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Abstract. We prove that the categories of C-dioids of Hopkins 2008 and
of µ-continuous Chomsky-algebras of Grathwohl, Henglein and Kozen
2013 are the same.

1 Introduction

The equational theory of the class of context-free languages has been axiomatized
in 2013 by Grathwohl, Henglein and Kozen [3], using µ-terms as notation system
for context-free grammars. In order to be able to interpret µ as a least fixed point
operator, they consider algebraically closed idempotent semirings, called “Chom-
sky algebras”. An idempotent semiring (M,+, ·, 0, 1) is algebraically closed if
every finite system of inequations x1 ≥ p1(x1, . . . , xn), . . . , xn ≥ pn(x1, . . . , xn),
where p1, . . . , pn are polynomials, has a least solution. The essential part of their
axiomatization is the µ-continuity axiom, relating · with the least fixed point
operator µ and a least upper bound operation

∑
:

a · µxt · b =
∑
{ a ·mxt · b | m ∈ N },

where a, b ∈M and mxt is the m-fold iteration of the map x 7→ t.
To give an algebraic generalization of the Chomsky hierarchy of language

classes to classes of subsets of monoids, Hopkins [6] has introduced “monadic
operators” A that assign to each monoid M a set AM ⊆ PM of its subsets;
AM is assumed to contain all finite subsets of M , so (AM,∪, ·, ∅, {1}) is an
idempotent semiring or “dioid” in the terminology of [4, 6]. An “A-dioid” is a
dioid (M,+, ·, 0, 1) where (i) each U ∈ AM has a least upper bound

∑
U ∈ M

and (ii) for each U, V ∈ AM , (
∑
U) · (

∑
V ) =

∑
(U · V ). This can also be seen

as a continuity assumption for ·, and, assuming (i), is equivalent to:

a(
∑

U)b =
∑

(aUb), for all U ∈ AM,a, b ∈M.
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We here show that if A is specialized to the operator C that returns the context-
free subsets of monoids, then the C-dioids and the µ-continous Chomsky-algebras
are the same. Since both approaches give a notion of context-freeness, this is to
be be expected, but had been left unresolved in Leiß [11].

Both definitions have their advantages and drawbacks. The main advantage
of the µ-continuous Chomsky algebras is, of course, that they lead to an in-
finitary axiomatization of the equational theory of context-free langugages. A
disadvantage is that µ-terms are just formal solution terms and, when nested,
intuitively incomprehensible; moreover, the context-free subsets are kept in the
background. An advantage of the C-dioids is that they bring the context-free
subsets in front and separate a completeness property of the partial order from
the sup-continuity of the product; this allows for algebraic constructions like
coproduct, coequalizer and tensor product in fairly standard ways that extend
to other classes of dioids (cf. Hopkins and Leiß [8]). A drawback of the notion of
C-dioid may be its universal second-order formulation, which hides an equivalent
formulation by infinitary equational implications.

2 Monadic Operators and Language Classes

Let M be the category of monoids (M, ·, 1) and homomorphisms between monoids.
A partially ordered monoid (M, ·, 1,≤) is a monoid (M, ·, 1) with a partial order
≤ ⊆M ×M , with respect to which · is monotone in each argument.

A semiring R = (R,+, 0, ·, 1) is a set R with two operations +, · : R×R→ R,
such that (R,+, 0) and (R, ·, 1) are monoids, + is commutative, and the zero and
distributivity laws holds:

∀a, b, c, d : a0b = 0, a(b+ c)d = abd+ acd.

A dioid or idempotent semiring D = (D,+, 0, ·, 1) is a semiring in which + is
idempotent. Each dioid D has a natural partial order ≤, defined by

a ≤ b :⇐⇒ a+ b = b.

Let D be the category of dioids and dioid-homomorphisms.
If M = (M, ·M , 1M ) is a monoid, its power set PM is a partially ordered

monoid (PM, ·, 1,⊆), using

A ·B := { a ·M b | a ∈ A, b ∈ B } and 1 := {1M},

and a dioid (PM,+, ·, 0, 1), using A+B := A ∪B and 0 := ∅.
We review some definitions of Hopkins [6]. A monadic operator A is a functor

A : M→ D such that for each monoid M

A0) AM is a set of subsets of M ,
A1) AM contains each finite subset of M ,
A2) AM is closed under product (hence a monoid),
A3) AM is closed under union of sets from AAM (hence a dioid), and
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A4) A preserves monoid-homomorphisms: if f : M → N is a homomorphism, so
is Af : AM → AN , where for U ⊆M

Af(U) := { f(u) | u ∈ U }.

For brevity, we often write f̃ instead of Af .

Remark 1. Each monadic operator A gives rise to a subcategory DA of D and is
the left adjoint of an adjunction (A, Â, η, ε) : M→ DA (cf. Mac Lane [13]), where

Â : DA → M is the forgetful functor and for M ∈ M, ηM (m) = {m} ∈ AM ,
and εM : AM → M maps U ∈ AM to its least upper bound

∑
U ∈ M . This

adjunction gives rise to a monad T = (Â ◦A, η, µ), an endofunctor on M, where
the unit η is taken from the adjunction and the product µ maps U ∈ AAM to⋃
U ∈ AM . While Â is called a monadic functor in category theory (see [13],

p. 139), Hopkins [6] calls A a monadic operator , a term we also use here.

