C-Dioids = μ -Continuous Chomsky Algebras

Hans Leiß leiss@cis.uni-muenchen.de

Universität München Centrum für Informations- und Sprachverarbeitung

Oberseminar Theoretische Informatik, LMU, 22.6.2018

Abstract

Title: C-dioids and $\mu\text{-continuous}$ Chomsky-algebras

In their complete axiomatization of the equational theory of context-free languages, Grathwohl, Henglein and Kozen (FICS 2013) introduced μ -continuous Chomsky algebras. These are algebraically complete idempotent semirings where multiplication and the least-fixed-point operator μ are related by a continuity condition.

In his algebraic generalization of the Chomsky hierarchy, Hopkins (RelMiCS 2008) introduced C-dioids, which are idempotent semirings (or: dioids) where context-free subsets have least upper bounds and multiplication is sup-continuous.

We show that these two classes of structures coincide.

Content

1. Chomsky-algebras: idempotent semirings $(M, +, \cdot, 0, 1)$ in which CFGs $\bar{x} \ge \bar{p}(\bar{x})$ have least solutions $\mu \bar{x} \bar{p}^M$.

• μ -continuity: $a \cdot \mu x t^M \cdot b = \sum \{a \cdot m x t^M \cdot b \mid m \in \mathbb{N}\}$

- 2. C-dioids: idempotent semirings $(M, +, \cdot, 0, 1)$ with
 - sups $\sum U \in M$ of context-free subsets $U \subseteq M$
 - sup-continuity: $(\sum U)(\sum V) = \sum (UV)$ for cf-sets U, V.

We show:

$$\mu$$
-continuous Chomsky algebra = C-dioid.

0. Definitions: A-dioids, Kleene and Chomsky algebras

A semiring $R = (R, +, 0, \cdot, 1)$ is a set R with two operations $+, \cdot : R \times R \to R$, such that (R, +, 0) and $(R, \cdot, 1)$ are monoids, + is commutative, and the zero and distributivity laws holds:

 $\forall a, b, c, d: a0b = 0, a(b+c)d = abd + acd$

A dioid or idempotent semiring $D = (D, +, 0, \cdot, 1)$ is a semiring in which + is idempotent. It has a natural partial order \leq , defined by

$$a \leq b : \iff a + b = b.$$

A partially ordered monoid $(M, \cdot, 1, \leq)$ is a monoid $(M, \cdot, 1)$ with a partial order \leq and where \cdot is monotone in each argument.

If $M = (M, \cdot^M, 1^M)$ is a monoid, its power set $(\mathcal{P}(M), \cdot, 1, \subseteq)$ is a partially ordered monoid –and $(\mathcal{P}(M), \cup, \emptyset, \cdot, 1)$ a dioid–, where

$$A \cdot B := \{ a \cdot^M b \mid a \in A, b \in B \}, \quad 1 := \{ 1^M \}.$$

A functor \mathcal{A} : Monoid \rightarrow Monoid is monadic (Hopkins[3]), if for each monoid M

- $A_0 \ \mathcal{A}M$ is a set of subsets of $M: \ \mathcal{A}M \subseteq \mathcal{P}M$,
- $A_1 \ \mathcal{A}M$ contains each finite subset of $M: \ \mathcal{F}M \subseteq \mathcal{A}M$,
- A_2 $\mathcal{A}M$ is closed under product (hence a monoid),
- A_3 $\mathcal{A}M$ is closed under union of sets from $\mathcal{A}\mathcal{A}M$, and
- A_4 $\mathcal{A}M$ preserves monoid-homomorphisms: if $f: M \to N$ is a homomorphism, so is $\tilde{f}: \mathcal{A}M \to \mathcal{A}N$, where for $U \subseteq M$

$$\widetilde{f}(U) := \{f(u) \mid u \in U\}.$$

Theorem (Hopkins[3]): The monadic functors form a lattice.

Example (algebraic Chomsky' hierarchy)

The functors $\mathcal{F} \leq \mathcal{R} \leq \mathcal{L} \leq \mathcal{C} \leq \mathcal{T} \leq \mathcal{P}$ are monadic (A₃!):

- 1. $\mathcal{P}M = \text{all subsets of } M$,
- 2. $\mathcal{F}M$ = all finite subsets of M,
- 3. $\mathcal{R}M$ = the closure of $\mathcal{F}M$ under + (union), \cdot (elementwise product) and * (iteration), i.e. $A^* = \bigcup \{A^n \mid n \in \mathbb{N}\}.$
- *LM* = the closure of *FM* under + and products of least solutions in *PM* of x ≥ p(x) with linear polynomials p(x) over *LM*, i.e. p(x) = a₁xb₁ + ... a_kxb_k + c with a_i, b_i, c ∈ *LM*.
- CM = the closure of FM under least solutions in PM of systems x₁ ≥ p₁(x̄), ... x_n ≥ p_n(x̄) with polynomials p_i(x̄) over CM.
- 6. TM = all Turing/Thue-subsets TM of M.

