
 
 

 

  

Abstract—Video monitoring can provide vital context 
awareness information from indoor intelligent environments 
where privacy is not a limitation. However, there is a need to 
develop linguistic summarization tools which are capable of 
summarizing in a layman language the information of interest 
within long video sequences. The key module which can enable 
the linguistic summarization of video monitoring is human 
activity/behaviour recognition. However, human behavior 
recognition is an important yet challenging task due to the 
behavior uncertainty, activity ambiguity, and uncertain factors 
such as position, orientation and speed, etc. In order to handle 
such high levels of uncertainties in activity analysis, we 
introduce a system based on Interval Type-2 Fuzzy Logic 
Systems (IT2FLSs) whose parameters are optimized by the Big 
Bang–Big Crunch (BB-BC) algorithm which allows for robust 
behaviour recognition using 3D machine vision techniques in 
intelligent environments. We present several experiments which 
were performed in real-world intelligent environments to fairly 
make comparisons with the state-of-the-art algorithms. The 
experimental results demonstrate that the proposed BB-BC 
paradigm is effective in tuning the parameters of the 
membership functions and the rule base of the IT2FLSs to 
improve the recognition accuracy. It will be shown through 
real-world experiments that the proposed IT2FLSs 
outperformed the Type-1 FLSs (T1FLSs) counterpart as well as 
other traditional non-fuzzy based systems. Based on the 
recognition results, higher-level applications will presented 
including video linguistic summarizations event searching and 
activity retrieval/playback.   

I. INTRODUCTION 
The previous years have witnesses an expansion in the 

installation of video monitoring equipment in public and 
private spaces. Within indoor intelligent environments where 
privacy is not a limitation, there is a growing need to develop 
linguistic summarization tools which are capable of 
summarizing in a layman language the information of interest 
within the long video sequences recorded in such spaces. 
Such summarization can be used to detect automatically 
serious events that need immediate attention such as 
attempted burglaries, serious injuries, etc. Linguistic 
summarization can also provide valuable context information 
from the video which cannot be extracted by other sensors. 
For example, an important application in elderly care in 
intelligent environments is ensuring that the user drinks 
enough water throughout the day to avoid dehydration. 
 
 

Similarly, a warning message can be sent to social services 
nearby in case of a fall of an elderly person so that proper 
actions can be taken instantly. Likewise, lights can be turned 
off automatically when a user is detected as sleeping on the 
sofa.  

Various works have been attempted for the linguistic 
summarization of video sequences where type-1 fuzzy logic 
systems have been applied for linguistic summarization and 
activities analysis in [1], [2] using voxel person analysis 
which mainly focuses on fall down detection for eldercare. 
These type-1 fuzzy based approaches perform well in 
predefined situations such as a quick change of the silhouette 
orientation. However, these approaches require 
time-consuming multi-camera calibration (when one camera 
is moved slightly, the whole system needs to be re-calibrated). 
Another linguistic summarization system based on type-1 
fuzzy logic was proposed in [3] using wearable devices to 
summarize and analyze the human activity. However, such 
wearable devices are intrusive and could be inconvenient for 
the users.  

As a key procedure in linguistic summarization, analysis of 
human behavior and activity has attracted great interest from 
researchers. Most previous research on behavior and activity 
recognition is based on 2D video data [4], [5] or RFID sensors 
[6]. However, the use of 2D data in real-life circumstances 
leads to relatively low accuracy due to noise factors and 
uncertainties associated with real-world environments. The 
use of RFID tags is intrusive and inconvenient as it requires a 
deployment of RFID tags on the human or objects. One 
traditional method is to employ spatio-temporal features to 
describe points of interest in 2D video data [7]. This method 
can be later improved by adding more information to model 
the features [8]. There have been various works for activity 
analysis employing the Hidden Markov Model (HMM) which 
was firstly used to analyze two-hand behaviors [9]. Later 
HMM was used to recognize gesture and pose through a 
probabilistic framework [10]. However, the accuracy was not 
satisfactory. Dynamic Time Warping (DTW) is another 
method to measure similarity and distance between two 
behaviors [11]. However, DTW only returns exact values and 
thus is inadequate to model the behavior uncertainty and 
ambiguity. 

In this paper, we present a robust behaviour recognition 
algorithm for video linguistic summarization using a 3D 
Kinect camera based on Interval Type-2 Fuzzy Logic 

A Type-2 Fuzzy Logic Based System for Linguistic Summarization of 
Video Monitoring in Indoor Intelligent Environments 

Bo Yao, Hani Hagras                                    Daniyal Alghazzawi, Mohammed J. Alhaddad 
The Intelligent Environments Group                                             King Abdulaziz University 

 School of Computer Science and Electronic Engineering                                    Jeddah, Saudi Arabia 
University of Essex 

Colchester, UK  
E-mail: byao@essex.ac.uk 

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China 

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 825



 
 

 

Systems (IT2FLSs) [12], [13]. In order to automatically 
obtain the optimized parameters of the membership functions 
and rule base of the IT2FLS, we employed an optimization 
approach based on the Big Bang–Big Crunch (BB-BC) [22], 
[23] algorithm. Our experiments have been successfully 
conducted in real-world intelligent environments and our 
experiment results show that the proposed IT2FLS 
outperformed the T1FLS counterpart as well as other 
traditional non-fuzzy systems. Based on the recognition 
results, higher-level applications will presented including 
video linguistic summarizations event searching and activity 
retrieval/playback.   

