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GOLD: A Parallel Real-Time Stereo Vision
System for Generic Obstacle and Lane Detection

Massimo Bertozzi,Student Member, IEEE,and Alberto Broggi,Associate Member, IEEE

Abstract—This paper describes theGeneric Obstacle and Lane
Detection system (GOLD), a stereo vision-based hardware and
software architecture to be used on moving vehicles to increment
road safety. Based on a full-custom massively parallel hardware,
it allows to detect both generic obstacles (without constraints
on symmetry or shape) and the lane position in a structured
environment (with painted lane markings) at a rate of 10 Hz.
Thanks to a geometrical transform supported by a specific hard-
ware module, the perspective effect is removed from both left
and right stereo images; the left is used to detect lane markings
with a series of morphological filters, while both remapped stereo
images are used for the detection of free-space in front of the
vehicle. The output of the processing is displayed on both an on-
board monitor and a control-panel to give visual feedbacks to the
driver. The system was tested on the mobile laboratory (MOB-
LAB) experimental land vehicle, which was driven for more than
3000 km along extra-urban roads and freeways at speeds up to 80
km/h, and demonstrated its robustness with respect to shadows
and changing illumination conditions, different road textures, and
vehicle movement.

I. INTRODUCTION

T HE MAIN issues addressed in this work arelane de-
tection and obstacle detection, both implemented using

only visual data acquired from standard cameras installed on
a mobile vehicle.

A. Lane Detection

Road following, namely the closing of the control loop that
enables a vehicle to drive within a given portion of the road,
has been differently approached and implemented in research
prototype vehicles. Most of the systems developed worldwide
are based on lane detection: first, the relative position of the
vehicle with respect to the lane is computed, and then actuators
are driven to keep the vehicle in a safe position. Others [15],
[28], [38] are not based on the preliminary detection of the
road position, but, as in the case of ALVINN [43], [44], derive
the commands to issue to the actuators (steering wheel angles)
directly from visual patterns detected in the incoming images.
In any case, the knowledge of the lane position can be of use
for other purposes, such as the determination of the regions of
interest for other driving assistance functions.
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The main problems that must be faced in the detection
of road boundaries or lane markings are: 1) the presence of
shadows, producing artifacts onto the road surface, and thus
altering its texture, and 2) the presence of other vehicles on the
path, partly occluding the visibility of the road. Although some
systems have been designed to work on nonstructured roads
(without painted lane markings) [28] or on unstructured terrain
[39], [52], generally lane detection relies on the presence of
painted road markings on the road surface. Therefore, since
lane detection is generally based on the localization of a
specific pattern(the lane markings) in the acquired image,
it can be performed with the analysis of asingle still image.
In addition, some assumptions can aid the detection algorithm
and/or speed-up the processing. They range from the analysis
of specific regions of interest in the image (in which, due to
both physical and continuity constraints, it is more probable
to find the lane markings) [18] to the assumption of a fixed-
width lane (thus dealing with only parallel lane markings), to
the assumption of a precise road geometry (such as a clothoid)
[18], [33], [58], to the assumption of a flat road (the one
considered in this work).

The techniques implemented in the previously mentioned
systems range from the determination of the characteristics
of painted lane markings [30] eventually aided by color
information [19] to the use of deformable templates (such as
LOIS [31], DBS [7], or ARCADE [29]), to an edge-based
recognition using a morphological paradigm [3], [5], [59], to
a model-based approach (as implemented in VaMoRs [26]
or SCARF [17]). A model-based analysis of road markings
has also been used to perform the analysis of intersections
in city traffic images [21], [32]; nevertheless, as discussed in
[46], the use of a model-based search approach has several
drawbacks, such as the problem of using and maintaining an
appropriate geometrical road model, the difficulty in detecting
and matching complex road features, and the complexity of
the computations involved.

Moreover, some systems (such as [46]) work in thevelocity
domain instead of theimage domain, thus using optical-
flow techniques in order to minimize the horizontal relative
movement of the lane markings with respect to the vehicle.
Unfortunately, such a solution requires both the preliminary
detection of lane markings and the following computation of
the optical flow field.

B. Obstacle Detection

The techniques used in the detection of obstacles may vary
according to the definition of “obstacle.” If “obstacle” means
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a vehicle, then the detection is based on a search for specific
patterns, possibly supported by other features, such as shape
[56], symmetry [61], or the use of a bounding box [1]. Also,
in this case, the processing can be based on the analysis of a
single still image.

Conversely, if we intend as obstacle any object that can
obstruct the vehicle’s driving path or anything raising out
significantly from the road surface, obstacle detection is gen-
erally reduced to the detection offree-spaceinstead of the
recognition of specific patterns. In this case, different tech-
niques can be used, such as 1) the analysis of the optical
flow field, and 2) the processing of stereo images; both
of these require two or more images, thus leading to a
higher computational complexity, which is further increased
by the necessity to handle noise caused by vehicle movements.
Obstacle detection using theoptical flow approach[13], [20] is
generally divided into two steps: first, ego-motion is computed
from the analysis of optical flow [25] or obtained from
odometry [35]; then obstacles are detected by the analysis
of the differences between the expected and the real velocity
field.

On the other hand, the main problem ofstereo vision
techniquesis the detection of correspondences between two
stereo images (or three images, in case of trinocular vision
[49]). The advantage of the analysis of stereo images instead
of a monocular sequence of images is the possibility to
detect directly the presence of obstacles, which, in case of
an optical flow-based approach, is indirectly derived from the
analysis of the velocity field. Moreover, in a limit condition
where both vehicle and obstacles have small or null speeds,
the second approach fails while the former still can detect
obstacles. Furthermore, to decrease the intrinsic complexity of
stereo vision, some domain specific constraints are generally
adopted.

