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The coloring of three dimensional models using two or three dimensional
texture mapping has well known intrinsic problems, such as mapping dis-
continuities and limitations to model editing after coloring. Workarounds
for these problems often require adopting very complex approaches. Here
we propose a new technique, called mesh colors, for associating color data
directly with a polygonal mesh. The approach eliminates problems deriving
from using a map from texture space to model space. Mesh colors is an ex-
tension of vertex colors where, in addition to keeping color values on each
vertex, they are also kept on edges and faces. Like texture mapping, the
approach allows higher texture resolution than model resolution, but at the
same time it guarantees one-to-one correspondence between the model sur-
face and the color data, and eliminates discontinuities. We show that mesh
colors integrate well with the current graphics pipeline and can be used to
generate very high quality textures.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and tex-
ture

General Terms: Texture mapping

Additional Key Words and Phrases: Mesh colors, texture mapping, vertex
colors, 3D paint

1. INTRODUCTION

Since the early days of computer graphics, the mapping of textures
onto surfaces has been the preferred non-procedural way of provid-
ing surface detail without adding geometric detail. Notwithstanding
its popularity, the need to maintain a map from texture to geometric
space, as an intrinsic characteristic, makes texture mapping prone
to artifacts and complex to use in situations demanding high visual
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fidelity. Here, we propose an alternative approach to providing sur-
face detail that avoids these problems, since it eliminates the need
for a map. We call this approach mesh colors.

In the mesh colors framework, we associate colors and other
surface attributes directly with mesh geometry. This is done in
a way that integrates well with existing work-flows and graphics
pipelines. Figure 1 shows mesh colors used to texture a head model.
The example illustrates the high-detail that can be obtained, the use
of level-of-detail filtering to handle far and near views, and the inte-
gration of the approach with mesh subdivision approaches for final
rendering. Before explaining mesh colors, we offer a critique of the
various mapping approaches that are currently in use.

When 2D textures are used, the crucial step is defining a one-to-
one mapping (modulo any periodicity) from 2D image space to the
3D surface. Even though there are methods to automate this proce-
dure, in practice it usually requires manual intervention. In a pro-
duction pipeline, significant amounts of time are required from both
modelers and texture painters to create “good” maps. An inherent
problem of this mapping is that, for almost all 3D models, mapping
discontinuities are inevitable. These discontinuities are especially
visible in displacement mapping and in level-of-detail approaches
like MIP-mapping. Techniques that aim to hide these discontinu-
ities violate the one-to-one mapping property and often break down
beyond the first few detail levels.

Using 3D textures eliminates the 2D to 3D mapping procedure;
on the other hand, it creates other challenges to ensure one-to-one
mapping. In particular, models with sharp and thin edges or closely
adjacent surfaces may require very high texture resolution to avoid
color bleeding between separate components. These problems be-
come even more prominent across MIP-map levels. Even the slight-
est changes in the textured 3D model may require regeneration of
the map, which often degrades the texture quality.

Mesh colors, on the other hand, keep color information directly
associated with the 3D surface geometry. This eliminates major
problems inherent in 2D and 3D maps, while supporting most of
their strong points. The key characteristics of mesh colors are:

—The inherent parametrization of the model is used, so no explicit
mapping function needs to be defined,

—Without a mapping function, artificial seam discontinuities com-
mon to many other methods are eliminated,

—An intrinsic one-to-one correspondence is maintained between
the 3D surface and the color data,

—MIP-map filtering is supported for faces and their neighbors,
—Texture detail can be adjusted locally with no global effects,

—Many editing operations can be performed on models, after col-
oring, without resampling,

—The procedure can be implemented in the current real-time
graphics pipeline.
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Fig. 1. A head model textured using mesh colors. The image in the middle shows color samples on the low resolution mesh and the image on the right shows
the result after final filtering operations. The final model was obtained from a subdivided version of the lower resolution mesh on which the mesh colors were
defined (see Fig. 11). (Modelled and painted by Murat Afsar)

Since mesh colors can be implemented to satisfy all of the above
criteria with good performance and memory use, the approach is
well suited to several high-end applications. These include 3D tex-
ture painting, applying textures that have a strong 3D spatial com-
ponent (e.g. from procedural techniques), and storing precomputed
data, such as ambient occlusion, light maps, and global illumina-
tion, on a 3D surface.

In the next section we present an overview of related previous
work. We explain the details of the mesh color structure in Section 3
and filtering the mesh colors in Section 4. Our implementations
for both offline and real-time systems are described in Section 5,
along with results. We talk about the limitation of our approach in
Section 6 and we provide a discussion of mesh colors in Section 7,
before we conclude in Section 8.

