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Abstract. We provide constructions of coproducts, free extensions, co-
equalizers and tensor products for classes of idempotent semirings in
which certain subsets have least upper bounds and the operations are
sup-continuous. Among these classes are the ∗-continuous Kleene alge-
bras, the µ-continuous Chomsky-algebras, and the unital quantales.

1 Introduction

The theory of formal languages and automata has well-recognized connections
to algebra, as shown by work of S. C. Kleene, H. Conway, S. Eilenberg, D. Kozen
and many others. The core of the algebraic treatment of the field deals with the
class of regular languages and finite automata/transducers. Here, right from the
beginnings in the 1960s one finds “regular” operations + (union), · (elementwise
concatenation), * (iteration, i.e. closure under 1 and ·) and equational reasoning,
and eventually a consensus was reached that drew focus to so-called Kleene
algebras to model regular languages and finite automata.

An early effort to expand the scope of algebraization to context-free languages
was made by Chomsky and Schützenberger [3]. Somewhat later, around 1970,
Gruska [5], McWhirter [19], Yntema [20] suggested to add a least-fixed-point op-
erator µ to the regular operations. But, according to [5], “one can hardly expect
to get a characterization of CFL’s so elegant and simple as the one we have
developed for regular expressions.” Neither approach found widespread use.

After the appearance of a new axiomatization of Kleene algebras by Kozen [10]
in 1990, a formalization of the theory of context-free languages within the al-
gebra of idempotent semirings with a least-fixed-point operator was suggested
in Leiß [13] and Ésik et al. [15], leading to the first complete axiomatization of
the equational theory of context-free languages and the introduction of the “µ-
continuous Chomsky-algebras” by Grathwohl et al. [4] in 2013. This formalism
is cast in the same mould as that for the ∗-continuous Kleene algebra, with an
infinitary identity related to the distributivity axiom below.

† In: J.Desharnais et al. (Eds.): RAMiCS 2018, Springer LNCS 11194, pp. 37–52.
https://doi.org/10.1007/978-3-030-02149-8 3

? UW-Milwaukee (alumnus)
?? retired from: Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximi-

lians-Universität München, Oettingenstr.67, 80539 München

1



Already in 2008 (see Hopkins [7, 8]), a second-order formalism for context-free
languages emerged, in the guise of the category DC, as part of a larger endeavor
to embody all of the Chomsky hierarchy by a family of categories DA (discussed
below). The primary models are idempotent semirings AM obtained by lifting
the operations of monoids M to a family of A-subsets of M , such that the lifted
operations are continuous with respect to a supremum operator. The AM form
the Kleisli subcategory of an Eilenberg-Moore category (cf. Mac Lane [18]) DA.

As shown in Hopkins [8], there is a complete lattice of suitable subfunctors A
of the powerset functor P; among them are R and C, selecting the regular and
context-free subsets of a monoid, for which DR coincides with the ∗-continuous
Kleene algebras and DC with the µ-continuous Chomsky algebras. For any two
functors A ≤ B in the lattice there is an adjunction (QBA, Q

A
B , η, ε) where QAB :

DB → DA is the forgetful functor and QBA : DA → DB extends D ∈ DA to a
certain ideal-completion D ∈ DB of D. An interesting open problem is whether
and when the ideal-completion can be replaced by a more algebraic method.
In particular, can we do so for QCR : DR → DC, the extension of ∗-continuous
Kleene algebras K ∈ DR to their µ-continuous completions K ∈ DC? Below we
provide basic algebraic and categorical constructions with this goal in mind.

By the classical theorem of Chomsky and Schützenberger [3], the context-
free languages CX∗ can be reduced to the regular languages R(X ∪ Y )∗ over
an extended alphabet. The algebraic and category-theoretic constructions given
below allow us to sharpen and generalize the Chomsky-Schützenberger result
and construct CX∗ from RX∗, then CM from RM for arbitrary monoids M ,
and finally to provide an algebraic construction of QCR and analogous results for
the Thue/Turing subsets TM . However, this can only be indicated below; its
development has to be deferred to a forthcoming publication.

Section 2 introduces the categories DA of A-dioids and mentions the main
examples. Section 3 shows that DA has coproducts and free extensions. Section
4 provides coequalizers for DA, shows how they relate to A-congruences, and
finally introduces a tensor product for DA. Section 5 sketches two applications,
the construction of the matrix ring Dn×n of a A-dioid D as a tensor prod-
uct of D with the boolean matrices Bn×n and the construction of the context-
free languages CX∗ as tensor product of RX∗ with a regular “bracket-algebra”
C2 ∈ DR. Hence the context-free languages over X are the values of regular
expressions in this particular (non-free) ∗-continuous Kleene algebra –achieving
what “we can hardly expect to get” according to [5]–, which has implications for
parsing theory to be worked out. Section 6 discusses potential generalizations.

2 The Category of A-Dioids and A-Morphisms

Let M be the category of monoids (M, ·, 1) and homomorphisms between monoids.
A dioid (D,+, ·, 0, 1) is an idempotent semiring. Idempotency of + provides a
partial order ≤ on D, via d ≤ d′ iff d + d′ = d′, with 0 as least element. Dis-
tributivity makes · monotone with respect to ≤, and + guarantees a least upper
bound

∑
U = d1 + . . .+ dn for each finite subset U = {d1, . . . , dn} of D. Let D
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be the category of dioids with dioid homomorphisms. Following [7], a monadic
operator is a functor A : M→ D where for all monoids M , N , (A0) AM is a set
of subsets of M , (A1) AM contains all finite subsets of M , (A2) AM is closed
under products, hence (AM, ·, {1}) with

A ·B := { a · b | a ∈ A, b ∈ B } for A,B ∈ AM

is itself a monoid, (A3) AM is closed under unions of sets from AAM , which
implies that AM is an idempotent semiring with

0 :=
⋃
∅, A+B :=

⋃
{A,B}, for A,B ∈ AM,

and (A4) A preserves homomorphisms: if f : M → N is a homomorphism, so is

Af : AM → AN –abbreviated as f̃–, where for U ⊆M ,

(Af)(U) := { f(u) | u ∈ U } =: f̃(U).