As in [33], the Generic Obstacle and Lane Detection
(GOLD) system addresses both lane detection and obstacle
detection at the same time: lane detection is based on a
pattern-matching technique that relies on the presence of road
markings, while the localization of obstacles in front of the
vehicle is performed by the processing of pairs of stereo
images: in order to be fast and robust with respect to camera
calibration and vehicle movements, the detection of ageneric
obstacle is reduced to the determination of thefree-space
in front of the vehicle without any three-dimensional (3-D)
world reconstruction.

Both functionalities share the same underlying approach
(image warping), which is based on the assumption of a flat
road. Such a technique has been successfully used for the
computation of the optical flow field [36], for the detection
of obstacles in a structured environment [34], [60], or in the
automotive field [37], [42], [45] (using standard cameras) or
[50], [57] (using linear cameras). It is based on a transform
that, given a model of the road in front of the vehicle (e.g.
flat road), remaps the right image onto the left; any disparity
is caused by a deviation from the road model, thus detecting
possible obstacles.

Contrary to other works [33], [37], [42], GOLD performs
two warpings instead of one, remapping both images into

(a)

(b)

(c)

Fig. 1. (a) MOB-LAB land vehicle. (b) Control panel used as output to
display the processing results. (c) ARGO autonomous passengers car.

a different domain (road domain), in which the following
processings are extremely simplified. Hence, the reprojection
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(a) (b)

Fig. 2. (a) Road markings width changes according to their position within the image. (b) Due to the perspective effect, different pixels represent
different portions of the road.

[33], [58] of the results in the road domain is no more required.
Moreover, since both GOLD functionalities are based on the
processing of images remapped into the same domain, the
fusion of the result of the two independent processings is
straightforward.

The GOLD system has been tested on mobile laboratory
(MOB-LAB) experimental land vehicle, integrating the results
of the Italian Research Units involved in the PROMETHEUS
project. MOB-LAB [see Fig. 1(a)] is equipped with four
cameras, two of which are used for this experiment, several
computers, monitors, and a control-panel [see Fig. 1(b)] to
give a visual feedback and warnings to the driver. The GOLD
system is now being ported to ARGO [2] [see Fig. 1(c)], a
Lancia Thema passenger car with automatic steering capabil-
ities.

This work is organized as follows: Section II presents
the basics of the underlying approach used to remove the
perspective effect from a monocular image, while Section III
describes its application to the processing of stereo images.
Section IV describes the lane detection and obstacle detec-
tion functionalities; Section V presents the computing engine
that has been developed as a support to the GOLD system;
Section VI presents the analysis of the time performance of
the current implementation; finally, Section VII ends the paper
with a discussion about the problems of the system, their
possible solutions, and future developments.

II. I NVERSE PERSPECTIVEMAPPING

Due to its intrinsic nature, low-level image processing
is efficiently performed on single instruction multiple data
(SIMD) systems by means of a massively parallel compu-
tational paradigm. Anyway, this approach is meaningful in
the case of generic filterings (such as noise reduction, edge
detection, and image enhancement), which consider the image
as a mere collection of pixels, independent of their semantic
content.

On the other hand, the implementation of more sophisticated
filters requires some semantic knowledge. As an example, let
us consider the specific problem of road markings detection in
an image acquired from a vehicle. Due to the perspective effect
introduced by the acquisition conditions, the road markings
width changes according to their distance from the camera [see
Fig. 2(a)]. Therefore, the correct detection of road markings

Fig. 3. Relationship between the two coordinate systems.

should be based on matchings with patterns with different
size, according to the specific position within the image.
Unfortunately, this differentiated low-level processing cannot
be efficiently performed on SIMD massively parallel systems,
which by definition perform thesameprocessing on each pixel
of the image.

The perspective effect associates different meanings to
different image pixels, depending on their position in the
image [see Fig. 2(b)]. Conversely, after the removal of the
perspective effect, each pixel represents the same portion of the
road,1 allowing a homogeneous distribution of the information
among all image pixels; to remove the perspective effect, it is
necessary to know the specific acquisition conditions (camera
position, orientation, optics, etc.) and the scene represented in
the image (the road, which is now assumed to beflat). This
constitutes thea priori knowledge.

Now, recalling the example of road markings detection, the
size and shape of the matching template can be independent
of the pixel position. Therefore, road markings detection can
be conveniently divided into two steps: the first, exploiting the
a priori knowledge, is a transform that generates an image in
a new domain where the detection of the features of interest
is extremely simplified; the second, exploiting the sensorial

1A pixel in the lower part of the image of Fig. 2(a) represents a few cm2

of the road, while a pixel in the middle of the same image represents a few
tens of cm2, or even more.
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(a) (b)

Fig. 4. (a) Thexy plane in theW space and (b) thez� plane.

(a) (b)

Fig. 5. (a) Original and remapped images. (b) In grey, the visible portion of the road.

data, consists of a mere low-level morphological processing.
The removal of the perspective effect allows to detect road
markings through an extremely simple and fast morphological
processing that can be efficiently implemented on massively
parallel SIMD architectures.

A. Removing the Perspective Effect

The procedure aimed to remove the perspective effect
resamples the incoming image, remapping each pixel toward
a different position and producing a new two-dimensional (2-
D) array of pixels. The resulting image represents a top view
of the road region in front of the vehicle, as it was observed
from a significant height.