2. RELATED WORK

Several techniques have been proposed for automatic planar
parametrization of 3D surfaces for mapping 2D textures [Ma and
Lin 1988; Bennis et al. 1991; Maillot et al. 1993; Zhang et al. 2005;
Lévy and Mallet 1998; Hunter and Cohen 2000; Piponi and Bor-
shukov 2000; Haker et al. 2000; Lévy et al. 2002; Sheffer and
Hart 2002; Zhang et al. 2005]. Some methods guarantee one-to-
one mapping [Hormann and Greiner 1999; Sheffer and de Sturler
2000; Sander et al. 2001; Floater 2003], and some permit user de-
fined constraints [Lévy 2001; Desbrun et al. 2002; Kraevoy et al.
2003]. The general problem with these methods comes from the
fact that arbitrary 3D surfaces cannot be mapped onto a plane with-
out discontinuities, which appear as interpolation artifacts (seams)
especially in MIP-map levels [Williams 1983]. These seams cannot
be avoided without duplicating colors on region borders [Purnomo
et al. 2004; Carr et al. 2006], which breaks the one-to-one map-
ping property. Furthermore, even though there are methods that al-
locate more resolution to regions with finer texture detail [Sloan
et al. 1998; Balmelli et al. 2002; Sander et al. 2002] and oth-
ers that allow dynamic reparametrization as texture detail changes
[Carr and Hart 2004; Igarashi and Cosgrove 2001], texture de-
tail cannot be adjusted locally without changing the resolution of
other parts of the surface. Moreover, these methods are very sensi-
tive to underlying 3D model topology, and arbitrary model editing
with face add/delete operations often requires regeneration of the
parametrization and resampling of color values. Floater and Hor-
mann [2005] and Sheffer et. al. [2006] provide detailed overviews.
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Problems associated with parametrization can be avoided by
eliminating the mapping and using a 3D structure to store the color
data. Benson and Davis [2002] and DeBry et. al. [2002] suggested
using an octree structure, which reduces the extreme memory re-
quirement of 3D textures and permits different texture resolutions
over different parts of the 3D model. However, depending on the
shape of the 3D model, octree textures may require too many lev-
els to avoid color bleeding across close surfaces, which may then
still appear in MIP-map levels. Furthermore, real-time implemen-
tations of octree textures [Kniss et al. 2005; Lefebvre et al. 2005a;
Lefohn et al. 2006] require an arbitrary number of dependent tex-
ture lookups that severely reduce the performance. An alternative
structure is proposed by Lefebvre and Hoppe [2006], which uses
a hash function to efficiently store color data. This structure re-
quires only two texture lookups, but it does not allow non-uniform
resolution over the 3D surface. In general, 3D data structures are
very sensitive to underlying model geometry and even the slightest
change may require resampling the color data. Therefore, even sub-
division operations, which are often applied right before rendering,
are not supported by these structures, and texture colors have to be
assigned to the finest resolution of the 3D model.

Recently, many researchers have proposed hybrid methods to ad-
dress some of these problems. Tarini et. al. [2004] proposed poly-
cube maps, which define colors on the faces of multiple cubes
stacked in a way to resemble the general shape of the 3D model,
to avoid mapping discontinuities. Polycube maps are not gener-
alized enough to represent any model, and require long fragment
programs for real-time implementation. They also have a fixed res-
olution over the surface and require significant manual intervention
for parametrization. Ray et. al. [2006] used a technique that auto-
matically generates a similar structure for global parametrization
of 3D models. Lefebvre and Dachsbacher [2007] used tile trees to
store colors on square texture fragments that are kept in the leaf
nodes of an octree structure. By limiting the octree subdivision
level, they reduced the memory requirements of octree textures and
improved their performance, but they share the other limitations of
octree textures. A different approach proposed by Lefebvre et. al.
[2005b] uses texture sprites: multiple small 2D texture elements
placed over the 3D surface. This method is useful for creating high
resolution textures from repetitive small fragments, but not suitable
for applications that require one-to-one mapping. Recently, Burley
and Lacewell [Burley and Lacewell 2008] used a per-face texturing
method with a face adjacency map to achieve automatic parameter-



ization with local texture detail adjustment ability. However, their
method is limited to quadrilaterals, it does not guarantee continu-
ity in magnification filtering, and it cannot handle extreme vertices
correctly. Moreover, the method is designed for offline rendering in
RenderMan, and possible extensions for other rendering systems or
real-time implementations are not discussed.

Carr and Hart [2002] proposed Meshed Atlases as a means for
texturing triangular models. Although their method is motivated by
procedural solid texturing, the method more generally presents a
way of hierarchically decomposing the model and packing the asso-
ciated charts into a quadtree-based atlas. Their approach shares sev-
eral general qualities with our method: texture samples are stored
per triangle in the same patterns as mesh colors samples, a one-to-
one mapping between the texture and world coordinates is main-
tained, triangles with differing texture resolutions can be handled,
and MIP-maps can be generated. However, there are also important
differences in the resulting utility of the methods. Their method is
poorly suited to interactive adjustments in texture resolutions, since
they must regenerate the mapping to handle different triangle reso-
lutions. There is not a guarantee of continuity across edges. Perhaps
more importantly, like many other 2D texturing approaches they do
not support linear filtering within MIP-map levels, which results in
seam artifacts. In contrast, our approach easily supports changes in
texture resolution, and permits linear interpolation with MIP-maps.

Finally, Zhang et al. [2005] proposed a per-triangle mapping ap-
proach to eliminate the surface parameterization requirement for
3D painting. While the placement of the color positions they use is
similar to ours, they did not look into texture filtering issues, and
they proposed duplicating colors along all triangle edges to achieve
texture continuity.

