
Chapter 18. Theory

This chapter provides some theoretical background for the models, equa-
tions, and solution procedures used by Airpak. Information is presented
in the following sections:

• Section 18.1: Governing Equations

• Section 18.2: Turbulence

• Section 18.3: Buoyancy-Driven Flows and Natural Convection

• Section 18.4: Radiation

• Section 18.5: Solution Procedures

18.1 Governing Equations

Airpak solves the Navier-Stokes equations for transport of mass, mo-
mentum, species, and energy when it calculates laminar flow with heat
transfer. Additional transport equations are solved when the flow is tur-
bulent (see Section 18.2) or when radiative heat transfer is included (see
Section 18.4).

18.1.1 The Mass Conservation Equation

The equation for conservation of mass, or continuity equation, can be
written as follows:

∂ρ

∂t
+ ∇ · (ρ~v) = 0 (18.1-1)

For an incompressible fluid, this reduces to

∇ · ~v = 0 (18.1-2)
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18.1.2 Momentum Equations

Transport of momentum in the ith direction in an inertial (non-accelerating)
reference frame is described by [4]

∂

∂t
(ρ~v) + ∇ · (ρ~v~v) = −∇p+ ∇ · (τ ) + ρ~g + ~F (18.1-3)

where p is the static pressure, τ is the stress tensor(described below),
and ρ~g is the gravitational body force. ~F contains other source terms
that may arise from resistances, sources, etc.

The stress tensor τ is given by

τ = µ

[
(∇~v + ∇~vT) − 2

3
∇ · ~vI

]
(18.1-4)

where µ is the molecular viscosity and the second term on the right hand
side is the effect of volume dilation.

18.1.3 Energy Conservation Equation

The energy equation for a fluid region can be written in terms of sensible
enthalpy h (=

∫ T
Tref

cpdT , where Tref is 298.15 K) as

∂

∂t
(ρh) + ∇ · (ρh~v) = ∇ · [(k + kt)∇T ] + Sh (18.1-5)

where k is the molecular conductivity, kt is the conductivity due to tur-
bulent transport (kt = cpµt/Prt), and the source term Sh includes any
volumetric heat sources you have defined.

In conducting solid regions, Airpak solves a simple conduction equation
that includes the heat flux due to conduction and volumetric heat sources
within the solid:

∂

∂t
(ρh) = ∇ · (k∇T ) + Sh (18.1-6)
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where ρ is density, k is conductivity, T is temperature, and Sh is the
volumetric heat source.

Equation 18.1-6 is solved simultaneously with the energy transport equa-
tion, Equation 18.1-5, in the flow regions to yield a fully coupled con-
duction/convection heat transfer prediction.

18.1.4 Species Transport Equations

When you choose to solve conservation equations for species, Airpak pre-
dicts the local mass fraction of each species, Yi, through the solution
of a convection-diffusion equation for the ith species. This conservation
equation takes the following general form:

∂

∂t
(ρYi) + ∇ · (ρ~vYi) = −∇ · ~Ji + Si (18.1-7)

where Si is the rate of creation by addition from user-defined sources.
An equation of this form will be solved for N − 1 species where N is the
total number of fluid phase species present in the system.

Mass Diffusion in Laminar Flows

~Ji is the diffusion flux of species i, which arises due to concentration gra-
dients. Airpak uses the dilute approximation, under which the diffusion
flux can be written as

~Ji = −ρDi,m∇Yi (18.1-8)

Here Di,m is the diffusion coefficient for species i in the mixture.

Mass Diffusion in Turbulent Flows

In turbulent flows, Airpak computes the mass diffusion in the following
form:

~Ji = −
(
ρDi,m +

µt

Sct

)
∇Yi (18.1-9)
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where Sct is the turbulent Schmidt number, µt

ρDt
(with a default setting

of 0.7).

Treatment of Species Transport in the Energy Equation

For many multicomponent mixing flows, the transport of enthalpy due
to species diffusion

∇ ·
[

n∑
i=1

(hi) ~Ji

]

can have a significant effect on the enthalpy field and should not be
neglected. In particular, when the Lewis number

Lei =
k

ρcpDi,m

is far from unity, this term cannot be neglected. Airpak will include this
term by default.

18.2 Turbulence

Four turbulence models are available in Airpak: the mixing-length zero-
equation model, the indoor zero-equation model, the two-equation (stan-
dard k-ε) model, and the RNG k-ε model.

18.2.1 Zero-Equation Turbulence Models

Airpak provides two zero-equation turbulence models: the mixing-length
model and the indoor model. These models are described below.

Mixing-Length Zero-Equation Turbulence Model

The mixing-length zero-equation turbulence model (also known as the
algebraic model) uses the following relation to calculate turbulent vis-
cosity, µt:
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µt = ρ`2S (18.2-1)

The mixing length, `, is defined as

` = min(κd, 0.09dmax) (18.2-2)

where d is the distance from the wall and the von Kármán constant
κ = 0.419.

S is the modulus of the mean rate-of-strain tensor, defined as

S ≡
√

2SijSij (18.2-3)

with the mean strain rate Sij given by

Sij =
1
2

(
∂uj

∂xi
+
∂ui

∂xj

)
(18.2-4)

Indoor Zero-Equation Turbulence Model

The indoor zero-equation turbulence model was developed specifically
for indoor airflow simulations [6]. It addresses the need of HVAC engi-
neers for a simple but reliable turbulence model that can be used with
modest desktop computing resources. It uses the following relationship
to calculate the turbulent viscosity µt:

µt = 0.03874ρvL (18.2-5)

where v is the local velocity magnitude, ρ is the fluid density, L is de-
fined as the distance from the nearest wall, and 0.03874 is an empirical
constant.

Airpak determines the heat transfer at the boundary surfaces by com-
puting a convective heat transfer coefficient:

c© Fluent Inc. April 23, 2002 18-5



Theory

h =
µeff

Preff

cp
∆xj

(18.2-6)

where cp is the fluid specific heat, Preff is the effective Prandtl number,
and ∆xj is the grid spacing adjacent to the wall. µeff is the effective
viscosity, given by

µeff = µ+ µt (18.2-7)

where µ is the viscosity of the fluid.

This model is ideally suited for predicting indoor air flows that consider
natural convection, forced convection, mixed convection, and displace-
ment ventilation.

18.2.2 The Two-Equation (Standard k-ε) and RNG k-ε Models

This section presents the standard and RNG k-ε models. Both models
have similar forms, with transport equations for k and ε. The major
differences in the models are as follows:

• the method of calculating turbulent viscosity

• the turbulent Prandtl numbers governing the turbulent diffusion
of k and ε

• the generation and destruction terms in the ε equation

This section describes the Reynolds-averaging method for calculating
turbulent effects and provides an overview of the issues related to choos-
ing an advanced turbulence model in Airpak. The transport equations,
methods of calculating turbulent viscosity, and model constants are pre-
sented separately for each model. The features that are essentially com-
mon to both models follow, including turbulent production, generation
due to buoyancy, and modeling heat transfer.
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Reynolds (Ensemble) Averaging

The advanced turbulence models in Airpak are based on Reynolds av-
erages of the governing equations. In Reynolds averaging, the solution
variables in the instantaneous (exact) Navier-Stokes equations are de-
composed into the mean (ensemble-averaged or time-averaged) and fluc-
tuating components. For the velocity components:

ui = ūi + u′i (18.2-8)

where ūi and u′i are the mean and instantaneous velocity components
(i = 1, 2, 3).

Likewise, for pressure and other scalar quantities:

φ = φ̄+ φ′ (18.2-9)

where φ denotes a scalar such as pressure or energy.

Substituting expressions of this form for the flow variables into the in-
stantaneous continuity and momentum equations and taking a time (or
ensemble) average (and dropping the overbar on the mean velocity, ū)
yields the ensemble-averaged momentum equations. They can be written
in Cartesian tensor form as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (18.2-10)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) =

− ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
δij
∂ul

∂xl

)]
+

∂

∂xj
(−ρu′iu′j) (18.2-11)

Equations 18.2-10 and 18.2-11 are called “Reynolds-averaged” Navier-
Stokes (RANS) equations. They have the same general form as the
instantaneous Navier-Stokes equations, with the velocities and other so-
lution variables now representing ensemble-averaged (or time-averaged)
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values. Additional terms now appear that represent the effects of turbu-
lence. These “Reynolds stresses”, −ρu′iu′j , must be modeled in order to
close Equation 18.2-11.

