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EDITORIAL COMMENT ABOUT “ON THE DIFFERENCE
BETWEEN ABA AND AA”

Dov GABBAY
FLAP Editor-in-Chief
dov.gabbaylkcl.ac.uk

I am writing this editorial about the paper of M. Caminada, S. S4, J. Alcatara and W.
Dvordk, appearing in the current issue. I felt the need for a clarifying editorial discussing
some possible misunderstandings in the argumentation community about what is assump-
tion based argumentation (ABA) and its relation to abstract argumentation (AA).

The debate/controversy generated by the current paper of Caminada et al. [11] directly
relates to the current misunderstanding, and prompted this editorial.

It seems that the ABA community would like to think that ABA is equivalent to AA,
while the current paper seems to give a counter-example to that. There has been extensive
back and forth communications about the validity of this counter-example between the au-
thors, the referees and senior members of the ABA community. I hope that this editorial
will help clarify the source of confusion. The perceptive reader will note that this editorial
contains technical results. Unfortunately, this was necessary, because sometimes to make
an editorial point, one needs to prove it!

1 What are the target objects of attacks involved in the ABA
approach? Are they single assumptions or are they sets of
assumptions?

Let our starting point of departure be the notion of an ABA framework. We can use Def-
inition 2 of the Caminada et al. paper in this issue. There is no misunderstanding in the
community about this notion.

In order to make this editorial independent, let me reproduce here the text from the
Caminada et al. paper [11].

Begin quote:

Over the years, different versions of the assumption-based argumentation
framework have become available [9, 10, 8] and these versions give slightly

Vol. 2 No. 1 2015
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different formalizations. For current purposes, we apply the formalization de-
scribed in [8] which not only is the most recent, but is also relatively easy to
explain.

Definition 1 ([8]). Given a deductive system (L, R) where L is a logical lan-
guage and 'R is a set of inference rules on this language, and a set of assump-
tions A C L, an argument for ¢ € L (the conclusion or claim) supported by
S C A is a tree with nodes labelled by formulas in L or by the special symbol
T such that:

e the root is labelled c
e for every node N
— if N is aleaf then N is labelled either by an assumption (in S )or by
Tl
— if N isnot aleaf and b is the label of N, then there exists an inference
rule b < by, ..., by, (m > 0) and either m = 0 and the child of

N is labelled by T, or m > 0 and N has m children, labelled by
b1, ..., by respectively

o S is the set of all assumptions labelling the leaves

We say that a set of assumptions Asms C A enables the construction of an
argument A (or alternatively, that A can be constructed based on Asms) if A
is supported by a subset of Asms.

Notice that each assumption o € A enables an argument A, with claim «
supported by {a}. That is, the corresponding tree has just one node that is
labeled a.

Definition 2 ([8]). An ABA framework is a tuple (L, R, A,”) where:
e (L. R) is a deductive system

o A C L is a (non-empty) set, whose elements are referred to as assump-
tions

e " is a total mapping from A into L, where @ is called the contrary of o

For current purposes, we restrict ourselves to ABA-frameworks that are flat [9],
meaning that no assumption is the head of an inference rule. Furthermore, we
follow [8] in that each assumption has a unique contrary.

"Professor F. Toni, who commented on a draft of this editorial, asked me to stress that " T is used to separate
facts from assumptions in the definition of arguments as trees. It is not an assumption, and, indeed, we impose
that it does not belong to £ (and A C £)"
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We are now ready to define the various abstract argumentation semantics (in
the context of an ABA-framework). We say that an argument A; attacks an
argument As iff the conclusion of A; is the contrary of an assumption in As.
Also, if Args is a set of arguments, then we write Args™ for { A | there exists
an argument in Args that attacks A}. We say that a set of arguments Arygs is
conflict-free iff ArgsNArgs™ = (). We say that a set of arguments Args defends
an argument A iff each argument that attacks A is attacked by an argument in
Args.

The next step is to describe the various ABA semantics. These are defined not
in terms of sets of arguments (as is the case for abstract argumentation) but in
terms of sets of assumptions. A set of assumptions .Asms; is said to attack an
assumption « iff Asms; enables the construction of an argument for conclusion
a@. A set of assumptions Asms; is said to attack a set of assumptions 4 smsy
iff Asms; attacks some assumption o € Asmsy. Also, if Asms is a set of
assumptions, then we write Asms™ for {oa € A | Asms attacks a}. We say
that a set of assumptions Asms is conflict-free iff AsmsN Asms™ = (). We say
that a set of assumptions defends an assumption « iff each set of assumptions
that attacks « is attacked by Asms.

End quote.

Let me ask the reader a simple question. The above quote from the Caminada et al.
paper defined what it means for one set of assumptions to attack another.
My question is:

e What is the set S of objects which are targeted/attacked in the ABA approach? Is it

the set of assumptions .A or is it all the non-empty subsets of .A? In other words, is
S=Aoris S = (24 — 2)??

This is exactly the source of misunderstanding. The reader might think that it must
be S = (24 — @), because we are talking about sets of assumptions attacking other sets
of assumptions, but this is not enough to decide that S = (24 — @). A formal standard

2Again, I am grateful to Professor F. Toni for the following comment on an earlier draft of this Editorial
“We never said in any paper that arguments are sets of assumptions, they are not. ABA can be defined in terms
of sets of assumptions or in terms of arguments which are deductions supported by sets of assumptions (in
different papers we use different notions of deductions, but they all boil down to the same, semantically, as we
prove). The two views (sets of assumptions vs sets of arguments) coincide (in a way that we specify) for all
semantics we defined for ABA.
We never restrict arguments to have a non-empty set of assumptions as support, in general or in any of the
instances we studied."
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Figure 1

definition must be given and such an agreed definition does not exist in the literature. In
fact, some papers use S = A and some papers use S = (24 — @).

We now explain the technical side of this point.

An examination of the definitions above of sets of assumptions attacking other sets of
assumptions show that the following observations (1), (2) and (3) hold:

1. A set of assumptions £y C A attacks Fs exactly when for some € F5 we have that
FE; attacks x.

2. Tt is possible that E5 attacks any assumptions y but for no proper subset £’ C F5 do
we have that E’ attacks y.

3. In any complete extension a set {e1,...,e,} is in the extension iff all of {e;},i =
1,...,n are in the extension.

Note that condition (3) is a consequence of condition (1).

Assume that {ej,...,e,} is in the extension but {e;} is not in the extension. Then
{e;} is attacked by some X which is either in the extension or und. But then X attacks
{e1,...,e,} and so X must be out, a contradiction. Assume that all {e;} are in the exten-
sion. Let X attack {ey,...,e,}. By condition (1) X must attack some {e;}. But {¢;} is in,
so X is out. Thus all attackers of {eq,...,e,} are out so {eq,...,e,} is in the extension.

Technically, whenever we have sets attacking sets which satisfy (1), (2) and (3), we can
represent the situation faithfully using S = A and using the notion of joint attacks. See
Figure 1. See [4, 5, 6].

We now discuss this point because, I believe, it will help explain the misunderstandings
concerning ABA.

Definition 3.
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1. Let S be a non-empty set. Let R C (2° — @) x S. Then (S, R) is a joint attack
network. the relation G Rx between non-empty subsets G of S and nodes © € S is
the joint attack relation.

2. A labelling function \ : S +— {in, out, und} is a legitimate Caminada—Gabbay la-
belling (for networks with joint attacks) iff the following holds:

(CG1) A\(x) = out iff for some G such that GRx we have that of all y € G, \(y) = in.

(CG2) X\(x) = in, iff for all G such that GRx, we have that there exists a y € G such that
Ay) = out.

