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Abstract. A-DRT is a typed theory combining simply typed A-calculus with discourse representation
theory, used for modelling the semantics of natural language. With the aim of type-checking natural
language texts in the same vein as is familiar from type-checking programs, we propose untyped \-
DRT with automatic type reconstruction. We show a principal types theorem for A\-DRT and how type
reconstruction can be used to make pronoun resolution type-correct, i.e. the inferred types of a pronoun
occurrence and its antecedent noun phrase have to be compatible, thereby reducing the number of
possible antecedents.

1 Introduction

In order to give a compositional semantics for discourse, [2] have extended the non-compositional and first-
order approach of Discourse Representation Theory (DRT, [10]) by adding A-abstraction and functional
application. As is familiar from Montague-semantics, the meaning of an expression can then be defined
bottom-up, by abstracting from the meaning contribution of the context; function application is then used
to combine this meaning with those of expressions from the context.

While DRT uses discourse representation structures, i.e. pairs {[x1, ..., &), [¢1,. .., pm]) of variables and
quantifier-free formulas, and avoids higher-order logic on its way to translate natural language to first-order
logic, Montague-grammar and A-DRT make heavy use of higher order types and are commonly expressed
in a simply typed language.

Our first goal is to have a type-free notation of \-DRS-terms, such that meanings can be written without
types, but checked for typability by “reconstructing” suitable types from types of built-in constants (poly-
morphic function words and monomorphic content words in the lexicon) and the context of occurrence. For
this, we will show that most general types exist and can be inferred automatically. The second goal is to
integrate the type reconstruction into a program for pronoun resolution. We want to be able to type-check
when a pronoun resolution (i.e. the unification of the discourse variable of a pronoun with the discourse ref-
erent of an antecedent) is type-correct, and moreover, we want to use the type reconstruction for unresolved
pronouns to filter possible antecedents by their types and the type of the unresolved pronoun.

2 A-DRT

Where [18] uses meanings like a — APAQ3z(P z A Q ), man — Ax.man(z) and walks — \x.walk(x)
and combines these by application to a man walks — Jx(man(z) A walk(z)), in \-DRT of [2], one uses

** Final version appears in: M.Amblard e.a. (eds.) Proceedings of the 20th Conference on Logical Aspects in Computa-
tional Linguistics, LACL 2016, Springer LNCS. The final publication is available at Springer via http://dx.doi.org/. ..



somewhat different lexical entries

/\P)\Q(®Px®Qx), AT . AT

man(x)

walk(z)

and an operation ® of merging discourse representation structures as in
® ® =K
|| 7 [man(x)] " walk(z)| " [man(z), walk(x)|

In general, two discourse structures are merged by appending their (disjoint) lists of discourse referents
(variables) and formulas, respectively:

L1y Ty Yis-- -y Yn _551’--~7y17-~-
® =

P11y Pk 1/)1,...,’1/);0 (,91,...,1/11,...

Since a variable in the referent list is seen as a binding, a binder of each merge-factor can bind free variable

occurrences in the formulas of both merge-factors. In a discourse A man walks. He talks., the meanings

of the sentences have to be combined. The pronoun /e in the second sentence introduces a new discourse

referent y with the appropriate property. The combination of the meanings of the sentences is the merging

x ol
man(z), walk(z)| " |talk(y)

of their discourse structures, followed by pronoun resolution: the referent y of the anaphoric pronoun is
resolved against some previously introduced discourse referent, here . This can be implemented by adding
an equational constraint x = y to the merged DRS, or by unifying the variables.

If one assumes some co-indexing of pronouns and antecedent noun phrases as a result of syntactic analy-
sis, one can use the referent of the antecedent noun phrase as referent of the anaphoric pronoun. Then, the
binding is dynamic, i.e. the scope extends beyond sentence boundaries as the discourse goes on:

man(x), walk(x)

®

talk(z)|

With type reconstruction for \-DRT, one could just check the type-soundness of pronoun resolution, i.e.
that the semantic type of the pronoun occurrence fits the semantic type of the referent of its antecedent.
However, we want to use type reconstruction to help pronoun resolution. To do so, we mark discourse
referents as anaphors or possible antecedents, use type reconstruction for \-DRT to infer types for the
discourse referents, and then do pronoun resolution with typed referents. Our typing rules for DRSs and
DRT’s accessibility relation are closely related.

2.1 Untyped A-DRS-Terms

We use four kinds of raw expressions: terms, formulas, discourse representation structures, and discourses:

Formula: ¢,¢ :=T
Term: s,t:=ux (x € Var) oY

R(ty,... tn
| ¢ (c € Const) : . (_1 )
A-DRS: D:==x (x € Var) | (1_/\22/})

| AzD 4
(D)D) P
L) D= D)

v | (D1 V Dy
| (=, D) .
| (D) & Dy) Discourse: D :=¢

1 2 DD



All terms are atomic. Formulas are built from atomic formulas by conjunction of formulas and (non-
conjunctive) Boolean combinations of A-DRSs.

A box or value-DRS D is a pair ([z1,...,2,],¢) of a list [x1,...,2,] of variables and a formula ¢,
recursively defined by

<[1‘1,$2, - ,xn],(p> =

{<[],<p>7 n=0,

(@1, ([T2, ..., 2], ), else.

Two DRSs D; and Dy may be merged to a DRS (D1 ® Ds). So far, the merge-operator ® is just a construc-
tor. We will later add reduction rules which provide the intended meaning of the merge of two value-DRSs
(with disjoint variable lists) as

([z1, -l @) @y uml 0) =7 (s 2n,yns s yml, (0 A D))

Finally, we want to have abstraction and application of A-DRSs. Note: We use the pair notation (s, ¢) not for
arbitrary terms s, t. Likewise for the types ¢ x 7: the intention is that ¢ is an individual type, 7 a DRS-type.

The toplevel referents and the free variables of D are defined by

top(a) = 0 free(z) = {z}
B free(AxD) = free(D) \ {z}
top(AxD) = ()
_ free(D1 - Do) = free(D1) U free(D5)
top(D1 - Ds) =0
i, free((l} #)) = free()
free((z, D)) = free(D) \ {z}
top((x, D)) = {x} Utop(D) free(D1 @ Dy) = (free(D1) U free(Ds))
top(Dy ® D) = top(D1) U top(Ds)

\ top(D1 @ D>)
For formulas built from DRSs, we put

free(=D) = free(D)
free((D1 = Ds)) = free((D1 V D3))
= free(D1) U (free(D2) \ top(Dy))

This is motivated by considering free variables of D5 (representing pronouns) as bound by toplevel referents
of D, (their antecedents). However, these notions are not stable under -reduction —: for example, for
Dy = My([z],») - y and D] = ([z],) we have D; — D}, but top(D1) = 0O # top(D}), and so
(D1 = D5) may bind less variables of Do than (D] = Da). Hence these definitions make sense for
expressions in 3-normal form only.'

In section 5 we define the meaning of application - by S-reduction, i.e. by reducing an application (¢ - s) to
the substitution ¢[x/s] of free occurrences of z in ¢ by s. Some care is needed to avoid variable capture.

