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Abstract

Title: C-dioids and µ-continuous Chomsky-algebras

In their complete axiomatization of the equational theory of
context-free languages, Grathwohl, Henglein and Kozen (FICS
2013) introduced µ-continuous Chomsky algebras. These are
algebraically complete idempotent semirings where multiplication
and the least-fixed-point operator µ are related by a continuity
condition.

In his algebraic generalization of the Chomsky hierarchy, Hopkins
(RelMiCS 2008) introduced C-dioids, which are idempotent
semirings (or: dioids) where context-free subsets have least upper
bounds and multiplication is sup-continuous.

We show that these two classes of structures coincide.
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Content

1. Chomsky-algebras: idempotent semirings (M,+, ·, 0, 1) in
which CFGs x̄ ≥ p̄(x̄) have least solutions µx̄ p̄M .

I µ-continuity: a · µxtM · b =
∑
{a ·mxtM · b | m ∈ N}

2. C-dioids: idempotent semirings (M,+, ·, 0, 1) with
I sups

∑
U ∈ M of context-free subsets U ⊆ M

I sup-continuity: (
∑

U)(
∑

V ) =
∑

(UV ) for cf-sets U,V .

We show:

µ-continuous Chomsky algebra = C-dioid.
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0. Definitions: A-dioids, Kleene and Chomsky algebras

A semiring R = (R,+, 0, ·, 1) is a set R with two operations
+, · : R × R → R, such that (R,+, 0) and (R, ·, 1) are monoids, +
is commutative, and the zero and distributivity laws holds:

∀a, b, c , d : a0b = 0, a(b + c)d = abd + acd

A dioid or idempotent semiring D = (D,+, 0, ·, 1) is a semiring in
which + is idempotent. It has a natural partial order ≤, defined by

a ≤ b :⇐⇒ a + b = b.

A partially ordered monoid (M, ·, 1,≤) is a monoid (M, ·, 1) with a
partial order ≤ and where · is monotone in each argument.
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If M = (M, ·M , 1M) is a monoid, its power set (P(M), ·, 1,⊆) is a
partially ordered monoid –and (P(M),∪, ∅, ·, 1) a dioid–, where

A · B := {a ·M b | a ∈ A, b ∈ B}, 1 := {1M}.

A functor A : Monoid→ Monoid is monadic (Hopkins[3]), if for
each monoid M

A0 AM is a set of subsets of M: AM ⊆ PM,

A1 AM contains each finite subset of M: FM ⊆ AM,

A2 AM is closed under product (hence a monoid),

A3 AM is closed under union of sets from AAM, and

A4 AM preserves monoid-homomorphisms: if f : M → N is a
homomorphism, so is f̃ : AM → AN, where for U ⊆ M

f̃ (U) := {f (u) | u ∈ U}.
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Theorem (Hopkins[3]): The monadic functors form a lattice.

Example (algebraic Chomsky’ hierarchy)

The functors F ≤ R ≤ L ≤ C ≤ T ≤ P are monadic (A3!):

1. PM = all subsets of M,

2. FM = all finite subsets of M,

3. RM = the closure of FM under + (union), · (elementwise
product) and ∗ (iteration), i.e. A∗ =

⋃
{An | n ∈ N}.

4. LM = the closure of FM under + and products of least
solutions in PM of x ≥ p(x) with linear polynomials p(x) over
LM, i.e. p(x) = a1xb1 + . . . akxbk + c with ai , bi , c ∈ LM.

5. CM = the closure of FM under least solutions in PM of
systems x1 ≥ p1(x̄), . . . xn ≥ pn(x̄) with polynomials pi (x̄)
over CM.

6. TM = all Turing/Thue-subsets TM of M.

Rem. SM = all context-sensitive subsets of M is not monadic.(A4)
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Let M be a partially ordered monoid. For a ∈ M and U ⊆ M let
U < a mean that a is an upper bound of U: for all u ∈ U, u ≤ a.

