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Abstract

Title: C-dioids and pu-continuous Chomsky-algebras

In their complete axiomatization of the equational theory of
context-free languages, Grathwohl, Henglein and Kozen (FICS
2013) introduced p-continuous Chomsky algebras. These are
algebraically complete idempotent semirings where multiplication
and the least-fixed-point operator p are related by a continuity
condition.

In his algebraic generalization of the Chomsky hierarchy, Hopkins
(RelMiCS 2008) introduced C-dioids, which are idempotent
semirings (or: dioids) where context-free subsets have least upper
bounds and multiplication is sup-continuous.

We show that these two classes of structures coincide.
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Content

1. Chomsky-algebras: idempotent semirings (M, +,-,0,1) in
which CFGs x > p(X) have least solutions puxp™.
» p-continuity: a- uxtM™-b=>{a-mxt" . b| me N}

2. C-dioids: idempotent semirings (M, +,-,0,1) with
» sups ». U € M of context-free subsets U C M

» sup-continuity: (> U)(>_ V) =Y (UV) for cf-sets U, V.

We show:

pu-continuous Chomsky algebra = C-dioid.
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0. Definitions: A-dioids, Kleene and Chomsky algebras

A semiring R = (R, +,0,-,1) is a set R with two operations
+,-: R x R — R, such that (R,+,0) and (R,-,1) are monoids, +
is commutative, and the zero and distributivity laws holds:

Va,b,c,d: a0b=0, a(b+ c)d=abd+ acd

A dioid or idempotent semiring D = (D, +,0,-,1) is a semiring in
which + is idempotent. It has a natural partial order <, defined by

a<b:<—= a+b=0nb.

A partially ordered monoid (M, -, 1, <) is a monoid (M, -, 1) with a
partial order < and where - is monotone in each argument.
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If M= (M,-M 1M) is a monoid, its power set (P(M),-,1,C) is a
partially ordered monoid —and (P(M),U, 0, -,1) a dioid—, where

A-B:={aMblacAbecB}, 1:={1M}.

A functor A : Monoid — Monoid is monadic (Hopkins[3]), if for
each monoid M

Ao AM is a set of subsets of M: AM C PM,

A1 AM contains each finite subset of M: FM C AM,
A AM is closed under product (hence a monoid),

Az AM is closed under union of sets from AAM, and

As AM preserves monoid-homomorphisms: if f: M — N is a
homomorphism, so is f : AM — AN, where for U C M

f(U) = {f(u) | ue U}.
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Theorem (Hopkins[3]): The monadic functors form a lattice.

Example (algebraic Chomsky' hierarchy)

The functors F <R < L <C < T <P are monadic (A3!):

1. PM = all subsets of M,
2. FM = all finite subsets of M,
3. RM = the closure of FM under + (union), - (elementwise

6.

product) and * (iteration), i.e. A* =(J{A" | n € N}.

. LM = the closure of M under + and products of least

solutions in PM of x > p(x) with linear polynomials p(x) over
LM, ie. p(x)=aixby +...akxbx + ¢ with a;, bj,c € LM.

CM = the closure of M under least solutions in PM of
systems x1 > p1(X),...xn > pn(X) with polynomials p;(x)
over CM.

TM = all Turing/Thue-subsets TM of M.

Rem. SM = all context-sensitive subsets of M is not monadic.(As)

6
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Let M be a partially ordered monoid. For a € M and U C M let

U < a mean that a is an upper bound of U: for all u € U, u < a.

Dy M is A-complete, if each U € AM has a least upper bound
YUeM.

D1 M is A-continuous, if for all U € AM and x, a, b € M with
x > aUb there is some u > U with x > aub.

Prop. (Hopkins 2008) If the partially ordered monoid M is
A-complete, the conditions D;, Di, D} are pairwise equivalent:

Dj for all a,b € M and U € AM, > aUb = a(}_ U)b.
D} forall U,V € AM, SS(UV) =S U- S V.

These are called weak resp. strong A-distributivity.

Clearly, D} = D;. We later need a local version of Dj = Dj:
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Prop. Let M be a partially ordered monoid and U, V € AM such
that u:=) U and v =) V exist. Then (i) implies (ii) for

(i) forall a,be M, > aUb=a(> U)band ) aVb=a(d V)b
(i) D (Uv)y=>U-> V.
Proof.