(CG3) A(z) = und iff for all G such that GRx we have that there is ay € G with \(y) #
in and furthermore, there is a G' such that G' Rx and for all y € G', \(y) # out and
there is a z € G' such that \(z) = und.

3. The complete extensions E of (S, R) are defined by the legitimate labellings \

Ey\ = {z € S|\(z) = in}.

Theorem 4. Let S be a set and let N be an argumentation network based on the set A =
(25 — &) as arguments and the attack relation R C A x A. Assume the following holds:

1. XRY iff Jy € Y(XR{y})
2. XRY ifffor some X' € X (X'RY).
3. For any complete extension E of (A,R) and any X C A we have

X eEiffve € X({z} € E).

Define the following joint attacks Ron S, for X € A,y € S:

e XRyiff XR{y}.
Then the following holds:

o [ is a complete extension of (A,R) iff E = {z|{x} € E} is a complete extension of
(S, R).

Proof.
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1.

(CG1)

(CG2)

(CG3)

(k1)
(112)

(u3)

Assume E is a complete extension of (A, R). (A, R) is an ordinary traditional AA net-
work. Therefore there exists a legitimate Caminada labelling 1 : A +— {in, out, und}
such that E = {a € A|p({a}) = in}. We define a legitimate labelling A on (S, R)
using p as follows:

Mz) = def. u({z}), forx € S.

We prove that A is a legitimate labelling.

Assume A(z) = out. This means that ;({z}) = out. So for some G such that GR{z}
we have (G) = in. By property (3) we have p({y}) = inforall y € G. So we
found a G such that GRx and \(y) =inforally € G.

Suppose A(x) = in. Then we have pu({x}) = in. Let G be any set such that GRz.
Thus we have GR{z}. Here 1(G) = out. Thus by property (3), for some y € G we
have ({y}) = out, i.e. A(y) = out. So we showed that if A\(x) = in, then all G such
that GRz, there is a y € G such that A\(y) = out.

Suppose A(x) = und. So p({z}) = und. So for any G such that GR{z} holds we
have that either ;1(G) = out or u(G) = und, with at least one G'R{z} with u(G’) =
und.

If u(G) = out, then for some y € G, A(y) = out. This we have shown in the (CG2)
case.

If 4(G") = und then we cannot have p({y}) = in for all y € G’ and we cannot have
pu({y}) = out for any y € G’. So we have that for all y € G', \(y) # out and for
some z € G', \(z) = und.

This shows that (CG3) holds.

Let A be a legitimate Caminada—Gabbay labelling of the joint attacks network (A, R).
Define p for (A, R) as follows:

u({ei,...,en}) = in, iff for all i, A(e;) = in.
p({e1, ..., en}) = outiff for some i, A(e;) = out.

p({et,...,en}) = undiff for all 7, A(e;) # out and for some j, A(e;) = und.

We show that 1 is a legitimate labelling for (A, R).

1.

Assume p({e1,...,e,}) = in and let GR{ey, ..., e,}. Then for some i, GRe; and
since A(e;) = in, we get A(y) = out for some y € G and so u(G) = out.
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Ty

a b
Figure 2
2. Assume p({ei,...,e,}) = out. Then for some i, \(e;) = out. Hence for some
G,GRe; and A(y) = in for all y € G. Hence 1(G) = in, and of course we do have
GR{el, ey €n}.
3. Assume p({e1,...,en}) = und. Then for some j, A(e;) = und and for all 7, A(e;) #
out.
Without loss of generality, we can assume therefore that say A\(eq), ..., A(ex) = und,

1 <k <n,and A(eg41),...,A(en) =in. Let GR{ey,...,e,}. Then GR{e;} for
some j. So G'Re; holds.

If 5 < k, then for some y € G, A\(y) = und and for all z € G, A(z) # out and if
j > k then for some y € G, A\(y) = out.

The above holds for any G attacking {eq, ..., e,}. But this is exactly the condition
of u({e1,...,en}) =undin (A,R).

O]

Remark 1. Definition 3 and Theorem 4 actually say that (A,R) and (S, R) are the same.
The difference is whether we count the subsets G C S as separate objects to be attacked or
not. To sharpen this point, look at the assumption based system {a, a, b, ?_)} with a & b and
b = a. This gives rise to the assumption based network of Figure 2.

We can regard this as a network with joint attacks (except that there are no “real”
joint attacks). So we take the arguments/objects to be attacked as {a,b}, {a}, {b}, with
{a,b}R{a},{a,b}R{b},{a,b}R{a,b}, {a}R{b} and {b}R{a}.

This can be represented in Figure 3. Or, equivalently, according to Theorem 4 in Figure
4

Clearly what we have achieved here is duplication of points/objects to be attacked!

This clarification will help us understand the Caminada et al. example.
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{a, b}
W »
Figure 3
a b
Figure 4

2 Examination of the Caminada ef al. counter-example

We are now ready to examine the Caminada et al. example, as given in the proof of Theorem
7 of their paper.

The Caminada et al. counter-example has the assumption set {«, 3,7, e} with the con-
traries (respectively) {a, b, c,d}. The attacks are derived from the following provability
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Figure 5

items:

{1tke
{BtFa
{a} b
{v,a} Fec
{e,B}Fe

The above sets are the key attacking elements involved.
In this example, the set A of assumptions is A = {«, 3,7,¢}.
If we use — to denote attack, and let S = A = {a, (3,7, ¢}, we have:

{a} - B
{8} = «
)=
{B,e} =«
{a, v} =~

The extensions are:
Extl: o« =3 =7 =¢=und.
Ext2: 5 =in, a = out, v = &£ = und.
Ext3: ¢« = ¢ =in, § = out, 7 = und.

It is clear that Ext 2 is not semi-stable, because Ext 3 has more “in—out” nodes.

We now turn to the other option, of S = (24 — &). Before we get into detail, let us look
at an intermediate option. Call it “option intermediate”. In this intermediate case, we take
for S only sets of assumptions supporting proof items, namely we let

S = {{a}a {B}a {7}7 {5}7 {O‘a '7}3 {6, B}}

These are actually the assumption sets involved in the attacks of the Caminada ef al. exam-
ple. Figure 6 describes the argumentation network we get:
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g ¢

Figure 6

The extensions are:

Ext ¢ — 1: All undecided
Exti—2: {f} =in.

{a} = {a,7} = out

{7} = {&, B} = {¢} = undecided.
Exti—3:{a} ={c} =in

{8} = {e. B} = out

{a,v} = {7} = undecided.

Notice that condition (3) holds!

In this case Ext ¢ — 2 is indeed semi-stable.

We now move to the case of all subsets making use of the intermediate ones.

If we let S = (24 — @) and use the notation {x;} to denote the set containing z; and
{{+xi, —y;}} to denote the family of all subsets £ C A such that £ contains z; but does
not contain any of ;. Then Figure 7 represents the situation using our abbreviation.

The extensions are derived from the intermediate case Figure 6.

Ext 1*: all undecided

Ext 2*: {{+f3,—a}} =in

{{+a}} = out

{{+7, —a}} = {{+€}} = undecided
Ext 3*: {{+a,—3,—7v}} =in
{{+&, -8, —7}} =in

{{+B}} = out.

Again, we get that Ext 2% is semi-stable and the counter-example does not work.

10
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{{+a}) {{+1)
N o —
[
{{+e,+A7} {{+a,+7})

{{+e,-8}} {+7}}

Figure 7

Conclusion

The counter-example depends for its success on the lack of duplication of arguments. It
works for the case S = A and does not work for the case S = (2 — @). Of course, there
may still be a counter-example for the case 24 — @.

Furthermore, we can wonder, if the reason the counter-example does not work for the
case S = 24 — & is just because of the possibility of duplication of points, then is this really
important?