We treat toplevel referents of a merge-factor as binders with scope over all factors. Hence, when substituting
a free occurrence of x in (D1 ® D) by s, we have to a-rename the top-level referents of Dy and D5 to
avoid capturing free variables of s. But we also have to rename toplevel referents of s when applying [x/s]
to (D1 ® Dy), since s might become a merge-factor, as for D1 = z, and then its toplevel referents would
capture free variables of D,. Since D1, D5, s might have toplevel referents after some reductions, we define
t[z/s] in such a way that all bound variables and referents of ¢ and s are renamed to fresh ones before the
free occurrences of x are replaced.”

! In section 6.2, the DRSs are computed bottom-up along the syntax tree, and at each syntactic construction, the DRS
resulting from a combination of the constituents’ DRSs is reduced.

2 Our implementation actually does the renaming only when applications are involved, so AP((P-z) ® (P-y)) - \zD
copies AzD to get (A\zD - x) ® (A\zD - y) and then renames referents in D when treating the applications as
(D[z/z] ® D|z/z]). Thus, merge-factors have disjoint reference lists, provided the lexical entries have.



An essential clause in the definition of D[z /s] is:
(D1 ® Dy)[z/s] = (Dy[z/s'] @ Dyla/s"]),

where D} is D; with top(D1 ® D2) N free(s) renamed, and s', s are s with bound(s) renamed. Similar
clauses are needed to treat (D1 = Ds)[z/s] and (D V Ds)[x/s]. For example, if P is not in ¢, then in

(2], ) ® (P - ))[P/AeD] = ([2'), pla/a")) @ (P - o) [P/AxD'])
— ([2'), pla/2")) ® D' [/,

D’ is D with toplevel referents renamed and hence does not bind free variables of .

3 Typing Rules

Montague-semantics and A\-DRT usually come with base types e for entities and ¢ for truth values. As boxes
are pairs (x, ) of a list of individual variables and a formula, it seems natural to give them the pair type
e* x t, where e* is the type of lists of entities. Instead, all boxes have another base type in [2], and the type
s — (s — t) of binary relations between situations s (resp. assignments of entities to discourse referents)
in [19]).

For the kind of semantic checking of texts we want to do, a more fine-grained typing of DRSs is needed.
One should distinguish between entities of different kinds, i.e. replace the base type e by a family (e;);c;
of base types or sorts. The type of a box (x, ) then becomes a pair e x t, so that, essentially, a typed DRS
(@, ) : e X tis a pair of a type environment x : e and a formula ¢ : t.

The type e x t of a merge-DRS D; ® D, then ought to be related to the types e; x t and ey X t of the
constituents D; and D5 in that e is obtained by appending e; and es, so e = append(e, e3). However,
since ® is just a DRS-constructor, we will likewise introduce a type constructor @ and use a constraint
e = e; ® eq in the type reconstruction process. Since the length of referent- and type-lists have to match
—even if we had only a single sort of entities—, we cannot use the list type constructor *, but build type lists
by consing a type e; to a list e of types, e; X e, beginning with the type 1 for the empty list paired with a
truth value.

Types:

o, T := « (type variables)
| e; (atomic types of individuals) | (o0 x7) (DRSs with non-empty ref-list)
| t (truth values) | (c ®7) (merge-DRSs)
| 1 (DRSs with empty ref-list) | (0 — 7) (functions)

We call a type a drs-type, if it is of the forms «, 1, e; X 7, or 0 ® 7 with drs-types o and 7. We write
ox7x Lfor(ocx (rx1))and [o1,...,0,]foro; X ... x oy X 1.



Typing rules:

Using a typed DRS as a type context

Typing variables, abstractions and applications
I'zx:0

T £y I'+z:0 ([]750>5]1,F'_x10(varg)
m(varl) y:1m, ' a0 (var2) y:p, D7, '+ z:0
d#c I'Fc:o (y,D>:p><T,FI—a?:U(Uar4)
m(conl) d:,I' Fc:o (conz) D:pE:o, I’ Fa:71
'kFt:o—r 'k s:o (D®E)1(P®U)v[‘}_$17(var5)
- (t-s):7 (app) I'tuao:7
z:p, ' t:T (DI'DZ):@F'_;U:T(UGTG)
FI—)\a:t:(p—>T)(ab8) I'+-az:7
(vary)

XyD o' - x:7

An assumption D : o can only be used when D is a variable, a value-DRS, or a merged DRS. The rules
(vars) and (var,) amount to a typing rule

T1:01,...,&p 00,1 F x:0

var™
([xh...,xn],cp):[01,...,0n],F}—x:a( )

which says that a typed DRS as assumption is used as a list of typing assumptions of its top-level discourse
referents. By (vars ), assuming a typed merged DRS amounts to assuming suitably typed merge-factors. By
(varg) and (vary), assumptions for typed applications and abstractions can be ignored.

The reason why typed DRSs are needed as assumptions are the typing of merged DRSs and implications
(rules (®) and (impl™) below), where part of the DRS to be typed contains top-level referents whose types
need to be assumed to type the rest of the DRS.

Typing value DRSs and merged DRSs
I'F p:t z:o ' D:T
Ik (,p):1 't (z,D): (o x71)

D22T27F|_D1:7‘1 DliTl,Fl_DQZTQ(®)
I+ (D1®D2):(T1®T2)

(drs]) (drsy)

Notice that in (drsj ) a variable is removed from the context and built into a DRS. Hence, (z, D) corre-
sponds to a binding operator, written §z. D in Kohlhase e.a.[13] But in (®) a typed DRS is used like a type
context to type another DRS, whereby the scope of (x, D) : o is extended to terms outside of D. This is



what Kohlhase e.a.[13] call “dynamic” binding of variables in D, by binding operators of D;.

Typing formulas
'ty ... I'Ft,:m
'+ D:
I''FR:mm—(..=>(mm—t)..) (rel) f_@:(neg)
I' ' R(ty,...,ty) 1 t ’
FFtl:e FFtQZE F|_D120'1 Dllal,F}_Dglag(diSj)
I+ tlitglt (eqn) I+ (Dl \/Dg)tt
Fl_(pt Fl—’wt ‘ Fl_Dli(Tl Dl:Ul,Fl_DQZO-Q(impZJ")
T T (ohd) 6 (cony) ' (D= Ds):t

Discourses are sequences of sentences; to type the sequence of their DRSs, each DRS is typed in the context
extended by the previous DRSs. (Thereby we can resolve pronouns anaphorically, to referents in the left
textual context.)

Typing discourses

I'-Dy:m Dy:m, ' F Dy:mo -+ Dyp:7p,...,Dy:1, I’ F Dpyq i Thpa
't (D1; Do oo 5 Dpst) i (L. (1 ®72) . .) @ Trt1)

(5)

In typing a term, a typed assumption D : ¢ can only be used by decomposing it to the typed top-level
discourse referents of D, using (vars) to (vars). This cannot be done if D is a variable, application, or
abstraction. We ignore assumed typed abstractions by (varr), which is harmless since they cannot evaluate
to boxes, but (varg), ignoring assumed typed applications, is not: they may reduce to a box containing x as
a top-level discourse referent and thus block an assumption « : 7 in I". We need to restrict (varg) to have a
form of subject-reduction, see section 5.

