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Patch Textures: Hardware
Support for Mesh Colors

Agatha Mallett, Larry Seiler, and Cem Yuksel

Abstract—Mesh colors provide an effective alternative to standard texture mapping. They significantly simplify the asset production
pipeline by removing the need for defining a mapping and eliminate rendering artifacts due to seams. This paper addresses the
problem that using mesh colors for real-time rendering has not been practical, due to the absence of hardware support. We show that it
is possible to provide full hardware texture filtering support for mesh colors with minimal changes to existing GPUs by introducing a
hardware-friendly representation for mesh colors that we call patch textures, which can have quadrilateral or triangular topology. We
discuss the hardware modifications needed for storing and filtering patch textures, including anisotropic filtering. This paper extends
our previous work by discussing and comparing patch edge-handling approaches, including an option for sampling the textures of
neighboring patches using an adjacency map. We also provide extensive discussions regarding data duplication, a partial
implementation present in existing hardware, and the difficulties with providing a similar hardware support for Ptex.

Index Terms—Textures, Mesh Colors, Ptex, GPU Hardware, Texture Filtering, Barycentric Filtering, Anisotropic Filtering.
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1 INTRODUCTION

T Exture mapping is the standard method of adding data
to a 3D object at a resolution higher than the underlying

geometric detail. Unfortunately, texture mapping suffers
from the problem that it requires a mapping from object
space to texture space. For most object types, this mapping
distorts the model’s geometry and has discontinuities where
the surface has been “cut” into separate pieces so as to lie
flat within texture space, introducing seams. Packing these
separate pieces into the texture space can also leave gaps
of wasted space. These facts pose a challenge to technical
artists, who must expend inordinate amounts of time map-
ping 3D objects. They must also deal with the limitations of
texture mapping. For example, it is very difficult to increase
texture resolution in a particular spatial region of the model
after the texture has been painted.

Furthermore, these problems can also cause rendering
artifacts along seams, where the filtering operations on
either side of an edge produce inconsistent results. Meth-
ods that “hide” the seams by strategically placing them in
texture space introduce additional difficulties for content
creation, and struggle with mipmapping and anisotropic
filtering. The task of resolving these rendering problems is
therefore also left to the artist authoring the texture, and
it often leads to overpainting by introducing additional
gaps in packing and thereby wasting more memory. More-
importantly, such manual fixes cannot completely eliminate
filtering inconsistencies, and artifacts still show up in higher
mipmap levels and lead to cracks on surfaces with displace-
ment mapping.

One approach to resolving these issues has been to rede-
fine the texture data to live directly on the mesh geometry
itself. This is the approach taken by two alternatives to
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texture mapping: ptex [1] and mesh colors [2]. Although these
methods have been extensively used in offline production
rendering, neither technique has been adequately adapted
for real-time rendering. This is primarily because there is no
hardware support for these methods and software texture
filtering implementations can be an order of magnitude
slower. Recently, mesh color textures [3] were introduced for
utilizing the existing GPU hardware for partially handling
the filtering operations of mesh colors. This was achieved
by converting mesh color data into a standard 2D texture.
However, this conversion is not always exact, and it may
require solving a complex optimization problem for gen-
erating coarser mipmap levels. Mesh color textures also
introduce a substantial amount of shader complexity and
they cannot handle anisotropic filtering.

In this paper, we show that providing full hardware
support for mesh colors could be achieved by relatively
minor modifications to existing texture storage and filtering
operations of current GPUs. We introduce patch textures, a
hardware-friendly representation of mesh colors, and de-
scribe the details of how patch textures could be stored and
used with various filtering operations, including mipmap-
ping and anisotropic filtering. We discuss the similarities
and differences of alternative hardware implementations of
patch textures, as-compared to standard 2D textures. In par-
ticular, we describe the differences in the sample positions in
texture space, packing data for triangular patches, and stor-
age requirements for mipmap levels. We also explain how
the existing bilinear filtering operations could be modified
for supporting barycentric filtering and we present different
approaches for handling anisotropic filtering.

This paper extends our previous work [4] by describing
an implementation of edge-crossing operations that requires
more-significant hardware changes but simplifies the use
of patch textures within algorithms that require accessing
textures of multiple patches, such as parallax occlusion map-
ping [5]. This is achieved using hardware-managed adja-
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Fig. 1: Models rendered using a GPU software implementation of patch textures. Texture filtering can be applied respecting topology,
bypassing limitations of standard 2D texture mapping. With minimal hardware changes, patch textures could be implemented with
comparable memory and performance to standard 2D textures, but with better quality and usability.

cency maps, which would involve more substantial changes
to existing GPU hardware. We also discuss potential ap-
proaches for minimizing data duplication and provide a
detailed discussion on corner-sampled images, which can be
considered a minimal implementation of patch textures,
available on NVIDIA’s Turing architecture. Finally, we dis-
cuss the difficulties inherent to providing similar hardware
support for Ptex [1].

2 BACKGROUND

The problems of texture mapping are infamous in the com-
puter graphics community. Defining a desirable mapping is
time-consuming and often involves manual effort in prac-
tice. The filtering inconsistencies caused by seams reveal
their locations on the rendered images and cause cracks on
surfaces with displacement mapping. Changes to the model
topology or geometry can have global effects and require
completely regenerating the mapping and the correspond-
ing textures. Therefore, texture mapping operations not only
take a substantial amount of artist time, which dominates
the cost of AAA video game production, but also limit the
use of advanced GPU features, such as tessellation [6].

Researchers have developed various methods that either
improve the mapping process or provide an alternative to
texture mapping [7]. Methods that try to hide the seams
[8], [9], [10] complicate the texture-authoring process even
further and do not provide a solution to anisotropic fil-
tering. Sparse volumetric representations [11], [12], [13],

[14] help the texture-authoring process, but they introduce
restrictions on the model geometry, suffer from additional
performance cost, and cannot handle anisotropic filtering.
Volume-based parameterizations [15], [16] can improve the
process of defining a mapping, but do not provide solutions
for other problems of texture mapping.

