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Figure 1: A head model textured using mesh colors. The image in the middle shows color samples on the low resolution mesh and the image
on the right shows the result after final filtering operations. (Modelled and painted by Murat Afsar)

Abstract

The coloring of three dimensional models using two or three dimen-
sional texture mapping has well known intrinsic problems, such as
mapping discontinuities and limitations to model editing after col-
oring. Workarounds for these problems often require adopting very
complex approaches. Here we propose a new technique, called
mesh colors, for associating color data directly with a polygonal
mesh. The approach eliminates all problems deriving from using
a map from texture space to model space. Mesh colors is an ex-
tension of vertex colors where, in addition to keeping color val-
ues on each vertex, color values are also kept on edges and faces.
Like texture mapping, the approach allows higher texture resolution
than model resolution, but at the same time it guarantees one-to-one
correspondence between the model surface and the color data, and
eliminates discontinuities. We show that mesh colors integrate well
with the current graphics pipeline and can be used to generate very
high quality textures.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: Mesh colors, texture mapping, vertex colors, 3D paint

1 Introduction

Since the early days of computer graphics, the mapping of textures
onto surfaces has been the preferred non-procedural way of provid-
ing surface detail without adding geometric detail. Notwithstanding
its popularity, the need to maintain a map from texture to geometric
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space, as an intrinsic characteristic, makes texture mapping prone
to artifacts and complex to use in situations demanding high visual
fidelity. Here, we propose an alternative approach to providing sur-
face detail that is immune to these problems, since it eliminates the
need for a map. We call this approach mesh colors.

In the mesh colors framework, we associate colors and other sur-
face attributes directly with mesh geometry. This is done in a way
that integrates well with existing work-flows and graphics pipelines.
Figure 1 shows mesh colors used to texture a head model. The ex-
ample illustrates the high-detail that can be obtained, the use of
level-of-detail filtering to handle far and near views, and the inte-
gration of the approach with mesh subdivision approaches for final
rendering. Before explaining mesh colors, we offer a critique of the
various mapping approaches that are currently in use.

When 2D textures are used, the crucial step is defining a one-to-one
mapping (modulo any periodicity) from 2D image space to the 3D
surface. Even though there are methods to automate this procedure,
in practice it usually requires manual intervention. In a produc-
tion pipeline, significant amounts of time are required from both
modelers and texture painters to create “good” maps. An inherent
problem of this mapping is that, for almost all 3D models, mapping
discontinuities are inevitable. These discontinuities are especially
visible in displacement mapping and in level-of-detail approaches
like MIP-mapping. Techniques that aim to hide these discontinu-
ities violate the one-to-one mapping property and often break down
beyond the first few detail levels.

Using 3D textures eliminates the 2D to 3D mapping procedure; on
the other hand, it creates other challenges to ensure one-to-one map-
ping. In particular, models with sharp and thin edges or closely
adjacent surfaces may require very high texture resolution to avoid
color bleeding between separate components. These problems be-
come even more prominent across MIP-map levels. Moreover, even
the slightest changes in the textured 3D model may require regen-
eration of the map, which often degrades the texture quality.

Mesh colors, on the other hand, keep color information directly
associated with the 3D surface geometry. This eliminates the prob-
lems inherent in 2D and 3D maps, while supporting most of their
strong points. The key characteristics of mesh colors are:

1



Department of Computer Science, Texas A&M University, Technical Report tamu-cs-tr-2008-4-1

• The inherent parametrization of the model is used, so no map-
ping function is necessary,

• Without mapping, there are no mapping discontinuities,
• An intrinsic one-to-one correspondence is maintained be-

tween the 3D surface and the color data,
• MIP-mapping for level-of-detail filtering is supported
• Texture detail can be adjusted locally with no global effects,
• Models can be edited, after coloring, without resampling,
• The procedure is compatible with the current real-time graph-

ics pipeline.

Since mesh colors can be implemented to satisfy all of the above
criteria with high performance and low memory use, the approach
is ideal for many high-end applications like 3D texture painting,
and for storing precomputed data, such as ambient occlusion, light
maps, and global illumination, on a 3D surface.

