
Efficient Spatial Binning on the GPU
AMD Technical Report, February 2009

Christopher Oat∗

AMD, Inc.
Joshua Barczak†

AMD, Inc.
Jeremy Shopf‡

AMD, Inc.

Figure 1: Five still frames taken from a particle system in which more than 500,000 particles are simulated entirely on the GPU. Particles are
shaded to indicate their velocity. The particles react to a user-applied force that pushes them towards a collision plane where they crash and
roll back. The binning algorithm presented in this paper is used to construct a spatial data structure to facilitate nearest-neighbor searches
for computing particle-to-particle collisions.

Abstract

We present a new technique for sorting data into spatial bins or
buckets using a graphics processing unit (GPU). Our method takes
unsorted point data as input and scatters the points, in sorted order,
into a set of bins. This is a key operation in the construction of
spatial data structures, which are essential for applications such as
particle simulation or collision detection. Our technique achieves
better performance scaling than previous methods by exploiting ge-
ometry shaders to progressively trim the size of the working set.
We also leverage predicated rendering functionality to allow early
termination without CPU/GPU synchronization. Furthermore, un-
like previous techniques, our method can guarantee sorted output
without requiring sorted input. This allows our method to be used
to implement a form of bucket sort using the GPU.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; K.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling—
Physically based modeling; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

Keywords: GPGPU, spatial data structure, nearest-neighbor
search, bucket sort

1 Introduction

Many applications require that an array of unsorted point data be
sorted into spatial bins prior to being processed. For example, par-
ticle system simulations using the discrete element method (DEM)

∗e-mail: chris.oat@amd.com
†e-mail:josh.barczak@amd.com
‡e-mail:jeremy.shopf@amd.com

[Bell et al. 2005; Harada 2007] require a nearest-neighbor search
to apply particle-to-particle repulsive forces. It is important to use
a spatial data structure to accelerate nearest-neighbor searches, as
a brute-force search on n elements will require an expensive O(n)
search per element. By partitioning the particles into spatial bins,
the search can be limited to nearby particles, which dramatically
reduces its computational cost.

In a GPU-based simulation, constructing these data structures on
the GPU is necessary to maintain high performance. If these data
structures are to be built by the CPU, particle positions must be
transferred out of graphics memory into system memory, and the
resulting data structure must be transferred in the opposite direc-
tion. In addition to consuming precious bus bandwidth, these kinds
of hybrid GPU/CPU approaches require synchronization between
GPU and CPU, which reduces utilization by introducing stalls.

In this work, we present a new technique for sorting point data into
spatial bins using graphics hardware. Our method operates by re-
peatedly scattering point primitives into successive slices of a tex-
ture array. Dual-depth testing [Everitt 2001] is used to ensure that
all elements are binned sequentially (and, as a side effect, causes
them to be binned in sorted order). Unlike previous techniques,
we can use geometry shaders to eliminate previously binned el-
ements from the working set, which provides significantly better
performance scaling. Our technique can be implemented using any
Direct3D R© 10 capable consumer hardware, without need for pro-
prietary GPU compute APIs.

We begin by reviewing previous approaches to spatial sorting on the
GPU. Next, we describe our data structure and how we construct
and query it. Then, we outline three applications of our method in
particle simulation, artificial intelligence, and bucket sort. We pro-
vide a performance comparison of our approach against a popular
method for sorting data into a grid on the GPU and show that our
method is more efficient. Finally, we provide our conclusions.

2 Related Work

Purcell et al. [2003] present two methods for sorting point data into
grid cells on the GPU as part of their GPU-based photon mapping
technique. Their first method sorts points by grid cell ID using a
bitonic merge sort. This results in a sorted array in which points

in the same grid cell are listed consecutively. A binary search step
constructs a lookup table that contains array offsets for quickly find-
ing each grid cell’s data in the sorted array. As an optimization to
the bitonic merge sort, the authors describe a method they call sten-
cil routing for storing points in grid cells.

Stencil routing is a multi-pass algorithm that scatters point data into
grid cells using the vertex shader. When a point lands in a grid cell,
the stencil value associated with the cell is incremented to prevent
additional points from being written to the cell. This ensures that,
if multiple points map to the same grid cell, they will not overwrite
each other. A depth test prevents the same point from being stored
in a cell multiple times. For the depth test to function correctly,
stencil routing requires that its input data be in sorted order. Stencil
routing must iterate over the entire data set once for each storage
location within a cell (loop count is equal to maximum cell capac-
ity).