3. MESH COLOR STRUCTURE

We describe the mesh color structure assuming the underlying 3D
model data is a triangular mesh. However, it is possible to extend
the mesh colors approach to more general polygonal models, sub-
division surfaces, NURBS, or other parameterized surfaces, as is
discussed briefly at the end of this section.

3.1 Mesh Colors on Triangular Faces

The mesh colors method is basically an extension of vertex col-
ors. As in standard vertex colors, each vertex is associated with
a color sample. In addition, the mesh color structure has evenly
spaced color samples defined along the edges and over the faces.
The number of color samples on a face or an edge depends on the
desired resolution in the local area on the mesh.

The lowest resolution mesh color map is a standard vertex color
map as shown in Figure 2a. In this case, no color samples are de-
fined on the edges or faces. When we move to one higher resolu-
tion, we also define a single color sample in the middle of each
edge as in Figure 2b. Color samples on faces appear only in higher
resolutions (Figure 2c-e). As the resolution increases, we add more
color samples on edges and faces. If R is the resolution, the num-
bers of color samples on each vertex, edge, and face are given by

colors per vertex = 1, (D

colors peredge = R—1, 2)
-1 -2

colors per face = % . 3)

As will be discussed later, for practical implementation it is usually
best to use R values that are powers of 2.
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Fig. 2. Color positions on vertices (blue), edges (green), and face (red) for
different resolutions (R).

Note that color samples on edges and faces are evenly spaced in
barycentric coordinates. Therefore, the 3D surface position of any
color sample can be computed using barycentric coordinates based
on the index of the color sample. For a face with resolution R, the
positions P;; in barycentric coordinates of color sample Cj; is

i i

Po=[mw1-% |

where ¢ and j are integers such that 0 <7 < Rand0 < j < R— .

Note that color samples Cyg, Cro, and Cyr are on the vertices

(vertex colors); color samples Coy, Cro, and C(p—p) for 0 < k <

R are on the edges (edge colors); and the rest of the color samples

are on the face (face colors). This structure eliminates the need for
keeping 3D coordinates and topology data for color samples.

Similarly, since color sample positions are based on their indices,
for any given point on the face the indices of the nearest color sam-
ples can be computed from the barycentric coordinates of the point.
The details of this procedure are given in Section 4.

Depending on the requirements of the implementation, mesh
color samples can be embedded in the mesh data, such that each
vertex, edge, and face would keep its own color samples. However,
for many applications we want mesh colors to be usable in the cur-
rent graphics pipeline. To do this, we need to decouple mesh and
color data, similar to standard texture maps. This can be easily ac-
complished by storing all mesh colors in an array and keeping an
index to the first color sample for each vertex, edge, and face. We
explain the details of this implementation in Section 5.

“

3.2 Non-uniform Face Resolutions

One of the most important features of the mesh color structure is
that it allows different faces of a model to have different resolu-
tions. Using this property, color sample density can be concentrated
on areas with high detail, achieving maximum texture detail with
minimal memory consumption. Figure 3 shows an example of color
sample distribution over faces with different resolutions.

Fig. 3. Faces of a mesh with different resolutions.

In the mesh color structure, each face keeps its resolution value,
which defines the number of color samples on the face. The color
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samples that belong to the face (i.e. face colors) are not shared
among neighboring faces, but vertex colors and edge colors are of-
ten used by multiple faces. Sharing vertex colors among a number
of faces with different resolutions is easy, because we only keep a
single color value per vertex regardless of the resolution. However,
if two faces sharing a common edge have different resolutions, the
number of color values and positions of these color values on the
edge differ depending on which resolution we pick for the edge.

When adjacent triangles have different resolution, we need to
maintain color continuity across the edge. This can be ensured by
ensuring that the color of the edge, from each triangle’s perspec-
tive, is the same. Except for degenerate cases, this requires the R
value of one triangle to be an exact multiple of the R value of the
other triangle. We typically ensure this by using R values that are
powers of two, which also works well for MIP-mapping (discussed
below). No discontinuities appear on an edge connecting two faces
with different resolutions when the edge colors of the higher res-
olution can be accurately represented by linearly interpolating the
edge colors of the lower resolution.

3.3 Editing Mesh Colored Geometry

A fundamental feature of the mesh color structure is that it does
not depend on the geometry of the object. Therefore, changing the
positions of the vertices has no effect on the mesh color structure,
since the colors are carried around with the deforming geometry.

On the other hand, mesh colors strictly depend on the topol-
ogy. When operations like remeshing, which generates a whole new
topology, is applied to a mesh colored surface, the mesh color struc-
ture needs to be regenerated by resampling the previous mesh col-
ors. Note that this limitation is also shared by 2D texture mapping
methods. Edge flips may require local resampling.

face delete extrude

original mesh

Fig. 4. Mesh colors under mesh editing operations.

Mesh colors support most other mesh editing operations without
the need for resampling. Inserting or deleting faces can be trivially
handled by creating or deleting extra color samples as needed. Ex-
trusion operations are supported in a similar fashion by duplicating
color samples along extruded boundaries. More color samples can
always be added/removed as desired. Since color samples are di-
rectly associated with object primitives, none of these operations
has a global effect.