In the next section we present an overview of related previous work.
We explain the details of the mesh color structure in Section 3 and
filtering the mesh colors in Section 4. Our implementations for both
offline and real-time systems are described in Section 5, along with
results. We provide a discussion of the advantages and limitations
of mesh colors in Section 6, and conclude in Section 7.

2 Related Work

Several techniques have been proposed for automatic planar
parametrization of 3D surfaces for mapping 2D textures [Ma and
Lin 1988; Bennis et al. 1991; Maillot et al. 1993; Zhang et al. 2005;
Lévy and Mallet 1998; Hunter and Cohen 2000; Piponi and Bor-
shukov 2000; Haker et al. 2000; Lévy et al. 2002; Sheffer and
Hart 2002; Zhang et al. 2005]. Some methods guarantee one-to-
one mapping [Hormann and Greiner 1999; Sheffer and de Sturler
2000; Sander et al. 2001; Floater 2003], and some permit user de-
fined constraints [Lévy 2001; Desbrun et al. 2002; Kraevoy et al.
2003]. The general problem with these methods comes from the
fact that arbitrary 3D surfaces cannot be mapped onto a plane with-
out discontinuities, which appear as interpolation artifacts (seams)
especially in MIP-map levels [Williams 1983]. These seams cannot
be avoided without duplicating colors on region borders [Carr and
Hart 2002; Purnomo et al. 2004; Carr et al. 2006], which breaks the
one-to-one mapping property. Furthermore, even though there are
methods that allocate more resolution to regions with finer texture
detail [Sloan et al. 1998; Balmelli et al. 2002; Sander et al. 2002]
and others that allow dynamic reparametrization as texture detail
changes [Carr and Hart 2004; Igarashi and Cosgrove 2001], texture
detail cannot be adjusted locally without changing the resolution of
other parts of the surface. Moreover, these methods are very sensi-
tive to underlying 3D model topology, and arbitrary model editing
with face add/delete operations often requires regeneration of the
parametrization and resampling of color values. Floater and Hor-
mann [2005] and Sheffer et. al. [2006] provide detailed overviews.

Problems associated with parametrization can be avoided by elimi-
nating the mapping and using a 3D structure to store the color data.
Benson and Davis [2002] and DeBry et. al. [2002] suggested using
an octree structure, which reduces the extreme memory requirement
of 3D textures and permits different texture resolutions over differ-
ent parts of the 3D model. However, depending on the shape of
the 3D model, octree textures may require too many levels to avoid
color bleeding across close surfaces, which may then still appear
in MIP-map levels. Furthermore, real-time implementations of oc-
tree textures [Kniss et al. 2005; Lefebvre et al. 2005a; Lefohn et al.
2006] require an arbitrary number of dependent texture lookups that
severely reduce the performance. An alternative structure is pro-
posed by Lefebvre and Hoppe [2006], which uses a hash function

to efficiently store color data. This structure requires only two tex-
ture lookups, but it does not allow non-uniform resolution over the
3D surface. In general, 3D data structures are very sensitive to un-
derlying model geometry and even the slightest change may require
resampling the color data. Therefore, even subdivision operations,
which are often applied right before rendering, are not supported by
these structures, and texture colors have to be assigned to the finest
resolution of the 3D model.

Recently, many researchers have proposed hybrid methods to ad-
dress some of these problems. Tarini et. al. [2004] proposed
polycube maps, which define colors on the faces of multiple cubes
stacked in a way to resemble the general shape of the 3D model,
to avoid mapping discontinuities. Polycube maps are not gener-
alized enough to represent any model, and require long fragment
programs for real-time implementation. They also have a fixed res-
olution over the surface and require significant manual intervention
for parametrization. Ray et. al. [2006] used a technique that au-
tomatically generates a similar structure for global parametrization
of 3D models. Lefebvre and Dachsbacher [2007] used tile trees to
store colors on square texture fragments that are kept in the leaf
nodes of an octree structure. By limiting the octree subdivision
level, they reduced the memory requirements of octree textures and
improved their performance, but they share the other limitations of
octree textures. A different approach proposed by Lefebvre et. al.
[2005b] uses texture sprites: multiple small 2D texture elements
placed over the 3D surface. This method is useful for creating high
resolution textures from repetitive small fragments, but not suitable
for applications that require one-to-one mapping.