Choosing an Advanced Turbulence Model

This section provides an overview of the issues related to the advanced
turbulence models provided in Airpak.

The Standard k-ε Model

The simplest “complete models” of turbulence are two-equation models
in which the solution of two separate transport equations allows the tur-
bulent velocity and length scales to be independently determined. The
standard k-ε model in Airpak falls within this class of turbulence model
and has become the workhorse of practical engineering flow calculations
in the time since it was proposed by Launder and Spalding [15]. Robust-
ness, economy, and reasonable accuracy for a wide range of turbulent
flows explain its popularity in industrial flow and heat transfer simu-
lations. It is a semi-empirical model, and the derivation of the model
equations relies on phenomenological considerations and empiricism.

As the strengths and weaknesses of the standard k-ε model have become
known, improvements have been made to the model to improve its per-
formance. One of these variants is available in Airpak: the RNG k-ε
model [22].

The RNG k-ε Model

The RNG k-ε model was derived using a rigorous statistical technique
(called renormalization group theory). It is similar in form to the stan-
dard k-ε model, but includes the following refinements:

• The RNG model has an additional term in its ε equation that
significantly improves the accuracy for rapidly strained flows.

• The effect of swirl on turbulence is included in the RNG model,
enhancing accuracy for swirling flows.
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• The RNG theory provides an analytical formula for turbulent
Prandtl numbers, while the standard k-ε model uses user-specified,
constant values.

• While the standard k-ε model is a high-Reynolds-number model,
the RNG theory provides an analytically-derived differential for-
mula for effective viscosity that accounts for low-Reynolds-number
effects.

These features make the RNG k-ε model more accurate and reliable for
a wider class of flows than the standard k-ε model.

Computational Effort: CPU Time and Solution Behavior

Due to the extra terms and functions in the governing equations and a
greater degree of nonlinearity, computations with the RNG k-ε model
tend to take 10–15% more CPU time than with the standard k-ε model.

Aside from the time per iteration, the choice of turbulence model can
affect the ability of Airpak to obtain a converged solution. For example,
the standard k-ε model is known to be slightly over-diffusive in certain
situations, while the RNG k-ε model is designed such that the turbulent
viscosity is reduced in response to high rates of strain. Since diffusion
has a stabilizing effect on the numerics, the RNG model is more likely
to be susceptible to instability in steady-state solutions. However, this
should not necessarily be seen as a disadvantage of the RNG model,
since these characteristics make it more responsive to important physical
instabilities such as time-dependent turbulent vortex shedding.

The Two-Equation (Standard k-ε) Turbulence Model

The two-equation turbulence model (also known as the standard k-ε
model) is more complex than the zero-equation model. The standard k-ε
model [15] is a semi-empirical model based on model transport equations
for the turbulent kinetic energy (k) and its dissipation rate (ε). The
model transport equation for k is derived from the exact equation, while
the model transport equation for ε is obtained using physical reasoning
and bears little resemblance to its mathematically exact counterpart.
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In the derivation of the standard k-ε model, it is assumed that the flow
is fully turbulent, and the effects of molecular viscosity are negligible.
The standard k-ε model is therefore valid only for fully turbulent flows.

Transport Equations for the Standard k-ε Model

The turbulent kinetic energy, k, and its rate of dissipation, ε, are obtained
from the following transport equations:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xi

[(
µ+

µt

σk

)
∂k

∂xi

]
+Gk +Gb − ρε (18.2-12)

and

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xi

[(
µ+

µt

σε

)
∂ε

∂xi

]
+ C1ε

ε

k
(Gk + C3εGb) − C2ερ

ε2

k
(18.2-13)

In these equations, Gk represents the generation of turbulent kinetic
energy due to the mean velocity gradients, calculated as described later
in this section. Gb is the generation of turbulent kinetic energy due to
buoyancy, calculated as described later in this section. C1ε, C2ε, and C3ε

are constants. σk and σε are the turbulent Prandtl numbers for k and ε,
respectively.

Modeling the Turbulent Viscosity

The “eddy” or turbulent viscosity, µt, is computed by combining k and
ε as follows:

µt = ρCµ
k2

ε
(18.2-14)

where Cµ is a constant.
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Model Constants

The model constants C1ε, C2ε, Cµ, σk, and σε have the following default
values [15]:

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3

These default values have been determined from experiments with air
and water for fundamental turbulent shear flows including homogeneous
shear flows and decaying isotropic grid turbulence. They have been found
to work fairly well for a wide range of wall-bounded and free shear flows.

The RNG k-ε Model

The RNG-based k-ε turbulence model is derived from the instantaneous
Navier-Stokes equations, using a mathematical technique called “renor-
malization group” (RNG) methods. The analytical derivation results in
a model with constants different from those in the standard k-ε model,
and additional terms and functions in the transport equations for k and
ε. A more comprehensive description of RNG theory and its application
to turbulence can be found in [7].

Transport Equations for the RNG k-ε Model

The RNG k-ε model has a similar form to the standard k-ε model:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xi

(
αkµeff

∂k

∂xi

)
+Gk +Gb − ρε (18.2-15)

and

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xi

(
αεµeff

∂ε

∂xi

)
+C1ε

ε

k
(Gk + C3εGb) − C2ερ

ε2

k
−Rε (18.2-16)
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In these equations, Gk represents the generation of turbulent kinetic
energy due to the mean velocity gradients, calculated as described later
in this section. Gb is the generation of turbulent kinetic energy due to
buoyancy, calculated as described later in this section. The quantities αk

and αε are the inverse effective Prandtl numbers for k and ε, respectively.

Modeling the Effective Viscosity

The scale elimination procedure in RNG theory results in a differential
equation for turbulent viscosity:

d

(
ρ2k√
εµ

)
= 1.72

ν̂√
ν̂3 − 1 + Cν

dν̂ (18.2-17)

where

ν̂ = µeff/µ

Cν ≈ 100

Equation 18.2-17 is integrated to obtain an accurate description of how
the effective turbulent transport varies with the effective Reynolds num-
ber (or eddy scale), allowing the model to better handle low-Reynolds-
number and near-wall flows.

In the high-Reynolds-number limit, Equation 18.2-17 gives

µt = ρCµ
k2

ε
(18.2-18)

with Cµ = 0.0845, derived using RNG theory. It is interesting to note
that this value of Cµ is very close to the empirically-determined value of
0.09 used in the standard k-ε model.

In Airpak, the effective viscosity is computed using the differential vis-
cosity in Equation 18.2-17.
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Calculating the Inverse Effective Prandtl Numbers

The inverse effective Prandtl numbers αk and αε are computed using the
following formula derived analytically by the RNG theory:

∣∣∣∣ α− 1.3929
α0 − 1.3929

∣∣∣∣0.6321 ∣∣∣∣ α+ 2.3929
α0 + 2.3929

∣∣∣∣0.3679

=
µmol

µeff
(18.2-19)

where α0 = 1.0. In the high-Reynolds-number limit (µmol/µeff � 1),
αk = αε ≈ 1.393.

The Rε Term in the ε Equation

The main difference between the RNG and standard k-ε models lies in
the additional term in the ε equation given by

Rε =
Cµρη

3(1 − η/η0)
1 + βη3

ε2

k
(18.2-20)

where η ≡ Sk/ε, η0 = 4.38, β = 0.012.

The effects of this term in the RNG ε equation can be seen more clearly
by rearranging Equation 18.2-16. Using Equation 18.2-20, the last two
terms in Equation 18.2-16 can be merged, and the resulting ε equation
can be rewritten as

ρ
Dε

Dt
=

∂

∂xi

(
αεµeff

∂ε

∂xi

)
+ C1ε

ε

k
(Gk + C3εGb) − C∗

2ερ
ε2

k
(18.2-21)

where C∗
2ε is given by

C∗
2ε ≡ C2ε +

Cµρη
3(1 − η/η0)

1 + βη3
(18.2-22)

In regions where η < η0, the R term makes a positive contribution, and
C∗

2ε becomes larger than C2ε. In the logarithmic layer, for instance, it can
be shown that η ≈ 3.0, giving C∗

2ε ≈ 2.0, which is close in magnitude to

c© Fluent Inc. April 23, 2002 18-13



Theory

the value of C2ε in the standard k-ε model (1.92). As a result, for weakly
to moderately strained flows, the RNG model tends to give results largely
comparable to the standard k-ε model.