Operations that divide faces, such as certain subdivisions, can be
handled without resampling, if mesh and color data are decoupled.
Effectively, a one-to-one mapping between the old and new faces
is created. In this case, the new faces share the same color index
with the parent face, the divided edges keep their previous indices,
and new edges or vertices would not have any indices assigned.
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Fig. 5. Barycentric coordinates as texture coordinates before (left) and af-
ter (right) a face subdivision operation.

Moreover, barycentric coordinates should be redefined to match the
ones before the subdivision (Figure 5). This can be done by keeping
barycentric coordinates as texture coordinates.

3.4 Non-triangular Meshes

Mesh colors can be extended to support non-triangle meshes. The
simplest approach is to simply triangulate the polygons (Figure 6a);
this was done to handle the quadrilaterals in Figure 1. An alternate
approach for quadrilaterals would be to define an indexing scheme
as shown in Figure 6b. Instead of positioning samples based on
barycentric coordinates, bilinear interpolation could be used.

Fig. 6. Mesh colors on non-triangular geometry. (a) Representing poly-
gons with triangles. (b) Defining mesh colors on quadrilaterals.

The mesh color structure on NURBS and parametric surfaces
could be handled similar to quadrilaterals. Note that this procedure
is different from assigning a separate 2D image to each patch; since
the colors along connections of neighboring patches are shared, we
guarantee continuity across edges.

Subdivision surfaces can be handled similar to polygonal
meshes; resampling the mesh color map for each level is not re-
quired as long as the subdivision operation is based on face division
rather than a complete remeshing. Note that the Catmull-Clark sub-
division scheme and its extensions, which are the most commonly
used subdivision techniques, satisfy this condition.

4. FILTERING

For evaluating the color value at any point on the surface or an area
that corresponds to a screen pixel, we need a reconstruction filter.
In this section we describe how standard texture filtering operations
can be used with mesh colors.

4.1 Two-dimensional Filtering

The filtering operation begins by finding the closest color sam-
ples to a given point on the surface. Since locations of the color
samples are based on their indices, for any given point on a face
the indices of the nearest color values can be computed from the
barycentric coordinate P of the point by multiplying it with the
face resolution R. To find the nearest color samples and the weights
with which to linearly combine them, we first compute two values:



the integer portion B = [¢, 5, k] = | RP], and the fractional part
w = [w;,w;,w,] =RP —B.

@) 0)

Fig. 7. Nearest color values of the red point.

There are three cases. If w = 0, we are at the sample point
B (and thus that is the color). If w; + w; + wj, = 1, then the
nearest color values for the point are C;1);, Ci(j+1), and Cj;
respectively as in Figure 7a. The weights for those color values
are w. In the third case, if w, + w, + w, = 2, the nearest color
values are C;(j41), C(i4+1);> and C(i41)(j+1); the weights are w' =
[1,1,1] — w as in Figure 7b.

(@ (b)

Fig. 8. (a) Nearest and (b) linear filtering.

If we directly use the color of the sample with the highest weight
(nearest color filtering), face colors form a hexagonal pattern as in
Figure 8a. By blending the colors using the weights we achieve a
linear filtering (Figure 8b).

4.2 MIP-map Filtering

For integrating the filter over an area, we use MIP-mapping just as
in standard texture maps. The only difference is the way that the
MIP-map is generated and stored. Since we allow faces to have dif-
ferent resolutions, we generate a separate MIP-map for each face,
edge, and vertex (the resolution of an edge or a vertex is the finest
resolution of its adjacent faces). Note that higher levels of the MIP-
maps for the edges and vertices incorporate color data from all ad-
jacent triangles to that edge/vertex.

AbAA

level-3 level-2 level-1 level-0

Fig. 9. MIP-map levels for a face, colored according to the nearest mesh
color: vertex color (blue), edge color (green), or face color (red). Darker
colors indicate that the color position also appears in the lower level.
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For n > 0, let R = 2™ be the resolution of a face. This face will
have n+1 MIP-map levels, such that level-0 is the vertex color level
and level-n corresponds to the original resolution. Note that no face
colors appear in level-0 and level-1. Figure 9 shows the MIP-map
levels of a face with R = 8. Color positions that reappear in the
lower level are shaded darker. Starting from the highest resolution,
each face color in the lower level is set as the color value at the same
position of the higher level plus half of the sum of the surrounding
six colors, divided by 4 for normalization:

C2i)(2j-1)
. . + g(2i><2j+1>
+ Cl2i-1)(25)
2| Cranan + = J .6
4 (20)(29) + 2 | + Ci-1)@2i+1) ®)
+ Critny(2j-1)
+ Cirn2))

! f—
i =

Similarly, an edge color of the lower level is computed from the
edge color at the higher level and six adjacent colors: two on the
edge and two from each adjacent face. Vertex colors are computed
from the vertex color in the higher level and the colors of the edges
(of equal resolution) sharing the vertex. For a vertex v of valence
v, the new vertex color is given by

,_ 2 1[5
Oy =5 <Cv+2 (Zlce>> , (6)

where Ce, is the nearest edge color at the higher level for adjacent
edge 7.