Our approach resolves these problems by associating colors directly
with a surface. Mesh colors behave like a 2D texture on a local area,
but without the intrinsic problems of texture mapping.

3 Mesh Color Structure

We describe the mesh color structure assuming the underlying 3D
model data is a triangular mesh. However, it is possible to extend
the mesh colors approach to more general polygonal models, sub-
division surfaces, NURBS, or other parameterized surfaces, as is
discussed briefly at the end of this section.

3.1 Mesh Colors on Triangular Faces

The mesh colors method is basically an extension of vertex col-
ors. As in standard vertex colors, each vertex is associated with
a color sample. In addition, the mesh color structure has evenly
spaced color samples defined along the edges and over the faces.
The number of color samples on a face or an edge depends on the
desired resolution in the local area on the mesh.

R = 1 R = 2 R = 3 R = 4 R = 6
(a) (b) (c) (d) (e)

Figure 2: Color positions on vertices (blue), edges (green), and
face (red) for different resolutions (R).

The lowest resolution mesh color map is a standard vertex color
map as shown in Figure 2a. In this case, no color samples are de-
fined on the edges or faces. When we move to one higher reso-
lution, we also define a single color sample in the middle of each
edge as in Figure 2b. Color samples on faces appear only in higher
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resolutions (Figure 2c-e). As the resolution increases, we add more
color samples on edges and faces. If R is the resolution, the num-
bers of color samples on each vertex, edge, and face are given by

colors per vertex = 1 , (1)
colors per edge = R− 1 , (2)

colors per face =
(R− 1)(R− 2)

2
. (3)

Note that color samples on edges and faces are evenly spaced in
barycentric coordinates. Therefore, the 3D surface position of any
color sample can be computed using barycentric coordinates based
on the index of the color sample. For a face with resolution R, the
positions Pij in barycentric coordinates of color sample Cij are

Pij =
[

i

R
,

j

R
, 1− i + j

R

]
, (4)

where i and j are integers such that 0 ≤ i ≤ R and 0 ≤ j ≤ R− i.
Note that color samples C00, CR0, and C0R are on the vertices (ver-
tex colors); color samples C0k, Ck0, and Ck(R−k) for 0 < k < R
are on the edges (edge colors); and the rest of the color samples are
on the face (face colors). This structure totally eliminates the need
for keeping 3D coordinates and topology data for color samples.

Similarly, since color sample positions are based on their indices,
for any given point on the face the indices of the nearest color sam-
ples can be computed from the barycentric coordinates of the point.
The details of this procedure are given in Section 4.

Depending on the requirements of the implementation, mesh color
samples can be embedded in the mesh data, such that each vertex,
edge, and face would keep its own color samples. However, for
many applications we want mesh colors to be usable in the current
graphics pipeline. To do this, we need to decouple mesh and color
data, similar to standard texture maps. This can be easily accom-
plished by storing all mesh colors in an array and keeping an index
to the first color sample for each vertex, edge, and face. We explain
the details of this implementation in Section 5.

3.2 Non-uniform Face Resolutions

One of the most important features of the mesh color structure is
that it allows different faces of a model to have different resolu-
tions. Using this property, color sample density can be concen-
trated on areas with high detail, achieving maximum texture detail
with minimal memory consumption. Figure 3 shows an example of
color sample distribution over faces with different resolutions.

Figure 3: Faces of a mesh with different resolutions.