D0 M is A-complete, if each U ∈ AM has a least upper bound∑
U ∈ M.

D1 M is A-continuous, if for all U ∈ AM and x , a, b ∈ M with
x > aUb there is some u > U with x ≥ aub.

Prop. (Hopkins 2008) If the partially ordered monoid M is
A-complete, the conditions D1,D

′
1,D

′
2 are pairwise equivalent:

D ′1 for all a, b ∈ M and U ∈ AM,
∑

aUb = a(
∑

U)b.

D ′2 for all U,V ∈ AM,
∑

(UV ) =
∑

U ·
∑

V .

These are called weak resp. strong A-distributivity.

Clearly, D ′2 ⇒ D ′1. We later need a local version of D ′1 ⇒ D ′2:
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Prop. Let M be a partially ordered monoid and U,V ∈ AM such
that u :=

∑
U and v :=

∑
V exist. Then (i) implies (ii) for

(i) for all a, b ∈ M,
∑

aUb = a(
∑

U)b and
∑

aVb = a(
∑

V )b.

(ii)
∑

(UV ) =
∑

U ·
∑

V .

Proof.

Clearly, UV < uv . To prove that uv is
∑

(UV ), take any c ∈ M
with UV < c and show uv ≤ c.

For each a ∈ U, by (i),
∑

aV 1 exists, and as aV 1 ⊆ UV < c ,

av = a(
∑

V )1 =
∑

aV 1 ≤ c .

Hence Uv = 1Uv < c .

By (i),
∑

1Uv exists, and uv = 1(
∑

U)v =
∑

1Uv ≤ c .
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An A-dioid is a partially ordered monoid M which is

D0 A-complete: every U ∈ AM has a supremum
∑

U ∈ M, and

D ′2 A-distributive: for all U,V ∈ AM,
∑

(UV ) = (
∑

U)(
∑

V ).

Every A-dioid (M, ·, 1,≤) is a dioid, using a + b :=
∑
{a, b} and

0 :=
∑
∅. The zero and distributivity laws follow from D ′1 ≡ D ′2.

Lemma

If M is an A-dioid and p(x1, . . . , xn) a polynomial in x1, . . . , xn
with parameters from M, then pAM(U1, . . . ,Un) ∈ AM for all
U1, . . . ,Un ∈ AM –with mAM := {m} for m ∈ M–, and∑

pAM(U1, . . . ,Un) = pM(
∑

U1, . . . ,
∑

Un).
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Proof.

This follows from
∑
{m} = m, A-distributivity and∑

(U + V ) =
∑

U +
∑

V for all U,V ∈ AM.

Since {U,V } ∈ FAM ⊆ AAM, U + V =
⋃
{U,V } ∈ AM, and

so there is a least upper bound
∑

(U + V ) ∈ M. Hence∑
U +

∑
V ≤

∑
(U + V ) +

∑
(U + V ) =

∑
(U + V ).

As U + V <
∑

U +
∑

V , so
∑

(U + V ) ≤
∑

U +
∑

V . 2
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The monadic operator A provides us with a notion of continuous
maps between partially ordered monoids, as follows.

D3 A map f : M → M ′ is A-continuous, if for all U ∈ AM and
y > f̃ (U) there is some x > U with y ≥ f (x).

An A-morphism is a ≤-preserving, A-continuous homomorphism.

Let DA be the category of A-dioids with A-morphisms.

Every A-morphism between A-dioids is a dioid-homomorphism.

An ≤-preserving homomorphism f : M → M ′ between A-dioids is
A-continuous iff

f (
∑

U) =
∑

f̃ (U) forall U ∈ AM.
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Theorem

I (Hopkins 2008) AM is the free A-dioid with generators M.

I (Hopkins 2008) DA has a tensor product D ⊗A D ′, satisfying

AM ⊗A AM ′ ' A(M ×M ′).

I R(M ×M ′) = rational transductions between M and M ′.
I C(M ×M ′) = simple syntax-directed translations btw M,M ′.

