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Abstract—This paper presents the fuzzy (S,N)- QL- and D-
subimplication classes, which are obtained by OWA operators
performed over the families of triangular subnorms and sub-
conorms along with fuzzy negations. Since these classes of subim-
plications are explicitly represented by such connectives, the cor-
responding (S,N)- QL- and D-subimplicatios are characterized by
the generalized associativity and distributive properties together
with extensions of the exchange and neutrality principles. As
the main results, these families of subimplications extend related
implications by preserving their corresponding properties.

Index Terms—OWA operators; fuzzy t-sub(co)norm; fuzzy
(sub)implication;

I. Introduction
Despite potential areas for applications of aggregation ope-

rators, this paper deals with the current status of the theory
of aggregation operators and also considers some of their
main properties. It is a large domain, modelling uncertainty in
distinct fields as social, engineering or economical problems
which are based on fuzzy logic (FL) [1], [2], [3].

They have been applied to many fields of approximate
reasoning, e.g. image processing, data mining, pattern recogni-
tion, fuzzy relational equations and fuzzy morphology (see [4],
[5], [6], [7], [8] and [9]).

Moreover, many other extensions of fuzzy logic make use of
aggregation operators, e.g. Interval-valued Fuzzy Logic ([10],
[11], [12], [13], [14], [15] and [16]), Intuitionistic Fuzzy Logic
([10], [17], [18], [19], [20], [21] and [22]) and Hesitant Fuzzy
Logic [23], [24] and [25].

Distinguished classes of aggregation operators have been
studied in the literature. We focus on the OWA (Ordered
Weighted Average) operators, which are applied into a fa-
mily of fuzzy connectives to generate new fuzzy connectives,
preserving the same properties verified by the corresponding
family.

Following the studies presented in [26], by relaxing the
neutral element property related to triangular (co)norms (t-
(co)norms), the class of t-sub(co)norms is considered. Addi-
tionally, the fuzzy (S,N)-subimplication class, explicitly re-
presented by fuzzy negations and such class of fuzzy t-
subconorms, is also reported. Generalizations of the product
t-norm and probabilistic sum are taken into account providing
interesting examples.

Since this study considers the n-ary OWA operator, general-
ized associativity, exchange principle and distributivity prop-
erties also need to be considered. As the main contribution,

this paper introduces the class ID of fuzzy D-subimplications,
which is obtained by the OWA operator performed over a
family of t-sub(co)norms T (S) along with fuzzy negations.

These results state the following constructions as equivalent:
(⇒) Firstly, we can aggregate all the t-sub(co)norms and

after that, we are able to generate a class J of (D-)
QL-subimplications; or the converse order,

(⇐) Each (D-) QL-subimplication can be firstly obtained
by composition of a t-sub(co)norm and a fuzzy
negation and, in the sequence, the new implication is
given by aggregating all the (D-) QL-subimplications
related to the OWA operator.

By extending the main results described in [26] and [27]
and related to (S,N)-implication and R-implication classes, this
paper provides new members in the classes of D- and QL-
subimplications which are generated by the OWA operator,
generalizing the arithmetic mean and median aggregations
performed over t-sub(co)norms and fuzzy negations.

The paper innovation refers to a new operator which
is able to aggregate not only pairs but also families of
implications. Moreover, such operator ensures:

(i) invariance in the implication class, in the sense of
the main properties of each fuzzy implication in the
aggregated family are preserved by the new operator;

(ii) closure in the implication class, meaning that
the new implication also belongs to the family of
aggregated implications;

(iii) invariance of the aggregation operator, by preserv-
ing same results in extensions of the corresponding
aggregation class, from the arithmetic mean and the
median to the OWA operator;

(iv) extension in the implication class since relevant
classes of functions such as (S, N)- QL-and D-
implications are verified by such operator.

A. Related works and possible applications

In in multi-criteria decision [17], [19], the relevance of an
evaluated criterion often need to be well established, making
use of extensions of the usual non weighted operators. Despite
causing the loss of neutrality from the decision system, these
weights frequently provide better performance [28], [29].

OWA operators are applied to adjust the terms AND and
OR, making easier semantic interpretation of the linguistic
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quantifiers [5]. Fuzzy implications obtained by aggregation
operators in discrete cases can also model rules with respect
to a fuzzy inference systems [30].

The image processing research area deals with aggregation
in order to increase detection of patterns that must be rejected.
And so, it is able to infer satisfactory decision boundaries [31],
[32].

B. Outline Paper

The paper is organized as follows. The preliminaries in
Section II are concerned with fuzzy connectives and their
algebraic properties. Section III reports concepts of aggrega-
tion functions, their main properties and examples. Focusing
on the OWA operator and the two classes of t-subconorm
and t-subnorm we analyse the corresponding properties. Sec-
tion IV considers both classes, (S,N)-(sub)implications and
QL-(sub)implications. Main results concerned with aggregat-
ing D- and QL-subimplications by applying the OWA operator
are described in SectionVI. it is also shown that the OWA
operator preserves (S,N)- QL- and D-implication classes.
Lastly, the conclusion and final remarks are presented.