In the mesh color structure, each face keeps its resolution value,
which defines the number of color samples on the face. The color
samples that belong to the face (i.e. face colors) are not shared
among neighboring faces, but vertex colors and edge colors are of-
ten used by multiple faces. Sharing vertex colors among a number
of faces with different resolutions is easy, because we only keep a
single color value per vertex regardless of the resolution. However,

if two faces sharing a common edge have different resolutions, the
number of color values and positions of these color values on the
edge differ depending on which resolution we pick for the edge. It
is straightforward to up-sample or down-sample along an edge, so
this does not pose a fundamental problem. As a rule of thumb, we
set the resolution of an edge to the highest resolution of its faces.

3.3 Editing Mesh Colored Geometry

A fundamental feature of the mesh color structure is that it does
not depend on the geometry of the object. Therefore, changing the
positions of the vertices has no effect on the mesh color structure.

On the other hand, mesh colors strictly depend on the topology.
When operations like remeshing, which generates a whole new
topology, is applied to a mesh colored surface, the mesh color struc-
ture needs to be regenerated by resampling the previous mesh col-
ors. Note that this limitation is also shared by 2D texture mapping
methods. Edge flips may require local resampling.

original mesh face delete extrude

Figure 4: Mesh colors can easily handle mesh editing operations.

Mesh colors can easily support most other mesh editing operations
without the need for resampling. Inserting or deleting faces can
be trivially handled by creating or deleting extra color samples as
needed. Extrusion operations are supported in a similar fashion by
duplicating color samples along extruded boundaries. More color
samples can always be added/removed as desired. Since color sam-
ples are directly associated with object primitives, none of these
operations has a global effect.

Figure 5: Barycentric coordinates as texture coordinates before
(left) and after (right) a face subdivision operation.

Operations that divide faces, such as certain subdivisions, can be
handled without resampling, if mesh and color data are decoupled.
Effectively, a one-to-one mapping between the old and new faces is
created. In this case, the new faces share the same color index with
the parent face, the subdivided edges keep their previous indices,
and new edges or vertices would not have any indices assigned.
Moreover, barycentric coordinates should be redefined to match the
ones before the subdivision (Figure 5). This is done by keeping
barycentric coordinates as texture coordinates.
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3.4 Non-triangular Meshes

The simplest solution for applying the mesh color definition to non-
triangular surfaces is to simply triangulate the polygons (Figure 6a);
this approach was used for the quadrilaterals in Figure 1. An al-
ternate approach for quadrilaterals would be to define an indexing
scheme as shown in Figure 6b. Instead of positioning samples based
on barycentric coordinates, bilinear interpolation could be used.

(a) (b)

Figure 6: Mesh colors on non-triangular geometry. (a) Represent-
ing polygons with triangles. (b) Defining mesh colors on quadrilat-
erals.

The mesh color structure on NURBS and parametric surfaces could
be handled similar to quadrilaterals. Note that this procedure is
different from assigning a separate 2D image to each patch; since
the colors along connections of neighboring patches are shared, we
guarantee continuity across edges.

Subdivision surfaces can be handled similar to polygonal meshes,
and resampling the mesh color map for each level is not required
as long as the subdivision operation is based on face division rather
than a complete remeshing. Note that the Catmull-Clark subdivi-
sion scheme and its extensions, which are the most commonly used
subdivision techniques, satisfy this condition.

4 Filtering

For evaluating the color value at any point on the surface or an area
that corresponds to a screen pixel, we need a reconstruction filter.
In this section we describe how standard texture filtering operations
can be used with mesh colors.

4.1 Two-dimensional Filtering

The filtering operation begins by finding the closest color samples
to a given point on the surface. Since locations of the color samples
are based on their indices, for any given point on a face the indices
of the nearest color values can be computed from the barycentric
coordinate P of the point by multiplying it with the face resolu-
tion R. To find the nearest color samples and the weights with
which to linearly combine them, we first compute two values: the
integer portion B = [i, j, k] = bRPc, and the fractional part
w = [wi,wj ,wk] = RP−B.

There are three cases. If w = 0, we are at the sample point B (and
thus that is the color). If wi +wj +wk = 1, then the nearest color

(a) (b)

Figure 7: Nearest color values of the red point.