By induction on the structure of terms, formulas and A\-DRSs ¢, we obtain:

Lemma 1. Suppose for all x € free(t) and all types o, ' + x : 0 iff A & x:0. Then ' + t:7iff
AbFt:T.

Corollary 1. 1. If I {[l,¢) : L,A & s:0,then A F s: 0.
2. Ifx:p,E:7,I" - s:o0andxisnot atop-level referent of E, then E : 7,x : p,I" - s: 0.

4 Type Reconstruction

We want to extend Hindley’s well-known “principal types”-theorem from (simply typed) A-calculus to A-
DRT. The theorem says that the set of typings I" - ¢ : 7 of a term ¢ is the set of instances SIp F ¢ : ST
of a single typing [y - t : 7, where S : TyVar — Ty are the assignments of types to type variables. Then
Iy =t : 79 is a most general or principal typing of t. A (principal) typing of t modulo I' is a (principal)
typing SI" F t : o for some type substitution S and type o.

It is easy to show, by induction on derivations, that instances of a DRS-typing are also typings of the DRS.
Lemma?2. If " - D:oand S : TyVar — Ty, then ST + D : So.

More work is needed to show that there exists a principal typing, if there is a typing at all.



Theorem 1. There is an algorithm W that, given a type context I' and a term t, either returns a pair (U, T)
of a type substitution U : TyVar — Ty and a type T such that UI' = t : T is a most general typing of t
modulo T, or returns ‘fail’, if there is no (U, T) such thatUT' F t: 7.

The algorithm W has an easy modification which, on input (I, ¢) where e has a type in some instance of I,
not only delivers a most general type instantiation S and a type 7 such that SI" F e : 7, but also a variant
¢’ of e where variable bindings are annotated with types.

Proof. The proof is an extension of the proof of [9] and [6]. We only consider the cases of variables and
terms that are new in \-DRT over the A-calculus. Define W as follows:

W(l,z) =

D ®D2))
(Id,T), I'=x:7,I" for some I, 1
W({(D:o,E:7,I"),2), '=(D®E):(c®7),I USQS1, (USam @ UTs)),
W((Z : U?D : T,F/)7£I,‘) I'= <Z D> o XT, F lffOI‘ Some 71, T2 and frCSh Q2
W(I", x) I'=s:0,I", ¢else, 2t ag, I'), D) = (S1,71),
fail o else :71,511), D2) = (S2,72),

and U mgu(re, S2S102) # fail

W(I,{x,D)) = Sa x ST, fail, else
ifW((z:«,I),D)=(S,7) for fresh TyVar c.

By induction on ¢, we want to show that for all I, S, 7:

(i) W(I,t) terminates.
(i) If W(I',t) = fail, then there is no typing of ¢t modulo I".
(iii) ¥ W (I, t) = (S,7), then ST" + ¢ : 7 is a principal typing of ¢ modulo I".

Case t = x: (i) W(I, z) searches the type context from left to right, unpacking boxes and merge-DRSs to
lists of typed referents, and applies (vary) to the first assumption x : 7 found. Clearly, this terminates. (ii)
If W(I',x) = fail, then no assumption x : 7 is found in the (unpacked) context, so z is untypable, since
(vary) cannot be applied to x. (iii) If W(I[',xz) = (S,7),then S = Id and I = = : 7, 1" for some I".
Suppose RI" F z : pis atyping of z modulo I'. Then RI" = x : R7, RI", and hence p = Rt by (vary).
So RI' = =z : pis obtained from SI" =z : 7 by instantiating with R.

Caset = (D1 ® Ds):
(i) W(I, (D1 ® D5)) terminates, since by induction, W((Ds : «, I"), D7) terminates, for each (S1, 1),
W((Dy : 71,51T"), Dy) terminates, and for each (Sa, 72), mgu(72, S251«) terminates.
(ii) Suppose there is a typing of (D7 ® D) modulo I". For some S, 71, 72, the typing derivation ends in
DQ:TQ,SF}_Dl:Tl DllTl,SI"_DQZTQ
SI' = (D1 ® Dy) : (11 ® 2)

(®).

Thus there is a typing of Dy modulo Ds : g, I', whence, by induction, W ((Ds : as, I'), D1) # fail,
and there is a most general typing Do : S1ag, S1I" b Dy : o1 of Dy modulo (D5 : a, I'). Since it is
most general, there is a type substitution 77 such that

D2 : TQ,SF - Dl T = DQ : Tlslag,TlSlf H D1 ZT10'1.
There is also a typing of D, modulo

(Dl . Tl,SF) = (Dl . T101,T151F),



(iii)

hence a typing of D2 modulo (D; : 01,51 1"). Therefore, by induction, W ((D; : 1, 511"), D2) # fail,
and there is a most general typing D : Sa01, 52511 & Ds : 09 of Dy modulo (D; : 01,.511). Since
it is most general, there is a type substitution 75 such that

Dy:71,SI' - Dy:19 = Di:Tio, 71517 F Dy:my
D1 ZTQSQO’l,TQSQSlF F D2 : TQUQ.

So we have Thoo = 79 = 115102, and on the type variables of S11" and o1, 177 = 15.55. On type
variables 3 of Siao which are not in S1I" or o1, we have S33 = [ as S, is idempotent. We can
assume that g is not in the support of T5 and put T3 := T3, obtaining 715 = T5.555. Then from
Tooe = 79 = T15109 = 155251 g, we know that o5 and S5 S7 unify, SO mgu(ag, SQSlag) #f(lll
By the definition of W, it then follows that W (I, (D ® D3)) # fail.
Suppose W(F, (Dl &® Dg)) = (USQSl, (USQO‘l & UO'Q)) with U, S1, Ss, 01, 02 as in the definition of
W. Then with fresh g, W((Ds : a9, I"),D1) = (S1,01), W((D1 : 01,511), D2) = (S2,02), and
U = mgu(og, S2S1a2) # fail. By induction, we know that

a) Dy : Siae, 51" + Dy : oy s aprincipal typing of Dy modulo (D5 : s, I'),

b) Dy : S201,5251 " b Do : 0o isa principal typing of Do modulo (D; : 01,511).
By specializing the typing in a) with U.S; and the one in b) with U, we obtain typings

D2 : U5251a27U5251F [ D1 : USQJl, and D1 : USQO'17U8281F - D2 : UJQ.
Since U S2S1a9 = Uos, we can apply the rule (®) and obtain a typing
US55 + (Dl X DQ) : (USQUl & UO'Q)

of (D1 ® D) modulo I'. It remains to be shown that this is a most general typing.
So suppose (D1 ® D-) has a typing modulo I". The last step in the typing derivation is

DQZTQ,SF = D12T1, DliTl,SF - D2:T2
SI'E (D1 ®Dy): (11 ®72)

For the left subderivation of Do : 75, SI" + Dj : 71 we may assume 72 = Scay for some fresh type
variable «a. So Dy has a typing (S, 71) modulo D5 : as, I'. By a) there is a type substitution T} such
that (S, Tl) = (TlSl, Tlal), whence

Dy:1,SI' - Di:1m = Do :T1S5100, 715 + Dy:Tyoq.

