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GOLD: A Parallel Real-Time Stereo Vision
System for Generic Obstacle and Lane Detection

Massimo BertozziStudent Member, IEEERNd Alberto Broggi,Associate Member, IEEE

Abstract—This paper describes theGeneric Obstacle and Lane  The main problems that must be faced in the detection
Detection system (GOLD), a stereo vision-based hardware and of road boundaries or lane markings are: 1) the presence of
software architecture to be used on moving vehicles to increment shadows, producing artifacts onto the road surface, and thus

road safety. Based on a full-custom massively parallel hardware, ltering its text d2) th f oth hicl th
it allows to detect both generic obstacles (without constraints altering its texture, and 2) the presence of other vehicles on the

on symmetry or shape) and the lane position in a structured Path, partly occluding the visibility of the road. Although some
environment (with painted lane markings) at a rate of 10 Hz. systems have been designed to work on nonstructured roads

Thanks to a geometrical transform supported by a specific hard- (without painted lane markings) [28] or on unstructured terrain
ware module, the perspective effect is removed from both left [39], [52], generally lane detection relies on the presence of

and right stereo images; the left is used to detect lane markings =~ ted d Ki th d f Theref .
with a series of morphological filters, while both remapped stereo painted road markings on the road surface. ereiore, since

images are used for the detection of free-space in front of the lane detection is generally based on the localization of a
vehicle. The output of the processing is displayed on both an on- specific pattern(the lane markings) in the acquired image,

board monitor and a control-panel to give visual feedbacks to the jt can be performed with the analysis ofsangle still image.
driver. The system was tested on the mobile laboratory (MOB- |, 5qdition, some assumptions can aid the detection algorithm

LAB) experimental land vehicle, which was driven for more than d/ d th . Th f th Vi
3000 km along extra-urban roads and freeways at speeds up to 8o 2NA/0r SPEEC-Up the processing. They range from he analysis

km/h, and demonstrated its robustness with respect to shadows Of specific regions of interest in the image (in which, due to
and changing illumination conditions, different road textures, and both physical and continuity constraints, it is more probable

vehicle movement. to find the lane markings) [18] to the assumption of a fixed-
width lane (thus dealing with only parallel lane markings), to
|. INTRODUCTION the assumption of a precise road geometry (such as a clothoid)

HE MAIN issues addressed in this work ak@ne de- [18], [33], [58], to the assumption of a flat road (the one

tection and obstacle detectignboth implemented using considered n this _work). . . .
only visual data acquired from standard cameras installed onThe techniques implemented n the previously mentpm_ed
2 mobile vehicle. Systems range from tr_\e determination of thg characteristics
of painted lane markings [30] eventually aided by color
. information [19] to the use of deformable templates (such as
A. Lane Detection LOIS [31], DBS [7], or ARCADE [29]), to an edge-based
Road following namely the closing of the control loop thatrecognition using a morphological paradigm [3], [5], [59], to
enables a vehicle to drive within a given portion of the roa®, model-based approach (as implemented in VaMoRs [26]
has been differently approached and implemented in reseag¢hSCARF [17]). A model-based analysis of road markings
prototype vehicles. Most of the systems developed worldwidieas also been used to perform the analysis of intersections
are based on lane detection: first, the relative position of thecity traffic images [21], [32]; nevertheless, as discussed in
vehicle with respect to the lane is computed, and then actuatpfg], the use of a model-based search approach has several
are driven to keep the vehicle in a safe position. Others [1&lsawbacks, such as the problem of using and maintaining an
[28], [38] are not based on the preliminary detection of theppropriate geometrical road model, the difficulty in detecting
road position, but, as in the case of ALVINN [43], [44], deriveand matching complex road features, and the complexity of
the commands to issue to the actuators (steering wheel angthe) computations involved.
directly from visual patterns detected in the incoming images. Moreover, some systems (such as [46]) work inthécity
In any case, the knowledge of the lane position can be of usemain instead of thémage domain, thus using optical-
for other purposes, such as the determination of the regionsflofv techniques in order to minimize the horizontal relative
interest for other driving assistance functions. movement of the lane markings with respect to the vehicle.
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a vehicle, then the detection is based on a search for specig
patterns, possibly supported by other features, such as sh
[56], symmetry [61], or the use of a bounding box [1]. Also,
in this case, the processing can be based on the analysis ¢
single still image.

Conversely, if we intend as obstacle any object that ca
obstruct the vehicle’s driving path or anything raising ou
significantly from the road surface, obstacle detection is gel
erally reduced to the detection dfee-spaceinstead of the
recognition of specific patterns. In this case, different tect
nigues can be used, such as 1) the analysis of the optic
flow field, and 2) the processing of stereo images; bot
of these require two or more images, thus leading to
higher computational complexity, which is further increasec
by the necessity to handle noise caused by vehicle movements. @)
Obstacle detection using tlogtical flow approach13], [20] is
generally divided into two steps: first, ego-motion is computed
from the analysis of optical flow [25] or obtained from
odometry [35]; then obstacles are detected by the analysis
of the differences between the expected and the real velocity
field.

On the other hand, the main problem sfereo vision
techniquesis the detection of correspondences between two
stereo images (or three images, in case of trinocular vision
[49]). The advantage of the analysis of stereo images instead
of a monocular sequence of images is the possibility to
detect directly the presence of obstacles, which, in case of
an optical flow-based approach, is indirectly derived from the
analysis of the velocity field. Moreover, in a limit condition
where both vehicle and obstacles have small or null speeds,
the second approach fails while the former still can detect
obstacles. Furthermore, to decrease the intrinsic complexity of
stereo vision, some domain specific constraints are generally
adopted.

As in [33], the Generic Obstacle and Lane Detection
(GOLD) system addresses both lane detection and obstacle
detection at the same time: lane detection is based on a
pattern-matching technique that relies on the presence of road
markings, while the localization of obstacles in front of the
vehicle is performed by the processing of pairs of stereo
images: in order to be fast and robust with respect to camera
calibration and vehicle movements, the detection gkaeric
obstacleis reduced to the determination of tHeee-space
in front of the vehicle without any three-dimensional (3-D)
world reconstruction.