(a) (b)

Figure 8: (a) Nearest and (b) linear filtering.

values for the point are C(i+1)j , Ci(j+1), and Cij respectively as
in Figure 7a. The weights for those color values are w. In the third
case, if wx + wy + wz = 2, the nearest color values are Ci(j+1),
C(i+1)j , and C(i+1)(j+1); the weights are w′ = [1, 1, 1]−w as in
Figure 7b.

If we directly use the color of the sample with the highest weight
(nearest color filtering), face colors form a hexagonal pattern as in
Figure 8a. By blending the colors using the weights we achieve a
linear filtering (Figure 8b).

4.2 MIP-map Filtering

For integrating the filter over an area, we use MIP-mapping just as
in standard texture maps. The only difference is the way that the
MIP-map is generated and stored. Since we allow faces to have dif-
ferent resolutions, we generate a separate MIP-map for each face,
edge, and vertex (the resolution of an edge or a vertex is the finest
resolution of its adjacent faces).

level-3 level-2 level-1 level-0

Figure 9: MIP-map levels for a face, colored according to the near-
est mesh color: vertex color (blue), edge color (green), or face
color (red). Darker colors indicate that the color position also ap-
pears in the lower level.

For n ≥ 0, let R = 2n be the resolution of a face. This face will
have n+1 MIP-map levels, such that level-0 is the vertex color level
and level-n corresponds to the original resolution. Note that no face
colors appear in level-0 and level-1. Figure 9 shows the MIP-map
levels of a face with R = 8. Color positions that reappear in the
lower level are shaded darker. Starting from the highest resolution,
each face color in the lower level is set as the color value at the same
position of the higher level plus half of the sum of the surrounding
six colors, divided by 4 for normalization:

C′
ij =

1

4

C(2i)(2j) +
1

2


C(2i)(2j−1)

+ C(2i)(2j+1)

+ C(2i−1)(2j)

+ C(2i−1)(2j+1)

+ C(2i+1)(2j−1)

+ C(2i+1)(2j)


 . (5)

Similarly, an edge color of the lower level is computed from the
edge color at the higher level and six adjacent colors: two on the
edge and two from each adjacent face. Vertex colors are computed
from the vertex color in the higher level and the colors of the edges

4



Department of Computer Science, Texas A&M University, Technical Report tamu-cs-tr-2008-4-1

(of equal resolution) sharing the vertex. For a vertex v of valence
v, the new vertex color is given by

C′
v =

2

2 + v

(
Cv +

1

2

(
v∑

i=1

Cei

))
, (6)

where Cei is the nearest edge color at the higher level for adjacent
edge i.

When two neighboring faces have different resolutions, MIP-map
generation begins with the face with the higher resolution and the
colors on the other face are ignored until the two faces reach the
same level. Unlike MIP-maps of 2D textures, mesh colors are guar-
anteed to generate a continuous coloring function on each level.

One way to store the MIP-map data is to keep each level in separate
arrays similar to standard texture maps. However, when the face
resolutions are non-uniform, this would require keeping multiple
indices for each level of each vertex, edge, and face. We avoid this
by storing all layers within the same arrays, such that colors of a
vertex for different MIP-map levels appear one after the other from
level-0 to the highest level of the vertex. Edge and face colors are
stored similarly. In this form, we only keep a single color index,
which points to the beginning of the MIP-map data for the vertex,
edge, or face. Note that we do not need to store resolutions of edges
or vertices, we only need to know the resolution of the face to access
the correct colors from the arrays.

4.3 Anisotropic Filtering

As when using standard texture maps, anisotropic filtering is im-
portant when computing the color value corresponding to a pixel
area. One might expect anisotropic filtering to be more important
for mesh colors when the object has triangles with significantly dif-
ferent edge lengths. However, for filtering operations, screen space
lengths of edges are more important than the actual edge lengths.

