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ABSTRACT  
Water utilities (WU) in the UK are responsible for providing 

sewerage disposal for customers across the country. Blockages 

within sewer networks can be disruptive for customers, damaging 

to the local environment and costly to rectify. Effective 

scheduling of preventative maintenance (PM) is an important for 

WU to prevent blockages, reduce costs and protect the 

environment. In this paper, we describe a novel multi-objective 

optimisation methodology to the scheduling of PM applied to a 

case study in Swansea, Wales. The results of real-world trials 

demonstrate that solutions generated by the proposed method 

achieve a 13.8% increase in jobs completed for compared to the 

standard approach used in November 2019.  
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1. INTRODUCTION 
  To produce a practical, optimal maintenance plan for a WU it is 

necessary to combine two problems: maintenance planning and 

workforce vehicle routing.  

Maintenance activities are generally categorised into two subsets, 

reactive maintenance (RM) and PM. RM is where sewer 

maintenance is performed once an asset has failed and a blockage 

has formed. This method can incur high costs, customer 

dissatisfaction and environmental damage. PM is performed 

before the blockage has fully formed, allowing the asset to 

maintain its function, reduce its deterioration rate and extend its 

lifecycle. However, due to limited resources and cost constraints 

faced by WU, all PM cannot be attended to as soon as required. 

Therefore, the most critical maintenance operations need to be 

prioritised and maintenance scheduling optimisation models have 

been developed to support the management of maintenance crews. 

The stated problem is an integrated maintenance scheduling and 

vehicle routing problem. The objective is to meet the needs of the 

highest priority jobs as soon as possible within scheduling 

constraints. The scheduling methodology has been created using 

the multi-objective optimization library platypus to aid solving the 

problem [1]. Here we propose a dynamic scheduling approach 

combined with the optimisation of crew routes:  

Task 1: Decide the priority of pipes needed to be maintained in 

the near future according to the current network status and 

environmental conditions. To decide job priority score, the 

potential factors affecting job priority are entered into a GIS 

decision making (DM) model. The model assigns a job priority 

score based on pipe characteristics derived from a blockage 

likelihood machine-learning model [2], the population density 

around the asset, the distance between the asset and a watercourse, 

whether the incident is repeated, and whether the asset has ever 

experienced a DG5 (A property that has experienced indoor 

flooding due to inadequacy of the public sewer network). Add all 

this data to a routing and scheduling database. 

Task 2: Construct crew travel routes using a routing model, which 

minimize distance and cost but maximize the number of jobs and 

priority of jobs completed daily. This is achieved through more 

efficient route plans whilst adhering to company specific time 

constraints.  

Previous trials conducted in Cardiff, Wales maximised the priority 

score and minimised the total cost objectives. The trials resulted 

in an average of an excessive 63 miles of daily travelling between 

jobs. Therefore, a third objective of minimizing travel time was 

added. As a comparison, the Swansea trials with the new 

objective, resulted in an average of 17.8 miles travelled per day, 

allowing more jobs to be completed and reduced travel costs.  

2. METHOD 
This problem is similar to the well-known periodic vehicle routing 

problem. However, there are a number of distinguishable 

characteristics. Firstly, presently over the monthly period, not all 

PM jobs are completed within Swansea. The proposed 

methodology will aim to complete all jobs. Secondly, currently 

the maintenance crew is given limited scheduling guidance. This 

method uses DM to understand which pipes the WU considers to 

be a blockage risk and utilize that into a priority-scheduling 

model. Thirdly the proposed multi-objective optimization 

approach can identify Pareto-optimal maintenance plans and help 

understand the trade-offs between the three objectives. Finally, the 

case study demonstrates the applicability of the proposed 

methodology and the real world implications of it. A simplified 

outline of the objective function used is listed below:  

Step 1: Create a matrix of distances and durations between all the 

jobs (J) and the crew Homebase (HB) using the routing model.  

Step 2: Calculate the cost of each of the J in the JC for the initial 

population using the costing database and cost model. (Job type + 

Crew cost per hour + material costs + after hour costs).  
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Step 3: Create a dictionary for each job available for the month with 

details on job cost, job priority score, job postcode, job length, if 

the job is a DG5 event, job latitude and job longitude sourced from 

the database. Then place all the individual dictionaries into a single 

job dictionary of dictionaries.  

Step 4: Run the MOF using the three objectives and three 

constraints. The MOF iterates through days_list (the amount of 

scheduling days required by the user) in a one day function 

(one_day_function). Start with the following steps for i in days_list: 

Step 4.1: While Tdd is less than Max_time add Ji from the 

initial_job_chromosome to the one_day_chromosome.  

Step 4.2: Calculate the total cost TC of Ji by adding the JC (sourced 

from the job dictionary) and the travel cost between Ji and the 

previous location (Ji-1 or HB) or to the HB if Tdd is greater than 

Max_time. The travel cost and travel duration (Tdi) is calculated by 

sourcing the travel distance in miles between Ji and the previous 

location (or last location if it’s the last job) by using the distance 

matrix in step 1. Miles * £1.20 gives the Jti .Add the (Tc) to the total 

day cost (TDC). Add the job duration (Jdi) sourced from the job 

dictionary and the travel duration (tdi) to the total duration for the 

day (tdd) Add the jpsi to the total priority score for the day (tps). 