I (HL 2018) DA has co-products D ⊕A D ′ and co-equalizers
(quotients by A-congruences), hence co-limits.

Theorem (Hopkins 2008)

DR equals Kozen’s category of ∗-continuous Kleene algebras.
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Kozen 1981/1990: ∗-continuous Kleene-algebras

A Kleene algebra (K ,+, 0, ·, 1, ∗) is an idempotent semiring (dioid)
(K ,+, 0, ·, 1) with a unary operation ∗ : K → K such that

I (KA 1) ∀a, b ∈ K : a∗b is the least solution of x ≥ ax + b.

I (KA 2) ∀a, b ∈ K : ba∗ is the least solution of x ≥ xa + b.

The Kleene algebra K is ∗-continuous, if for all a, b, c ∈ K ,

ac∗b =
∑
{acnb | n ∈ N}.

In particular:

I K is ∗-complete: every set Uc = {cn | n ∈ N} has a
supremum, c∗ =

∑
Uc .

I · is ∗-distributive: for all a, b, c , a(
∑

Uc)b =
∑

(aUcb).
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C-dioids

We are interested in the category DC of C-dioids as a generalization
of the theory of context-free languages over free monoids.

Why consider CM ⊆ PM for non-free monoids M?

I We want to handle transductions T ⊆ X ∗ × Y ∗ in the same
formalism as we handle languages, but X ∗ × Y ∗ is not free:
for example, (x , ε)(ε, y) = (x , y) = (ε, y)(x , ε).

I Natural languages apply “sound laws” to concatenate
stem+affix in a non-free way: bet+ing = betting

I Natural languages apply inflections to concatenate words and
phrases in a non-free way: few + man = few men,
this woman + (to) read a book = this woman reads a book.

Claim

DC equals the category of µ-continuous Chomsky-algebras.
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Partially ordered µ-semirings

Let X be an infinite set of variables and consider µ-terms over X :

s, t := x | 0 | 1 | (s · t) | (s + t) | µx t

A partially ordered µ-semiring (M,+, ·, 0, 1,≤) is a semiring
(M,+, ·, 0, 1) with a partial order ≤ on M, where every term t
defines a function tM : (X → M)→ M, so that

for all terms s, t, x ∈ X and valuations g , h : X → M

1. 0M(g) = 0,
1M(g) = 1,
xM(g) = g(x),

(s + t)M(g) = sM(g) + tM(g),
(s · t)M(g) = sM(g) · tM(g),

if sM ≤ tM , then µxsM ≤ µxtM ,

2. tM(g) ≤ tM(h), if g ≤ h pointwise,

3. tM(g) = tM(h), if g = h on free(t), (coincidence prop.)

4. t[x/s]M(g) = tM(g [x/sM(g)]). (substitution prop.)

For t(x1, . . . , xn) we write tM [x1/a1, . . . , xn/an] or tM(a1, . . . , an).
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A Park µ-semiring is a partially ordered µ-semiring M where for all
terms t and variables x , y , the following hold in M:

(Park axiom) t[x/µxt] ≤ µxt,

(Park rule) t[x/y ] ≤ y → µxt ≤ y .

In a Park µ-semiring M, µxtM(g) is the least solution of t ≤ x in
M, g , i.e. the least a ∈ M such that tM(g [x/a]) ≤ a.

From the Park axiom and rule, it follows easily that

t[x/µxt] = µxt, and µy .t[x/y ] = µxt for y /∈ free(t),

hold in M.
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Kozen e.a. 2013: µ-continuous Chomsky-algebras

An idempotent semiring (M,+, 0, ·, 1) is algebraically closed or a
Chomsky-algebra, if every system

x1 ≥ p1(x̄ , ȳ), . . . , xn ≥ pn(x̄ , ȳ), x̄ = x1, . . . , xn, n ∈ N,

with polynomials pi (x̄ , ȳ) has least solutions ā ∈ Kn, for all
parameters b̄ ∈ Km for ȳ = y1, . . . , ym.