II. Fuzzy Connectives

In the following, basic concepts of fuzzy negation and fuzzy
subimplications are reported [12], [33].

A. Fuzzy negations

Let U = [0, 1] be the unit interval. A fuzzy negation (FN)
N : U → U satisfies:

N1 : N(0) = 1 and N(1) = 0;
N2 : If x ≥ y then N(x) ≤ N(y), ∀ x, y ∈ U.

Fuzzy negations satisfying the involutive property are called
strong FNs:

N3 : N(N(x)) = x, ∀ x ∈ U.
The standard negation NS (x) = 1−x is a strong fuzzy negation.

Let N be a FN and f : Un → U be a real function. Then,
for all ~x = (x1, x2, . . . , xn) ∈ Un , the N−dual function of f
is given by the expression:

fN(~x) = N( f (N(x1),N(x2), . . . ,N(xn))) = N( f (N(~x))). (1)

Notice that, when N is involutive, ( fN)N = f , that is the
N-dual function of fN coincides with f . In addition, if f = fN

then it is clear that f is a self-dual function. Many other
properties of fuzzy negations and related main extensions can
be founded in [34] and [35].

B. Fuzzy Subimplications

A function I : U2 → U is a fuzzy subimplicator if it
satisfies the conditions:

I0 : I(1, 1) = I(0, 1) = I(0, 0) = 1;
When a fuzzy subimplicator I : U2 → U also satisfies this
boundary condition:

I1 : I(1, 0) = 0;
I is called fuzzy implicator. And, a fuzzy (sub)implicator I
satisfying the properties:

I2 : If x ≤ z then I(x, y) ≥ I(z, y) (left antitonicity);
I3 : If y ≤ z then I(x, y) ≤ I(x, z) (right isotonicity);
I4 : I(0, y) = 1 (left boundary property);

is called a fuzzy (sub)implication [10, Def. 6][36].

III. Aggregation functions

Based on [5] and [13], the general meaning of an aggre-
gation function in FL is to assign an n-tuple of real numbers
belonging to Un to a single real number on U, such that it is
a non-decreasing and idempotent (i.e., it is the identity when
an n-tuple is unary) function satisfying boundary conditions.
In [6, Def. 2], an n-ary aggregation function A : Un → U
demands, for all ~x = (x1, x2, . . . , xn), ~y = (y1, y2, . . . , yn) ∈ Un,
the following conditions:

A1: Boundary Conditions
A(~0) = A(0, 0, . . . , 0) = 0 and
A(~1) = A(1, 1, . . . , 1) = 1;

A2: Monotonicity If ~x ≤ ~y then A(~x) ≤ A(~y) where ~x ≤ ~y
iff xi ≤ yi, for all 0 ≤ i ≤ n.

Some extra usual properties for aggregation functions are
the following:

A3: Symmetry
A(−→xσ) = A(xσ1 , xσ2 , . . . , xσn ) = A(~x), when
σ : Nn → Nn is a permutation;

A4 : Compensation - Pareto Property
minn

i=0(xi) ≤ A(~x) ≤ maxn
i=0(xi)

A5: Idempotency
A(x, x, . . . , x) = x, for all x ∈ U;

A6: Continuity
If for each i ∈ {1, . . . , n}, x1, . . . , xi−1, xi+1, . . . xn ∈ U
and convergent sequence {xi j} j∈N we have that
lim j→∞ A(x1, . . . , xi−1, xi j, xi+1, . . . , xn) =

A(x1, . . . , xi−1, lim j→∞ xi j, xi+1, . . . xn);
A7: k-homogeneity

For all k ∈ ]0,∞[ and α ∈ [0,∞[ such that
αk~x = (αk x1, α

k x2, . . . , α
k xn) ∈ Un,

A(αk~x) = αkA(~x);
A8: Distributivity of an aggregation A : Un → U

related to a function F : U2 → U
A(F(x, y1), . . . , F(x, yn)) = F(x, A(y1, . . . , yn)), for all
x, y1, . . . , yn ∈ U.

Proposition 1. Let σ : Nn → Nn be a permutation function
ordering the elements: xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n). Let
w1,w2, . . . ,wn be non negative weights (wi ≤ 0) such that
their sum equals one (

∑n
i=0 wi = 1). For all ~x ∈ Un, the n-ary

aggregation function M : Un → U called OWA and given as:

M(~x) =

n∑
i=0

wixσ(i) (2)

verifies Property Ak, for k ∈ {3, 4, 5}.