Now the right subderivation D : 71, SI" F Do : 75 is a derivation of

Dy :Tyo,, 715 + Dy :T1S1a0,
which is a typing of Dy modulo (D; : 01, 511"). By b), there is a type substitution 7> with

Di:71,ST’ b Dy :19 = Dq:T1558501,155:511 + D5 : Tyoo.
It follows that
SICE (D1®Dy): (mm®12) = T2551 F (D1 & Ds3): (TeS201 @ Teos).
To show that this is an instance of the typing
US51I" + (D1 ® D3) : (USz01 @ Uos),

we need a type substitution R such that 75 = RU on the type variables of S3511, So01,02. We have
Thoo = T1.S1a2. As in (ii), T7 = T5.55 on the type variables of Sjas, so Tome = 155551, and since
U = mgu(ra, S2S102), To = RU on the type variables of 75 and S2.S7 . On other type variables
B, we have UB = 8 = Rf and can redefine RS := 15, to obtain 75 = RU on all type variables of
SQSlF, 5201 and g2.



The remaining cases of ¢ can be treated similarly.

Example 1. The lexicon entry for the indefinite article a in A-DRT of [13] is
APAQ(0z; T ® P('z;) @ Q("zy)) = (d,t), ((d,t),t)

where d is the type of individual concepts and ¢ the type of DRSs. Simplifying this to the extensional case
and using the DRS-notation from above, type reconstruction yields the principal typing

FAPAQ({[z], T) @ Pr @ Qx) : (a = ) = (@ = I) = [a] @ v ® 0.
Instead of the basic type ¢ for DRSs in [13], we have infinitely many types [o1, . . ., 0,,]. Moreover, we have

the principal typing
man' :e —t F Az([],man’z) : e — 1.

The unreduced meaning term for a man therefore is
APAQ(([z], T) ® Pz @ Qz) - A\x([], man' x)
and has the principal type (e — 0) — [¢] ® 1 ® 4.

For the kind of semantic checking of natural language text that we are interested in, we need to distinguish
between different sorts of individuals. Lexical entries should assign different base types to the arguments
of content words, in particular verbs and nouns. It is then useful, if not imperative, to have a lexicon with
polymorphic types for the functional words like the indefinite article above, rather than be forced to put into
the lexicon all the instance types needed for a specific application.

The type-checking in texts is slightly different from the one in programs: in programs, we need to check that
in applications f (a1, ..., ay), the type of the arguments equal (or are subtypes of) the argument types of the
function, while in texts, in predications v(np1, . ..,npx) the types of the (generally quantified) argument
noun phrases have to be related by type-raising to the argument types of the verb.

But in principle, we want to have the same phase distinction between type checking and evaluation: we
want to build meaning terms according to the syntactic structure, then check if the meaning is typable, and
only then perform semantic evaluation. Thus, evaluation only needs to be defined on typed expressions, and
type checking would be pointless if evaluation would not preserve the type of expressions.

5 Reduction

We assume the familiar reduction rules for A-calculus, i.e. S-reduction and the congruence rules

D— D D—D E—F
(/\ICD'S)%D[QS/S](B) \xD — \xD'"" (D-E)— (D'-E)” (D-E)—(D-E')’

The intended meaning of the merge (D7 ® D) of two value-DRSs Dy = ([z1,...,2,],¢) and Dy =
{[y1,-- -, ym], ¥) with disjoint referent lists is the value-DRS

<[$1, sy Y1y .- aym]v (QD A ¢)>

We therefore define the reduction (resp. evaluation) of DRS-expressions by the following d-reduction rules:

(51)’ (52)7

(I, o) ®(y, E) = (y, (], ¥) ® E)
3).

{Ie) @l 9) = (I, (e A9))

(¢, D) E — <x,D®E>(




From these, the intended meaning for the merge of value-DRSs follows:

<[:L‘17...,$n},g0> ® <[y17~~wym]7¢> =" <[5E17-~'7$n7y17-~7ym]7(§0/\w)>'

In order to use (d1) - (03), by reductions we must achieve that arguments of ® are value-DRSs. Hence we
also need congruence rules for 6 = (-, -) and ®:

D—E 5 D—D 5 E— FE
(z,D) — (z,E) (%), (D® E) — (D' ® E) (%), (Do E)— (Do E)

(%),

so that reductions can be performed in subterms of (x, D), (D ® E) as well as AzD and (D; - Ds).
Then the following reduction rules are derivable:
E—*FE 65 D—-s*D', E-=*FE
[.9) @y E) =" (gl @E) " (2,D)9E =" (z,D' 0 F)

(d3)-

Normalization

It is obvious that applications of the §-reduction rules do not lead to new occurrences of 3-redexes. There-
fore, expressions can be reduced by first performing S-reductions as long as possible, and only then apply
d-reduction rules. If we start with a typed expression, then from the strong normalzation property for sim-
ply typed A-calculus the first will terminate. It is also clear that the j-reduction rules cannot lead to infinite
reduction sequences.

Notice that on value-DRSs with disjoint top-level referents, ® is associative, if we consider formula con-
junction to be associative, i.e. use list [¢1, . . ., ¢, ] of formulas, as we do in section 6.2.

We would like to show that in a derivable typing statement I" - s : o, where the “predicate” o applies to
the “subject” s, we may reduce the subject and still the predicate o applies. However, this is not quite true:
when we reduce a merge-DRS, the type constructor X is interpreted as a cons of a referent and a referent
list, and ® is interpreted as an append of referent lists, and since the type of a DRS mirrors its construction,
we need to cons resp. append the lists of types of the referents.

We use the following type reductions, which amount to a recursive definition of append (®) in terms of the
empty list (11) and cons (x):

11@]1411(5/1)’ ]1®(pr)—\0><(ll®p)(5é> (pr)®740x(p®7)(5‘%)

Moreover, type reduction may operate on embedded type expressions:

o—0o =7
oxr o x7 ) oxrooxr )
o—0o , N "
oo ar &) cor=oar )

(O’—)T)A(JI—)T)(H/) (0—)7)—\(0—>7/)(

%//)

Example 1. (continued) Reducing the above term
APAQ(([z], T) ® Pz ® Qx) - Ax([], man’ z)

by [B-reductions gives
AQ({[z], T) ® ([J, man’ z) ® Qx)



and reducing further by §-reductions leads to
AQ(([x], T Aman’ z) ® Q).

Its principal type (e — &) — [e] ® 4 is obtained from the one of the unreduced term by applications of (&),
(6%), and (87) that simplify [e] ® 1 ® ¢ to [¢] ® 0.

Since our types of DRSs closely reflect the construction of their top-level referent lists, in order to have a
subject reduction property we need to consider types equivalent when they get equal by interpreting ® as
append, x as cons, and 1 as the empty list.

A more serious obstacle to subject-reduction is the typing rule (varg) which permits us to ignore assump-
tions (D; - D3) : o. In fact, the subject-reduction property does not hold in general.

Example 2. Consider the application of

DQ:TQ,Fl_Dl:Tl DliTl,FFDQITQ(
I' - (D1®Ds): (11 ®72)

®)

Suppose (D1 ® Dy) — (D] ® D2) via D1 — Dj. As we have seen above, we may have x € top(D7) \
top(Dy). In the left subderivation Dy : 71, I" F Dy : 79, a free occurrence of x in Dy gets its type from
I', while in the context D} : 71, ', it gets its type from D} : 71. Hence, it may be impossible to obtain
D} :7m,I" b Dy : 7o (For example, take Dy : 74 = Ay(x, E) -a: (6 X 7), Dy : 7o = ([], Pz) : 1.) Thus,
I'' b (D1 ®D3): (11 ® 12) does not imply I = (D] ® Da) : (11 ® T2).