Caminada’s point of view about his counter-example can be explained using Figure
5. He regards the arrows as the objects which attack each other in the spirit of the attack
semantics of [12]. one arrow G — x attacks another arrow H — y if x € H. Caminada
compares this attack semantics with the semantics of the nodes/assumptions themselves.

We do not accept this view but the counter-example works for both views, his and ours.

The next section will evaluate the situation in detail.

3 Editorial Comment
My impression is that the discussion about the counter-example in the community went
along social directions and missed the important technical points. The ABA community is
keen on the idea that ABA = AA and did not like the counter-example and so argued against
it saying (1) and (2) below:

1. Use S = (24 — @) rather than use S = A.

11
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Figure 8

The facts are, however, that some key papers from the ABA community do use S =
A. See, for example, [1].

Also, the case of S = A is the obvious simple way to model ABA given that condition
1 holds, namely

e A set of assumptions X attacks a set Y iff it attacks a single y € Y.

2. The semi-stable semantics is not important, it is marginal and so for all important
semantics ABA=AA.

Personally I do not buy this counterargument. Firstly because it is generic, if z gets
in your way you can also say x does not count. Secondly if we accept that stable
semantics is important then semi-stable is the next best one available, and should also
be important

In this defensive mindset, they overlooked the importance of condition 1.

This is a crucial assumption because the real problem of importance is the crucial case
of when it does not hold. What is important to investigate in the abstract is sets genuinely
attacking sets. Consider the following example:

Assumptions {a, b, ¢} contraries {a, b, ¢} respectively.

Rules

b,cka
atFa

here we have that a attacks {b, c}. ABA does not deal with this. ASPIC tries to deal with it.
Technically we have here what I called in 2009 a disjunctive attack. See Figure 8
If a is in we want one of {b, c} to be out.

12
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I therefore propose the notion of set ABA (call it SABA), where we take S = (24 — @)
and allow for sets of assumptions to attack sets of assumptions, when we have

XFkz
Y2

We let X attack Y. z is the contrary of . = need not be an assumption.
For disjunctive attacks, see [5, 6, 7] and [13].
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Abstract

In the current paper, we re-examine the connection between abstract argumentation
and assumption-based argumentation. These two formalisms are often claimed to be
equivalent in the sense that (a) evaluating an assumption based argumentation frame-
work directly with the dedicated semantics, and (b) first constructing the correspond-
ing abstract argumentation framework and then applying the corresponding abstract
argumentation semantics, produce the same outcome. Although this holds for several
semantics, in this work we show that there exist well-studied admissibility-based se-
mantics (semi-stable and eager) under which equivalence does not hold.
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1 Introduction

The 1990s saw some of the foundational work in argumentation theory. This includes the
work of Simari and Loui [20] that later evolved into Defeasible Logic Programming (DeLP)
[15] as well as the ground-breaking work of Vreeswijk [23] whose way of constructing ar-
guments has subsequently been applied in the various versions of the ASPIC formalism
[7, 18, 17]. Two approaches, however, stand out for their ability to model a wide range of
existing formalisms for non-monotonic inference. First of all, there is the abstract argumen-
tation approach of Dung [11], which is shown to be able to model formalisms like default
logic, logic programming under stable and well-founded model semantics [11], as well as
Nute’s defeasible logic [16] and logic programming under the 3-valued stable model seman-
tics [24]. Secondly, there is the assumption-based argumentation approach of Bondarenko,
Dung, Kowalski and Toni [4], which is shown to model formalisms like default logic, logic
programming under stable model semantics, auto epistemic logic and circumscription [4].

One of the essential differences between these two approaches is that abstract argu-
mentation is argument-based. One uses the information in the knowledge base to construct
arguments and to examine how these arguments attack each other. The different semantics
are then defined on the resulting argumentation framework (the directed graph in which the
nodes represent arguments and the arrows represent the attack relation). In assumption-
based argumentation, on the other hand, the definitions of the different semantics are based
not on arguments but on sets of assumptions that attack each other based on their possible
inferences.

One claim that occurs several times in the literature is that abstract argumentation and
assumption-based argumentation are somehow equivalent. That is, the outcome (in terms
of conclusions) of abstract argumentation would be the same as the outcome of assumption-
based argumentation [12, 18]. In the current paper, we argue that although this equivalence
does hold under some semantics, it definitely does not hold under every semantics. In par-
ticular, we show that under two well-known and well-studied admissibility-based semantics
(semi-stable [22, 5, 8] and eager [6, 1, 13]) the outcome of assumption-based argumentation
is fundamentally different from the outcome of abstract argumentation.

2 Preliminaries

Over the years, different versions of the assumption-based argumentation framework have
become available [4, 10, 12] and these versions give slightly different formalizations. For
current purposes, we apply the formalization described in [12] which not only is the most
recent, but is also relatively easy to explain.

Definition 1 ([12]). Given a deductive system (L, R) where L is a logical language and R
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is a set of inference rules on this language, and a set of assumptions A C L, an argument
for ¢ € L (the conclusion or claim) supported by S C A is a tree with nodes labelled by
formulas in L or by the special symbol T such that:

o the root is labelled c

o for every node N

— if N is a leaf then N is labelled either by an assumption (in S Jor by T

— if N is not a leaf and b is the label of N, then there exists an inference rule
b<by,...,by (m > 0)and either m = 0 and the child of N is labelled by T,
orm > 0 and N has m children, labelled by b1, . . . , by, respectively

o S is the set of all assumptions labelling the leaves

We say that a set of assumptions Asms C A enables the construction of an argument A (or
alternatively, that A can be constructed based on Asms) if A is supported by a subset of
Asms.

Notice that each assumption a € A enables an argument A, with claim « supported by
{a}. That is, the corresponding tree has just one node that is labeled «.

Definition 2 ([12]). An ABA framework is a tuple (L, R, A,”) where:
o (L, R) is a deductive system

e A C L is a (non-empty) set, whose elements are referred to as assumptions
e " is a total mapping from A into L, where @ is called the contrary of «

For current purposes, we restrict ourselves to ABA-frameworks that are flat [4], meaning
that no assumption is the head of an inference rule. Furthermore, we follow [12] in that each
assumption has a unique contrary.

We are now ready to define the various abstract argumentation semantics (in the context
of an ABA-framework). We say that an argument A; attacks an argument As iff the conclu-
sion of Ay is the contrary of an assumption in As. Also, if Args is a set of arguments, then
we write Args™ for { A | there exists an argument in A7gs that attacks A}. We say that a
set of arguments Args is conflict-free iff Args N Args™ = (). We say that a set of arguments
Args defends an argument A iff each argument that attacks A is attacked by an argument in
Args.

Definition 3. Let (L, R, A,”) be an ABA framework, and let Ar be the set of arguments
that can be constructed from this ABA framework. We say that Args C Ar is:
e a complete argument extension iff Args is conflict-free and Args = {A € Ar | Args
defends A}
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a grounded argument extension iff it is the (subset-)minimal complete argument ex-
tension

e ¢ preferred argument extension iff it is a (subset-)maximal complete argument exten-
sion

e a semi-stable argument extension iff it is a complete argument extension where
Args U Args™ is (subset-)maximal among all complete argument extensions

e g stable argument extension iff it is a complete argument extension where
Args U Argst = Ar

e an ideal argument extension iff it is the (subset-)maximal complete argument exten-
sion that is contained in each preferred argument extension

e an eager argument extension iff it is the (subset-)maximal complete argument exten-
sion that is contained in each semi-stable argument extension

It should be noticed that the grounded argument extension is unique, just like the ideal
argument extension and the eager argument extension are unique [6]. Also, every stable
argument extension is a semi-stable argument extension, and every semi-stable argument
extension is a preferred argument extension [5]. Furthermore, if there exists at least one
stable argument extension, then every semi-stable argument extension is a stable argument
extension [5]. It also holds that the grounded argument extension is a subset of the ideal
argument extension, which in its turn is a subset of the eager argument extension [6].