The rest of the paper is organized as follows. In section II, 
we provide a brief overview on IT2FLSs. Section III presents 
an overview on the application of fuzzy logic systems in 
behavior recognition. Section IV introduces the proposed 
IT2FLS for the linguistic summarization of video monitoring. 
Section V presents the automatic optimization approach 
based on BB-BC for the IT2FLS. Section VI presents the 
experiments and results. Finally the conclusions and future 
work are presented in section VII. 

II. BRIEF OVERVIEW OF TYPE-2 FUZZY LOGIC SYSTEMS  
The IT2FLS (shown in Fig. 1a) uses the interval type-2 

fuzzy sets [12] (shown in Fig. 1b) to represent the inputs 
and/or outputs of the FLS. In the interval type-2 fuzzy sets all 
the third dimension values are equal to one [12], [13]. The use 
of interval type-2 FLS helps to simplify the computation of 
the type-2 FLS [12].  
 

 
    (a) 

 
(b) 

Fig. 1.  (a) Structure of the type-2 FLS (b) An interval type-2 fuzzy set. 

The interval type-2 FLS works as follows [12], [13]: the 
crisp inputs from the input sensors are first fuzzified into 
input type-2 fuzzy sets; singleton fuzzification is usually used 
in interval type-2 FLS applications due to its simplicity and 
suitability for embedded processors and real time 
applications. The input type-2 fuzzy sets then activate the 

inference engine and the rule base to produce output type-2 
fuzzy sets. The type-2 FLS rule base remains the same as for 
the type-1 FLS but its Membership Functions (MFs) are 
represented by interval type-2 fuzzy sets instead of type-1 
fuzzy sets. The inference engine combines the fired rules and 
gives a mapping from input type-2 fuzzy sets to output type-2 
fuzzy sets. The type-2 fuzzy output sets of the inference 
engine are then processed by the type-reducer which leads to 
type-1 fuzzy sets called the type-reduced sets. There are 
different types of type-reduction methods. In this paper we 
use the Centre of Sets type-reduction as it has a reasonable 
computational complexity that lies between the 
computationally expensive centroid type-reduction and the 
simple height and modified height type-reductions which 
have problems when only one rule fires [12], [13]. After the 
type-reduction process, the type-reduced sets are defuzzified 
(by taking the average of the type-reduced set) so as to obtain 
crisp outputs. More information regarding the interval type-2 
FLS and its benefits can be found in [12], [13]. 

III.  A BRIEF OVERVIEW OF THE APPLICATION OF FUZZY 
LOGIC SYSTEMS IN BEHAVIOR RECOGNITION 

Achieving robust behavior and activity recognition in real 
world environments is highly challenging since even the 
behaviour features of different subjects which are 
representative of the same action classes have a wide 
variance. To make matters worse, the behaviour of a given 
subject who performs multiple instances of the same action 
category is not unique. Thus, there are intra- and inter- subject 
variations in behavioral characteristics which cause high 
levels of uncertainty in the behaviour recognition.  

In [14], a fuzzy rule-based human activity recognition 
system for e-health was introduced and achieved an accuracy 
of about 90%. In [15], human activities of a daily living 
recognition system using hybrid sensors based on fuzzy logic 
system was proposed and the analysis result was robust.  
Work in [16] reported an interactive computer graphics 
environment that encompasses a set of fuzzy logic analysis 
tools and a fuzzy inference model. In [17], fuzzy logic was 
employed to recognize students’ behavior so as to evaluate 
their performance in a control course laboratory. In this paper, 
we employ type-2 fuzzy logic systems in order to handle the 
faced uncertainties associated with intelligent environments. 
In [18], a type-2 fuzzy logic based system was employed to 
learn a user behavior in an intelligent space. However this 
system used basic sensors and did not employ video or try to 
generate linguistic summaries of the video sequences.    

IV. THE PROPOSED INTERVAL TYPE-2 FUZZY LOGIC SYSTEM 
FOR THE LINGUISTIC SUMMARIZATION OF VIDEO 

MONITORING 
Fig. 2 provides an overview of the proposed system. In the 

learning stage, key pose sequences for each behavior category 
are recorded. Then behavior features are detected and 
extracted from Kinect data based on the distance and angle 
feature information so as to model the motion characteristics. 
Based on the results of features extraction, the type-1 fuzzy 
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Membership Functions (MFs) of the inputs to the fuzzy 
systems are then learned via Fuzzy C-Means Clustering 
(FCM) [19]. The type-2 fuzzy MFs are then produced by 
using the obtained type-1 fuzzy sets as the principal 
membership functions which are then blurred by a certain 
percentage to create an initial Footprint of Uncertainty (FOU). 
Finally, the parameters of the IT2FLS are optimized by a 
method based on BB-BC algorithm.  