Clearly, UV < uv. To prove that uv is ) (UV), take any c € M
with UV < ¢ and show uv < c.

For each a € U, by (i), Y aV1 exists, and as aV1 C UV < c,

av = a(z V)l = ZaVl <c.

Hence Uv = 1Uv < c.
By (i), > 1Uv exists, and uv =1(>_ U)v => 1Uv < c.

O
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An A-dioid is a partially ordered monoid M which is

Dy A-complete: every U € AM has a supremum »_ U € M, and
D} A-distributive: for all U,V € AM, > (UV) = (> U)(>_ V).

Every A-dioid (M, -,1,<) is a dioid, using a+ b:= > {a, b} and
0:=> 0. The zero and distributivity laws follow from D] = Dj.

Lemma

If M is an A-dioid and p(xi,...,xn) a polynomial in xi, ..., xp
with parameters from M, then p*M(Us, ..., U,) € AM for all
Uy, ..., U, € AM —with m"M := {m} for m € M-, and

ZPAM U1,...7 ZUl,...,ZUn).
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Proof.
This follows from > {m} = m, A-distributivity and

DW+V)=> U+ vV forall UV e AM.

Since {U,V} € FAM C AAM, U+ V = J{U, V} € AM, and
so there is a least upper bound > (U + V) € M. Hence

SNU+DI VDI (WD (U+ V)= (U+V).

AsU+V <> U+Y V,sod (U+V)<>U+> V. O

O
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The monadic operator A provides us with a notion of continuous
maps between partially ordered monoids, as follows.

D3 A map f: M — M"is A-continuous, if for all U € AM and
y > f(U) there is some x > U with y > f(x).

An A-morphism is a <-preserving, A-continuous homomorphism.
Let DA be the category of A-dioids with A-morphisms.

Every A-morphism between A-dioids is a dioid-homomorphism.

An <-preserving homomorphism f : M — M’ between A-dioids is
A-continuous iff

FO-U) =Y FU)  forall Ue AM.
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Theorem

» (Hopkins 2008) AM is the free A-dioid with generators M.
» (Hopkins 2008) DA has a tensor product D ® 4 D', satisfying

AM @ 4 AM' =~ A(M x M).

» R(M x M') = rational transductions between M and M'.
» C(M x M") = simple syntax-directed translations btw M, M’.

» (HL 2018) DA has co-products D &4 D' and co-equalizers
(quotients by A-congruences), hence co-limits.

Theorem (Hopkins 2008)

DR equals Kozen's category of *-continuous Kleene algebras.
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Kozen 1981/1990: *-continuous Kleene-algebras
A Kleene algebra (K, +,0,-,1,*) is an idempotent semiring (dioid)
(K,+,0,-,1) with a unary operation * : K — K such that

» (KA1)Va,be K: a*bis the least solution of x > ax + b.
» (KA 2)Va,be K: ba* is the least solution of x > xa + b.

The Kleene algebra K is *-continuous, if for all a, b, c € K,

ac*b = Z{ac”b | n € N}.

In particular:

» K is *-complete: every set U. = {c" | n € N} has a
supremum, c* =" UL.
» - is *-distributive: for all a,b,c, a(>_ Uc)b = > (aUcb).
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C-dioids

We are interested in the category DC of C-dioids as a generalization
of the theory of context-free languages over free monoids.

Why consider CM C PM for non-free monoids M?

» We want to handle transductions T C X* x Y™ in the same
formalism as we handle languages, but X* x Y* is not free:

for example, (x, €)(e,y) = (x,¥) = (e, ¥)(x, ).
> Natural languages apply “sound laws” to concatenate
stem+affix in a non-free way: bet+ing = betting

» Natural languages apply inflections to concatenate words and
phrases in a non-free way: few + man = few men,
this woman + (to) read a book = this woman reads a book.