We write AM for both the set of subsets of M and the dioid (AM,+, ·, 0, 1).
An A-dioid (D, ·, 1,≤) is a partially ordered monoid where each U ∈ AD

has a least upper bound,
∑
U ∈ D, and distributivity1 holds:

(
∑

U)(
∑

V ) =
∑

(UV ) for all U, V ∈ AD.

An A-morphism f : D → D′ between A-dioids D and D′ is an order-preserving
homomorphism such that f(

∑
U) =

∑
f̃(U) for all U ∈ AD. Let DA be the

category of A-dioids and A-morphisms between A-dioids.
For every monoid M , AM is an A-dioid, by Theorem I.12. Every A-dioid

becomes a dioid, using a + b :=
∑
{a, b} and 0 :=

∑
∅. Every A-morphism is a

dioid-homomorphism. Hence we view DA as a subcategory of D.
In fact, A : M → DA and the forgetful functor Â : DA → M form an

adjunction, by Theorem II.16, and combine to a monad TA = (ÂA, η, µ) : M→
M with unit η : m ∈ M 7→ {m} ∈ AM and product µ : U ∈ AAM 7→

⋃
U ∈

AM .
For a partial order D, the down-closure U≤ of U ⊆ D is { d ∈ D | d ≤

u for some u ∈ U }. We say U, V ⊆ D are cofinal (in symbols: U ' V ), if U and
V have the same down-closure.

Example 1. If F assigns to each monoid M its finite subsets, then F is monadic
and DF is the category of dioids and dioid-homomorphisms. The power set
operator P is monadic and DP is the category of quantales with unit.

Example 2. For infinite cardinal κ, PκM = {X | X ⊆M, |X| ≤ κ } is a monadic
operator; DPℵ0 is the category of closed semirings [9]. For regular cardinal κ,
FκM = {X | X ⊆M, |X| < κ } is monadic; (A3) corresponds to regularity.

1 Distributivity is
∑

-continuity of · and equivalent to
∑

(aUb) = a(
∑
U)b for all

a, b ∈ D,U ∈ AD, an instance of which is ∗-continuity
∑
{ acmb | m ∈ N } = ac∗b.

2 Theorem I.1 means Theorem 1 of [7], Theorem II.1 means Theorem 1 of [8], etc.
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Example 3. Regular, context-free, and Turing/Thue-subsets RM , CM , and TM
of a monoid M can be defined by generalizing the grammatical approach of doing
so for free monoids M = X∗. In this case, for A ∈ {R, C, T } one puts

AX∗ := {L(G) | G is a grammar of type A over X }.

Here, a grammar G = (Q,S,H) of type A over X has a set Q disjoint from
X, with distinguished element S ∈ Q, and a finite subset H of “right-linear”
rules Q × (XQ ∪ X∗) in case A = R, of “context-free” rules Q × (Q ∪ X)∗ in
case A = C, and of “contextual”3 rules Q+ × (Q ∪ X)∗ in case A = T , with
Q+ = Q∗ \ {1}. The language defined by G is L(G) = {w ∈ X∗ | S ⇒G w },
where ⇒G is the least reflexive, transitive relation above H that is compatible
with the monoid operation on (X∪Q)∗. The class of A-languages is closed under

homomorphisms:4 If h : X∗ → Y ∗ is a homomorphism, so is h̃ : AX∗ → AY ∗:
a grammar G = (Q,S,H) over X gives rise to a grammar Gh = (Q,S,Hh) over

Y , of the same type, with h̃(L(G)) = L(Gh).

For arbitrary monoid M , take a generating subset X ⊆ M and use the
canonical homomorphism hX : X∗ →M , where hX(x) = x for x ∈ X, to put

AM = { h̃X(L(G)) | G a grammar of type A over X }.

This is independent of the choice of X, because for any generating set Y ⊆ M

there is a homomorphism h : X∗ → Y ∗ with hX = hY ◦ h, so that h̃X(L(G)) =

h̃Y (L(Gh)). We sketch why these A are monadic operators. Obviously, AM ⊆
PM , showing (A0). For (A1) and (A2), note that any finite set F ⊆ M is the
language of a grammar G of type A over a set X ⊇ F of generators, and that
from grammars G1, G2 of type A one easily constructs a grammar of type A
for L(G1)L(G2). According to Theorem I.8, (A3) ∧ (A4) are equivalent to (A5):
every “substitution” homomorphism σ : M → AN lifts to a homomorphism
σ∗ : AM → AN by σ∗(U) =

⋃
{σ(m) | m ∈ U }, for U ∈ AM . To show (A5),

assume generating subsets X ⊆ M , Y ⊆ N , homomorphisms hX : X∗ → M ,
hY : Y ∗ → N , σ : M → AN and U ∈ AM . There is a grammar G of type A over

X with U = h̃X(L(G)). For each x ∈ X, let Gx be a grammar of type A over Y

with σ(hX(x)) = h̃Y (L(Gx)) ∈ AN . The map x 7→ L(Gx) ∈ AY ∗ extends to a

homomorphism σ̂ : X∗ → AY ∗, and σ ◦ hX = h̃Y ◦ σ̂. Then

σ∗(U) =
⋃
σ̃(h̃X(L(G))) =

⋃ ˜̃
hY (˜̂σ(L(G))) = h̃Y (

⋃˜̂σ(L(G))) = h̃Y (σ̂∗(L(G))).

As the A-languages are closed under substitutions (cf. [6], Theorems 3.4, 6.2, Ex-
ercise 9.11), we get σ̂∗ : AX∗ → AY ∗, hence σ̂∗(L(G)) ∈ AY ∗ and σ∗(U) ∈ AN .

3 A normal form where H ⊆ Q+ × (X ∪ Q)∗ instead of H ⊆ (X ∪ Q)+ × (X ∪ Q)∗,
making rule application effective. This corrects a mistaken definition of T X∗ in [7].