Mesh colors [2] and ptex [1] provide alternative repre-
sentations for defining textures by relying upon the model
topology to define an implicit mapping from the model
space to the texture data. Thus, they significantly improve
the texture-authoring process by eliminating the issues
caused by having an explicit mapping. Operations like
model editing after defining the texture data and local res-
olution readjustment are trivially supported by these meth-
ods. They also solve the problem of filtering inconsistencies
by either directly filtering across edges during rendering
(as in ptex) or storing texture data directly along edges
(as in mesh colors). Therefore, it is no surprise that these
methods have increasing popularity for offline rendering.
Mesh colors and ptex are closely related, since they can be
considered as topological duals of each other in-terms of
the locations of texture samples implicitly placed upon the
model surface. However, the minor theoretical difference
between them leads to important practical distinctions. Ptex
must store the model topology information for filtering
across edges. As a result, hiding the seams along edges can
be challenging if the faces on either side of an edge have
different resolutions. Mesh colors avoid these problems by
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storing colors directly along the edges (i.e. edge colors) and
at the vertices (i.e. vertex colors), in addition to storing colors
within the faces (i.e. face colors). The common drawback of
mesh colors and ptex is that neither can currently take full
advantage of the available texture-filtering hardware on the
GPU. Therefore, texture filtering must be implemented in
software, which can be up to an order of magnitude slower
than hardware-accelerated texture filtering.

Recently, mesh color textures [3] were introduced for
partially using the existing texture-filtering hardware to
handle bilinear filtering operations of mesh colors. This is
achieved by converting the mesh color data into a 2D tex-
ture. Unfortunately, this conversion is not lossless, especially
when the texture values are clamped (e.g. between 0 and
255 with 8-bit color channels), and it involves solving an
optimization problem for generating higher mipmap lev-
els. Moreover, because of the non-power-of-two resolution
progression of the mipmap chain, the individual mipmap
levels must be stored as separate textures. Consequently,
more texture objects are used, which decreases locality
and requires more switching in the shader or API. Texture
coordinates on different mipmap levels are computed from
a compact 4D coordinate representation and trilinear filter-
ing, now crossing between textures, must be implemented
in software-emulation paths, both of which substantially
increase the shader complexity. Anisotropic filtering is es-
sentially impossible to emulate without seam artifacts: the
GPU-computed sample locations can be completely non-
sensical, since they are computed under the presumption
that the texture is an ordinary 2D texture. Though the same
problems with anisotropic filtering also exist with standard
2D textures along seams, they appear along every edge
with mesh color textures. Nonetheless, mesh color textures
offer the texture-authoring advantages of mesh colors with
minimal performance overhead for real-time rendering, as-
compared to standard 2D textures. The remaining problems
regarding shader complexity, hardware-accelerated trilinear
filtering, and anisotropic filtering require changes to the
GPU hardware. The patch texture representation we intro-
duce is designed to address these remaining problems.

3 PATCH TEXTURES

Our patch texture representation is trivial to generate from
mesh colors. Our representation stores all texture data as-
sociated with each face separately. This simplifies the im-
plementation of hardware texture-filtering operations and
minimizes the changes to current GPU hardware needed to
support patch textures. Thus, edge colors are stored twice
(i.e. one for each face that meets at an edge) and all vertex
colors are stored as many times as the number of faces
using them. This data duplication has a relatively small
impact, since the primary memory consumption for high-
resolution mesh colors is due to the face colors, which are
not duplicated.

It is typical to define mesh colors on a relatively low-
resolution mesh, referred to as the canvas mesh. Arbitrary
tessellations of this canvas mesh, such as ones generated via
typical subdivision operations, can directly use the mesh
color data of the canvas mesh. The GPU rendering pipeline
facilitates this approach through the use of tessellation

shaders. Thus, following the terminology of tessellation
shaders, we refer to the canvas mesh faces as patches.

As with mesh colors, patch textures require that the
model consist of only quadrilaterals and triangles. We han-
dle these two types of primitives using two different texture
types: quad patch textures and triangle patch textures, which
involve different storage methods and filtering operations.
A given set of patch textures is associated with a particular
model and its topology, so it can only be used by this
model or its arbitrary tessellations (whether precomputed
or generated on the GPU at render time via tessellation
shaders).

Mesh colors allow specifying the resolution of each patch
independently. Yet, it is important for filtering consistency
to match texture sample locations along an edge used by
two patches, even when they have different resolutions.
A simple way to achieve this for color data is to require
that all patch resolutions be powers of two. Then, the
texels of a lower-resolution patch texture fall exactly onto
texel positions of the higher-resolution patch texture. The
texture samples shared by the two patches can be specified
independently, and the additional texture samples used by
the higher-resolution patch are set as linear interpolations of
the shared ones. This way, both patches agree on the texture
values along the shared edge. Therefore, we assume this
power-of-two restriction in our discussion of patch textures,
though arbitrary resolutions can be easily supported, simi-
larly to standard 2D textures.

Our patch texture representation is designed to be
hardware-friendly. Nevertheless, we expect the exact hard-
ware implementation of patch textures would be vendor-
specific and may vary in different generations of future
hardware. Therefore, in the following subsections, we dis-
cuss different alternatives for storage options and filtering
operations.

3.1 Quad Patch Texture Storage

A standard 2D texture uses an array of discrete texel values
to represent a continuous function on a space defined using
normalized coordinates ⟨s, t⟩ such that s, t ∈ [0, 1). These
are multiplied by a width w and height h, the texture image
resolution, to produce coordinates ⟨u, v⟩, where u ∈ [0, w)
and v ∈ [0, h). In uv-space, texels are placed at half-integer
coordinate positions. That is, texel ⟨i, j⟩ within the array
is at position ⟨i+ 0.5, j + 0.5⟩ in uv-space, as illustrated
in Figure 2a. Bilinear texture filtering uses the four nearest
texels to a sample position ⟨u, v⟩ (see Section 3.4). When u
is within half a texel of 0 or w, or v is within half a texel
of 0 or h, this requires accessing texel locations that are
outside the w× h array of texels. Graphics APIs handle this
by defining wrap modes that extend the texel array, e.g. by
using a constant texel value outside the array, extending the
edge texel values, or by replicating or mirroring the texel
array. None of these are satisfactory for mapping textures
onto an arbitrary model.