Proof. Straightforward.
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A. Triangular sub(co)norms

A triangular sub(co)norm (t-sub(co)norm)[4] is a binary
aggregation function (S )T : U2 → U such that, for all x, y ∈ U,
the following holds:

T0: T (x, y) ≤ min(x, y) S0: S (x, y) ≥ max(x, y)

and also verifying the commutativity, associativity and mono-
tonicity properties which are, respectively, given by:

T1: T (x, y) = T (y, x); S1: S (x, y) = S (y, x);
T2: T (x,T (y, z))=T (T (x, y), z); S2: S (x, S (y, z))=S (S (x, y), z);
T3: T (x, z) ≤ T (y, z), if x ≤ y; S3: S (x, z) ≤ S (y, z), if x ≤ y.

A t-(co)norm is a t-sub(co)norm satisfying the condition:

T4: T (x, 1) = x; S4: S (x, 0) = x.

Remark 1. Based on Properties S0 and T0, we have that:

S (0, 0) ≥ 0; S (0, 1) = 1; S (1, 0) = 1; S (1, 1) = 1.
T (1, 1) ≤ 1; T (1, 0) = 0; T (0, 1) = 0; T (0, 0) = 0.

Proposition 2. For i ≥ 1 and x, y ∈ U, Ti (S i) : U2 → U is a
t-sub(co)norm given by

Ti(x, y) =
1
i

xy, S i(x, y) = 1 −
1
i

(1 − x − y + xy), (3)

Proof. Straightforward.

The families of all t-subnorms Ti and of all t-conorms S i

are referred as T and S, respectively.

Remark 2. Observe that, for i = 1, Eq.(3)a and Eq.(3)b
are named as the product t-norm and the the algebraic sum,
respectively, and corresponding expression can be given as

TP(x, y) = xy S P(x, y) = x + y − xy (4)

Moreover, TP and S P constitute a pair of NS -mutual dual
functions.

IV. (Sub)implication Classes

The main results considered in this section are reported from
[37], [26], [38] and [37].

A. Fuzzy (S,N)-(sub)implication class

A function IS ,N : U2 → U is called an (S,N)-(sub)impli-
cation if there exists a t-(sub)conorm S and a fuzzy negation
N such that

IS ,N(x, y) = S (N(x), y), (5)

for all x, y ∈ U. If N is a strong FN, then I is called an S-
(sub)implication. Clearly, a fuzzy implication IS ,N is also a
fuzzy (sub)implication.

The family of all (S,N)-subimplicators is referred as I(S ,N).

Proposition 3. [26, Proposition 4.10] The following state-
ments are equivalent:
1. I :U2→ U is an (S,N)-implication underlying a continuous
FN N and a t-subconorm S at point 0;

2. I is continuous at point x = 1 in the first component,
satisfying I3 and the two additional conditions:

I5 : Exchange Principle:
I(x, I(y, z)) = I(y, I(x, z)), for all x, y, z ∈ U ;

I6 : Contrapositive Symmetry:
I(x, y) = I(N(y),N(x)), for all x, y ∈ U.

Proposition 4. The binary function Ii : U → U, defined as

Ii(x, y) = 1 −
1
i

(x − xy), ∀i ≥ 1, (6)

is a fuzzy (S,N)-subimplication.

Proof. Taking S i(x, y) = 1 − 1
i (1 − x − y + xy), for i ≤ 1, we

have that

S i(NS (x), y) = 1 −
1
i

(1 − (1 − x) − y + (1 − x)y) = 1 −
1
i

(x − xy).

Consequently, for all x, y ∈ U, it holds that

Ii(x, y) = S i(NS (x), y).

Therefore Ii is an (S i,NS )-implication.

See in Fig. 1 the three members I1, I2, I3 of I. In particular,
I1 is referred as the Reichenbach’s implication and related to
i = 1 in Eq.(6). It shows that I1(1, 0) = 0 while in other
two subimplications I2 and I2 we have that I2(1, 0) = 0.5 and
I3(1, 0) = 0.3, respectively.

Fig. 1. Fuzzy (S,N)-subimplications of family I = {I1, I2, I3}.

Proposition 5. An (S,N)-subimplication in I verifies Property
Ik, for k ∈ {0, 2, 3, 4, 5, 6}.

Proof. The following holds.
I0: Straightforward from definition of Ii by Eq. (6) in

Proposition 4.
I2: If x1 ≤ x2, for all x1, y, x2 ∈ U, it holds that

Ii(x1, y) = 1− 1
i (x1−x1y) ≥ x1−

1
i (x1−x1y) = Ii(x2, y).

I3: If y1 ≤ y2, for all y1, y2, x ∈ U it holds that

Ii(x, y1) = 1−
1
i

(x− xy1) ≤ x−
1
i

(x− xy2) = Ii(x, y2).

I4: Ii(0, y) = 1 − 1
i · 0 = 1, for all y ∈ U.

I5: For all x, y, z ∈ U, it holds that

Ii(x, Ii(y, z)) = 1−
1
i

x−x(1−
1
i

(y−yz)) = 1−
x
i2

(y−yz).