In regions of large strain rate (η > η0), however, the R term makes a neg-
ative contribution, making the value of C∗

2ε less than C2ε. In comparison
with the standard k-ε model, the smaller destruction of ε augments ε,
reducing k and eventually the effective viscosity. As a result, in rapidly
strained flows, the RNG model yields a lower turbulent viscosity than
the standard k-ε model.

Thus, the RNG model is more responsive to the effects of rapid strain
and streamline curvature than the standard k-ε model, which explains
the superior performance of the RNG model for certain classes of flows.

Model Constants

The model constants C1ε and C2ε in Equation 18.2-16 have values derived
analytically by the RNG theory. These values, used by default in Airpak,
are

C1ε = 1.42, C2ε = 1.68

Modeling Turbulent Production in the k-ε Models

From the exact equation for the transport of k, the term Gk, representing
the production of turbulent kinetic energy, can be defined as

Gk = −ρu′iu′j
∂uj

∂xi
(18.2-23)

To evaluate Gk in a manner consistent with the Boussinesq hypothesis,

Gk = µtS
2 (18.2-24)

where S is the modulus of the mean rate-of-strain tensor, defined as
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S ≡
√

2SijSij (18.2-25)

with the mean strain rate Sij given by

Sij =
1
2

(
∂uj

∂xj
+
∂ui

∂xj

)
(18.2-26)

Effects of Buoyancy on Turbulence in the k-ε Models

When a non-zero gravity field and temperature gradient are present si-
multaneously, the k-ε models in Airpak account for the generation of k
due to buoyancy (Gb in Equations 18.2-12 and 18.2-15), and the corre-
sponding contribution to the production of ε in Equations 18.2-13 and
18.2-16.

The generation of turbulence due to buoyancy is given by

Gb = βgi
µt

Prt
∂T

∂xi
(18.2-27)

where Prt is the turbulent Prandtl number for energy. For the standard
k-ε model, the default value of Prt is 0.85. In the case of the RNG
k-ε model, Prt = 1/α, where α is given by Equation 18.2-19, but with
α0 = 1/Pr = k/µcp. The coefficient of thermal expansion, β, is defined
as

β = −1
ρ

(
∂ρ

∂T

)
p

(18.2-28)

It can be seen from the transport equation for k (Equation 18.2-12 or
18.2-15) that turbulent kinetic energy tends to be augmented (Gb > 0)
in unstable stratification. For stable stratification, buoyancy tends to
suppress the turbulence (Gb < 0). In Airpak, the effects of buoyancy on
the generation of k are always included when you have both a non-zero
gravity field and a non-zero temperature (or density) gradient.
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While the buoyancy effects on the generation of k are relatively well un-
derstood, the effect on ε is less clear. In Airpak, by default, the buoyancy
effects on ε are neglected simply by setting Gb to zero in the transport
equation for ε (Equation 18.2-13 or 18.2-16).

The degree to which ε is affected by the buoyancy is determined by the
constant C3ε. In Airpak, C3ε is not specified, but is instead calculated
according to the following relation [10]:

C3ε = tanh
∣∣∣∣vu
∣∣∣∣ (18.2-29)

where v is the component of the flow velocity parallel to the gravita-
tional vector and u is the component of the flow velocity perpendicular
to the gravitational vector. In this way, C3ε will become 1 for buoyant
shear layers for which the main flow direction is aligned with the direc-
tion of gravity. For buoyant shear layers that are perpendicular to the
gravitational vector, C3ε will become zero.

Convective Heat Transfer Modeling in the k-ε Models

In Airpak, turbulent heat transport is modeled using the concept of
Reynolds’ analogy to turbulent momentum transfer. The “modeled”
energy equation is thus given by the following:

∂

∂t
(ρE) +

∂

∂xi
[ui(ρE + p)] =

∂

∂xi

(
keff

∂T

∂xi

)
+ Sh (18.2-30)

where E is the total energy and keff is the effective conductivity.

For the standard k-ε model, keff is given by

keff = k +
cpµt

Prt

with the default value of the turbulent Prandtl number set to 0.85.

For the RNG k-ε model, the effective thermal conductivity is
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keff = αcpµeff

where α is calculated from Equation 18.2-19, but with α0 = 1/Pr =
k/µcp.

The fact that α varies with µmol/µeff , as in Equation 18.2-19, is an advan-
tage of the RNG k-ε model. It is consistent with experimental evidence
indicating that the turbulent Prandtl number varies with the molecular
Prandtl number and turbulence [14]. Equation 18.2-19 works well across
a very broad range of molecular Prandtl numbers, from liquid metals
(Pr ≈ 10−2) to paraffin oils (Pr ≈ 103), which allows heat transfer to be
calculated in low-Reynolds-number regions. Equation 18.2-19 smoothly
predicts the variation of effective Prandtl number from the molecular
value (α = 1/Pr) in the viscosity-dominated region to the fully turbu-
lent value (α = 1.393) in the fully turbulent regions of the flow.

18.3 Buoyancy-Driven Flows and Natural Convection

The importance of buoyancy forces in a mixed convection flow can be
measured by the ratio of the Grashof and Reynolds numbers:

Gr
Re2 =

∆ρgh
ρv2

(18.3-1)

When this number approaches or exceeds unity, you should expect strong
buoyancy contributions to the flow. Conversely, if it is very small, buoy-
ancy forces may be ignored in your simulation. In pure natural con-
vection, the strength of the buoyancy-induced flow is measured by the
Rayleigh number:

Ra =
gβ∆TL3ρ

µα
(18.3-2)

where β is the thermal expansion coefficient:

β = −1
ρ

∂ρ

∂T
(18.3-3)
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and α is the thermal diffusivity:

α =
k

ρcp
(18.3-4)

Rayleigh numbers less than 108 indicate a buoyancy-induced laminar
flow, with transition to turbulence occurring over the range of
108 < Ra < 1010.

Airpak uses either the Boussinesq model or the ideal gas law in the cal-
culation of natural-convection flows, as described below.

18.3.1 The Boussinesq Model

By default, Airpak uses the Boussinesq model for natural-convection flows
involving only one species. This model treats density as a constant value
in all solved equations, except for the buoyancy term in the momentum
equation:

(ρ− ρ0)g ≈ −ρ0β(T − T0)g (18.3-5)

where ρ0 is the (constant) density of the flow, T0 is the operating tem-
perature, and β is the thermal expansion coefficient. Equation 18.3-5 is
obtained by using the Boussinesq approximation ρ = ρ0(1 − β∆T ) to
eliminate ρ from the buoyancy term. This approximation is accurate as
long as changes in actual density are small; specifically, the Boussinesq
approximation is valid when β(T − T0) � 1.

18.3.2 Incompressible Ideal Gas Law

In Airpak, if you choose to define the density using the ideal gas law for
a single-fluid problem, Airpak will compute the density as

ρ =
pop
R

Mw
T

(18.3-6)

where R is the universal gas constant, Mw is the molecular weight of
the fluid, and pop is defined by you as the Oper. pressure in the Advanced
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problem setup panel (see Section 6.4.4). In this form, the density depends
on the operating pressure (not on the local relative pressure field, local
temperature field, or molecular weight).

If you choose to model species transport in Airpak, Airpak will compute
the density as

ρ =
pop

RT
∑

i
Yi

Mw,i

(18.3-7)

where Yi is the mass fraction of species i andMw,i is the molecular weight
of species i. In this form, the density depends only on the operating
pressure.

Definition of the Operating Density

When the Boussinesq approximation is not used, the operating den-
sity, ρ0, appears in the body-force term in the momentum equations as
(ρ− ρ0)g.

