Casting with Skewed Ejection Direction Revisited
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1 Introduction or more of the cast parts may be stuck during the removal
phase. The problem we address here concerns this aspect:

The manufacturing industry has at its disposal a number of Given a 3-dimensional object, is there a cast for it whose
processes for constructing objects, including gravity casting, two parts can be removed after the liquid has solidified? An
injection molding, stereolithography, NC-machining, defor- gbject for which this is the case is calledstable
mation, composition, and spray deposition. The survey by  Some heuristic approaches [6, 7, 8] has been proposed to
Bose and Toussaint [3, 5] gives an overview of geometric solve the 3-dimensional castability problem. Bose et al. [4]
problems and algorithms arising in manufacturing processes.considered a special model of casting,shad casting modgl

Castingis one of the manufacuring processes in which where the partition of the cast into two parts must be done
liquified material is poured into a cast that has a cavity formedpy a plane. The first complete algorithm to determine the
by two cast parts. After the material hardens, the movable castability of polyhedral parts for opposite directional cast
cast part first retracts from the fixed cast part carrying the removal was proposed by Ahn et al. [2]. All the results for
object with it. Afterwards, the object is ejected from the re- opposite cast parts removal in [2, 8, 9] rely on the property
tracted cast part. In most existing machinery, the retraction that an objectis castable if its boundary surface is completely
and ejection directions are identical, and previous work on vyisible from the two opposite removal directions. This is
this problem has assumed this restriction on casting. EXist-not true when the removal directions are non-opposite: there
ing technology for injection molding, however, already has are polyhedra whose whole boundary is visible from the re-
the flexibility to accommodate an ejection direction that is moval directions but which are not castable with respect to
different from the retraction direction of the moving cast those directions [2]. Ahn et al. [1] gave a complete character-
part. Exploiting this possibility allows to cast more parts, ization of castability, under the assumption that the cast has
or to cast parts with simpler moulds, and is the subject of the to consist of two parts that are to be removed in two not nec-
present paper. essarily opposite directions. They presented&n?® log n)

To simulate the retraction, the fixed cast part will first algorithm to determine the castability. In this paper we im-
be removed in a direction opposite to the retraction. Then prove the running time t®(n?logn). We do not assume

to simulate the ejection, the remaining cast part will be re- any special separability of the two cast parts, and allow parts
moved in a direction opposite to the ejection. In our model of arbitrary genus.

of casting, the two cast parts are to be removed in two given
directions and these directions need not be opposite. Note, Preliminaries
that the ordering of removal is important.

The past parts should be removed from the_objectwithout Throughout this papef? denotes a polyhedron, that is, a
destroying either cast parts or the object. This ensures thalqt necessarily convex) solid bounded by a piecewise linear
the given object can be mass produced by re-using the sameitace. The union of vertices, edges, and facets on this sur-
cast parts. The casting process may fail in the removal of {36 forms the boundary @7, which we denote byd(P).
the cast parts: if the cast is not designed properly, then oneyye requirebd(P) to be a connected 2-manifold. Each facet

*Research supported in part by RGC CERG HKUST 6074/97E of P is a connected planar polygon, which is allowed to
have polygonal holes. Two facetsBfare callecadjacentf
they share an edge. We assume that adjacent facets are not
coplanar—they should be merged into one—but we do al-
low coplanar non-adjacent facets. We also assumeRthst
simple which means that no two non-adjacent facets share
a point. Our assumptions imply th&tmay contain tunnels,




but no voids—a polyhedron with a void is not castable any- does not guarantee castability. Figure 1 shows an object that
way. is not castable, even thou@h NV, is empty.
Our characterization of castability applies to general ob-
jectsQ. This is important since many industrial parts are not
polyhedral. However, our algorithms are only designed for Vr W
polyhedra. AR A Tdr
We call the two removal directions thied and theblue -y
direction, and we denote them By andd,, respectively. We :
assume that the outer shape of the cast equals a box denoted Vi
by B, which is large enough so that the object is contained N
strictly in its interior. This assumption is necessary for pro- sweepingV, in dy
ducing connected cast parts. Our goal is to decompose the

cast into two parts which only overlap along their bound- Figure 1: An objecQ and its shadow volume., intersects

aries. The cast part to be removed first is calledrélokepart two connected components Bf\ int(V; U Q).
and is denoted by,.. The other cast part is called thiue

partand is denoted bg,. The removal directions faf, and
Cy ared, andd, respectively. Each of, and(, is a con-
nected subset df. The union of@ and(, U C, equalsB.