During the testing stage, input behavior feature vectors 
are firstly extracted and used as input values for the 
IT2FLSs-based recognition system. In our fuzzy system, each 
behaviour model is described by the corresponding rules, and 
each output degree represents the likelihood between the 
behaviour in the current frame and the trained behaviour 
model in the knowledge base. The candidate behaviour in the 
current frame is then classified and recognized by selecting 
the candidate model with the highest output degree.  Based on 
the recognition results of the optimized IT2FLS, linguistic 
summarization is performed using the information of output 
action category and the duration. 

 
Fig. 2.  Overview of our proposed system. 

Event retrieval and playback can be conducted after the 
linguistic summarization, as shown in Fig. 3. As can be seen 
in the Graphical User Interface (GUI) of our system in Fig. 3, 
the searching keyword “falldown*” has been inputted and the 
results of event retrieval are depicted in the list above 
showing the relevant activities which are detected and stored 
previously. Both date information and keywords such as 
behavior categories and duration can be used in our system to 
search and retrieve the events of interest within a given time 
frame. In the event searching procedure, input keywords 
given by the user are compared and matched with the activity 
information stored in the event base of our system to generate 
the result list. The retrieved events can be used to playback 
the video matching the sequences the user wants to see. In the 

following subsections, we present the various components of 
the proposed system 

 
Fig. 3.  The GUI of our system 

A. Joint-angle Feature Representation 
For each frame, the skeleton is a sequence of graphs with 

15 joints, where each node has its geometric position 
represented as a 3d point in a global Cartesian coordinate 
system. An angle feature is defined by three 3D joints ௦ܲ, ௢ܲ 
and  ௘ܲ at a time instant. Firstly, the angle θ is obtained by 
calculating the angle θ between the vectors ௦ܲ ௢ܲሬሬሬሬሬሬሬԦ, and ௢ܲ ௘ܲሬሬሬሬሬሬሬሬԦ 
based on the following equation: 

ߠ        ൌ ଵିݏ݋ܿ ൬ ௉ೞ௉೚ሬሬሬሬሬሬሬሬሬԦൈ ௉೚௉೐ሬሬሬሬሬሬሬሬሬሬԦห௉ೞ௉೚ሬሬሬሬሬሬሬሬሬԦห ห௉೚௉೐ሬሬሬሬሬሬሬሬሬሬԦห൰                            (1) 

After that, the azimuth angle ϕ between the vectors ௦ܲ ௢ܱሬሬሬሬሬሬሬሬԦ, and ௢ܲ ௘ܲሬሬሬሬሬሬሬሬԦ  is computed: 

B. Joint-position Feature Representation 
In order to model the local “depth appearance” for the 

joints, joint position are computed to represent the motion of 
the skeleton. For distance, between joint i and joint j, the 
arc-length distance based on equation (2) is calculated: 

௜௝ܦ                              ൌ ฮ ௜ܲ െ ௝ܲฮ                                           (2) 

where || · || is the Euclidean norm. 

C. Posture Representation 
To perform efficient behavior recognition, an appropriate 

posture representation is essential to model the gesture 
characteristics so that the similarity and difference can be 
calculated between current behavior sequence and the 
recorded key poses. In this work, we use Kinect to extract the 
3D skeleton data which comprises 3D joints, shown in Fig. 4a. 
After that, based on the 3D joints obtained, we compute the 
posture feature using the joint vectors shown in Fig. 4b.  

As most behaviors in daily activity such as drinking, eating, 
waving hands etc., are related to the upper body,  in this work 
in order to recognize behavior sequence, we focus on the 
following joints: shoulder center ( ௦ܲ௖), elbow left ( ௘ܲ௟), hand 
left ( ௛ܲ௟ ), elbow right ( ௘ܲ௥ ), hand right ( ௛ܲ௥ ). Since our 
algorithm is highly extendable, more joints can be easily 
added and utilized for more application scenarios. Based on 
the discussion above, the pose feature is obtained by 
calculating the joint-angle feature and joint-position feature 
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of the selected joints, as given in the following procedure: 
(1) Compute the vectors ௦ܲ௖ ௘ܲ௟ሬሬሬሬሬሬሬሬሬሬሬԦ,  ௦ܲ௖ ௛ܲ௟ሬሬሬሬሬሬሬሬሬሬሬԦ modeling the left 

