Drawing planar bipartite graphs with small area
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Abstract

In this paper, we study planar straight-line draw-
ings of bipartite planar graphs. We show that these
graphs admit drawings in an | 3| x ([§] — 1)-grid,
and that this is optimal.

1 Introduction

A planar straight-line drawing of a graph G =
(V, E) is an assignment of 2D points to the vertices
of G such that if we draw every edge as a straight-
line segment between its endpoints, then there are
no crossings in the drawing. Such a drawing can
exist only if G is planar, i.e., can be drawn without
crossings in 2D.

Any planar graph has a planar straight-line draw-
ing [6, 13, 14]. Much effort has been put into finding
drawings that additionally have a small area in the
following sense: Assume that the 2D points assigned
to vertices are grid points, i.e., have integer coor-
dinates. We then measure the width, height, and
area of the drawing as the width, height, or area of
the smallest axis-parallel rectangle that encloses the
drawing. Finding the least area bound of grid draw-
ings of planar graphs is listed as a challenging open
problem in graph drawing [4]. De Fraysseix, Pach
and Pollack showed that every planar graph has a
planar straight-line drawing in a (2n —4) x (n — 2)-
grid [8, 9]. They also gave an example of a planar
graph that requires a (3n — 1) x (3n — 1)-grid in
any planar straight-line drawing.

Smaller area was achieved (independently) by
Schnyder [12], who showed how to draw a planar
graph in an (n — 1) x (n — 1)-grid. Zhang and He
improved this to (n — A — 1) x (n — A — 1), where
A > 0 is a value derived from the cycle structure of
G [15]. Also, every planar graph has a drawing in
a (%n —-1) x 4(%n — 1)-grid [5]; these drawings are
optimal in width, but their total area is large.
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For some special graph classes, further improve-
ments have been made. A graph is called k-
connected if it remains connected after removing
any k — 1 vertices. Miura, Nishizeki and Nakano
showed that all 4-connected planar graphs can be
drawn in an %] x ([§] — 1)-grid [11]. This does
not contradict the lower bound given earlier, since
that lower bound graph is not 4-connected. Miura
et al. also showed that their bound is tight by ex-
hibiting a 4-connected planar graph that needs an
2] x ([§]—1)-grid in any planar straight-line grid
drawing [11].

In this paper, we study another special graph
class: planar bipartite graphs. A graph is called
bipartite if its vertices can be coloured in black and
white such that any edge connects a black vertex
with a white vertex. In particular, this implies that
a bipartite graph has no triangle, i.e., a cycle of
three vertices; this will be important later on.

Some papers have dealt with how to draw planar
bipartite graphs [3, 7], but the emphasis has been on
how to display the partition efficiently. In contrast
to this, we consider small area as the main focus.
We show that any planar bipartite graph can be
drawn in an %] x ([§] — 1)-grid. We also prove
that this is optimal, by exhibiting planar bipartite
graphs that require an | 2] x ([§] — 1)-grid in any
planar drawing,.

2 The lower bound

We first show that there exists a planar bipar-
tite graph (shown in Figure 1) that requires an
[3]x([5]—1)-grid in any planar straight-line draw-
ing. (In fact, the lower bound holds even if we allow
edges to be composed of poly-lines, i.e., to be drawn
with bends.) The graph is quite similar to the lower
bound example of Miura et al. [11], and consists of
"T’Q quadrangles placed around an edge e and con-
nected suitably to obtain a planar bipartite graph.

To draw the edge e, we need either a 0 x 1-grid
or a 1 x 0-grid; we assume the former. Adding a
quadrangle adds at least two units of height and
width each to the minimum enclosing box, since we
must go “around” the extreme points of the inner



Figure 1: A planar bipartite graph that requires an

n

%] x ([§] = 1)-grid in any planar drawing.

drawing. So in total we must have a width of at
least 5 — 1 and a height of at least %, or vice versa,
and the lower bound follows.

3 The upper bound

Now we turn to our main result, which is how to
draw planar bipartite graphs with small area. We
need a few definitions first.

Let G be a planar graph. We assume in the fol-
lowing that some planar embedding is fixed, i.e., we
are given the circular order of edges around each
vertex as it is in some planar drawing of G. This
planar embedding defines uniquely the faces, i.e.,
the maximal connected regions of the drawing of
G. A triangle of a graph is a 3-cycle, i.e., three ver-
tices u, v, w such that edges (u,v), (v,w) and (w,u)
exist. Given a planar graph with a fixed planar em-
bedding, a separating triangle is a triangle that is
not a face; in particular this triangle has vertices
both on the inside and the outside in any planar
drawing of G that reflects the planar embedding.