Therefore, we obtain the following:

Ii(x, Ii(y, z)) = 1 −
y
i2

(x − xz)

= 1 −
1
i

y − y(1 −
1
i

(x − xz))

= Ii(y, Ii(x, z)).
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I6: For all x, y ∈ U, the following is held:

Ii(NS (y),NS (x)) = 1
1
i

(1 − y − (1 − y − x + xy))

= 1 −
1
i

(x − xy) = Ii(x, y).

Concluding, Proposition 5 is verified.

Theorem 1. The operator Ii : U2 → U given by Eq. (6) is
an (S i,NS )-implication underlying the continuous negation NS

and the continuous t-subconorm S i at point 0.

Proof. Straightforward from Propositions 3, 4 and 5.

B. Fuzzy QL-(sub)implication class

This section reviews the main properties of fuzzy QL-
(sub)implication class. See [35], [39] and [33] for more
information.

Definition 1. A function IS ,N,T : U2 → U is called a QL-
(sub)implicator if, for all x, y ∈ U, there exist a t-(sub)conorm
S , a t-norm T and a fuzzy negation N such that:

IS ,N,T (x, y) = S (N(x),T (x, y)). (7)

In this case, a QL-subimplication IS ,N,T indicates the under-
lying t-(sub)conorm, t-norm and fuzzy negation as S , T and
N, respectively. The family of all fuzzy QL-subimplicators is
referred as J .

Proposition 6. The binary function Ji : U2 → U, given by the
expression

Ji(x, y) = 1 −
1
i

(x − x2y),∀x, y ∈ U, (8)

is a fuzzy QL-subimplication.

Proof. Consider the functions TP(x, y) = xy, S Pi(x, y) = 1 −
1
i (1− x−y+ xy) and NS (x) = 1− x. If TP(x, y) = xy, S Pi(x, y) =

1 − 1
i (1 − x − y + xy) and NS (x) = 1 − x, it holds that

IS Pi,NS ,TP (x, y) = S i(NS (x),T (x, y))

= 1 −
1
i

(1 − (1 − x) − xy + (1 − x)xy)

= 1 −
1
i

(x − x2y)

= Ji(x, y).

Concluding, Ji ∈ J which means it is a fuzzy QL-
subimplication.

The following proposition is an extension of Proposition 4.2
in [35] by considering the main algebraic properties which
characterize the fuzzy QL-subimplication class.

Proposition 7. A QL-subimplicator IS ,N,T ∈ J verifies Ik for
k ∈ {0, 2, 4} together with the additional two properties:

I9 : If S (N(x), x) = 1 then I(x, 1) ≤ 1, for all x ∈ U;
I10a : if x1 ≥ x2 then I(x1, 0) ≤ I(x2, 0), for all x1, x2 ∈ U.
I10b : if y1 ≥ y2 then I(1, y1) ≤ I(1, y2), for all y1, y2 ∈ U.

Proof. For x1, x2, x, y1, y2, y ∈ U, the following is verified.

I0 By results in Remark 1, it follows that
IS ,T,N(0, 0) = S (1,T (0, 0)) = S (1, 0) = 1;
IS ,T,N(0, 1) = S (1,T (0, 1)) = S (1, 0) = 1;
IS ,T,N(1, 1) = S (0,T (1, 1)) = S (1, 1) = 1;

I2 Since S ,T are monotonic functions, if y1 ≤ y2 then
T (x, y1) ≤ T (x, y2) and consequently, IS ,N,T (x, y1) =

S (N(x),T (x, y1)) ≤ S (N(x),T (x, y2)) = IS ,N,T (x, y2).
I4 IS ,N,T (0, y) = S (1,T (0, y)) = 1.
I9 IS ,N,T (x, 1) = S (N(x),T (x, 1)) ≤ S (N(x), x) = 1.
I10a When x1 ≥ x2 then N(x1) ≤ N(x2). Therefore,

IS ,N,T (x1, 0) = S (N(x1),T (x1, 0)) = S (N(x1), 0) ≤
S (N(x2), 0) = S (N(x2),T (x2, 0)) = IS ,N,T (x2, 0).

I10b When y1 ≥ y2 then IS ,N,T (1, y1) = S (0,T (1, y1)) ≥
S (0,T (1, y2)) = IS ,N,T (1, y2).

Corollary 1. The operator IS i,NS ,TP ∈ J verifies Ik for k ∈
{0, 2, 4, 9, 10a, 10b}.

Proof. Straightforward from Proposition 7.

Remark 3. Let I : U2 → U be a function given by Eq.(7). By
taking a t-subconorm S , a fuzzy negation N and a t-subnorm
T, the function I does not verify neither I0 nor I1:

(i) I(1, 1) = S (N(1),T (1, 1)) = S (0,T (1, 1)) ≥ T (1, 1);
(ii) I(1, 0) = S (N(1),T (1, 0)) = S (0, 0) ≥ 0.

