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Abstract

We present an algorithm that determines for every
point € P the closest distance between r and a line
segment (p,q) whose end points are from P\{r}.
Our algorithm can be implemented in O(n?) time
and O(n) space. Since we show that our problem
is 3SUM-hard it is unlikely that a faster algorithm
will be found soon.

1 Introduction

In this paper we address proximity problems for a
set of points in the plane and the set of line segments
determined by these points.

Overall closest line segment and point.
Given a set S of n points in the plane, determine
the point and line segment pair which has the small-
est proximity over all possible pairs; i.e. determine
three distinct points p,q,r € S such that the dis-
tance between the point p and the line segment
(g,r) is the smallest.

All-points closest line segment. Given a set S
of n points in the plane, report for each point p € S
the closest line segment with endpoints in S\{p};
i.e. for each point p € S, find the two distinct points
g,r € S\{p} such that the distance between the
point p and the line segment (g,r) is the smallest.

These problems were inspired from the work of
Daescu and Luo [1] which demonstrated that given
a set S of n points in the plane and a point p € S,
a line segment with endpoints in S\{p} that is clos-
est to p can be found in O(nlogn) time and O(n)
space. As there are O(n?) line segments to con-
sider, their algorithm is a substantial improvement
over the brute force method.

A direct application of Daescu and Luo’s algo-
rithm would result in an O(n?logn) algorithm for
both proximity problems. In contrast, we give a
different approach to the all-points closest line seg-
ment problem which results in an O(n?) algorithm
requiring O(n) space. Trivially, this algorithm also
solves the overall closest line segment and point
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problem. We provide evidence that the time com-
plexity would be hard to improve upon by showing
that these problems are 3SUM-hard.

2 Closest Segments

Let P = {po,p1,---,Pn_1} be a set of n distinct
points in the plane. A line segment is defined by two
points in P and is denoted by (p;, p;). Let d(p;,p;)
denote the Euclidean distance between points p;
and p;. Let d(p;,e) denote the Euclidean distance
between point p; and line segment e. Let ¢(p;) de-
note the point in P\{p;} that is closest to p;. In
case of ties, ¢(p;) denotes one of the points closest
to p;- Let e(p;) denote one of the line segments
(pj,pr) with © # j # k # i that is closest to p;.
We say that a line segment e is a relevant closest
line segment of p; if d(p;,e) = d(p;,e(p;)) and if
d(pi,e) < d(pi,c(pi)). Let C(ps,p;) be the closed
disk, such that p; and p; lie on its boundary and
such that its diameter has length d(p;, p;).

We first observe the following: Let p denote a
point in P. Let qg, ¢1,- - - be some of the remaining
n — 1 points, numbered in counterclockwise radial
order around p. Let o;; denote the counterclock-
wise angle between edges (p,¢;) and (p,g;). We
observe that if 7/2 < ag; < 37/2 or ¢; € C(p,qo)
then (p, g;) is not a relevant closest line segment of

qo-

Lemma 1 Assume qiv1 € C(p,q;) for i =
0,1,...,k—2 with k> 1 and agx—1 < 7/2. Then
(p, qr—1) is not a relevant closest line segment of qo.

Proof. For an illustration, see Figure 1 where k =
4. If q1,_1 € C(p,qo) then (p, gr—1) is not a relevant
closest line segment of ¢, so we may assume that
k>2and g1 ¢ C(p,q0)-

Without loss of generality assume that p lies at
the origin and gy on the positive z-axis. Let A
be the part of the circle centered at ¢y and pass-
ing through g¢i_» that lies above the line through
go and ¢qj_o. Consider the angle 3 between the
two halflines anchored at g¢j_o, tangent to A and
C(p, qx—2), where the latter tangent is the one that
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Figure 1: Points g;1+1 € C(p,q;) for i =0,1,2.

lies above g—o. Since the angle between (p, gr—2)
and (gx—2,qo) lies between 0 and 7, it follows that
0 < B < 7. Therefore the arcs A and C(p, gx—2) do
not intersect except at gx—2. So (p, qr—2) U A forms
a simple curve that separates go from all points in
C(p,qr—2) that lie above (p,qr—2). Let ¢ be the
point on (p, gx—1) that is closest to go. The line seg-
ment (go,q) either intersects (p,qx—2) or A. Since
all points on A have a distance to gy that is equal
to d(QO:qk*2)7 we have d(qoa(I) > d(QO; (P: qk72)) or
d(qo,q) > d(qo,qr—_2)- So the lemma follows. d

Let p denote a point in P. Let qg,q1,---. ,qn—2 be
the remaining n — 1 points, numbered in counter-
clockwise radial order around p. If two points have
the same radial order, we first number the point
that is closest to p. In the remainder of this pa-
per, we assume that arithmetic in the indices of
points ¢;, 0 < ¢ < n — 1 is defined modulo n — 1.
Suppose that (p,g;+;) is a relevant closest line seg-
ment of some point g;. As before, let «;;1; denote
the counterclockwise angle at p between (p, ¢;) and
(P, gi+j). From the definition of a relevant closest
line segment we know that —7/2 < ;45 < /2.
We will show that if 0 < a;;4; < m/2 then for all
h with 0 < h < j we have that g;y; lies outside
C(p; qitn)-

Lemma 2 Let P = {p,qo,q1,---,qn-2} be a
set of n distinct points in the plane such that
{90,41,- - ,qn—2} are numbered in counterclockwise
order around p. Assume that the segment (p, git;)
is a relevant closest line segment of the point q; with
0 < aji45 < /2. Then git; is outside C(p, qivn)
for any point q;p, with 0 < h < j.