Like standard anisotropic filtering, we combine multiple samples
from a single MIP-map level, based on screen-space derivatives of
the barycentric coordinates. The only difference is that all MIP-
map sample positions of mesh colors are kept within the sampled
face area. Because of this, we can only access the colors defined
in the MIP-map levels of the face and its edges and vertices. Thus,
anisotropic sampling across multiple faces would require finding
the neighboring faces from the mesh topology and executing the fil-
tering operations on these faces as well. This situation occurs when
a pixel on the screen is covered by multiple faces. In a high quality
renderer this should not be much of an issue, since the correct color
of the pixel is automatically retrieved by sub-pixel operations.

5 Implementations and Results

Mesh colors are very simple to implement, since no parameter
tweaking or precomputation is necessary. The only parameter is
the resolution of the faces. Due to this simplicity, the mesh color
structure can be easily used in current offline and real-time graphics
systems.

5.1 Painting Mesh Colors

3D painting systems are straightforward to implement with mesh
colors, in contrast to texturing methods that require mapping. No
mapping algorithms need to be implemented and the intrinsic one-
to-one correspondence property of mesh colors eliminates book-
keeping operations necessary to ensure consistency of duplicated
color data and visual continuity across mapping discontinuities.

Figure 10: Low resolution head model in our painting interface.

We have implemented such a 3D painting system. In addition to the
simplicity of its implementation, our painting system also provides
additional features inherently supported by mesh colors. Users can
begin painting on any 3D model without going through the trouble
of defining appropriate texture coordinates for their task or selecting
a final texture resolution. Exploiting the ability of mesh colors to
provide non-uniform face resolution, our painting interface allows
on-the-fly adjustment of local resolution on any part of the model.
A resolution change on one face has no effect on the other faces.

In our system, we separate mesh and color data by storing all mesh
colors in an array and keeping an index into this array for each ver-
tex, edge, and face. For edges and faces, these indices point to the
first color sample, and the rest of the samples are stored consecu-
tively in the array. This separation permits mesh editing operations
even after the object is painted. Note that mesh editing operations
that only change the vertex positions are inherently supported by
mesh colors, and we have this separation only for supporting topol-
ogy changes after painting. Each face of the mesh keeps its vertex,
edge, and face color indices, and this information is stored as per-
face data, which goes through the geometry pipeline. Therefore,
even if the vertex, edge or face indices change during mesh editing
operations, correct colors indices can be accessed. Using this ap-
proach, existing mesh editing tools need not be modified for mesh
color support. In addition to editing operations, high resolution geo-
metric detail can be added at render time via subdivision operations
or per-pixel displacement mapping.

Figure 10 shows the low resolution head model in Figure 1 in our
painting system. The model in the painting interface has far fewer
polygons than the final rendered model, which is subdivided after
the painting operation. Figure 11 shows an alien model painted
using our system. Note that the geometry detail does not correspond
to the detail in the texture.

5.2 Offline Rendering

Using mesh colors in offline rendering does not require any mod-
ifications to the rendering system other than a special shader. Our
offline shader uses the per-face data stored in the mesh structure
to access the colors used by the face being shaded. It retrieves the
barycentric coordinates from texture coordinates, and applies the
specified filtering operation as explained in Section 4.

Figure 12 provides a qualitative comparison of different filtering
techniques. Staircase artifacts of nearest-filtering can be hidden by
linear filtering. The under-sampling artifacts of linear filtering near
the silhouette of the object are resolved by MIP-map filtering, and
the excessive blurring of MIP-map filtering at the same areas is
overcome by anisotropic filtering.
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Nearest filtering Linear filtering MIP-map filtering Anisotropic filtering

Figure 12: Enlarged fragments of the sphere image on the left for qualitative comparison of different mesh color filtering techniques.

Figure 11: An alien model with over 200 thousand polygons
painted using mesh colors. Local texture detail does not correspond
to model detail. (Modeled and painted by Murat Afsar)

Figure 13 shows renderings of a lizard model, allowing direct qual-
itative comparison between the model rendered with texture map-
ping, using sub-pixel multi-sampling, and mesh colors (converted
from the texture map) rendered with anisotropic filtering. In spite
of the conversion, mesh colors maintain high quality. Furthermore,
mesh colors require fewer color samples (approximately 21% fewer
for the example) than the standard texture map, since samples are
not “wasted” on buffering around seams.