Example 1. The power set operator P is a monadic operator. The operator F
that assigns to M the set FM of all finite subsets of M is a monadic operator.

Example 2. The operator R that assigns to M the closure of FM under +
(union), · (elementwise product) and ∗ (iteration, Kleene’s star), is monadic.
Hopkins [6] defines monadic operators C and T that select the context-free sub-
sets CM and the Turing/Thue-subsets TM of a monoid.

We give a simpler, but equivalent definition of C in Section 3 below. A cor-
rection of the definition of T in [6] is given in Hopkins and Leiß [8].

Let M be a partially ordered monoid. For a ∈ M and U ⊆ M let U < a
mean that a is an upper bound of U , i.e. for all u ∈ U , u ≤ a. M is A-complete,
if each U ∈ AM has a least upper bound

∑
U ∈ M . M is A-distributive, if for

all U, V ∈ AM ,
∑

(UV ) =
∑
U ·

∑
V .

A-distributivity states
∑

-continuity of · in both arguments simultaneously.
One can as well state it in each argument separately, by

∑
(aU) = a(

∑
U) and∑

(Ub) = (
∑
U)b for all a, b ∈M,U ∈ AM , or combined to a(

∑
U)b =

∑
aUb.

Proposition 1. Let M be a partially ordered monoid and U, V ∈ PM such that
least upper bounds u :=

∑
U and v :=

∑
V exist. Then (i) implies (ii), where

(i) for all a, b ∈M ,
∑
aUb = a(

∑
U)b and

∑
aV b = a(

∑
V )b,

(ii)
∑

(UV ) =
∑
U ·

∑
V .

Notice that the existence of
∑
aUb and

∑
aV b in (i) and of

∑
(UV ) in (ii) is

not assumed, but is part of the claims.

Proof. Clearly, UV < uv. To prove that uv is
∑

(UV ), we take c ∈ M with
UV < c and show uv ≤ c. For each a ∈ U , by (i),

∑
aV 1 exists, and as

aV 1 ⊆ UV < c, using (i) we have

av = a(
∑

V )1 =
∑

aV 1 ≤ c.

Hence Uv = 1Uv < c. By (i),
∑

1Uv exists, and uv = 1(
∑
U)v =

∑
1Uv ≤ c.
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Corollary 1. If the partially ordered monoid M is A-complete, the following
conditions are equivalent:

D1) (weak A-distributivity): for all a, b ∈M and U ∈ AM ,
∑
aUb = a(

∑
U)b.

D2) (strong A-distributivity): for all U, V ∈ AM ,
∑

(UV ) =
∑
U ·

∑
V .

An A-dioid D is a partially ordered monoid that is A-complete and A-
distributive.

Every A-dioid (M, ·, 1,≤) is a dioid, using 0 and + defined by 0 :=
∑
∅ and

a+ b :=
∑
{a, b}. The zero and distributivity laws follow from D1.

The monadic operator A provides us with a notion of continuous homomor-
phisms between A-dioids, as follows.

D3) A homomorphism f : M → M ′ is A-continuous, if for all U ∈ AM and

y > f̃(U) there is some x > U with y ≥ f(x).

An A-morphism is a ≤-preserving, A-continuous monoid-homomorphism. We
write DA for the category of A-dioids and A-morphisms.

For order-preserving homomorphism f : M →M ′, A-continuity of f reduces
to:

f(
∑

U) =
∑

f̃(U) for all U ∈ AM.

Every A-morphism is also a dioid-homomorphism.

Proposition 2. If M is an A-dioid, then for all a, b ∈M and U, V ∈ AM :

1. a(
∑
U)b =

∑
aUb and

∑
(UV ) =

∑
U ·

∑
V ,

2. a+ (
∑
U) =

∑
(a+ U) and

∑
(U + V ) =

∑
U +

∑
V .

Proof. 2. Since {U, V } ∈ FAM ⊆ AAM , we have U + V =
⋃
{U, V } ∈ AM ,

and so there is a least upper bound
∑

(U + V ) ∈M . Hence∑
U +

∑
V ≤

∑
(U + V ) +

∑
(U + V ) =

∑
(U + V ).

Besides, U +V <
∑
U +

∑
V, so

∑
(U +V ) ≤

∑
U +

∑
V. Claim 1 follows from

Corollary 1. 2

The free monoid X∗ generated by the set X consists of all finite sequences
of elements from X, with concatenation as · and the empty sequence as 1. A
monomial m(x1, . . . , xn) in x1, . . . , xn is a formal product of elements of X, and
a polynomial p(x1, . . . , xn) a formal sum of monomials in x1, . . . , xn. For elements
a1, . . . , an ∈ M , we write mM (a1, . . . , an) for the value of the monomial in the
monoid M and pM (a1, . . . , an) for the value of the polynomial p in the dioid M .

Corollary 2. If M is an A-dioid and p(x1, . . . , xn) a polynomial in x1, . . . , xn,
then pAM (U1, . . . , Un) ∈ AM for all U1, . . . , Un ∈ AM , and∑

pAM (U1, . . . , Un) = pM (
∑

U1, . . . ,
∑

Un).
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Proof. In an A-dioid M , for U, V ∈ AM and a, b ∈M we have

(
∑

U)(
∑

V ) =
∑

(UV ) and a(
∑

U)b =
∑

(aUb).