Amada et al. implement a GPU particle system that constructs a
nearest-neighbor map on the CPU [2004]. The authors identify the
neighbor map generation and its transfer to the GPU as the main
bottleneck of their system.

To overcome this bottleneck, stencil routing has been used to im-
plement spatial data structures on the GPU, particularly for particle
systems and particle-based rigid body simulations [Harada 2007;
Harada et al. 2007b]. We anticipate that this will be one of the
main applications of our technique. Subsequent work [Harada et al.
2007a] describes a sliced spatial data structure for point data on
the GPU. This method employs a pre-pass over the point data to
construct mapping functions that attempt to minimize wasted mem-
ory associated with unused cells in a uniform grid. A final stencil-
routing step scatters the particles into cells within the grid and, thus,
their method is related but orthogonal to our work. As we will show,
binning is a more efficient way to scatter point data into grid cells;
the scattering step in this algorithm would benefit from our binning
technique.

Unlike stencil routing, our algorithm does not require the input data
to be in sorted order. Additionally, our algorithm is more efficient
because it removes points from the working set as they are binned
and enables synchronization-free early termination once binning
has completed. We are not aware of other techniques for scatter-
ing point data into grid cells, so we will use stencil routing as the
basis for performance comparisons. We do not compare against the
bitonic merge sort as Purcell et al. identify it as inferior to stencil
routing in terms of performance.

Part of our binning method relies on a dual-depth test that was in-
spired by the depth peeling algorithm originally presented in [Mam-
men 1989] and later adapted for the GPU by Everitt [2001]. Depth
peeling uses dual-depth tests to find the furthest fragment from the
eye that is closer than all previous fragments at a pixel location,
and was originally devised as a solution to order-independent trans-
parency. On modern graphics hardware, the dual-depth test is per-
formed by configuring the depth unit to perform one test and using
one of the programmable stages to perform a second, complemen-
tary depth test. We use a similar dual-depth test to filter previously
binned items during a given iteration of our algorithm.

3 Binning

Sorting data into bins on the GPU is challenging for a number of
reasons. Current graphics APIs do not allow generalized atomic
writes, so updating a linked list or placing a data element at the end
of an array is non-trivial. The construction must be made as effi-
cient as possible because real-time, dynamic applications will have
to reconstruct this data structure on every update (i.e., once every

frame in a game). Querying the data structure must also be fast,
since nearest-neighbor searches, one of our primary applications,
will require multiple queries to gather all the binned elements near
a particular point. We begin by describing the data structure itself,
then describe how the data structure is queried, and finally explain
how the data structure is updated.

As illustrated in Figure 2, our binning algorithm makes use of a 2D
depth texture array and a single 2D color buffer to construct a data
structure for storing items in bins. The color buffer is used to record
the number of items in each bin (bin load). The depth texture array
contains application-dependent key values that identify the binned
items. A given 2D texel address in this array serves as a bin. A
single bin is a set of texels which share the same 2D coordinates in
successive texture array slices. Our binning algorithm guarantees
that items are stored in bins, starting at the first slice of the array, in
ascending order based on their key values. This fact may be useful
for certain applications. For example, it can be exploited to perform
a restricted form of bucket sort, as described in section 4.3. Sorted
bins also allow applications to employ binary search when looking
for a particular item in a particular bin. For applications that do
not need any particular ordering, simply binning the item IDs is
sufficient.

Figure 2: Illustration of our binning data structure. Points are
mapped to texel locations on a grid. The bin counter keeps track
of the number of points in each grid cell. Point IDs are stored in
sorted order in successive slices of the bin array.

3.1 Queries

Fetching items from a particular bin is very straightforward. The
load on a particular bin is determined by reading the corresponding
texel from the bin counter, and the ith element in the bin is read by
fetching from slice i in the depth texture array. Applications can
use bin load and dynamic flow control to ensure that only occupied
slots in a particular bin are fetched.

3.2 Building the Data Structure

To build our bin structure, we perform a series of rendering passes
in which point primitives are used to represent each item to be
binned. We refer to the data that is to be placed into bins as the
working set. As items are placed into bins, they are removed from
the working set. A given bin can only receive one item per iteration,
so the update process may require multiple passes before the work-
ing set is eliminated. In the limit, the algorithm requires a number
of rendering passes equal to the bin capacity.