The problem similarly arises for (D1 = Ds), (D1 V D3), or (D1 ; D2), where D; may [-reduce to a DRS
with a new top-level referent occurring free in D5. This is a defect of A-DRT terms which admit the binding
part D1 of such expressions to arise from a S-redex like (Azz - Dy).

We will sidestep this problem for the application to pronoun resolution below by assuming

1. all A-DRS-expressions used as meanings of lexical entries are closed and in normal form,

2. in substitution ¢[x/s], bound variables (including referents) in ¢ are renamed to make them distinct from
free variables of s,

3. in ¢[x/s], s is in normal form, and referents of s are renamed at each occurrence of x in ¢ (in merge-
factors, so that their scope does not extend).?

4. all bound variables are pairwise distinct; in particular, no referent is used twice as a binding variable.

In particular, we will use a call-by-value strategy when computing the meaning of phrases: if the meaning
of a phrase is an application Azt - s, we will have Axt and s in normal form, and deliver a normal form
nf(t[z/s]) of t[z/s] as value, see the computation rules in section 6.2. We think that the following weak
form of the subject reduction property holds under the above assumptions:

Conjecture 1. If ¢ and s are in normal form, and I' + (Axt-s) : 7, then there is 7/ with 7 —* 7/ and
I b nf(tlz/s]) : 7.
However, we do not make use of that in the following; termination of reduction suffices.

3 Notice that AP(P ® P) - {[z],[¢]) then reduces to ({[z1],[¢(2/21)]) ® ([z2],[¢(2/22)]), and further to
([z1, 22, [e(2/21), (2] 22)]), like turning (3zp A Jz¢) into prenex form 3z13z2(p1(2/21) A (2] 22)).



6 Application to Pronoun Resolution

There are two possible ways to combine type reconstruction and pronoun resolution. Either one applies a
pronoun resolution algorithm and then uses type reconstruction to check if the resolution is type-correct, or
one first applies type reconstruction and then does pronoun resolution by exploiting the type information.

6.1 Type Informed Pronoun Resolution
The second way has been implemented [22]. It roughly proceeds as follows:

— Step 1: for each pronoun occurrence, introduce a fresh discourse referent « and extend the DRS by an
anaphor-declaration like anp(z, fem, sg). For the discourse referent y of each noun phrase that is not a
pronoun, add an antecedent-declaration like ant(y, masc, sg) to the DRS.

— Step 2: apply type reconstruction to get a most general typing for the discourse, including individual
types e; for discourse referents x as inferred from the occurrence context of the pronoun.

— Step 3: “resolve” an anaphoric (or cataphoric) pronoun by unifying its typed discourse referent = : «
with some discourse referent 3 : 8 of a possible antecedent of the same type, observing the grammatical
properties of gender and number in the corresponding declarations anp(z, g, n,) and ant(y, gy, ny).

A more detailed description is best obtained by explaining the relevant parts of the Prolog-program of [22].

A parse tree is represented as a list [Root | Subtrees] where the root is the syntactic category of the
parsed expression. A discourse is either empty, with tree [d], or the extension of a discourse by a sentence,
and then has tree [d, S, D] where S is the parse tree of the final sentence and D the parse tree of the initial
discourse.* For each parse tree, sem (+Tree, -DRS) computes a number of meanings. If the tree is a
discourse, each meaning is a typed A-DRS, otherwise an untyped A\-DRS in normal form.

)

% sem(+ParseTree,-DRS); for a discourse, DRS is typed

sem([d], drs([],[]1)) := !.
sem([d,S,D], Sem) :—
!, sem(S,SemS), sem(D,SemD), resolve (SemS,SemD, Sem) .

Having computed a typed meaning SemD for the initial discourse and an untyped meaning SemS for the
final sentence, we try to resolve anaphors of SemS, using SembD as accessible DRS for possible antecedents.

)

% resolve (+SemS, +SemD, —Sem)

resolve (SemS, SemD, Sem) :-—

type ([],SemS, SemSTy, _TypS),

resolve_drs ([SemSTy, SemD], [DrsS,DrsD]),
mergeTerm (DrsD + DrsS, Sem).

First, type reconstruction type /4 is applied to SemS; as pronouns get fresh discourse referents in Sems,
we can use the empty type context to find a principal type TypS for the DRS SemsS. Actually, we use a
modification of the type reconstruction algorithm that also returns a typed version SemSTy of SemS, which
has type annotations at variable bindings (including referents in referent lists). This typed DRS SemSTy is
resolved with SemD as accessible DRS, using resolve_drs/2; the modifications DrsS and DrsD are
finally merged by appending the referents and formulas of DrsS to those of DrsD.

To resolve a DRS drs (Refs, Fmls) with respect to a stack Ds1 of partially resolved accessible DRSs,
we go through the formulas, which may contain unresolved DRSs, resolve these, and construct a resolved
form of drs (Refs, Fmls) on top of the stack:

4 To prevent Prolog’s top-down parsing strategy from diverging for left-recursive grammar rules d -> d, s., we
use aright-recursive rule d —-> s, d. for discourses and reverse the sequence of input sentences before parsing.



% resolve_drs (+DRSs, -resolvedDRSs)

resolve_drs ([drs (Refs,Fmls) |[Dsl],RDs) :—
resolve_fml (Fmls, [drs(Refs, []) IDsl],RDs).

If a formula is built from DRSs, like (D = Ds), (D1 V Ds), or =D, the component DRSs are resolved
in term, respecting the accessibility conditions of DRT, and the formula built form the resolved component
DRSs is added to the result-DRS under construction, before the remaining formulas are processed:

% resolve_fml (+Fmls, [?resultDRS|+accessDRSs], -resolvedDRSs)
resolve_fml ([ (D1 => D2) |Fmls],Ds,RDs) :—
!, resolve_drs([D1]|Ds], [Dlr|Dsr]),
resolve_drs ([D2,Dlr|Dsr], [D2R,D1R,drs (R,F) |Ds3]),
resolve_fml (Fmls, [drs (R, [ (DIR => D2R) |F]) |Ds3],RDs) .

If the formula is an anaphor anp (Ref, Gen, Num) with typed(!) referent Ref and gender and number
information, one tries to find a suitable antecedent in the result-DRS under construction (i.e. in the pronoun’s
left textual context in the current sentence) or the accessible DRSs, or in the remaining formulas of the DRS
currently under process:

resolve_fml ([anp (Ref, Gen,Num) |[Fmls], [drs(R,F)|Dsl], RDs) :—
' ( (% in sentence prefix or previous sentences
resolve_anp (Ref, Gen,Num, [drs(R,F) |Dsl])
; % in sentence suffix
resolve_anp (Ref,Gen,Num, [drs (R,Fmls) ])
)
delete_ref (Ref,R,NewR), % omit duplicates of Ref
NewD = drs (NewR,F) % omit anp(Ref,..) in the result DRS
; NewD = drs (R, [anp (Ref,Gen,Num) |F]) % or: fail, to
), exclude unre-
resolve_fml (Fmls, [NewD|Dsl],RDs) . solved anaphors

o° o

Possessive pronouns are handled by looking for antecedents in their left context only.