As AM ⊇ FM is closed under product, we have mAM (U1, . . . , Un) ∈ AM for
each monomial m(x1, . . . , xn), and

mM (
∑

U1, . . . ,
∑

Un) =
∑

mAM (U1, . . . , Un).

Since AM is closed under ∪ and (
∑
U) + (

∑
V ) =

∑
(U ∪ V ), this extends to

pM (
∑

U1, . . . ,
∑

Un) =
∑

pAM (U1, . . . , Un). 2

A polynomial in x1, . . . , xn over M or with parameters from M is a polynomial
in x1, . . . , xn whose monomials may have additional factors taken from M . The
corollary holds for polynomials with parameters as well.

3 C-Dioids

Every monoid M gives rise to the idempotent semiring (PM,+, ·, ∅, {1M}). PM
is complete: every Y ⊆ PM has a supremum,

∑
Y :=

⋃
Y , and the operations

+ and · are
∑

-continuous, i.e. for Y, Z ⊆ PM we have⋃
Y +

⋃
Z =

⋃
{A+B | A ∈ Y,B ∈ Z },⋃

Y ·
⋃
Z =

⋃
{A ·B | A ∈ Y,B ∈ Z }.

Any finite system p of polynomial inequations (with parameters from PM)

x1 ≥ p1(x1, . . . , xn), . . . , xn ≥ pn(x1, . . . , xn)

has a least solution, a least A ∈ (PM)n with A ≥ pPM (A) (componentwise),
where

A :=
⋃
{Ak | k ∈ N } with Ai =

⋃
{Ai,k | k ∈ N }

and the sequence of tuples Ak ∈ (PM)n, k ∈ N is defined by

A0 := ∅n, Ak+1 := pPM (Ak) := (pPM1 (Ak), . . . , pPMn (Ak)).

For complete partial order (P,≤, 0) and
∑

-continuous monotone f : P → P
let µf be the least a ∈ P with f(a) ≤ a. A well-known fact about least solutions
is:

Lemma 1. Let f : P → P and g : Q → Q be
∑

-continuous between the com-
plete partial orders (P,≤P , 0P ) and (Q,≤Q, 0Q). If h : P → Q is

∑
-preserving

with h(0) = 0 and h ◦ f = g ◦ h, then h(µf) = µg.
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We are henceforth considering idempotent semirings, like the AM , which
need not be complete: the existence of least upper bounds is restricted to A-
subsets.

For a monoid M = (M, ·M , 1M ), let CM , the set of context-free subsets of
M , be the closure of FM under (binary) union and under components of least
solutions in PM of polynomial systems over CM : the components A1, . . . , An of
the least solution in PM of any inequation system

x1 ≥ p1(x1, . . . , xn), . . . , xn ≥ pn(x1, . . . , xn)

with polynomials pi in x1, . . . , xn with parameters from CM belong to CM .
This inductive definition of CM and C differs from the grammatical one in

Hopkins [6]. We prove the equivalence of both definitions in Remark 2 below.

Example 3. For a monoid M with a, b, c ∈M , the least solution of x ≥ {a} · x ·
{b}+ {c} in PM is L = { ancbn | n ∈ N }, hence L ∈ CM .

Theorem 1. C is a monadic operator.

Proof. Let M be a monoid M . By definition, CM satisfies A0, A1, as FM ⊆
CM ⊆ PM , and it satisfies A2 as it contains with A,B ∈ CM the least solution
in PM of x ≥ Ay, y ≥ B, which is AB. By Theorem 9 of Hopkins [6], the
conjunction of A3 and A4 is equivalent (over A0, A1, A2) to the condition

A5 For monoids M,N , every “substitution” homomorphism σ : M → CN ex-
tends to a homomorphism σ∗ : CM → CN by

σ∗(U) :=
⋃
{σ(m) | m ∈ U }.

To show A5, we prove σ∗(U) ∈ CN by induction on U ∈ CM . If U ∈ FM , then
σ̃(U) ∈ FCN , hence σ∗(U) =

⋃
σ̃(U) ∈ CN since CN is closed under binary

union. If U = A ∪ B with A,B ∈ CM , then σ∗(U) = σ∗(A) ∪ σ∗(B) ∈ CN , by
induction and closure of CN under binary union.

Finally, let U be the first component of the least solution in PM of the
system x ≥ p(x) over CM , where p(x) = q(x,y)[y/A] andA are the parameters
Aj ∈ CM in p(x). By induction, σ∗(A) ∈ CN . Let x ≥ pσ∗(x) be the system over
CN , where pσ

∗
(x) := q(x,y)[y/σ∗(A)] is obtained by replacing the parameters

as shown. As σ∗ : PM → PN is a homomorphism and preserves ∪, we have

σ∗(pPMi (B)) = σ∗(qPMi (B,A)) = (qPNi (σ∗(B), σ∗(A)) = (pσ
∗

i )PN (σ∗(B))

for each i, so σ∗ ◦ pi = pσ
∗

i ◦ σ∗ : PM → PN . Since σ∗ preserves
⋃

, it maps
the least fixed-point of p in (PM)n to the least fixed-point of pσ

∗
in (PN)n, by

Lemma 1. It follows that σ∗(U) is the first component of the least solution of
pσ
∗
(x) in PN , hence lies in CN . 2

Remark 2. Hopkins [6, 7] defines C differently, as follows. First, for free monoids
X∗, one puts