Rem. SM = all context-sensitive subsets of M is not monadic.(A_4)

Let *M* be a partially ordered monoid. For $a \in M$ and $U \subseteq M$ let U < a mean that *a* is an upper bound of *U*: for all $u \in U$, $u \leq a$.

- D_0 *M* is *A*-complete, if each $U \in AM$ has a least upper bound $\sum U \in M$.
- D_1 *M* is *A*-continuous, if for all $U \in AM$ and $x, a, b \in M$ with x > aUb there is some u > U with $x \ge aub$.

Prop. (Hopkins 2008) If the partially ordered monoid M is \mathcal{A} -complete, the conditions D_1, D'_1, D'_2 are pairwise equivalent:

$$D'_1$$
 for all $a, b \in M$ and $U \in \mathcal{A}M$, $\sum aUb = a(\sum U)b$.
 D'_2 for all $U, V \in \mathcal{A}M$, $\sum (UV) = \sum U \cdot \sum V$.

These are called *weak* resp. *strong* A-distributivity.

Clearly, $D_2' \Rightarrow D_1'$. We later need a local version of $D_1' \Rightarrow D_2'$:

Prop. Let *M* be a partially ordered monoid and *U*, $V \in AM$ such that $u := \sum U$ and $v := \sum V$ exist. Then (i) implies (ii) for (i) for all $a, b \in M$, $\sum aUb = a(\sum U)b$ and $\sum aVb = a(\sum V)b$. (ii) $\sum (UV) = \sum U \cdot \sum V$.

Proof.

Clearly, UV < uv. To prove that uv is $\sum(UV)$, take any $c \in M$ with UV < c and show $uv \leq c$.

For each $a \in U$, by (i), $\sum aV1$ exists, and as $aV1 \subseteq UV < c$,

$$\mathsf{av}=\mathsf{a}(\sum V)\mathbb{1}=\sum \mathsf{a}V\mathbb{1}\leq c.$$

Hence Uv = 1Uv < c.

By (i), $\sum 1Uv$ exists, and $uv = 1(\sum U)v = \sum 1Uv \le c$.

An A-dioid is a partially ordered monoid M which is

 D_0 \mathcal{A} -complete: every $U \in \mathcal{A}M$ has a supremum $\sum U \in M$, and D'_2 \mathcal{A} -distributive: for all $U, V \in \mathcal{A}M$, $\sum (UV) = (\sum U)(\sum V)$.

Every A-dioid $(M, \cdot, 1, \leq)$ is a dioid, using $a + b := \sum \{a, b\}$ and $0 := \sum \emptyset$. The zero and distributivity laws follow from $D'_1 \equiv D'_2$.

Lemma

If *M* is an *A*-dioid and $p(x_1, ..., x_n)$ a polynomial in $x_1, ..., x_n$ with parameters from *M*, then $p^{\mathcal{A}M}(U_1, ..., U_n) \in \mathcal{A}M$ for all $U_1, ..., U_n \in \mathcal{A}M$ -with $m^{\mathcal{A}M} := \{m\}$ for $m \in M$ -, and

$$\sum p^{\mathcal{A}M}(U_1,\ldots,U_n)=p^M(\sum U_1,\ldots,\sum U_n)$$

Proof.

This follows from $\sum \{m\} = m$, A-distributivity and

$$\sum (U+V) = \sum U + \sum V$$
 for all $U, V \in \mathcal{A}M$.

Since $\{U, V\} \in \mathcal{FAM} \subseteq \mathcal{AAM}, U + V = \bigcup \{U, V\} \in \mathcal{AM}$, and so there is a least upper bound $\sum (U + V) \in M$. Hence

$$\sum U + \sum V \leq \sum (U+V) + \sum (U+V) = \sum (U+V).$$

As $U + V < \sum U + \sum V$, so $\sum (U + V) \le \sum U + \sum V$. \Box

The monadic operator \mathcal{A} provides us with a notion of continuous maps between partially ordered monoids, as follows.

 D_3 A map $f: M \to M'$ is \mathcal{A} -continuous, if for all $U \in \mathcal{A}M$ and $y > \tilde{f}(U)$ there is some x > U with $y \ge f(x)$.

An A-morphism is a \leq -preserving, A-continuous homomorphism.

Let $D\mathcal{A}$ be the category of \mathcal{A} -dioids with \mathcal{A} -morphisms.

Every A-morphism between A-dioids is a dioid-homomorphism.

An \leq -preserving homomorphism $f : M \rightarrow M'$ between A-dioids is A-continuous iff

$$f(\sum U) = \sum \widetilde{f}(U)$$
 forall $U \in \mathcal{A}M$.