This form of the body-force term follows from the redefinition of pressure
in Airpak as

p′s = ps − ρ0gx (18.3-8)

The hydrostatic balance in a fluid at rest is then

p′s = 0 (18.3-9)

The definition of the operating density is thus important in all buoyancy-
driven flows.

18.4 Radiation

Airpak provides two models that allow you to include radiation in your
heat transfer simulations:
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• Surface-to-surface (S2S) radiation model [21]

• Discrete ordinates (DO) radiation model [8, 19]

18.4.1 Introduction to Radiative Heat Transfer

The terms radiative heat transfer and thermal radiation are commonly
used to describe heat transfer caused by electromagnetic (EM) waves.
All materials continually emit and absorb EM waves, or photons. The
strength and wavelength of emission depends on the temperature of the
emitting material. At absolute zero K, no radiation is emitted from
a surface. For heat transfer applications, wavelengths in the infrared
spectrum are generally of greatest importance and are, therefore, the
only ones considered in Airpak.

While both conduction and convection (the other basic modes of heat
transfer) require a medium for transmission, radiation does not. There-
fore, thermal radiation can traverse a long distance without interacting
with a medium. Also, for most applications, conductive and convective
heat transfer rates are linearly proportional to temperature differences.
Radiative heat transfer rates, on the other hand, are (for the most part)
proportional to differences in temperature raised to the fourth power.

Gray-Diffuse Radiation

Airpak’s radiation models assume the surfaces to be gray and diffuse.
Emissivity and absorptivity of a gray surface are independent of the
wavelength. Also, by Kirchoff’s law [16], the emissivity equals the ab-
sorptivity (ε = α). For a diffuse surface, the reflectivity is independent
of the outgoing (or incoming) directions.

As stated earlier, for applications of interest, the exchange of radia-
tive energy between surfaces is virtually unaffected by the medium that
separates them. Thus, according to the gray-body model, if a certain
amount of radiation (E) is incident on a surface, a fraction (ρE) is re-
flected, a fraction (αE) is absorbed, and a fraction (τE) is transmitted.
Since for most indoor applications the surfaces in question are opaque
to internally-generated thermal radiation (in the infrared spectrum), the
surfaces can be considered opaque. The transmissivity, therefore, can be
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neglected. It follows, from conservation of energy, that α+ ρ = 1, since
α = ε (emissivity), and ρ = 1 − ε.

Radiative Transfer Equation

The radiative transfer equation (RTE) for an absorbing, emitting, and
scattering medium at position ~r in the direction ~s is

dI(~r,~s)
ds

+ (a+ σs)I(~r,~s) = an2σT
4

π
+
σs

4π

∫ 4π

0
I(~r,~s ′) Φ(~s · ~s ′) dΩ′

(18.4-1)

where ~r = position vector
~s = direction vector
~s ′ = scattering direction vector
s = path length
a = absorption coefficient
n = refractive index
σs = scattering coefficient
σ = Stefan-Boltzmann constant (5.672 × 10−8 W/m2-K4)
I = radiation intensity, which depends on position (~r)

and direction (~s)
T = local temperature
Φ = phase function
Ω′ = solid angle

(a+ σs)s is the optical thickness or opacity of the medium. The refrac-
tive index n is important when considering radiation in semi-transparent
media. Figure 18.4.1 illustrates the process of radiation heat transfer.

18.4.2 The Surface-to-Surface Radiation Model

The default radiation model used in Airpak is the surface-to-surface ra-
diation model. The energy flux leaving a given surface is composed of
directly emitted and reflected energy. The reflected energy flux is de-
pendent on the incident energy flux from the surroundings, which then
can be expressed in terms of the energy flux leaving all other surfaces.
The energy reflected from surface k is
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ds

Incoming 
radiation (I)

Outgoing radiation
   I + (dI/ds)ds

Absorption and
scattering loss:
    I (a+σs) ds

Gas emission:
(aσT  /π) ds4

Scattering 
addition

Figure 18.4.1: Radiation Heat Transfer

qout,k = εkσT
4
k + ρkqin,k (18.4-2)

where qout,k is the energy flux leaving the surface, εk is the emissivity, σ
is the Boltzmann constant, and qin,k is the energy flux incident on the
surface from the surroundings.

The amount of incident energy upon a surface from another surface is
a direct function of the surface-to-surface “view factor,” Fjk. The view
factor Fjk is the fraction of energy leaving surface k that is incident on
surface j. The incident energy flux qik can be expressed in terms of the
energy flux leaving all other surfaces as

Akqin,k =
N∑

j=1

Ajqout,jFjk (18.4-3)

where Ak is the area of surface k and Fjk is the view factor between
surface k and surface j. For N surfaces, using the view factor reciprocity
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relationship gives

AjFjk = AkFkj for j = 1, 2, 3, . . . N (18.4-4)

so that

qin,k =
N∑

j=1

Fkjqout,j (18.4-5)

Therefore,

qout,k = εkσT
4
k + ρk

N∑
j=1

Fkjqout,j (18.4-6)

which can be written as

Jk = Ek + ρk

N∑
j=1

FkjJj (18.4-7)

where Jk represents the energy that is given off (or radiosity) of surface
k and Ek represents the emissive power of surface k. This represents N
equations, which can be recast into matrix form as

KJ = E (18.4-8)

where K is an N × N matrix, J is the radiosity vector, and E is the
emissive power vector.

Equation 18.4-8 is referred to as the radiosity matrix equation. The view
factor between two finite surfaces i and j is given by

Fij =
1
Ai

∫
Ai

∫
Aj

cos θi cos θj

πr2
δijdAidAj (18.4-9)

where δij is determined by the visibility of dAj to dAi. δij = 1 if dAj is
visible to dAi and 0 otherwise.
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18.4.3 The Discrete Ordinates (DO) Radiation Model

The discrete ordinates (DO) radiation model solves the radiative trans-
fer equation (RTE) for a finite number of discrete solid angles, each
associated with a vector direction ~s fixed in the global Cartesian system
(x, y, z). The fineness of the angular discretization is set by default pa-
rameters that depend on the type of problem you are solving. The DO
model transforms Equation 18.4-1 into a transport equation for radia-
tion intensity in the spatial coordinates (x, y, z). The DO model solves
for as many transport equations as there are directions ~s. The solution
method is identical to that used for the fluid flow and energy equations.

The implementation in Airpak uses a conservative variant of the discrete
ordinates model called the finite-volume scheme [8, 19], and its extension
to unstructured meshes [17].

The DO Equations

The DO model considers the radiative transfer equation (RTE) in the
direction ~s as a field equation. Thus, Equation 18.4-1 is written as

∇ · (I(~r,~s)~s) + (a+ σs)I(~r,~s) = an2σT
4

π
+
σs

4π

∫ 4π

0
I(~r,~s ′) Φ(~s · ~s ′) dΩ′

(18.4-10)

Angular Discretization and Pixelation

Each octant of the angular space 4π at any spatial location is discretized
into Nθ × Nφ solid angles of extent ωi, called control angles. The an-
gles θ and φ are the polar and azimuthal angles respectively, and are
measured with respect to the global Cartesian system (x, y, z) as shown
in Figure 18.4.2. The θ and φ extents of the control angle, ∆θ and ∆φ,
are constant.

When Cartesian meshes are used, it is possible to align the global angular
discretization with the control volume face, as shown in Figure 18.4.3.
For generalized unstructured meshes, however, control volume faces do
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θ

φ

z

y
x

s

Figure 18.4.2: Angular Coordinate System

not in general align with the global angular discretization, as shown in
Figure 18.4.4, leading to the problem of control angle overhang [17].

C0 C1● ●n

Face f

Incoming
directions

Outgoing
directions

Figure 18.4.3: Face with No Control Angle Overhang

Essentially, control angles can straddle the control volume faces, so that
they are partially incoming and partially outgoing to the face. Fig-
ure 18.4.5 shows a 3D example of a face with control angle overhang.