Claim

DC equals the category of p-continuous Chomsky-algebras.
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Partially ordered ji-semirings

Let X be an infinite set of variables and consider u-terms over X:

s,t:=x|0]1]|(s-t)|(s+1t)|pxt

A partially ordered p-semiring (M, +,-,0,1, <) is a semiring
(M, +,-,0,1) with a partial order < on M, where every term t
defines a function tM : (X — M) — M, so that

for all terms s, t, x € X and valuations g, h: X - M

1. 0M(g) = o, (s+6)Me) = s"(g)+t"(g).
Mg) = 1, (s- () = s"(g) t"(e),
Mg) = g(x), if sM <tM then puxsM < pxtM,

2. tM(g) < tM(h), if g < h pointwise,
3. tM(g) = tM(h), if g = h on free(t), (coincidence prop.)
M(g) = t"(glx/s"(g))). (substitution prop.)

For t(x1,...,xn) we write tM[xq/a1,...,x,/an] or tM(ay,...,a,).
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A Park p-semiring is a partially ordered p-semiring M where for all
terms t and variables x, y, the following hold in M:

(Park axiom) t[x/uxt] < pxt,
(Park rule) t[x/y] <y — uxt <y.

In a Park p-semiring M, uxt™(g) is the least solution of t < x in
M, g, i.e. the least a € M such that t"(g[x/a]) < a.

From the Park axiom and rule, it follows easily that

t[x/uxt] = pxt, and  py.t[x/y] = pxt for y ¢ free(t),

hold in M.

16
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Kozen e.a. 2013: p-continuous Chomsky-algebras

An idempotent semiring (M, +,0, -, 1) is algebraically closed or a
Chomsky-algebra, if every system

XlZpl()_<7.)_/)7"'7xn2pn()_<7.)7)7 X:X]_,...,Xn,HEN,

with polynomials p;(X, ) has least solutions 3 € K", for all
parameters be K™ for y = y1,...,¥m-

Example

The set CX* of context-free languages over X is the smallest set
L C PX* such that

(i) each finite subset of X U {¢} is in £, and
(i) if X > p(X,¥) is a polynomial system, and B € L™, then the
the least A € (PX*)" with A D pPX"(A, B) belongs to L.

Then (CX*,+,-,0,1) is a Chomsky algebra. [Least solutions of
X > p(x,y) exist in PX*, as this is a CPO and +, - are continuous.]
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Lemma (Grathwohl,Henglein,Kozen (FICS 2013))

Every Chomsky-algebra M is an idempotent, partially ordered
p-semiring, if we define for termst, x e X and g : X - M

,uxtM(g) := the least a € M such that tM(g[x/a]) < a. (1)

Moreover, every system t(x,y) < x with u-terms t(x,y) has least
solutions in M, i.e. for all parameters b from M there is a least
tuple 3 in M such that t™(3, b) < 3.

Proof: by reduction to least solutions of polynomial systems.

Corollary

Every Chomsky algebra is a Park pi-semiring (using these pxt™ ).
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A Chomsky algebra M is p-continuous, if for all a, b € M, all terms
t, x € X and g : X — M it satisfies

a-pxt™(g)-b="> {a-mxt"(g) b| meN}, (2)

where mxt is defined by Oxt := 0, (m+ 1)xt := t[x/mxt].

The p-continuity condition generalizes Kozen's *-continuity

a-c*-b:Z{a-cm-b|m€N}.

Theorem (Grathwohl,Henglein,Kozen, 2013)

For terms s, t are equivalent:

» sPX"(g) = tPX"(g) for the standard valuation g(x) = {x},

» sM(g) = tM(g) for all p-continuous CAs M and g : X — M.
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|. Every p-continuous Chomsky algebra is a C-dioid

We first define term vectors puxt that embody H. Beki¢'s (1984)
reduction of the n-ary least fixed-point operator to the unary one
in w-complete partial orders with sup-continuous operations.

For vectors t = t1,...,t, of terms and X = xq,...,x, of pairwise
different variables, define the term vector pxt as follows. If n =1,
then pxt := pxity. If n>1, x = (y,z) and t = (7, 5) with term
vectors 7, 5 of lengths |y|, |Z| < n, then uxt is

W(7.2)(7.5) = (uy.Fl2/pz5), p2.5[7 / uyF)). 3)

Lemma (HL[4])

For any Chomsky algebra M and valuation g : X — M is uxt"(g)
the least tuple 3 in M such that t™(g[x/a]) < a.