Note thatB \ (C. UCp) is an open setand(B \ (C, U Cy)) Throughout this section, we tredt as the positive vertical

4 Feasibility Test for a Polyhedron

is the object to be manufactured. direction and we assume tHatlies above the:y-plane. We
usel(p) to denote the vertical line through a pojnt

3 A Characterization of Castability The red shadowdenoted bysS,., is the complement of
Lo the set of points omd(P) that can be illuminated by red

We call an objec castablewith respect td(d,., d;) if we light from d,. without being obscured bint(P). Theblue

can translat€,. to infinity in directiond,. without collision shadow denoted bySy, is defined similarly for blue light

with int(Q) andint(Cs), and then translaté, to infinity in from dy, and the intersectioss, N S, is called theblack

directiond, without collision withint(Q). The order of re-  shadow

moval is important. For each polyhedron edgg let h,(e) denote the plane

We illuminate Q with two sources of parallel light. The  throughe and parallel tal,. Thene is ablue silhouette edge
red light source is atinfinity in directiod). and the blue light if it satisfies two requirements. The first requirement is that
source is at infinity in directiod,. We say that a point in the two facets incident telie in a closed halfspace bounded
space is illuminated by red light if a red ray from direction by h;(e) and the dihedral angle througtt(7P) is less than
d, can reachp without intersectingnt(Q). The definition m. The second requirement is that if a facet incident to
for a pointp being illuminated by blue light is similar. Note is parallel tod,, thene should be behind that facet when
that we assume that a light ray will not stop when it grazes viewing from directiondy,. A lower blue silhouette edgs a

the boundary o). blue silhouette edgewhereP liesaboveh, (e) locally ate.

We call the (possibly disconnected) subse3of Q not Similarly, anupper blue silhouette edde a blue silhouette
illuminated by red light theed shadow volumeWe denote  edgee whereP lies belowh,(e) locally ate.
it by V... Similarly, We call the subset d8 \ Q not illumi- For each lower blue silhouette edgemagine that is a
nated by blue light thélue shadow volumeWe denote it neon tube shooting blue rays in directied,. We trace the
by V. If we sweep), to infinity in directiond,., then we “sheet” of blue rays emanating froeuntil they hitint(7),
will encounter a set of points i and we denote this setof  or hit an edge or facet parallel th and belowint(P) lo-
points by Note that); includes), itself. cally, or reach infinity in direction-d,. The union of these
Lemma 1 If Q is castable, thew, C Cy andV; C C,. intercepted or unintercepted blue rays define a subset of the

planeh(e) called alower blue curtain Note that a lower
We are now ready to prove the necessary and sufficient con-jue curtain may pass through a facetfparallel tod,.
dition for an object to be castable. Its proof can be found in Sych a facet must then be locally abgRe For each up-
the full paper. per blue silhouette edge we define arupper blue curtain
similarly.

Theorem 2 Given an objec® and removal directiongl{,d;), Given a biue silhouette edge we usel'() to denote

Q is castable if and only i, lies in one connected compo-

¥ the blue curtain defined by If T'(e) is nonempty, then it is
nent ofel(B \ (Vi U Q)). bounded by a silhouette edgecalled the head, two edges
The condition in Theorem 2 also implies thit NV, is parallel tod, and incident to the endpoints efcalled the
empty. However, unlike the case where the two removal di- side edgesedges parallel td, but not incident to the end-
rections are opposites of each other, the emptinegsol), points ofe called thefinger edgeand a sef(e) of polygonal



chains opposite te called thetail. Note that the head and By the absence of black shadow, it can be shown that

tail of a blue curtain lie od(P) shadow facet edges do not cross each other in the projection,