The control volume face cuts the sphere representing the angular space
at an arbitrary angle. The line of intersection is a great circle. Control
angle overhang may also occur as a result of reflection and refraction.
It is important in these cases to correctly account for the overhanging
fraction. This is done through the use of pixelation [17].
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C0

C1

●

●

n

Face f

Incoming
directions

Outgoing
directions

Overhanging 
control angle

Figure 18.4.4: Face with Control Angle Overhang

x

y

z

Outgoing
directions

Incoming
directions

Overhanging
control
angle

Control
volume
face

Figure 18.4.5: Face with Control Angle Overhang (3D)
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Each overhanging control angle is divided into Nθp×Nφp pixels, as shown
in Figure 18.4.6. The energy contained in each pixel is then treated as
incoming or outgoing to the face. The influence of overhang can thus be
accounted for within the pixel resolution. For problems involving gray-
diffuse radiation, the default pixelation of 1× 1 is usually sufficient. For
problems involving symmetry boundaries, a pixelation of 3 × 3 is used.

Pixel

Control 
volume
face

Control angle ω i

s i

Figure 18.4.6: Pixelation of Control Angle

Boundary Condition Treatment at Gray-Diffuse Walls

For gray radiation, the incident radiation heat flux, qin, at the wall is

qin =
∫
~s·~n>0

Iin~s · ~ndΩ (18.4-11)

The net radiative flux leaving the surface is given by

qout = (1 − εw)qin + n2εwσT
4
w (18.4-12)
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where n is the refractive index of the medium next to the wall. The
boundary intensity for all outgoing directions ~s at the wall is given by

I0 = qout/π (18.4-13)

Boundary Condition Treatment at Symmetry Boundaries

At symmetry boundaries, the direction of the reflected ray ~sr correspond-
ing to the incoming direction ~s is given by

~sr = ~s− 2 (~s · ~n)~n (18.4-14)

Furthermore,

Iw(~sr) = Iw(~s) (18.4-15)

Boundary Condition Treatment at Flow Inlets and Exits

The net radiation heat flux at flow inlets and outlets is computed in the
same manner as at walls, as described above. Airpak assumes that the
emissivity of all flow inlets and outlets is 1.0 (black body absorption).

18.5 Solution Procedures

18.5.1 Overview of Numerical Scheme

Airpak will solve the governing integral equations for mass and momen-
tum, and (when appropriate) for energy, species transport, and other
scalars such as turbulence. A control-volume-based technique is used
that consists of:

• Division of the domain into discrete control volumes using a com-
putational grid.

• Integration of the governing equations on the individual control
volumes to construct algebraic equations for the discrete dependent
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variables (“unknowns”) such as velocities, pressure, temperature,
and conserved scalars.

• Linearization of the discretized equations and solution of the resul-
tant linear equation system to yield updated values of the depen-
dent variables.

The governing equations are solved sequentially (i.e., segregated from
one another). Because the governing equations are non-linear (and cou-
pled), several iterations of the solution loop must be performed before
a converged solution is obtained. Each iteration consists of the steps
illustrated in Figure 18.5.1 and outlined below:

1. Fluid properties are updated, based on the current solution. (If
the calculation has just begun, the fluid properties will be updated
based on the initialized solution.)

2. The u, v, and w momentum equations are each solved in turn using
current values for pressure and face mass fluxes, in order to update
the velocity field.

3. Since the velocities obtained in Step 2 may not satisfy the con-
tinuity equation locally, a “Poisson-type” equation for the pres-
sure correction is derived from the continuity equation and the lin-
earized momentum equations. This pressure correction equation
is then solved to obtain the necessary corrections to the pressure
and velocity fields and the face mass fluxes such that continuity is
satisfied.

4. Where appropriate, equations for scalars such as turbulence, en-
ergy, species, and radiation are solved using the previously updated
values of the other variables.

5. A check for convergence of the equation set is made.

These steps are continued until the convergence criteria are met.
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Update properties.

Solve momentum equations.

Solve pressure-correction (continuity) equation. 
Update pressure, face mass flow rate.

Solve energy, species, turbulence, and other 
scalar equations.

Converged? Stop

Figure 18.5.1: Overview of the Solution Method

Linearization

The discrete, non-linear governing equations are linearized to produce a
system of equations for the dependent variables in every computational
cell. The resultant linear system is then solved to yield an updated
flow-field solution.

The manner in which the governing equations are linearized takes an
“implicit” form with respect to the dependent variable (or set of vari-
ables) of interest. For a given variable, the unknown value in each cell is
computed using a relation that includes both existing and unknown val-
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ues from neighboring cells. Therefore each unknown will appear in more
than one equation in the system, and these equations must be solved
simultaneously to give the unknown quantities.

This will result in a system of linear equations with one equation for
each cell in the domain. Because there is only one equation per cell,
this is sometimes called a “scalar” system of equations. A point implicit
(Gauss-Seidel) linear equation solver is used in conjunction with an al-
gebraic multigrid (AMG) method to solve the resultant scalar system
of equations for the dependent variable in each cell. For example, the
x-momentum equation is linearized to produce a system of equations in
which u velocity is the unknown. Simultaneous solution of this equation
system (using the scalar AMG solver) yields an updated u-velocity field.

In summary, Airpak solves for a single variable field (e.g., p) by consid-
ering all cells at the same time. It then solves for the next variable field
by again considering all cells at the same time, and so on.

18.5.2 Spatial Discretization

Airpak uses a control-volume-based technique to convert the governing
equations to algebraic equations that can be solved numerically. This
control volume technique consists of integrating the governing equations
about each control volume, yielding discrete equations that conserve each
quantity on a control-volume basis.

Discretization of the governing equations can be illustrated most easily
by considering the steady-state conservation equation for transport of
a scalar quantity φ. This is demonstrated by the following equation
written in integral form for an arbitrary control volume V as follows:

∮
ρφ~v · d ~A =

∮
Γφ ∇φ · d ~A+

∫
V
Sφ dV (18.5-1)
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where
ρ = density
~v = velocity vector (= u ı̂ + v ̂ in 2D)
~A = surface area vector
Γφ = diffusion coefficient for φ
∇φ = gradient of φ (= (∂φ/∂x) ı̂ + (∂φ/∂y) ̂ in 2D)
Sφ = source of φ per unit volume

Equation 18.5-1 is applied to each control volume, or cell, in the com-
putational domain. The two-dimensional, triangular cell shown in Fig-
ure 18.5.2 is an example of such a control volume. Discretization of
Equation 18.5-1 on a given cell yields

Nfaces∑
f

~vfφf
~Af =

Nfaces∑
f

Γφ (∇φ)n ~Af + Sφ V (18.5-2)

where
Nfaces = number of faces enclosing cell
φf = value of φ convected through face f
ρf~vf · ~Af = mass flux through the face
~Af = area of face f , |A| (= |Axı̂ +Ay ̂| in 2D)
(∇φ)n = magnitude of ∇φ normal to face f
V = cell volume

The equations solved by Airpak take the same general form as the one
given above and apply readily to multi-dimensional, unstructured meshes
composed of arbitrary polyhedra.

Airpak stores discrete values of the scalar φ at the cell centers (c0 and c1
in Figure 18.5.2). However, face values φf are required for the convection
terms in Equation 18.5-2 and must be interpolated from the cell center
values. This is accomplished using an upwind scheme.

Upwinding means that the face value φf is derived from quantities in
the cell upstream, or “upwind,” relative to the direction of the normal
velocity vn in Equation 18.5-2. Airpak allows you to choose from two
upwind schemes: first-order upwind, and second-order upwind. These
schemes are described below.
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c0

c1

A

Figure 18.5.2: Control Volume Used to Illustrate Discretization of a
Scalar Transport Equation

The diffusion terms in Equation 18.5-2 are central-differenced and are
always second-order accurate.

First-Order Upwind Scheme

When first-order accuracy is desired, quantities at cell faces are deter-
mined by assuming that the cell-center values of any field variable rep-
resent a cell-average value and hold throughout the entire cell; the face
quantities are identical to the cell quantities. Thus when first-order up-
winding is selected, the face value φf is set equal to the cell-center value
of φ in the upstream cell.