4 This is not true for the context-sensitive languages (cf. [6], Exercise 9.14), so we have
to correct Corollary I.2: there is no monadic operator S of context-sensitive subsets.
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Remark 1. Alternative definitions ofRM resp. CM can be given as the closure of
FM under binary union, elementwise product and iteration ∗ resp. least solutions
in PM of polynomial inequations x1 ≥ p1(x1, . . . , xn), . . . , xn ≥ pn(x1, . . . , xn)
with parameters from CM . DR is the category of ∗-continuous Kleene alge-
bras [9]; for a proof, see [7]. DC is the category of µ-continuous Chomsky alge-
bras [4]; a proof appears in [16] (in these proceedings).

Let ρ be a dioid-congruence on an A-dioid D. The set D/ρ of congruence
classes is a dioid under the operations defined by (d/ρ)(d′/ρ) := (dd′)/ρ, 1 :=
1/ρ, d/ρ+ d′/ρ := (d+ d′)/ρ, 0 := 0/ρ. For U ⊆ D, U/ρ := { d/ρ | d ∈ U }.

Let ≤ be the partial order on D/ρ derived from +. An A-congruence on D
is a dioid-congruence ρ on D such that for all U,U ′ ∈ AD, if U/ρ ' U ′/ρ, then
(
∑
U)/ρ = (

∑
U ′)/ρ.

For any ρ0 ⊆ D × D, there is a least A-congruence on D above ρ0, the
intersection of all A-congruences ρ ⊇ ρ0 on D.

Lemma 1. Let q : D → Q be an A-morphism between A-dioids D,Q and ρ the
least A-congruence on D above the relation ρ0 ⊆ D ×D. If q(a) = q(b) for all
(a, b) ∈ ρ0, then q(a) = q(b) for all (a, b) ∈ ρ.

Proof. Since A is an A-morphism,

ρq := { (a, b) | a, b ∈ D, q(a) = q(b) }

is an A-congruence. By assumption, ρ0 ⊆ ρq, hence ρ ⊆ ρq. 2

Proposition 1. If D is an A-dioid and ρ an A-congruence on D, then D/ρ is
an A-dioid and the map d 7→ d/ρ is an A-morphism.

Proof. We first show that each U ′ ∈ A(D/ρ) has a least upper bound
∑
U ′. Since

·/ρ is a surjective homomorphism, U ′ = U/ρ for some U ∈ AD, by Theorem I.9.
If U/ρ = Ũ/ρ for some Ũ ∈ AD, then U/ρ and Ũ/ρ are cofinal, hence (

∑
U)/ρ =

(
∑
Ũ)/ρ, so (

∑
U)/ρ depends on U ′ only. Clearly d 7→ d/ρ is monotone, so

(
∑
U)/ρ is an upper bound of U ′. To show that it is least, let e/ρ be any upper

bound of U ′. Since {U, {e}} ∈ FAD ⊆ AAD, we have U ∪ {e} =
⋃
{U, {e}} ∈

AD. By the choice of e, (U ∪ {e})/ρ ' {e}/ρ and so

e/ρ+ (
∑

U)/ρ = (e+
∑

U)/ρ = (
∑

(U ∪ {e}))/ρ = (
∑
{e})/ρ = e/ρ.

This shows (
∑
U)/ρ ≤ e/ρ. Hence we can define

∑
U ′ := (

∑
U)/ρ. It follows

that for U ∈ AD, (
∑
U)/ρ =

∑
{ d/ρ | d ∈ U }, showing that d 7→ d/ρ is an

A-morphism. Distributivity of
∑

can be reduced to distributivity of
∑

on D.
2

3 Coproducts and Free Extensions

3.1 Coproducts

A coproduct of two objects M1 and M2 in a category is an object M1⊕M2 with
two morphisms ι1 : M1 → M1 ⊕M2 and ι2 : M2 → M1 ⊕M2 such that for
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any two morphisms f : M1 → M and g : M2 → M there is a unique morphism
[f, g] : M1 ⊕M2 →M with f = [f, g] ◦ ι1 and g = [f, g] ◦ ι2.

M1

ι1- M1 ⊕M2
�
ι2

M2

˙̇
˙̇
˙̇

@
@
@
f @
@
@R

˙̇
˙̇
˙?

[f, g]

	�
�
� g
�
�
�

M

A similar definition may be applied dually with arrows reversed to yield
the product M1 × M2 of objects M1 and M2 with corresponding morphisms
π1 : M1 ×M2 → M1 and π2 : M1 ×M2 → M2. By the universal property, the
coproduct and product of M1 and M2 are unique up to isomorphism.

Example 4. In the category M, a coproduct M ⊕ M ′ of M and M ′ can be
constructed from the interleaved sequences of elements from M and M ′, i.e. as
(M ×M ′)+/E, the non-empty finite sequences of pairs from M ×M ′ modulo
the congruence E on (M ×M ′)+ generated by the equations

{ (m0, 1
M ′

)(m1,m
′) = (m0m1,m

′) | m0,m1 ∈M,m′ ∈M ′ }
∪ { (m,m′0)(1M ,m′1) = (m,m′0m

′
1) | m ∈M,m′0,m

′
1 ∈M ′ },

with unit 1 := (1M , 1M
′
), injections ι1(m) := (m, 1M

′
) and ι2(m′) := (1M ,m′),

product (u/E)(v/E) := (uv)/E and induced function

[f, g]((m0,m
′
0) · · · (mk,m

′
k)/E) := f(m0)g(m′0) · · · f(mk)g(m′k).

Of course, for free monoids Γ ∗, ∆∗ with Γ disjoint from ∆, Γ ∗⊕∆∗ ' (Γ ∪∆)∗.