Therefore, I is not necessarily a subimplicator.

Clearly, a QL-implication is always a QL-subimplication.
See in Figure 3 other instances J1, J2, J3 of such class J .

In particular, J1 ∈ J is a QL-implication [38].

Fig. 2. Fuzzy QL-subimplications of family JQL = {J1, J2, J3}.

C. Fuzzy D-(sub)implication class

This section reviews properties of fuzzy D-(sub)implication
class.

Definition 2. A function IS ,T,N : U2 → U is called a D-
(sub)implicator if, for all x, y ∈ U, there exist a t-(sub)conorm
S , a t-norm T and a fuzzy negation N such that:

IS ,T,N(x, y) = S (T (N(x),N(y)), y). (9)

In this case, a D-subimplication IS ,T,N indicates the under-
lying t-(sub)conorm, t-norm and fuzzy negation as S , T and
N, respectively. The family of all fuzzy D-subimplicators is
referred as ID.

Proposition 8. A function Ii : U2 → U, given by

Ii(x, y) = 1 −
1
i

(1 − y) +
1
i

(y − 1)2(1 − x),∀x, y ∈ U, (10)

is a fuzzy D-subimplication.
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Proof. Consider the functions TP(x, y) = xy, S i(x, y) = 1 −
1
i (1 − x − y + xy) and NS (x) = 1 − x. It holds that

IS i,NS ,TP (x, y) = S i(1 − x, 1 − y), y)

= 1 −
1
i

(1 − y)(1 − (1 − x)(1 − y))

= 1 −
1
i

(1 − y) +
1
i

(1 − y)2(1 − x) = Ii(x, y).

So, Ji ∈ ID which means it is a fuzzy D-subimplication.

Proposition 9. For all x, y ∈ U, there exist t-(sub)conorm S ,
a t-norm T and a strong fuzzy negation N such that:

IS ,T,N(x, y) = IS ,N,T (N(y),N(x))). (11)

The following proposition considers the main algebraic
properties which characterize the ID class.

Proposition 10. A D-subimplicator IS ,T,N ∈ J verifies Ik for
k ∈ {0, 2, 10a, 10b} together with the additional property:

I11 : If S (N(y), y) = 1 then I(0, y) ≤ y, for all y ∈ U.

Proof. For x1, x2, x, y1, y2, y ∈ U, the following is verified.
I0 By results in Remark 1, it follows that

IS ,T,N(0, 0) = S (T (1, 1), 0) = S (1, 0) = 1;
IS ,T,N(0, 1) = S (T (1, 0), 1) = S (0, 1) = 1;
IS ,T,N(1, 1) = S (T (0, 0), 1) = S (0, 1) = 1;

I2 Since S ,T are monotonic functions, x1 ≤ x2
implies that N(x1) ≥ N(x2). Therefore
T (N(x1),N(y)) ≥ T (N(x2),N(y)) and consequently,
it holds that IS ,T,N(x, y1) = S (T (N(x1),N(y)), y) ≥
S (T (N(x2),N(y)), y) = IS ,N,T (x2, y).

I10a When x1 ≥ x2, IS ,T,N(x1, 0) = S (T (N(x1), 1), 0) ≤
S (T (N(x2), 1), 0) = IS ,T,N(x2, 0).

I10b When y1 ≥ y2, IS ,T,N(1, y1) = S (T (0,N(y1)), y1) =

S (0, y1) ≥ S (0, y2) = S (T (0,N(y2)), y2) =

IS ,T,N(1, y2).
I11 IS ,T,N(0, y) = S (T (1,N(y)), y) ≤ S (N(y), y) = 1.

Corollary 2. The operator IS i,NS ,TP ∈ ID verifies Ik for k ∈
{0, 2, 10a, 10b, 11}.

Proof. Straightforward from Proposition 10.

Remark 4. Let I : U2 → U be a function given by Eq.(9). By
taking a t-subconorm S , a fuzzy negation N and a t-subnorm
T, the function I does not verify neither I0, I1 nor I4:

(i) IS ,T,N(0, 0) = S (T (1, 1), 0) ≤ S (1, 0) = 1;
(ii) IS ,T,N(1, 0) = S (T (0, 1), 0) = S (0, 0) ≥ 0;
(iii) IS ,T,N(1, y) = S (T (0,N(y)), y) = S (0, y) ≥ y, ∀y ∈ U.

Therefore, IS ,T,N is not necessarily a subimplicator.

Clearly, a D-implication is always a D-subimplication.
See in Figure 3 other instances I1, I2, I3 of such class ID.

In particular, I1 ∈ ID is a D-implication [38].

V. Aggregating fuzzy connectives from the OWA operator

Consider A : Un → U as an n-ary aggregation function and
F = {Fi : Uk → U}, with i ∈ {1, 2, . . . , n} as a family of binary
functions in the following results of this section.