Theorem

- ▶ (Hopkins 2008) AM is the free A-dioid with generators M.
- (Hopkins 2008) DA has a tensor product $D \otimes_A D'$, satisfying

$$\mathcal{A}M\otimes_{\mathcal{A}}\mathcal{A}M'\simeq\mathcal{A}(M\times M').$$

- $\mathcal{R}(M \times M') = rational transductions between M and M'$.
- $C(M \times M') = simple syntax-directed translations btw M, M'$.
- (HL 2018) DA has co-products D ⊕_A D' and co-equalizers (quotients by A-congruences), hence co-limits.

Theorem (Hopkins 2008)

DR equals Kozen's category of *-continuous Kleene algebras.

Kozen 1981/1990: *-continuous Kleene-algebras

A Kleene algebra $(K, +, 0, \cdot, 1, *)$ is an idempotent semiring (dioid) $(K, +, 0, \cdot, 1)$ with a unary operation $* : K \to K$ such that

- (KA 1) $\forall a, b \in K : a^*b$ is the least solution of $x \ge ax + b$.
- (KA 2) $\forall a, b \in K$: ba^* is the least solution of $x \ge xa + b$.

The Kleene algebra K is *-continuous, if for all $a, b, c \in K$,

$$\mathsf{ac}^*\mathsf{b} = \sum \{\mathsf{ac}^n\mathsf{b} \mid \mathsf{n} \in \mathbb{N}\}.$$

In particular:

► *K* is *-complete: every set $U_c = \{c^n \mid n \in \mathbb{N}\}$ has a supremum, $c^* = \sum U_c$.

• is *-distributive: for all $a, b, c, a(\sum U_c)b = \sum (aU_cb)$.

\mathcal{C} -dioids

We are interested in the category DC of C-dioids as a generalization of the theory of context-free languages over free monoids.

Why consider $CM \subseteq PM$ for non-free monoids *M*?

- We want to handle transductions T ⊆ X* × Y* in the same formalism as we handle languages, but X* × Y* is not free: for example, (x, ε)(ε, y) = (x, y) = (ε, y)(x, ε).
- Natural languages apply "sound laws" to concatenate stem+affix in a non-free way: bet+ing = betting
- Natural languages apply inflections to concatenate words and phrases in a non-free way: few + man = few men, this woman + (to) read a book = this woman reads a book.

Claim

DC equals the category of μ -continuous Chomsky-algebras.

Partially ordered μ -semirings

Let X be an infinite set of variables and consider μ -terms over X:

$$s, t := x \mid 0 \mid 1 \mid (s \cdot t) \mid (s + t) \mid \mu x t$$

A partially ordered μ -semiring $(M, +, \cdot, 0, 1, \leq)$ is a semiring $(M, +, \cdot, 0, 1)$ with a partial order \leq on M, where every term t defines a function $t^M : (X \to M) \to M$, so that

for all terms $s, t, x \in X$ and valuations $g, h: X \to M$

1.
$$0^{M}(g) = 0,$$
 $(s+t)^{M}(g) = s^{M}(g) + t^{M}(g),$
 $1^{M}(g) = 1,$ $(s \cdot t)^{M}(g) = s^{M}(g) \cdot t^{M}(g),$
 $x^{M}(g) = g(x),$ if $s^{M} \leq t^{M},$ then $\mu x s^{M} \leq \mu x t^{M},$
2. $t^{M}(g) \leq t^{M}(h),$ if $g \leq h$ pointwise,
3. $t^{M}(g) = t^{M}(h),$ if $g = h$ on free $(t),$ (coincidence prop.)
4. $t[x/s]^{M}(g) = t^{M}(g[x/s^{M}(g)]).$ (substitution prop.)

For $t(x_1,\ldots,x_n)$ we write $t^M[x_1/a_1,\ldots,x_n/a_n]$ or $t^M(a_1,\ldots,a_n)$.

A Park μ -semiring is a partially ordered μ -semiring M where for all terms t and variables x, y, the following hold in M:

$$\begin{array}{ll} (\mathsf{Park axiom}) & t[x/\mu xt] \leq \mu xt, \\ (\mathsf{Park rule}) & t[x/y] \leq y \rightarrow \mu xt \leq y. \end{array}$$

In a Park μ -semiring M, $\mu x t^M(g)$ is the least solution of $t \leq x$ in M, g, i.e. the least $a \in M$ such that $t^M(g[x/a]) \leq a$.

From the Park axiom and rule, it follows easily that

 $t[x/\mu xt] = \mu xt$, and $\mu y.t[x/y] = \mu xt$ for $y \notin free(t)$, hold in M. Kozen e.a. 2013: μ -continuous Chomsky-algebras

An idempotent semiring $(M, +, 0, \cdot, 1)$ is algebraically closed or a Chomsky-algebra, if every system

 $x_1 \ge p_1(\bar{x}, \bar{y}), \ldots, x_n \ge p_n(\bar{x}, \bar{y}), \quad \bar{x} = x_1, \ldots, x_n, n \in \mathbb{N},$

with polynomials $p_i(\bar{x}, \bar{y})$ has least solutions $\bar{a} \in K^n$, for all parameters $\bar{b} \in K^m$ for $\bar{y} = y_1, \ldots, y_m$.