Both functionalities share the same underlying approach
(image warping, which is based on the assumption of a flat
road. Such a technique has been successfully used for the
computation of the optical flow field [36], for the detection
of obstacles in a structured environment [34], [60], or in the
automotive field [37], [42], [45] (using standard cameras) or
[50], [57] (using linear cameras). It is based on a transform
that, given a model of the road in front of the vehicle (e.g. ©
flat road), remaps the right image onto the left; any disparifjg. 1. (a) MOB-LAB land vehicle. (b) Control panel used as output to
is caused by a deviation from the road model, thus detectiﬂiﬁplay the processing results. (c) ARGO autonomous passengers car.
possible obstacles.

Contrary to other works [33], [37], [42], GOLD performsa different domain (road domain), in which the following
two warpings instead of one, remapping both images inpwocessings are extremely simplified. Hence, the reprojection
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(@) (b)

Fig. 2. (a) Road markings width changes according to their position within the image. (b) Due to the perspective effect, different pixels represent

different portions of the road.

[33], [58] of the results in the road domain is no more required.
Moreover, since both GOLD functionalities are based on the
processing of images remapped into the same domain, the
fusion of the result of the two independent processings is
straightforward.

The GOLD system has been tested on mobile laboratory
(MOB-LAB) experimental land vehicle, integrating the results
of the Italian Research Units involved in the PROMETHEUS
project. MOB-LAB [see Fig. 1(a)] is equipped with four
cameras, two of which are used for this experiment, several
computers, monitors, and a control-panel [see Fig. 1(b)] to
give a visual feedback and warnings to the driver. The GOLD
system is now being ported to ARGO [2] [see Fig. 1(c)], a

The I space

The z=0 plane

Lancia Thema passenger car with automatic steering capabil- Y of the W space
ities.
This work is organized as follows: Section Il presents Fig. 3. Relationship between the two coordinate systems.

the basics of the underlying approach used to remove the
perspective effect from a monocular image, while Section Il
describes its application to the processing of stereo imag§
Section IV describes the lane detection and obstacle detg

tion functionalities; Section V presents the computing engirlrén o X
that has been developed as a support to the GOLD Systém.eﬁlmently performed on SIMD massively parallel systems,

Section VI presents the analysis of the time performance WRICh by definition perform theameprocessing on each pixel

the current implementation: finally, Section VIl ends the pap&f the image. . . .
with a discussion about the problems of the system, thejr Te perspective effect associates different meanings to

possible solutions, and future developments. different image pixels, depending on their position in the
’ image [see Fig. 2(b)]. Conversely, after the removal of the

perspective effect, each pixel represents the same portion of the
road} allowing a homogeneous distribution of the information
Due to its intrinsic nature, low-level image processingmong all image pixels; to remove the perspective effect, it is
is efficiently performed on single instruction multiple datjecessary to know the specific acquisition conditions (camera
(SIMD) systems by means of a massively parallel compygosition, orientation, optics, etc.) and the scene represented in
tational paradigm. Anyway, this approach is meaningful ithe image (the road, which is now assumed tofla8. This
the case of generic filterings (such as noise reduction, edgstitutes thea priori knowledge.
detection, and image enhancement), which consider the imag@jow, recalling the example of road markings detection, the
as a mere collection of pixels, independent of their seman§ze and shape of the matching template can be independent
content. of the pixel position. Therefore, road markings detection can
On the other hand, the implementation of more sophisticatge conveniently divided into two steps: the first, exploiting the
filters requires some semantic knowledge. As an example, depriori knowledge, is a transform that generates an image in
us consider the specific problem of road markings detectiondmhew domain where the detection of the features of interest

an image acquired from a vehicle. Due to the perspective effggtextremely simplified; the second, exploiting the sensorial
introduced by the acquisition conditions, the road markings, = _ . .
1A pixel in the lower part of the image of Fig. 2(a) represents a few cm

W_idth changes according to their diStanC? from the camerq ﬁﬁﬁwe road, while a pixel in the middle of the same image represents a few
Fig. 2(a)]. Therefore, the correct detection of road markingsns of cm, or even more.

gpuld be based on matchings with patterns with different
[ge, according to the specific position within the image.
fortunately, this differentiated low-level processing cannot

Il. INVERSE PERSPECTIVE MAPPING
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@ (b)
Fig. 4. (a) Thexy plane in theW space and (b) then plane.

(@) (b)

Fig. 5. (a) Original and remapped images. (b) In grey, the visible portion of the road.

data, consists of a mere low-level morphological processing.1) Z — W Mapping: In order to generate a 2-D view of a
The removal of the perspective effect allows to detect ro@D scene, the following parameters must be known [41].
markings through an extremely simple and fast morphological1) Viewpoint: camera position i€ = (I,d,h) € W.

processing that can be efficiently implemented on massively2) Viewing Direction: optical axisé is determined by the
parallel SIMD architectures. following angles:

7: the angle formed by the projection (defined by versor
A. Removing the Perspective Effect 7)) of the optical axisv on the planez = 0 and the

The procedure aimed to remove the perspective effect 3 ta;]aX'S [FSfShOW; l;n 'IL:hIg. 4(?)]’| isand .
resamples the incoming image, remapping each pixel toward - the angle formed by the optical axisand vVersor,
a different position and producing a new two-dimensional (2- [as shown in Fig. 4(b)].

D) array of pixels. The resulting image represents a top view3) Aperture:camera angular aperture 2.
of the road region in front of the vehicle, as it was observed4) Resolution:camera resolution i x n.

from a significant height. After simple manipulations [6], the final mapping Z —
Two Euclidean spaces are defined, as follows. W as a function ofu andwv is given by
e W= {(x,y,2)} € E3, representing the 3-D world space [ _ 20 ]
(world-coordinatg, where the real world is defined. z(u,v) = h xcig|(0 —a)+ U
e 7 = {(u,v)} € E?, representing the 2-D image space - 90 .
(screen-coordinade where the 3-D scene is projected. X €OS [(7 —a)+v J +1
n—
The image acquired by the camera belongs to Zhspace, _ 9 ]
while the remapped image is defined as the- 0 plane of y(u,v) = hxctg|(@ —a) +u @
the W space (according to the assumption of a flat road). The L n—1]
remapping process projects the_ acquired image ont_@ ﬂa@ « sin [(7 —a)tu « } td
plane of the 3-D world spad®’. Fig. 3 shows the relationships n—1

between the two spacé4’ andZ. z=0 1)
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traditional techniques for the processing of pairs of stereo
images are divided into the following four main steps:

Horopter - 1) calibration of the two cameras;

localization of a feature in an image;

3) identification and localization of the same feature in the
other image;

4) reconstruction of the 3-D scene.