CX∗ := {L(G) | G is a context-free grammar over X }.
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Here, a context-free grammar G = (Q,S,H) over X has a set Q disjoint from X,
with distinguished element S ∈ Q, and a finite set H ⊆ Q×(Q∪X)∗ of “context-
free” rules. The language L(G) ⊆ X∗ is defined as usual. The class of context-free
languages is closed under homomorphisms: If h : X∗ → Y ∗ is a homomorphism,
so is h̃ : CX∗ → CY ∗: a context-free grammar G = (Q,S,H) over X gives rise

to a context-free grammar Gh = (Q,S,Hh) over Y with h̃(L(G)) = L(Gh).
For arbitrary monoid M , one takes a generating subset X ⊆M and uses the

canonical homomorphism hX : X∗ →M , where hX(x) = x for x ∈ X, to put

CM = { h̃X(L(G)) | G a context-free grammar over X }.

This is independent of the choice of X, as for any generating set Y ⊆M there is a

homomorphism h : X∗ → Y ∗ with hX = hY ◦h, so that h̃X(L(G)) = h̃Y (L(Gh)).
Let CH be the operator defined by Hopkins. To show C = CH , fix a monoid

M and a generating subset Y ⊆M .

Claim. CHM ⊆ CM .

Proof. Let U ∈ CHM and G = (X,S,H) a context-free grammar over Y , with

finite set H ⊆ X × (X ∪ Y )∗, such that U = h̃Y (L(G)). For each nonterminal
xi ∈ X = {x1, . . . , xn}, let pi(x,y) =

∑
{m(x,y) | (xi,m(x,y)) ∈ H }. Then

x ≥ p(x,y) is a polynomial system over Y ∗. Its least solution A in PY ∗ consists
of the languages Ai = LG(xi) ⊆ Y ∗, where L(G) = LG(x1), say. To show

h̃Y (A) = (µxp)PM (hY (y)) it is suffices by Lemma 1 that for any B ∈ PY ∗,

h̃Y (pPY
∗
(B,y)) = pPM (h̃Y (B), hY (y)).

(Parameters y resp. hY (y) are interpreted by the corresponding singleton sets.)

But this is clear by the definition of hY . It follows that U = h̃Y (LG(x1)) is the
first component of µxpPM (hY (y)), and hence belongs to CM . /

Claim. CM ⊆ CHM .

Proof. We proceed by induction on U ∈ CM . If U = {w1, . . . , wm} ∈ FM ,
there are y1, . . . , ym ∈ Y ∗ with hY (y1) = w1, . . . , hy(ym) = wm and a context-
free grammar G = (X,S,H) over Y with L(G) = {y1, . . . , ym}. Hence U =

{hY (y1), . . . , hY (ym)} = h̃Y (L(G)) ∈ CHM . The case U = U1 ∪ U2 is left to
the reader. Finally, let U be a component of the least solution U in PM of
a polynomial system x ≥ p(x) over CM , using p(x) = q(x,B) to show the
parameters B from CM . By induction, for each Bj of B there is a context-free

grammar Gj = (Xj , Sj , Hj) over Y such that Bj = h̃Y (L(Gj)). Let X be the
disjoint union of x with these Xj . Each inequation xi ≥ qi(x,B) of x ≥ p(x)
gives rise to context-free grammar rules (xi,mi,1(x,S)), . . . , (xi,mi,ni

(x,S)) ∈
X×(X∪Y )∗, where mi,k(x,B) are the monomials of qi(x,B). Let G(X,S,H) be
the context-free grammar over Y where S is the variable from x corresponding to
U and H is the union of the Hj with the rules obtained from the inequations xi ≥
qi(x,S), i = 1, . . . , n. Then LG(Sj) = L(Gj), hence h̃Y (LG(Sj)) = h̃Y (L(Gj)) =

Bj , and h̃Y (LG(xi)) = Ui. Therefore, U = h̃Y (L(G)). /
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4 µ-Continuous Chomsky Algebras

Let X be an infinite set of variables. The set of µ-terms over X is defined by
the grammar

t := x | 0 | 1 | (s · t) | (s+ t) | µxt.

A term not containing µ will be called (somewhat unprecisely) a polynomial .
The free occurrences of variables in a term are defined as usual. By free(t) we
denote the set of variables having a free occurrence in t; in particular, free(µxt) =
free(t) \ {x}. By t(x1, . . . , xn) we indicate free(t) ⊆ {x1, . . . , xn}. In µxt all
free occurrences of x in t are bound by µx. By t[x/s] we denote the result of
substituting all free occurrences of x in t by s, renaming bound variables of t to
avoid capture of free variables of s by bindings in t.

A partially ordered µ-semiring (M,+, ·, 0, 1,≤) is a semiring (M,+, ·, 0, 1)
with a partial order ≤ on M , where every term t defines a function tM : (X →
M)→M , so that for all variables x ∈ X and terms s, t we have:

1. for all valuations g : X →M ,

0M (g) = 0,
1M (g) = 1,
xM (g) = g(x),

(s+ t)M (g) = sM (g) + tM (g),
(s · t)M (g) = sM (g) · tM (g),

if sM ≤ tM , then µxsM ≤ µxtM ,

2. tM is monotone with respect to the pointwise order on X →M ,
3. tM (g) = tM (h), for all valuations g, h : X →M which agree on free(t),
4. t[x/s]M (g) = tM (g[x/sM (g)]), for all valuations g : X →M .