Patch textures solve this problem by placing texels at
integer positions on the ⟨u, v⟩ coordinate grid. This is illus-
trated in Figure 2b, which shows a patch texture with w = 4
and h = 4 in uv-space that is specified using (w+1)×(h+1)
texels. As a result, sampling within the texture st-space



4

0 1 2 3 4
0

1

2

3

4
0 1/4 2/4 3/4 1

0

1/4

2/4

3/4

1

(a) Standard 2D Texture
0 1 2 3 4

0

1

2

3

4
0 1/4 2/4 3/4 1

0

1/4

2/4

3/4

1

(b) Quad Patch Texture

Fig. 2: Placement of texels in ⟨u, v⟩ and ⟨s, t⟩ coordinates for a
4×4 texture with (a) standard 2D textures and (b) patch textures.

(a) Texels

(b) Standard 2D
Texture

(c) Quad Patch
Texture

Fig. 3: Reflection wrap mode applied to (a) a set of texels, showing
that (b) texels along the borders appear on both sides of the
reflection lines with standard 2D textures, and (c) patch textures
avoid this problem, such that the border texels appear once.

never requires using texel values that are outside of the
grid.

Wrap modes are defined for standard textures to allow
accesses outside (and near the edges of) the texture st-space.
To maintain orthogonality with existing texture features,
wrap modes for patch textures may be defined to allow ac-
cesses outside of st-space. Figure 3 compares mirroring for
a standard 2D texture and a quad patch texture. Notice that
quad patch textures solve a known texel repetition problem
of the mirror wrap mode with standard 2D textures.

Quad patch textures are stored in the same way as
standard 2D textures. Since we restrict texture resolutions
to powers of two, a quad patch texture may have resolution
w = 2i and h = 2j , where i and j are non-negative integers,
requiring a storage of (2i + 1)× (2j + 1) texels. We discuss
how this impacts memory layout in §3.3. All modern GPUs
fully support textures with non-power-of-two sizes, so all
texture formats and compression modes used with standard
textures may be used with patch textures. Render-to-texture
would render the overlapping edge texels in both of the
patch textures that meet at an edge.

3.2 Triangle Patch Texture Storage

In a simplistic implementation, triangle patch textures can
be stored in a rectangular array with roughly half the
texture area unused. Quad-dominant meshes are common
(especially when tessellation is being used), so the overall
storage overhead can be negligible in practice.

Alternatively, any triangular patch texture can be sliced,
and the top piece rotated around to fit into the wasted space,
as shown in Figure 4. Consider a triangular mesh texture

slice

(a) (b)

slice

(c) (d)

Fig. 4: Alternative storage options for triangles: (a) any trian-
gular patch texture can be stored in a quadrilateral array with
roughly half of the texels wasted, or (b) it can be sliced and
repacked to avoid wasted storage. This is possible even when the
triangular patch texture has unequal resolutions along its sides
(c,d). The open circles represent texels that are outside the triangle
but that must be defined for barycentric interpolation (see §3.4).

with both major edges 8 units long (9 texels). When packed
simplistically, the data occupies the same space as a 9 × 9
standard texture (Figure 4a). However, the top four rows of
this triangle can instead be cut off and rotated to be stored
beside the bottom five rows (Figure 4b). The result is that the
triangular patch texture can be stored in a 9 × 5 rectangle
with no wasted space.

Triangular mesh textures need not have the same size
for the two major edges. Consider a triangular patch texture
with a horizontal edge length of only 4 units (5 texels), as
in Figure 4c. In this case, a 5 × 9 texel array compacts to
a 6 × 5 array (Figure 4d). Note that the cut must be made
through the longer of the two main edges so that the extra
texels outside the triangle do not overlap when the upper
and lower halves are packed.

Accessing texels in this compacted format requires a
simple remapping of the ⟨u, v⟩ coordinates. Let W and H
be the width and height of the triangle in texels, respec-
tively, rotating the triangle if necessary so that W ≥ H .
Let S be the number of texels below the slice, with the
restriction that S ≥ H/2. If v < S, the texel is accessed
normally. Otherwise, the ⟨u, v⟩ coordinate is remapped to
⟨W − u− 1, 2S − v − 1⟩.

A bilinear filtering operation that requires texels that are
both above and below the slice may be accomplished in a
manner similar to how filtering is performed across opposite
edges of a texture that uses the edge wrapping mode. This
is more efficient if S is a multiple of the memory allocation
tile size for the GPU. E.g., if texels are stored in 4× 4 blocks,
S would be H/2 rounded up to a multiple of 4.

3.3 Mipmap Storage

A mipmap chain [17] stores successively smaller versions of
the base texture map to allow filtering at varying resolu-
tions. Given a standard 2D texture with width w0 and height
h0, the resolution wℓ×hℓ of mipmap level ℓ is computed by
a power-of-two reduction from the base level (i.e. ℓ = 0),
using

wℓ = max (⌊wℓ−1/2⌋, 1) (1)
hℓ = max (⌊hℓ−1/2⌋, 1) (2)

ℓ ∈
{
1, 2, · · · , ⌈log2(max(w0, h0))⌉

}
.
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Fig. 5: A pictorial comparison of mipchains for a 64× 64 texture
size. Padding is required to align data to GPU texture tiles.

For a standard 2D texture, the size of the texel array at
mipmap level ℓ is wℓ × hℓ. Patch textures use the same mip
sizes, but the texel array size is one larger than the width
and height, so the size of a patch texel array at mipmap
level ℓ is (wℓ + 1)× (hℓ + 1).