To find a suitable antecedent, simply choose some of the accessible DRSs and some antecedent among its
formulas that can be unified with the referent:

% resolve_anp (+Ref, +Gen, +Num, +DRSs)

resolve_anp (Ref,Gen,Num,Ds) :—
member (drs (_Refs,Fs),Ds),
member (ant (Ref, Gen, Num) ,Fs) .

By using the same variables Re f, Gen, Num, Prolog unifies a typed anaphor R : Ty with a typed antecedent
R’ : Ty’ of the same number and gender features.

Atomic formulas can just be transferred to the result-DRS under construction, and when all formulas of the
DRS are processed, the sequence of resolved formulas is reversed to its expected order:

resolve_fml ([Fml|Fmls], [drs(R,F) |[Dsl],RDs) :—
!, resolve_fml (Fmls, [drs (R, [Fml|F]) |Dsl],RDs).

resolve_fml ([], [drs(R,F) |Ds], [drs(R,Frev) |Ds]) :—
!, reverse (F,Frev).

The stack of resolved DRSs with a resolved form of the DRS drs (Refs, Fmls) on top is returned.



6.2 Example

We assume that nouns N and relational nouns RN are classified according to gender g € {m, f,n} (mas-
culine, feminine, neuter), and implicily inflect for number n € {sg, pl} and case c. (We use gender m as in
the corresponding German nouns and pronouns to get more possible antecedents below.)

1. Content words are assigned a meaning A-DRS and a type in the lexicon, for example:

expression meaning assumed type
Galilei : PN galilei h
Jupiter : PN Jupiter s
astronomer : N Ax(]], [ant(x, m, sg), astronomer(z)]) h—1
star : N Ax([], [ant(z, m, sg), star(x)]) s— 1
moon : RN Az Ay([], [ant(z, m, sg), moon(z,y)]) s — (s — 1)
shine : 'V A ([], [shine(z)]) s—=1
observe : TV Az )y ([], [observe(z, y)]) h—(s—1)
discover : TV Az )y ([], [discover(x, y)]) h—(s—1)

Pronouns inflect for number, gender, and case, if we consider person fixed to 3rd person. Like deter-
miners, pronouns have polymorphic type; i.e. from their untyped A-DRS-meaning we reconstruct their
most general (schematic) type.

expression meaning principal type
he : Pron AP (([z], [anp(z,m, sg)]) @ P x) (a—=p)—=[al®p
she : Pron AP({[z], [anp(z, f, sg)]) ® P x) (a—=8)—=lo®p

his : PossPron ARAP({[z,y], [anposs(y,m, sg)]) ® (Rxy ® Px)) (o« = 8 = 7) = (a = 9)
— [, fl@y®4

who : RelPron APXx (P x) (a—= )= (a—=pP)
a: Det ANAP(([z],[]) ® (N2 ® Px)) (a—B) = (a—7)
- @By
every : Det ANAP(]], [({[z],]]) ® N z) = Pxz]) (=)= (a—7)
— 1
eq AzAy.eq(z,y) a— (a—t)

Each use of a personal, relative, or possessive pronoun uses a new referent . Moreover, eq, anp, anposs,
ant have polymorphic lexical (not reconstructed) type.



2. Compound expressions are built according to grammar rules; each grammar rule is accompanied by
one or several meaning computation rules. Some examples are:

/

T N5 P s e e P Y
e e
5 <><>
- N];plvv:s;: : gm SR nf (np} - génp;”,' /\17/1(])?;2' ) P
—5(56) R

An additional computation rule (C' 5') for sentences np; v nps : S might give np, wide scope. In (C 7),
d"’ and s are obtained by pronoun-resolution from most general typings of d’ and s’ in the empty type
context, i.e. resolve(s’,d',d”’ ® s'') by the resolution algorithm explained above.

3. Letus consider the sample discourse Galilei observed a star. He discovered his moon. The first sentence
is constructed with (S 1), (S 3), and (S 5). We compute the meaning of the subject as

np) = AP ({[z], [ant(x,m, sg), eq(z, galilei)]) @ P - ),
the meaning of the object as

=nfANAP(([z], [)) ® (N @ @ Px)) - X[, [ant(x, m, sg), star(2)]))

=nf(AP(([z], []) ® (N z @ Px))[N/Az([], [ant(z, m, sg), star(z)])])
=nf(AP(([z],[]) ® (([]; [ant(x, m, sg), star(z)]) ® P z)))
= AP({[z], [ant(x,m, sg), star(z)]) ® P x)

and from those obtain the sentence meaning by the computation rule for (S 5) as

= nf (npy - Ax(npy - Ay(v' - 2 - y)))
= nf(npy - Ax(npy - Ay (([], [observe(z, y)]))))
= nf (npy - Av.(([z], [ant(z, m, sg), star(z)]) @ P z)[P/Xy({[], [observe(z,y)]))])
= nf (npy - \z({[Z], [ant(Z, m, sg), star(2)]) @ ([], [observe(z, Z)])))
= nf(np} - Mz ([y], [ant(y, m, sg), star(y), observe(z,y)]))
= nf(({[z], [ant(x, m, sg), eq(, galilei)]) ® P x)[P/ x([y], lant(y, m, sg), star(y), observe(z, y)])])
= nf ((([z], [ant(z, m, sg), eq(z, galilei)]) @ ([y], [ant(y, m, sg), star(y), observe(z, y)])))
= [z, y], [ant(xz,m, sg), eq(z, galilei), ant(y, m, sg), star(y), observe(z,y)])

From the type assumptions for nouns and verbs (and eq), type reconstruction can annotate the bound
variables of s} as

([x: h,y: 8], [ant(x : hym, sg), eq(x, galilei),ant(y : s, m, sg), star(y), observe(x,y)|)



and return a most general type ([h, s],t). In the second sentence, the subject ke has meaning
npy = AP(([z], [anp(z, m, s9)]) ® P z),
which receives the following annotation and principal type:
AP : (a— B)({[z: o], [anp(z : a,m, sg)]) @ Px) : (a« = ) = [a] ® S.

The object his moon gets the meaning’

= nf(ARAP({[z, y], [anposs(y,m, sg)]) ® (Rxy @ Px)) - AxAy([], [ant(z, m, sg), moon(z, y)]))
= nf(AP({[x,y], [anposs(y,m, sg)]) ® (Rzy @ P x))[R/AzXy([], [ant(z, m, sg), moon(z, y)])])
= nf(AP(([z,y], [anposs(y,m, sg)]) ® (([], [ant(z, m, sg), moon(z, y)]) ® P x)))

= AP({[z, y], [anposs(y,m, sg), ant(x, m, sg), moon(z,y)]) @ P x),

which type reconstruction annotates to
AP : (s = a)({[z : s,y : 8], [anposs(y : s,m, sg),ant(x : s,m, sg),moon(z,y)]) ® Px)

and to which it assigns a most general type (s — ) — [s, s] ® a. By the computation rule for (S 5),
the meaning of the second sentence is

so = nf(np} - Az(nps - Ay(v' -z - y)))

(
= nf(np} - A:lc(np’z - Ay (([], [discover(z,y)]))))
= nf(np} - (
nf

(
(
( Az ([Z, y], [anposs(y, m, sg), ant(Z, m, sg), moon(Z,y), discover(x, T)]))
(([2], lanp(z, m, sg)]) ® P z)[P/Ax([Z, y],

),a

, [anposs(y,m, sg), . .., discover(z, T)]))
[z, 2,y], lanp(z,m, 59), anposs(y,m, sg

nt(&, m, sq), moon(Z,y), discover(x, T)]).