arm, and  ௦ܲ௖ ௘ܲ௥ሬሬሬሬሬሬሬሬሬሬሬԦ,  ௦ܲ௖ ௘ܲ௥ሬሬሬሬሬሬሬሬሬሬሬԦ modeling the right arm.  
(2) Angle feature of the left arm ߠ௟௔ can be obtained by 

calculating the angle between vectors ௦ܲ௖ ௘ܲ௟ሬሬሬሬሬሬሬሬሬሬሬԦ, ௦ܲ௖ ௛ܲ௟ሬሬሬሬሬሬሬሬሬሬሬԦ based on 
Equation (1). Then, compute the azimuth angle ϕ௟௔ of the left 
arm. Similarly, angle features of the right arm ߠ௥௔ and ϕ௥௔ 
can be computed by applying the same process on ௦ܲ௖ ௘ܲ௥ሬሬሬሬሬሬሬሬሬሬሬԦ,  ௦ܲ௖ ௘ܲ௥ሬሬሬሬሬሬሬሬሬሬሬԦ. 

(3) Based on Equation (2), position feature ܦ௘௟ ௛௟ܦ , ௘௥ܦ , ௛௥ܦ ,  of the vectors ௦ܲ௖ ௘ܲ௟ሬሬሬሬሬሬሬሬሬሬሬԦ ,  ௦ܲ௖ ௛ܲ௟ሬሬሬሬሬሬሬሬሬሬሬԦ , ௦ܲ௖ ௘ܲ௥ሬሬሬሬሬሬሬሬሬሬሬԦ ,  ௦ܲ௖ ௘ܲ௥ሬሬሬሬሬሬሬሬሬሬሬԦ  can be 
obtained. 

     
                                (a)                                             (b) 

Fig. 4.   (a) 3D Skeleton and joints. (b) feature vectors. 

For each tracked subject at frame i, the motion feature 
vector is obtained:  

௟௔௜ߠ) = ௜ܯ  , ϕ௟௔௜ ௥௔௜ߠ  , , ϕ௥௔௜ ௘௟௜ܦ , ௛௟௜ܦ , ௘௥௜ܦ , ௛௥௜ܦ  , )               (3) 

For simplicity, we denote each feature in M using the 
following unique format. 

௜ = (݉଴௜ܯ        , ݉ଵ௜ ,  ݉ଶ௜ , ݉ଷ௜ , ݉ସ௜ , ݉ହ௜ , ݉଺௜ , ݉଻௜ )                   (4) 

For behavior sequence recognition, key pose recording is 
performed in the initialization stage by using Equation (3) to 
model and store the behavior. In our applications, we record 
the following behaviors: waving-hands, drinking and 
pointing. Each behavior sequence of key pose is modeled by 
the motion feature vectors of continuous frames. After key 
pose recording, we perform training poses for each key pose 
to model behavior uncertainties such as speed, orientation, 
and position among others. In this step, DTW [11] is 
employed to measure the distance between the training pose 
sequences and the key pose sequences so that the behavior 
uncertainty and ambiguity can be modeled, as shown in Fig. 5. 
To achieve this, each feature ௝݉௜  in vector M is processed 
individually by DTW to obtain the distance vector, where j = 
0, 1,…, 7. 

   
Fig. 5.  An example of DTW between key pose sequence and training pose 
sequence. Corresponding features between the two sequences are indicated 

by red lines while behavior uncertainty is marked in grey color. 

The DTW distance ݀஽்ௐ(ܵ௞௘௬௉௢௦௘, ௧ܵ௥௔௜௡௜௡௚௉௢௦௘) between 
two behavior sequences ܵ௞௘௬௉௢௦௘ ={ ௝݉ଵ , ௝݉ଶ ,…, ݐ݆݉  } and ௧ܵ௥௔௜௡௜௡௚௉௢௦௘={݉ᇱ௝ଵ, ݉ᇱ௝ଶ,…, ݉ᇱ௝௨} is defined as: 

 ݀ (ܵ௞௘௬௉௢௦௘, ௧ܵ௥௔௜௡௜௡௚௉௢௦௘) =  ݀ݓݐሺݐ,  ሻ                                (5)ݑ

,ݒሺݓݐ݀ ሻ  = minቐݓ ݒሺݓݐ݀ െ 1, ,ݒሺݓݐሻ݀ݓ ݓ െ 1ሻ݀ݓݐሺݒ െ 1, ݓ െ 1ሻቑ + ݀ሺ ௝݉௩, ݉ᇱ௝௪ሻ       (6) 

where ݀ሺ ௝݉௩, ݉ᇱ௝௪ሻ  is the Euclidean distance between two 
poses sequences. Hence, we can obtain the distance vector V 
which is the output result of DTW measuring distance of 
feature vector M between the key pose sequence and training 
behavior sequence. Thus, vector V represents the distance 
between the key pose sequence and training behavior 
sequence. The distance vector V is shown below, where ௝݀ 
stands for the distance of the according feature ௝݉ between 
the key pose and training behavior.  ܸ = (݀଴, ݀ଵ, ݀ଶ, ݀ଷ, ݀ସ, ݀ହ, ݀଺, ݀଻)                         (7) 