When free(t) ⊆ {x1, . . . , xn} and g(xi) = ai for 1 ≤ i ≤ n, instead of tM (g) we
often write tM [x1/a1, . . . , xn/an] or just tM (a1, . . . , an).

The final two conditions above are called the coincidence and substitution
properties; in the latter, g[x/a] denotes the valuation that agrees with g, except
that it assigns a to x. Clearly, the substitution property extends to simultaneous
substitutions [x1/s1, . . . , xn/sn].

Following Grathwohl et al. [3], an idempotent semiring (M,+, ·, 0, 1) is al-
gebraically closed or a Chomsky algebra, if every finite system of polynomial
inequations

x1 ≥ p1(x1, . . . , xn, y1, . . . , ym),
...

xn ≥ pn(x1, . . . , xn, y1, . . . , ym), abbreviated x ≥ p(x,y),

(1)

has least solutions, i.e. for all b ∈Mm there is a least a = a1, . . . , an ∈Mn such
that ai ≥ pMi (a, b) for i = 1, . . . , n, where ≤ is the natural partial order on M
defined by a ≤ b iff a+b = b. Of course, for each b the least solution a is unique.

Example 4. The set CX∗ of context-free languages over X is the smallest set
L ⊆ PX∗ such that (i) each finite subset of X∪{ε} is in L and (ii) if x ≥ p(x,y)
is a polynomial system, and B = B1, . . . , Bm ∈ L, then the components Ai of
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the least A = A1, . . . , An ∈ PX∗ with A ⊇ pPX
∗
(A,B) belong to L. With

the operations inherited from PX∗, (CX∗,+, ·, 0, 1) is a Chomsky algebra. For
example, { anbn | n ∈ N } is a context-free language over X ⊇ {a, b}; it is the
least solution of x ≥ axb+ 1 relative to the valuation g(a) = {a}, g(b) = {b}.

The class of regular languages over X does not form a Chomsky algebra.

Lemma 2. (Grathwohl et al. [3]) Every Chomsky algebra M is an idempotent,
partially ordered µ-semiring, if for all µ-terms t, variables x and valuations
g : X →M we take

µxtM (g) := the least a ∈M such that tM (g[x/a]) ≤ a. (2)

Moreover, every inequation system t(x,y) ≤ x with µ-terms t(x,y) has least
solutions in M , i.e. for all parameters b from M there is a least tuple a in M
such that tM (a, b) ≤ a.

Proof. See Lemma 2.1 in [3] or, in more detail, Lemma 8 in [11].

A Chomsky algebra M is µ-continuous, if for all a, b ∈ M , all µ-terms t,
variables x and valuations g : X →M it satisfies the µ-continuity condition

a · µxtM (g) · b =
∑
{ a ·mxtM (g) · b | m ∈ N }, (3)

where mxt is defined inductively by 0xt := 0, (m + 1)xt := t[x/mxt]. This
condition of Grathwohl et al. [3] generalizes the ∗-continuity condition

a · c∗ · b =
∑
{ a · cm · b | m ∈ N }

of Kozen [9]; every µ-continuous Chomsky algebra is a ∗-continuous Kleene al-
gebra, if c∗ is defined by µx(cx+ 1).

To prove that every µ-continuous Chomsky algebra is a C-dioid, we will below
need a vector-version of the µ-continuity condition. By a theorem of Bekić [1],
deBakker and Scott [2], the n-ary least-fixed-point operator can be reduced to
the unary one. The theorem applies to complete (or at least ω-complete) partial
orders only, but CX∗ is far from being ω-complete. So it needs to be checked
that the suprema used in Bekić’s reduction exist also in the incomplete partial
orders of CM . This can be done, leading to a definition of term vectors µxt that
embody Bekić’s reduction (cf. Leiß and Ésik [12]).

For vectors t = t1, . . . , tn of terms and x = x1, . . . , xn of pairwise different
variables, we define the term vector µxt as follows. If n = 1, then µxt := µx1t1.
If n > 1, x = (y, z) and t = (r, s) with term vectors r, s of lengths |y|, |z| < n,
then µxt is

µ(y, z)(r, s) := (µy.r[z/µzs], µz.s[y/µyr]). (4)

It can be shown that the values of µxt in Chomsky algebras do not depend
on the choice of splitting x into y, z in the definition.

Lemma 3. For any Chomsky algebra M and valuation g : X → M , µxtM (g)
is the least tuple a in M such that tM (g[x/a]) ≤ a.

9



Proof. See Lemma 14 of Leiß [11].

It is essential that the unary version of µ-continuity implies the n-ary version:

Lemma 4. Let M be a µ-continuous Chomsky algebra and g : X →M . Then

a · µxtM (g) · b =
∑
{a ·mxtM (g) · b | m ∈ N },

for any term vector t and vectors a, b of elements of M of the same length as t.

Proof. See Corollary 23 in Leiß [11].

5 C-Dioids and µ-Continuous Chomsky Algebras

We now prove our result, that the categories of C-dioids and µ-continuous Chom-
sky algebras are the same.

Theorem 2. Every C-dioid M is a µ-continuous Chomsky algebra.