The next step is to describe the various ABA semantics. These are defined not in terms
of sets of arguments (as is the case for abstract argumentation) but in terms of sets of as-
sumptions. A set of assumptions .Asms; is said to attack an assumption « iff Asms; enables
the construction of an argument for conclusion @. A set of assumptions Asms; is said to
attack a set of assumptions Asmss iff Asms; attacks some assumption « € Asmss. Also,
if Asms is a set of assumptions, then we write Asms™ for {« € A | Asms attacks a}. We
say that a set of assumptions Asms is conflict-free iff Asms N Asms™ = (). We say that
a set of assumptions defends an assumption « iff each set of assumptions that attacks « is
attacked by Asms.

Apart from the ABA-semantics defined in [10], we also define semi-stable and eager
semantics in the context of ABA.!

Definition 4. Ler (L, R, A,”) be an ABA framework, and let Asms C A. We say that Asms
is:

IPlease notice that our definitions are slightly different from the ones in [10] (as we define all semantics in
terms of complete assumption extensions) but equivalence is proved in the appendix.
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a complete assumption extension iff Asms N Asms* = 0 and Asms = {« | Asms
defends o}

e ¢ grounded assumption extension iff it is the (subset-)minimal complete assumption
extension

e q preferred assumption extension iff it is a (subset-)maximal complete assumption
extension

e g semi-stable assumption extension iff it is a complete assumption extension where
Asms U Asms™ is (subset-)maximal among all complete assumption extensions

e ¢ stable assumption extension iff it is a complete assumption extension where
Asms U Asmst = A

e an ideal assumption extension iff it is the (subset-)maximal complete assumption ex-
tension that is contained in each preferred assumption extension

e an eager assumption extension iff it is the (subset-)maximal complete assumption
extension that is contained in each semi-stable assumption extension

It should be noticed that the grounded assumption extension is unique, just like the
ideal assumption extension and the eager assumption extension are unique. Also, every
stable assumption extension is a semi-stable assumption extension, and every semi-stable
assumption extension is a preferred assumption extension (Theorem 12 in the appendix,
points 1 and 2). Furthermore, if there exists at least one stable assumption extension, then
every semi-stable assumption extension is a stable assumption extension (Theorem 12 in the
appendix, point 3). It also holds that the grounded assumption extension is a subset of the
ideal assumption extension, which in its turn is a subset of the eager assumption extension
(Theorem 16 in the appendix). Overall, we observe that in the context of ABA, semi-stable
and eager semantics are well-defined and have properties that are similar to their abstract
argumentation variants (as described in [5, 6]).2

%In essence, a semi-stable extension is a complete extension with maximal range (with range [22] being
the union of the extension itself and what it attacks). These consist of arguments when applied to abstract
argumentation, and of assumptions when applied to assumption-based argumentation. Although Definition 4
newly defines semi-stable semantics in the context of ABA, it does so in a very natural way following the already
established concept of semi-stable semantics for abstract argumentation. Our interest in defining semi-stable
semantics for ABA can further be justified by the recent research interest it has received [22, 5, 8, 2, 3, 1, 14]
making it an important path to be explored.
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3 Equivalence and Inequivalence

As can be observed from Definition 4 and Definition 3, the way assumption-based argu-
mentation works is very similar to the way abstract argumentation works. In fact, there is a
clear correspondence between these approaches, that allows one to convert ABA-extensions
to abstract argumentation extensions, and vice versa. To formalise this correspondence we
first define a function Asms2Args that maps assumptions extensions to argument extensions
and a function Args2Asms that maps argument extensions to assumptions extensions.

Definition 5. Let (L, R,.A,”) be an ABA framework, and let Ar be the set of all arguments
that can be constructed using this ABA framework.

o We define Asms2Args : 24 — 247 10 be a function such that Asms2Args(Asms) =
{A € Ar | A can be constructed based on Asms}

o We define Args2Asms : 247 — 24 to be a function such that Args2Asms(Args) =
{a € A | ais an assumption occurring in an A € Args}

The next theorem shows that for certain semantics these functions indeed map assump-
tion extensions to the corresponding arguments extensions and vice versa.

Theorem 6 ([10]). Let (L, R, A,”) be an ABA framework, and let Ar be the set of all
arguments that can be constructed using this ABA framework.

1. If Asms C A is a complete assumption extension, then Asms2Args(Asms) is a
complete argument extension, and if Args C Ar is a complete argument extension,
then Args2Asms(Args) is a complete assumption extension.

2. If Asms C A is the grounded assumption extension, then Asms2Args(Asms) is the
grounded argument extension, and if Args C Ar is the grounded argument extension,
then Args2Asms(Args) is the grounded assumption extension.

3. If Asms C A is a preferred assumption extension, then Asms2Args(Asms) is a
preferred argument extension, and if Args C Ar is a preferred argument extension,
then Args2Asms(Args) is a preferred assumption extension.

4. If Asms C A is the ideal assumption extension, then Asms2Args(Asms) is the
ideal argument extension, and if Args C Ar is the ideal argument extension, then
Args2Asms(Args) is the ideal assumption extension.

5. If Asms C A is a stable assumption extension, then Asms2Args(Asms) is a sta-
ble argument extension, and if Args C Ar is a stable argument extension, then
Args2Asms(Args) is a stable assumption extension.
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Proof. Points 2 and 4 have been proved in [10], and point 5 has been proved in [21, The-
orem 1],3 so we only need to prove points 1 and 3. In the following, we slightly broaden
terminology and say that argument A attacks assumption « iff the conclusion of A is @.
Similarly, we say that a set of assumptions .4sms defends an argument A iff it defends each
assumption in A, and we say that a set of arguments .Args defends an assumption « iff for
each argument B with conclusion @, there is an argument C' € Arygs that attacks B.
e 1, first conjunct:

Let Asms CA be a complete assumption extension and let Args=Asms2Args(Asms).

The fact that Asms is conflict-free (that is Asms N Asmst = ()) means one cannot

construct an argument based on Asms that attacks any assumption in .Asms. There-

fore, one cannot construct an argument based on .Asms that attacks any argument

based on .Asms. Hence, Args is conflict-free (that is, Args N Argst = 0).

The fact that Asms defends itself means that Asms defends each assumption in

Asms. Hence, Asms defends each argument based on 4sms (each argument in

Args). That is, Args defends itself.

The fact that each assumption defended by .Asms is in .Asms means that each argu-

ment whose assumptions are defended by .Asms is in Args. Hence, each argument

defended by Arygs is in Args.

Altogether, we have observed that Args is conflict-free and contains precisely the

arguments it defends. That is, Args is a complete argument extension.

e 1, second conjunct:

Let Args C Ar be a complete argument extension and let Asms=Args2Asms(.Args).
Suppose Asms is not conflict-free. Then it is possible to construct an argument based
on Asms (say A) whose conclusion is the contrary of an assumption in Asms. A
cannot be an element of Args (otherwise Args would not be conflict-free). From
the thus obtained fact that A ¢ Args, together with the fact that Args is a complete
argument extension, it follows that Args does not defend A. But this is impossible,
because Args does defend all assumptions in A. Contradiction. Therefore, Asms is
conflict-free.

The fact that Args defends itself means that every A € Args is defended by Args,
which implies that every assumption occurring in Args is defended by Args, so every
a € Asms is defended by Asms. Hence, Asms defends itself.