In order to recognize activities including sitting, standing, 
walking, running, and lying/falling down, the statue of the 
spine part of the human subject is calculated which is 
invariant to orientation and position, as shown below 

(1) Compute the vector ௦ܲ௖ ௦ܲሬሬሬሬሬሬሬሬሬԦ , modeling the spine, and  ௦ܲ௖ ௞ܲ௟ሬሬሬሬሬሬሬሬሬሬሬԦ,  ௦ܲ௖ ௞ܲ௥ሬሬሬሬሬሬሬሬሬሬሬሬԦ modeling the left knee and right knee.  

 (2) Compute the angle ߠ௞௟  between ௦ܲ௖ ௦ܲሬሬሬሬሬሬሬሬሬԦ  and ௦ܲ௖ ௞ܲ௟ሬሬሬሬሬሬሬሬሬሬሬԦ  by 
using Equation (1). Similarly, the angle ߠ௞௥ can be obtained 
by applying Equation (1) on the vectors ௦ܲ௖ ௦ܲሬሬሬሬሬሬሬሬሬԦ  and ௦ܲ௖ ௞ܲ௥ሬሬሬሬሬሬሬሬሬሬሬሬԦ . 
Then, the bending angle ߠ௕  of the body can be modeled, 
which is used mainly for analyzing the sitting activity  

 2                             (8) / (௞௥ߠ+௞௟ߠ) = ௕ߠ                                

(3) In order to recognize the falling down activity, the 3D 
coordinates ௦ܲ௖  and ௦ܲ  are firstly projected onto the image 
plane of the Kinect so as to generate their corresponding 2D 
coordinates ෨ܲ௦௖ and ෨ܲ௦. Then a 2D vector ෨ܲ௦௖ ෨ܲ௦ሬሬሬሬሬሬሬሬሬԦ is computed. 
After that, the lean angle ߠ௟ of the body can be modeled by 
the orientation of the vector ෨ܲ௦௖ ෨ܲ௦ሬሬሬሬሬሬሬሬሬԦ, which can be obtained by 
using the following equation  

 ଵሺ௬௫ሻ                                        (9)ି݊ܽݐ = ௟ߠ                                   

where x and y is the x component and y component of the 2D 
vector ෨ܲ௦௖ ෨ܲ௦ሬሬሬሬሬሬሬሬሬԦ.  
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(4) We compute the movement speed of the human by 
analyzing  ௦ܲ௜ିଵ and ௦ܲ௜  which are the positions of the joint ௦ܲ 
in two successive frames. The speed ܦ௦ can be obtained by 
applying Equation (1) on ௦ܲ௜ିଵ and ௦ܲ௜ . The movement speed ܦ௦ is mainly utilized for analyzing the following activities: 
falling down, sitting, standing, walking, and running. 

    
(a) Type-1 MF for ݀଴                           (b) Type-1 MF for ݀ଵ 

    
(c) Type-1 MF for ݀ଶ                          (d) Type-1 MF for ݀ଷ 

    
(e) Type-1 MF for ݀ସ                          (f) Type-1 MF for ݀ହ 

    
(g) Type-1 MF for ݀଺                       (h) Type-1 MF for ݀଻ 

 
(i) Type-1 MF for Output 

Fig. 6.  Type-1 membership functions constructed by using FCM. 

Based on the above discussion, we can obtain the feature 
vector for activity analysis 

                                      A = (ߠ௕, ߠ௟, ܦ௦)                                   (10)               

D. The Type-1 Fuzzy Logic System for Behavior and Activity 
Recognition 

It should be noted that we present here the T1FLS which 
will be used for comparison against our IT2FLS. Both feature 
vectors V and A will be analyzed by of FLS in the same 
paradigm but separately where the feature vector V will be 
employed for behavior recognition while vector A will be 
employed for activity analysis.  

In order to recognize behavior sequence based on the 
feature vector V, in our fuzzy system, the antecedents are ݀଴, ݀ଵ , ݀ଶ , ݀ଷ , ݀ସ ,  ݀ହ , ݀଺ , ݀଻ . Each of these antecedents is 
represented by three fuzzy sets which are LOW, MEDIUM, 
and HIGH. The output of the fuzzy system is the behaviour 
possibility which is represented by two fuzzy sets which are 
LOW and HIGH. The type-1 MFs shown in Fig. 6 have been 
obtained via FCM, and are then transformed to type-2 MFs 

Suppose we measure ሼ݀଴, ݀ଵ, …, ݀଻ሽ on current behavior 
of the 3D skeleton expressing the possibilities of the 
candidate behaviour classes: drinking, waving-hands, and 
pointing. The mapping between measurement and behaviour 
classes is accomplished by fuzzy rules. In our system, the rule 
base is constructed by using the Wang-Mendel approach [13], 
[20], [21].  