Example

The set $\mathcal{C}X^*$ of context-free languages over X is the smallest set $\mathcal{L} \subseteq \mathcal{P}X^*$ such that

(i) each finite subset of $X \cup \{\epsilon\}$ is in \mathcal{L} , and

(ii) if $\bar{x} \geq \bar{p}(\bar{x}, \bar{y})$ is a polynomial system, and $\bar{B} \in \mathcal{L}^m$, then the the least $\bar{A} \in (\mathcal{P}X^*)^n$ with $\bar{A} \supseteq \bar{p}^{\mathcal{P}X^*}(\bar{A}, \bar{B})$ belongs to \mathcal{L}^n .

Then $(\mathcal{C}X^*, +, \cdot, 0, 1)$ is a Chomsky algebra. [Least solutions of $\bar{x} \geq \bar{p}(\bar{x}, \bar{y})$ exist in $\mathcal{P}X^*$, as this is a CPO and $+, \cdot$ are continuous.]

Lemma (Grathwohl, Henglein, Kozen (FICS 2013))

Every Chomsky-algebra M is an idempotent, partially ordered μ -semiring, if we define for terms t, $x \in X$ and $g : X \to M$

$$\mu x t^{\mathcal{M}}(g) := the \ \textit{least} \ a \in M \ \textit{such that} \ t^{\mathcal{M}}(g[x/a]) \leq a.$$
 (1)

Moreover, every system $\overline{t}(\bar{x}, \bar{y}) \leq \bar{x}$ with μ -terms $\overline{t}(\bar{x}, \bar{y})$ has least solutions in M, i.e. for all parameters \bar{b} from M there is a least tuple \bar{a} in M such that $\overline{t}^{M}(\bar{a}, \bar{b}) \leq \bar{a}$.

Proof: by reduction to least solutions of polynomial systems.

Corollary

Every Chomsky algebra is a Park μ -semiring (using these $\mu x t^M$).

A Chomsky algebra M is μ -continuous, if for all $a, b \in M$, all terms $t, x \in X$ and $g : X \to M$ it satisfies

$$\mathbf{a} \cdot \mu \mathbf{x} t^{M}(g) \cdot \mathbf{b} = \sum \{ \mathbf{a} \cdot \mathbf{m} \mathbf{x} t^{M}(g) \cdot \mathbf{b} \mid \mathbf{m} \in \mathbb{N} \},$$
 (2)

where mxt is defined by 0xt := 0, (m+1)xt := t[x/mxt].

The μ -continuity condition generalizes Kozen's *-continuity

$$a \cdot c^* \cdot b = \sum \{a \cdot c^m \cdot b \mid m \in \mathbb{N}\}.$$

Theorem (Grathwohl, Henglein, Kozen, 2013)

For terms s, t are equivalent:

I. Every μ -continuous Chomsky algebra is a C-dioid

We first define term vectors $\mu \overline{x} \overline{t}$ that embody H. Bekić's (1984) reduction of the *n*-ary least fixed-point operator to the unary one in ω -complete partial orders with sup-continuous operations.

For vectors $\overline{t} = t_1, \ldots, t_n$ of terms and $\overline{x} = x_1, \ldots, x_n$ of pairwise different variables, define the term vector $\mu \overline{x} \overline{t}$ as follows. If n = 1, then $\mu \overline{x} \overline{t} := \mu x_1 t_1$. If n > 1, $\overline{x} = (\overline{y}, \overline{z})$ and $\overline{t} = (\overline{r}, \overline{s})$ with term vectors $\overline{r}, \overline{s}$ of lengths $|\overline{y}|, |\overline{z}| < n$, then $\mu \overline{x} \overline{t}$ is

$$\mu(\bar{y},\bar{z})(\bar{r},\bar{s}) := (\mu\bar{y}.\bar{r}[\bar{z}/\mu\bar{z}\bar{s}],\mu\bar{z}.\bar{s}[\bar{y}/\mu\bar{y}\bar{r}]).$$
(3)

Lemma (HL[4])

For any Chomsky algebra M and valuation $g : X \to M$ is $\mu \bar{x} \bar{t}^M(g)$ the least tuple \bar{a} in M such that $\bar{t}^M(g[\bar{x}/\bar{a}]) \leq \bar{a}$.

The value $\mu \bar{x} \bar{t}^M(g)$ does not depend on the splitting \bar{x} into \bar{y}, \bar{z} .