Theorem 1. The category DA has coproducts. A coproduct

ι1 : D1 → D1 ⊕A D2 ← D2 : ι2

of D1, D2 ∈ DA can be constructed from ι̂1 : M1 → M1 ⊕M2 ← M2 : ι̂2, the
coproduct of the monoids M1,M2 underlying D1, D2, as follows: Let ≡ be the
least A-congruence on A(M1 ⊕M2) containing5

({(
∑

A,
∑

B)}, A×B), for all A ∈ AD1, B ∈ AD2,

π the canonical map U 7→ U/≡ and η : M1 ⊕M2 → A(M1 ⊕M2) be α 7→ {α}.
Then let D1 ⊕A D2 be A(M1 ⊕M2)/≡ and ιk = π ◦ η ◦ ι̂k, for k = 1, 2.

Proof. M1 ⊕M2 is a monoid by Example 4, so A(M1 ⊕M2) is an A-dioid. By
Proposition 1, its quotient D1 ⊕A D2 = A(M1 ⊕M2)/≡ is an A-dioid and π is
an A-morphism. Clearly, ι1 and ι2 are homomorphisms, since ι̂1, ι̂2, η and π are.
The reader may check that they are A-morphisms, hence order-preserving.

5 Here we use (a, b) etc. for its equivalence class in M1 ⊕M2 = (M1 ×M2)+/E.
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Let f : D1 → D, g : D2 → D be A-morphisms and M the monoid underlying
D. By the universal property of M1 ⊕ M2, there is a unique homomorphism
[f, g] : M1 ⊕M2 →M with f = [f, g] ◦ ι̂1 and g = [f, g] ◦ ι̂2. It extends uniquely
to an A-morphism [f, g]∗ : A(M1 ⊕M2)→ D, by Theorem I.4, with

[f, g]∗(U) =
∑
{ [f, g](u) | u ∈ U } for U ∈ A(M1 ⊕M2).

For the pairs ({(
∑
A,

∑
B)}, A×B) generating ≡, we have

[f, g]∗({(
∑

A,
∑

B)}) = [f, g](
∑

A,
∑

B) = f(
∑

A)g(
∑

B)

= (
∑

f̃(A))(
∑

g̃(B)) =
∑

(f̃(A)g̃(B)) =
∑

[̃f, g](A×B) = [f, g]∗(A×B).

Hence by Lemma 1, [f, g]∗ is constant on congruence classes of ≡, so we can
define [f, g]A : D1 ⊕A D2 → D by

[f, g]A([U ]) := [f, g]∗(U) for U ∈ A(M1 ⊕M2).

Then f = [f, g]A ◦ ι1 and g = [f, g]A ◦ ι2, and the uniqueness of [f, g]A can be
shown from the uniqueness of [f, g]. 2

From the uniqueness of coproducts up to isomorphism, one can derive:

Proposition 2. AM1 ⊕A AM2 ' A(M1 ⊕M2) for monoids M1,M2.

Proof. (Sketch) Let f : (AM1×AM2)+ � (M1×M2)+ : g map 〈(Ai, Bi) | i ≤ n〉
to 〈(

∑
Ai,

∑
Bi) | i ≤ n〉 and 〈(ai, bi) | i ≤ n〉 to 〈({ai}, {bi}) | i ≤ n〉,

respectively. Then h : (AM1⊕AAM2) � A(M1⊕M2) : h−1, with h([U ]) := f̃(U)
for U ∈ A(AM1 ×AM2)+, and h−1(V ) := [g̃(V )] for V ∈ A(M1 ⊕M2), are A-
morphisms and inverse to each other. 2

3.2 Freely Generated Objects and Free Extensions

An object C in a category is freely generated by the set S if there is a map
i : S → C such that for all objects D and maps s : S → D there is a unique
morphism hs : C → D with s = hs ◦ i.

Example 5. In M, the object freely generated by Q is the set Q∗ of finite se-
quences of elements of Q with concatenation as product and the empty sequence
as unit element. i : Q→ Q∗ maps q to the sequence of q’s of length 1.

Proposition 3. In the category DA, the object freely generated by the set Q is
AQ∗ with map η ◦ i : Q→ AQ∗, where η : Q∗ → AQ∗ is w 7→ {w}.

Proof. Let D ∈ DA and s : Q → D be a map. As D is a monoid, there is a
unique homomorphism hs : Q∗ → D with s = hs ◦ i. By Theorems I.3 and I.2,
h̃s : AQ∗ → AD and

∑
: AD → D are A-morphisms. Let h∗s : AQ∗ → D be

their composition
∑
◦h̃s. Then hs(w) =

∑
h̃s({w}) = h∗s({w}) for all w ∈ Q∗,

so s = hs ◦ i = h∗s ◦ (η ◦ i). The uniqueness of h∗s follows from that of hs. 2
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A free extension of an object M by a set Q is an object M [Q] with a morphism
ι : M →M [Q] and a map σ : Q→M [Q] such that for each morphism f : M →
M ′ and map s : Q → M ′ there is a unique morphism [f, s] : M [Q] → M ′ with
f = [f, s] ◦ ι and s = [f, s] ◦ σ. Again, the free extension of M by Q is unique up
to an isomorphism.

Example 6. For monoids M , ι = ι1 : M →M ⊕Q∗ ← Q : ι2 ◦ i = σ form a free
extension of M by Q, where ι1 : M →M ⊕Q∗ ← Q∗ : ι2 is the coproduct of M
and Q∗ and i : Q→ Q∗ the canonical embedding. Hence, M [Q] 'M ⊕Q∗.

Proposition 4. In DA, the free extension ι : D → D[Q] ← Q : σ of D by Q
consists of the coproduct D[Q] := D⊕AAQ∗ of D and AQ∗, with the embedding
ι1 : D → D ⊕A AQ∗ as ι and the composition ι2 ◦ η ◦ i of the maps i : Q→ Q∗,
η : Q∗ → AQ∗ with the embedding ι2 : AQ∗ → D ⊕A AQ∗ as σ.