Whenever the mapping between points corresponding to the

i ;  Horopter . L same featurenpmologous poinjscan be determined, the prob-
& / \ o 3 lem of 3-D reconstruction can be solved using triangulations.
‘ . | The intrinsic complexity of the determination of homologous
points can be reduced with the introduction of some domain-
specific constraints, such as the assumption of a flat road in
front of the cameras.
The set of pointsH = {(z,y,2)|[ul?) = w A L) =
Fig. 6. Horopter surface corresponding to different angles between LbéR)}7 Whel’e(u(l‘),v([‘)) and (u(R),v(R)) represent the pro-
optical axes of two stereo cameras. L . .
jection of (x,y,2z) in the T space of the left and right
camera respectively, is calldsbropterand represents the zero
with w,v = 0,1,---,n — 1. Given the coordinate$u,v) of disparity surface of the stereo system [11]. This means that the
a generic point) in the Z space, (1) return the coordinateswo stereo views of an object whose shape and displacement
(z,y,0) of the corresponding poinP in the W space (see matches the horopter are identical. This concept is extremely

Horopter

Horopter

7

i B
6-10

Fig. 3). useful when the horopter coincides with a model of the road
2) W — 1 Mapping: The inverse transforny: W — 7 surface, since any deviation from this model can be easily
(the dual mapping) is given as follows [6]: detected. The horopter is a spherical surface, the smaller the

difference between the orientation of the two camecasera
[hsiny(z,y, 0)} a vergencgthe larger the radius [22]. Assuming a small camera
arctg| ———————=| — (6 — ) . o
y—d vergence, as generally happens in the automotive field, the
u(z,y,0) = ) 20 and horopter can be considered planar. As shown in Fig. 6, the
n—1 horopter can be moved acting on camera vergence parameters.
[y —d _ Unfortunately, the horopter cannot be overlapped with the
arctg | —— J -(7-a) z = 0 plane (representing the flat road model) using only
v(z,y,0) = oo . (2)  camera vergence; for this purposdectronic vergencesuch
n—1 as inverse perspective mapping (IPM), is required.

In this way the search for homologous points is reduced to a
The remapping process defined by (2) removes the persp@iaple verification (check) of the shape of the horopter: in fact
tive effect and recovers the texture of the= 0 plane of the under the flat road hypothesis, the IPM algorithm can be used
W space. It is implemented scanning the array of pixels & produce an image representing the road as seen from the top.
coordinates(z,y,0) € W which form the remapped image,Using the IPM algorithm with appropriate parameters on stereo
in order to associate to each of them the corresponding valoeges, different patches of the road surface can be obtained.
assumed by the point of coordinatesx,y,0),v(z,y,0)) € Moreover the knowledge of the parameters of the whole vision
7. system allows to bring the two road patches to correspondence.
As an example, Fig. 5(a) shows the original and remappé&tiis means that, under the flat road hypothesis, pairs of
images: it is clearly visible that in this case the road markingexels having the same image coordinates in the two remapped
width is almost invariant within the whole image. The resdamages are homologous points and represent the same points
lution of the remapped image has been chosen as a tradeiofthe road plane.
between information loss and processing time; the remappedhe flat road hypothesis can be verified computing the dif-
image shown in Fig. 5(a) has been obtained without preservifggence between the two remapped imagegeeric obstacle
the original aspect-ratio. Note that the lower portion of th@anything raising out from the road) is detected if the difference
remapped image is undefined: this is due to the specific cam@nage presents sufficiently large clusters of nonzero pixels
position and orientation [see Fig. 5(b)]. having a specific shape. Due to the different position of the
two cameras, the difference image can be computed only for
the overlapping area of the two road patches.
IIl. STEREO INVERSE PERSPECTIVEMAPPING In addition, it is easily demonstrable that the IPM algorithm
A 3-D description of the world using a single 2-D imageanaps straight lines perpendicular to the road plane into straight
is impossible withouta priori knowledge, due to the depthlines passing through the projectidaf,, = (I,d,0) of the
loss during acquisition; for many years stereo vision hasmera onto the plane = 0 (see Fig. 4): using formula
been investigated as an answer to this problem. Genera(ly)), a vertical straight line is represented by the set of pixels
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() (b) (© (d) (e)

Fig. 7. Homogeneous ideal object. (a) Left view. (b) Right view. (c) Remapped left view. (d) Remapped right view. (e) Difference between (c) and
(d) showing in light grey the area not seen by both cameras.

@)

(b)

Fig. 8. (a) Horizontal calibration of the MOB-LAB vision system. (b) Rotated version of the remapped image considering an aspect ratio of 1: 1.