The unary version of μ -continuity implies the *n*-ary version:

Lemma (Cor. 23 in [4])

Let M be a μ -continuous Chomsky algebra and $g: X \rightarrow M$. Then

$$ar{a} \cdot \mu ar{x} ar{t}^{\mathcal{M}}(g) \cdot ar{b} = \sum \{ar{a} \cdot m ar{x} ar{t}^{\mathcal{M}}(g) \cdot ar{b} \mid m \in \mathbb{N}\},$$

for any term vector \overline{t} and $\overline{a}, \overline{b} \in M^{|t|}$, and $(m+1)\overline{x}\overline{t} := \overline{t}[\overline{x}/m\overline{x}\overline{t}]$.

Theorem

Let M be a μ -continuous Chomsky-algebra. Then M is a C-dioid:

- a) Every $U \in CM$ has a supremum $\sum U \in M$ (C-completeness).
- b) For all $U, V \in CM$, $\sum(UV) = (\sum U)(\sum V)$ (C-distributivity)

Proof. As M is a dioid, a) and b) are true for all $U, V \in \mathcal{F}M$. Let $\overline{U} \in (\mathcal{C}M)^n$ be the least solution of $\overline{x} \geq \overline{p}^{\mathcal{C}M}(\overline{x}, \overline{A})$. By induction, we may assume a) and b) for all $U, V \in \overline{A}$. To show them for all $U, V \in \overline{U}, \overline{A}$, by a previous Prop. we only need:

a') Every
$$U \in \overline{U}$$
 has a supremum $\sum U \in M$.
b') For all $U \in \overline{U}$ and all $a, b \in M$, $\sum (aUb) = a(\sum U)b$.

Notice that b) for all $U, V \in \overline{A} \cup \mathcal{F}M$ gives us b') for all $U \in \overline{A}$.

Idea: There is a least solution $\bar{u} \in M^n$ of $\bar{x} \ge \bar{p}^M(\bar{x}, \bar{a})$, which ought to give sup's for $\bar{U} = \mu \bar{x} \bar{p}^{CM}(\bar{A})$, hence $\sum U$ should exist by

$$\sum \bar{U} = \sum \mu \bar{x} \rho^{\mathcal{C}M}(\bar{A}) = \mu \bar{x} \bar{\rho}^{\mathcal{M}}(\sum A) = \bar{u}_{\bar{A}}$$

which in turn must come from $\sum \bar{U}_m = \bar{u}_m$ of its approximations

$$ar{U}_m = mar{x}ar{p}^{\mathcal{C}M}(ar{x},ar{A})$$
 and $ar{u}_m = mar{x}ar{p}^M(ar{x},\sumar{A}).$

To show $\sum \overline{U}_m = u_m$ inductively, we need *C*-distributivity of $\overline{U}_m, \overline{A}$:

Consider $x \ge p(x, y, z) := yx + z$. Suppose $A, B \in CM$ have least upper bounds $\sum A = a$, $\sum B = b \in M$. Since M is μ -continuous,

$$\mu x p^{\mathcal{M}}(a,b) = a^* b = \sum \{a^m b \mid m \in \mathbb{N}\}.$$

To show that $(m+1)xp^{M}(a,b) = a \cdot mxp^{M}(a,b) + b$ is the least upper bound of $(m+1)xp^{CM}(A,B) = A \cdot mxp^{CM}(A,B) \cup B$, we need to know a case of (strong) *C*-distributivity:

$$a \cdot mxp^{\mathcal{M}}(a, b) + b = (\sum A)(\sum mxp^{\mathcal{CM}}(A, B)) + \sum B$$
$$= \sum (A \cdot mxp^{\mathcal{CM}}(A, B) \cup B).$$

By induction, we prove for $\bar{U}_m := m\bar{x}\bar{p}^{\mathcal{C}M}(\bar{A})$, $\bar{u}_m := m\bar{x}\bar{p}^M(\sum \bar{A})$

For m = 0, (iii) is clear: $\overline{0} = \sum \overline{\emptyset}$. Therefore, (i) and (ii) follow from the hypothesis a') $\sum \overline{A}$ exist and b') distributivity for \overline{A} ;

(ii) extends to polynomials by $\sum (A \cup B) = \sum A + \sum B$.

For m+1, by induction $\sum \overline{U}_m$ exists by (i), and then

$$\bar{u}_{m+1} = \bar{p}^{M}(\bar{u}_{m}, \sum \bar{A}) \quad (\text{def.})$$

$$= \bar{p}^{M}(\sum \bar{U}_{m}, \sum \bar{A}) \quad (\text{iii})$$

$$= \sum \bar{p}^{CM}(\bar{U}_{m}, \bar{A}) \quad (\text{ii})$$

$$= \sum \bar{U}_{m+1} \quad (\text{def.})$$

Hence, (i) $\sum \overline{U}_{m+1}$ exists, and (iii) $\overline{u}_{m+1} = \sum \overline{U}_{m+1}$. For (ii), let $q(\overline{x}, \overline{y})$ be a monomial in $\overline{x}, \overline{y}$, and $r(\overline{x}, \overline{y})$ the polynomial obtained by distribution from $q(\overline{x}, \overline{y})[\overline{x}/\overline{p}(\overline{x}, \overline{y})]$. Then

$$q^{M}(\sum \bar{U}_{m+1}, \sum \bar{A}) = r^{M}(\sum \bar{U}_{m}, \sum \bar{A})$$