The basic approach to draw a planar bipartite
graph G is very simple: combine two suitable re-
sults. Namely, since G is bipartite, it has no tri-
angle, so in particular no separating triangle. By a
result of the first author, Kant and Kaufmann [2],
a planar graph without separating triangle can be
made 4-connected and planar by adding edges. Now
combine this with the result of Miura et al. [11] for
4-connected planar graphs, and any planar bipartite
graph can be drawn in an [§] x ([§] — 1)-grid.

Unfortunately, the proof isn’t quite this easy, be-
cause we have not spoken the complete truth in cit-
ing the results above. There are two problems:

e There is one exception to the result of Biedl et
al. [2]: So-called graphs containing a star (de-
fined below) can be drawn without separating
triangle, but cannot be made 4-connected by
adding edges. We thus must argue why planar
bipartite graphs (with one exception) do not
contain a star.

e The algorithm by Miura at al. [11] works for
planar 4-connected graphs for which one face
has at least 4 vertices. On the other hand, we
make graphs 4-connected by turning all faces
into triangles. We thus must extend the re-
sult of Miura at al. [11] to what we call almost
4-connected planar graph, and show that any
planar bipartite planar graph can be made al-
most 4-connected.

3.1 Graphs containing stars

From now on, let G be a planar graph with a fixed
planar embedding. We say that G contains a star
with central vertex w at face F if every vertex on F'
is either w or adjacent to w, and F' contains at least
four distinct vertices that are not w. In particular,
the star graph (a tree where one vertex is adjacent
to all others) contains a star. See Figure 2.

Figure 2: The star graph, and some other graph
containing a star with central vertex w at face F.

A graph is called triangulated if every face of it
is a triangle. In the right graph in Figure 2, we
cannot add any edge and stay planar without cre-
ating a separating triangle. Thus, this graph (and
in fact, any graph that contains a star) cannot be
triangulated by adding edges without introducing
a separating triangle. On the other hand, graphs
containing a star are the only 2-connected graphs
where this is not possible.

Theorem 1 [2] Let G be a 2-connected planar
graph with o fixed embedding. Then G can be tri-
angulated without adding separating triangles if and
only if G does not contain a star.

Now let G be a planar bipartite graph. If G is
not the star graph, then we can add edges to G to
make it mazimal planar bipartite, i.e., every face of
G has exactly four vertices on it. It is known that
a maximal planar bipartite graph is 2-connected.

Claim 1 A 2-connected planar bipartite graph G
does not contain a star.

Proof. Assume G contained a star at face F' with
central vertex w, The boundary of F' is a simple



cycle (by 2-connectivity) and hence contains w at
most once. So there are at least two consecutive
vertices on F' that are not w, and hence adjacent to
w. This gives a triangle; a contradiction. O

So for any planar bipartite graph G except the
star graph, we can add edges to G until it is max-
imal planar bipartite, and then add further edges
until it is triangulated without separating triangles.
Such a graph is known to be 4-connected. We hence
obtain the following result:

Corollary 2 Any planar bipartite graph except the
star graph can be made 4-connected and planar by
adding edges.

3.2 Drawing 4-connected graphs

The algorithm by Miura et al. [11] to draw a 4-
connected planar graph G relies crucially on the so-
called 4-canonical ordering of G, defined as follows.
For an ordering vy, ..., v, of the vertices, let G}, be
the subgraph induced by vy, ..., v, and let G} be
the graph induced by the vertices vgy1,...,v,. A
vertex ordering is called a 4-canonical ordering if
e (v1,v2) and (vn—1,vy) are edges on the outer-
face. In particular, the outer-face must have at
least four vertices.
e For each k with 2 < k < n — 2, v is on the
outer-face of Gy, has at least 2 neighbours in
G, and at least 2 neighbours in G_1.

Such an ordering exists for 4-connected planar
graph for which the outer-face has four vertices and
which is internally triangulated (any interior face is
atriangle) [10]. Now we extend this to more graphs.
We say that a planar graph G is almost 4-connected
if it is internally triangulated, the outer-face con-
tains 4 vertices, and G becomes 4-connected if we
add one edge on the outer-face. In particular, we
get an almost 4-connected graph if we make a graph
4-connected by adding edges without adding sepa-
rating triangles, but omit one added edge, and make
the face that contained it the outer-face. Therefore,
any planar bipartite graph can be made almost 4-
connected. Now we need:

Lemma 3 Any almost J-connected planar graph
has a 4-canonical ordering.