Each behaviour class uses the same output membership 
function that is shown in Fig. 6i. In the T1FLS, product 
t-norm is used to represent the AND logical connective and 
the implication operation. The behaviour recognition is 
conducted via selecting the best candidate behaviour class 
with the highest output as the recognized behaviour type. 
However, if two different candidate behaviour classes are 
assigned with the same output degree, this means that these 
two candidate behaviour classes have significantly high 
behavioral similarity and cannot be distinguished in the 
current frame.  

E. Transforming Type-1 Membership Functions to Interval 
Type-2 Membership Functions 

In this subsection, we present the manual design process of 
the IT2FLS which will be further optimized by the proposed 
BB-BC algorithm presented in the next section. In the 
experiment section, we compare the results obtained by this 
manually designed IT2FLS against the IT2FLS optimized by 
BB-BC.  

The interval type-2 fuzzy set Footprint of Uncertainty 
(FOU) is bounded by two MFs which are the Upper 
Membership Function (UMF) and the Lower Membership 
Function (LMF), respectively. As shown in Fig. 7, for 
example, the fuzzy set HIGH is represented by the type-2 
Gaussian membership function whose mean and standard 
deviation are obtained from numerous measurements of the 
azimuth angle of left arm ϕ௟௔.  
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Fig. 7.  Gaussian MF of numerous instances of feature left arm azimuth 

angle ߠ௟௔ for the linguistic variable HIGH 

In order to construct the type-2 MFs modeling the FOU, 
we transform the type-1 fuzzy sets to the interval type-2 fuzzy 
sets with uncertain mean. We consider the case of a Gaussian 
primary membership function having a fixed standard 
deviation ߪ  and an uncertain mean m that in the range  ሾ݉௞ଵ௟ , ݉௞ଶ௟ ሿ [13], i.e., 

௞௟ݑ         ሺݔ௞ሻ ൌ exp ሾെ ଵଶ ൬௫ೖି௠ೖ೗ఙೖ೗ ൰ሿ ,  ݉௞௟ א ሾ݉௞ଵ௟ , ݉௞ଶ௟ ሿ         
(11) 

where k = 1,…, p;  p is the number of antecedents; l = 1,…, M; 
M is the number of rules. The upper membership function of 
the type-2 fuzzy set can be written as follows: 

ത௞௟ݑ ሺݔ௞ሻ = ቐܰ൫݉௞ଵ௟ , ௞௟ߪ , ௞൯,1,ܰሺ݉௞ଶ௟ݔ , ௞௟ߪ , ௞ݔ          ,௞ሻݔ ൏ ݉௞௟݉௞ଵ௟ ൑ ௞ݔ ൑    ݔ௞ ൐  ݉௞ଶ௟ ݉௞ଶ௟                (12) 

The lower membership function can be written as follows: 

௞௟ݑ           ሺݔ௞ሻ =  ቊ  ܰ൫݉௞ଶ௟ , ௞௟ߪ , ௞൯,  ܰ൫݉௞ଵ௟ݔ , ௞௟ߪ , ௞ݔ         ,௞൯ݔ ൑  ௠ೖభ೗ ା ௠ೖమ೗ଶݔ௞ ൐ ௠ೖభ೗ ା ௠ೖమ೗ଶ       (13) 

where ܰ൫݉௞ଵ௟ , ௞௟ߪ , ௞൯ ൌݔ exp ቆെ ଵଶ ൬௫ೖି௠ೖభ೗ఙೖ೗ ൰ቇ             (14) 

In order to construct the type-2 MFs in our IT2FLS, we 
use the mean of the given type-1 fuzzy set (extracted by FCM 
clustering in the previous subsection) to represent the ݉௞ଵ௟ , ݉௞ଶ௟  is obtained by blurring ݉௞ଵ௟  with a certain α% (α = 10, 
20, 30, 40…) such that  

                                ݉௞ଶ௟ ൌ  ሺ1 ൅ ሻ ݉௞ଵ௟%ߙ                              (15) 

where ߪ௞௟  is the same as the given type-1 fuzzy set. In order 
to allow for a fair comparison between the type-2 fuzzy logic 
system and type-1 fuzzy logic system, we used the same input 
features for the IT2 FLS and the T1FLS. 

V. THE PROPOSED OPTIMIZATION METHOD FOR THE IT2FLS 
In order to optimize the proposed IT2FLS, the MFs and the 

rule base have to be determined. In this proposed system, the 
BB-BC is utilized to calculate the optimized parameters for 
the MFs and the rules of our IT2FLS.  