5.3 Real-time Rendering

For high quality real-time rendering, we store all mesh colors along
with the precomputed MIP-map values in a 2D texture. In fact, a 1D
texture would be more appropriate for mesh colors, but the current
graphics hardware limits 1D texture size to 4096 colors. We convert
mesh color indices of the vertices, edges, and faces to 2D texture
coordinates for this mesh color texture.

We wrote a custom fragment shader, which shares the same shader
code with the offline shader, for mesh color texture lookups. The
only difference from the offline version is the way we send per-face
data to the fragment shader. While drawing a face, we send texture
coordinates of its vertices, edges, and the face along with the native
resolution of the face, which limits the maximum MIP-map lookup
level. Since we cannot send per-face data, we send the same data
for all vertices of the face.

In Table 1, we compare our mesh colors method directly to hard-
ware optimized 2D textures. Based on the results shown, we see
that the performance of the mesh color shader is comparable to

2D texture map

mesh colors

2D texture (multi-sampled) mesh colors

Figure 13: A low resolution lizard model with normal maps. Im-
ages rendered with a 1024x1024 2D texture using sub-pixel sam-
pling, and with mesh colors (about 911x910 samples) are of equal
quality. Mesh colors were converted from the 2D texture image.
(Modeled and painted by Murat Afsar)

traditional (and heavily hardware-accelerated) 2D texture mapping,
both for high and low resolution models. As would be expected,
without direct hardware support, more complex filtering calcula-
tions do degrade performance.

In our experience with the mesh color fragment shader, we found
two areas where minor changes in future graphics hardware could
significantly improve the performance of mesh colors. First, arbi-
trarily large sizes for 1D textures would allow far simpler imple-
mentation. Second, the amount of information passed would be
greatly reduced by sending per-face data (instead of interpolated
per-vertex data), which permits 32-bit integers, directly to the frag-
ment shader without interpolation.

6 Discussion

Mesh colors can be considered as an extension of vertex colors, but
unlike standard vertex colors, mesh colors allow arbitrarily high
resolution textures. This is an extremely important feature, since
texture mapping is used not only to specify the colors on a 3D sur-
face, but also to provide the illusion of detail where geometric detail
is not sufficient.

Perhaps the most important advantage of mesh colors is that each
color sample is associated with a well-defined region of the surface.
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Table 1: Mesh colors vs. standard 2D texture performance
head-low head-high alien

face count 3,106 50,576 218,806
color count 530,498 530,498 9,303,241
2D texture 3938 fps 2597 fps 337 fps
Nearest 2567 fps 1147 fps 273 fps
Linear 2076 fps 862 fps 247 fps
MIP-map 991 fps 376 fps 180 fps
Anisotropic 452 fps 152 fps 109 fps

Configuration: 2.14 GHz Core 2 Duo with GeForce 8800 graphics card

This one-to-one correspondence between the texture space and the
model eliminates the extra memory (and resulting possible incon-
sistencies) required to hide discontinuities in most traditional maps.
Techniques that map 3D calculations directly to the surface, such
as radiosity [Goral et al. 1984], can attain high resolution results
without the need for tessellation. Furthermore, mesh colors should
easily support new image processing algorithms that are aware of
the 3D model geometry for texture synthesis and editing.

Color sample positions of mesh colors are determined by a simple
operation, which resembles a tessellation procedure that individu-
ally subdivides the faces. In fact, using vertex colors on a mesh
that is tessellated a number of times such that the geometric de-
tail matches the texture detail may give the same fine resolution as
mesh colors. However, vertex colors on this tesselated version of
the model cannot be used with MIP-mapping. More importantly,
the mesh color structure is not a real subdivision and it only stores
color information, where a tessellated model would also keep un-
necessary vertex positions and extra topology data. In other words,
a tesselated model would have 4nf faces, where f is the number
of faces before tessellation and n is the number of tessellation op-
erations. Therefore, after only two tessellation operations, about
94% of the faces would be wasted to this overhead. Thus, using
only vertex colors on a highly tesselated model severely degrades
the performance and cannot be used for real-time applications.