Proof. For an A-morphism f : D → D′ and map s : Q → D′, construct an
A-morphism [f, s] : D[Q] → D′ with f = [f, s] ◦ ι and s = [f, s] ◦ σ from the
unique homomorphism hs : Q∗ → D′ with s = hs ◦ i, its unique extension to
an A-morphism h∗s : AQ∗ → D′ with hs = h∗s ◦ η, and the unique A-morphism
[f, h∗s] : D ⊕A AQ∗ → D′ provided by the coproduct:

D
ι1- D ⊕A AQ∗ �

ι2 AQ∗ �
η

Q∗ �
i

Q
˙̇
˙̇
˙̇

@
@
@
f @
@
@R

[f, h∗s] ˙̇
˙̇? 	· ·

· ·
· ·
h∗s · ·

· ·
· ·

�· ·
· ·
· ·
hs · ·

· ·
· ·

)��
��
��
�

s
��
��
��
�

D′

Putting [f, s] := [f, h∗s], ι := ι1 and σ := ι2 ◦ η ◦ i, we get f = [f, s] ◦ ι and
s = [f, s] ◦ σ. The uniqueness follows using Proposition 3 and Theorem 1. 2

Corollary 1. (AM)[Q] = AM ⊕A AQ∗ ' A(M ⊕Q∗) = A(M [Q]).

4 Coequalizers and Tensor Products

4.1 Coequalizers and Quotients

A coequalizer of two morphisms f, g : A → B is an object Q with a morphism
q : B → Q such that q ◦ f = q ◦ g and for every morphism q′ : B → Q′ with
q′ ◦ f = q′ ◦ g there is a unique morphism hq′ : Q→ Q′ with q′ = hq′ ◦ q. By the
universal property, coequalizers are unique up to isomorphism.

Example 7. In the category M, a coequalizer of f, g : N → M consists of the
quotient monoid M/≡f,g

with the canonical map m 7→ m/≡f,g
, where ≡f,g is the

least congruence E on M with { (f(n), g(n)) | n ∈ N } ⊆ E.
Conversely, if E ⊆M ×M is a congruence on M , the quotient monoid M/E

with the canonical map m 7→ m/E is the coequalizer of the homomorphisms
f, g : N → M where N is the submonoid of M ×M with universe E and f, g
are the restrictions of the projections π1, π2 : M ×M →M to N .
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Likewise, in DA coequalizers and quotients correspond to each other.

Theorem 2. The category DA has coequalizers.

Proof. Let f, g : A → B be A-morphisms between A-dioids. Let ρ be the least
A-congruence on B above { (f(a), g(a)) | a ∈ A }, Q := B/ρ and q : B → Q the
canonical map, b 7→ b/ρ. By Proposition 1,Q is anA-dioid and q anA-morphism.
Clearly, q ◦ f = q ◦ g. Concerning the universal property, let q′ : B → Q′ be an
A-morphism with q′ ◦ f = q′ ◦ g. To define h : Q → Q′, we put h(b/ρ) := q′(b);
this is well-defined by Lemma 1, since if (b, b′) = (f(a), g(a)) for some a ∈ A,
q′(b) = q′(b′) holds. Clearly q′ = h ◦ q, and h is an A-morphism, because q′ is;
in particular, for U ∈ AB,

h(
∑

(U/ρ)) = h((
∑

U)/ρ) = q′(
∑

U) =
∑
{h(b/ρ) | b ∈ U } =

∑
h̃(U/ρ).

As q : B → Q = B/ρ is surjective, the h with q′ = h ◦ q is unique. 2

Corollary 2. The category DA has colimits.

This follows from the existence of coproducts and coequalizers, see [11], p.24.

Proposition 5. Let D be an A-dioid and ρ an A-congruence on D. There are
an A-dioid N and two A-morphisms f, g : N → D such that ρ is the least A-
congruence on D above { (f(n), g(n)) | n ∈ N } and D/ρ with d 7→ d/ρ is a
coequalizer of f, g : N → D.

Since we don’t make use of this fact below, we omit the proof.

Proposition 6. Suppose π : M → Q is a coequalizer of f, g : N →M in M.
Then Aπ : AM → AQ is a coequalizer of Af,Ag : AN → AM in DA.

Proof. As coequalizers are unique up to isomorphism, we can assume Q is M/E
and π is m 7→ m/E, where E is the least congruence on M above { (f(n), g(n)) |
n ∈ N }. We return to our abbreviation f̃ for Af etc. Clearly, π̃◦ f̃ = π̃◦ g̃ follows
from the assumption π ◦ f = π ◦ g.

To show the universal property, let π′ : AM → Q′ be an A-morphism with
π′ ◦ f̃ = π′ ◦ g̃. Since π is surjective, so is π̃ : AM → AQ, by Theorem I.9,
and there can be at most one A-morphism h : AQ → Q′ with π′ = h ◦ π̃.
As E is the closure of { (f(n), g(n)) | n ∈ N } under reflexivity, symmetry,
transitivity and monoid-congruence, one sees by induction that if (m,m′) ∈ E,

then π′({m}) = π′({m′}), using π′ ◦ f̃ = π′ ◦ g̃ in the base case. Since m 7→ {m}
is a homomorphism, { {m} | m ∈ B } ∈ AAM , so

π′(B) = π′(
⋃
{ {m} | m ∈ B }) =

∑
{π′({m}) | m ∈ B }.

On U = B/E = π̃(B) ∈ AQ with B ∈ AM , put h(B/E) := π′(B). This is well-
defined, since π′({m}) = π′({m′}) for m/E = m′/E. Finally, for U ∈ AA(M/E)
there is V ∈ AAM with U = {V/E | V ∈ V }, so h is an A-morphism:

h(
⋃
U) = h((

⋃
V)/E) = π′(

⋃
V) =

∑
{π′(V ) | V ∈ V }

=
∑
{h(V/E) | V ∈ V } =

∑
h̃(U). 2
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Theorem 3. Let E be a congruence on the monoid M , AE the least A-con-
gruence on AM above { ({m}, {m′}) | (m,m′) ∈ E }. Then AM/AE ' A(M/E).

Proof. By Example 7, there are a monoid N and homomorphisms f, g : N →M
such that π : M → M/E is the coequalizer of f, g : N → M and E is the least
congruence on M above { (f(n), g(n)) | n ∈ N }. We show that the canonical

map c : AM → AM/AE is a coequalizer of f̃ , g̃ : AN → AM . Then, by the
uniqueness of coequalizers and Proposition 6, AM/AE ' A(M/E). Write [U ]
for the AE-congruence class c(U) of U ∈ AM .