In-general, GPUs store texels in n × m tiles (where n
and m are small powers of two) in-order to reduce memory
bandwidth for 2D accesses. For example, if n = m = 4 and
the texel size is 32 bits, then a single tile stores 64 bytes,
which is a typical cacheline size. As a result, textures are
aligned and padded to store a multiple of the tile width
and height. For a standard 2D texture with a power-of-two
resolution, each mipmap level except for the few smallest
has a width and height that are multiples of the tile size.

When the size of the texel array does not evenly divide
the GPU tile size, the affected data must be padded out until
it does. This increases the texture storage requirements, with
larger textures experiencing proportionally less wastage.
Figure 5 illustrates parts of the mipmap chain for a 64× 64
standard 2D texture and the corresponding patch texture,
which pads out each mipmap level to a tile boundary in u
and v. Note that the percentage of wasted space due to tiling
decreases with increasing resolution.

The lowest-resolution patch textures are 1× 1 in size but
store 2× 2 texels, each of which corresponds to the color at
a patch vertex. With mesh colors, it is possible to generate
additional mipmap levels using larger precomputed filter
sizes that take adjacent geometry into account, in-order to
further reduce aliasing. Thus, the mipmap chain of a patch
texture can have multiple 2 × 2 texel mipmap levels at the
end of the chain, each of which filters a larger, multi-patch,
region of the model.

3.4 Bilinear and Barycentric Filtering

Quad patch textures use bilinear filtering similar to that of
standard 2D textures. Given a sample position ⟨u, v⟩, assum-
ing that ⟨u, v⟩ is at least half a texel away from the borders
of the texture, bilinear filtering on standard 2D textures uses
the 2 × 2 texel region with array indices ⟨i, j⟩, ⟨i+ 1, j⟩,
⟨i, j + 1⟩, and ⟨i+ 1, j + 1⟩, where the integer indices are
defined as i = ⌊u− 0.5⌋ and j = ⌊v − 0.5⌋. The bilinear
filter weights are determined using fractional coordinates
⟨uf , vf ⟩, where uf = u− 0.5− i and vf = v − 0.5− j.

For patch textures, the texels are on integral ⟨u, v⟩ po-
sitions, rather than half-integral positions as they are for
standard textures. As a result, the four texels accessed are se-
lected using integer indices defined as i = ⌊u⌋ and j = ⌊v⌋.
The bilinear filter weights are determined using fractional
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Fig. 6: Bilinear filtering alternatives used in current GPUs.
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Fig. 7: Barycentric filtering using weighted sum of texels.

coordinates ⟨uf , vf ⟩, such that uf = u− i and vf = v − j.
Unlike standard textures, this works for any sample position
within the borders of the texture.

Regardless of how the texels and weights are deter-
mined, bilinear filtering can be computed using either a
weighted sum of four texel values (Figure 6a) or three
linear interpolations (Figure 6b). The first method has
fewer dependent operations and so allows more paral-
lelism. The second method uses one fewer multiplier by
rewriting the ufc1 + (1− uf )c0 linear filtering equation as
c0 + uf (c1 − c0).

Before the introduction of floating-point textures, GPUs
typically used the second method to reduce the number
of multiplies required. However, floating-point texel values
would require normalizing for each linear interpolation
stage, so the first method is typically used in modern GPUs.
In effect, the first method extends a CPU-style fused mul-
add instruction into a fused sum of four multiplications.

For triangular patches, the mesh colors method uses
barycentric filtering on the three closest texels. Nonetheless,
bilinear filtering can be used to approximate a barycentric
lookup. Indeed, mesh color textures [3] use bilinear filtering
for triangles, which requires storing additional texels near
diagonally placed triangle edges, and ensuring seamless
filtering along such edges may require modifying the given
mesh color values when the texel values are clamped.
However, it can be used as a fallback option for backward
compatibility in a patch textures implementation.

A better solution, at minimal hardware cost, is to use
the bilinear filter logic to blend three texel values using the
triangle’s barycentric coordinates. We present three alterna-
tives for using bilinear filtering logic to perform barycentric
filtering. In each, the first step is to determine whether
barycentric filtering uses the lower-left three texels of the
2 × 2 texel region or uses the upper-right three texels. This
is determined from ⟨uf , vf ⟩. If uf + vf < 1, we use the
lower-left texels c0, c1, and c2. If uf + vf > 1, we use the
upper-right texels c1, c2, c3. If uf + vf = 1, either set of
texels may be used and the equations linearly interpolate c1
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Fig. 8: Barycentric filtering using three linear interpolations
using (top) a similar construction to bilinear filtering and
(bottom) an alternative that eliminates the need for the third
multiplication.

and c2.
Figure 7 illustrates the weighted-sum technique for

barycentric interpolation. Note that the weights are different
from the quad patch case. The selection of weights depends
on which triangle the sample position falls into. Figure 8
illustrates two ways to use three linear interpolations to
perform barycentric interpolation. A few multiplexors are
used to change the weights and texture values fed into the
linear interpolation stages, but the multiply/add logic in
each linear interpolator remains the same.

Note that the filtering methods in Figure 6 and Figure 7
retain the GPU filtering logic unchanged. Only the control
logic and multiplexers used to select inputs to the filtering
logic are changed. Therefore, supporting patch texture fil-
tering involves inexpensive and relatively minor changes to
existing GPUs.

Finally, trilinear filtering on 2D textures is implemented
by linearly interpolating the results of filtering two faces
in the mipmap chain, regardless of what kind of filtering
is performed on those individual faces. Therefore, trilinear
filtering requires no hardware changes in order to be used
with patch textures.

3.5 Anisotropic Filtering

One of the advantages of our patch texture representation
is that it makes it relatively easy to support anisotropic
filtering. Anisotropic filtering is typically implemented by
using a weighted sum of multiple trilinear filtering probes
along a line in texture space from an appropriate pair of
mipmap levels, as is suggested by the OpenGL specification
[18]. This approach can be used for handling patch textures
as well since each trilinear filter probe within the bounds
of the patch accesses only texels specified within the patch.
However, care must be taken if the sampled texture coordi-
nates fall outside of the patch.