When two neighboring faces have different resolutions, MIP-
map generation begins with the face with the higher resolution and
the colors on the other face are ignored until the two faces reach the
same level. Unlike MIP-maps of 2D textures, mesh colors are guar-
anteed to generate a continuous coloring function on each level.

One way to store the MIP-map data is to keep each level in sep-
arate arrays similar to standard texture maps. However, when the
face resolutions are non-uniform, this would require keeping mul-
tiple indices for each level of each vertex, edge, and face. We avoid
this by storing all layers within the same arrays, such that colors
of a vertex for different MIP-map levels appear one after the other
from level-0 to the highest level of the vertex. Edge and face colors
are stored similarly. In this form, we only keep a single color index,
which points to the beginning of the MIP-map data for the vertex,
edge, or face.

4.3 Anisotropic Filtering

As when using standard texture maps, anisotropic filtering is im-
portant when computing the color value corresponding to a pixel
area. One might expect anisotropic filtering to be more important
for mesh colors when the object has triangles with significantly dif-
ferent edge lengths. However, for filtering operations, screen space
lengths of edges are more important than the actual edge lengths.
Like standard anisotropic filtering, we combine multiple samples
from a single MIP-map level, based on screen-space derivatives of
the barycentric coordinates. The only difference is that all MIP-
map sample positions of mesh colors are kept within the sampled
face area. Because of this, we can only access the colors defined
in the MIP-map levels of the face and its edges and vertices. Thus,
anisotropic sampling across multiple faces would require finding
the neighboring faces from the mesh topology and executing the fil-
tering operations on these faces as well. This situation occurs when
a pixel on the screen is covered by multiple faces. In a high quality
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renderer this should not be much of an issue, since the correct color
of the pixel is automatically retrieved by sub-pixel operations.

5. IMPLEMENTATIONS AND RESULTS

The mesh color implementation requires no parameter tweaking or
precomputation, since the only parameter is the resolution of the
faces. Due to this simplicity, the mesh color structure can be easily
used in current offline and real-time graphics systems.

5.1 Painting Mesh Colors

3D painting systems are straightforward to implement with mesh
colors, in contrast to texturing methods that require mapping. No
mapping algorithms need to be implemented and the intrinsic one-
to-one correspondence property of mesh colors eliminates book-
keeping operations necessary to ensure consistency of duplicated
color data and visual continuity across mapping discontinuities.

As a proof of concept, we have implemented such a 3D paint-
ing system. Our painting system provides additional features inher-
ently supported by mesh colors. Users can begin painting on any
3D model without going through the trouble of defining appropriate
texture coordinates for their task or selecting a final texture resolu-
tion. Exploiting the ability of mesh colors to provide non-uniform
face resolution, our painting interface allows on-the-fly adjustment
of local resolution on any part of the model. A resolution change
on one face has no effect on the other faces.

color data => [TT]T]]]

[TTTITTITTIT I

Fig. 10. Separation of color and model data. Each vertex, edge, and face
keep an integer index to a color array.

We separate mesh and color data by storing all mesh colors in
an array and keeping an index into this array for each vertex, edge,
and face (Figure 10). For edges and faces, these indices point to the
first color sample, and the rest of the samples are stored consecu-
tively in the array. This separation permits mesh editing operations
even after the object is painted. Note that mesh editing operations
that only change the vertex positions are inherently supported by
mesh colors, and we have this separation only for supporting topol-
ogy changes after painting. Each face of the mesh keeps its vertex,
edge, and face color indices, and this information is stored as per-
face data, which goes through the geometry pipeline. Therefore,
even if the vertex, edge or face indices change during mesh editing
operations, correct colors indices can be accessed. Using this ap-
proach, existing mesh editing tools need not be modified for mesh
color support. In addition to editing operations, high resolution geo-
metric detail can be added at render time via subdivision operations
or per-pixel displacement mapping.

Figure 11 shows the low resolution head model in Figure 1 in our
painting system. The model in the painting interface has far fewer
polygons than the final rendered model, which is subdivided after
the painting operation. Figure 12 shows an alien model painted us-
ing our system.
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Fig. 11. Low resolution head model in our painting interface. The model
was subdivided and rendered to produce the version shown in Fig. 1

5.2 Offline Rendering

Using mesh colors in offline rendering does not require any mod-
ifications to the rendering system other than a special shader. Our
offline shader uses the per-face data stored in the mesh structure
to access the colors used by the face being shaded. It retrieves the
barycentric coordinates from texture coordinates, and applies the
specified filtering operation as explained in Section 4.

As in all high quality offline renderers, our offline renderer prop-
erly handles antialiasing using sub-pixel operations. These opera-
tions identify what portion of a pixel is covered by a corresponding
face, and help accurately compute the pixel color when multiple
faces partially cover a pixel. The shader is called only once for
each one of these faces, and the final pixel color is computed by
blending the shader outputs based on the coverage of each face.
Note that these faces do not need to be adjacent on the model sur-
face, nor do they need to belong to the same object. Since our mesh
colors shader computes the color based on the information avail-
able only on a single face, using sub-pixel operations is important

Fig. 12.  An alien model with over 200 thousand polygons painted using
mesh colors. (Modeled and painted by Murat Afsar)
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Nearest filtering

Linear filtering

MIP-map filtering

Anisotropic filtering

Fig. 13. Enlarged fragments of the sphere image on the left for qualitative comparison of different mesh color filtering techniques. The default sub-pixel
operations of the offline renderer accurately combine colors of multiple faces that fall onto the same pixel.

for incorporating color information of all faces covering a pixel and
accurately computing the final color.