Second-Order Upwind Scheme

When second-order accuracy is desired, quantities at cell faces are com-
puted using a multidimensional linear reconstruction approach [3]. In
this approach, higher-order accuracy is achieved at cell faces through a
Taylor series expansion of the cell-centered solution about the cell cen-
troid. Thus when second-order upwinding is selected, the face value φf

is computed using the following expression:

φf = φ+ ∇φ · ∆~s (18.5-3)
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where φ and ∇φ are the cell-centered value and its gradient in the up-
stream cell, and ∆~s is the displacement vector from the upstream cell
centroid to the face centroid. This formulation requires the determina-
tion of the gradient ∇φ in each cell. This gradient is computed using
the divergence theorem, which in discrete form is written as

∇φ =
1
V

Nfaces∑
f

φ̃f
~A (18.5-4)

Here the face values φ̃f are computed by averaging φ from the two cells
adjacent to the face. Finally, the gradient ∇φ is limited so that no new
maxima or minima are introduced.

Linearized Form of the Discrete Equation

The discretized scalar transport equation (Equation 18.5-2) contains the
unknown scalar variable φ at the cell center as well as the unknown
values in surrounding neighbor cells. This equation will, in general, be
non-linear with respect to these variables. A linearized form of Equa-
tion 18.5-2 can be written as

aP φ =
∑
nb

anbφnb + b (18.5-5)

where the subscript nb refers to neighbor cells, and aP and anb are the
linearized coefficients for φ and φnb.

The number of neighbors for each cell depends on the grid topology, but
will typically equal the number of faces enclosing the cell (boundary cells
being the exception).

Similar equations can be written for each cell in the grid. This results in
a set of algebraic equations with a sparse coefficient matrix. For scalar
equations, Airpak solves this linear system using a point implicit (Gauss-
Seidel) linear equation solver in conjunction with an algebraic multigrid
(AMG) method which is described in Section 18.5.4.
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Under-Relaxation

Because of the nonlinearity of the equation set being solved by Airpak,
it is necessary to control the change of φ. This is typically achieved by
under-relaxation, which reduces the change of φ produced during each
iteration. In a simple form, the new value of the variable φ within a cell
depends upon the old value, φold, the computed change in φ, ∆φ, and
the under-relaxation factor, α, as follows:

φ = φold + α∆φ (18.5-6)

Discretization of the Momentum and Continuity Equations

In this section, special practices related to the discretization of the
momentum and continuity equations and their solution are addressed.
These practices are most easily described by considering the steady-state
continuity and momentum equations in integral form:

∮
ρ~v · d ~A = 0 (18.5-7)

∮
ρ~v ~v · d ~A = −

∮
pI · d ~A+

∮
τ · d ~A+

∫
V

~F dV (18.5-8)

where I is the identity matrix, τ is the stress tensor, and ~F is the force
vector.

Discretization of the Momentum Equation

The discretization scheme described earlier in this section for a scalar
transport equation is also used to discretize the momentum equations.
For example, the x-momentum equation can be obtained by setting φ =
u:

aP u =
∑
nb

anb unb +
∑

pfA · ı̂ + S (18.5-9)
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If the pressure field and face mass fluxes were known, Equation 18.5-9
could be solved in the manner outlined earlier in this section, and a
velocity field obtained. However, the pressure field and face mass fluxes
are not known a priori and must be obtained as a part of the solution.
There are important issues with respect to the storage of pressure and
the discretization of the pressure gradient term; these are addressed later
in this section.

Airpak uses a co-located scheme, whereby pressure and velocity are both
stored at cell centers. However, Equation 18.5-9 requires the value of
the pressure at the face between cells c0 and c1, shown in Figure 18.5.2.
Therefore, an interpolation scheme is required to compute the face values
of pressure from the cell values.

Pressure Interpolation Schemes

The default pressure interpolation scheme in Airpak is the body-force-
weighted scheme. This scheme is good for high-Rayleigh-number natural
convection flows. The body-force-weighted scheme computes the pres-
sure values at the faces by assuming that the normal acceleration of the
fluid resulting from the pressure gradient and body forces is continuous
across each face. This works well if the body forces are known explicitly
in the momentum equations (e.g., buoyancy calculations).

If buoyancy effects are not important in your model, it is recommended
that you use the standard pressure scheme in Airpak. This interpolates
the face pressure using momentum equation coefficients [20]. This proce-
dure works well if the pressure variation between cell centers is smooth.
When there are jumps or large gradients in the momentum source terms
between control volumes, the pressure profile has a high gradient at the
cell face, and cannot be interpolated using this scheme. If this scheme is
used, the discrepancy shows up in overshoots/undershoots of cell veloc-
ity.

Another source of error for the standard pressure scheme is that Airpak
assumes that the normal pressure gradient at the wall is zero. This
is valid for boundary layers, but not in the presence of body forces or
curvature. Again, the failure to correctly account for the wall pressure
gradient is manifested in velocity vectors pointing in/out of walls.
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If you require a more accurate solution to your problem, Airpak provides
a second-order pressure interpolation scheme. This reconstructs the face
pressure using the reconstructed gradient of pressure in a manner similar
to the method used for second-order-accurate convection terms (see the
section above on second-order upwind schemes for details). This scheme
may provide some improvement over the standard scheme, but it may
have some trouble if it is used at the start of a calculation and/or with
a poor-quality mesh.

Discretization of the Continuity Equation

Equation 18.5-7 may be integrated over the control volume in Figure 18.5.2
to yield the following discrete equation

Nfaces∑
f

JfAf = 0 (18.5-10)

where Jf is the mass flow rate through face f , ρvn.

As described in Section 18.5.1, the momentum and continuity equations
are solved sequentially. In this sequential procedure, the continuity equa-
tion is used as an equation for pressure. However, pressure does not ap-
pear explicitly in Equation 18.5-10 for incompressible flows, since density
is not directly related to pressure. The SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations) algorithm [18] is used for introducing
pressure into the continuity equation. This procedure is outlined below.

In order to proceed further, it is necessary to relate the face values of
velocity vn to the stored values of velocity at the cell centers. Linear
interpolation of cell-centered velocities to the face results in unphys-
ical checker-boarding of pressure. Airpak uses a procedure similar to
that outlined by Rhie and Chow [20] to prevent checkerboarding. The
face value of velocity vn is not averaged linearly; instead, momentum-
weighted averaging, using weighting factors based on the aP coefficient
from equation 18.5-9, is performed. Using this procedure, the face flow
rate Jf may be written as
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Jf = Ĵf + df (pc0 − pc1) (18.5-11)

where pc0 and pc1 are the pressures within the two cells on either side
of the face, and Ĵf contains the influence of velocities in these cells (see
Figure 18.5.2). The term df is a function of āP , the average of the
momentum equation aP coefficients for the cells on either side of face f .

Pressure-Velocity Coupling with SIMPLE

Pressure-velocity coupling is achieved by using Equation 18.5-11 to de-
rive an equation for pressure from the discrete continuity equation (Equa-
tion 18.5-10). Airpak uses the SIMPLE (Semi-Implicit Method for Pressure-
Linked Equations) pressure-velocity coupling algorithm. The SIMPLE
algorithm uses a relationship between velocity and pressure corrections
to enforce mass conservation and to obtain the pressure field.

If the momentum equation is solved with a guessed pressure field p∗, the
resulting face flux J∗

f computed from Equation 18.5-11

J∗
f = Ĵ∗

f + df (p∗c0 − p∗c1) (18.5-12)

does not satisfy the continuity equation. Consequently, a correction J ′
f

is added to the face flow rate J∗
f so that the corrected face flow rate Jf

Jf = J∗
f + J ′

f (18.5-13)

satisfies the continuity equation. The SIMPLE algorithm postulates that
J ′

f be written as

J ′
f = df (p′c0 − p′c1) (18.5-14)

where p′ is the cell pressure correction.

The SIMPLE algorithm substitutes the flux correction equations (Equa-
tions 18.5-13 and 18.5-14) into the discrete continuity equation (Equa-
tion 18.5-10) to obtain a discrete equation for the pressure correction p′

in the cell:
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aP p
′ =

∑
nb

anb p
′
nb + b (18.5-15)

where the source term b is the net flow rate into the cell:

b =
Nfaces∑

f

J∗
f (18.5-16)

The pressure-correction equation (Equation 18.5-15) may be solved us-
ing the algebraic multigrid (AMG) method described in Section 18.5.4.
Once a solution is obtained, the cell pressure and the face flow rate are
corrected using

p = p∗ + αp p
′ (18.5-17)

Jf = J∗
f + df (p′c0 − p′c1) (18.5-18)

Here αp is the under-relaxation factor for pressure (see Equation 18.5-6
and related description for information about under-relaxation). The
corrected face flow rate Jf satisfies the discrete continuity equation iden-
tically during each iteration.