If several computation rules can be applied, a sentence can get several untyped meanings this way. The
normalisation has to return fresh bound variables, so let us write

sy, = ([u, v, 2], [anp(u, m, sg), anposs(z, m, sqg), ant(v, m, sg), moon(v, z), discover(u,v)]).

4. Pronoun resolution for the discourse €; s1 ; so proceeds as follows.
(a) The most general typing of the meaning ([], [|) of € in the empty contextis + ([],[]) : 1.
(b) Type reconstruction is applied to the first sentence, followed by pronoun resolution with ([], []) : 1.
As no pronoun occurred in s1, the type-annotated version of s} is returned:

s{ ={[z: hyy: s8], [ant(z : h,m, sg), eq(x, galilei),ant(y : s,m, sq), star(y), observe(x,y)])
=D es.

(c) Type reconstruction is applied to (each of) the meaning(s) of the next sentence, followed by pro-
noun resolution with s7. Here type reconstructions just returns

sg={[u:hv:s z:s|,
[anp(u : hym, sqg),anposs(z : s, m, sg),ant(v : s,m, sg), moon(v, z), discover(u, v)],
where the types of u, v, z are derived from the argument types of nouns and verbs whose argument
positions they occupy. The anaphor u : h has no antecedent in the current sentence, as v : s

has different type. Assuming that that possessives have to be resolved in their left context, the
possessive anaphor z : s also cannot be resolved against v : s.

5 In the final step using an additional reduction D1 ® (D2 ® D3) — (D1 ® D2) ® D3 when D1, D5 are value-DRSs.



(d) Pronouns of sy may also be resolved against antecedents in the type-annotated left context, s/
For each typed anaphor, we search for a suitably typed antecedents, unify the referents and remove
the anaphor referent in the DRS of the current sentence, s4. For the anaphor anp(u : h,m, sg), the
only type-compatible antecedent in s7 is ant(x : h,m, sg), so we unify u with = (i.e. rename u
by x in s}), remove x : h from its referent list and anp(x : h,m, sg) from its formulas, getting a
partially resolved DRS

([v:s,z:s],[anposs(z : s,m, sg),ant(v : s,m, sg), moon(v, z), discover(x,v)].

The next formula is a possessive anaphor anposs(z : s,m, sg). As we want these to be resolved
in their left context only, z : s cannot be resolved against v : s. But it can be resolved against
ant(y : s,m, sg) in s}, which leads to

r(sy) = ([v: 8], [ant(v : s, m, sg), moon(v,y), discover(x,v)]

as the resolved ”‘result”’-DRS of s.
(e) Finally, the resolved version of s} is merged with s, yielding

st @r(sy) = (z:hy:suv:sl,
[ant(x : h,m, sg), eq(x, galilei),ant(y : s,m, sg), star(y), observe(x,y),
ant(v : s,m, sg), moon(v,y), discover(z,v)])

as the typed meaning of the discourse d = €; 71 ; s3.

6.3 Type Reconstruction for Bach-Peters-Sentences

One of the motivations for the symmetric merge-operator ® was hinted at, but not elaborated in [13] (p.480):
the potential to treat Bach-Peters-sentences “in which two phrases are connected by both an anaphor and a
cataphor”, like [The boy who deserved it, ], got [the prize he, wanted],. We use variants of (S 2), (S 5) and
(C2), (C5) as syntax and computation rules for relative clauses

p: RelPron , g’ ,
p: RelNP (52) p'(CQ)
np1: ReINP nps: NP v:TV , npy v nph ,
np1 np2 v : RelS (55 nf(np} - Ax(nph - My(v' - x - y))) (C5)
: D N : ! -
d et n s: RelS (S 8) d n s (©8)

dns : NP nf(d - z(n'z A s’ )

Omitting the grammatical features and the uniqueness conditions for the definite article, the untyped mean-
ing of a boy who deserves it gets the prize he wanted is obtained via

z,y 4 y// T,y z; y/,
ani() i) ani(z) i)
AP (boy(x) ®Px)- Az ; —g  |boy(z) ® ;
anp(e’) anp(z’)
anp(y) want(z',y') anp(y) want(z',y')
deserve(x,y) get(zy) deserve(x,y) get(z.y)

From suitable type assumptions for nouns and verbs in the lexicon, with a type h of humans and e of
objects, type reconstruction would infer types = : h,y : e,z’ : h, 3’ : e, and hence type-respecting pronoun
resolution could only resolve x’ against x and ¥ against 3/, as expected.



The typing rule for ®-DRSs was designed for merge-DRSs whose factors are linked through resolving
cataphors and anaphors by type-independent “coindexing” or referent unification. Type-checking a DRS
(7], p(z,y)) @ ([y], ¥ (z,y)) of this kind leads to a typing problem of the form

viay: B oplay) it y:Brialt Pyt

E (], ol ) @ (Y], ¥(z, ) - [o] @ [6]

The type variables «, 8 get instantiated when the two typing problems in the premise are solved. As we
perform merging of value-DRSs during normalization, we need the typing rule (®) only when a merge-
factor is not a value-DRS, not for Bach-Peters-sentences.

6.4 Supporting Pronoun Translation

To translate between natural languages, we need to resolve pronouns in order to translate them correctly:
the gender of the translated pronoun is generally not the gender of the source language pronoun, but the
gender of the antecedent noun phrase in the target language, which in turn depends on the antecedent of
the pronoun in the source sentence. For example, Google translates the English text The child opened the
box. It contained a pen. into the German Das Kind dffnete die Schachtel. Es enthielt einen Stift., where
neuter es should be feminine sie. A type difference between humans h and things e and the verb type
contain/enthalten : e — e — t shows that it at position of type e cannot refer to the child : (h — t) — t at
position of type h. But only if if is resolved to the box : (e — t) — t, the gender for the german pronoun
er/sie/es can be inferred to be the gender of the translation die Schachtel of the box, i.e. feminine.

6.5 Related Work

On the practical side, discourse representation structures are used as intermediate representation of meaning
when translating texts from natural language to first-order logic. This is done for large-scale processing of
newspaper texts by the C&C/Boxer program® [5] and for mathematical texts by the Naproche system [4].