We begin by clearing the bin counters to 0 to indicate that the bins
are all empty. All of the slices of the bin array are cleared to 1.0.
During each pass, the vertex shader determines which bin a partic-
ular item belongs in, and computes a corresponding pixel position
for the point primitive. This effectively scatters the points into their
corresponding bins. The point’s depth value is set by mapping the
key value onto [0, 1). The rendering state is set such that the GPU’s

depth unit will pass fragments that are less than the depth value
stored in the depth buffer.

For each binning iteration, the corresponding slice of the bin array
is used as a depth buffer. In all iterations after the first, the slice
used in the previous iteration is bound as a texture for input, and
the vertex shader rejects the item it is processing if its depth value
is greater than or equal to the value stored in the previous slice.
Points can be marked as “rejected” by setting their depth value to
some value outside of the valid depth range (for example, a rejected
vertex could have its depth value set to −1.0). The depth unit re-
mains configured to less than.

Much like depth peeling, we are effectively implementing a dual-
depth buffer that causes the point with the lowest value that is
greater than the previously binned value to pass. Performing the
greater than or equal to test in the vertex shader rather than the
pixel shader allows us to avoid inserting clip/kill instructions into
our pixel shader and allows the GPU to use its early-Z culling hard-
ware. This dual-depth test causes the first iteration to store the low-
est keyed item in each bin, the second iteration to store the second
lowest, etc. To compute the bin counts, the pixel shader simply
writes the iteration number into the bin count texture (1 in the first
pass, 2 in the second, and so on), causing it to be updated whenever
an element is binned.

3.2.1 Predicated Iteration

For situations in which the maximum bin load is low, it is possible
that all the points will have been placed in bins before the binning
algorithm has finished iterating. For example, if the maximum bin
load is 2, then the binning algorithm can be terminated after 2 it-
erations. One way to detect that the working set has been elimi-
nated is by using GPU queries to test whether any points pass the Z
test (indicating that the working set is non-empty). Unfortunately,
this kind of query would result in a CPU/GPU synchronization that
would negatively impact performance.

The predicated rendering functionality provided by Direct3D 10
can be used to control the execution of the binning algorithm with-
out introducing synchronization stalls. The draw calls for each it-
eration are predicated on the condition that the previous iteration
resulted in items being scattered into bins. If no items are binned
during a particular iteration, then we know that the working set has
been eliminated and binning can safely terminate. Using cascaded
predicated draw calls (each draw is predicated on the previous one)
will result in the remaining draw calls being skipped. Thus, the
GPU takes full responsibility for terminating the algorithm.

3.2.2 Stream Reduction

Using predicated iteration provides a performance gain by elimi-
nating redundant rendering passes after all items have been binned.
However, each pass still operates on the full data set, resulting in
wasted processing for the items which that already been binned.
This wasted work can be avoided by reducing the size of the point
stream after each binning iteration, so the GPU only processes items
that are still in the working set. This is easily implemented using
geometry shaders.

To implement stream reduction, the point primitives are passed to a
geometry shader that discards those points which have been flagged
to indicate they failed the second-depth test, as described earlier.
Points that pass the test are streamed into a buffer, which is used
as input in subsequent iterations. This happens concurrently with
rasterization and fixed-function depth testing. The Direct3D 10 call
DrawAuto() can be used to submit the reduced working sets with-
out querying how many items are in the working set, thus avoiding

another source of CPU/GPU synchronization. Using this technique,
points will be removed from the working set on the next iteration,
after they have been binned. Note that no points can be removed
from the working set during the first iteration, so stream output and
second-depth testing should not be applied to it.

3.3 Handling Overflow

An overflow condition occurs when the iteration count reaches or
exceeds the bin array depth before the working set is eliminated.
This can occur if too many items fall into a given bin. In practice,
overflow often can be prevented by using a large enough number
of bins (thus dividing the data set among many bins), or by simply
increasing the bin capacity to accommodate the worst-case bin load.

Testing for overflow requires an additional iteration with a query
to find the number of items that remain in the working set (recall
that items are not removed from the working set until after they are
binned). If any points pass the Z test during this final iteration, then
overflow has occurred and must be dealt with accordingly. Depend-
ing on the application, it may be possible to stop iterating once the
algorithm has reached the last bin array slice, process those items
that have been binned, then continue to bin the remainder by wrap-
ping around and rendering into the first slice of the bin array. Other
applications may need to allocate a larger bin structure and simply
try again.