Two Euclidean spaces are defined, as follows.

• , representing the 3-D world space
(world-coordinate), where the real world is defined.

• , representing the 2-D image space
(screen-coordinate), where the 3-D scene is projected.

The image acquired by the camera belongs to thespace,
while the remapped image is defined as the plane of
the space (according to the assumption of a flat road). The
remapping process projects the acquired image onto the
plane of the 3-D world space Fig. 3 shows the relationships
between the two spaces and

1) Mapping: In order to generate a 2-D view of a
3-D scene, the following parameters must be known [41].

1) Viewpoint:camera position is .
2) Viewing Direction:optical axis is determined by the

following angles:

the angle formed by the projection (defined by versor
) of the optical axis on the plane and the
axis [as shown in Fig. 4(a)];

the angle formed by the optical axisand versor
[as shown in Fig. 4(b)].

3) Aperture: camera angular aperture is .
4) Resolution:camera resolution is

After simple manipulations [6], the final mapping
as a function of and is given by

(1)
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Fig. 6. Horopter surface corresponding to different angles between the
optical axes of two stereo cameras.

with Given the coordinates of
a generic point in the space, (1) return the coordinates

of the corresponding point in the space (see
Fig. 3).

2) Mapping: The inverse transform
(the dual mapping) is given as follows [6]:

and

(2)

The remapping process defined by (2) removes the perspec-
tive effect and recovers the texture of the plane of the

space. It is implemented scanning the array of pixels of
coordinates which form the remapped image,
in order to associate to each of them the corresponding value
assumed by the point of coordinates

As an example, Fig. 5(a) shows the original and remapped
images: it is clearly visible that in this case the road markings
width is almost invariant within the whole image. The reso-
lution of the remapped image has been chosen as a trade-off
between information loss and processing time; the remapped
image shown in Fig. 5(a) has been obtained without preserving
the original aspect-ratio. Note that the lower portion of the
remapped image is undefined: this is due to the specific camera
position and orientation [see Fig. 5(b)].

III. STEREO INVERSE PERSPECTIVEMAPPING

A 3-D description of the world using a single 2-D image
is impossible withouta priori knowledge, due to the depth
loss during acquisition; for many years stereo vision has
been investigated as an answer to this problem. Generally,

traditional techniques for the processing of pairs of stereo
images are divided into the following four main steps:

1) calibration of the two cameras;
2) localization of a feature in an image;
3) identification and localization of the same feature in the

other image;
4) reconstruction of the 3-D scene.

Whenever the mapping between points corresponding to the
same feature (homologous points) can be determined, the prob-
lem of 3-D reconstruction can be solved using triangulations.
The intrinsic complexity of the determination of homologous
points can be reduced with the introduction of some domain-
specific constraints, such as the assumption of a flat road in
front of the cameras.

The set of points
where and represent the pro-

jection of in the space of the left and right
camera respectively, is calledhoropterand represents the zero
disparity surface of the stereo system [11]. This means that the
two stereo views of an object whose shape and displacement
matches the horopter are identical. This concept is extremely
useful when the horopter coincides with a model of the road
surface, since any deviation from this model can be easily
detected. The horopter is a spherical surface, the smaller the
difference between the orientation of the two cameras (camera
vergence) the larger the radius [22]. Assuming a small camera
vergence, as generally happens in the automotive field, the
horopter can be considered planar. As shown in Fig. 6, the
horopter can be moved acting on camera vergence parameters.
Unfortunately, the horopter cannot be overlapped with the

plane (representing the flat road model) using only
camera vergence; for this purpose,electronic vergence, such
as inverse perspective mapping (IPM), is required.

In this way the search for homologous points is reduced to a
simple verification (check) of the shape of the horopter: in fact
under the flat road hypothesis, the IPM algorithm can be used
to produce an image representing the road as seen from the top.
Using the IPM algorithm with appropriate parameters on stereo
images, different patches of the road surface can be obtained.
Moreover the knowledge of the parameters of the whole vision
system allows to bring the two road patches to correspondence.
This means that, under the flat road hypothesis, pairs of
pixels having the same image coordinates in the two remapped
images are homologous points and represent the same points
in the road plane.

The flat road hypothesis can be verified computing the dif-
ference between the two remapped images: ageneric obstacle
(anything raising out from the road) is detected if the difference
image presents sufficiently large clusters of nonzero pixels
having a specific shape. Due to the different position of the
two cameras, the difference image can be computed only for
the overlapping area of the two road patches.

In addition, it is easily demonstrable that the IPM algorithm
maps straight lines perpendicular to the road plane into straight
lines passing through the projection of the
camera onto the plane (see Fig. 4): using formula
(1), a vertical straight line is represented by the set of pixels
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(a) (b) (c) (d) (e)

Fig. 7. Homogeneous ideal object. (a) Left view. (b) Right view. (c) Remapped left view. (d) Remapped right view. (e) Difference between (c) and
(d) showing in light grey the area not seen by both cameras.

(a)

(b)

Fig. 8. (a) Horizontal calibration of the MOB-LAB vision system. (b) Rotated version of the remapped image considering an aspect ratio of 1 : 1.

thus, defining

and

(3)

it follows that

(4)

which represents the straight line
passing through

Thus, the vertical edges of a generic obstacle are mapped
into two straight lines intersecting in Due to the dif-
ferent coordinates of the projection of the two cameras, in
a ideal case the difference between the two remapped images
presents two triangles. This behavior is shown in Fig. 7, which
depicts the left and right views of an ideal white square
obstacle on a gridded dark background, the two corresponding
remapped images, and the thresholded difference showing also
the overlapping between the two viewing areas.