The Groningen Meaning Bank [3] (GMB) is a large collection of English texts for which C&C computes
syntactic analyses in categorial grammar and Boxer turns them into DRSs and first-order formulas. By
using referents for individuals, events and times and predicates for thematic roles, Boxer covers far more
of discourse representation theory than we do. In the examples of the GMB, nouns are classified according
to animacy (human, non-concrete, etc.), which can be seen as type assignments. But, apparently, these
classifications are not related to the meaning of verbs and hence not used in the pronoun resolution process.
For example, in Ein Mann fiittert einen Hund; wenn er ihn beifft, schligt er ihn., our system correctly
resolves the four pronouns in the only type-compatible way (the first er to Hund, the second to Mann etc.),
if we provide types h for humans, a for animals and typings for nouns Mann : h — t, Hund : a — t
and verbs fiittern, schlagen : h — a — t and beiffen : a — h — t. The C&C/Boxer program, when we
use masculine pronouns in the English input A man feeds a dog. If he bites him, he beats him., resolves
both subject pronouns ke to the man and both object pronouns to the dog (as one can infer from the logical
formula). Thus, if the argument slots of verbs of the GMB were annotated with animacy, too, its pronoun
resolution and meaning translation could be improved by using our type-respecting resolution procedure.
As type distinctions are easier to make in mathematics than for natural language, a similar improvement
can be expected for the anaphora resolution in systems using DRS-like proof representations like [4, 8].

On the theoretical side, there is a growing amount of work (cf. [20, 14, 17, 1]) that uses constructive type the-
ory to develop semantic representations for natural language. In this setting, the notion of type is extended

% Since the link provided in [5] did not work, we were only able to access C&C/Boxer through the demo version of
the Groningen Meaning Bank, see gmb . let.rug.nl/webdemo/demo.php.



(from simple types, i.e. intuitionistic propositional formulas) to first-order formulas, and proofs of the for-
mulas are the objects of these types. In particular, proofs of existential statements 3z consist of pairs (¢, p)
where ¢ is a term denoting an individual and p a proof of [z /t]. Such terms ¢ may then be used to resolve
anaphoric expressions. For example, Mineshima[17] uses constructive type theory enriched by e-terms to
treat definite descriptions; the use of an e-term has to be justified by an existential sentence, whose proof
object then contains a referent for the description. Instead of e-terms, Bekki[1] has terms (@ : v — e)(c)
of unknown choice funcions @ applied to contexts c to select suitable referents of type e; by instantiating
~ and constructing an object of type v — e from proof objects in the typing environment I, this amounts
to “anaphora resolution by proof seach and type checking”. Clearly, the contexts I" used in constructive
type theory provide a more general domain to search for referents than the typed DRS of the textual left
context in our system; for example, one can have background assumptions that do not arise from translation
of the textual left context, which is useful to handle bridging anaphora [14]. However, the formulation of
background knowledge may often be unfeasible, and proof search in constructive type theory seems more
complex that type reconstruction by unification from simple type annotations in the lexicon.

7 Open Problems

Extension to generalized quantifiers and plural pronouns In [16], we have shown that type reconstruc-
tion for Montague grammar with plural noun phrases can be used to resolve some plural ambiguities. The
idea is that plural noun phrases in general have several types, for distributive, reciprocal and collective read-
ings, but argument types of predicates only unify with one of those. The type reconstruction program of
[16] has been changed in [22] to type reconstruction for A-DRT and extended to type-respecting pronoun
resolution for singular pronouns. So far, type reconstruction for plurals is not adapted to A-DRT yet. To in-
terpret She introduced the guests to each other, for example, we would need discourse referents X for sets
of individuals and apply the symmetric predicate distributively to any 2-element subset of X . As our system
admits second-order discourse referents X, it seems possible to add type-respecting pronoun resolution for
plural pronouns. For this, one should consider if the treatment of plurals and generalised quantifiers via
“duplex conditions” [10] can be given a formulation that allows for principal types and type reconstruction.

First-order A\-DRT In contrast to typed versions of \-DRT, our untyped version is a kind of “higher-order”
DRT: there is no demand that discourse referents have individual type. So we can type some expressions
which, from a traditional point of view, should be untypable. For example,

P:o—th (®x): ol®oc

is a most general typing, using o both as a referent-type and as a drs-type. To avoid such defects, we could
introduce different kinds of types, notice when a type variable must be instantiated by an individual resp. by
a drs-type, and forbid to equate types of different kinds. But in realistic cases, conditions of a DRS express
properties of referents using predicates with individual argument type, which makes a formal restriction to
first-order referents unnecessary.

Principal typings for pronoun resolved discourses Does type-respecting pronoun resolution as suggested
above “preserve principal types”? More precisely, in a merge-DRS D ® D» of two typed DRSs with disjoint
toplevel referent lists and principal types, we unify referents x : o of Dy and x’ : ¢’ of Dy by substituting
x for y in Dy and removing =’ : ¢’ from its referent list. Applying the most general unifier U of z : o
and 2’ : o/ gives a typed DRS UD; ® U Ds. Can one prove that U D, ® U D), corresponds to the principal
typing of D1 ® ﬁ’z, where D), is the modification of D5 by the pronoun resolution, and D, resp. l~)’2 are the
untyped versions of Dy and D}?

Semantics A semantics for typed A-DRT is given in [15] and [13], with a compositional meaning for the
symmetric ®. The relational interpretation of [19] for the unsymmetric merge (;) is not sufficient for our
purposes. The Dynamic lambda calculus DLC of [12], [11] claims to give a typed semantics for a system



subsuming typed A\-DRT, but we found their types involving individual variables fairly incomprehensible.
In order to show that the typing and reduction rules given here are correct, we ought to interprete typings
I' = t: 7 in a suitable domain-model of the untyped A-calculus, like the one in [21], and handle free type
variables as universally quantified. We have not yet tried to do so.

Conclusion

Our aim was to use semantic type information from the lexicon to reduce the number of possible antecedents
of an anaphor to type-compatible ones. For this, a single type e of entities is too crude. Many verbs and
nouns in natural language can only be applied to facts/propositions, inanimate physical objects, animals, or
humans, respectively. Candidates for pronoun resolution can be reduced with these types quite reasonably
in many situations. Of course, in a disourse about humans only, the reduction in candidates may be minimal.

The basic idea is simple: a pronoun gets a type from its occurrence as an argument of a verb, and a noun
phrase gets a type from its head noun and the verb argument type of its occurrence; hence, one can filter the
set of possible antecedents of a pronoun by comparing their types. To do this efficiently, we prefer a system
of simple types with schematic types for function words like determiners, in which complex expressions
have principal types that can easily be reconstructed from type assumptions for content words. (A complex
expression can have a principal type for each choice of types of its words.)

Using DRSs provides us with DRTs [10] notion of possible “accessible” antecedent noun phrases. Our typ-
ing rules for A\-DRT expressions closely reflect the accessibility conditions of DRT; this is to be expected, as
the antecedent noun phrase provides a type assumption for its discourse referent, which in turn corresponds
to the pronoun occurrences referring to the antecedent. However, the peculiarities of A-DRT concerning
the subject-reduction property might be a good reason to consider a mathematically “cleaner” language for
expressing the dynamics of discourse, such as simply typed A-calculus with continuation semantics [7].
But in contrast to [7], we are not assuming pronoun resolution via some oracles, but rather integrate a type
reconstruction algorithm into a pronoun resolution algorithm — in a particularly simple way.

Acknowledgement We thank the referees for a number of critical remarks and questions that helped to
improve the presentation.
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