Even though mesh colors introduce a new paradigm of keeping
high resolution color data directly on 3D surfaces, the approach fits
within the current graphics production pipeline. Mesh colors can
be used with many different existing 3D data structures. Further-
more, by separating mesh and color data, existing mesh editing and
subdivision operations can be used without modification.

One limitation of using MIP-maps with mesh colors is that the res-
olution of the mesh color structure cannot be lower than that of
the vertex colors, whereas standard 2D textures can have MIP-map
levels defined down to a single pixel. For the following reasons,
we would argue that this is not a serious limitation of mesh colors
compared to traditional texture maps. First, most traditional one-
to-one mappings are only good for a few MIP-map levels, since the
mappings must be artificially padded to prevent color mixing across
discontinuities in the map, and this padding must be limited in ex-
tent. Second, MIP-map levels below vertex colors are only called
for when the size of a face projected into screen space is smaller
than a pixel. Offline rendering systems are very good at sub-pixel
operations and these possible inaccuracies due to the vertex color
limitation would not be perceivable in the final image. In real-time
systems, this condition means that the geometric resolution is al-
ready too high to be reconstructed correctly in screen space, which
presents problems beyond just texture filtering. Third, a common
source of such small polygons is subdivision, but the limiting fac-
tor of the mesh color structure is the polygons of the original (non-
subdivided) model. Thus, MIP-mapping actually can occur effec-
tively across multiple polygons that are derived from a single base

polygon.

One difficulty associated with mesh colors occurs when two neigh-
boring faces have different resolutions and detail is desired near
the edge of the higher resolution polygon. This is a general sam-
pling problem for all texturing and coloring methods. In the case
of mesh colors with non-uniform face resolutions, we assume that
the user would pick a resolution for the desired coloring task that
is high enough to ensure that there will not be any visible disconti-
nuities between faces with different resolutions after filtering. For-
mally speaking, no discontinuities appear on an edge connecting
two faces with different resolutions when the edge colors of the
higher resolution can be accurately represented by linearly interpo-
lating the edge colors of the lower resolution.

As long as anisotropic filtering is used, faces with significantly dif-
ferent edge lengths do not cause any visual artifacts. On the other
hand, since each face of a mesh color structure has a single reso-
lution, the resolution to achieve the desired color sample density
along a longer edge of the face may cause a shorter edge to have
more color samples than necessary. Therefore, over-sampling may
occur along short edges of elongated faces, possibly wasting mem-
ory.

Mesh colors are not a universal texturing solution. Periodic texture
tiling is not supported. Because our method guarantees continuity
across edges, it is not very suitable for applications where disconti-
nuities in the texture maps are desired. In such cases, objects need
to duplicate edges (i.e. topologically cut the model) where such dis-
continuities are desired.

7 Conclusion

We have introduced the concept of mesh colors, a simple structure
for keeping color (texture) information of arbitrary polygonal mod-
els. The approach presents an attractive alternative to traditional
texture mapping, eliminating the intrinsic problems created by the
need for a map from texture to model space. The color sample po-
sitions of mesh colors are directly defined on the 3D surface, so
there is no need for a mapping or parametrization. Because a di-
rect association between colors and geometry is used, mesh colors
guarantee a one-to-one correspondence between the color data and
the 3D surface without any discontinuities. Furthermore, the mesh
colors method allows local adjustment of texture resolution while
defining colors, and permits 3D model editing even after coloring.
Mesh colors can be used with MIP-maps for fast and high quality
texture filtering, and they are compatible with the current graph-
ics pipeline, achieving high real-time performance with low mem-
ory requirements on consumer graphics hardware. With all these
properties, mesh colors are the ideal choice for applications such
as texture painting and storing of precomputed data (e.g. ambient
occlusion) to be used in both real-time and offline environments.
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