4 Applications

Many applications require spatial binning. In this section, we de-
scribe GPU implementations of three applications that benefit from
spatial binning. Particle systems have been used in many games
and films for many different kinds of effects. We first describe a
GPU particle simulation that uses binning for accelerating particle-
to-particle interaction. Next, we describe a method for path plan-
ning that uses spatial binning to detect and avoid local collisions
with other agents. Finally, we show how to implement a restricted
version of bucket sort using our binning algorithm.

4.1 Particle Systems

The DEM is used to simulate the behavior of particle systems both
on the CPU [Bell et al. 2005] as well as the GPU [Harada 2007]. We
use binning to construct a spatial data structure to facilitate nearest-
neighbor searches when computing particle collision forces. Us-
ing a spatial hashing function, R3 is implicitly subdivided into an
infinite uniform grid, which is used to map particle positions to
bin addresses. Each particle searches its bin and neighboring bins
for other particles. Setting the grid cell size to be approximately
the diameter of a particle allows us to limit our search to immedi-
ate neighbors while effectively limiting the maximum load on any
particular bin. Particle-to-particle collisions are modeled using the
spring and damping forces given by Equations 3 and 4 respectively
[Harada et al. 2007a]. Collisions occur (and forces are computed)
when the distance between two particles is less than the particle
diameter, d.

If xi and xj are the positions of particles i and j with vi and vj
denoting their velocities, then the relative position of particle j to
particle i is:

rij = xj − xi (1)

The force imparted on particle i when colliding with particle j is
computed as follows:

fij = fspringij + fdampij (2)

fspringij = −ks(d− |rij |)
rij
|rij |

(3)

fdampij = η(vj − vi) (4)

Here, ks is the spring coefficient and η is the damping coefficient.
The total repulsive force, fi, on particle i due to collision from par-
ticles in its neighborhood, N (particles in i’s bin and its immediate
neighboring bins), is computed as:

fi =
∑
kεN

fik (5)

Figure 1 shows still frames from our GPU-based particle system
with more than 500,000 particles. Every frame, the particles are
binned into a 128x128x128 grid that is used to compute particle
collisions.

4.2 Agent Avoidance

We also use our binning algorithm to conduct neighborhood
searches for autonomous agents in a path-planning simulation (Fig-
ure 4). In this application, the simulation domain is of a known
fixed size, so a uniform grid is appropriate. During path planning,
each agent must conduct a search over the agents in its local neigh-
borhood so it may alter its path to avoid collisions.

Each agent evaluates a number of fixed directions relative to the
direction in which it wishes to move. Each direction is evaluated to
determine the time to collision with nearby agents (Figure 3). Each
direction is given a fitness function based on the angle relative to
the desired direction and the time to collision. Time to collision
is determined by evaluating a swept circle-circle collision test, in
which the radius of each circle is equal to the radius of the bounding
circle of the associated agent. The updated velocity (Equation 8)
is then calculated based on the direction with the highest fitness
(Equation 7) and the minimum time to collision in that direction.

fitness(d) = wit(d) + (gi · d) · .5 + .5 (6)

di = arg max
pi∈V

fitness(pi) (7)

vi = di min(sa, sat(di)/5 ft) (8)

wi is a per-agent factor affecting the preference to move in the
global direction or avoid nearby agents, t(x) returns the minimum
time-to-collision with all agents in direction x, V is the set of dis-
crete directions to evaluate, gi is the preferred movement direction
determined by a separate global path planner, sa is the speed of
agent a, 5ft is time-delta since the last simulation frame, and vi
is the final velocity of agent i. This local avoidance method was
previously described in [Shopf et al. 2008].

Figure 3: Each agent evaluates a fixed number of potential move-
ment directions based on the positions and velocities of agents in
its current and adjacent bins.

Figure 4: Path finding with local avoidance is implemented on the
GPU using binning. Agents move from goal to goal while avoiding
local obstacles and each other.

4.3 Bucket Sort

Our binning algorithm can be used to implement a restricted version
of bucket sort. Because we cannot support duplicate entries in the
working set (they would fail the dual-depth test and be removed
during the reduction phase), this kind of bucket sort implementation
is limited to random arrays of unique values. It is also required that
a loose upper and lower bound on the input values be known. If
the input’s distribution is known, this distribution may be used to
partition the input domain such that the expected bin load is the
same for all bins. If the distribution is not known, then the bounds
are used to partition the input domain uniformly.