A. Camera Calibration

From the above description, it can be seen that the cal-
ibration of the vision system plays a basic role. Recalling

TABLE I
ACQUISITION PARAMETERS OF THECAMERA INSTALLED ONTO MOB-LAB

the definitions and notations given in Section II-A1, the cal-
ibration parameters can be divided into the following two
categories.

• Intrinsic parameters(camera angular aperture and
camera resolutions ), which are fixed.

• Extrinsic parameters(view point and viewing direction),
which can be determined by measurements and possibly
tuned.

Two of the four extrinsic parameters (and ) are in common
between the two cameras, while the other two (and )
are determined by the analysis of input images. After the
independent calibration of both cameras, a fine tuning of
the and parameters is obtained applying
the stereo IPM algorithm iteratively, and minimizing the
disparities between the two remapped images of a flat road
acquired with the vehicle standing still.

The acquisition parameters of the camera installed onto
MOB-LAB are shown in Table I.
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(a) (b) (c) (d) (e)

Fig. 9. Sequence of images produced by the low-level lane detection phase together with a linear profile of one of their lines. (a) Original. (b) Remapped.
(c) Filtered. (d) Enhanced. (e) Binarized.

(a) (b) (c) (d) (e)

Fig. 10. Geodesic morphological dilation used for image enhancement. (a) Input image. (b) Control image. (c)–(e) Results of the first three iterations.

Fig. 8(a) shows the horizontal calibration of the left camera
installed onto MOB-LAB, while Fig. 8(b) shows the remapped
image with an aspect ratio of one.

Since during the tests the acquisition system was used
also for other experiments, no other cameras setups were
tested. Section VII presents a brief discussion about benefits
in varying the camera setup and about the impact of drifts due
to vehicle movements.

IV. DRIVING ASSISTANCE FUNCTIONS

In the following section the lane detection and obstacle
detection functionalities are discussed. Both of them are di-
vided into a low-level phase that can be efficiently expressed
with a SIMD computational paradigm and a serial high- and
medium-level phase.

A. Lane Detection

Lane detection is performed assuming that a road marking
in the plane of the space (i.e., in the remapped
image) is represented by a quasivertical bright line of constant
width surrounded by a darker region (the road). Thus, the
pixels belonging to a road marking have a brightness value
higher than their left and right neighbors at a given horizontal
distance. Fig. 9(a) and (b) shows the original and remapped

Fig. 11. Two nonzero pixels can represent three different road configura-
tions.

images together with a linear brightness profile of a horizontal
line.

The first phase of road markings detection is thus based on
a linewise determination of horizontal black-white-black tran-
sitions, while the following medium-level processing is aimed
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(a) (b) (c)

Fig. 12. Results of the medium level processing. (a) Reconstruction of the road markings. (b) Reintroduction of the perspective effect. (c) Superimposition
of the previous result onto a brighter version of the original image.

to the extraction of the information and the reconstruction of
road geometry.

1) Parallel Feature Extraction:The brightness value
of a generic pixel of the remapped image is compared

to its horizontal left and right neighbors at a distance
and with

A new image, whose values encode the presence of
a road marking, is then computed according to the following
expression:

if
otherwise

(5)

where

(6)

represent the horizontal brightness gradient. The choice of
depends on the road markings width, on the image acquisition
process, and on the parameters used in the remapping phase.
Considering the filtered image is shown in Fig. 9(c).

Due to different illumination conditions (e.g., in presence
of shadows), the road markings may have different brightness,
yet maintain their superiority relationship with their horizontal
neighbors. Thus, since a simple threshold seldom gives a
satisfactory binarization, the image is enhanced exploiting its
vertical correlation; then an adaptive binarization is performed.

The enhancement of the filtered image is performed through
a few iterations of ageodesic morphological dilation[53] with
the following binary structuring element:

where

if
otherwise

(7)

is thecontrol image[53]. The result of the geodesic dilation is
the product between the control image and the maximum value
computed among all the pixels belonging to the neighborhood
described by the structuring element. The iterative application
of the geodesic dilation corresponds to the widening of the

neighborhood, except in the directions in which the control
values are zero. Fig. 10 shows the results of three iterations
on a portion of an image that represents a lane marking.

Some results of lane detection in a number of different
conditions are shown in Fig. 13.

Moreover, since

(8)

the pixels of the filtered image at a distancefrom a road
marking assume a zero value; according to (7) their control
value is zero and, thus, they form a barrier to the propagation
of the maximum value. The enhanced image (after eight
iterations) is shown in Fig. 9(d).

Finally, the binarization is performed by means of an
adaptive threshold

if
otherwise

(9)

where represents the enhanced image, the
maximum value computed in a given neighborhood,
and is a constant. The result of the binarization of Fig. 9(d),
considering and is presented in Fig. 9(e).

2) Feature Identification:The goal of the successive
medium-level processing is the determination of the geometry
of the road, starting from the thresholded image. This binary
image is scanned row by row and for each lineall its
nonzero pixels are considered in pairs: a nonzero pixel can
represent the left edge, the right edge, or the center line;
Fig. 11 shows the three different road configurations that a
pair of nonzero pixels can represent, considering the road as
identified by three nonzero pixels. Each one of these three
possible configurations produces a pair where
represents the coordinate of the road medial-axis and
represents its corresponding lane width. Anyway, not all pairs

correspond to a valid road configuration, and only the
ones satisfying the following constraints will be considered:

where is the image horizontal size.
A histogram is built considering the values assumed by

for each line of the image; the peak of the histogram
corresponds to the more frequent value of lane width. In order
to allow a nonfixed road geometry (and also the handling of
curves) the histogram is lowpass filtered; finally, its maximum
value is determined.
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(a) (b) (c) (d) (e)

Fig. 13 Results of lane detection. (a) Original. (b) Remapped. (c) Low-level result. (d) Reconstructed. (e) Superimposed onto original.