First, c ◦ f̃ = c ◦ g̃: By Proposition 1, c is an A-morphism, so for A ∈ AN ,
from { {n} | n ∈ A } ∈ AAN we get

(c ◦ f̃)(A) =
⋃
{ (c ◦ f̃)({n}) | n ∈ A } =

⋃
{ [{f(n)}] | n ∈ A }.

Therefore, it is sufficient to show [{f(n)}] = [{g(n)}] for each n ∈ N . But since
(f(n), g(n)) ∈ E, we have ({f(n)}, {g(n)}) ∈ AE.

Second, c : AM → AM/AE has the universal property for coequalizers of

f̃ , g̃: Let q : AM → Q be an A-morphism with q ◦ f̃ = q ◦ g̃. We have to show
that q uniquely factors through c. By Proposition 6, π̃ : AM → A(M/E) is a

coequalizer of f̃ , g̃ : AN → AM . As q ◦ f̃ = q ◦ g̃, there is a unique A-morphism
hq with q = hq ◦ π̃. We show that π̃ and hence q are constant on congruence
classes of AE, so that by

h([U ]) := q(U), for U ∈ AM,

h : AM/AE → Q is well-defined. By Lemma 1, π̃ is constant on AE-congruence
classes, if π̃(U) = π̃(U ′) for all (U,U ′) ∈ { ({m}, {m′}) | (m,m′) ∈ E }. But in
this case, (m,m′) ∈ E gives π̃(U) = U/E = {m/E} = {m′/E} = U ′/E = π̃(U ′).

Finally, as c is surjective, for every V ∈ A(AM/AE) there is U ∈ AAM with
V = { [U ] | U ∈ U }; therefore, h is an A-morphism:

h(
∑
V) = h([

⋃
U ]) = q(

⋃
U) =

∑
{ q(U) | U ∈ U } =

∑
h̃(V).

Since c is surjective, h is the unique A-morphism with q = h ◦ c. 2

4.2 Tensor Products

Two monoid-homomorphisms f : M1 → M and g : M2 → M are relatively
commuting, if for all m1 ∈M1 and m2 ∈M2, f(m1)g(m2) = g(m2)f(m1).

In a category whose objects have a monoid structure, a tensor product of
two objects M1 and M2 is an object M1 ⊗M2 with two relatively commuting
morphisms >1 : M1 → M1 ⊗M2 and >2 : M2 → M1 ⊗M2 such that for any
pair of relatively commuting morphisms f : M1 →M and g : M2 →M there is

10



a unique morphism hf,g : M1 ⊗M2 →M with f = hf,g ◦ >1 and g = hf,g ◦ >2:

M1

>1- M1 ⊗M2
�
>2

M2

˙̇
˙̇
˙̇

@
@
@
f @
@
@R

˙̇
˙̇
˙?

hf,g

	�
�
� g
�
�
�

M

Intuitively, a tensor product is a free extension of both objects in which elements
of one commute with elements of the other.

Example 8. A tensor product >1 : M1 → M1 ⊗M2 ← M2 : >2 of two monoids
M1 and M2 can be constructed as the coequalizer (M1⊕M2)/≡a,b

of the homo-
morphisms a, b : M1 ×M2 →M1 ⊕M2 defined by

a(m1,m2) = (m1, 1)(1,m2), b(m1,m2) = (1,m2)(m1, 1),

with the embeddings >1(m1) = (m1, 1)/≡a,b
, >2(m2) = (1,m2)/≡a,b

.

Proof. By the universal property of the coproduct ι1 : M1 →M1⊕M2 ←M2 : ι2,
there is a unique homomorphism [f, g] : M1 ⊕M2 →M with f = [f, g] ◦ ι1 and
g = [f, g]◦ ι2. Since f and g are relatively commuting, [f, g]◦a = [f, g]◦b. Hence,
by the universal property of the coequalizer ·/≡a,b

: M1 ⊕M2 → Q of a, b there
is a unique homomorphism h[f,g] : Q→M such that [f, g] = h[f,g] ◦ (·/≡a,b

).

M1

6

π1

@
@
@
ι1 @
@
@R

HHHHH
>1
HHHHHj

PPPPPPP f
PPPPPPPq

M1 ×M2

a

b

-- M1 ⊕M2

·/≡a,b
- Q ················

h[f,g]
··············- M

π2

?�
�
�

ι2 �
�
��

��
��
�
>2 ��

��
�*

��
��
��
�

g
��
��
��
�1

M2

It follows that f = [f, g] ◦ ι1 = h[f,g] ◦ (·/≡a,b
) ◦ ι1 = h[f,g] ◦ >1, likewise g =

h[f,g] ◦ >2. Thus, hf,g := h[f,g] is the induced homomorphism for f, g. 2

To obtain a tensor product for A-dioids, we can lift this construction to DA.

Theorem 4. A tensor product >1 : D1 → D1⊗AD2 ← D2 : >2 of A-dioids D1

and D2 can be obtained from the tensor product >̂1 : M1 →M1⊗M2 ←M2 : >̂2

of the monoids M1,M2 underlying D1, D2 by taking D1⊗AD2 := A(M1⊗M2)/≡
and >k = π ◦ η ◦ >̂k, k = 1, 2, where π is the canonical map U 7→ U/≡ and ≡ is
the least A-congruence on A(M1 ⊗M2) containing

({(
∑

A,
∑

B)}, A×B), for all A ∈ AD1, B ∈ AD2.
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Proof. The proof is analogous to the proof of Theorem 1. We write [U ] for π(U),
where U ∈ A(M1⊗M2) = A(M1×M2). >1 : D1 → D1⊗AD2 is an A-morphism,
and so is >2, because >1 is obviously a homomorphism and for A ∈ AD1,

>1(
∑

A) = [{>̂1(
∑

A)}] = [{(
∑

A, 1)}] = [A× {1}]

=
∑
{ [{(a, 1)}] | a ∈ A } =

∑
{ [>̂1(a)] | a ∈ A } =

∑
>̃1(A).