= $\sum r^{\mathcal{C}M}(\bar{U}_{m}, \bar{A})$ ((ii) for r)
= $\sum q^{\mathcal{C}M}(\bar{U}_{m+1}, \bar{A}).$

Now $\bar{u} := \mu \bar{x} \bar{p}^M(\sum \bar{A})$ is the least upper bound of $\bar{U} = \mu \bar{x} \bar{p}^{CM}(\bar{A})$:

$$\begin{split} \bar{u} &= \mu \bar{x} \bar{p}^{M} (\sum \bar{A}) \\ &= \sum \{ m \bar{x} \bar{p}^{M} (\sum \bar{A}) \mid m \in \mathbb{N} \} \quad (M \text{ a } \mu\text{-cont.CA}) \\ &= \sum \{ \bar{u}_{m} \mid m \in \mathbb{N} \} \\ &= \sum \{ \sum \bar{U}_{m} \mid m \in \mathbb{N} \} \quad (\text{iii}) \\ &= \sum \bigcup \{ \bar{U}_{m} \mid m \in \mathbb{N} \} \\ &= \sum \bar{U} = \sum \mu \bar{x} \bar{p}^{\mathcal{C}M} (\bar{A}). \end{split}$$

In particular, we have shown a') any $U \in \overline{U}$ has a $\sum U \in M$.

To show b') $a(\sum U)b = \sum (aUb)$, extend a, b to some $\bar{a}, \bar{b} \in M^n$.

Having $ar{a}(\sum ar{U}_m)ar{b} = \sum ar{a}ar{U}_mar{b}$ inductively by (ii), we obtain

$$\bar{a}(\sum \bar{U})\bar{b} = \bar{a}\cdot \bar{u}\cdot \bar{b}$$

$$= \sum \{ \bar{a} \cdot \bar{u}_m \cdot \bar{b} \mid m \in \mathbb{N} \} \qquad (M \ \mu\text{-cont.CA})$$

(by (ii))

$$= \sum \{ \bar{a} (\sum \bar{U}_m) \bar{b} \mid m \in \mathbb{N} \} \qquad (\bar{u}_m = \sum \bar{U}_m)$$

$$= \sum \{\sum (\bar{a}U_m\bar{b}) \mid m \in \mathbb{N}\}$$

$$= \sum \bigcup \{ \bar{a} \bar{U}_m \bar{b} \mid m \in \mathbb{N} \}$$
 (\sum property)

$$= \sum (\bar{a} \cdot \bigcup \{ \bar{U}_m \mid m \in \mathbb{N} \} \cdot \bar{b}) \qquad (\cdot^{\mathcal{C}M} \text{ is } \bigcup \text{-cont.})$$
$$= \sum (\bar{a} \bar{U} \bar{b}).$$

Hence, for $U \in \overline{U}$ we have b') $a(\sum U)b = \sum aUb$ for all a, b. \Box

II. Every C-dioid is a μ -continuous Chomsky algebra

Theorem

Let M be a C-dioid. Then M be a μ -continuous Chomsky-algebra.

Proof. (i) *M* is algebraically closed: Let $\bar{x} \ge \bar{p}(\bar{x}, \bar{y})$ be a polynomial system with $n = |\bar{x}|, k = |\bar{y}|$, and $\bar{a} \in M^k$. Let \bar{A} consist of the $A_j := \{a_j\} \in CM$, so $\bar{a} = \sum \bar{A}$, and let

$$\bar{U} = \mu \bar{x} \bar{p}^{\mathcal{C}M}(\bar{A}) \in (\mathcal{C}M)^n$$

be the least solution of $\bar{x} \geq \bar{p}^{\mathcal{P}M}(\bar{x}, \bar{A})$ in $\mathcal{P}M$.

Since *M* is a *C*-dioid, suprema $u_i := \sum U_i \in M$ exist. We show that $\bar{u} := \sum \bar{U}$ is the least solution of $\bar{x} \ge \bar{p}^M(\bar{x}, \bar{b})$ in *M*, i.e.

$$\mu \bar{x} \bar{p}^{\mathcal{M}}(\bar{a}) = \bar{u} = \sum \bar{U} = \sum \mu \bar{x} \bar{p}^{\mathcal{C}\mathcal{M}}(\bar{A}).$$
(4)

Since *M* is *C*-distributive, $\bar{u} = \sum \bar{U}$ is a solution of $\bar{x} \ge \bar{p}^M(\bar{x}, \bar{a})$:¹

$$ar{p}^{\mathcal{M}}(\sum ar{U}, \sum ar{A}) = \sum ar{p}^{\mathcal{CM}}(ar{U}, ar{A}) \leq \sum ar{U}.$$

To show that \bar{u} is the least solution of $\bar{x} \ge \bar{p}^M(\bar{x}, \bar{a})$, let $\bar{c} \in M^n$ be any solution. It is sufficient to show $\bar{c} > \bar{U}$. We know

$$\overline{U} = \bigcup \{ \overline{p}^{\mathcal{P}M}(\overline{U}_m, \overline{A}) \mid m \in \mathbb{N} \}$$

where $\overline{U}_0 := \overline{\emptyset}$, $\overline{U}_{m+1} := \overline{p}^{\mathcal{P}M}(\overline{U}_m, \overline{A})$.