One approach is to simply not take a sample if its
location is outside of the patch. In effect, this clips the part
of the anisotropic filter kernel that falls outside of the patch.
Note that even if the filter kernel is clipped by patch edges,
the center of the kernel is guaranteed to be inside the patch.
This clipping obviously changes the filter kernel shape. The
net effect is simply to limit the level of anisotropy, such
that the subset of the regular anisotropic filtering samples
that fall outside of the patch boundaries are ignored, and
the final result is computed using only the valid texture
samples that are inside the patch boundaries. The part of
the kernel that is clipped is responsible for approximating
the texture values on the neighboring patch. However, the
screen-space derivatives used for computing the kernel can
be different for this other patch, so this clipping ensures
that only the part of the kernel that is guaranteed to be
properly computed is considered. Indeed, this is the solution
implemented by mesh colors with software filtering [2].

If the application desires to include the clipped part of
the filter kernel, this can be achieved by multi-sample anti-
aliasing (MSAA) with centroid sampling. In this case, each
patch that covers at least one of the multi-sample locations
in a pixel is responsible for computing its part of the pixel
footprint in texture space. The combined result forms the
approximation of the filtered texture value.

The hardware implementation of anisotropic filter kernel
clipping can be handled in two ways. The first detects
and discards samples that are outside of the patch and
assigns weights only to the samples that are inside the
patch. This requires testing the sample locations prior to
bilinear/barycentric filtering. The second method assigns
weights as if all samples were valid, then steps through the
samples, ignoring the ones that are outside of the patch.
This must be followed by normalizing the result by the
accumulated weight of all samples inside the patch.

Note that the problem of sampling invalid texture lo-
cations is not specific to our patch textures. Standard 2D
texture mapping also suffers from similar issues along
seams, with the additional problem of needing to bilinearly
filter against samples outside of the patch. Indeed, this
is arguably a more-serious problem along the seams of
standard 2D textures, because the texture samples that fall
outside of a patch can read arbitrary data from the texture,
depending on how the mapping was defined. A similar
solution that clips the filter kernel has been applied for the
related problem of Ptex as well [19]. The separation of patch
textures provides a convenient way to handle filter kernel
clipping in hardware, since filters are always clipped only
at patch edges.

An alternative solution to clipping is to use the
hardware-supported edge-clamp mode to in-effect move
samples outside of the patch to the closest position along the
edges of the patch. This alternative would approximate the
result of anisotropic filtering by using the closest-available
texture data from the patch. Again, the result can deviate
from the intended anisotropic filtering computation, but at
least all samples are taken from a nearby valid location. One
advantage of this approach is that it requires no hardware
change and has no performance impact.

In Section 4 we provide yet another alternative that
would allow sampling the texture of the neighboring patch,



7

but it involves a more complex representation of mesh
textures and additional expense.

3.6 Accessing Patch Textures in Shaders
Patch textures could be implemented as a collection of
bindless textures. Bindless texture handles are typically 8
bytes. How this handle is used to access the actual texture
is implementation-dependent. As for the standard 2D tex-
ture case, it may be sometimes possible to encode neces-
sary meta-information directly into the handle alongside a
pointer to the data, so that no additional indirection is re-
quired, but as in OpenGL [20], we leave such considerations
to the implementer. Treating a mesh texture as a collection
of bindless textures eliminates the need for any hardware
modification or software API changes for accessing them.

From the software programmer’s perspective, the main
additional complexity of using a set of bindless textures, as-
opposed to using a single standard 2D texture, is sending
their handles to the shader. When using a small number of
bindless textures, their handles can be specified as uniform
shader variables. Under the typical use-case of patch tex-
tures, however, a large number of bindless textures may
need to be created. These handles can be sent by using
shader storage buffer objects, per-vertex attributes, or some
new API.

4 HARDWARE-MANAGED ADJACENCY MAP

The patch texture structure we described in the previous
section is a simple way to implement mesh colors with
minimal modification to existing GPU hardware. However,
it does not provide a mechanism for accessing the texture
data on neighboring patches.

4.1 Uses for Adjacency Data
Accessing the texture data of neighboring patches is often
completely unnecessary. Since the mesh colors structure
defines texels along patch edges, all filtering operations
(including anisotropic filtering, up to the within-patch ap-
proximations suggested in §3.5) can be performed without
accessing data from neighboring patches. Nonetheless, such
accesses are needed for complex algorithms that “walk”
over the model surface by sampling different locations.

For example, parallax occlusion mapping [5] is a com-
monly used technique that may need to access the texture
data of multiple patches. Parallax occlusion mapping be-
gins sampling the texture at the texture coordinates of the
pixel. Then, depending upon the texture data, it iteratively
modifies the texture coordinate and samples the texture
again at the modified texture coordinate. These iterative
modifications of the texture coordinate can move the texture
sample location outside of the patch boundary. Unfortu-
nately, clamping the texture coordinate to keep the sample
location within the bounds of the patch leads to visual
artifacts with this technique, as shown in Figure 9.

Note that a similar problem also exists with standard
2D textures when the algorithm crosses a seam boundary.
Indeed, visual artifacts near seams can be more severe
with texture mapping, as shown in Figure 10. In practice,
however, this is remedied by strategically placing the seams

during mapping, such that the unavoidable artifacts caused
by crossing seams can be hidden from the camera view.
In the case of patch textures, this problem occurs at every
patch boundary. While clamping the texture coordinate may
alleviate the visual artifacts for some textures, completely
eliminating them requires accessing the texture data of
neighboring patches.