Fig. 3. Fuzzy D-subimplications of family ID = {I1, I2, I3}.

Definition 3. [26, Prop. 5.1] An k-ary function FA : Uk → U
is called as (A,F )-operator on U and given by:

FA(x1, . . . , xk) = A(F1(x1, . . . , xk), . . . , Fn(x1, . . . , xk)). (12)

Proposition 11. [26, Proposition 6.1] Let A : Un → U be
an aggregation function and (S)T = {(S i)Ti : U2 → U}, with
i ∈ {1, 2, . . . , n} be a family of t-sub(co)norms. Then the func-
tion (SA : U2 → U) TA : U2 → U, called ((A,S)-operator)
(A,T )-operator, is a t-sub(co)norm whenever the following
two conditions are verified:

(i) A satisfies property A8; and
(ii) for all i, j such that 0 ≤ i, j ≤ n and x, y, z ∈ U,

each t-sub(co)norm (S i) Ti satisfies the generalized
associativity1:

S i(x, S j(y, z)) = S i(S j(x, y), z);
Ti(x,T j(y, z)) = Ti(T j(x, y), z), (13)

Proposition 12. Let T and S be the families of t-subnorms
and t-subconorms described in Proposition 2. For all i, j ≥
1, each pair Ti,T j ∈ T and S i, S j ∈ S verifies Eqs. (13)a
and (13)b, respectively.

Proof. For all x, y, z ∈ U, Ti(x,T j(y, z)) = Ti(x, 1
j yz) =

1
i j (xyz) = 1

i (T j(x, y) · z) = Ti(T j(x, y), z) Then, T satisfies
the Eq.(13)a. The proof for S and related to Eq.(13) can be
analogously obtained.

Proposition 13. Let TP and SP be the corresponding families:

TP = {Ti =
1
i

xy : i ≥ 1};

SP = {S i(x) = 1 −
1
i

(1 − x − y + xy) : i ≥ 1}.

Based on the OWA operator, according to Eq. (12), both ope-
rators SOWA,TOWA : U2 → U, respectively given as follows

(TP)OWA(x, ~y) =

n∑
i=0

wiTσ(i)(x, y) (14)

(SP)OWA(x, ~y) =

n∑
i=0

wiS σ(i)(x, y) (15)

verify Property A8.

Proof. For all x ∈ U and ~y = y1, . . . , yn ∈ Un,

1Eq. (13) are particular cases of Eq. (GA) in [40].
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(i) For a t-subnorm Ti ∈ T , we have that:

(TP)OWA(x, ~y) = OWA(Ti(x, y1), . . . ,Ti(x, yn))

= OWA(
1
i

xy1, . . . ,
1
i

xyn)

=
1
i

x(w1yσ(1), . . . ,wnyσ(n)))

=
1
i

x OWA(~y) = Ti(x,OWA(~y)).

(ii) Otherwise, it holds that:

(SP)OWA(x, y) = OWA(S i(x, y1), . . . , S i(x, yn))

= w1(1 −
1
i

(1 − x − yσ(1) + xyσ(1))) + . . .

+ wσ(n)(1 −
1
i

(1 − x − yσ(n) + xyσ(n)))

= 1 −
1
i

(1 − x − OWA(~y) + xOWA(~y))

= S i(x,OWA(~y)).

Therefore TM and SM satisfy A8.

Corollary 3. The operator ((SP)M) (TP)M is a t-sub(co)norm.

Proof. Straightforward from Propositions 11, 12 and 13.

The following proposition, reported from [26], states the
conditions under which a fuzzy subimplication IM verifies the
generalized exchange principle.

Proposition 14. [26, Proposition 5.5] Let A : Un → U be
an n-ary aggregation function and I = {Ii : Uk → U}, for
i ∈ {1, 2, . . . , n} be a family of fuzzy subimplication functions.
IA verifies I5 when the aggregation A verifies A8 and the
following properties is verified:

I10: Generalized Exchange Principle:

Ii(x, I j(y, z)) = Ii(y, I j(x, z)). (16)

∀x, y, z ∈ U and Ii, I j ∈ I, such that 0 ≤ i, j ≤ n.2.

A. Aggregating fuzzy (S,N)-subimplications by OWA operator

This section describes the class of aggregating fuzzy (S,N)-
subimplications obtained by considering the OWA operator.

Proposition 15. Let M : Un → U be an n-ary idempotent
aggregation and I is the family of fuzzy (S,N)-subimplications.
IM verifies I0, I2, I3, I4 and I6 when all the member-function
of Ii ∈ I verifies I0, I2, I3, I4 and I6, respectively.

Proof. From Prop. 5, each Ii j with 1 ≤ j ≤ n satisfies
I0, I2, I3, I4 and I6. So, for all x, y, z ∈ U, the following holds.