The final thing to be shown is that Asms contains every assumption it defends. Sup-
pose Asms defends o € A. This means that for each argument B with conclusion
@, Asms enables the construction of an argument C that attacks B. The fact that all
assumptions in C are found in arguments from Args means that C' is defended by

3Please note that our definition of ideal and stable semantics is slightly different than in [10, 21] but equiv-
alence is proved in the appendix.
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Args (this is because Args defends all its arguments). The fact that Args is a com-
plete argument extension then implies that C' € Args. This means that Args defends
the argument (say, A) consisting of the single assumption «. Hence, A € Args, so
a € Asms.

Altogether, we have observed that .Asms is conflict-free and contains precisely the
assumptions it defends. That is, Asms is a complete assumption extension.

e 3, first conjunct:

Let AsmsC.A be a preferred assumption extension and let Args=Asms2Args(Asms).
From point 1, it then follows that Args is a complete assumption extension. Suppose,
towards a contradiction, that Args is not a maximal complete argument extension.
Then there exists a complete argument extension Args’ 2 Args. Let Asms =
Args2Asms(Args'). It then follows that Asms’ O Asms and that Asms’ # Asms,*
so Asms’ D Asms. Moreover, from point 1 it follows that Asms’ is a complete
assumption extension. But this would mean that .Asms is not a maximal complete
assumption extension. Contradiction.

e 3, second conjunct:

Let Args C Ar be a complete argument extension and let Asms=Args2Asms(Args).
From point 1, it then follows that Asms is a complete assumption extension. Suppose,
towards a contradiction, that Asms is not a maximal complete assumption extension.
Then there exists a complete assumption extension Asms" 2 Asms. Let Args’ =
Asms2Args(Asms’). It then holds that Args’ O Args and that Args’ # Args,> so
Args’ 2 Args. Moreover, from point 1 it follows that Args’ is a complete argu-
ment extension. But this would mean that Args is not a maximal complete argument
extension. Contradiction.

O]

Next we show that for complete semantics the functions Asms2Args and Args2Asms
are also bijections.

*Suppose towards a contradiction that Asms’ = Asms. From the fact that Args’ D Args it follows that
there exists an argument A’ € Args’ such that A’ € Args. From the fact that Asms’ = Asms it follows
that for each assumption @ € A’ there exists an argument A € Args that contains . Since each A € Args
is defended by Args (as Args is a complete argument extension) it follows that A’ is also defended by Args.
From the fact that Args is a complete argument extension, it then follows that A € Args. Contradiction.

>The fact that Asms’ O Asms implies there exists an assumption o/ € Asms’ such that o/ ¢ Asms.
Let A’ be the argument consisting of the single assumption . From the fact that o & Asms it follows that
A’ ¢ Args. However, from the definition of Asms2Args it does follow that A" € Args’. Hence, Args’ # Args.
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Proposition 1. When restricted to complete assumption extensions and complete argument

extensions,

inverses.

the functions Asms2Args and Args2Asms become bijections and each other’s

Proof. Let Asms be a complete assumption extension and let .Args be a complete argument
extension. It suffices to prove statements (1) and (2) below.

1. Args2Asms(Asms2Args(Asms)) = Asms

(a)

(b)

Suppose o € Asms.

Then by definition there exists an argument A, consisting of a single assump-
tion a. As a € Asms then also A, € Asms2Args(Asms). Therefore, o €
Args2Asms(Asms2Args(Asms)).

Suppose an « € A with o & Asms.

Then there exists no argument in Asms2Args(.Asms) that contains a.. There-
fore, o & Args2Asms (Asms2Args(Asms)).

2. Asms2Args(Args2Asms(Args)) = Args.

(a)

(b)

Suppose A € Args.

Then all assumptions used in A will be in Args2Asms(.Args). This means that
A can be constructed based on Args2Asms(.Args). Therefore, A € Asms2Args
(Args2Asms(Args)).

Suppose an A € Ar with A &€ Args.

The fact that Args is a complete argument extension implies that A is not de-
fended by Args. Therefore, there exists an argument B € Ar that attacks A,
such that Args contains no C' that attacks B. Assume, without loss of gen-
erality, that B attacks A by having a conclusion /3, where 3 is an assumption
used in A. Then .Args cannot contain any argument that uses assumption (3
(otherwise, this argument would not be defended against B, so Args would not
be a complete arguments extension). Therefore, § ¢ Args2Asms(.Args). This
means that A cannot be constructed based on Args2Asms(Args). Therefore,
A ¢ Asms2Args(Args2Asms(Args))

O]

Now, as each preferred, grounded, stable, and ideal extension is also a complete exten-
sion, Proposition 1 also extends to these semantics. Combining Proposition 1 with Theorem
6 we obtain that under complete, grounded, preferred, stable and ideal semantics, argument
extensions and assumption extensions are one-to-one related.

The above results might cause one to believe that similar observations can also be made
for other semantics. Unfortunately, this is not always the case as we show next.
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Theorem 7. Let (L, R, A,”) be an ABA framework, and let Ar be the set of all arguments
that can be constructed using this ABA framework.

1. It is not the case that if Asms C A is a semi-stable assumption extension, then
Asms2Args(Asms) is a semi-stable argument extension, and it is not the case that if
Args C Ar is a semi-stable argument extension, then Args2Asms(Args) is a semi-
stable assumption extension.

2. It is not the case that if Asms C A is an eager assumption extension, then
Asms2Args(Asms) is an eager argument extension, and it is not the case that if
Args C Ar is an eager argument extension, then Args2Asms(Args) is an eager
assumption extension.

Proof. Let Fez1 = (L£,R,A,") be an ABA framework with £ = {a,b,c,e,a, 3,7, ¢},
A={a,p,v,e},a=a,B=b5y=c,e=eand R = {r1,re,rs,r4,75} as follows:

T oCc+ Y ro: a<+ f3 r3: b+ « reloC Y, 5. e+ €0

The following arguments can be constructed from this ABA framework.
e A, using the single rule r;, with conclusion ¢ and supported by {~}

Ao, using the single rule 9, with conclusion a and supported by {3}

As, using the single rule r3, with conclusion b and supported by {a}

Ay, using the single rule 4, with conclusion ¢ and supported by {~, o}

As, using the single rule r5, with conclusion e and supported by {¢, 5}
o A,, Ag, A, and A, consisting of a single assumption «, (3, v and e, respectively.

These arguments, as well as their attack relation, are shown in Figure 1. The complete
argument extensions of AF,; are

Argsy =0, Argsy = {As, Ag}, and Argss = {As, Aa, Ac}.
The associated complete assumption extensions of F., are
Asms; =0, Asmsy = {f}, and Asmss = {«, €}.
Notice that, as one would expect, Args, = Asms2Args(Asms;) as well as Asms; =
Args2Asms(Args;) forall i € {1,2,3}.

It holds that Args; U Argsy = 0, Argsy U Args] = {Aa, A3, Ay, Aa, Ag} and
Argsg U Argsy = {Ag, A3, As, A, Ag, Ac}, as well as Asmsy U Asmsf = 0, Asmsg U
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Figure 1: The argumentation framework AF,,; associated with ABA framework F.1.

Asmsy = {a, 8} and Asmss U Asms] = {a, 3, ¢}. Hence, Args, and Args; are semi-
stable argument extensions, whereas only .4 sms3 is a semi-stable assumption extension. We
thus have a counterexample against the claim that if Args (Args,) is a semi-stable argument
extension, Asms = Args2Asms(Args) (Asmsz) is a semi-stable assumption extension.

We also observe that the eager argument extension is .Args; whereas the eager assump-
tion extension is Asmss. Hence, we have a counterexample against the claim that if Args
is an eager argument extension then Asms = Args2Asms(Args) is an eager assumption
extension, as well as against the claim that is .Asms is an eager assumption extension then
Args = Asms2Args(Asms) is an eager argument extension.