We divide castability testing into three steps. We first thatis, they do not introduce any new vertexiin
verify that the boundary oP is completely illuminated by Now consider a finger edge of a lower blue curtia).
red and blue light. That isS, N S, is empty. Once this test It can be divided int@(n) segments of two types : segments
is passed, we then check wheth&rn V), is empty. If this lying on facets ofP which are parallel tal,, and segments
test is passed, then we construct the red and blue cast parting on the other blue curtains. The segments of the former
and verify that they are connected. type are shadow facet edges and ther&xré) of them. So

we only consider the segments of the latter type. A segment

4.1 Testing emptiness of black shadow of the latter type is the intersection Bfe) and a blue cur-

i . . . tain, sayl'(f). If T'(f) is a lower blue curtain, then one of
We can determine the partsied (P) illuminated by red light 15 facets incident tdf is a red shadow facet. Since a lower
in time O(n”logn) by computing the visibility map from 0 curtainr'(e) intersect this red shadow facet, it contains
d,. Similarly, we can determine the partsted(P) illumi- a black point, which contradicts, N S, = 0. So the sege-
nated by blue light. We can then decide whetlien S is ment is on an upper blue curtain. Since upper blue curtains

empty by testing the intersection separately on every facet ofdo not appear i they do not introduce any new vertex in
bd(P), for instance with a plane sweep algorithm. In total, ,.

th|S test takes tlm@(n2 log TL) Detai|S Of the testing can be Now we on|y need to Check hOW many new Vertices are
found in the full paper. generated by side edges and shadow facet edges.Heea

side edge of a lower blue curtain ahde a vertical plane
4.2 Testing emptiness of black shadow volume containinge. Thenh intersects a shadow facétin a line

segment, denoted by. Since a shadow facet edge lies on ei-

Once we know tha&, N S is empty, we can determine if C
the black shadow volume is empty by examining the lower Fher an edge aP or the projection of an edge 6f onbd(P)

envelope, denoted by, of blue shadow facets and lower :: Hr?b dr'rsc:;%n’f |rflt§rsneirc1:ttsrllnei1irnnu"r2berofriharll?ow;ﬁcezt;
blue curtains. This is more efficient than computihgn V, €ar number of honintersecting fin€ segments. 1ne

directly. We show how this is done in the following. Let :S:r’iroiwﬁaloge cg'giﬁpsﬁg;nlgnrgngsaE%e,r';)'fosnéleh:j IIQS-
be the projection function. piexity. St : u : 9es,

hasO(n?) vertices in total.
Lemma 3 LetL* be the set of points iB encountered while

we sweefL to infinity vertically upward. The™ = Vy. Based on Lemma 5, we can develop an algorithm to con-
struct£ in O(n?logn) time. In the process, we also verify
whetherV,. NV, is empty. Details can be found in the full
paper.

The emptiness of the black shadow volume is now deter-
mined by the necessary and sufficient condition stated in the
following result. Its proof can be found in the full paper.
Lemma 6 Suppose that,. N S, is empty. Then we can test
emptiness o¥,.NVy, and ifV,.NV, is empty we can construct
L in O(n?logn) time.

Lemma 4 Suppose tha$, N S, is empty. TheV, NV is
non-empty if and only if for two lower blue silhouette edge
e andf, £(p) N e is not belowt(p) N T'(f) for some poinp
inm(e) Nint(w(T(f))) orm(e) Nw(&(S))-

To test the condition in Lemma 4, we identify all lower blue
silhouette edges and construct the lower blue curtains. Then
we identify all blue shadow facets and constrdcthe lower
envelope of all lower blue curtains and all blue shadow facets.
While we constructC we check whethey,. NV, is empty.
This implies that we can construct the swept volurjein

time O(n? logn) by computing this lower envelopg

4.3 Cast part construction

Points on blue shadow facets and points close to and above
lower blue curtains are not illuminated by blue light. So
they can only be removed in directiah. Other points en-
countered while translating these points towards infinity in
d, should then belong t6, too. This is exactly the subset
of B swept by the lower envelope of lower blue curtains and
blue shadow facets in directioﬁ,. Denote this subset of
Lemma 5 Suppose tha$, N S, is empty. Then the lower B by X. X may be disconnected. Singeis strictly con-
envelopeC has complexity) (n?). tained inB, we can take a layer of materiad beneath the
top facet of B and aboveP and useM to connect all the
Proof. (Sketch) There are three different kinds of edges: components iny. By Lemma 5, we can compute the lower
shadow facet edges including heads and tails of lower blueenvelope of lower blue curtains and blue shadow facets in
curtains, side edges and finger edges. The complexity of O(n?logn) time and saX U M can then be computed in
is determined by the number of these edges and new verticeshe same timeX U M is our potential red cast part. All the
generated by these edges. points incl(B \ (X U M)) are removable in directiog,. So