Figure 13 provides a qualitative comparison of different filtering
techniques. Staircase artifacts of nearest-filtering can be hidden by
linear filtering. The under-sampling artifacts of linear filtering near
the silhouette of the object are resolved by MIP-map filtering, and
the excessive blurring of MIP-map filtering at the same areas is
overcome by anisotropic filtering.

2D texture map

mesh colors

mesh colors

2D texture (multi-sampled)

Fig. 14. A low resolution lizard model with normal maps. Images ren-
dered with a 1024x1024 2D texture using sub-pixel operations, and with
mesh colors (about 911x910 samples) are of equal quality. Mesh colors
were converted from the 2D texture image. (Modeled and painted by Murat
Afsar)

Figure 14 shows renderings of a lizard model, allowing direct
qualitative comparison between the model rendered with texture
mapping, using sub-pixel operations, and mesh colors (converted
from the texture map) rendered with anisotropic filtering. In spite
of the conversion, mesh colors maintain high quality. Furthermore,
for this lizard model we achieved comparable visual quality with
mesh colors using fewer color samples (approximately 21% fewer)
than the standard texture map, since samples are not “wasted” on
buffering around seams. Note that with standard texture maps if

buffering around seams are removed and a tighter packing of tex-
ture coordinates can be found (such as in texture atlases), a standard
texture map may use fewer color samples than mesh colors.

5.3 Real-time Rendering

For high quality real-time rendering, we store all mesh colors along
with the precomputed MIP-map values in a 2D texture. In fact, a 1D
texture would be more appropriate for mesh colors, but the current
graphics hardware limits 1D texture size to 4096 colors. We convert
mesh color indices of the vertices, edges, and faces to 2D texture
coordinates for this mesh color texture.

We wrote a custom fragment shader, which shares the same
shader code with the offline shader, for mesh color texture lookups.
The only difference from the offline version is the way we send per-
face data to the fragment shader. While drawing a face, we send
texture coordinates of its vertices, edges, and the face along with
the native resolution of the face, which limits the maximum MIP-
map lookup level. Since we cannot send per-face data, we send the
same data for all vertices of the face.

In Table I, we compare our mesh colors method directly to hard-
ware optimized 2D textures. Based on the results shown, we see
that the performance of the mesh color shader is comparable to tra-
ditional (and heavily hardware-accelerated) 2D texture mapping,
both for high and low resolution models. As would be expected,
without direct hardware support, more complex filtering calcula-
tions do degrade performance.

Table I. Mesh colors vs. standard 2D texture performance

head-low head-high alien
face count 3,106 50,576 218,806
color count 530,498 530,498 9,303,241
2D texture 3938 fps 2597 fps 337 fps
Nearest 2567 fps 1147 fps 273 fps
Linear 2076 fps 862 fps 247 fps
MIP-map 991 fps 376 fps 180 fps
Anisotropic 452 fps 152 fps 109 fps

Configuration: 2.14 GHz Core 2 Duo with GeForce 8800 graphics card

It should be noted that the Mesh Colors approach is not as cache-
friendly as standard 2D textures in general. The color information
for a face and its edges and vertices is not usually contiguous,
and there is no restriction to even store such information nearby
in memory. Furthermore, since all MIP-map levels of a face, edge,
and vertex are stored together, even when only higher MIP-map
levels are needed the cache use of mesh colors does not improve.
While we have not observed such issues in our limited testing, we
believe this could become significant in certain cases.
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//)

Nearest filtering

Linear filtering

MIP-map filtering

Anisotropic filtering

Fig. 15. The same comparison in Figure 13, but this time sub-pixel operations and reconstruction filtering are disabled. In this case, the color of a pixel is
computed on a single face only, regardless of the number of faces that fall onto the same pixel.

In our experience with the mesh color fragment shader, we found
two areas where minor changes in future graphics hardware could
significantly improve the performance of mesh colors. First, arbi-
trarily large sizes for 1D textures would allow far simpler imple-
mentation. Second, the amount of information passed would be
greatly reduced by sending per-face data (instead of interpolated
per-vertex data), which permits 32-bit integers, directly to the frag-
ment shader without interpolation.

Sub-pixel operations are not as common with real-time render-
ing unless real-time anti-aliasing is turned on. In this case the fi-
nal color of a pixel is computed only on a single face. Figure 15
provides a qualitative comparison of different filtering techniques
in the absence of anti-aliasing and sub-pixel operations. Multiple
faces fall onto the same pixel, especially near the edges of the ball
silhouette, but the pixel color is computed using only one of them.
Furthermore, since the sphere object has a high tessellation, similar
issues also arise elsewhere on the ball image (i.e. multiple faces fall
onto the same pixel). As can be seen from this figure, mesh colors
are able to produce reasonable results using only a single face.

6. LIMITATIONS

Mesh colors have two major limitations: MIP-map levels cannot be
defined beyond vertex colors, and over-sampling may occur along
short edges of elongated triangles. In this section we discuss these
issues and their significance in practice.