4.2 Existing Software Solutions
With patch textures, sampling data from a neighboring quad
or triangle requires providing its bindless texture handle.
Therefore, an algorithm that samples multiple locations on
the surface not only needs to check when the texture coor-
dinates are outside of the quad or triangle, but also needs to
obtain the bindless texture handle of the neighboring patch
and modify the texture coordinates appropriately, which
requires access to the adjoining patch’s relative orientation.
These requirements significantly complicate the implemen-
tation of such algorithms.

4.3 Hardware Support for Adjacency Data
Our patch textures method can be extended to support
adjacency information. This could greatly simplify algo-
rithms that require access to the texture data on neighboring
patches. Note that bilinear and barycentric filtering opera-
tions do not require accessing neighboring patch textures,
while anisotropic filtering can be handled without it, as
explained above in §3.5.

The basic idea is to store an adjacency map, similarly
to Ptex [1]. For each edge of a patch, the adjacency map
contains a reference to the neighboring patch and its ori-
entation. Texture filtering hardware must detect when an
edge is crossed. This can be easily accomplished by checking
whether the coordinates are outside the patch (i.e. not within
[0, 1]). Existing GPUs already support this for handling
bilinear filtering near the edges of cubemaps that are stored
as six separate faces. However, crossing a patch edge also
requires accessing the adjacency information. This can be
handled by storing the adjacency data as a part of the
texture descriptor. This requires additional logic to fetch
the adjacency data whenever the coordinates are outside the
patch.

While such operations can be easily done in software,
hardware support would not only make the software im-
plementation simpler but would provide opportunities for
additional optimizations. Hardware could prefetch adjacent
patch handles so that when the shader requests a sample
from texture coordinates that are outside the patch, the
hardware can determine which edge is crossed, modify the
texture coordinate using the neighbor patch’s orientation,
and sample the texture of the neighboring patch. This
process could potentially proceed recursively up to some
maximum limit, although at increased access latency.

The texture definition data referenced by the bindless
texture handle is cached on typical GPUs. Accessing adja-
cent patches should often hit in this cache, thus avoiding
extra latency. When the adjacent patch misses in the cache,
it is likely to be accessed directly later. As a result, there
should be relatively low added overhead looking up texture
definition data for adjacency operations.
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The Edges of the Patches Patch Textures Patch Textures with Adjacency Map

Fig. 9: Parallax occlusion mapping [5] with patch textures. Notice that clamping the texture coordinates leads to inconsistent results
near patch edges. Accessing the texture data of the neighboring patches using an adjacency map is required for achieving consistent
results without visual artifacts.

Texture Mapping with Seams Patch Textures Patch Textures with Adjacency Map

Fig. 10: Parallax occlusion mapping [5] with texture mapping and patch textures. Left: Texture mapping leads to cracks on the surface
near seams. Middle: Clamping the texture coordinates with patch textures alleviates, but does not eliminate, visual artifacts. Right:
Adding an adjacency map that allows cross-patch walking for sampling out-of-patch data fixes all problems.

Note that there is no need to explicitly store adjacency
information around vertices between patches. All of the
patches that meet at a vertex can be accessed by sequentially
stepping across edges around the vertex. Also note that
indirection occurs only at patch boundaries, not at every
primitive boundary, so that if patches are relatively large,
then edge-crossing, and especially multi-step edge-crossing,
should be relatively rare.

4.4 Software Simulation

Our GPU software implementation of an adjacency map
incurs the cost of an additional indirection every time an
edge is crossed. For limiting this additional cost, the im-
plementation can provide an upper bound on how many
edges can be crossed (such as 1) for each texture-sampling
operation, with coordinates handled differently once this
upper bound is reached (e.g. by clamping). A hardware
implementation could optimize this process by hiding the
corresponding latency better.

We note that if there is hardware support for the adja-
cency map, it can also be used for improving the quality of
anisotropic filtering by allowing anisotropic filtering probes
to cross an edge, when needed.

Obviously, providing hardware support for adjacency
maps would involve a more substantial modification of the
current GPU hardware, adding additional logic for both
accessing the adjacency map and for effectively prefetching
adjacent patches’ handles. Even with hardware support,
using an adjacency map would still lead to some overhead.
However, hardware support for adjacency maps is only
needed for algorithms that modify the texture coordinate
to be sampled. Again, typical texture filtering operations we
explain in the previous section do not require an adjacency
map.

5 EXPERIMENTS AND EVALUATION

We evaluate the additional memory footprint of our patch
texture representation using four example models shown
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Ground Truth

Trilinear

(a) Clamped

(d) Clamped +MSAA

(b) Clipped

(e) Clipped +MSAA

(c) Adjacency Map

(f) Adjacency Map +MSAA

Fig. 11: Contrived example showing different anisotropic filtering alternatives. Each cell in the grid is a single patch, meaning there
are both many minified patches, and they are correlated to changes in the texture: a worst-case. Clipping and adjacency maps perform
well, although only adjacency maps give the correct answer. See also Fig. 13 for a more-realistic scenario.

Adjacency Map (0 Crossings) Adjacency Map (1 Crossing) Adjacency Map (2 Crossings) Adjacency Map (∞ Crossings)

Fig. 12: Visualization of added operations due to edge crossing. With only one edge crossing, almost all patch edges are handled
correctly. Only corners and cases with many tiny, minified patches are handled incorrectly. All but the most extreme cases are handled
by two edge crossings.

TABLE 1: Texel footprint with mipmap levels.