18.5.3 Time Discretization

In Airpak the time-dependent equations must be discretized in both space
and time. The spatial discretization for the time-dependent equations
is identical to the steady-state case (see Section 18.5.2). Temporal dis-
cretization involves the integration of every term in the differential equa-
tions over a time step ∆t. The integration of the transient terms is
straightforward, as shown below.

A generic expression for the time evolution of a variable φ is given by

∂φ

∂t
= F (φ) (18.5-19)
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where the function F incorporates any spatial discretization. If the time
derivative is discretized using backward differences, the first-order accu-
rate temporal discretization is given by

φn+1 − φn

∆t
= F (φ) (18.5-20)

where

φ = a scalar quantity
n+ 1 = value at the next time level, t+ ∆t
n = value at the current time level, t

Once the time derivative has been discretized, a choice remains for eval-
uating F (φ): in particular, which time level values of φ should be used
in evaluating F?

One method (the method used in Airpak) is to evaluate F (φ) at the
future time level:

φn+1 − φn

∆t
= F (φn+1) (18.5-21)

This is referred to as “implicit” integration since φn+1 in a given cell is
related to φn+1 in neighboring cells through F (φn+1):

φn+1 = φn + ∆tF (φn+1) (18.5-22)

This implicit equation can be solved iteratively by initializing φi to φn

and iterating the equation

φi = φn + ∆tF (φi) (18.5-23)

until φi stops changing (i.e., converges). At that point, φn+1 is set to φi.

The advantage of the fully implicit scheme is that it is unconditionally
stable with respect to time step size.
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18.5.4 Multigrid Method

This section describes the mathematical basis of the multigrid approach
used in Airpak.

Approach

Airpak uses a multigrid scheme to accelerate the convergence of the solver
by computing corrections on a series of coarse grid levels. The use of
this multigrid scheme can greatly reduce the number of iterations and
the CPU time required to obtain a converged solution, particularly when
your model contains a large number of control volumes.

The Need for Multigrid

Implicit solution of the linearized equations on unstructured meshes is
complicated by the fact that there is no equivalent of the line-iterative
methods that are commonly used on structured grids. Since direct ma-
trix inversion is out of the question for realistic problems and “whole-
field” solvers that rely on conjugate-gradient (CG) methods have robust-
ness problems associated with them, the methods of choice are point
implicit solvers like Gauss-Seidel. Although the Gauss-Seidel scheme
rapidly removes local (high-frequency) errors in the solution, global (low-
frequency) errors are reduced at a rate inversely related to the grid size.
Thus, for a large number of nodes, the solver “stalls” and the residual
reduction rate becomes prohibitively low.

Multigrid techniques allow global error to be addressed by using a se-
quence of successively coarser meshes. This method is based upon the
principle that global (low-frequency) error existing on a fine mesh can be
represented on a coarse mesh where it again becomes accessible as local
(high-frequency) error: because there are fewer coarse cells overall, the
global corrections can be communicated more quickly between adjacent
cells. Since computations can be performed at exponentially decaying
expense in both CPU time and memory storage on coarser meshes, there
is the potential for very efficient elimination of global error. The fine-grid
relaxation scheme or “smoother”, in this case either the point-implicit
Gauss-Seidel or the explicit multi-stage scheme, is not required to be par-
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ticularly effective at reducing global error and can be tuned for efficient
reduction of local error.

The Basic Concept in Multigrid

Consider the set of discretized linear (or linearized) equations given by

Aφe + b = 0 (18.5-24)

where φe is the exact solution. Before the solution has converged there
will be a defect d associated with the approximate solution φ:

Aφ+ b = d (18.5-25)

We seek a correction ψ to φ such that the exact solution is given by

φe = φ+ ψ (18.5-26)

Substituting Equation 18.5-26 into Equation 18.5-24 gives

A (φ+ ψ) + b = 0 (18.5-27)
Aψ + (Aφ+ b) = 0 (18.5-28)

Now using Equations 18.5-25 and 18.5-28 we obtain

Aψ + d = 0 (18.5-29)

which is an equation for the correction in terms of the original fine level
operator A and the defect d. Assuming the local (high-frequency) errors
have been sufficiently damped by the relaxation scheme on the fine level,
the correction ψ will be smooth and therefore more effectively solved on
the next coarser level.
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Restriction and Prolongation

Solving for corrections on the coarse level requires transferring the defect
down from the fine level (restriction), computing corrections, and then
transferring the corrections back up from the coarse level (prolongation).
We can write the equations for coarse level corrections ψH as

AH ψH +Rd = 0 (18.5-30)

where AH is the coarse level operator and R the restriction operator
responsible for transferring the fine level defect down to the coarse level.
Solution of Equation 18.5-30 is followed by an update of the fine level
solution given by

φnew = φ+ P ψH (18.5-31)

where P is the prolongation operator used to transfer the coarse level
corrections up to the fine level.

Unstructured Multigrid

The primary difficulty with using multigrid on unstructured grids is the
creation and use of the coarse grid hierarchy. On a structured grid, the
coarse grids can be formed simply by removing every other grid line from
the fine grids and the prolongation and restriction operators are simple
to formulate (e.g., injection and bilinear interpolation).

Multigrid Cycles

A multigrid cycle can be defined as a recursive procedure that is applied
at each grid level as it moves through the grid hierarchy. Three types of
multigrid cycles are available in Airpak: the V, W, and flexible (“flex”)
cycles.

The V and W Cycles

Figures 18.5.3 and 18.5.4 show the V and W multigrid cycles (defined
below). In each figure, the multigrid cycle is represented by a square, and
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then expanded to show the individual steps that are performed within
the cycle. You may want to follow along in the figures as you read the
steps below.

For the V and W cycles, the traversal of the hierarchy is governed by
three parameters, β1, β2, and β3, as follows:

1. β1 “smoothings”, (sometimes called pre-relaxation sweeps), are
performed at the current grid level to reduce the high-frequency
components of the error (local error).

In Figures 18.5.3 and 18.5.4 this step is represented by a circle
and marks the start of a multigrid cycle. The high-wave-number
components of error should be reduced until the remaining error is
expressible on the next coarser mesh without significant aliasing.

If this is the coarsest grid level, then the multigrid cycle on this
level is complete. (In Figures 18.5.3 and 18.5.4 there are 3 coarse
grid levels, so the square representing the multigrid cycle on level
3 is equivalent to a circle, as shown in the final diagram in each
figure.)

In Airpak, β1 is zero (i.e., pre-relaxation is not performed).!

2. Next, the problem is “restricted” to the next coarser grid level
using the appropriate restriction operator.

In Figures 18.5.3 and 18.5.4, the restriction from a finer grid level
to a coarser grid level is designated by a downward-sloping line.

3. The error on the coarse grid is reduced by performing β2 multi-
grid cycles (represented in Figures 18.5.3 and 18.5.4 as squares).
Commonly, for fixed multigrid strategies β2 is either 1 or 2, corre-
sponding to V-cycle and W-cycle multigrid, respectively.

4. Next, the cumulative correction computed on the coarse grid is
“interpolated” back to the fine grid using the appropriate prolon-
gation operator and added to the fine grid solution.

In Figures 18.5.3 and 18.5.4 the prolongation is represented by an
upward-sloping line.
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Figure 18.5.4: W-Cycle Multigrid
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The high-frequency error now present at the fine grid level is due
to the prolongation procedure used to transfer the correction.

5. In the final step, β3 “smoothings” (post-relaxations) are performed
to remove the high-frequency error introduced on the coarse grid
by the β2 multigrid cycles.

In Figures 18.5.3 and 18.5.4, this relaxation procedure is repre-
sented by a single triangle.