For m = 0, obviously $\bar{c} > \bar{U}_0$. Suppose $\bar{c} > \bar{U}_m$ for some m. By induction on p_i , $p_i^{CM}(\bar{U}_m, \bar{A}) < p_i^M(\bar{c}, \bar{a})$ for each i, hence

$$ar{U}_{m+1} < ar{p}^{\mathcal{M}}(ar{c},ar{a}) \leq ar{c}$$
 .

Therefore, $\overline{U} < \overline{c}$.

¹by Lemma 1

(ii) *M* is μ -continuous: we need an auxiliary *Claim.* For all μ -terms $t(x_1, \ldots, x_n)$ and sets $A_1, \ldots, A_n \in CM$,

$$t^{\mathcal{M}}(\sum A_1,\ldots,\sum A_n)=\sum t^{\mathcal{CM}}(A_1,\ldots,A_n).$$
(5)

Proof. By induction on t. For $(r \cdot s)$, by the C-distributivity of M:

$$(r \cdot s)^{M}(\sum \bar{A}) = r^{M}(\sum \bar{A}) \cdot^{M} s^{M}(\sum \bar{A})$$
$$= (\sum r^{CM}(\bar{A})) \cdot^{M} (\sum s^{CM}(\bar{A}))$$
$$= \sum (r^{CM}(\bar{A}) \cdot^{CM} s^{CM}(\bar{A}))$$
$$= \sum (r \cdot s)^{CM}(\bar{A}).$$

For μxr , by induction we have for $B = \mu xr^{\mathcal{C}M}(\bar{A}) \in \mathcal{C}M$

$$r^{\mathcal{M}}(\sum \bar{A}, \sum B) = \sum r^{\mathcal{CM}}(\bar{A}, B) \leq \sum B,$$

so that

$$\mu x r^{M}(\sum \bar{A}) \leq \sum B = \sum \mu x r^{\mathcal{C}M}(\bar{A}).$$

The converse holds by induction on Kozen's well-ordering \prec of μ -terms. Assuming $\sum mxr^{CM}(\bar{A}) = mxr^{M}(\sum \bar{A})$ for all m, we get

$$\sum \mu x r^{\mathcal{C}M}(\bar{A}) = \sum \bigcup \{mxr^{\mathcal{C}M}(\bar{A}) \mid m \in \mathbb{N}\}$$

=
$$\sum \{\sum mxr^{\mathcal{C}M}(\bar{A}) \mid m \in \mathbb{N}\}$$

=
$$\sum \{mxr^{M}(\sum \bar{A}) \mid m \in \mathbb{N}\}$$

$$\leq \mu x r^{M}(\sum \bar{A}).$$

We can now show the μ -continuity condition. Since $g : X \to M$ is $\sum \circ g'$ for some $g' : X \to CM$, by $g(x) = \sum \{g(x)\}$, it reads: *Claim.* For all μ -terms $\mu xt(\bar{x})$, all $\bar{A} \in (CM)^{|\bar{x}|}$ and $a, b \in M$: $a \cdot \mu xt^M(\sum \bar{A}) \cdot b = \sum \{a \cdot mxt^M(\sum \bar{A}) \cdot b \mid m \in \mathbb{N}\}.$

Proof. $a \cdot \mu xt^{M}(\sum \bar{A}) \cdot b$ $= (\sum \{a\})(\sum \mu x t^{\mathcal{C}M}(\bar{A}))(\sum \{b\}) \qquad (by (5))$ $= \sum (\{a\} \cdot \mu x t^{\mathcal{C}M}(\bar{A}) \cdot \{b\}) \qquad (M \text{ a } \mathcal{C}\text{-dioid})$ $= \sum (\{a\} \cdot | | \{mxt^{\mathcal{C}M}(\bar{A}) | m \in \mathbb{N}\} \cdot \{b\})$ $= \sum (| J \{ \{a\} \cdot mxt^{\mathcal{C}M}(\bar{A}) \cdot \{b\} \mid m \in \mathbb{N} \})$ $= \sum \{ \sum \{ \{a\} \cdot mxt^{\mathcal{C}M}(\bar{A}) \cdot \{b\} \} \mid m \in \mathbb{N} \}$ $= \sum \{ (\sum \{a\}) \cdot (\sum mxt^{\mathcal{CM}}(\bar{A})) \cdot (\sum \{b\}) \mid m \in \mathbb{N} \}$ $= \sum \{ a \cdot mxt^{M}(\sum \overline{A}) \cdot b \mid m \in \mathbb{N} \}. \quad (by (5)) \quad \triangleleft \square$