cl(B\ (X U M)) is our potential blue cast part. However,
cl(B\ (X U M)) may be disconnected. Thus, we will try
to attach some componentsdi{5 \ (X U M)) to X U M
instead.

Such a process is guided by the condition in Theorem 2.

Observe thatl(B \ (X U M)) is a subset oB \ (V; U P).
From the above analysis, any blue cast part and h&hce
lies insidecl(B \ (X U M)). Thus, we can attach every
component ofl(B \ (X U M)) not containing any point in

The set of all pairs of directions forms a 4-dimensional
parameter spac®&. We choose an appropriate parameteri-
zation that gives rise to algebraic surfacedbinsee for in-
stance Latombe’s book [10]. Our goal is to compute that
part of ¥ that corresponds to pairs of directions in whieh
is castable. As we have proven before, castability depends
on a number of simple combinatorial properties: the empti-
ness of the black shadow, the configuration of the curtain
projections, and the connectedness of the blue cast part. We

V, to X U M. These components are removable in direction will compute an arrangement of algebraic surface$ ithat

J; as they do not contain points .. In addition, if there
are more than one remaining componentloB \ (X U M))
containingV,., then we can abort and report thatis not
castable. Otherwise, we have the cast parts.

It is unnecessary to computé. Every facet bounding

includes all pairs of directions where one of these properties
could possibly change. The following lemma enumerates all
relevant situations. Its proof can be found in the full paper.

Lemma 8 Let v, and~, be two pairs of directions, such

V, is connected to some red shadow facet. The red shadow/1a(7 is castable iy but notiny.. Letw be any pathin

facets can be computed @(n? logn) time using visibility
maps. Each red shadow facet lies on a facet bound{it)\
(XUM)). We identify the set of facets boundingB\ (X U

M)) that contain the red shadow. Then we test whether this

set of facets lie in the same componentid3 \ (X U M))
using a linear-time graph traversal.

Theorem 7 Let P be a simple polyhedron with vertices.

Given a pair of directions, we can determine castability and

construct cast parts, if castable;ofn O(n?logn) time and
O(n?) space.

Figure 2: (a)A polyhedron with five vertical legs and four
small holes, and (b)The visibility map frod

The analysis of our algorithm is tight as seen from the ex-

ample in Figure 2 (a). The visibility map from the blue light
source shown in Figure 2 (b) ha¥n?) complexity, which
shows thatV, hasO(n?) complexity. It follows that the
lower envelopeC of all the lower curtains and blue shadow
has complexity)(n?). In fact, any cast for the polyhedron
in Figure 2 (a) must have complexify(n?). The proof is
omitted in this abstract.

5 Finding a Pair of Directions

In this section we briefly sketch an algorithm to solve the
following problem: Given a polyhedroR, decide whether
there is a pair of directionsif, d) in which 7 is castable.

In fact, we will solve the more general problem of finding all
pairs of directionsd;., d;) for which P can be cast.

4-dimensional configuration spa@ecclnngctingyl and~ys,.
Then onr there is a pair of directiong(, d,) such that one
of the following conditions holds:

(i) A facet of P is parallel tod, ordj.

(i) The projection in directionl, of a vertexv coin-
cides with the projection of an edge Here edges
and vertices are edges and vertice®adr of the blue
shadovs;,.

(iii) Two polyhedron vertices lie in a plane parallel to
the plane determined hy. andd,.

This characterization can be turned into an algorithm that
computes the arrangement of these surfaces and tests each
cell separately.

Theorem 9 Given a polyhedral obje@ with nvertices and
edges, we can in time(n'* log n) construct a set of all pos-
sible pairs of directions in whicR is castable.
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