The Flexible Cycle

For the flexible cycle, the calculation and use of coarse grid corrections
is controlled in the multigrid procedure by the logic illustrated in Fig-
ure 18.5.5. This logic ensures that coarser grid calculations are invoked
when the rate of residual reduction on the current grid level is too slow.
In addition, the multigrid controls dictate when the iterative solution of
the correction on the current coarse grid level is sufficiently converged
and should thus be applied to the solution on the next finer grid. These
two decisions are controlled by the parameters α and β shown in Fig-
ure 18.5.5, as described in detail below. Note that the logic of the multi-
grid procedure is such that grid levels may be visited repeatedly during
a single global iteration on an equation. For a set of 4 multigrid lev-
els, referred to as 0, 1, 2, and 3, the flex-cycle multigrid procedure for
solving a given transport equation might consist of visiting grid levels as
0-1-2-3-2-3-2-1-0-1-2-1-0, for example.

The main difference between the flexible cycle and the V and W cycles is
that the satisfaction of the residual reduction tolerance and termination
criterion determine when and how often each level is visited in the flexible
cycle, whereas in the V and W cycles the traversal pattern is explicitly
defined.

The Residual Reduction Rate Criteria

The multigrid procedure invokes calculations on the next coarser grid
level when the error reduction rate on the current level is insufficient, as
defined by
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Figure 18.5.5: Logic Controlling the Flex Multigrid Cycle

Ri > βRi−1 (18.5-32)

Here Ri is the absolute sum of residuals (defect) computed on the current
grid level after the ith relaxation on this level. The above equation states
that if the residual present in the iterative solution after i relaxations is
greater than some fraction, β (between 0 and 1), of the residual present
after the (i−1)th relaxation, the next coarser grid level should be visited.
Thus β is referred to as the residual reduction tolerance, and determines
when to “give up” on the iterative solution at the current grid level
and move to solving the correction equations on the next coarser grid.
The value of β controls the frequency with which coarser grid levels are
visited. The default value is 0.1. A larger value will result in less frequent
visits, and a smaller value will result in more frequent visits.
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The Termination Criteria

Provided that the residual reduction rate is sufficiently rapid, the correc-
tion equations will be converged on the current grid level and the result
applied to the solution field on the next finer grid level.

The correction equations on the current grid level are considered suffi-
ciently converged when the error in the correction solution is reduced
to some fraction, α (between 0 and 1), of the original error on this grid
level:

Ri < αR0 (18.5-33)

Here, Ri is the residual on the current grid level after the ith iteration
on this level, and R0 is the residual that was initially obtained on this
grid level at the current global iteration. The parameter α, referred to as
the termination criterion, has a default value of 0.1. Note that the above
equation is also used to terminate calculations on the lowest (finest) grid
level during the multigrid procedure. Thus, relaxations are continued on
each grid level (including the finest grid level) until the criterion of this
equation is obeyed (or until a maximum number of relaxations has been
completed, in the case that the specified criterion is never achieved).

Restriction, Prolongation, and Coarse-Level Operators

The multigrid algorithm in Airpak is referred to as an “algebraic” multi-
grid (AMG) scheme because, as we shall see, the coarse level equations
are generated without the use of any geometry or re-discretization on the
coarse levels; a feature that makes AMG particularly attractive for use
on unstructured meshes. The advantage is that no coarse grids have to
be constructed or stored, and no fluxes or source terms need be evaluated
on the coarse levels. This approach is in contrast with FAS (sometimes
called “geometric”) multigrid in which a hierarchy of meshes is required
and the discretized equations are evaluated on every level. In theory, the
advantage of FAS over AMG is that the former should perform better for
non-linear problems since non-linearities in the system are carried down
to the coarse levels through the re-discretization; when using AMG, once
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the system is linearized, non-linearities are not “felt” by the solver until
the fine level operator is next updated.

AMG Restriction and Prolongation Operators

The restriction and prolongation operators used here are based on the ad-
ditive correction (AC) strategy described for structured grids by Hutchin-
son and Raithby [11]. Inter-level transfer is accomplished by piecewise
constant interpolation and prolongation. The defect in any coarse level
cell is given by the sum of those from the fine level cells it contains, while
fine level corrections are obtained by injection of coarse level values. In
this manner the prolongation operator is given by the transpose of the
restriction operator

P = RT (18.5-34)

The restriction operator is defined by a coarsening or “grouping” of fine
level cells into coarse level ones. In this process each fine level cell is
grouped with one or more of its “strongest” neighbors, with a prefer-
ence given to currently ungrouped neighbors. The algorithm attempts
to collect cells into groups of fixed size, typically two or four, but any
number can be specified. In the context of grouping, strongest refers to
the neighbor j of the current cell i for which the coefficient Aij is largest.
For sets of coupled equations Aij is a block matrix and the measure of
its magnitude is simply taken to be the magnitude of its first element. In
addition, the set of coupled equations for a given cell are treated together
and not divided amongst different coarse cells. This results in the same
coarsening for each equation in the system.

AMG Coarse Level Operator

The coarse level operator AH is constructed using a Galerkin approach.
Here we require that the defect associated with the corrected fine level
solution must vanish when transferred back to the coarse level. Therefore
we may write

Rdnew = 0 (18.5-35)
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Upon substituting Equations 18.5-25 and 18.5-31 for dnew and φnew we
have

R [Aφnew + b] = 0

R
[
A
(
φ+ P ψH

)
+ b
]

= 0 (18.5-36)

Now rearranging and using Equation 18.5-25 once again gives

RAP ψH +R (Aφ+ b) = 0
RAP ψH +Rd = 0 (18.5-37)

Comparison of Equation 18.5-37 with Equation 18.5-30 leads to the fol-
lowing expression for the coarse level operator:

AH = RAP (18.5-38)

The construction of coarse level operators thus reduces to a summation
of diagonal and corresponding off-diagonal blocks for all fine level cells
within a group to form the diagonal block of that group’s coarse cell.

18.5.5 Solution Residuals

During the solution process you can monitor the convergence dynam-
ically by checking residuals. At the end of each solver iteration, the
residual sum for each of the conserved variables is computed and stored,
thus recording the convergence history. This history is also saved in the
data file. The residual sum is defined below.

On a computer with infinite precision, these residuals will go to zero
as the solution converges. On an actual computer, the residuals decay
to some small value (“round-off”) and then stop changing (“level out”).
For “single precision” computations (the default for workstations and
most computers), residuals can drop as many as six orders of magnitude
before hitting round-off. Double precision residuals can drop up to twelve
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orders of magnitude. Guidelines for judging convergence can be found
in Section 14.10.5.

After discretization, the conservation equation for a general variable φ
at a cell P can be written as

aPφP =
∑
nb

anbφnb + b (18.5-39)

Here aP is the center coefficient, anb are the influence coefficients for the
neighboring cells, and b is the contribution of the constant part of the
source term Sc in S = Sc + SPφ and of the boundary conditions. In
Equation 18.5-39,

aP =
∑
nb

anb − SP (18.5-40)

The residualRφ computed by Airpak is the imbalance in Equation 18.5-39
summed over all the computational cells P . This is referred to as the
“unscaled” residual. It may be written as

Rφ =
∑

cells P

|
∑
nb

anbφnb + b− aPφP | (18.5-41)

In general, it is difficult to judge convergence by examining the resid-
uals defined by Equation 18.5-41 since no scaling is employed. This is
especially true in enclosed flows such as natural convection in a room
where there is no inlet flow rate of φ with which to compare the residual.
Airpak scales the residual using a scaling factor representative of the flow
rate of φ through the domain. This “scaled” residual is defined as

Rφ =

∑
cells P

∣∣∣∣∣
∑
nb

anbφnb + b− aPφP

∣∣∣∣∣∑
cells P

|aPφP |
(18.5-42)
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For the momentum equations the denominator term aPφP is replaced
by aP vP , where vP is the magnitude of the velocity at cell P .

The scaled residual is a more appropriate indicator of convergence, and
is the residual displayed by Airpak.

For the continuity equation, the unscaled residual is defined as

Rc =
∑

cells P

|rate of mass creation in cell P| (18.5-43)

The scaled residual for the continuity equation is defined as

Rc
iteration N

Rc
iteration 5

(18.5-44)

The denominator is the largest absolute value of the continuity residual
in the first five iterations.
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