The binning algorithm is executed using the input data as the work-
ing set. When the binning algorithm terminates, a final gathering
pass is executed to collect the results. The gather pass takes a ver-
tex buffer containing a single point for each bin. The bins are in
ascending order in the vertex buffer such that the bin associated
with the lowest partition of the input domain is first in the array. In
the geometry shader, the associated bin’s contents are fetched and
are streamed out in ascending order. Because binning ensures that
the data within a bin is in ascending order, no sorting need be per-
formed in the geometry shader. The result of the gathering pass is
an output buffer containing the input data sorted in ascending order.

5 Results

We evaluated our binning technique using synthetic tests that bin
random sets of points based on their spatial locations. For each
experiment, we used a fixed bin count and averaged the time re-
quired to bin 100 randomly generated point sets of a given size. We
repeated this process for many different point set sizes and a few
different grid sizes. To map a 3D grid onto a 2D texture, a flat 3D
texture is used [Harris et al. 2003]. These experiments were con-
ducted on a 3 GHz CPU with 2 GB of RAM and an ATI Radeon

TM

HD 4870 graphics card. We did not check for overflow during our
experiments, but instead were careful to allocate enough bin capac-
ity such that overflow was statistically unlikely to occur.

5.1 Binning Performance

We first examine the effect of our stream reduction and predication
optimizations. The results are illustrated in Figure 5. In our ex-
periments, we found that predication is an effective optimization,
but also that stream reduction tends to be much more effective. We

also found that adding predication to stream reduction does not sig-
nificantly change performance. This result is to be expected, since
the predication merely skips draw calls which, because of stream
reduction, would do no work to begin with.

While we found stream reduction to be generally effective, an in-
teresting counter-example is visible in the 32x32x32 grid results in
Figure 5. In this case, the number of bins is small, which implies
that the average object count per bin (bin load) grows very quickly.
As the bin load increases, fewer items are successfully binned dur-
ing each pass, and the stream reduction gradually becomes less and
less effective at eliminating work. Eventually, the extra bandwidth
needed to repeatedly stream the active particles in and out of mem-
ory begins to outweigh the performance gained by removing items
from the working set. In contrast, the naive binning algorithm does
not need to repeatedly stream out its working set.

We found that this effect can be mitigated by simply delaying the
start of stream reduction for a few iterations. With this modification,
stream reduction is delayed until its eventual use will result in a
large number of items being removed from the stream all at once,
instead of removing them gradually and cycling the rest in and out
of memory. This results in a significant performance improvement,
compared to reducing on each iteration. This modification should
not be applied blindly, as it may be harmful when the bin loads are
low. We discuss a heuristic for choosing the number of iterations to
be performed before reducing the working set in the next paragraph.

The question of whether and how to delay stream reduction must be
decided on a case-by-case basis, but we can provide some general
guidelines. Intuition suggests (and our results indicate) that stream
reduction is most effective when the average bin load is low, and
when the fraction of occupied bins (bin spread) is high. A high
spread causes more items to be removed from the working set in
each pass, and a low load ensures that the removed items represent
a larger percentage of the total. In high-load, low-spread situations
(many particles going into a few bins), stream reduction is at a se-
rious disadvantage, and a delay is most likely to be helpful. Delays
may also be beneficial in high-load, high-spread situations (many
particles going into many bins).

In our experiments, we obtained the best results by delaying stream
reduction until the number of iterations exceeds the expected bin
load (which, for a uniform distribution, is equal to the particle count
divided by the bin count). We use delayed stream reduction in this
fashion for all subsequent experiments.

5.2 Comparison to Stencil Routing

We also compared our binning technique to the stencil routing im-
plementation described in [Harada 2007]. The results of these ex-
periments are shown in Figure 6. In addition to the conventional
stencil routing algorithm, we also tested an augmented version that
uses our predicated iteration optimization to cull redundant render-
ing passes, as described earlier. This simple modification provides
a significant performance improvement to the stencil routing algo-
rithm, and provides more rigorous competition for our proposed
technique. For these experiments, we used delayed stream reduc-
tion, as described above, using a delay count equal to the average
bin load.