Proof. To simplify the notation, we talk of a “polynomial system x ≥ p(x) over
M” or with parameters from M , meaning that x ≥ p(x,y) is considered with a
fixed valuation g : X →M that provides the values for the parameters y. Hence
we also write µxpM instead of µxpM (g).

(i) M is algebraically closed: Let x ≥ p(x) be a polynomial system with pa-
rameters b from M . In PM it has a least solution A = µxp CM with components
Ai ∈ CM (where parameters b ∈M are interpreted by {b} ∈ FM ⊆ CM). Since
M is a C-dioid, the suprema ai :=

∑
Ai ∈ M (1 ≤ i ≤ n) exist. We show that

a = (a1, . . . , an) =
∑
A is the least solution of x ≥ p(x) in M , i.e.

µxpM =
∑

µxpCM =
∑

A. (5)

By the distributivity properties of C-dioids, a is a solution of x ≥ p(x) in
M , using Corollary 2:

pMi (a) = pMi (
∑

A1, . . . ,
∑

An) =
∑

pCMi (A1, . . . , An) ≤
∑

Ai = ai.

To show that a is the least solution of x ≥ p(x) in M , let c be any solution
in M , hence ci ≥ pMi (c) for 1 ≤ i ≤ n. It is sufficient to show c > A, because a
is the least upper bound of A. We know that

Ai =
⋃
{ pPMi (Am) | m ∈ N }

where A0 := ∅, Am+1 := pPM (Am). For m = 0, obviously c > A0. Suppose
c > Am for some m. By induction on pi, p

CM
i (Am) < pMi (c) for each i, hence

Am+1 < p
M (c) ≤ c. Therefore, A < c.

(ii) M is µ-continuous: Any valuation g : X → M is the composition of a
valuation g′ : X → CM with

∑
: CM →M : if g′(x) = {g(x)}, g(x) =

∑
g′(x).

10



Claim. For every µ-term t(x1, . . . , xn) and sets A1, . . . , An ∈ CM ,

tM (
∑

A1, . . . ,
∑

An) =
∑

tCM (A1, . . . , An). (6)

Proof. By induction on t. We abbreviate A1, . . . , An by A. For atomic terms 0
and 1, 0M =

∑
∅ =

∑
0CM and 1M =

∑
{1M} =

∑
1CM . For variables,

xMi (
∑

A) =
∑

Ai =
∑

xCMi (A).

For term (r + s),

(r + s)M (
∑

A) = rM (
∑

A) +M sM (
∑

A)

=
∑
{
∑

rCM (A),
∑

sCM (A)}

=
∑

(rCM (A) ∪ sCM (A))

=
∑

(r + s)CM (A).

For term (r · s), we use the distributivity property of the C-dioid M

(r · s)M (
∑

A) = rM (
∑

A) ·M sM (
∑

A)

= (
∑

rCM (A)) ·M (
∑

sCM (A))

=
∑

(rCM (A) ·CM sCM (A))

=
∑

(r · s)CM (A).

Finally, consider µxr. Let f : CM → CM be f(B) = rCM (A, B), g : M →M
be g(b) = rM (

∑
A, b). By the induction hypothesis, we have h ◦ f = g ◦ h for

h =
∑

, i.e. for each B ∈ CM ,∑
rCM (A, B) = rM (

∑
A,

∑
B).

We would like to use Lemma 1 to conclude that
∑

= h maps the least fixed-point
of f , µxrCM (A), to the least fixed point of g, µxrM (

∑
A). The lemma does not

apply literally, since the orders on CM and M are not complete. For CM , this
is not a problem, since we do have µxrCM (A) =

⋃
{mxrCM (A) | m ∈ N },

because tCM (v) = tPM (v) for each valuation v : X → CM (c.f. Lemma 10 in
[11]), and the equation holds in PM , which is complete. For M , by the argument
below the least fixed point of g also is the

∑
of the finite iterations of g, i.e.

µxrM (
∑

A) =
∑
{mxrM (

∑
A) | m ∈ N }.

Namely, by induction along the well-ordering ≺ on µ-terms of Kozen [10], in
which mxr ≺ µxr for each m ∈ N, we may also assume mxrM (

∑
A) =

11



∑
mxrCM (A) for all m ∈ N. Therefore,∑

µxrCM (A) =
∑⋃

{mxrCM (A) | m ∈ N }

=
∑
{
∑

mxrCM (A) | m ∈ N }

=
∑
{mxrM (

∑
A) | m ∈ N }.

This implies
∑
µxrCM (A) ≤ µxrM (

∑
A), since mxrM (

∑
A) ≤ µxrM (

∑
A)

by induction on m. On the other hand,
∑
µxrCM (A) solves rM (

∑
A, x) ≤ x in

M , by the induction hypothesis for r and a fixed-point property of µxrCM (A):

rM (
∑

A,
∑

µxrCM (A)) =
∑

rCM (A, µxrCM (A)) ≤
∑

µxrCM (A).

Hence,
∑
µxrCM (A) lies above the least solution of rM (

∑
A, x) ≤ x, i.e. we

have the reverse inequation µxrM (
∑
A) ≤

∑
µxrCM (A) also. /

We can now prove the µ-continuity condition (3) for valuations g : X → M
of the form g =

∑
g′ for some g′ : X → CM .