I0: Since the median M verifies A0, we have that:

IM(1, 1) = M(I1(1, 1), . . . , In(1, 1)) = M(1, . . . , 1) = 1
IM(0, 0) = M(I1(0, 0), . . . , In(0, 0)) = M(1, . . . , 1) = 1
IM(0, 1) = M(I1(0, 1), . . . , In(0, 1)) = M(1, . . . , 1) = 1

So, IM verifies I0.

2This property also can be considered as a generalization of the extended
migrative property, see [41, Definition 2].

I2: By the monotonicity of M, if x ≤ z, it follows that

IM(x, y) = M(I1(x, y), I2(x, y), . . . , In(x, y))
≥ M(I1(z, y), I2(z, y), . . . , In(z, y)) = IM(z, y).

I3: By the monotonicity of M, if y ≤ z, it follows that

IM(x, y) = M(I1(x, y), I2(x, y), . . . , In(x, y))
≤ M(I1(x, z), I2(x, z), . . . , In(x, z)) = IM(x, z).

I4: By property A0, we obtain the following:

IM(0, y) = M(I1(0, y), . . . , In(0, y)) = M(1, . . . , 1) = 1.

I6: By the contrapositive symmetry of In, it holds that

IM(N(y),N(x)) = M(I1(N(y),N(x)), . . . , In(N(y),N(x)))
= M(I1(x, y), . . . , In(x, y)) = IM(x, y).

I7: When M is an idempotent function, it holds that

IM(1, y) = M(I1(1, y) . . . , In(1, y)) = M(y, y, . . . , y) = y.

I8: When x ≤ y, the following is also verified:
NIM (x) = IM(x, 0) = M(I1(x, 0) . . . , In(x, 0)) ≥
M(I1(y, 0) . . . , In(y, 0)) = NIM (y)

Therefore, Proposition 15 is verified.

Proposition 16. The (A,I)-operator defined by OWA aggre-
gator and the family I(S ,N) of (S,N))-subimplications Ii, which
is previously defined in Eq (6), verifies I5.

Proof. According to Prop. 14, it is enough to prove that:
(ii) For all x, y1, . . . , yn ∈ U, the following holds:

OWA(Ii(x, y1), . . . , Ii(x, yn)) =

= w1(1 −
1
i

(x − xyσ(1))), . . . ,wn(1 −
1
i

(x − xyσ(n)))

=

n∑
i=0

wi −
1
i

(x − x
n∑

i=0

wiyσ(i))

= 1 −
1
i

(x − x · OWA(~y)) = Ii(x,OWA(~y)).

Therefore, the OWA operator verifies A8.
(ii) Now, for Ii1 , Ii2 ∈ I, we obtain the following:

Ii1 (x, Ii2 (y, z)) = Ii1 (x, 1 −
1
i2

(y − yz))

= 1 −
xy

i1i2
(1 − z)

= 1 −
1
i1

(y − y(1 −
1
i2

(x − xz)))

= Ii1 (y, Ii2 (x, z)).

So, IM verifies the generalized exchange principle.
Concluding, IM verifies I5.

Corollary 4. Let (A,I)-operator be the OWA operator and
I be the family of (S,N)-subimplications previously defined in
Eq.(6) The operator IM is an (SM ,NS )-implication given by

IM(x, y) = SM(NS (x), y) (17)
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Proof. Straightforward from Propositions 11, 15 and 16.

Summarizing the main result in Proposition 17, the diagram
presented in Figure 4 is showing that the M = OWA operator
preserves the (S,N)-subimplication class defined in Prop. 15,
which means, ISM ,NS is also an (S,N)-subimplication.

C(N) × S × M
Eq.(12) - C(N) × SM

IS,N × M

Eqs.(5)

? Eq.(12) - (IS,N)M

Eq.(17)

?

Fig. 4. (SM ,NS )-implication class.

Analogously, they are obtained by aggregating subimplica-
tions in the S-subimplication class.

B. Aggregating fuzzy D- and QL-subimplications

This section analyses under which conditions the class of
fuzzy D- and QL-subimplications are preserved by the OWA
operator, investigating related properties.

Additionally, we present the subclass of fuzzy QL-
subimplication represented by a t-norm TP, the standard nega-
tion NS together with a t-subconorm SP, which is obtained by
aggregating n fuzzy t-subconorms of the family SP.

Proposition 17. Let M : Un → U be the OWA aggregator and
(i) J = {Ii : U2 → U : Ii(x, y) = S P(NS (x),Ti(x, y)), 0 ≤ i ≤ n};
(ii)L = {Ii : U2 → U : Ii(x, y) = S i(NS (x),TP(x, y)), 0 ≤ i ≤ n};
be the families of fuzzy QL- and D-subimplications, respec-
tively. Then, for all x, y ∈ U, the function JOWA(LOWA) : U2 →

U is a QL(D)-subimplication, whose definition is given by

JOWA(x, y) = ISP,TOWA,NS (x, y); (18)
(LOWA(x, y) = ISOWA,TP,NS (x, y)). (19)

Proof. According to Prop. 3, the following holds.

