edge of a lower blue curtain andh be a vertical plane
containinge. Thenh intersects a shadow facetfi in a line
segment, denoted bysi. Since a shadow facet edge lies on ei-
ther an edge ofP or the projection of an edge ofP onbd(P)
in�~db direction,h intersects linear number of shadow facets
in linear number of nonintersecting line segments. The 2D
lower envelope of line segmentse ands1; s2; ::: onh has lin-
ear complexity. SinceP has linear number of side edges,L
hasO(n2) vertices in total.

Based on Lemma 5, we can develop an algorithm to con-
structL in O(n2 logn) time. In the process, we also verify
whetherVr \ Vb is empty. Details can be found in the full
paper.

Lemma 6 Suppose thatSr \ Sb is empty. Then we can test
emptiness ofVr\Vb, and ifVr\Vb is empty we can construct
L in O(n2 logn) time.

4.3 Cast part construction

Points on blue shadow facets and points close to and above
lower blue curtains are not illuminated by blue light. So
they can only be removed in direction~dr. Other points en-
countered while translating these points towards infinity in
~dr should then belong toCr too. This is exactly the subset
of B swept by the lower envelope of lower blue curtains and
blue shadow facets in direction~dr. Denote this subset of
B by X . X may be disconnected. SinceP is strictly con-
tained inB, we can take a layer of materialM beneath the
top facet ofB and aboveP and useM to connect all the
components inX . By Lemma 5, we can compute the lower
envelope of lower blue curtains and blue shadow facets in
O(n2 logn) time and soX [M can then be computed in
the same time.X [M is our potential red cast part. All the
points incl(B n (X [M)) are removable in direction~db. So

3



cl(B n (X [M)) is our potential blue cast part. However,
cl(B n (X [M)) may be disconnected. Thus, we will try
to attach some components incl(B n (X [M)) to X [M

instead.
Such a process is guided by the condition in Theorem 2.

Observe thatcl(B n (X [M)) is a subset ofB n (V�

b
[ P).

From the above analysis, any blue cast part and henceVr

lies insidecl(B n (X [ M)). Thus, we can attach every
component ofcl(B n (X [M)) not containing any point in
Vr toX [M . These components are removable in direction
~dr as they do not contain points inVr. In addition, if there
are more than one remaining component ofcl(Bn (X [M))
containingVr, then we can abort and report thatP is not
castable. Otherwise, we have the cast parts.

It is unnecessary to computeVr. Every facet bounding
Vr is connected to some red shadow facet. The red shadow
facets can be computed inO(n2 logn) time using visibility
maps. Each red shadow facet lies on a facet boundingcl(B n
(X[M)). We identify the set of facets boundingcl(Bn(X[
M)) that contain the red shadow. Then we test whether this
set of facets lie in the same component ofcl(B n (X [M))
using a linear-time graph traversal.

Theorem 7 Let P be a simple polyhedron withn vertices.
Given a pair of directions, we can determine castability and
construct cast parts, if castable, ofP in O(n2 logn) time and
O(n2) space.

~dr

~db (a) (b)

Figure 2: (a)A polyhedron with five vertical legs and four
small holes, and (b)The visibility map from~db

The analysis of our algorithm is tight as seen from the ex-
ample in Figure 2 (a). The visibility map from the blue light
source shown in Figure 2 (b) hasO(n2) complexity, which
shows thatVb hasO(n2) complexity. It follows that the
lower envelopeL of all the lower curtains and blue shadow
has complexity
(n2). In fact, any cast for the polyhedron
in Figure 2 (a) must have complexity
(n2). The proof is
omitted in this abstract.

5 Finding a Pair of Directions

In this section we briefly sketch an algorithm to solve the
following problem: Given a polyhedronP , decide whether
there is a pair of directions (~dr, ~db) in whichP is castable.
In fact, we will solve the more general problem of finding all
pairs of directions (~dr, ~db) for whichP can be cast.

The set of all pairs of directions forms a 4-dimensional
parameter space	. We choose an appropriate parameteri-
zation that gives rise to algebraic surfaces in	, see for in-
stance Latombe’s book [10]. Our goal is to compute that
part of	 that corresponds to pairs of directions in whichP
is castable. As we have proven before, castability depends
on a number of simple combinatorial properties: the empti-
ness of the black shadow, the configuration of the curtain
projections, and the connectedness of the blue cast part. We
will compute an arrangement of algebraic surfaces in	 that
includes all pairs of directions where one of these properties
could possibly change. The following lemma enumerates all
relevant situations. Its proof can be found in the full paper.

Lemma 8 Let 
1 and 
2 be two pairs of directions, such
thatP is castable in
1 but not in
2. Let � be any path in
4-dimensional configuration space	 connecting
1 and
2.
Then on� there is a pair of directions (~dr, ~db) such that one
of the following conditions holds:

(i) A facet ofP is parallel to~dr or ~db.
(ii) The projection in direction~dr of a vertexv coin-
cides with the projection of an edgee. Here edges
and vertices are edges and vertices ofP or of the blue
shadowSb.

(iii) Two polyhedron vertices lie in a plane parallel to
the plane determined by~dr and~db.

This characterization can be turned into an algorithm that
computes the arrangement of these surfaces and tests each
cell separately.

Theorem 9 Given a polyhedral objectP with nvertices and
edges, we can in timeO(n14 logn) construct a set of all pos-
sible pairs of directions in whichP is castable.
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