6.1 Vertex Color Limit

One limitation of using MIP-maps with mesh colors is that the res-
olution of the mesh color structure cannot be lower than that of the
vertex colors, whereas standard 2D textures can have MIP-map lev-
els defined down to a single pixel. However, most traditional one-
to-one mappings are only good for a few MIP-map levels, since
the mappings must be artificially padded to prevent color mixing
across discontinuities in the map, and this padding must be limited
in extent.

Moreover, MIP-map levels below vertex colors are only called
for when the size of a face projected into screen space is smaller
than a pixel. Offline rendering systems are very good at sub-pixel
operations and these possible inaccuracies due to the vertex color
limitation would not be perceivable in the final image. In real-time
systems that do not support sub-pixel filtering, this condition means
that the geometric resolution is already too high to be reconstructed
correctly in screen space, which presents problems beyond just tex-
ture filtering.

When the object is far from the camera, many triangles may fall
onto the same pixel. If sub-pixel operations are not used, only one
of these faces would affect the pixel color and the other faces would
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be occluded by this face. Therefore, the final color of the pixel
would be computed on a single face rather than all the faces that
fall onto the pixel. In this case, the color computed on a single face
may not correctly represent the combined color of all the faces,
since the MIP-map levels of mesh colors are limited by vertex col-
ors. Instead, it would represent only color of that face and those
sharing a vertex. If this model has high frequency color changes,
this may cause flickering. On the other hand, even in this case the
color of a pixel is guaranteed to come from one of the correspond-
ing faces, while most traditional methods would blend colors from
arbitrary places on the texture once they reach the limit of their
MIP-map levels.

Figures 16 and 17 compare filtering results of mesh colors and
standard 2D textures with different filtering modes on a plane with
a checker board texture. The plane model has 20000 triangle faces
and toward the horizon many faces fall onto a single pixel. As
can be seen from these images, nearest filtering with mesh col-
ors and 2D textures produce visually identical results. However,
when anisotropic filtering is used without sub-pixel operations (i.e.
no antialiasing), 2D textures produce better filtering, because mesh
colors cannot filter across faces. On the other hand, the results of
mesh colors and 2D textures are visually identical, when sub-pixel
operations are applied. Note that mesh colors need sub-pixel filter-
ing only when the face sizes are smaller than a pixel.

A common source of small polygons is subdivision operations,
but the limiting factor of the mesh color structure is the polygons of
the original (non-subdivided) model. Thus, MIP-mapping actually
can occur effectively across multiple polygons that are derived from
a single base polygon.

In summary, problems due to these MIP-map limitations are
likely to occur for Mesh Colors, and be handled better by standard
texture maps when:

—Multiple triangles are contained in a single pixel, and

—those triangles did not arise from subdivision of a base triangle,
and

—a single texture is used to cover those triangles, without seams or
other atlasing artifacts, and

—anisotropic MIP-map filtering is enabled, and

—sub-pixel operations are not used, or is limited.

Such cases do arise regularly in practice; terrain rendering is one
example. However, for a variety of cases, including those for which
Mesh Colors was conceived (e.g. texturing a 3D model for which
a mapping is difficult to define), the MIP-mapping limitations of
Mesh Colors are unlikely to be significantly worse (and may often
be better) than those of standard texture mapping.



Mesh Colors . 9

Mesh colors with nearest filtering

2D texture with nearest filtering

Mesh colors with anisotropic filtering 2D texture with anisotropic filtering
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Fig. 16. The effect of sub-pixel operations on mesh colors and comparison to a 2D texture reference. The plane model has 20000 triangle faces, each of
which are colored either black or white. The left parts of the planes are textured with mesh colors, while the right side uses a tiling 2D texture image. Each face
of this plane model corresponds to a black or white square. When multiple faces fall onto the same pixel, the mesh colors method needs sub-pixel operations

for correct filtering. Note that mesh colors need sub-pixel operations only when faces are smaller than a pixel.

Mesh colors with nearest filtering
= =

e = =
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==

2D texture with nearest filtering

Fig. 17. The same filtering test as Figure 16 with checker board pattern shifted such that it does not align with the faces of the plane.

6.2 Elongated Triangles

As long as anisotropic filtering is used, faces with significantly dif-
ferent edge lengths do not cause any visual artifacts. On the other
hand, since each face of a mesh color structure has a single reso-
lution, the resolution to achieve the desired color sample density
along a longer edge of the face may cause a shorter edge to have
more color samples than necessary. Therefore, over-sampling may
occur along short edges of elongated faces, possibly wasting mem-
ory.

Figure 18a shows a long cylinder with elongated triangles on the
sides, which is a worst case example for mesh colors. In this case
short edges of these triangles would be over-sampled to achieve the

Fig. 18. (a) Sides of a long cylinder may have several elongated triangles
that could waste memory. (b) A general solution is to divide the elongated
faces. (c) Alternatively, mesh colors can be defined on quadrilaterals with
different vertical and horizontal face resolutions.

desired resolution along the long edges. If one wishes to use mesh
colors on such a model, a complete remeshing can be necessary to
avoid elongated triangles. While a general solution for an arbitrary
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mesh is complicated, in this particular example introducing inter-
mediate rings as in Figure 18b would produce better distribution
of color samples over the surface. Alternatively, mesh colors can
be defined directly on quadrilateral faces (Figure 18c), which can
have two different resolutions along long and short edges, thereby
eliminating the wasted memory on elongated quadrilaterals (note
that mesh colors on quadrilaterals can still experience similar prob-
lems when 3 edges of a quadrilateral are significantly longer than
the fourth one).