{P(u;,v;)|v; = T = constant}; thus, defining TABLE |
9 AcQUuISITION PARAMETERS OF THE CAMERA INSTALLED ONTO MOB-LAB
ks E F-—a)+7v fél = constant and Left Camera | Right Camera
A — 2 Intrinsic Parameters 2a 28°00
p(u) = tan (9—a)+un_ 1 3) n 512
h 200 cm
it follows that Extrinsic Parameters _ 0 8°55'
h d 95 cm 185 cm
z(u, ) = —— cosky + 1; ¥ 0°45’ 0°00’
p(u)
— h .
y(u,v) = m sin ki + d; the definitions and notations given in Section 1I-Al, the cal-
=0 (4) ibration parameters can be divided into the following two
categories.
which represents the straight line = (y — d) ctg(kw) +1  + |ntrinsic parameters(camera angular apertury and
passing throughCs,,. _ camera resolutiona x n), which are fixed.
~ Thus, the vertical edges of a generic obstacle are mapped Extrinsic parametergview point and viewing direction),
into two straight lines intersecting id’,,,. Due to the dif- which can be determined by measurements and possibly

ferent coordinates of the projection of the two cameras, in  {ned.
a ideal case the difference between the two remapped ima(éﬁ]%

ts two trianales. This behavior is sh Fia. 7. whi of the four extrinsic parameters andg) are in common
presents o triangies. This behavior is shown In =19. -4, Wiy veen the two cameras, while the other twband 7)
depicts the left and right views of an ideal white squar

. Sre determined by the analysis of input images. After the
obstacle on a gridded dark background, the two correspond‘ gependent calib>r/ation of g/oth camepras, a ?ine tuning of

remapped images, and the threshol_ded_ difference showing 3 é’d(L>, 4 (L) and5® parameters is obtained applying
the overlapping between the two viewing areas. the stereo IPM algorithm iteratively, and minimizing the
) i disparities between the two remapped images of a flat road
A. Camera Calibration acquired with the vehicle standing still.
From the above description, it can be seen that the cal-The acquisition parameters of the camera installed onto
ibration of the vision system plays a basic role. RecallinglOB-LAB are shown in Table I.
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Fig. 9. Sequence of images produced by the low-level lane detection phase together with a linear profile of one of their lines. (a) Original. (). Remappe
(c) Filtered. (d) Enhanced. (e) Binarized.

Fig. 10. Geodesic morphological dilation used for image enhancement. (a) Input image. (b) Control image. (c)—(e) Results of the first three iteration

Fig. 8(a) shows the horizontal calibration of the left camera
installed onto MOB-LAB, while Fig. 8(b) shows the remapped
image with an aspect ratio of one.

Since during the tests the acquisition system was used
also for other experiments, no other cameras setups were '

tested. Section VII presents a brief discussion about benefits Cl  wl
in varying the camera setup and about the impact of drifts due % } |
to vehicle movements. Left Center Right
C2 w2
IV. DRIVING ASSISTANCE FUNCTIONS | :(__)}
In the following section the lane detection and obstacle Left Center Right
detection functionalities are discussed. Both of them are di-
vided into a low-level phase that can be efficiently expressed C3w3
with a SIMD computational paradigm and a serial high- and A
medium-level phase. Left Center Right

Fig. 11. Two nonzero pixels can represent three different road configura-
tions.

Lane detection is performed assuming that a road marking
n the c = 0 plane of theyy sp_ace_(l.e., n th_e remappedimages together with a linear brightness profile of a horizontal
image) is represented by a quasivertical bright line of constant
width surrounded by a darker region (the road). Thus, t ge- _ ) o
pixels belonging to a road marking have a brightness valueTNe first phase of road markings detection is thus based on
higher than their left and right neighbors at a given horizontallinewise determination of horizontal black-white-black tran-

distance. Fig. 9(a) and (b) shows the original and remappsitions, while the following medium-level processing is aimed

A. Lane Detection
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@ (b) (©

Fig. 12. Results of the medium level processing. (a) Reconstruction of the road markings. (b) Reintroduction of the perspective effect. (a)sBigrerimp
of the previous result onto a brighter version of the original image.

to the extraction of the information and the reconstruction ofeighborhood, except in the directions in which the control
road geometry. values are zero. Fig. 10 shows the results of three iterations

1) Parallel Feature Extraction:The  brightness value on a portion of an image that represents a lane marking.
b(x,y) of a generic pixel of the remapped image is compared Some results of lane detection in a number of different
to its horizontal left and right neighbors at a distanee conditions are shown in Fig. 13.

b(x,y — m) and b(x,y + m), with m > 1. Moreover, since
A new image, whose valuegz,y) encode the presence of i _
S ) X r{z,y—m) =0
a road marking, is then computed according to the following r(z,y) #0 = (8)
. i 7’($,y+m):0,
expression:

the pixels of the filtered image at a distaneefrom a road

() + dem (2, 1), marking assume a zero value; according to (7) their control

r(z,y) = . if iﬁ+m(_$,y) >0) Adem(@,9)>0) ) aie is zero and, thus, they form a barrier to the propagation
, otherwise of the maximum value. The enhanced image (after eight
where iterations) is shown in Fig. 9(d).
Finally, the binarization is performed by means of an
dym(z,y) =b(x,y) — bz, y +m) adaptive threshold
d—m(xv y) :b(xv y) - b(xvy - m) (6) i S m(a:, y)
. . . , Ha,y) =4 L Felzy)z )
represent the horizontal brightness gradient. The choice of ’ 0. otherwise

depends on the road markings width, on the image acquisition
process, and on the parameters used in the remapping phe#ere c(x,y) represents the enhanced image(z,y) the
Consideringm = 2, the filtered image is shown in Fig. 9(c). maximum value computed in a givenx ¢ neighborhood,
Due to different illumination conditions (e.g., in presencandk is a constant. The result of the binarization of Fig. 9(d),
of shadows), the road markings may have different brightnesensideringk = 2 andc = 7, is presented in Fig. 9(e).
yet maintain their superiority relationship with their horizontal 2) Feature Identification:The goal of the successive
neighbors. Thus, since a simple threshold seldom givesmgdium-level processing is the determination of the geometry
satisfactory binarization, the image is enhanced exploiting i the road, starting from the thresholded image. This binary
vertical correlation; then an adaptive binarization is performeiinage is scanned row by row and for each linell its
The enhancement of the filtered image is performed throughnzero pixels are considered in pairs: a nonzero pixel can
a few iterations of @eodesic morphological dilatiofp3] with ~ represent the left edge, the right edge, or the center line;
the following binary structuring element: Fig. 11 shows the three different road configurations that a
pair of nonzero pixels can represent, considering the road as
identified by three nonzero pixels. Each one of these three
possible configurations produces a péi:,w;), where ¢;

* Lo * represents the coordinate of the road medial-axis and
. represents its corresponding lane width. Anyway, not all pairs
(ci,w;) correspond to a valid road configuration, and only the
where ones satisfying the following constraints will be considered:

0 < ¢ < Nyw <(N/3);¢ —w; < 3Nje; +w; > (N/4);
where N is the image horizontal size.