Example

The set CX ∗ of context-free languages over X is the smallest set
L ⊆ PX ∗ such that

(i) each finite subset of X ∪ {ε} is in L, and

(ii) if x̄ ≥ p̄(x̄ , ȳ) is a polynomial system, and B̄ ∈ Lm, then the
the least Ā ∈ (PX ∗)n with Ā ⊇ p̄ PX

∗
(Ā, B̄) belongs to Ln.

Then (CX ∗,+, ·, 0, 1) is a Chomsky algebra. [Least solutions of
x̄ ≥ p̄(x̄ , ȳ) exist in PX ∗, as this is a CPO and +, · are continuous.]
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Lemma (Grathwohl,Henglein,Kozen (FICS 2013))

Every Chomsky-algebra M is an idempotent, partially ordered
µ-semiring, if we define for terms t, x ∈ X and g : X → M

µxtM(g) := the least a ∈ M such that tM(g [x/a]) ≤ a. (1)

Moreover, every system t̄(x̄ , ȳ) ≤ x̄ with µ-terms t̄(x̄ , ȳ) has least
solutions in M, i.e. for all parameters b̄ from M there is a least
tuple ā in M such that t̄M(ā, b̄) ≤ ā.

Proof: by reduction to least solutions of polynomial systems.

Corollary

Every Chomsky algebra is a Park µ-semiring (using these µxtM).
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A Chomsky algebra M is µ-continuous, if for all a, b ∈ M, all terms
t, x ∈ X and g : X → M it satisfies

a · µxtM(g) · b =
∑
{a ·mxtM(g) · b | m ∈ N}, (2)

where mxt is defined by 0xt := 0, (m + 1)xt := t[x/mxt].

The µ-continuity condition generalizes Kozen’s ∗-continuity

a · c∗ · b =
∑
{a · cm · b | m ∈ N}.

Theorem (Grathwohl,Henglein,Kozen, 2013)

For terms s, t are equivalent:

I sPX
∗
(g) = tPX

∗
(g) for the standard valuation g(x) = {x},

I sM(g) = tM(g) for all µ-continuous CAs M and g : X → M.
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I. Every µ-continuous Chomsky algebra is a C-dioid

We first define term vectors µx̄ t̄ that embody H. Bekić’s (1984)
reduction of the n-ary least fixed-point operator to the unary one
in ω-complete partial orders with sup-continuous operations.

For vectors t̄ = t1, . . . , tn of terms and x̄ = x1, . . . , xn of pairwise
different variables, define the term vector µx̄ t̄ as follows. If n = 1,
then µx̄ t̄ := µx1t1. If n > 1, x̄ = (ȳ , z̄) and t̄ = (r̄ , s̄) with term
vectors r̄ , s̄ of lengths |ȳ |, |z̄ | < n, then µx̄ t̄ is

µ(ȳ , z̄)(r̄ , s̄) := (µȳ .r̄ [z̄/µz̄ s̄], µz̄ .s̄[ȳ/µȳ r̄ ]). (3)

Lemma (HL[4])

For any Chomsky algebra M and valuation g : X → M is µx̄ t̄M(g)
the least tuple ā in M such that t̄M(g [x̄/ā]) ≤ ā.

The value µx̄ t̄M(g) does not depend on the splitting x̄ into ȳ , z̄ .
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The unary version of µ-continuity implies the n-ary version:

Lemma (Cor. 23 in [4])

Let M be a µ-continuous Chomsky algebra and g : X → M. Then

ā · µx̄ t̄M(g) · b̄ =
∑
{ā ·mx̄t̄M(g) · b̄ | m ∈ N},

for any term vector t̄ and ā, b̄ ∈ M |t|, and (m + 1)x̄ t̄ := t̄[x̄/mx̄t̄].
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Theorem

Let M be a µ-continuous Chomsky-algebra. Then M is a C-dioid:

a) Every U ∈ CM has a supremum
∑

U ∈ M (C-completeness).

b) For all U,V ∈ CM,
∑

(UV ) = (
∑

U)(
∑

V ) (C-distributivity)

Proof. As M is a dioid, a) and b) are true for all U,V ∈ FM.