Subsequently, all pairs with

are considered: the image

is scanned line by line from its bottom (where it is more

probable to be able to detect the center of the road) to its top,

and the longest chain of road centers is built, exploiting the

image vertical correlation. The values corresponding to the

centers of the above chain are then used to reconstruct the

road geometry. Fig. 12(a) shows the final result starting from

the binary image shown in Fig. 9(e). Moreover, for displaying

purposes, the perspective effect can be reintroduced using the
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(a) (b) (c) (d) (e) (f)

Fig. 14. Real situation with two obstacles. (a) Left view. (b) Right view. (c) Remapped left view. (d) Remapped right view. (e) Thresholded and filtered
difference between remapped views. (f) In light gray, the road area visible from both cameras.

Fig. 15. Steps involved in the computation of the polar histogram.

(a) (b)

Fig. 16. Relationships between obstacle and cameras position. (a) Perspective view. (b) Road plane view.

dual transform of the IPM [see (1)]. Fig. 12(b) shows the
representation in the space of Fig. 12(a), while Fig. 12(c)
presents its final superimposition onto the original image.

B. Obstacle Detection

As shown in Section III, the stereo IPM technique can
produce a difference image in which ideal square obstacles
are transformed into two triangles. The obstacle detection
process is based on the localization of pairs of these triangles,
which is derived from a quantitative measure of shape and
position of the two corresponding triangles. Unfortunately, due
to the texture, the irregular shape, and the nonhomogeneous

Fig. 17. Correspondence between triangles and directions pointed out by
peaks detected in the polar histogram.

brightness of real obstacles, the detection and localization of
the triangles become difficult. Nevertheless, in the difference
image some clusters of pixels with a quasitriangular shape are
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(a) (b) (c)

Fig. 18. Polar histograms. (a) Ideal situation. (b) Real situation with one obstacle. (c) Real situation with two obstacles.

Fig. 19. If the ratio between areasA1 andA2 is greater than a threshold, the two peaks are joined.

anyway recognizable, even if they are not clearly disjointed.
Moreover, in case two or more obstacles are present in the
scene at the same time, more than two triangles appear in the
difference image. A further problem is due to partially visible
obstacles that produce a single triangle.

The low-level portion of the processing, detailed in Fig. 14,
is thus reduced to the difference between the two remapped
images, a threshold, and a morphological opening [27] aimed
to the removal of small-sized details in the thresholded image.

1) Polar Histogram: A polar histogram is used for the
detection of triangles: given a point in the plane of
the space (calledfocus), the polar histogram is computed
scanning the difference image and counting the number of
overthreshold pixels for every straight line originating from the
focus The values of the polar histogram are then normalized
using the polar histogram obtained scanning an image where
all pixels are set (reference image). Furthermore, a lowpass
filter is applied in order to decrease the influence of noise (see
Fig. 15).

When lays on the prolongation of a triangle edge,
the polar histograms presents a sharp discontinuity. The lo-
calization of a triangle is thus performed, exploiting the

following property: the prolongations of the edges of a triangle
intersect both projections and of the two cameras
onto the road plane, as shown in Fig. 16. Due to the small
distance between and instead of computing two
different polar histograms (having focus on and ,
a single one is considered. The focus of the polar histogram

is placed in the middle of in this case the polar
histogram presents an appreciable peak corresponding to each
triangle. Since the presence of an obstacle produces two
disjoint triangles (corresponding to its edges) in the difference
image, obstacle detection is reduced to the search for pairs
of adjacent peaks; the position of a peak, in fact, determines
the angle of view under which the obstacle edge is seen
(see Fig. 17). Peaks may have different characteristics, such
as amplitude, sharpness, or width, depending on the obstacle
distance, the angle of view, and the difference of brightness
and texture between the background and the obstacle itself
(see Fig. 18).

2) Peaks Joining:Two or more peaks can be joined ac-
cording to different criteria, such as similar amplitude, close-
ness, or sharpness. The analysis of a large number of different
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(a) (b) (c)

Fig. 20. Some examples of peaks join. (a) One obstacle. (b) Two obstacles. (c) A large obstacle.

(a) (b) (c) (d) (e)

Fig. 21. Steps involved in the computation of radial histogram for peakP2. (a) Polar histogram. (b) Binary difference image. (c) Radial histogram. (d)
Normalization factor. (e) Normalized radial histogram.

situations allowed to determine a parameter embedding all of
the above quantities. According to the notations of Fig. 19,

is defined as the ratio between areas and If is
greater than a threshold, two adjacent peaks are considered as
generated by the same obstacle, and thus joined (see Fig. 20).
Hence, the two peaks are left alone (not joined) when they
are far apart or the valley is too deep. Obviously, a partially
visible obstacle produces a single peak that cannot be joined
to any other. The amplitude and width of peaks, as well as the
interval between joined peaks, are used to determine the angle
of view under which the whole obstacle is seen.