The value uxt"(g) does not depend on the splitting X into y, Z.
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The unary version of u-continuity implies the n-ary version:
Lemma (Cor. 23 in [4])

Let M be a p-continuous Chomsky algebra and g : X — M. Then

a-puxtM(g)-b=> {a-mxt"(g)-b|meN},

for any term vector t and 3,b € M!tl, and (m + 1)Xt := t[x/mX1].
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Theorem
Let M be a p-continuous Chomsky-algebra. Then M is a C-dioid:

a) Every U € CM has a supremum _ U € M (C-completeness).
b) Forall U,V € CM, Y (UV) = (>_U)(>_ V) (C-distributivity)

Proof. As M is a dioid, a) and b) are true for all U,V € FM.

Let U € (CM)" be the least solution of X > /'JCM(?,E). By
induction, we may assume a) and b) for all U, V' € A. To show
them for all U,V € U, A, by a previous Prop. we only need:

a') Every U € U has a supremum > U € M.
b') Forall Ue€ Uandall a,be M, > (aUb) = a(>_ U)b.

Notice that b) for all U,V € AU FM gives us b') for all U € A.



Idea: There is a least solution 7 € M" of X > p"(x, ), which
ought to give sup's for U = uxpM(A), hence 3" U should exist by

ZU:Zuxp = uxp" ZA—U

which in turn must come from > Upy = T of its approximations
Um = mxpM(x,A) and  Tm = mxp"(x,>_A).

To show >_ Uy, = up, inductively, we need C-distributivity of Uy, A:
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Consider x > p(x,y,z) := yx + z. Suppose A, B € CM have least
upper bounds > A= a, > B = b & M. Since M is u-continuous,

pxpM(a,b) =a"b="> {a"b| meN}.
To show that (m + 1)xpM(a, b) = a- mxp(a, b) + b is the least

upper bound of (m + 1)xpM(A, B) = A- mxp*™(A, B)U B, we
need to know a case of (strong) C-distributivity:

a-mxpM(a,b)+b = (Z A)(Z mxpM(A, B)) + Z B
= > (A-mxp™(A B)UB).
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By induction, we prove for U, := mxp*M(A), b, := mxpM (> A)

(i) S2(Um, A) exists (componentwise),

(i) for all monomials q(%,7), g"(3° Um, . A) = 3 ¢“M(Upn, A),

(iii) Um =3 Un.

For m = 0, (iii) is clear: 0 = S™ 0. Therefore, (i) and (ii) follow
from the hypothesis a') > A exist and b’) distributivity for A;
(i) extends to polynomials by Y (AUB)=> A+ > B.
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For m+ 1, by induction 3" U,, exists by (i), and then

U1 = PM(Um, > A) (def.)
= (X U X A) (i)
= 2M(Um,A) (i)
= Y Un1 (def.)

Hence, (i) 3 Umy1 exists, and (iii) my1 = 3 Umit.
For (ii), Iet q(x, )7) be a monomial in x,y, and r(x, )7) the

MO U1, SO A) = W(Zm,zm
= ZrCM(Um,Z\) ((ii) for r)
= Zq m+1a
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Now @ := uxpM(3_ A) is the least upper bound of U = uxpM(A):
0= uspM(S A)
= 2Amxp"(Z A)| me N} (M a p-cont.CA)
= 2 Atm [ meN}
= YAX Un|meN} (i)
= L U{Un|meN}
= Y U= uxpM(A).

In particular, we have shown a') any U € U has a >UeM.

To show b") a(>> U)b = > (aUb), extend a, b to some 3,b € M".
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Having 3(>_ Un)b =

33U = 3-0-b
= >{3-Un-b|meN}
= Y{a(X Um)b| m € N}
— Y{X(3Unb) | me N}
= 2 U{aUnb|meN}
— G- U{Un | meN}-B)
= X(aUb).

>~ aUmb inductively by (i), we obtain

(M p-cont.CA)
(Tm = 3= Um)
(by (i)

(3 property)
(- is | J-cont.)

Hence, for U € U we have b') a(>_ U)b = 3" aUb for all a, b.

g
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Il. Every C-dioid is a u-continuous Chomsky algebra

Theorem

Let M be a C-dioid. Then M be a p-continuous Chomsky-algebra.