Let Ū ∈ (CM)n be the least solution of x̄ ≥ p̄CM(x̄ , Ā). By
induction, we may assume a) and b) for all U,V ∈ Ā. To show
them for all U,V ∈ Ū, Ā, by a previous Prop. we only need:

a’) Every U ∈ Ū has a supremum
∑

U ∈ M.

b’) For all U ∈ Ū and all a, b ∈ M,
∑

(aUb) = a(
∑

U)b.

Notice that b) for all U,V ∈ Ā ∪ FM gives us b’) for all U ∈ Ā.
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Idea: There is a least solution ū ∈ Mn of x̄ ≥ p̄M(x̄ , ā), which
ought to give sup’s for Ū = µx̄ p̄CM(Ā), hence

∑
U should exist by∑

Ū =
∑

µx̄pCM(Ā) = µx̄ p̄M(
∑

A) = ū,

which in turn must come from
∑

Ūm = ūm of its approximations

Ūm = mx̄p̄CM(x̄ , Ā) and ūm = mx̄p̄M(x̄ ,
∑

Ā).

To show
∑

Ūm = um inductively, we need C-distributivity of Ūm, Ā:
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Consider x ≥ p(x , y , z) := yx + z . Suppose A,B ∈ CM have least
upper bounds

∑
A = a,

∑
B = b ∈ M. Since M is µ-continuous,

µxpM(a, b) = a∗b =
∑
{amb | m ∈ N}.

To show that (m + 1)xpM(a, b) = a ·mxpM(a, b) + b is the least
upper bound of (m + 1)xpCM(A,B) = A ·mxpCM(A,B) ∪ B, we
need to know a case of (strong) C-distributivity:

a ·mxpM(a, b) + b = (
∑

A)(
∑

mxpCM(A,B)) +
∑

B

=
∑

(A ·mxpCM(A,B) ∪ B).
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By induction, we prove for Ūm := mx̄p̄CM(Ā), ūm := mx̄p̄M(
∑

Ā)

(i)
∑

(Ūm, Ā) exists (componentwise),

(ii) for all monomials q(x̄ , ȳ), qM(
∑

Ūm,
∑

Ā) =
∑

qCM(Ūm, Ā),

(iii) ūm =
∑

Ūm.

For m = 0, (iii) is clear: 0̄ =
∑
∅̄. Therefore, (i) and (ii) follow

from the hypothesis a’)
∑

Ā exist and b’) distributivity for Ā;

(ii) extends to polynomials by
∑

(A ∪ B) =
∑

A +
∑

B.

25 / 37



For m + 1, by induction
∑

Ūm exists by (i), and then

ūm+1 = p̄M(ūm,
∑

Ā) (def.)

= p̄M(
∑

Ūm,
∑

Ā) (iii)

=
∑

p̄CM(Ūm, Ā) (ii)

=
∑

Ūm+1 (def.)

Hence, (i)
∑

Ūm+1 exists, and (iii) ūm+1 =
∑

Ūm+1.

For (ii), let q(x̄ , ȳ) be a monomial in x̄ , ȳ , and r(x̄ , ȳ) the
polynomial obtained by distribution from q(x̄ , ȳ)[x̄/p̄(x̄ , ȳ)]. Then

qM(
∑

Ūm+1,
∑

Ā) = rM(
∑

Ūm,
∑

Ā)

=
∑

rCM(Ūm, Ā) ((ii) for r)

=
∑

qCM(Ūm+1, Ā).
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Now ū := µx̄ p̄M(
∑

Ā) is the least upper bound of Ū = µx̄ p̄CM(Ā):

ū = µx̄ p̄M(
∑

Ā)

=
∑
{mx̄p̄M(

∑
Ā) | m ∈ N} (M a µ-cont.CA)

=
∑
{ūm | m ∈ N}

=
∑
{
∑

Ūm | m ∈ N} (iii)

=
∑⋃

{Ūm | m ∈ N}

=
∑

Ū =
∑
µx̄ p̄CM(Ā).