3) Estimation of Obstacle Distance:The difference image
can also be used to estimate the obstacle distance. For each
peak of the polar histogram, aradial histogram is com-
puted scanning a specific sector of the difference image; the
width of the sector is determined as the width of the
polar histogram peak in correspondence to the 80% of the
peak maximum amplitude as shown in Fig. 21(a). The

number of overthreshold pixels is computed and the result
is normalized. The radial histogram is analyzed to detect
the corners of triangles, which represent the contact points
between obstacles and road plane, thus allowing the determi-
nation of the obstacle distance through a simple threshold (see
Fig. 21).

The result is displayed with black markers superimposed on
a brighter version of the left image; they encode both obstacles
distance and width. Fig. 22 shows the results obtained in a
number of different situations.

V. THE COMPUTING ARCHITECTURE

Due to the specific field of application, the response time
of the system is a major critical point, since it affects directly
the maximum speed allowed for the vehicle; the choice of the
computing architecture is, thus, a key design issue [10]. A few
considerations on power consumption show that future trends
in mobile computing are shifting toward a massively parallel
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Fig. 22. Results of obstacle detection in different road conditions.

architecture composed of a large number of relatively slow-
clocked processing elements (PE’s). The power consumption
of dynamic systems can be considered proportional to
where represents the capacitance of the circuit,is the
clock frequency, and is the voltage swing. Power can be
saved in the following three different ways [23], minimizing

and respectively:

1) using a greater level of VLSI integration, thus reducing
the capacitance

2) trading computer speed (with a lower clock frequency
) for lower power consumption (already implemented

on many portable PC’s);
3) reducing the supply voltage

In recent years, IC supply voltage has been reduced from
5–3.3 V, and even less for the internal core. Unfortunately,
there is a speed penalty to pay for this reduction: for a
CMOS gate [54], the device delay (following a first order
approximation) is proportional to which
shows that the reduction of determines a quasilinear
increment (until the device threshold value) of the circuit
delay On the other hand, the reduction of determines
a quadratic reduction of power consumption. Thus, for power
saving reasons, it is desirable to operate at the lowest possible

speed, but, in order to maintain the overall system perfor-
mance, compensation for these increased delays is required
[14], [16].

The reduction of power consumption, while maintaining
computational power, can be reached by the use of low-
cost SIMD computer architectures, formed by a large number
of extremely simple and relatively slow-clocked PE’s. These
systems, using slower device speeds, provide an effective
mechanism to trade power consumption for silicon area, while
maintaining the computational power unchanged. Following
are the four major drawbacks of this approach.

1) A solution based on hardware replication increases the
silicon area, and thus it is not suited for extremely
area-constrained designs.

2) Parallelism must be accompanied by extra-routing, re-
quiring extra-power; this issue must be carefully con-
sidered and optimized.

3) The use of parallel computer architectures involves the
redesign of the algorithms with a different computational
model.

4) Since the number of processing units must be high, if the
system has size constraints the PE’s must be extremely
simple, performing only simple basic operations.
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Fig. 23. Logical organization of GOLD system architecture.

Fig. 24. Timings of the whole system.

More generally, the features that allow the integration and
the efficient use of a computer system on board of a moving
vehicle are 1) low production cost, 2) low operative cost, and
3) small physical size.

Theparallel processor for image checking and analysis(PA-
PRICA) system [8], [9], a low-cost special-purpose massively
parallel architecture composed of 256 PE’s working in SIMD
fashion, has been explicitly developed in cooperation with
the Polytechnic Institute of Turin, Italy, following the above
requirements. The PAPRICA coprocessor is integrated on a
single VME board (6U) connected to a SPARC-based host
workstation. It comprises the following five major functional
parts:

• program memory, storing up to 256 000 instructions;
• image memory(up to 8 Mbytes);

• processor array, 16 16 square matrix of 1-b PE’s each
with full eight-neighbors connectivity [24], [40], [47], and
an internal 64-b memory;

• camera interface, able to acquire stereo images and to
display temporary results on an external monitor at video
rate (25 frames/s or 50 fields/s);

• control unit, managing the activity of the whole system.

Generally in image processing applications, the number of
PE’s is far smaller than the number of image pixels, thus
requiring a sort of virtualization of the PA. This is done
utilizing an external image memory [40], [47], [51]; the
processor array (PA) is loaded from the image memory with a
subwindow of the data set; then the computation is performed
until a special instruction is reached; finally, the results are
stored back again into the external memory. These steps are
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(a) (b) (c) (d)

Fig. 25. Situations in which lane detection fails: (a) the road is not flat, thus producing (b) an irregular thresholded remapped image. (c) One of the road
markings is not visible, thus producing (d) an incomplete thresholded remapped image.

Fig. 26. Obstacle detection changing the inclination parameter: thresholded difference image, polar histogram, visual output of the processing, and value
of the inclination parameter.

iterated until all the subwindows have been processed. Then
the first subwindow is reloaded again into the PA and the
computation is resumed.

The low-level portion of both lane detection and obstacle de-
tection has been implemented on the PAPRICA system, while
the medium-level part of the processing has been implemented
on PAPRICA host computer. A block diagram depicting the
logical organization of the computing engine is shown in
Fig. 23.

A number of features are integrated into the PAPRICA sys-
tem for the efficient implementation of the discussed driving
assistance functions, as follows: 1) the morphological process-
ing paradigm, which is fundamental for low-level processing;
2) hardware support for pyramidal vision tasks; 3) direct
integration of an image acquisition device; and 4) hardware
support for a fast image remapping.