A histogram is built considering the values assumed by
is thecontrol image[53]. The result of the geodesic dilation isw,; for each line of the image; the peak of the histogram
the product between the control image and the maximum valc@responds to the more frequent value of lane width. In order
computed among all the pixels belonging to the neighborhotwl allow a nonfixed road geometry (and also the handling of
described by the structuring element. The iterative applicaticarves) the histogram is lowpass filtered; finally, its maximum
of the geodesic dilation corresponds to the widening of thelue W is determined.

_f1 ifr(ay) #0
c,y) = {0, otherwise ()
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() (b) (c) (d) (e)

Fig. 13 Results of lane detection. (a) Original. (b) Remapped. (c) Low-level result. (d) Reconstructed. (e) Superimposed onto original.

Subsequently, all pairs (¢,w;) with W — image vertical correlation. The values corresponding to the
(W/4)<w; <W 4+ (W/4) are considered: the imagecentersc; of the above chain are then used to reconstruct the
is scanned line by line from its bottom (where it is moreoad geometry. Fig. 12(a) shows the final result starting from
probable to be able to detect the center of the road) to its tdpe binary image shown in Fig. 9(e). Moreover, for displaying
and the longest chain of road centers is built, exploiting thmirposes, the perspective effect can be reintroduced using the
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(C) (b) (© (d) (e) ®

Fig. 14. Real situation with two obstacles. (a) Left view. (b) Right view. (c) Remapped left view. (d) Remapped right view. (e) Thresholded and filtered
difference between remapped views. (f) In light gray, the road area visible from both cameras.
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Fig. 15. Steps involved in the computation of the polar histogram.
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Fig. 16. Relationships between obstacle and cameras position. (a) Perspective view. (b) Road plane view.

dual transform of the IPM [see (1)]. Fig. 12(b) shows th
representation in th& space of Fig. 12(a), while Fig. 12(c)
presents its final superimposition onto the original image.

B. Obstacle Detection

As shown in Section lll, the stereo IPM technique ca
produce a difference image in which ideal square obstaclag. 17. Correspondence between triangles and directions pointed out by
are transformed into two triangles. The obstacle detecti@gaks detected in the polar histogram.
process is based on the localization of pairs of these triangles,
which is derived from a quantitative measure of shape abdghtness of real obstacles, the detection and localization of
position of the two corresponding triangles. Unfortunately, dube triangles become difficult. Nevertheless, in the difference
to the texture, the irregular shape, and the nonhomogeneouage some clusters of pixels with a quasitriangular shape are
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Fig. 18. Polar histograms. (a) Ideal situation. (b) Real situation with one obstacle. (c) Real situation with two obstacles.
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Fig. 19. |If the ratio between area$, and Az is greater than a threshold, the two peaks are joined.

anyway recognizable, even if they are not clearly disjointetbllowing property: the prolongations of the edges of a triangle
Moreover, in case two or more obstacles are present in fingersect both projection@éﬁ) and 0505}) of the two cameras
scene at the same time, more than two triangles appear in ¢hgo the road plane, as shown in Fig. 16. Due to the small

difference image. A further problem is due to partially visiblgjistance betweenﬂg%) and C'®) | instead of computing two

. . Y
obstacles that produce a single triangle. different polar histograms (having focus 6> and ¢,

The low-level portion of the processing, detailed in Fig. 14; single one is considered. The focus of the polar histogram

is thus reduced to the difference between the two remapped (L)

i i oL o). i
images, a threshold, and a morphological opening [27] aim'ﬁsdplaced in the middle ot Cz,"; in this case the polar

to the removal of small-sized details in the thresholded imag[ei.Stogram presents an appreciable peak corresponding to each

1) Polar Histogram: A polar histogramis used for the r_'a_”g'e- .Since the presencg of "fm obstaclg prodgces two
detection of triangles: given a poitt in the z = 0 plane of Q|SJomt triangles (corresfpon'dlng to its edges) in the dlﬁerencg
the W space (calledocu, the polar histogram is computed'mag?’ obstacle detection '|s. reduced to the search for palrs
scanning the difference image and counting the number fadiacent peaks; the position of a peak, in fact, determines
overthreshold pixels for every straight line originating from thi® angle of view under which the obstacle edge is seen
focus . The values of the polar histogram are then normalizéde€ Fig. 17). Peaks may have different characteristics, such
using the polar histogram obtained scanning an image whé&amplitude, sharpness, or width, depending on the obstacle
all pixels are setréference image Furthermore, a lowpass distance, the angle of view, and the difference of brightness
filter is applied in order to decrease the influence of noise (s@@d texture between the background and the obstacle itself
Fig. 15). (see Fig. 18).

When F' lays on the prolongation of a triangle edge, 2) Peaks Joining:Two or more peaks can be joined ac-
the polar histograms presents a sharp discontinuity. The twrding to different criteria, such as similar amplitude, close-
calization of a triangle is thus performed, exploiting theess, or sharpness. The analysis of a large number of different
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Fig. 20. Some examples of peaks join. (a) One obstacle. (b) Two obstacles. (c) A large obstacle.
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Steps involved in the computation of radial histogram for pBak(a) Polar histogram. (b) Binary difference image. (c) Radial histogram. (d)
Normalization factor. (e) Normalized radial histogram.

situations allowed to determine a parameter embedding allmafmber of overthreshold pixels is computed and the result
the above quantities. According to the notations of Fig. 18 normalized. The radial histogram is analyzed to detect
R is defined as the ratio between areés and A,. If R is the corners of triangles, which represent the contact points
greater than a threshold, two adjacent peaks are consideref&f$een obstacles and road plane, thus allowing the determi-
generated by the same obstacle, and thus joined (see Fig. B@§ion of the obstacle distance through a simple threshold (see
Hence, the two peaks are left alone (not joined) when thg)')g- 21). o . ]
are far apart or the valley is too deep. Obviously, a partially The resultis displayed with black markers superimposed on
visible obstacle produces a single peak that cannot be joi Bnghterversmn of the left image; they encode both obstacles
: : iIstance and width. Fig. 22 shows the results obtained in a

to any other. The amplitude and width of peaks, as well as the . L2
. - . an|mber of different situations.
interval between joined peaks, are used to determine the angle
of view under which the whole obstacle is seen.