Figure 2: Illustration of the proof of Lemma, 2.

Proof. If j = 1 the lemma follows immediately
from the definition of relevant closest line seg-
ments. So we may assume that there are points
qi+n with 0 < h < j. Let ¢ be the point on
(p,gi+;) closest to ¢; and consider the region, R,
between the triangle pgq; and the circle centered
at ¢; and passing through ¢ (this is the shaded
region in Fig. 2). Suppose that some point g;ip
with 0 < h < j lies outside R. If g1 lies in the
circle centered at ¢; and passing through g then
d(qi, qi+n) < d(gi, (P, ¢i+j), which contradicts the
assumption that (p,¢;+;) is a relevant closest line
segment of g;. If ¢;1p lies outside this circle, then
d(qw (pa qi+h)) < d(q“ (pa Qi+j)); which also contra-
dicts the assumption that (p,gi;;) is a relevant
closest line segment of ¢;. Therefore, all points
Qi+1,-- - »Qi+j—1 must fall within R.

Since the triangle pqq; has a right angle at q we
note that the triangle pqq; is completely contained
in C(p7 qz)

Let r be any point in the region R, and let s =
C(p,r) N (p,q) \ {p}. Since (p,r) is a diameter of
C(p,r) and (p,s) is a chord of C(p,r) not passing
through r, we have that d(p,s) < d(p,r). Let C,
be the circle centered at p and passing through gq.
Since R C C4, we also have that d(p,r) < d(p,q).
Therefore g;+; ¢ C(p,r) for any point r € R. O

We now implement the ideas of the previous two
lemmas with a simple iterative algorithm.

We obtain for each point p in P an angular sort-
ing. Letting point p be the origin of a coordinate
system. The angle 8(q) of a point ¢ # p is defined
as the counterclockwise angle formed by the posi-
tive z-axis and the line segment (p,q). If two or
more points result in the same angle we break ties
using the distance from p, that is, points closer to p



precede those that are further away. Observe that
it suffices to sweep in one direction. We would need
to sweep the points once around and a bit more,
57 /2 radians to be precise. However, to simplify the
description of the algorithm when handling wrap-
around in a circular sequence, we double the length
of the angularly sorted list so that the second ap-
pearance of a point ¢ is assigned an angle 8(q) + 27
yielding a sequence of points (qo, q1,- - - ¢2n—3)-

One can obtain all n angle sorted sequences, one
for each point p in P, in O(n2) time and O(n) space
by using a so called topological sweep of the line ar-
rangement of the n lines obtained from a standard
point line dual of P, see [2]. A simpler method
for obtaining these sequences in O(n?) time and
O(n) space, without using the dual transform, can
be found in [5].

For each point r € P we use Best(r) to maintain
the value of a currently known closest line segment.
We can initialize Best(r) for each point r with the
distance to one of its nearest neighbors ¢(r). It is
well known that all nearest neighbours for a set of
n points can be obtained in O(nlogn) time [4, p.
184]. If need be we could also store together with
the value Best(r) a witness, either a point or a line
segment that realizes the distance Best(r) with r.

A simplified high level description of the algo-
rithm precedes the detailed pseudo code presenta-
tion. We use the approach suggested by our Lem-
mas and maintain an active list of vertices using
a double ended queue, also known as a deque, Q.
We use first(Q) and last(Q) to denote the two ends
of the deque. If the deque is empty first(Q) and
last(Q) return a null value. Whenever a point q is
found such that ¢ is outside of the circle C(p,r) we
determine that (p, ¢) is a closest relevant segment to
r using endpoint p. The detailed algorithm follows.

Algorithm Relevant
insertlast (go, Q)
fori=1to2n—3
g; « first(Q)
while ( Q is not empty and «;; > 7/2 ) do
removefirst(Q)
qj « first(Q)
end while
gj « last(Q)
while ( Q is not empty and ¢; € C(p,q;) ) do
Best(g;) + min(Best(q;),d(g;, (P, ¢)))
removelast(Q)
gj < last(Q)
end while
insertlast(g;, Q)
end for

We maintain the invariant that points on Q are
exactly those points referred to in the Lemmas.

That is, without loss of generality there is a labelling
of points such that qo, q1,...,qr_1 are on the points
on Q gi+1 € C(p,q;) for i = 0,1,... k — 2 with
k > 1 and apr—1 < m/2. Thus correctness follows
immediately.

The running time of the Algorithm Relevant is
characterized by its for loop. Although we employ
two while loops it is easy to see that the time spent
in the while loops for the entire life of the algorithm
is bounded by 2n, because any instance of a point
in the angular order is inserted to and/or removed
from Q at most once.

Thus, the cost of obtaining the closest segment
for every point p € P is O(n?).

We show that our problem belongs to the class
3SUM-hard as defined by Gajentaan and Overmars
[3]- Problems that are 3SUM-hard are reducible
from 3SUM, a problem that has eluded an o(n?)
algorithm despite concentrated effort. Given three
sets of integers, A, B, and C with total size n, the
3SUM problem asks to determine whether there are
elements a € A, b € B, and ¢ € C such that a+b =
c. The problem to determine whether 3 points are
collinear in an input of n points, 3-points-on-line,
is shown to be 3SUM-hard [3]. Observe that the
problems discussed in this paper solve 3-points-on-
line since the existence of three points on a line
results in the overall closest line segment and point.
This remark is formalized in the following lemma.

Lemma 3 Both the overall closest line segment
and point problem and the all-points closest line seg-
ment problem are 3SUM-hard.
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