Mesh Patch Textures
Model Colors 1× 1 Tiles 2× 2 Tiles 4× 4 Tiles

Texels Texels (%) Texels (%) Texels (%)
LIZARD 8.46 M 8.68 M (103%) 8.91 M (105%) 9.37 M (111%)
NYRA 31.13 M 32.27 M (104%) 33.44 M (107%) 35.88 M (115%)
ALIEN 11.64 M 11.88 M (102%) 12.12 M (104%) 12.60 M (108%)
HEAD 34.08 M 35.23 M (103%) 36.40 M (107%) 38.79 M (114%)

in Figure 1, rendered with our GPU software emulation of
patch textures. Note that these models include both quadri-
lateral and triangular patches. The results are presented in
Table 1 in comparison to the size of the original mesh color
data. Using 1 × 1 tiles, the only additional storage cost
comes from duplicated edge and vertex colors, which is
between 2% and 4% for these examples. This is mainly due
to the fact that these are relatively low-resolution models
with high-resolution mesh colors. Using 2 × 2 or 4 × 4
tiles increases this overhead up to 8% or 15%, respectively,
for these models. Considering that standard 2D textures
also incur a similar or even more storage overhead due
to packing and padding around seams, we consider this
extra storage cost acceptable. Moreover, models optimized
for mesh colors (with lower-resolution canvas meshes) can
further reduce the overhead.

We also simulate anisotropic filtering modes with our
implementation in Figures 11, 12, and 13. Against a ground
truth computed with supersampling, we show the effect of
two different ways to handle filtering patch edges: clamping

sample coordinates to remain within the center sample’s
patch and clipping the filter to avoid sample values outside
the patch. Multisampling can be added on top of each
strategy, as-well. The main beneficiary of multisampling
is filter clipping, since the sub-pixel samples “fill in” the
clipped filter value along border pixels [2], [19].

In Figure 11, we demonstrate something of a worst-case:
there are many patches that are highly minified, and the
texture data is correlated to the patch boundaries. We see
that the adjacency map produces the best result, since the
filter kernel is not modified. Whereas, clamping produces
bad results due to the texture changing values near patch
edges, and clipping requires multisampling to properly
filter some regions. In Figure 12, we show a visualization
of the added computation due to edge crossing operations.
Without any crossings, we can see that most patch bound-
aries are computed incorrectly. With one edge crossing,
most patch boundaries become accurate, although corners
and cases where many patches are minified together are
still incorrect. With an unbounded number of crossings, the
correct result is obtained.

It is worth stressing that these differences are largely
visually indistinguishable even in contrived examples such
as this. In Figure 13, we show a more-typical model with a
reasonable texture. The patches are still unrepresentatively
small, as this model was converted from a model with
standard texturing, but even so, any filtering variant is
acceptable—and indeed, the results are largely indistin-
guishable.
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Patch Edges Ground Truth (a) Clamped (b) Clipped (c) Adjacency Map

(d) Clamped +MSAA (e) Clipped +MSAA (f) Adj. Map +MSAA

Fig. 13: Anisotropic filtering alternatives for the LIZARD model. Out-of-patch samples can be (a) clamped to patch edges, or (b) the
filter itself can be clipped. The most-correct solution is to (c) retrieve samples from the neighboring patch using an adjacency map,
although this significantly increases complexity. (d–f) Multisampling improves filtering results.

6 DISCUSSION

Patch textures are not intended to replace all applications of
standard texture mapping. In some cases, especially when
using relatively simple models, a texture mapping can be
defined easily, and seams can be completely hidden by
placing them at locations that are not visible to the camera.
Also, when a small texture is tiled over a coarse model’s
surface, texture mapping may be advantageous over patch
textures.

For texturing complex models, however, patch textures
facilitate the substantial improvements in the asset produc-
tion pipeline provided by mesh colors. At render time, they
provide storage efficiency by eliminating the wasted space
in UV mapping. They also completely avoid seam artifacts
and, as-such, they are particularly suitable to hardware
tessellation and displacement mapping, avoiding the cracks
on surfaces due to seams when using standard texture
mapping. (Displacement mapping along edges between two
patches with different patch texture resolutions can still
lead to cracks due to floating-point precision issues; this
can be avoided by carefully picking the edge tessellation
resolutions.)

6.1 Data Duplication
Our current representation accepts the duplication of mesh
colors data at patch corners and edges for the purpose of
simplicity. More-complex schemes that reduce this overhead
could be employed but implementing them might require
more-complicated hardware alterations. Additionally, since
most of the data is expected to be taken up by patch-
interior face data, which is not duplicated, there is little to
be gained (that is, the vertex data per-patch scales as O(1),
the edge data by O(n), and the face data by O(n2), where n
corresponds to the resolution of one side of a patch).

If the overhead attendant to a single patch is propor-
tionally large, this means that the interior data is not very
detailed, or completely absent. We suggest using traditional
vertex colors to handle such cases. But, since such models
are by-assumption very coarse in texture detail, the over-
head of using patch textures for these cases as well may be
acceptable, for being small in an absolute sense.

One approach to reducing the overhead of data du-
plication would be to ensure that the shared edge texels
are only stored in one or the other patch texture. In this
case, the texture data of the edge can be accessed using
an adjacency map when needed. Whether this is ultimately
practical depends on the details of specific GPU designs.
However, a potential hardware implementation could make
use of several existing GPU capabilities: storing the edge
descriptors in the primitive data allows loading vertex/edge
texels at the same time as the primary patch texture, and
GPU filtering hardware already supports filtering discon-
tiguous texels when e.g. wrap mode is enabled and filtering
crosses an edge.

6.2 Corner-Sampled Textures

The recent NVIDIA Turing GPU architecture provides
support for corner-sampled textures in the Vulkan API
(VK_NV_corner_sampled_image). This new texture for-
mat implements many features of our patch textures. There-
fore, starting with an implementation of corner-sampled
textures, providing hardware support for patch textures
would be even simpler.

Corner-sampled textures store the texture samples ex-
actly at the same locations as patch textures. The only dif-
ference between a quad patch texture and a corner-sampled
texture is the definition of the texture width and height. A
quad patch texture with width w and height h is equivalent
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to a corner sampled texture with width w + 1 and height
h+ 1.