Add the one_day _chromosome to the total_chromosome 

Step 4.3: If the tdd is longer than the jobmax, add a penalty cost of 

£50 to the tdc.  If the tdd is longer than JobMax + 30 min leeway 

add a travel constraint violation (CVtr) If the Td between any job 

exceeds 5 miles, add a £50 penalty to the Tdc. If the tdi exceeds 20% 

of the Tdd add a travel constraint CVtc. If the job numbers are 

duplicated in the JC, add a job duplicate constraint CVdj. 

Step 4.4: Add Ji to job counter (job_counter += 1) and return to 

step 4.1 with the next J. If Ji does not satisfy the while constraint 

go to step 4.5. 

Step 4.5: Return the objectives: Tdc, Tps, Tdd and all the CV and 

add them to the overall objective cost (Oc), priority score (Op), 

total distance (Od), and CV in the MOF.  

Step 5: If the loop has reached the end of the days available to 

schedule in days_list, return the overall objectives and CV’s. If 

not, then days_list += 1 and return to step 4. 

The parameter tuning for this case study are listed below:  
Parameters Values  

Initial population size 100 

Number of generations 50,000 

Crossover rate 0.6 

Mutation rate 0.2 

For this case study, the methodology uses NSGA-II. SPEA-II was 

also tested, but the statistical analysis demonstrated that there was 

a statistically significant difference at the 5% level, with NSGA2 

performing better. A similar multi-objective routing problem 

solved by Jemai et al, 2012 [3] also found that NSGA2 

outperformed SPEA2. In this case study the optimizer runs for 

50,000 iterations, as previous experiments showed the 

hypervolume score tailed off at this point. The methodology 

outputs a Pareto front of the best non-dominated solutions. Multi-

criteria decision analysis ensures that the user is given the solution 

that best fits their criteria, through the ranking of the options 

available. The highest ranked option creates a scheduling plan. 

The schedules produced from the case study covered the first 11 

working days which enabled the completion of all PM jobs 

available; therefore, the first 11 working days in the human 

derived November 2019 schedule is used as a comparison.  

3. PRELIMINARY RESULTS  
This study was undertaken for the month of November 2020, in 

Swansea, South Wales. The results show a 13.79% increase in 

jobs completed over the month period for 2020, compared with 

the jobs completed in 2019. The results also show that jobs with a 

higher priority score are targeted in 2020. The schedules in 2020 

were shown to be more efficient, with 7.2 miles travelled less 

each day for the crews. The objective performance of the Pareto 

set of scheduling options for the first 3-day schedule is shown in 

figure 1. The figure shows the difference in the number of 

solutions between 1 iteration and 50,000 iterations and the 

improvement of the results over the iterations. Figure 1 shows a 

clear progression towards the utopia point (minimal distance, 

minimal cost and maximised summed job priority score).  The 

2019 human-derived schedule is included as a reference. 

 

 

4. Conclusions  
This work has proposed a novel EA approach to the problem of 

real-world PM scheduling and routing for sewer maintenance. The 

approach generates schedules that improve significantly on those 

developed manually in 2019. The methodology could be adapted 

to schedule according to predicted weather events. In a first flush 

event, intensive rainfall after a period of dry weather causes an 

excess of debris in the sewer system. This in turn increases the 

likelihood of a blockage accumulating on a defect [4]. By adding 

in this additional factor, the methodology can be further 

improved. As a final point, this DM model could be implemented 

in blockage maintenance plans for other WU globally.  

REFERENCES  

[1] Hadka, D., Herman, J., Reed, P. and Keller, K., 2015. An open source framework 

for many-objective robust decision making. Environmental Modelling & Software, 

74, pp.114-129. 

[2] Bailey, J., Harris, E., Keedwell, E., Djordjevic, S. and Kapelan, Z., 2016. 

Developing Decision Tree Models to Create a Predictive Blockage Likelihood Model 

for Real-World Wastewater Networks. Procedia Engineering, 154, pp.1209-1216. 

[3] Jemai, J., Zekri, M. and Mellouli, K., 2012, April. An NSGA-II algorithm for the 

green vehicle routing problem. In European Conference on Evolutionary 

Computation in Combinatorial Optimization (pp. 37-48). Springer, Berlin.  

[4] Draude, S., Keedwell, E., Hiscock, R. and Kapelan, Z., 2019. A statistical 

analysis on the effect of preceding dry weather on sewer blockages in South Wales. 

Water Science and Technology, 80(12), pp.2381-2391 

Initial run 

Long run 
November 2019 

result 

Figure 1. Pareto front differences between the initial random 

population and the long run (50,000 iterations) and the 

November 2019 schedule. The preferred direction of objective 

performance is indicated by arrows on each axis label.  
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