(i)JOWA(x, y) = OWA(I1(x, y), . . . , In(x, y)) =

n∑
i=1

wi · Iσ(i)(x, y)

=

n∑
i=1

wi · S P(N(x),Tσ(i)(x, y))

= S P(N(x),
n∑

i=1

wi · Tσ(i)(x, y)) = ISP,TOWA,NS (x, y).

(ii)LOWA(x, y) = OWA(I1(x, y), . . . , In(x, y)) =

n∑
i=1

wi · Iσ(i)(x, y)

=

n∑
i=1

wi · S σ(i)(TP(NS (x),NS (y)), y)

= ISP,TOWA,NS (x, y).

Therefore, Proposition 18 is verified.

Proposition 18. Let M : Un → U be the OWA operator and J
be the family of all fuzzy (D-) QL-subimplicators as preseted

in Prop.17. Then the (J ,OWA)-operator, referred as(LOWA)
JOWA, verifies the properties Ik for k ∈ ({0, 2, 10a, 10b, 11})
{0, 2, 4, 9, 10a, 10b}.

Proof. Straightforward from Prop. (10) 7.

Corollary 5. Let M : Un → U be the OWA aggregator
and J = {Ii : Uk → U} be a family of fuzzy (D-) QL-
subimplications given by (Eq. (9)) Eq. (7). Then JM verifies
(I0, I2, 10a, 10b and 11) I0, I2, I4, 9, 10a and 10b.

Proof. Straightforward from Propositions 6, 17 and 18. �

Summarizing, in Fig. 5, a diagrammatic representation of
the result stated in Prop. 17 is presented. In such graph-
ical description the OWA operator preserves the fuzzy D-
subimplication class.

1) Firstly, we obtain SOWA by the OWA operator performed
over n t-subconorms Si. And after that, we are able to
define an (L, A)-operator as a fuzzy D-subimplication
represented by a t-norm TP, the standard negation NS

together with a t-subconorm Si.
2) For each t-subconorm S i, the family ID of D-

implications whose explicitly representable member-
functions are given by IS i,TP,NS , are constructed. And
after that, as a consequence, by aggregating n member-
functions of ID, we obtain an (J , A)-operator.

NS × TP × S × OWA
Eq.(12)- NS × TP × SOWA

ISi,TP,NS × OWA

Eqs.(7)

? Eq.(12) - ISOWA,TP,NS

Eq.(18)

?

Fig. 5. (SOWA,TP,NS )-subimplication class obtained by the OWA operator.

VI. Conclusion and Final Remarks

We have briefly discussed some aspects of the theory of
aggregation functions, including the review of some properties
and classes of n-ary aggregation functions, and some construc-
tion methods.

Thus, (S,N)- QL- and D-subimplications are characterized
with respect to the OWA operator.

In particular, the underlying principle of the proof re-
lated to properties preserved by the new (S,N)- QL-and D-
subimplications, which are obtained by the OWA operator is
similar. Since such classes of subimplication are represented
by t-subconorms and t-subnorms which are characterized by
generalized associativity, the corresponding (S,N)- QL- and D-
subimplications are characterized by distributive n-ary aggre-
gation together with related generalizations, as the exchange
and neutrality principles.

Further investigations can be done for associative generated
aggregation operators. We also consider the study in more
detail of the interrelations between these subimplication clsses
and their possible conjugate functions. Another interesting
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issue is to investigate how the method can take into account
their dual constructions [42], [43].
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P. Couto, and P. Melo-Pinto, “A survey of applications of the extensions
of fuzzy sets to image processing,” in Bio-inspired Hybrid Intelligent
Systems for Image Analysis and Pattern Recognition, ser. Studies in
Computational Intelligence, P. Melin, J. Kacprzyk, and W. Pedrycz, Eds.
Springer Berlin Heidelberg, 2009, vol. 256, pp. 3–32.

[31] D. Dubois and H. Prade, Fundamentals of Fuzzy Sets. Boston: Kluwer
Academic Publishers, 2000.

[32] G. Beliakov, H. B. Sola, and D. Paternain, “Image reduction using means
on discrete product lattices,” IEEE Transactions on Image Processing,
vol. 21, no. 3, pp. 1070–1083, 2012.

[33] Y. Shi, B. V. Gasse, D. Ruan, and E. E. Kerre, “On the first place
antitonicity in QL-implications,” Fuzzy Sets and Systems, vol. 159,
no. 22, pp. 2988–3013, 2008.

[34] E. Klement, R. Mesiar, and E. Pap, “Triangular norms. position paper I:
basic analytical and algebraic properties,” Fuzzy Sets and Systems, vol.
143, no. 1, pp. 5–26, 2004.
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