The only thing left to be shown is that if Asms is a semi-stable assumption extension,
then Args = Asms2Args(Asms) is not necessarily a semi-stable argument extension. For
this, we slightly alter the ABA framework F.,; by removing rule 75 and the assumption e
(call the resulting ABA framework F.,2). Thus the arguments A5 and A, no longer exists
and hence Args; = {A3, Ay}. As now Argss U Argsy = {As, A3, Aq, Ag} is a proper
subset of Args, U Argsy the set Argss is no longer semi-stable. On the other side both
Asmsy = {f}, and Asmss = {«} are semi-stable assumption extensions. O

4 Discussion

The connection between assumption-based argumentation and abstract argumentation has
received quite some attention in the literature. Dung et al., for instance, claim that “ABA is
an instance of abstract argumentation (AA), and consequently it inherits its various notions
of ‘acceptable’ sets of arguments” [12]. Similarly, Toni claims that “ABA can be seen as
an instance of AA, and (...) AA is an instance of ABA” [21]. While we agree that this
holds for some of the admissibility-based semantics (like preferred and grounded), we have
pointed out in the current paper that this certainly does not hold for all admissibility-based
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Figure 2: The argumentation framework AF,, 5 associated with ABA framework F.o.

semantics (semi-stable and eager). One could argue that claims like those above are perhaps
a bit too general.

Prakken claims that “assumption-based argumentation (ABA) is a special case of the
present framework [ASPIC+] with only strict inference rules, only assumption-type premises
and no preferences.” [18]. This claim is later repeated in the work of Modgil and Prakken,
who state that “A well-known and established framework is that of assumption-based ar-
gumentation (ABA) [4], which (...) is shown (in [18])) to be a special case of the ASPIC+
framework in which arguments are built from assumption premises and strict inference rules
only and in which all arguments are equally strong” [17]. However, we observe that the ar-
gumentation frameworks of Figure 1 and Figure 2 are counterexamples against this claim,
in the context of semi-stable and eager semantics. These semantics, being admissibility-
based, should work perfectly fine in the context of ASPIC+ (the rationality postulates of [7]
would for instance be satisfied). Nevertheless, correspondence with ABA does not hold.

A possible criticism against our counter example of Figure 1 is that it uses a rule (r4)
that is subsumed by another rule (71). This raises the quesion of whether counter examples
still exist when no rule subsumes another rule. Our answer is affirmative: simply add an
assumption § and an atom d such that § = d, replace 71 by ¢ < ~,d and add another
rule (rg) d < d. For the resulting ABA theory, the semi-stable assumption extensions still
do not correspond to the semi-stable argument extensions. Hence, the difference between
ABA semi-stable (resp. ABA eager) and AA semi-stable (resp. AA eager) can be seen as a
general phenomenon, that does not depend on whether some rules are subsumed by others.

Appendix: ABA semantics revisited

As mentioned earlier, the way the various ABA-semantics are defined in Definition 4 is
slightly different from the way these were originally defined in [4, 10]. We have chosen
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to describe all ABA-semantics in a uniform way, based on the notion of complete seman-
tics. This has been done not only for theoretical elegance, but also with an eye to practical
applicability. For instance, it brings the advantage that once a particular property has been
proven for each complete assumption extension, it has also been proven for each preferred,
grounded, stable, semi-stable, ideal and eager assumption extension,® which can have ben-
efits for future research. Furthermore, it paves the way for expressing ABA semantics in
terms of assumption labellings, as is for instance done by Schulz and Toni, who define
the concept of a complete assumption labelling [19]. In a similar way, one could then
subsequently define the concept of a preferred assumption labelling as a complete assump-
tion labelling where the set of in-labelled arguments is maximal, a grounded assumption
labelling as a complete assumption labelling where the set of in-labelled arguments is mini-
mal, etc. The fact that the extension-based ABA semantics have already been stated in terms
of complete extensions (as is done in the current appendix) can then assist the task of prov-
ing equivalence between assumption-based extensions and assumption-based labellings.’
The thus obtained theory of assumption labellings could then for instance be applied for
examining the equivalence between ABA and logic programming (in the line of [19]), in
a similar way as that the theory of argument labellings has been applied for examining the
equivalence (and differences) between abstract argumentation and logic programming [9].

We will now proceed to show that our complete semantics based description of ABA-
semantics in Definition 4 is equivalent to the original description of ABA-semantics in [4,
10]. We start with preferred semantics. Notice that a set of assumptions is called admissible
iff it is conflict-free and defends each of its elements.

Theorem 8. Let F = (L, R,.A,") be an ABA framework. The following two statements are
equivalent:

1. Asms is a maximal admissible assumption set of F
2. Asms is preferred assumption extension of F

Proof. From 1 to 2: Let .Asms be a maximal admissible assumption set. It follows from [4,
Corollary 5.8] that Asms is a complete assumption extension. Suppose Asms is not max-
imal complete. Then there exists a complete assumption extension Asms’ with Asms C
Asms'. But since by definition, every complete assumption extension is also an admissible
assumption set, it holds that Asms’ is an admissible assumption set. But this would mean

®Similarly, in abstract argumentation, the fact that consistent outcome of argument-based entailment [7] has
been proven under complete semantics implies that it has also been proven under preferred, grounded, stable,
semi-stable, ideal and eager semantics.

"This would be in line with abstract argumentation, where reformulating some of the most common
argument-based semantics in terms of complete semantics has been of great assistance for proving the equiva-
lence between argument-based extensions and argument-based labellings.
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that Asms is not a maximal admissible assumption set. Contradiction.

From 2 to 1: Let Asms be a maximal complete assumption extension. Then by definition,
Asms is also an admissible assumption set. We now need to prove that it is also a maximal
admissible assumption set. Suppose this is not the case, then there exists a maximal admis-
sible assumption set Asms’ with Asms C Asms’. Tt follows from [4, Corollary 5.8] that
Asms’ is also a complete assumption extension. But this would mean that Asms is not a
maximal complete assumption extension. Contradiction. O

The next thing to show is that our description of ideal semantics (Definition 4) coincides
with that in [10]. More specifically, we will show that the notion of an ideal assumption
extension is equivalent to that of a maximal ideal assumption set.

Definition 9. Let 7 = (L, R, A,”) be an ABA framework. An ideal assumption set is
defined as an admissible assumption set that is a subset of each preferred assumption ex-
tension.

Lemma 1. Let F = (L, R, A,”) be an ABA framework, and let Asms;q be a maximal ideal
assumption set. It holds that Asms;q is a complete extension.

Proof. Let Asms;q be a maximal ideal assumption set. We only need to prove that if
Asms;; defends some o € A then o € Asms;y. Suppose Asms;q defends . Then
every preferred assumption extension .Asms,, also defends « (this follows from Asms;; C
Asms,). As Asms, is also a complete extension, it follows that o € Asms,. Hence, « is
an element of every preferred assumption extension. Therefore, Asms;qU{«} is a subset of
every preferred assumption extension. According to [4, Theorem 5.7], Asms;qU{a} is also
an admissible set. From the fact that Asms; is a maximal ideal assumption set, and the triv-
ial observation that Asms;q C Asms;qU{a}, it then follows that Asms;q = Asms;qU{a}.
Therefore, a € Asms;q. O

Theorem 10. Let F = (L, R, A,”) be an ABA framework and let Asms C A. The follow-
ing two statements are equivalent:

1. Asms is a maximal ideal assumption set of F
2. Asms is an ideal assumption extension of F (in the sense of Definition 4)

Proof. From 1 to 2: Let Asms be a maximal ideal assumption set. It follows from Lemma
1 that Asms is a complete assumption extension. Suppose .Asms is not a maximal complete
assumption extension that is contained in every preferred assumption extension. Then there
exists a complete assumption extension Asms’, with Asms C Asms’, that is still contained
in every preferred assumption extension. But since, by definition, every complete assump-
tion extension is also an admissible assumption set, it holds that Asms’ is an admissible
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assumption set that is contained in every preferred assumption extension. That is, Asms’
is an ideal assumption set. But this would mean that Asms is not a maximal admissible
assumption set. Contradiction.