Proof. (i) M is algebraically closed: Let X > p(%,y) bea _
polynomial system with n = [x|, k = |y|, and 2 € MK Let A
consist of the A; := {aj} € CM,soa=)_A, and let

U= uxp™(A) € (CM)"
be the least solutuion of X > pPM(x, A) in PM.

Since M is a g—dioid, suprema u; =y Ui e M exist. We show
that @ := 5" U is the least solution of X > pM(%,b) in M, i.e.

pxpM(E@) =0=> U=>_ uxpM(A). (4)
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Since M is C-distributive, i = " U is a solution of x > pM(x, 3):!
MUY A) = Y MO.A) < 3

To show that @ is the least solution of X > pM(x,3), let ¢ € M"
be any solution. It is sufficient to show ¢ > U. We know

U= J{p"™(Um,A) | me N}

where Up := 0, Uni1 = "M(Upn, A).

For m = 0, obviously ¢ > l:Jo. Suppose ¢ > Uy, for some m. By
induction on p;, pfM (U, A) < pM(, 3) for each i, hence

Uni1 < PM(c,3) <.

Therefore, U < €.

'by Lemma 1
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(i) M is p-continuous: we need an auxiliary

Claim. For all p-terms t(xi,...,x,) and sets A;,..., A, € CM,

MO ALY AN =D V(AL A, (5)
Proof. By induction on t. For (r-s), by the C-distributivity of M:
MO A = M ZZ\ )M M A)
= O MAN MO sMA)
= > (FM(A) M M)
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For uxr, by induction we have for B = uxr®™(A) € CM

MOCAY B =Y rMAB) < B,
,uer(Z A) < ZB = Z,uerM

The converse holds by induction on Kozen's well-ordering < of
p-terms. Assuming > mxrCM(A) = mxrM (3 A) for all m, we get

Z,uerM(A) = ZU{merM (A) | m e N}
= Z{Z mxr®™(A) | m € N}
= Z{mxr ZA | me N}
< ,uer(Z A). q

so that
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We can now show the p-continuity condition. Since g : X — M is
> og’ for some g’ : X — CM, by g(x) = > _{g(x)}, it reads:
Claim. For all p-terms pxt(x), all A € (CM)X! and a, b € M:

a-pxtMD A -b=> {a-mxt"(D> A)-b|meN}.

Proof. a- uxtM( ZZ\

= (Z{a (X mwaMA) (b))  (by (5))

= Y ({a} - uxt®M(A)-{b}) (M a C-dioid)

= Y({a} - U{mxt®M(A) | m € N} - {b})

= Y(U{{a} - mxtM(A) - {b} | m € N})

= Y{X({a} - mxtM(A) - {b}) | m € N}

= Y{(XC{a}) - (X mxtM(A)) - ({b}) | m € N}
= Y{a-mxt"(Z A)-b|meN}. (by (5) <O
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Open Problems (M.Hopkins' program)
I. To cover SM = context-sensitive subsets of M, consider a
subcategory of Monoid with non-erasing homomorphisms.

I. Construct an explicit adjunction Q% :DR = DC : QZ.z between
the category DR of *-continuous Kleene algebras and the
category DC of u-continuous Chomsky algebras.

To get Q%(RX*), modify the Chomsky-Schiitzenberger theorem:
CX* ={e(RND)|ReR((XUY))}, where

» Y ={b,d,p,q} consist of two bracket pairs b,d and p, g,
» e: (XUY)* — X* is the bracket-erasing homomorphism,
» D C (XU Y)* the Dyck-language of well-bracketed strings.

This gives CX* = Q(R(X U Y)*); improve it to CX* = Q(RX¥),
then to CM = Q(RM) for monoids M, then to Q% : DR — DC.
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Partial result (Hopkins):
Take G :==RY*/{bd =1=pqg,bg=0= pd} € DR. Then

CX* CRX* @r Co.

Example: In Gy, bp"q™d =1 if n = m, else 0. Hence

CX* 3 {x'xy | neN}
~ Y = S g™ = 3 b(ap) (@)

= b(xip)(g)’d €RX"@r C.
With C} := G,/{db+ gp < 1} this can be improved to
CX* = Zg(RX* ®r G) and CM =~ Zg(RM @r G).

To be extended to Q% : DR — DC.

Goal: regular expressions (over a non-free KA) for all CFLs.
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