3) Estimation of Obstacle Distancefhe difference image V. THE COMPUTING ARCHITECTURE

can also be used to estimate the obstacle distance. For eacﬂjue to the specific field of application, the response time

peak of the polar histogram, eadial histogramis com- of the system is a major critical point, since it affects directly
puted scanning a specific sector of the difference image; i maximum speed allowed for the vehicle; the choice of the
width «; of the sector is determined as the width of theomputing architecture is, thus, a key design issue [10]. A few
polar histogram peak in correspondence to the 80% of tbensiderations on power consumption show that future trends
peak maximum amplitudé;, as shown in Fig. 21(a). The in mobile computing are shifting toward a massively parallel
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Fig. 22. Results of obstacle detection in different road conditions.

architecture composed of a large number of relatively slowpeed, but, in order to maintain the overall system perfor-
clocked processing elements (PE’s). The power consumptimance, compensation for these increased delays is required
of dynamic systems can be considered proportional f&'2, [14], [16].

where C represents the capacitance of the circifitis the The reduction of power consumption, while maintaining
clock frequency, and’ is the voltage swing. Power can becomputational power, can be reached by the use of low-
saved in the following three different ways [23], minimizingcost SIMD computer architectures, formed by a large number

C, f, and V respectively: of extremely simple and relatively slow-clocked PE’s. These
1) using a greater level of VLSI integration, thus reducingystems, using slower device speeds, provide an effective
the capacitance’; mechanism to trade power consumption for silicon area, while

2) trading computer speed (with a lower clock frequendyi@intaining the computational power unchanged. Following
) for lower power consumption (already implementede the four major drawbacks of this approach.

on many portable PC’s); 1) A solution based on hardware replication increases the
3) reducing the supply voltag€pp. silicon area, and thus it is not suited for extremely
In recent years, IC supply voltage has been reduced from area-constrained designs.
5-3.3 V, and even less for the internal core. Unfortunately, 2) Parallelism must be accompanied by extra-routing, re-
there is a speed penalty to pay for this reduction: for a  quiring extra-power; this issue must be carefully con-

CMOS gate [54], the device deld); (following a first order sidered and optimized.

approximation) is proportional t855/(Vpp — Vr)?, which 3) The use of parallel computer architectures involves the
shows that the reduction ofpp determines a quasilinear redesign of the algorithms with a different computational
increment (until the device threshold vallig) of the circuit model.

delay7,. On the other hand, the reduction 6f, determines  4) Since the number of processing units must be high, if the
a quadratic reduction of power consumption. Thus, for power system has size constraints the PE’s must be extremely
saving reasons, it is desirable to operate at the lowest possible simple, performing only simple basic operations.
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More generally, the features that allow the integration ande processor array16 x 16 square matrix of 1-b PE'’s each
the efficient use of a computer system on board of a moving with full eight-neighbors connectivity [24], [40], [47], and
vehicle are 1) low production cost, 2) low operative cost, and an internal 64-b memory;

3) small physical size. e camera interfacgable to acquire stereo images and to

Theparallel processor for image checking and analy$4.- display temporary results on an external monitor at video
PRICA) system [8], [9], a low-cost special-purpose massively rate (25 frames/s or 50 fields/s);
parallel architecture composed of 256 PE’s working in SIMD « control unit managing the activity of the whole system.
fashion, has been explicitly developed in cooperation with Generally in image processing applications, the number of
the Polytechnic Institute of Turin, Italy, foIIowing the abOVQDE’S is far smaller than the number of image pixe|sy thus
requirements. The PAPRICA coprocessor is integrated oryeduiring a sort of virtualization of the PA. This is done
single VME board (6U) connected to a SPARC-based hagiilizing an external image memory [40], [47], [51]; the
workstation. It comprises the following five major functionaprocessor array (PA) is loaded from the image memory with a
parts: subwindow of the data set; then the computation is performed

e program memorystoring up to 256 000 instructions;  until a special instruction is reached; finally, the results are

* image memoryup to 8 Mbytes); stored back again into the external memory. These steps are
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Fig. 25. Situations in which lane detection fails: (a) the road is not flat, thus producing (b) an irregular thresholded remapped image. (c) Orelof the ro

markings is not visible, thus producing (d) an incomplete thresholded remapped image.
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Fig. 26. Obstacle detection changing the inclination parameter: thresholded difference image, polar histogram, visual output of the protessisy, a
of the inclination parameter.

iterated until all the subwindows have been processed. Therl) Morphological ProcessingThe PAPRICA instruction
the first subwindow is reloaded again into the PA and trset comprises two kinds of operations: graphical and logical.
computation is resumed. Graphical operators derive from mathematical morphology
The low-level portion of both lane detection and obstacle di27], [53], a bit-map approach to image processing based on
tection has been implemented on the PAPRICA system, whiet theory. For each pixel, the input to the graphical operator
the medium-level part of the processing has been implementaines from one bit-plane of the pixel itself and from Hzene
on PAPRICA host computer. A block diagram depicting thbit-plane of its eight surrounding neighbors: the output value
logical organization of the computing engine is shown idepends on the particular morphological operator. The result
Fig. 23. of the graphical operator is then either stored in a destination
A number of features are integrated into the PAPRICA sybit-plane or used as the first operand of the following logical
tem for the efficient implementation of the discussed drivingperation. Sources to the logical operator are the result of
assistance functions, as follows: 1) the morphological procesise graphical operator (the central pixel itself, if no operation
ing paradigm, which is fundamental for low-level processingyas performed) and the value of a second bit-plane of the
2) hardware support for pyramidal vision tasks; 3) diredame pixel.
integration of an image acquisition device; and 4) hardware2) Support for Pyramidal VisionPyramidal architectures
support for a fast image remapping. have shown several advantages in the field of image
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Fig. 27. Obstacle detection changing the height parameter: thresholded difference image, polar histogram, visual output of the processiey, and val
of the height parameter.

processing [12], [48], [55]. One major drawback of suchenerate a 128« 128 remapped image. This device plays
architectures is that they are not easily scalable beyoadbasic role for the implementation of the GOLD system
a certain size, because interconnections among proces$onstionalities.

have an intrinsic 3-D structure that cannot be easily mapped

onto a 2-D silicon surface. Thanks to the specific processor VI. PERFORMANCE ANALYSIS

virtualization mechanism [4], PAPRICA allows to implement
multiresolution algorithms with no dedicated hardwarg
interconnections.