From 2 to 1: Let .Asms be an ideal assumption extension. Then, by definition, Asms is also
an ideal assumption set. We now need to prove that it is also a maximal ideal assumption
set. Suppose this is not the case, then there exists a maximal ideal assumption set Asms’
with Asms C Asms’. It follows from Lemma 1 that Asms’ is also a complete assumption
extension. But this would mean that Asms is not a maximal complete assumption exten-
sion that is contained in every preferred assumption extension. That is, Asms is not an ideal
assumption extension. Contradiction. 0

We proceed to show that our notion of stable semantics (Definition 4) coincides with
the notion of stable semantics in [4].

Theorem 11. Let F = (L,R,A,") be an ABA framework, and let Asms C A. The
following two statements are equivalent:

1. Asms does not attack itself and attacks each {a} with o € A\ Asms
2. Asms is a stable assumption extension of F (in the sense of Definition 4)

Proof. From 1 to 2: Suppose Asms does not attack itself and attacks each {a} with a €
A\ Asms. Then, according to [4, Theorem 5.5], Asms is a complete extension. Moreover,
the fact that Asms attacks every {a} with @ € A\ Asms means that AsmsU Asms™ = A,
so Asms is a complete extension with Asms U Asms™ = A. That is, Asms is a stable
extension.

From 2 to 1: Suppose Asms is a stable assumption extension. That is, Asms is a complete
assumption extension with Asms U Asms™ = A. From the fact that Asms is a complete
assumption extension, it follows that Asms N Asms™ = () so Asms does not attack itself.
From the fact Asms U Asms™ = A it follows that Asmst = A\ Asms, so Asms attacks
each {a} with @ € A\ Asms. O

So far, we have examined our characterization of existing ABA-semantics (stable, pre-
ferred and ideal semantics) and found them to be equivalent to what have been stated in the
literature. The next step is to focus on the ABA-semantics that have not yet been stated in
the literature® (semi-stable and eager). Our aim is to show that, in the context of ABA, these
semantics behave in a very similar way as they do in the context of abstract argumentation.
We start with the relation between stable, semi-stable and preferred semantics.

Theorem 12. Let F = (L, R, A,”) be an ABA framework. It holds that:

8 At least, not in the specific assumption-based ABA-context.
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1. every stable assumption extension is also a semi-stable assumption
2. every semi-stable assumption extension is also a preferred assumption extension

3. if there exists at least one stable assumption extension, then the stable assumption
extensions and the semi-stable assumption extensions coincide

Proof. 1. Let Asms be a stable assumption extension of F. Then, by definition, Asms
is a complete assumption extension with AsmsUAsms™ = A. The fact that AsmsU
Asms™ is A implies that it is maximal (by definition, it cannot be a proper superset
of A). Hence, Asms is a complete assumption extension where Asms U Asms™ is
maximal. That is, Asms is a semi-stable assumption extension.

2. Let Asms be a semi-stable assumption extension of F. Then, by definition, Asms
is a complete assumption extension where Asms U Asms™ is maximal. We now
show that Asms itself is also maximal. Suppose there is a complete assumption
extension Asms’ with Asms C Asms’. Then, from the fact that the *-operator
is monotonic, it follows that Asmst C Asms'T. This, together with the fact that
Asms C Asms' implies that Asms U Asms™ C Asms’ U Asms'*. But that would
mean that .Asms is not a semi-stable assumption extension. Contradiction. Therefore,
Asms is a maximal complete assumption extension. That is, Asms is a preferred
assumption extension.

3. Suppose there exists at least one stable assumption extension (Asmss). The fact
that every stable assumption extension is also a semi-stable assumption extension has
already been proven by point 1, so the only thing left to prove is that every semi-stable
assumption extension is also a stable assumption extension. Let .Asms be a semi-
stable assumption extension. Then, by definition, Asms is a complete assumption
extension where AsmsU.Asms™ is maximal. From the fact that Asms,; is a complete
assumption extension with Asmsg UAsmsY, = A, it follows that for AsmsUAsms™
to be maximal, it has to be .4 as well. This implies that .Asms is a stable assumption
extension.

O

We proceed to examine the concept of eager semantics in the context of ABA. Our aim
is to show that the eager assumption extension is unique. In order to do so, we first need to
define the concept of an eager assumption set. Notice that an eager assumption set relates
to the eager assumption extension in the same way as an ideal assumption set relates to the
ideal assumption extension.
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Definition 13. Ler F = (L, R,.A,”) be an ABA framework. An eager assumption set is
defined as an admissible assumption set that is a subset of each semi-stable assumption
extension.

Theorem 14. Let F = (L, R, A,”) be an ABA framework. There exists precisely one
maximal eager assumption set.

Proof. We first prove that there exists at least one maximal eager assumption set. This is
relatively straightforward, because there exists at least one eager assumption set (the empty
set), which together with the fact that that there are only finitely many eager assumption sets
(which follows from the fact that A is finite) implies that there exists at least one maximal
eager assumption set.

The next thing to prove is that there exists at most one maximal eager assumption set. Let
Asms; and Asmsy be maximal eager assumption sets. From the fact that for each semi-
stable assumption extension Asmsgem, it holds that Asms; C Asmsge, and Asmse C
Asmsgem it follows that Asms; and Asmss do not attack each other (otherwise Asmsgem
would attack itself). Hence, Asmss = Asms; U Asmsg does not attack itself. Also, Asmss
defends itself, as Asms; and Asmss defend themselves. Hence, Asmss is an admissible
assumption set that is a subset of each semi-stable assumption extension. That is, Argss is
an eager assumption set. Also, from the fact that Asmss = Asms; U Asmso, it follows
that Asms; C Asmss and Asmsy C Asmsz. From the fact that Asms; and Asmss
are maximal eager assumption sets, it then follows that Asms; = Asmss and Asmsy =
Asmss. Therefore, Asms, = Asmss. O

Lemma 2. Let F = (L, R, A,”) be an ABA framework, and let Asmscqq be the maximal
eager assumption set. It holds that Asms is a complete assumption extension.

Proof. Let Asmsc,y be a maximal eager assumption set. We only need to prove that
if Asmscqy defends some a € A then v € Asmseqy. Suppose Asmseq, defends .
Then every semi-stable assumption extension Asmsge, also defends « (this follows from
Asmseag © Asmssem). As Asmsgen is also a complete assumption extension, it follows
that « € Asmsge,,. Hence, « is an element of every semi-stable assumption extension.
Therefore, Asmseqq U {a} is a subset of every semi-stable assumption extension. Accord-
ing to [4, Theorem 5.7], Asmscqq U {a} is also an admissible assumption set. Hence,
Asmseqq U {ac} is an eager assumption set. From the fact that Asms.q, is a maximal eager
assumption set, and the trivial observation that Asmseqg C Asmseqq U {}, it then follows
that Asmseqg = Asmseqg U {a}. Therefore, @ € Asmseqg. O

Theorem 15. Let F = (L, R, A,") be an ABA framework and let Asms C A. The follow-
ing two statements are equivalent:
1. Asms is a maximal eager assumption set of F
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2. Asms is an eager assumption extension of F (in the sense of Definition 4)

Proof. From 1 to 2: Let Asms be a maximal eager assumption set. It follows from Lemma
2 that Asms is a complete assumption extension. Suppose Asms is not a maximal com-
plete assumption extension that is contained in every semi-stable assumption extension.
Then there exists a complete assumption extension Asms’, with Asms C Asms’, that is
still contained in every semi-stable assumption extension. But since by definition, every
complete assumption extension is also an admissible assumption set, it holds that Asms’ is
an admissible assumption set that is contained in every semi-stable assumption extension.
That is, Asms’ is an eager assumption set. But this would mean that A sms is not a maximal
eager assumption set. Contradiction.