A. Big Bang-Big Crunch (BB-BC) Optimization 
The BB-BC optimization is a heuristic population based on 

evolutionary approach which was presented by Erol and 
Eksin [22]. It is derived from one of the theories of the 
evolution of universe in physics and astronomy, namely the 
BB-BC theory. The key advantages of BB-BC are its low 
computational cost, ease of implementation, and fast 
convergence. The BB-BC theory is formed by two phases: a 
Big Bang phrase where candidate solutions are randomly 
distributed over the search space in a uniform manner [23] 
and a Big Crunch phrase where candidate solutions are drawn 
into a single representative point via a center of mass or 
minimal cost approach [22]. All subsequent Big Bang phases 
are randomly distributed around the center of mass or the best 
fit individual in a similar fashion. The procedures followed in 
the BB-BC are as follows [23]: 

Step 1 (Big Bang Phase): An initial generation of N 
candidates is randomly generated in the search space, 
similar to the other evolutionary search algorithms.  

Step 2: The cost function values of all the candidate solutions 
are computed.  

Step 3 (Big Crunch Phase): Big Crunch phase comes as a 
convergence operator. Either the best fit individual or the 
center of mass is chosen as the center point. The center of 
mass is calculated as:  

                                    

∑

∑

N
i
i

i=1
c N

i
i=1

x
fx =
1
f                                         (16) 

where ݔ௖ is the position of the center of mass, ݔ௜  is the 
position of the candidate, ݂௜ is the cost function value of 
the ith candidate, and N is the population size. 

Step 4: New candidates are calculated around the new point 
calculated in Step 3 by adding or subtracting a random 
number whose value decreases as the iterations elapse, 
which can be formalized as: 

௡௘௪ݔ              ൌ ௖ݔߚ ൅ ሺ1 െ ௕௘௦௧ݔሻߚ ൅ ఊఘሺ௫೘ೌೣି௫೘೔೙ሻ௞         (17) 

where β is the parameter controlling the influence of the 
global best solution ݔ௕௘௦௧  on the location of new candidate 
solutions, r is random number, ߩ is a parameter limiting 
search space, ݔ௠௜௡  and ݔ௠௔௫  are the lower and upper 
limits. 
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Step 5: Return to Step 2 until stopping criteria have been met. 

B. Optimizing the Type-2 membership functions with BB-BC 
In order to apply BB-BC, the feature parameters of the 

type-2 MFs have to be encoded into a form of a population. As 
depicted in Equation (15), in order to construct the type-2 MFs, 
the parameter α has to be determined to obtain ݉௞ଶ௟  while  ݉௞ଵ௟  is provided by FCM. To be more accurate, the 
uncertainty factors α௞௝  for each fuzzy set of the MFs are 
computed, where k = 1,…, p,  p is the number of antecedents; 
j = 1,…, q, q is the number of input features. For illustration 
purposes, as in the MFs of proposed system, three type-2 
fuzzy sets including LOW, MEDIUM and HIGH are utilized 
for modeling each of the 8 features, therefore, the total number 
of the parameters for the input type-2 MFs is 3×8=24. In 
similar manner, parameters the output MFs are also encoded; 
these are ߙ௅ை௨௧ for the linguistic variable LOW and ߙுை௨௧ for 
the linguistic variable HIGH of the output MF. Therefore, the 
structure of the population is built as displayed in Fig. 8. ߙଵ଴ ߙଶ଴ ߙଷ଴ … ߙଵ଻ ߙଶ଻ ߙଷ଻ ߙ௅ை௨௧ ுை௨௧ߙ

Fig. 8.  The population representation for the parameters of type-2 MFs. 

The optimization problem is a minimization task, and with 
the parameters of the MFs encoded as showed in Fig. 8 and 
the constructed rule base, the recognition error in our 
solutions space can be minimized by using the following 
function as the cost function for BB-BC. 

                          ݂௜ ൌ ሺ1 െ  ௜ሻ                                (18)ݕܿܽݎݑܿܿܣ

where  ݂௜ is the cost function value of the ith candidate and ݕܿܽݎݑܿܿܣ௜  is the scaled recognition accuracy of the ith 
candidate.  

C. Optimizing the rule base of the IT2FLS with BB-BC 
In similar manner as optimizing the MFs using BB-BC, the 

parameters of the rule base are encoded into a form of a 
population. The IT2FLS rule base can be represented as 
shown in Fig. 9.  ݀଴ଵ ݀ଶଵ … ݀଻ଵ ݀௢௨௧ଵ  … ݀଴ோ ݀ଶோ … ݀଻ோ ݀௢௨௧ோ

Fig. 9.  The population representation for the parameters of type-2 MFs. 

As showed in Fig. 9, ݀௞௥  are the antecedents and ݀௢௨௧௥  is the 
consequent of each rule respectively, where k = 1,…, p,  p is 
the number of antecedents; r = 1,…, R,  R is the number of the 
rules to be tuned. In this study, the rule base constructed by 
the Wang-Mendel approach [13], [20], [21] is used as the 
initial generation of candidates. After that, the rule base can 
be tuned by BB-BC using the cost function depicted in 
equation 18.  