Since the GOLD system is composed of two indepen-
ent computational engines (the PAPRICA system, running

3) Camera Interface:The image acquisition device is inte—the low-level processing, and its host computer, running the

grated on board: it allows both to grab and store directly in{ﬁedmm-level processing), it can work in pipelined. Therefore,

. . . e timing of the whole system is determined by the slowest
.PAPRlCA 'mage memory pairs of grey-tong (8 bipixel) Stererg)rocess ignstead of the sgm of the two. As shov)\//n in Fig. 24,
|mages and .to d|splay'the contents of the |mage_memory O3 |ane detection and obstacle detection tasks are divided into
monitor at video rate in two formats: 512 512 pixel at 25

) _ the following categories.
Hz, corresponding to full frames, and 5%2256 pixel at 50 1) Data Acquisition and OutputA pair of grey-level
Hz, corresponding to single fields (even or odd).

) o PR ) stereo images of size 51% 256 pixels are acquired
4) Data Remapping Supporth communication is defined gjmjtaneously and written directly into PAPRICA image

to be global when the distance between the source and thesmory. At the same time, the result of previous computations
destination coordinates are different for every pixel. With g.¢ displayed on an on-board monitor to generate a visual
2-D mesh interconnection topology, it is impossible to perforgaedback to the driver.

a large number of global communications efficiently. The 2) Remapping: The two acquired 51% 256 pixel images
PAPRICA system includes a specific hardware device thgte remapped into two 128 128 pixel images using two
allows the global movement of the image pixels withoWifferent look up tables in 6 ms.

any constraints on their final destination. Addressimage 3) Obstacle Detection Preprocessinghe difference be-

is loaded into the image memory and treated as a look-tigeen the two remapped images is computed and thresholded;
table; each pixel contains a pointer to a memory locatian morphological filter is applied to the resulting image in
where the source value for that pixel resides. A dedicate@ider to remove noisy features. The result is a single binary
serial device, implemented in the same FPGA integratin@®8 x 128 pixel image. This phase, again managed by
PAPRICA controller, scans the address image and creates BAPRICA system, takes 25 ms; the result is then transferred
new remapped image, in whose pixel values are determin@ad 3 ms) to the host computer.

by an indirect addressing. The remapping process takes thred) Lane Detection Preprocessingilso in this case, the re-

50 ns clock cycles per pixel, giving a total of about 3 ms teult is a binary 128< 128 pixel image. This phase, executed
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Fig. 28. Situations in which obstacle detection is critical.

on PAPRICA, takes 34 ms; the result (a 128128 binary conditions, at speeds up to 80 km/h. GOLD is now being
image) is transferred (in 3 ms) to the host computer. tested also on ARGO.

5) Obstacle Detection:Since this computation is data- Obviously, when the initial assumptions are not met, namely
dependent, only an estimate of the average processing tiwigen theroad is not flat[Fig. 25(a) and (b)] or whemoad
required by the host computer can be made, ranging framarkings are not visibldFig. 25(c) and (d)], lane detection
20-30 ms. Then the result is transferred to PAPRICA memocgnnot produce valid results.
to be displayed during the acquisition of the following frame. On the other hand, since obstacle detection uses stereo

6) Lane Detection:The computation is again data-vision, the quality of results is tightly coupled also with
dependent; the average processing time is about @@ calibration of the vision system. Nevertheless, since the
ms. final target of obstacle detection is the determination of the

7) Warnings: The last phase of the whole computationdree space in front of the vehicle and not the complete
cycle is the displaying of results on the control panel, issuir83D reconstruction of the world, camera calibration becomes
warnings to the driver. The time required for this phase less critical. For this reason, even if the movements of the
negligible with respect to the whole processing. vehicle modify some of the calibration parameters (camera

Since, for our purposes, a 532 256 image resolution has height 2 and inclinationé with respect of the road plane),
demonstrated to be sufficient, the PAPRICA frame-grabberasdynamic recalibration of the system is not requiregor
used in single-field acquisition mode; thus, images becoremparison purposes, the ranging values for cameras height
available at the rate of 50 per second (using standard camepas: 10 cm) and inclination(d 4 1°) larger than the ones
at 25 Hz). Therefore, the whole processing is divided into 28stimated in [33] have been considered. Figs. 26 and 27 show
ms time slots. For this reason, once its processing is ovre results of obstacle detection emulating the changes of
the PAPRICA system remains idle until the beginning of theameras parameters caused by vehicle movements: due to
following time slot. the robustness of the approach based on polar histogram, the

As shown in Fig. 24, the whole processing (lane and obstabstacle is always detected even if the difference images are
cles detection) requires five time slots (100 rashe GOLD noisy.

system works at a rate of 10 Hz. The major critical problems of obstacle detection were
found when:
VIl. DISCUSSION  the obstacle is too far from the cameras (generally,

. this happens in the range 45-50 m), thus the polar
In this work, a system (hardware and software) for lane and histogram presents only small and isolated peaks that

obstacle detection has been presented, satisfying the hard real- can be hardly joined [Fig. 28(a)~(c)]; however, when the

fime constraints impo_seq by the auto_motive field. The who_le obstacle distance is in the range 5-45 m, this problem
system was tested with images acquired by the stereo vision has never been detected:

system installed on-board of the experimental vehicle MOB-
LAB. It was driven for more than 3000 km, along extra-urban
roads and freeways, under different traffic and illumination sgnouid the recalibration be required, it could be done during the idle time

of the host computer: the IPM recalibration consists of loading a axddvess
2The result displayed on the control panel have a latency of 150 ms. image (look-up table) into the PAPRICA remapping device.
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 the guard-rail is close to the obstacle—and thus a singlases (i.e., on rough or paved roads) vehicle movements

large obstacle—is detected [Fig. 28(d)]; become so high that the processing of noisy remapped images
« an obstacle is partially visible, and thus only one of ited to the erroneous detection of false small sized obsta-
edges can be detected [Fig. 28(d) and (e)]; cles.