Open Problems (M.Hopkins' program)

- I. To cover SM = context-sensitive subsets of M, consider a subcategory of Monoid with *non-erasing* homomorphisms.
- II. Construct an explicit adjunction $Q_{\mathcal{R}}^{\mathcal{C}}: D\mathcal{R} \rightleftharpoons D\mathcal{C}: Q_{\mathcal{C}}^{\mathcal{R}}$ between the category $D\mathcal{R}$ of *-continuous Kleene algebras and the category $D\mathcal{C}$ of μ -continuous Chomsky algebras.

To get $Q_{\mathcal{R}}^{\mathcal{C}}(\mathcal{R}X^*)$, modify the Chomsky-Schützenberger theorem:

$$\mathcal{C}X^* = \{ e(R \cap D) \mid R \in \mathcal{R}((X \dot{\cup} Y)^*) \}, \quad ext{where}$$

- $Y = \{b, d, p, q\}$ consist of two bracket pairs b, d and p, q,
- $e: (X \cup Y)^* \to X^*$ is the bracket-erasing homomorphism,
- $D \subseteq (X \cup Y)^*$ the Dyck-language of well-bracketed strings.

This gives $CX^* = Q(\mathcal{R}(X \cup Y)^*)$; improve it to $CX^* = Q(\mathcal{R}X^*)$, then to $CM = Q(\mathcal{R}M)$ for monoids M, then to $Q_{\mathcal{R}}^{\mathcal{C}} : D\mathcal{R} \to D\mathcal{C}$.

Partial result (Hopkins):

Take $C_2 := \mathcal{R}Y^* / \{ bd = 1 = pq, bq = 0 = pd \} \in D\mathcal{R}$. Then $\mathcal{C}X^* \subseteq \mathcal{R}X^* \otimes_{\mathcal{R}} C_2$.

Example: In C_2 , $bp^nq^md = 1$ if n = m, else 0. Hence

$$\begin{array}{rcl} \mathcal{C}X^* & \ni & \{x_1^n x_2^n \mid n \in \mathbb{N}\} \\ & \simeq & \sum_n x_1^n x_2^n = \sum_{n,m} x_1^n x_2^m b p^n q^m d = \sum_{n,m} b(x_1 p)^n (q x_2)^m d \\ & = & b(x_1 p)^* (q x_2)^* d \quad \in \mathcal{R}X^* \otimes_{\mathcal{R}} C_2. \end{array}$$

With $C_2':=C_2/\{db+qp\leq 1\}$ this can be improved to

 $\mathcal{C}X^*\simeq Z_{C_2'}(\mathcal{R}X^*\otimes_{\mathcal{R}}C_2') \quad \text{and} \quad \mathcal{C}M\simeq Z_{C_2'}(\mathcal{R}M\otimes_{\mathcal{R}}C_2').$

To be extended to $Q_{\mathcal{R}}^{\mathcal{C}}: D\mathcal{R} \to D\mathcal{C}$.

Goal: regular expressions (over a non-free KA) for all CFLs.

References

Hans Bekić.

Definable operations in general algebras, and the theory of automata and flowcharts.

In *Programming Languages and Their Definition, LNCS 177,* pages 30–55, Berlin, Heidelberg, 1984. Springer Verlag.

Niels Grathwohl, Fritz Henglein, and Dexter Kozen. Infinitary axiomatization of the equational theory of context-free languages.

In *Fixed Points in Computer Science (FICS 2013)*, volume 126 of *EPTCS*, pages 44–55, 2013. doi:10.4204/EPTCS.126.4.

Mark Hopkins.

The Algebraic Approach I+II: The Algebraization of the Chomsky Hierarchy + Dioids, Quantales and Monads. In *Relational Methods in Computer Science/Applications of Kleene Algebra*, Springer LNCS 4988, pages 155–190, 2008. Dexter Kozen.

On induction vs. *-continuity.

In *Proc. Workshop on Logics of Programs 1981*, Springer LNCS 131, pages 167–176, 1981.

Dexter Kozen.

A completeness theorem for Kleene algebras and the algebra of regular events.

Information and Computation, 110(2):366–390, 1994.

Hans Leiß and Mark Hopkins.

Coequalizers and tensor products for continuous idempotent semirings.

In Submitted to RAMiCS'17, 2018.

Hans Leiß.

The matrix ring of a $\mu\text{-}\mathrm{continuous}$ Chomsky algebra is $\mu\text{-}\mathrm{continuous}.$

In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), Leibniz International Proceedings in Informatics, pages 1–16. Dagstuhl Publishing, 2016.