Proof. To see this, we need to inspect the proof
of the existence of a 4-canonical ordering by Kant
and He [10]. This proof proceeds by reverse induc-
tion, i.e., it first defines v,, then v,_;. All that is
required is that we pick adjacent vertices v, and

vn—1 such that G, (i.e., the graph left over after
v, and v,_1 are deleted) is 2-connected. We now
show that we can pick such v, and v,_; even for
almost 4-connected graphs.

Let G be almost 4-connected, and let e be an
edge such that G U e is 4-connected. Let v,, be one
endpoint of e, and let v,_; be one of the neighbours
of v, on the outer-face. Since G U e is 4-connected,
G Ue — v, is 3-connected. But since e is adjacent
to vp, GUe —w, is the same as G — v, s0 G — v, is
3-connected, and G — {vp,vp—1} is 2-connected as
desired. O

Putting everything together, we arrive at the
main result:

Theorem 4 FEvery planar bipartite graph G has a
planar straight-line grid drawing in an 5] x ([5]—
1)-grid. Such a drawing can be found in linear time.

Proof. If G is the star graph, then such a drawing
can be found easily. Otherwise, embed G arbitrar-
ily and add edges to it to make it maximal planar
bipartite. Now the graph is 2-connected and bipar-
tite; it hence contains no star by Claim 1 and no sep-
arating triangle by bipartiteness. Add edges to the
graph to make it triangulated without adding sep-
arating triangles [2]; now the graph is 4-connected.
We must have added at least one edge to the outer-
face since it is now a triangle. Delete this added
edge; the resulting graph G’ is a super-graph of G
and almost 4-connected. Compute a 4-canonical
ordering of G' ([10] and Lemma 3) and use it to
draw G’ in an | 2] x ([§] — 1)-grid [11]. Delete all
added edges; this is the desired drawing of G. Since
all required ingredients can be implemented in lin-
ear time [2, 11, 10], the algorithm runs in linear
time. O

4 Triangle-free planar graphs

On closer inspection, the reader should notice that
only at very few places did we actually use that the
input graph is bipartite. In fact, we can achieve
an || x ([%] — 1)-grid for any planar graph that
can be made almost 4-connected by adding edges.
By Theorem 1, this in turn can be achieved for any
planar graph that is 2-connected, does not contain
a star and is not triangulated. So we now explore
another graph class for which this is the case.
Consider triangle-free planar graphs, i.e., planar
graphs that do not contain a triangle. Clearly they
do not contain a separating triangle in any planar
embedding. The proof of Claim 1 only uses that



bipartite graphs have no triangles, so this claim also
holds for triangle-free graphs.

All that remains to do is to show that triangle-free
planar graphs can be made 2-connected by adding
edges, without adding triangles. (For planar bipar-
tite graphs, we did this by making them maximal
planar bipartite.) The “normal” approach to mak-
ing a planar graph biconnected (“add an edge be-
tween two consecutive neighbours of a cut-vertex
that are in different biconnected components”) does
not work here, since this may introduce a triangle.
However, by modifying the approach, this can be
achieved.

Lemma 5 Any triangle-free planar graph G ezxcept
the star graph can be made 2-connected planar by
adding edges without adding triangles.

Proof. (Sketch) If G is a tree, then it is bipartite
and the claim holds by making it maximal planar
bipartite. If G is not a tree, then it has some max-
imal 2-connected component C' that contains more
than one edge, and for which every face hence is a
simple cycle. Let v be a cut-vertex in C, and let C}
be some other 2-connected component incident to
C. We connect a neighbour of v in C; with a vertex
in C that shares a face with v, but is not adjacent
to v; this exists since G has no triangle and every
face in C hence is a cycle of length at least 4. O

Now, as before, apply Theorem 1 to make a 2-
connected triangle-free graph into a 4-connected
graph, omit the last edge to make it almost 4-
connected, and then draw the resulting graph. We
thus obtain:

Theorem 6 Any triangle-free planar graph can be
drawn in an | %] x ([%] — 1)-grid.

5 Conclusion

In this paper, we showed that any planar bipar-
tite graph (and in fact, any triangle-free planar
graph) has a planar straight-line drawing in an
| 5] x ([5]—1)-grid, and this is optimal since some
planar bipartite graphs require this grid size.

Our main open question is whether there is an
easier proof for our result. Do we really need
the heavy-duty machinery of making the graph 4-
connected first? We recently showed that maximum
planar bipartite graphs have a special vertex order-
ing of their own (where every white vertex has ex-
actly one incoming edge, whereas every black vertex
has at least two incoming edges) [1]. Can we obtain
small drawings of planar bipartite graphs directly,
using this vertex ordering?
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