« some noisy peaks in the polar histogram are not filteredOn the other hand, thanks to the remapping process, lane
out, and thus they are considered as small obstachearkings were located even in presence of shadows or other
[Fig. 28(f) and (9)]; artifacts on the road surface; anyway, although it is hard to

« the detection of far obstacles sometimes fails when thelevise a method to evaluate the percentage of successful lane
brightnesses is similar to the brightnesses of the rodétection, some unofficial tests showed that the system detects
[Fig. 28(h)]. the correct position of the lane in about 95% of the situations

The confidence in the detection of obstacles is obviousk@nsidered; however, this result does not take into account an
dependent on their size, distance, and shape, and spe&fbaustive set of road conditions.
parameters are used to tune the system sensitivity. The above-mentioned problems are mainly due to the inde-
1) Obstacle Height:The obstacle height determines th@endent processing of single images, without taking into ac-
amplitude of peaks in the polar histogram. The bandwidf®unt the high temporal correlation among subsequent frames
of the lowpass filter (LPF) applied to the polar histograrf! @ sequence. Considering an operational vehicle speed of 100
is the parameter used as threshold to discard small pe§R¥h and the MOB-LAB calibration setup, the vertical shift
that could be caused by either noise or short obstacles: fffween two subsequent remapped images corresponding to
smaller the bandwidth, the lower the influence of noise (caus&¢P frames acquired with a temporal shift of 100 ms is only
by incorrect camera calibration or vehicle movements), bitPixels. This high correlation allows to average in time the
the larger the minimum height of detectable obstacles [fgsults of the processing, thus reducing the problems of the
Fig. 28(c) and (d), the guard-rail is detected even if it is ndicomplete detection of obstacles explained above. Moreover,
as tall as vehicles]. a temporal averaging should decrease also the influence of
2) Obstacle Width:In the polar histogram, two or morethe noise introduced by vehicle movements, since it can be
peaks generated by the same obstacle are joined when Mfeled as a high-frequency sinusoid.
ratio A, /A, (see Section IV-B2) is greater than a threshold. An extension to the GOLD system that is able to ex-
In the worst case (when the peaks are separated by dekpt temporal correlations and to perform a deeper data-
valleys), the smaller this threshold, the larger the width of tHesion between the two functionalities of lane detection and
wider correctly detectable object, but the higher the probabili§pstacle detection is currently under test [2] on ARGO.
that peaks not generated by the same obstacle are joined 38eshown in Fig. 24, the idle time of the host computer
Fig. 28(d)]. (about 25 ms for each cycle) allows in fact to perform a
3) Obstacle Distance:The farther the obstacle, the smallefore complex processing without affecting the overall system
the portion of triangles detectable in the difference image, aRgrformance.
thus the lower the amplitude of peaks in the polar histogram;
nevertheless, for sufficiently high obstacles (e.g., vehicles at
about 50 m far from the cameras), the main problem is
not the detection of peaks, but their joining, as shown in The authors express their gratitude to E. Dickmanns for
Fig. 28(a)—(c). his outstanding suggestions, to F. Gregoretti, L. Reyneri,
4) Obstacle ShapeThe algorithm was designed to detecE. Sansé, and R. Passerone of the Polytechnic Institute of
obstacles with quasivertical edges; objects with nonvertichprino, for the enthusiastic joint development of the PAPRICA
edges (e.g. pyramidal objects) generate twisted triangles tA¥$tem, and to G. Quaglia and all the friends from IEN Galileo
are hard'y detected by the ana'ysis of the po'ar histogram_ Ferl’al’iS, TOI‘iI’IO, fOI‘ their he|p during the tests on MOB-LAB.
Moreover, since only a portion of the incoming imagél'he authors also acknowledge the significative contribution of
is ana|yzed [See F|g 14(f)], a different setup of the Steréﬁl the students who were involved in this prOjeCt, in particular,
cameras could both increase the resolution of the remapgedrascioli. Finally, the authors are also in debt to G. Conte
image and remove the problems due to the framing of a porti8Rd G. Adorni for their support in this research.
of a bright sky.
Also, the intercamera spacing is a key parameter: the greater
the distance between cameras, the stronger the disparities in
the the remapped images due to the presence of an obstadig.M. Bertozzi, A. Broggi, and S. Castelluccio, “A real-time oriented

Nevertheless the intercamera spacing is bounded by the vehicle ;”Stemgfgr vehicle detection]. Syst. Architecturevol 43, pp. 317-325,
ar. 1997.

physical structure, thus the cameras were installed at the m. Bertozzi, A. Broggi, and A. Fascioli, “Obstacle and lane detection on

maximum allowed distance, without running other experiments ARGO auton(?mous vehicle,” iRroc. IEEE Intelligent Transportation

; ; ; Systems Conf.’97Boston, MA.
with larger mtercameraj spacmgs.' ,U.nfortunatgly’ a too Iarg?s] S. Beucher and M. Bilodeau, “Road segmentation and obstacle detection
separation leads to a higher sensitivity to vehicle movements, by a fast watershed transform,” Proc. IEEE Intelligent Vehicles '94

in particular, rolling. Paris, France, Oct. 1994, pp. 296-301
. ' 4] A. Broggi, “Performance optimization on low-cost cellular array pro-
Durln_g the tes_ts, the system demonstrated to l_)e rObugt] cessors,” irProc. MPCS—IEEE Int. Conf. Massively Parallel Computing
and reliable: vehicles weralwaysdetected and only in few Systemslschia, ltaly, May 1994, pp. 334-338.
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