Let f : D1 → D and g : D2 → D be relatively commuting A-morphisms. By the
universal property for the tensor product in M, there is a unique homomorphism
ĥf,g : M1 ⊗M2 → D such that f = ĥf,g ◦ >̂1 and g = ĥf,g ◦ >̂2. By Theorem

I.4, ĥf,g extends uniquely to an A-morphism ĥ∗f,g : A(M1 ⊗ M2) → D with

ĥf,g = ĥ∗f,g ◦ η, where for U ∈ A(M1 ⊗M2),

ĥ∗f,g(U) =
∑ ˜̂

hf,g(U) =
∑
{ ĥf,g(m1,m2) | (m1,m2) ∈ U }.

Define hf,g : D1⊗AD2 → D by

hf,g([U ]) := ĥ∗f,g(U) =
∑ ˜̂

hf,g(U), for U ∈ A(M1 ⊗M2).

As for [f, g]∗ in the proof of Theorem 1 one sees that ĥ∗f,g is constant on ≡-classes,
so hf,g is well-defined. Then for d ∈ D1,

(hf,g ◦ >1)(d) = hf,g([{>̂1(d)}]) = ĥf,g(>̂1(d)) = f(d),

and likewise hf,g ◦ >2 = g. The uniqueness of hf,g follows from the surjectivity

of π and the uniqueness properties of ĥ∗f,g and ĥf,g. 2

For d1 ∈ D1 and d2 ∈ D2, let d1 ⊗ d2 be [{(d1, d2)}] ∈ D1⊗AD2. The elements
of D1⊗AD2 can be written as∑

{ d1 ⊗ d2 | (d1, d2) ∈ U }, U ∈ A(D1 ×D2).

Remark 2. A slightly different tensor product for DP, the quantales with unit,
has been constructed by Liang [17], admitting lattice operations and using bi-
morphisms rather than relatively commuting morphisms.

Proposition 7. AM1⊗AAM2 ' A(M1 ⊗M2) for monoids M1,M2.

Proof. (Sketch) Define h : (AM1⊗AAM2) � A(M1 ⊗M2) : h−1 by

[U ] 7→ { (
∑

A,
∑

B) | (A,B) ∈ U }, U ∈ A(AM1 ×AM2)

V 7→ [{ ({a}, {b}) | (a, b) ∈ V }], V ∈ A(M1 ⊗M2). 2
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5 Applications

We note that if the dioid Dn×n of n× n square matrices of an A-dioid D is an
A-dioid, it is isomorphic to the tensor product D⊗A Bn×n.

Proposition 8. If D ∈ DA and Dn×n ∈ DA, then Dn×n ' D⊗A Bn×n.

Proof. (Sketch) One shows that ID : D → Dn×n ← Bn×n : Id has the properties
of a tensor product, where ID(d) := dIn and Id (B) = B, for d ∈ D and B ∈
Bn×n. If f : D → D′ ← Bn×n : g are relatively commuting A-morphisms,

hf,g(A) :=
∑
{ f(Ai,j)g(E(i,j)) | i, j < n }, A ∈ Dn×n,

is the induced A-morphism with f = hf,g ◦ ID and g = hf,g ◦ Id . Here, E(i,j) ∈
Bn×n is the matrix with 1 only in line i, row j. 2

In general, to have Dn×n ∈ DA, every U ∈ ADn×n must have a supremum,
with (

∑
U)i,j :=

∑
Ui,j , where Ui,j = {Ai,j | A ∈ U } for i, j < n. Thus,

∑
U

exists if Ui,j ∈ AD for each U ∈ ADn×n and i, j < n.

Example 9. For the operators A of Example 1 (F , P) and Example 2 (Fκ, Pκ),
DA is closed under matrix ring formation, i.e. for each D ∈ DA and n ∈ N,
Dn×n ∈ DA. This also holds for operators R and C of Example 3 (cf. [10], [14]).

Finally, we return to the earlier attempt by Chomsky and Schützenberger to
expand the programme of algebraization beyond the regular languages.

Example 10. Let X = {u, v}, Y = {b, d, p, q} and view b, d and p, q as two pairs
of brackets. Let D ⊆ (X ∪ Y )∗ be the Dyck-language of strings with balanced
brackets and h : (X ∪ Y )∗ → X∗ the bracket-erasing homomorphism. By a
theorem of Chomsky/Schützenberger [3], CX∗ = {h(R∩D) | R ∈ R(X ∪Y )∗ }.
The theorem admits a form relating C with⊗R, which we indicate by an example.

Let C = RY ∗/{bd = 1 = pq, bq = 0 = pd} be the polycyclic R-dioid,
in which matching brackets reduce to 1 and bracket mismatches to 0; in the
semiring equations bq = 0 etc., we use y ∈ Y for {y} ∈ RY ∗. Then the tensor
product RX∗⊗R C contains all context-free languages L ∈ CX∗; for example,
if L = {unvn | n ∈ N }, then L belongs to RX∗⊗R C, since by ∗-continuity

b(up)∗(qv)∗d = b(
∑
n

(up)n)(
∑
m

(qv)m)d =
∑
n,m

unvmbpnqmd =
∑
n

unvn,

where b, d, p, q and u, v stand for their images 1⊗{b}, {u}⊗1 etc. in RX∗⊗R C.

The reduction of CX∗ to R(X ∪ Y )∗ by Chomsky and Schützenberger can
be improved to a reduction of CM to RM for arbitrary monoids M as follows:

Theorem 5. For any monoid M , CM ' ZC2(RM ⊗R C2), where

C2 = R{b, d, p, q}∗/{bd = 1 = pq, bq = 0 = pd, db+ qp = 1}

and ZC2(RM ⊗R C2) is the centralizer of C2 in RM ⊗R C2, the set of those
elements that commute with C2 in RM ⊗R C2.
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This generalizes to a construction of DC from DR. The proofs have to be deferred
to a future publication.