Claim. For all µ-terms µxt with t(x,x), allA = A1, . . . , An ∈ CM , and a, b ∈M :

a · µxtM (
∑

A) · b =
∑
{ a ·mxtM (

∑
A) · b | m ∈ N }. (7)

Proof. Using the previous Claim (6) in the first and last step, we have

a · µxtM (
∑

A) · b = (
∑
{a})(

∑
µxtCM (A))(

∑
{b})

=
∑

({a} · µxtCM (A) · {b})

=
∑

({a} ·
⋃
{mxtCM (A) | m ∈ N } · {b})

=
∑

(
⋃
{ {a} ·mxtCM (A) · {b} | m ∈ N })

=
∑
{
∑

({a} ·mxtCM (A) · {b}) | m ∈ N }

=
∑
{ (

∑
{a}) · (

∑
mxtCM (A)) · (

∑
{b}) | m ∈ N }

=
∑
{ a ·mxtM (

∑
A) · b | m ∈ N }. /

This completes the proof of the theorem. 2

We now come to the reverse inclusion, that every µ-continuous Chomsky
algebra is a C-dioid, i.e. is C-complete and C-distributive.

The idea is, of course, that for any polynomial system x ≥ p(x,y), if U ∈ CM
is a component of the least solution U of x ≥ pCM (x,A) with parameters A,
then all components of U have least upper bounds, namely the components of
the least solution u of x ≥ pM (x,

∑
A) in M . And since U is the union of

finite iterations Um = mxpCM (A), these Um should have least upper bounds
um = mxpM (

∑
A), which make up u =

∑
{um | m ∈ N }. Since the pi contain

products, to show um =
∑
Um the induction must provide the distributivity

property
∑

(UV ) = (
∑
U)(

∑
V ) for all U, V among Um,A.

12



Theorem 3. Every µ-continuous Chomsky algebra M is a C-dioid.

Proof. By induction on the construction of CM , we show that for all U, V ∈ CM

a) U and V have least upper bounds,
∑
U resp.

∑
V ∈M , and

b) UV has a least upper bound, and
∑

(UV ) = (
∑
U)(

∑
V ).

Then M is a C-dioid. By Proposition 1, it is sufficient to show a) and

b’) For all a, b ∈M ,
∑

(aUb) = a(
∑
U)b and

∑
(aV b) = a(

∑
V )b.

If U, V belong to FM , a) and b’) are true since M is a dioid. Otherwise, there
is a polynomial system x ≥ p(x,y) and parameters A ∈ (CM)k such that U, V
belong to the least solution U of x ≥ pPM (x,A) in PM . By induction, a) and
b’), hence b), hold for all U, V ∈ A. We must show a) and b’) for all U, V ∈ U .

By induction onm, we first prove forUm := mxpCM (A), um := mxpM (
∑
A)

(i)
∑
Um exists (componentwise),

(ii) for all monomials q(x,y), qM (
∑
Um,

∑
A) =

∑
qCM (Um,A),

(iii) um =
∑
Um.

Clearly, (ii) extends to polynomials q(x,y), as
∑

(A ∪B) =
∑
A+

∑
B.

For m = 0, (i) and (iii) are clear: 0 =
∑

∅. Therefore, (ii) follows from the
hypothesis a) and b) for members of A.

For m+ 1, by induction
∑
Um exists by (i), and then

um+1 = pM (um,
∑

A) (by definition)

= pM (
∑

Um,
∑

A) (by (iii))

=
∑

pCM (Um,A) (by (ii))

=
∑

Um+1. (by definition)

Hence, (i)
∑
Um+1 exists, and (iii) um+1 =

∑
Um+1. For (ii), let q(x,y) be

a monomial in x,y, and r(x,y) the polynomial obtained by distribution from
q(x,y)[x/p(x,y)]. Then

qM (
∑

Um+1,
∑

A) = rM (
∑

Um,
∑

A)

=
∑

rCM (Um,A) (by (ii) for r)

=
∑

qCM (Um+1,A).
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Since M is a Chomsky algebra, x ≥ pM (x,
∑
A) has a least solution, u :=

µxpM (
∑
A). It follows that it is the least upper bound of U = µxpCM (A):

u = µxpM (
∑

A)

=
∑
{mxpM (

∑
A) | m ∈ N } (M is µ-continuous)

=
∑
{um | m ∈ N }

=
∑
{
∑

Um | m ∈ N } (by (iii))

=
∑⋃

{Um | m ∈ N }

=
∑

U =
∑

µxpCM (A).

In particular, we have shown a) for U, V ∈ U . To show b’) extend a, b to some
a, b ∈Mn. Having a(

∑
Um)b =

∑
aUmb inductively by (ii), we obtain

a(
∑

U)b = a · u · b

=
∑
{a · um · b | m ∈ N } (M is µ-continuous)

=
∑
{a(

∑
Um)b | m ∈ N } (by (iii))

=
∑
{
∑

(aUmb) | m ∈ N } (by (ii))

=
∑⋃

{aUmb | m ∈ N } (
∑

property)

=
∑

(a ·
⋃
{Um | m ∈ N } · b) (·CM is

⋃
-continuous)

=
∑

(aUb).

Hence, for U ∈ U we have b’) a(
∑
U)b =

∑
aUb for all a, b. 2

The morphisms in the category DA of C-dioids are the C-morphisms. In the
category of µ-continuous Chomsky algebras of Grathwohl et al. [3], the mor-
phisms are the semiring homomorphisms that preserve least solutions of poly-
nomial inequalities. It remains to be checked that these two types of morphisms
are the same.