Corner-sampled textures provide mipmapping support,
similar to our patch textures, provided that the “round-up”
mode is selected for computing the mip-level sizes1. The
mipmap levels of corner-sampled textures can be generated
down to 2× 2 resolution. Unlike our patch textures, corner-
sampled textures do not support additional mipmap levels
with 2 × 2 resolution. In theory, this limitation of corner-
sampled textures can lead to reduction in texture filtering
quality when higher mipmap levels are needed. However,
such cases arise only when patches are smaller than pixels
on the rendered image. In these cases, geometric aliasing
can be a greater concern. Thus, we would expect that this
limitation of corner-sampled textures would not likely be
an important concern for most applications in practice.

A more-important limitation of corner-sampled textures,
as compared to patch textures, is the fact that they do not
support barycentric filtering. As we explain in §3.4, pro-
viding barycentric filtering would involve relatively minor
changes to the existing bilinear filtering logic. Therefore, we
would expect that future GPU hardware can easily provide
support for barycentric filtering. Furthermore, it is possible
to use bilinear filtering for triangles as well. This requires
providing additional texture data near the diagonally placed
edges of triangles, similar to the mesh color textures struc-
ture [3]. A minor problem with this solution is that some
texture data may have to be modified slightly to ensure that
texture filtering provides consistent results on both sides of
all edges. Yet, we would expect that this minor modification
would not be an important concern in practice. Also, in
most cases it might be acceptable to keep the texture data
as-is since the resulting filtering inconsistencies tend to be
difficult to notice.

Another potential concern is the fact that storing corner-
sampled texture data for triangles wastes about half of the
texture storage. Nonetheless, this is a minor concern, given
that quad-dominant meshes are commonly used during
model authoring, as mentioned in §3.2.

In summary, we can conclude that corner-sampled tex-
tures provide a minimal implementation of patch textures.
The minimal set of features supported by corner-sampled
textures is sufficient to provide hardware filtering support
for mesh colors in practical applications. It should be noted
that, while it might seem that corner-sampled textures could
easily provide support for Ptex, Ptex actually uses the
sample locations of standard 2D textures (see the discussion
below for more details), and so the sample locations are
fundamentally incompatible.

6.3 Hardware Support for Ptex

Some of the concepts we describe in this paper could
be applied for providing a similar hardware support to
Ptex [1] as well. Note that the texture sample locations of
Ptex directly correspond to the ones used by standard 2D
textures. Indeed, Ptex can be implemented in packed 2D

1. The existing implementation allows using the standard “round-
down” mode with corner-sampled textures as well, but this would not
produce desirable mip-level sizes and would diverge from the mip-
levels we define for our patch textures.
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Fig. 14: A possible texture format to provide hardware support for
Ptex [1], using the same texture sample locations as standard 2D
textures, but with additional texture samples along the borders
(shown in green and purple). This modifies the ⟨u, v⟩ and ⟨s, t⟩
coordinates, as compared to 2D textures. The corresponding face
covers the shaded area of the texture space. The texture sample data
for the samples along edges (shown in green) should be copied from
the neighboring faces. The corner samples (shown in purple) are
copied from the second neighbors. Note that providing consistent
texture sample data for the additional texture samples can be
problematic when neighboring faces have inconsistent resolutions
and near extraordinary vertices.

textures [21], including support for mipmapping [22] and
without duplicating edge data [23]. As a result, bilinear
filtering near edges requires accessing the texture data of
the neighboring faces with Ptex. The original Ptex structure
uses an adjacency map for this task. This process could be
simplified using something similar to a quad patch texture
by copying data from neighboring patches. The resulting
per-face texture shown in Figure 14 is identical to a standard
2D texture, except that the ⟨s, t⟩ and ⟨u, v⟩ coordinates are
defined differently. The additional texture samples outside
of the face boundary are copied from the neighboring faces.
This allows support for bilinear filtering using only a single
texture’s data without the need for an adjacency map.

However, ensuring consistent filtering on either side of
an edge is nontrivial with Ptex when the two faces sharing
the edge have different resolutions. It is not clear how the
additional texture samples along the borders of per-face tex-
tures must be specified to ensure consistent bilinear filtering
near edges shared by faces with different resolutions. Ex-
isting software implementations [22], [23] make an attempt
to minimize the discrepancy of filtered texture values on
either side of the face edges, but such discrepancies (i.e.
seam artifacts) cannot be eliminated. This is because with
per-face textures, the locations of texture samples on the
model surface on either side of a seam do not overlap unless
the neighboring faces have the same resolution. This is
unlike mesh colors (and our patch textures), which eliminate
this discrepancy completely by placing the texture samples
differently.

Also, there is no good solution for selecting the correct
texture data for the corners of a face texture near extraordi-
nary vertices (vertices where more or fewer than four edges
meet). Furthermore, Ptex uses a different representation
for storing texture data on triangles, so our solution of
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barycentric filtering cannot be applied directly.
Therefore, a practical solution to providing support for

Ptex might be converting the Ptex data to mesh colors and
then using our patch texture representation. This, however,
would mean resampling the texture data, which is undesir-
able. Thus, generating the texture data using mesh colors,
instead of Ptex, would be preferable.

6.4 Limitations

The main limitation of our approach is rendering models
with many patches. When viewed from a distance, the
patches will be close together in screen space, causing
nonlocal access. Indeed, having many patches will produce
many texture handles. In our implementation, we managed
this with bindless textures.

A significantly larger number of texture handles is a
clear disadvantage. Further work is required to quantify
the performance impact of this. Anecdotally, while our
implementation, which lacks many of the optimizations
we discuss, had comparable performance to ordinary 2D
texturing, our test setup is a software emulation, and so
conclusions about performance are difficult to substantiate
rigorously. In any case, we expect that performance would
be affected by the amount of texture data, as well as how it
is used within the shader.

Finally, although our test models were converted from
regular 3D models, and therefore comprise many patches,
this is unrealistically perverse: models designed for mesh
colors in the first place can have far fewer patches.

7 CONCLUSION

We have introduced patch textures, a hardware-friendly
representation of mesh colors. Patch textures allow mesh
colors to be implemented with only minimal changes to
existing GPUs, and thereby resolve the main difficulty of
using mesh colors in interactive and real-time rendering
applications.
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