VI. EXPERIMENTS AND RESULTS 
We tested both of our T1FLS and IT2FLS in the iSpace 

located in the University of Essex which is a real-world 
intelligent environment. The experiments were conducted 
with different subjects and different scenes in various 

circumstances including different illumination conditions, 
daytime and nighttime, fixed-camera and moving camera, etc. 
The experiment results demonstrate that our algorithm is 
robust and effective in handling the high levels of 
uncertainties associated with real-world environments 
including behavior uncertainty, activity ambiguity, and 
uncertain factors such as position, orientation and speed, etc.  

  
(a) Type-2 MF for ݀଴                           (b) Type-2 MF for ݀ଵ 

  
(c) Type-2 MF for ݀ଶ                           (d) Type-2 MF for ݀ଷ 

  
(e) Type-2 MF for ݀ସ                           (f) Type-2 MF for ݀ହ 

  
(g) Type-2 MF for ݀଺                           (h) Type-2 MF for ݀଻ 

 
(i) Type-2 MF for Output 

Fig. 10.  Type-2 membership functions optimized by using BB-BC 

The type-2 membership functions used in our system 
which are obtained and optimized by BB-BC are shown in 
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Fig. 10. Our experiment result demonstrates that the BB-BC 
optimization improves the performance of our type-2 fuzzy 
logic system. In the BB-BC optimization procedure of the 
type2 membership functions, we set ݔ௠௜௡  and ݔ௠௔௫  to 40% 
and 60%, which are regarding to the FOU blurring factor ߙ in 
type-2 MFs construction. In order to achieve robust 
recognition performance, in our experiment, the population 
size N of BB-BC is set to 100000. And owing to the 
high-performance of BB-BC, each iteration of the 
optimization procedure can be done in a few minutes.  

Based on the optimized type-2 MFs and rule base by 
utilizing BB-BC, our IT2FLSs-based system outperforms the 
counterpart T1FLSs-based recognition system, as shown in 
Table I, the type-2 system without BB-BC achieves 2.63% 
higher average per-frame accuracy than the T1FLS. In 
addition, the BB-BC optimized IT2FLS achieves 3.72% 
higher average per-frame accuracy than the BB-BC 
optimized T1FLS. 

Our type-2 fuzzy logic system also outperforms the 
traditional non-fuzzy based recognition method which used 
dynamic time warping (DTW) [11]. In order to conduct a fair 
comparison with the traditional DTW-based method, our 
IT2FLSs-based system utilizes the same input features with 
the DTW-based method. As shown in Table I, our 
IT2FLSs-based method with BB-BC optimization achieves 
7.97% higher recognition average accuracy than the 
DTW-based algorithm. 

Based on the recognition results of our optimized IT2FLS, 
higher-level applications including video linguistic 
summarizations, event searching, activity retrieval, event 
playback, and human-machine interactions have been 
developed and successfully deployed in our real-world test 
bed iSpace [18], [21] which is the ambient intelligent 
environment in the University of Essex 

TABLE I 
COMPARISON OF OVERALL AVERAGE ACCURACY FOR BEHAVIOR 

RECOGNITION WITH PREVIOUS TRADITIONAL NON-FUZZY METHOD 

 

 As can be seen in Fig. 11, both of the original images and 
depth images captured by Kinect are shown above the main 
GUI of our system. And in the depth images, human is 
detected and highlighted with a specified color together with 
the 3D skeleton.  And the current analysis result is depicted 
and marked in color in the middle list of the main GUI. As can 
be seen in Fig. 11d, the user can easily summarize the event of 
interest at the given time frame and play them back.  

 
(a) Recognition results for Behavior “Drinking” 

 
(b) Recognition results for Behavior “Fall down” 

 
(c) Recognition results for Behavior “Sitting” 
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(d) Linguistic summarization and playback based on given time frame 

Fig. 11.  Real-time analysis results by our IT2FLS-based system 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a robust behaviour recognition 

algorithm for video linguistic summarization using a 3D 
Kinect camera based on Interval Type-2 Fuzzy Logic 
Systems (IT2FLSs). In order to automatically obtain the 
optimized parameters of the membership functions and rule 
base of the IT2FLS, we employed an optimization approach 
based on the Big Bang–Big Crunch (BB-BC) [22], [23] 
algorithm. Our experiments have been successfully 
conducted in real-world intelligent environments and our 
experiment results show that the proposed IT2FLS 
outperformed the T1FLS counterpart as well as other 
traditional non-fuzzy systems. Based on the recognition 
results, higher-level applications were presented including 
video linguistic summarizations event searching and activity 
retrieval/playback.   

In our future ongoing research, we intend to develop 
higher-level specific applications such as elder/children care, 
event surveillance and summarization and human-machine 
interaction based on the proposed IT2FLS-based system of 
human behaviour recognition and apply the applications in 
real-world intelligent indoor and outdoor environments so as 
to construct the advanced scale-up intelligent environments. 
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