Fig. 19. Elongated triangles of the lizard model in Figure 14.

Note that mesh colors are designed for models that do not have
an obvious mapping from a 2D texture space. For such models, it
is a common practice to avoid extremely elongated triangles, since
they cause problems in animation as well as subdivision operations.
In that sense, the lizard model in Figure 19 is a more realistic ex-
ample to evaluate the negative effect of elongated triangles. In this
example, even though the model contains many highly elongated
triangles, mesh colors can achieve comparable texture quality with
less memory use despite the wasted memory for over-sampling on
elongated triangles (Figure 14).

7. DISCUSSION

Mesh colors can be considered as an extension of vertex colors, but
unlike standard vertex colors, mesh colors allow arbitrarily high
resolution textures. This is an extremely important feature, since
texture mapping is used not only to specify the colors on a 3D sur-
face, but also to provide the illusion of detail where geometric detail
is not sufficient.

Perhaps the most important advantage of mesh colors is that each
color sample is associated with a well-defined region of the surface.
This one-to-one correspondence between the texture space and the
model eliminates the extra memory (and resulting possible incon-
sistencies) required to hide discontinuities in most traditional maps.
Techniques that map 3D calculations directly to the surface, such
as radiosity [Goral et al. 1984], can attain high resolution results
without the need for tessellation. Furthermore, mesh colors should
easily support new image processing algorithms that are aware of
the 3D model geometry for texture synthesis and editing.

Color sample positions of mesh colors are determined by a sim-
ple operation, which resembles a tessellation procedure that indi-
vidually subdivides the faces. In fact, using vertex colors on a mesh
that is tessellated a number of times such that the geometric de-
tail matches the texture detail may give the same fine resolution as
mesh colors. However, vertex colors on this tesselated version of
the model cannot be used with MIP-mapping. More importantly,
the mesh color structure is not a real subdivision and it only stores
color information, where a tessellated model would also keep un-
necessary vertex positions and extra topology data. In other words,
a tesselated model would have 4™ f faces, where f is the number of
faces before tessellation and n is the number of tessellation opera-
tions. Therefore, after only two tessellation operations, about 94%
of the faces would be wasted to this overhead. Thus, using only
vertex colors on a highly tesselated model severely degrades the
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performance and cannot be used for real-time applications. On the
other hand, mesh colors only store the color information without
changing the mesh complexity.

Even though mesh colors introduces a new paradigm of keeping
high resolution color data directly on 3D surfaces, the approach fits
within the current graphics production pipeline. Mesh colors can
be used with many different existing 3D data structures. Further-
more, by separating mesh and color data, existing mesh editing and
subdivision operations can be used without modification.

One difficulty associated with mesh colors occurs when two
neighboring faces have different resolutions and detail is desired
near the edge of the higher resolution polygon. This is a general
sampling problem for all texturing and coloring methods. As stated
earlier, continuity is ensured by assuming that the higher resolution
edge colors are linearly interpolated from the lower resolution edge
colors (and the higher resolution is a multiple of the lower one). If
one wishes to change colors actually on (not just near) an edge in
the higher resolution triangle, this will require that the lower reso-
lution triangle have its own resolution increased to match.

Mesh colors are not a universal texturing solution, and there will
be instances where other texturing methods are better-suited. Peri-
odic texture tiling is not supported. There is also no benefit to Mesh
Colors for planar surfaces, or other surfaces (e.g. cylinders) where
there is a very clear mapping available from texture space to world
space. Because our method guarantees continuity across edges, it
is not very suitable for applications where discontinuities in the
texture maps are desired. In such cases, objects need to duplicate
edges (i.e. topologically cut the model) where such discontinuities
are desired.

8. CONCLUSION

We have introduced the concept of mesh colors, a simple structure
for keeping color (texture) information of arbitrary polygonal mod-
els. The approach presents an attractive alternative to traditional
texture mapping, eliminating the intrinsic problems created by the
need for a map from texture to model space. The color sample posi-
tions of mesh colors are directly defined on the 3D surface, so there
is no need for an explicit mapping or parametrization. Because a di-
rect association between colors and geometry is used, mesh colors
guarantee a one-to-one correspondence between the color data and
the 3D surface without any discontinuities. Furthermore, the mesh
colors method allows local adjustment of texture resolution while
defining colors, and permits several editing operations on 3D mod-
els even after coloring. Mesh colors can be used with MIP-maps
defined on each face for fast and high quality texture filtering, and
they are compatible with the current graphics pipeline, achieving
high real-time performance with low memory requirements on con-
sumer graphics hardware. With all of these properties, mesh colors
may be an ideal choice for applications such as texture painting and
storing of precomputed data (e.g. ambient occlusion) to be used in
both real-time and offline environments.
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