1) Morphological Processing:The PAPRICA instruction
set comprises two kinds of operations: graphical and logical.
Graphical operators derive from mathematical morphology
[27], [53], a bit-map approach to image processing based on
set theory. For each pixel, the input to the graphical operator
comes from one bit-plane of the pixel itself and from thesame
bit-plane of its eight surrounding neighbors: the output value
depends on the particular morphological operator. The result
of the graphical operator is then either stored in a destination
bit-plane or used as the first operand of the following logical
operation. Sources to the logical operator are the result of
the graphical operator (the central pixel itself, if no operation
was performed) and the value of a second bit-plane of the
same pixel.

2) Support for Pyramidal Vision:Pyramidal architectures
have shown several advantages in the field of image
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Fig. 27. Obstacle detection changing the height parameter: thresholded difference image, polar histogram, visual output of the processing, and value
of the height parameter.

processing [12], [48], [55]. One major drawback of such
architectures is that they are not easily scalable beyond
a certain size, because interconnections among processors
have an intrinsic 3-D structure that cannot be easily mapped
onto a 2-D silicon surface. Thanks to the specific processor
virtualization mechanism [4], PAPRICA allows to implement
multiresolution algorithms with no dedicated hardware
interconnections.

3) Camera Interface:The image acquisition device is inte-
grated on board: it allows both to grab and store directly into
PAPRICA image memory pairs of grey-tone (8 b/pixel) stereo
images and to display the contents of the image memory on a
monitor at video rate in two formats: 512 512 pixel at 25
Hz, corresponding to full frames, and 512256 pixel at 50
Hz, corresponding to single fields (even or odd).

4) Data Remapping Support:A communication is defined
to be global when the distance between the source and the
destination coordinates are different for every pixel. With a
2-D mesh interconnection topology, it is impossible to perform
a large number of global communications efficiently. The
PAPRICA system includes a specific hardware device that
allows the global movement of the image pixels without
any constraints on their final destination. Anaddressimage
is loaded into the image memory and treated as a look-up
table; each pixel contains a pointer to a memory location
where the source value for that pixel resides. A dedicated
serial device, implemented in the same FPGA integrating
PAPRICA controller, scans the address image and creates the
new remapped image, in whose pixel values are determined
by an indirect addressing. The remapping process takes three
50 ns clock cycles per pixel, giving a total of about 3 ms to

generate a 128 128 remapped image. This device plays
a basic role for the implementation of the GOLD system
functionalities.

VI. PERFORMANCE ANALYSIS

Since the GOLD system is composed of two indepen-
dent computational engines (the PAPRICA system, running
the low-level processing, and its host computer, running the
medium-level processing), it can work in pipelined. Therefore,
the timing of the whole system is determined by the slowest
process instead of the sum of the two. As shown in Fig. 24,
the lane detection and obstacle detection tasks are divided into
the following categories.

1) Data Acquisition and Output:A pair of grey-level
stereo images of size 512 256 pixels are acquired
simultaneously and written directly into PAPRICA image
memory. At the same time, the result of previous computations
are displayed on an on-board monitor to generate a visual
feedback to the driver.

2) Remapping:The two acquired 512 256 pixel images
are remapped into two 128 128 pixel images using two
different look up tables in 6 ms.

3) Obstacle Detection Preprocessing:The difference be-
tween the two remapped images is computed and thresholded;
a morphological filter is applied to the resulting image in
order to remove noisy features. The result is a single binary
128 128 pixel image. This phase, again managed by
PAPRICA system, takes 25 ms; the result is then transferred
(in 3 ms) to the host computer.

4) Lane Detection Preprocessing:Also in this case, the re-
sult is a binary 128 128 pixel image. This phase, executed
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Fig. 28. Situations in which obstacle detection is critical.

on PAPRICA, takes 34 ms; the result (a 128128 binary
image) is transferred (in 3 ms) to the host computer.

5) Obstacle Detection:Since this computation is data-
dependent, only an estimate of the average processing time
required by the host computer can be made, ranging from
20–30 ms. Then the result is transferred to PAPRICA memory
to be displayed during the acquisition of the following frame.

6) Lane Detection:The computation is again data-
dependent; the average processing time is about 30
ms.

7) Warnings: The last phase of the whole computational
cycle is the displaying of results on the control panel, issuing
warnings to the driver. The time required for this phase is
negligible with respect to the whole processing.

Since, for our purposes, a 512 256 image resolution has
demonstrated to be sufficient, the PAPRICA frame-grabber is
used in single-field acquisition mode; thus, images become
available at the rate of 50 per second (using standard cameras
at 25 Hz). Therefore, the whole processing is divided into 20
ms time slots. For this reason, once its processing is over,
the PAPRICA system remains idle until the beginning of the
following time slot.

As shown in Fig. 24, the whole processing (lane and obsta-
cles detection) requires five time slots (100 ms);2 the GOLD
system works at a rate of 10 Hz.

VII. D ISCUSSION

In this work, a system (hardware and software) for lane and
obstacle detection has been presented, satisfying the hard real-
time constraints imposed by the automotive field. The whole
system was tested with images acquired by the stereo vision
system installed on-board of the experimental vehicle MOB-
LAB. It was driven for more than 3000 km, along extra-urban
roads and freeways, under different traffic and illumination

2The result displayed on the control panel have a latency of 150 ms.

conditions, at speeds up to 80 km/h. GOLD is now being
tested also on ARGO.

Obviously, when the initial assumptions are not met, namely
when theroad is not flat [Fig. 25(a) and (b)] or whenroad
markings are not visible[Fig. 25(c) and (d)], lane detection
cannot produce valid results.