In particular, we have shown a’) any U ∈ Ū has a
∑

U ∈ M.

To show b’) a(
∑

U)b =
∑

(aUb), extend a, b to some ā, b̄ ∈ Mn.
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Having ā(
∑

Ūm)b̄ =
∑

āŪmb̄ inductively by (ii), we obtain

ā(
∑

Ū)b̄ = ā · ū · b̄

=
∑
{ā · ūm · b̄ | m ∈ N} (M µ-cont.CA)

=
∑
{ā(

∑
Ūm)b̄ | m ∈ N} (ūm =

∑
Ūm)

=
∑
{
∑

(āUmb̄) | m ∈ N} (by (ii))

=
∑⋃

{āŪmb̄ | m ∈ N} (
∑

property)

=
∑

(ā ·
⋃
{Ūm | m ∈ N} · b̄) (·CM is

⋃
-cont.)

=
∑

(āŪb̄).

Hence, for U ∈ Ū we have b’) a(
∑

U)b =
∑

aUb for all a, b. 2
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II. Every C-dioid is a µ-continuous Chomsky algebra

Theorem

Let M be a C-dioid. Then M be a µ-continuous Chomsky-algebra.

Proof. (i) M is algebraically closed: Let x̄ ≥ p̄(x̄ , ȳ) be a
polynomial system with n = |x̄ |, k = |ȳ |, and ā ∈ Mk . Let Ā
consist of the Aj := {aj} ∈ CM, so ā =

∑
Ā, and let

Ū = µx̄ p̄ CM(Ā) ∈ (CM)n

be the least solutuion of x̄ ≥ p̄PM(x̄ , Ā) in PM.

Since M is a C-dioid, suprema ui :=
∑

Ui ∈ M exist. We show
that ū :=

∑
Ū is the least solution of x̄ ≥ p̄M(x̄ , b̄) in M, i.e.

µx̄ p̄M(ā) = ū =
∑

Ū =
∑

µx̄ p̄CM(Ā). (4)
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Since M is C-distributive, ū =
∑

Ū is a solution of x̄ ≥ p̄M(x̄ , ā):1

p̄M(
∑

Ū,
∑

Ā) =
∑

p̄CM(Ū, Ā) ≤
∑

Ū.

To show that ū is the least solution of x̄ ≥ p̄M(x̄ , ā), let c̄ ∈ Mn

be any solution. It is sufficient to show c̄ > Ū. We know

Ū =
⋃
{p̄PM(Ūm, Ā) | m ∈ N}

where Ū0 := ∅̄, Ūm+1 := p̄PM(Ūm, Ā).

For m = 0, obviously c̄ > Ū0. Suppose c̄ > Ūm for some m. By
induction on pi , pCMi (Ūm, Ā) < pM

i (c̄ , ā) for each i , hence

Ūm+1 < p̄M(c̄ , ā) ≤ c̄ .

Therefore, Ū < c̄ .

1by Lemma 1
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(ii) M is µ-continuous: we need an auxiliary

Claim. For all µ-terms t(x1, . . . , xn) and sets A1, . . . ,An ∈ CM,

tM(
∑

A1, . . . ,
∑

An) =
∑

tCM(A1, . . . ,An). (5)

Proof. By induction on t. For (r · s), by the C-distributivity of M:

(r · s)M(
∑

Ā) = rM(
∑

Ā) ·M sM(
∑

Ā)

= (
∑

rCM(Ā)) ·M (
∑

sCM(Ā))

=
∑

(rCM(Ā) ·CM sCM(Ā))

=
∑

(r · s)CM(Ā).
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For µxr , by induction we have for B = µxrCM(Ā) ∈ CM

rM(
∑

Ā,
∑

B) =
∑

rCM(Ā,B) ≤
∑

B,

so that
µxrM(

∑
Ā) ≤

∑
B =

∑
µxrCM(Ā).