To give an idea, in the classical theorem of [3], each L ∈ CX∗ has a rational
kernel L̂ ∈ R(X ∪Y )∗ in the extended alphabet X ∪Y , where intuitively, L̂∩D
consists of the strings in L with begin- and end-markers of phrases according
to a context-free grammar for L (or the push- and pop-actions of a push-down
automaton for L) inserted. In the general case, L ∈ CM is elementwise embedded
in RM ⊗R C2 and gives a copy

∑
{ {m} ⊗ 1 | m ∈ L } ∈ RM ⊗R C2. It can be

obtained from a regular kernel L̂ ∈ R(M×Y ∗) ' RM ⊗RRY ∗ by performing in
RY ∗ analogs of the intersection with D and the bracket-erasure via calculations
modulo the defining relations of C2. The equation db+ qp = 1 not present in C
is needed to encode stack operations in C2.

A similar reduction of TM to RM ⊗R C2⊗R C2 can be made. To this end, a
second copy of C2 is used to enable computations of a 2-stack or Turing machine.

Open Problems

1. Can an operator S of context-sensitive subsets be provided by restricting to
a subcategory of M in which erasing homomorphisms are excluded?

2. Are all categories DA closed under matrix ring formation, with a uniform
proof?

3. Concerning transductions between monoids M and M ′, is the image of a set
A ∈ AM under a relation T ∈ A(M ×M ′) a set in AM ′?

6 Conclusion

We have studied functors A : M → D between the finite-subset functor F and
the power set functor P that give rise to subcategories DA of D and are left
adjoints of adjunctions (A, Â, η, ε) between M and DA, where Â : DA → M
is the forgetful functor. Each D ∈ DA has a subset AD between FD and PD
whose elements U ∈ AD have a least upper bound

∑
U ∈ D satisfying the dis-

tributivity property (
∑
U)(

∑
V ) =

∑
(UV ). Based on a notion of A-congruence

we have provided constructions of coproduct, coequalizers, quotient and tensor
product by lifting corresponding constructions from M to DA.

Do our results hold more generally or are they better expressed at a higher
level of abstraction like universal algebra or category theory? A reviewer sug-
gested that our DA’s are infinitary quasi-varieties (or prevarieties in Bergman [2])
and, for example, the existence of coproducts follows from known results. As far
as we see, many of our classes DA indeed are infinitary quasi-varieties, but prob-
ably not all. An infinitary quasi-variety is a class of algebras M that can be
axiomatized by a set of equational implications

∀x ∈M I(
∧
{ aj(x) = bj(x) | j ∈ J } → c(x) = d(x)),
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where I and J are sets and aj , bj , c, d are derived operations (resp. terms) of
arity I. The idea is to to express the least-upper-bound property of

∑
U by∧

{u ≤
∑

U | u ∈ U } ∧ ∀y ∈M(
∧
{u ≤ y | u ∈ U } →

∑
U ≤ y)

and replace quantification over sets U ∈ AM by quantification over families
x ∈ M I of individuals, for a set I of size |I| ≥ |U |. For an algebra signature
with operations

∑
and projections πi of arbitrary large arities I the least-upper-

bound property of
∑

x becomes an infinite equational implication. By quantify-
ing over families x instead of subsets U , the classes of size-bounded subsets, DPκ
and DFκ of Example 2, as well as DP of Example 1 become infinitary quasi-
varieties (in signatures of class size). Clearly, DF = DFℵ0 = D, the idempotent
semirings, form a variety (in the signature +, ·, 0, 1).

For DR of Example 3, one can use the equational implications of Kozen’s [9]
axioms for Kleene algebra (in 0, 1,+, ·, ∗), plus ∗-continuity of · in the form

∀a, b, c, y[
∧
{ abnc ≤ ab∗c | n ∈ N } ∧ (

∧
{ abnc ≤ y | n ∈ N } → ab∗c ≤ y)].

Likewise, for DC one can use the µ-continuity condition of [4] (say, with |y|-ary
Skolem functions fx,p for each system of polynomial inequations x ≥ p(x,y),
and first-order terms fp(x,y)(y) for µxp). Thus, DR and DC form infinitary
quasi-varieties. For DT we know of no such axiomatization.

For arbitrary A, the A-subsets AD on which
∑

is defined are not images
under arbitrary maps of fixed sets I given by a signature. Hence it seems more
appropriate to view the A-dioids as two-sorted algebras (D,+, ·, 0, 1 ; AD,

∑
D)

or as T -algebras (D,
∑
D : TD → D) of the Eilenberg-Moore category MT of the

monad T = TA of the adjunction (A, Â, η, ε) : M → DA. Embeddings that are
T -algebra morphisms would give the right notion of A-subdioids, but we don’t
know if there are Birkhoff-type theorems for T -algebras (cf. [1]) which show that
the DA are quasi-varieties in a generalized sense, and if so, whether this implies
some of our results. Our lifting of closure properties of M to closure properties of
the categories DA is based on taking quotients of A-dioids under A-congruences.
It may be possible to perform these liftings from a base category C with suitable
notion of congruence to the category CT under more general conditions.
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15. H. Leiß and Z. Ésik. Algebraically complete semirings and Greibach normal form.
Annals of Pure and Applied Logic, 133:173–203, 2005.

16. H. Leiß and M. Hopkins. C-dioids and µ-continuous Chomsky algebras. In J. De-
sharnais, W. Guttmann, and S. Joosten, editors, 17th Int. Conf. on Relational and
Algebraic Methods in Computer Science (RAMiCS-17). Springer Verlag, 2018.

17. S. Liang. The tensor product of unital quantales. Studies in Mathematical Sciences,
7(1):15–21, 2013.

18. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, New
York Inc., 1971.

19. I. P. McWhirter. Substitution expressions. Journal of Computer and System Sci-
ences, 5:629–637, 1971.

20. M. K. Yntema. Cap expressions for context-free languages. Information and Con-
trol, 8:311–318, 1971.

16