On the far left side of the plots, CPU performance is the bottleneck,
and predicated stencil routing is extremely competitive. The stencil
routing algorithm incurs significantly less driver overhead, because
it does not need to switch render targets as often and does not need
to ping-pong between Z buffers and stream output targets. In the
limit, however, we find that our binning technique with stream re-
duction soundly defeats both variants of stencil routing.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200000 400000 600000 800000 1000000 1200000

Ti
m

e
 (

 s
e

co
n

d
s)

Number of Points

Binning: 1283 Grid

Delayed Reduction & Predication Reduction & Predication No Reduction & No Predication

“Delayed Reduction &
Predication” is exactly the same

as “Reduction & Predication”
here.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200000 400000 600000 800000 1000000 1200000

Ti
m

e
 (

se
co

n
d

s)

Number of Points

Binning: 643 Grid

Delayed Reduction & Predication Reduction & Predication No Reduction & No Predication

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200000 400000 600000 800000 1000000 1200000

Ti
m

e
 (

se
co

n
d

s)

Number of Points

Binning: 323 Grid

Delayed Reduction & Predication Reduction & Predication No Reduction & No Predication

Figure 5: Performance comparison between different binning opti-
mizations on different uniform grid sizes. Delayed reduction has no
effect on performance for the 128x128x128 grid (top) because our
heuristic chooses not to delay in this case.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200000 400000 600000 800000 1000000 1200000

Ti
m

e
 (

se
co

n
d

s)

Number of Points

Binning vs. Stencil Routing: 1283 Grid

Binning: Delayed Reduction & Predication Binning: No Reduction & No Predication

Stencil Routing with Predication Stencil Routing

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200000 400000 600000 800000 1000000 1200000

Ti
m

e
 (

se
co

n
d

s)

Number of Points

Binning vs. Stencil Routing: 643 Grid

Binning: Delayed Reduction & Predication Binning: No Reduction & No Predication

Stencil Routing with Predication Stencil Routing

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200000 400000 600000 800000 1000000 1200000

Ti
m

e
 (

se
co

n
d

s)

Number of Points

Binning vs. Stencil Routing: 323 Grid

Binning: Delayed Reduction & Predication Binning: No Reduction & No Predication

Stencil Routing with Predication Stencil Routing

Figure 6: Comparison between binning and stencil routing on dif-
ferent uniform grid sizes.

6 Conclusion

We have presented a new method for sorting point data into spa-
tial bins using graphics hardware with a standard graphics API.
Our technique is more efficient than stencil routing because it re-
duces the working set as it iterates and stops iterating once it is
done. We show how binning can be implemented without introduc-
ing CPU/GPU synchronization.

Acknowledgements

The authors thank the members of AMD’s Game Computing Appli-
cations group for their thoughtful discussion and encouragement.

References

AMADA, T., IMURA, M., YOSHIHIRO YASUMURO, Y. M., AND
CHIHARA, K. 2004. Particle-based fluid simulation on gpu.
In ACM Workshop on General-Purpose Computing on Graphics
Processors, ACM, New York, NY, USA.

BELL, N., YU, Y., AND MUCHA, P. J. 2005. Particle-based sim-
ulation of granular materials. In SCA ’05: Proceedings of the
2005 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ACM, New York, NY, USA, 77–86.

EVERITT, C., 2001. Interactive order-independent transparency.
NVIDIA White Paper, May.

HARADA, T., KOSHIZUKA, S., AND KAWAGUCHI, Y. 2007.
Sliced data structure for particle-based simulations on gpus. In
GRAPHITE ’07: Proceedings of the 5th International Confer-
ence on Computer Graphics and Interactive Techniques in Aus-
tralia and Southeast Asia, ACM, New York, NY, USA, 55–62.

HARADA, T., KOSHIZUKA, S., AND KAWAGUCHI, Y. 2007.
Smoothed particle hydrodynamics on gpus. 63–70.

HARADA, T. 2007. Real-time rigid body simulation on gpus. In
GPU Gems 3, H. Nguyen, Ed. Addison-Wesley, Upper Saddle
River, NJ, USA, ch. 29.

HARRIS, M. J., BAXTER, W. V., SCHEUERMANN, T., AND
LASTRA, A. 2003. Simulation of cloud dynamics on graph-
ics hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 92–101.

MAMMEN, A. 1989. Transparency and antialiasing algorithms
implemented with the virtual pixel maps technique. IEEE Com-
puter Graphics Applications 9, 4, 43–55.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
Eurographics Association, 41–50.

SHOPF, J., BARCZAK, J., OAT, C., AND TATARCHUK, N. 2008.
March of the froblins: Simulation and rendering massive crowds
of intelligent and detailed creatures on gpu. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 classes, ACM, New York, NY, USA, 52–
101.