Proposition 3. Let f : M →M ′ be a homomorphism between C-dioids M and
M ′. Then f is a C-morphism iff f is a semiring homomorphism that perserves
least solutions of polynomial inequalities.

Proof. If f is a dioid-homomorphism, we have f̃(mxpCM (A)) = mxpCM
′
(f̃(A))

for all m, which implies f̃(µxpCM (A)) = µxpCM
′
(f̃(A)).

⇒: Let f be a C-morphism, x ≥ p(x,y) a system of polynomial inequalities
with n = |x|, k = |y| and a ∈ Mk. We have a =

∑
A for suitable sets A ∈
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(CM)k. Since f is a C-morphism, hence a dioid-homomorphism, we obtain

f(µxpM (
∑

A)) = f(
∑

µxpCM (A)) =
∑

f̃(µxpCM (A))

=
∑

(µxpCM
′
(f̃(A))) = µxpCM

′
(
∑

f̃(A))

= µxpCM
′
(f(

∑
A)).

⇐: Let f be a semiring homomorphism that preserves least solutions of
polynomial inequations. We show f(

∑
U) =

∑
f̃(U), by induction on U ∈ CM .

It is clear for U ∈ FM . Otherwise, U is a component of the least solution
U of some polynomial system x ≥ pCM (x,A), where f(

∑
A) =

∑
f̃(A) for

the parameters A ∈ CM by induction. From the proof of Theorem 3 we know∑
U =

∑
µxpCM (A) = µxpM (

∑
A), so by the assumption on f

f(
∑

U) = f(µxpM (
∑

A)) = µxpM
′
(f(

∑
A))

= µxpM
′
(
∑

f̃(A)) =
∑

µxpCM
′
(f̃(A))

=
∑

f̃(µxpCM (A)) =
∑

f̃(U).

6 Conclusion

We have shown that the categories of C-dioids of Hopkins [6] and of µ-continuous
Chomsky algebras of Grathwohl et al. [3] coincide. To do so, we have replaced
the somewhat technical grammar-based definition of context-free subsets CM of
a monoid M from Hopkins [6] by a more natural, but equivalent definition as the
closure of the collection of finite subsets of M under least solutions of polyno-
mial inequations with parameters from CM , which avoids a detour through free
monoids. Our proofs exhibit a direct correspondence between the stages of the
construction of least solutions U ∈ (CM)n of polynomial inequations and their
least upper bounds

∑
U ∈Mn, as was to be expected.

If one is not interested in this correspondence, one can obtain Theorem 3, as
pointed out by a reviewer, from Lemma 3.1 of Grathwohl et al. [3], which “as-
serts that the supremum of a context-free language over a µ-continuous Chomsky
algebra K exists, interpreting strings over K as products in K. Moreover, mul-
tiplication is continuous with respect to context-free languages.” And given that
for a C-dioid M the sets in CM are the context-free sets in the sense just indicated
and have least upper bounds denoted by µ-terms, the C-distributivity amounts
to the µ-continuity property by Corollary 1, which roughly gives Theorem 2.

By the equivalence of C-dioids and µ-continuous Chomsky algebras, we can
transfer closure under coproducts, coequalizers and tensor products from the
former to the latter, and transfer axiomatizablility and completeness results
from the latter to the former.

Let us close with an open question. A polynomial with parameters from a
monoid M is linear, if each of its monomials has at most one variable factor. Let
LM , the metalinear subsets of M , be the closure of FM under (binary) union
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and finite products of components of least solutions of systems x ≥ p(x) of linear
polynomials with parameters from M (cf. Harrison [5], p.64, for the metalinear
languages). Similar to the proof of Theorem 1, we can show that L is a monadic
operator, thereby obtaining a category DL of L-dioids and L-morphisms. On
the other hand, call a dioid M linear-algebraically closed if each system of linear
polynomial inequations has least solutions. Let the linear-µ-terms be those that
arise as solution terms of linear polynomial inequations through Bekić’s reduc-
tion. It seems that our proofs of Theorem 2 and Theorem 3 can be specialized to
show that the L-dioids and the linear-algebraically closed, linear-µ-continuous
dioids are the same. Moreover, can this be continued by specializing the com-
pleteness theorem of Grathwohl et al.[3] to provide a complete axiomatization
of the equational theory of metalinear languages, consisting of the dioid axioms
and a linear-µ-continuity axiom?
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R.Berghammer, B. Möller, and G. Struth, editors, Relational Methods in Com-
puter Science/Applications of Kleene Algebra, LNCS 4988, pages 173–190, Berlin
Heidelberg, 2008. Springer Verlag.

8. M. Hopkins and H. Leiß. Coequalizers and tensor products for continuous idem-
potent semirings. In Submitted, 2018.

9. D. Kozen. On induction vs. ∗-continuity. In D. Kozen, editor, Proc. Workshop on
Logics of Programs 1981, volume 131 of Lecture Notes in Computer Science, pages
167–176. Springer Verlag, 1981.

10. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983.

11. H. Leiß. The matrix ring of a µ-continuous Chomsky algebra is µ-continuous. In
L. Regnier and J.-M. Talbot, editors, 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), Leibniz International Proceedings in Informatics, pages
1–16. Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2016.

16
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