On the other hand, since obstacle detection uses stereo
vision, the quality of results is tightly coupled also with
the calibration of the vision system. Nevertheless, since the
final target of obstacle detection is the determination of the
free space in front of the vehicle and not the complete
3-D reconstruction of the world, camera calibration becomes
less critical. For this reason, even if the movements of the
vehicle modify some of the calibration parameters (camera
height and inclination with respect of the road plane),
a dynamic recalibration of the system is not required3. For
comparison purposes, the ranging values for cameras height

cm) and inclination larger than the ones
estimated in [33] have been considered. Figs. 26 and 27 show
the results of obstacle detection emulating the changes of
cameras parameters caused by vehicle movements: due to
the robustness of the approach based on polar histogram, the
obstacle is always detected even if the difference images are
noisy.

The major critical problems of obstacle detection were
found when:

• the obstacle is too far from the cameras (generally,
this happens in the range 45–50 m), thus the polar
histogram presents only small and isolated peaks that
can be hardly joined [Fig. 28(a)–(c)]; however, when the
obstacle distance is in the range 5–45 m, this problem
has never been detected;

3Should the recalibration be required, it could be done during the idle time
of the host computer: the IPM recalibration consists of loading a newaddress
image(look-up table) into the PAPRICA remapping device.
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• the guard-rail is close to the obstacle—and thus a single
large obstacle—is detected [Fig. 28(d)];

• an obstacle is partially visible, and thus only one of its
edges can be detected [Fig. 28(d) and (e)];

• some noisy peaks in the polar histogram are not filtered
out, and thus they are considered as small obstacles
[Fig. 28(f) and (g)];

• the detection of far obstacles sometimes fails when their
brightnesses is similar to the brightnesses of the road
[Fig. 28(h)].

The confidence in the detection of obstacles is obviously
dependent on their size, distance, and shape, and specific
parameters are used to tune the system sensitivity.

1) Obstacle Height:The obstacle height determines the
amplitude of peaks in the polar histogram. The bandwidth
of the lowpass filter (LPF) applied to the polar histogram
is the parameter used as threshold to discard small peaks
that could be caused by either noise or short obstacles: the
smaller the bandwidth, the lower the influence of noise (caused
by incorrect camera calibration or vehicle movements), but
the larger the minimum height of detectable obstacles [in
Fig. 28(c) and (d), the guard-rail is detected even if it is not
as tall as vehicles].

2) Obstacle Width:In the polar histogram, two or more
peaks generated by the same obstacle are joined when the
ratio (see Section IV-B2) is greater than a threshold.
In the worst case (when the peaks are separated by deep
valleys), the smaller this threshold, the larger the width of the
wider correctly detectable object, but the higher the probability
that peaks not generated by the same obstacle are joined [see
Fig. 28(d)].

3) Obstacle Distance:The farther the obstacle, the smaller
the portion of triangles detectable in the difference image, and
thus the lower the amplitude of peaks in the polar histogram;
nevertheless, for sufficiently high obstacles (e.g., vehicles at
about 50 m far from the cameras), the main problem is
not the detection of peaks, but their joining, as shown in
Fig. 28(a)–(c).

4) Obstacle Shape:The algorithm was designed to detect
obstacles with quasivertical edges; objects with nonvertical
edges (e.g. pyramidal objects) generate twisted triangles that
are hardly detected by the analysis of the polar histogram.

Moreover, since only a portion of the incoming image
is analyzed [see Fig. 14(f)], a different setup of the stereo
cameras could both increase the resolution of the remapped
image and remove the problems due to the framing of a portion
of a bright sky.

Also, the intercamera spacing is a key parameter: the greater
the distance between cameras, the stronger the disparities in
the the remapped images due to the presence of an obstacle.
Nevertheless the intercamera spacing is bounded by the vehicle
physical structure, thus the cameras were installed at the
maximum allowed distance, without running other experiments
with larger intercamera spacings. Unfortunately, a too large
separation leads to a higher sensitivity to vehicle movements,
in particular, rolling.

During the tests, the system demonstrated to be robust
and reliable: vehicles werealwaysdetected and only in few

cases (i.e., on rough or paved roads) vehicle movements
become so high that the processing of noisy remapped images
led to the erroneous detection of false small sized obsta-
cles.

On the other hand, thanks to the remapping process, lane
markings were located even in presence of shadows or other
artifacts on the road surface; anyway, although it is hard to
devise a method to evaluate the percentage of successful lane
detection, some unofficial tests showed that the system detects
the correct position of the lane in about 95% of the situations
considered; however, this result does not take into account an
exhaustive set of road conditions.

The above-mentioned problems are mainly due to the inde-
pendent processing of single images, without taking into ac-
count the high temporal correlation among subsequent frames
in a sequence. Considering an operational vehicle speed of 100
km/h and the MOB-LAB calibration setup, the vertical shift
between two subsequent remapped images corresponding to
two frames acquired with a temporal shift of 100 ms is only
7 pixels. This high correlation allows to average in time the
results of the processing, thus reducing the problems of the
incomplete detection of obstacles explained above. Moreover,
a temporal averaging should decrease also the influence of
the noise introduced by vehicle movements, since it can be
modeled as a high-frequency sinusoid.

An extension to the GOLD system that is able to ex-
ploit temporal correlations and to perform a deeper data-
fusion between the two functionalities of lane detection and
obstacle detection is currently under test [2] on ARGO.
As shown in Fig. 24, the idle time of the host computer
(about 25 ms for each cycle) allows in fact to perform a
more complex processing without affecting the overall system
performance.
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