The converse holds by induction on Kozen’s well-ordering ≺ of
µ-terms. Assuming

∑
mxrCM(Ā) = mxrM(

∑
Ā) for all m, we get∑

µxrCM(Ā) =
∑⋃

{mxrCM(Ā) | m ∈ N}

=
∑
{
∑

mxrCM(Ā) | m ∈ N}

=
∑
{mxrM(

∑
Ā) | m ∈ N}

≤ µxrM(
∑

Ā). /
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We can now show the µ-continuity condition. Since g : X → M is∑
◦g ′ for some g ′ : X → CM, by g(x) =

∑
{g(x)}, it reads:

Claim. For all µ-terms µxt(x̄), all Ā ∈ (CM)|x̄ | and a, b ∈ M:

a · µxtM(
∑

Ā) · b =
∑
{a ·mxtM(

∑
Ā) · b | m ∈ N}.

Proof. a · µxtM(
∑

Ā) · b

= (
∑
{a})(

∑
µxtCM(Ā))(

∑
{b}) (by (5))

=
∑

({a} · µxtCM(Ā) · {b}) (M a C-dioid)

=
∑

({a} ·
⋃
{mxtCM(Ā) | m ∈ N} · {b})

=
∑

(
⋃
{{a} ·mxtCM(Ā) · {b} | m ∈ N})

=
∑
{
∑

({a} ·mxtCM(Ā) · {b}) | m ∈ N}

=
∑
{(
∑
{a}) · (

∑
mxtCM(Ā)) · (

∑
{b}) | m ∈ N}

=
∑
{a ·mxtM(

∑
Ā) · b | m ∈ N}. (by (5)) /2
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Open Problems (M.Hopkins’ program)

I. To cover SM = context-sensitive subsets of M, consider a
subcategory of Monoid with non-erasing homomorphisms.

II. Construct an explicit adjunction QCR : DR� DC : QRC between
the category DR of ∗-continuous Kleene algebras and the
category DC of µ-continuous Chomsky algebras.

To get QCR(RX ∗), modify the Chomsky-Schützenberger theorem:

CX ∗ = {e(R ∩ D) | R ∈ R((X ∪̇Y )∗)}, where

I Y = {b, d , p, q} consist of two bracket pairs b, d and p, q,

I e : (X ∪ Y )∗ → X ∗ is the bracket-erasing homomorphism,

I D ⊆ (X ∪ Y )∗ the Dyck-language of well-bracketed strings.

This gives CX ∗ = Q(R(X ∪ Y )∗); improve it to CX ∗ = Q(RX ∗),
then to CM = Q(RM) for monoids M, then to QCR : DR → DC.
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Partial result (Hopkins):

Take C2 := RY ∗/{bd = 1 = pq, bq = 0 = pd} ∈ DR. Then

CX ∗ ⊆ RX ∗ ⊗R C2.

Example: In C2, bpnqmd = 1 if n = m, else 0. Hence

CX ∗ 3 {xn
1 xn

2 | n ∈ N}
'

∑
n

xn
1 xn

2 =
∑
n,m

xn
1 xm

2 bpnqmd =
∑
n,m

b(x1p)n(qx2)md

= b(x1p)∗(qx2)∗d ∈ RX ∗ ⊗R C2.

With C ′2 := C2/{db + qp ≤ 1} this can be improved to

CX ∗ ' ZC ′2
(RX ∗ ⊗R C ′2) and CM ' ZC ′2

(RM ⊗R C ′2).

To be extended to QCR : DR → DC.

Goal: regular expressions (over a non-free KA) for all CFLs.

35 / 37



References

Hans Bekić.
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