From 2 to 1: Let Asms be an eager assumption extension. Then, by definition, Asms is also
an eager assumption set. We now need to prove that it is also a maximal eager assumption
set. Suppose this is not the case, then there exists a maximal eager assumption set Asms’
with Asms C Asms’. It follows from Lemma 2 that Asms’ is also a complete assumption
extension. But this would mean that .4 sms is not a maximal complete assumption extension
that is contained in every semi-stable assumption extension. That is, Asms is not an eager
assumption extension. Contradiction. O

Theorem 16. Let F = (L, R, A,”) be an ABA framework. It holds that:

1. the ideal assumption extension is a superset of the grounded assumption extension

2. the eager assumption extension is a superset of the ideal assumption extension

Proof. 1. This follows from the fact that the ideal assumption extension is a complete
assumption extension, together with the fact that the grounded assumption extension
is the unique minimal (w.r.t. set inclusion) complete assumption extension.

2. This follows from the fact that every semi-stable assumption extension is also a pre-
ferred assumption extension, together with the definitions of the ideal (resp. eager)
assumption extensions as the maximal complete assumption extension that is a subset
of every preferred (resp. semi-stable) assumption extension.

O
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Abstract

In this paper, we propose syllogistic circuits on the medium of Physarum
Polycephalum plasmodium. These circuits are designed by chemical signals
stimulating the plasmodium propagation. As a result, the circuits are built up
on continuously growing plasmodia and any their motions are considered syllo-
gistic conclusions. We show how we can implement different syllogistic systems
on the medium of Physarum Polycephalum plasmodia within these circuits,
namely we implement the following systems: the Aristotelian syllogistic, the
performative syllogistic, and Talmudic reasoning by gal wa-homer. In this way,
we can design biological devices, where inputs are represented not by electrical
signals, but by chemical signals in accordance with the plasmodium chemotaxis,
and outputs are represented by the plasmodium behaviour.

Keywords: Syllogisms

1 Introduction

One of the first logicians who proposed a spatial implementation of Aristotelian
syllogistic reasoning was Lewis Carroll [3], [4]. He used three kinds of syllogistic
propositions: (i) the universal affirmative (‘all members of its subject are members
of its predicate’), (ii) the universal negative (‘no members of its subject are members
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of its predicate’), (iii) and the particular affirmative (‘some members of its subject
are members of its predicate’). His examples are as follows: ‘All red apples are
ripe’, ‘No red apples are ripe’, ‘Some red apples are ripe’. For verifying syllogistic
zy | xy
x’y x’y’
the role of ‘universe of discourse’ for all syllogistic propositions over adjuncts z, vy,
non-z (which is denoted by z’), non-y (which is denoted by y’). For example, let x
mean ‘old,” so that ' will mean ‘new’. Let y mean ‘English,” so that ¢y’ will mean
‘foreign’. Assume that ‘books’ are an appropriate universe of discourse. Then we
can divide this universe into the following four classes: xy (‘old English books’), zy’
(‘old foreign books’), 'y (‘new English books’), 2y’ (‘new foreign books’).

propositions he proposed the following biliteral diagram: that plays

Now let us take two kinds of counters: grey and black. If a black counter is
placed within a cell, this means that “this cell is occupied” (i.e. “there is at least
one thing in it”). If a grey counter is placed within a cell, this means that “this cell
is empty” (i.e. “there is nothing in it”). Thus, using grey and black counters we can
verify all the basic syllogistic propositions.

In this paper, we develop Carroll’s ideas, but our diagrams will be represented
by living organisms, namely by Physarum behaviours. In Physarum Chip Project:
Growing Computers From Slime Mould supported by FP7 we are going to build a
programmable amorphous biological computer. In this computer, logic circuits are
represented by programmable behaviours of Physarum Polycephalum plasmodium —
the one-call organism that behaves according to different stimuli called attractants
and repellents and propagates networks connecting all reachable food sources. When
designing an object-oriented programming language for the simulation of plasmod-
ium behaviours [16], we detect a possibility on the media of Physarum to construct
logic circuits for different symbolic-logical systems, including syllogistic systems.
The circuits for various syllogistics may be built in the way of Carroll’s diagrams.
One of the most interesting outcomes of this research is that, first, the universe of
discourse is considered a continuously growing living organism ( Physarum plasmod-
ium), second, any motions of this organism are considered as inferring syllogistic
conclusions. Carroll’s like diagrams allow us to define all possible directions in any
motion of Physarum.

In this paper, we show how we can implement the Aristotelian syllogistic (section
4), the performative syllogistic (section 5), and Talmudic reasoning (section 6) via
Physarum plasmodium behaviour.
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2 Biological Computations by Chemical Signals

The plasmodium propagation can be interpreted as a kind of computation which can
solve different tasks which assume concurrency: maze-solving [9], solving the Steiner
Problem [20], minimum-risk path finding [10], [11], solving the traffic optimization
problem [24], associative learning [18], memorizing and anticipating repeated events
[12], etc. The feature of these computations is that a plasmodium black box always
has much more outputs than inputs. We can generalize this property and claim that
this feature concerns any computation on behavioural systems of living organisms.
It is related to the problem of free will, where living organisms face a choice among
several outputs given just one input: they can choose just one or simultaneously
many outputs according to their will. Evidently, this is not typical for the electronic
devices.

Hence, we can assume that it is possible to design a biological device, where in-
stead of electrical signals the calculation process is performed by using the plasmod-
ium chemotazis [2] (about other approaches to information processing by chemotaxis
see [6]), i.e. knowledge of the typical reactions of plasmodium to chemical signals
attracting or repelling the plasmodium behaviour. In this device, the number of out-
puts usually is much larger than the number of inputs, where inputs are chemical
signals attracting or repelling the behaviour and outputs are behavioural responses.
We can artificially delete some outputs by using additional repellents. Nevertheless,
as more repellents in complex gates as lower accuracy of computations in this device.

Notably, the accuracy of implementing classical logics and Turing-complete ma-
chines, such as Kolmogorov-Uspensky machines [22], [1], in the plasmodium be-
haviour is low. For instance, let computing circuits be implemented using a collision-
based computing approach, where the plasmodium propagates on non-nutrient sub-
strate in the form of a compact wave-fragment of protoplasm. Logic gates can be
constructed in the laboratory conditions as follows: (x,y) — (z AND y,z OR y)
and (z,y) — (z, NOT 2 AND y). Then the accuracy of experimental laboratory
prototypes of the gate (z,y) — (x AND y,x OR y) was over 69% and of the gate
(x,y) = (x, NOT z AND y) was over 59%. In the frequency-based Boolean logical
gates implemented with Physarum based on frequencies of oscillations, the accuracy
is as follows: 90% for OR/NOR, 77.8% for AND/NAND, 91.7% for NOT, 70.8%
for XOR/XNOR. Notice that as more complex circuits, as lower accuracy of their
implementation.

This problem with accuracy is linked to the fact that the plasmodium as liv-
ing organism wants to be propagated in all possible directions (to possess more
outputs than inputs). This means that the plasmodium does not follow the induc-
tion principle to satisfy the minimal conditions in funding and occupying the food

37



SCHUMANN AND ADAMATZKY

sources, e.g. by shortest distances. In other words, the plasmodium behaviour is
context-dependent and it is not a kind of spatial Turing-complete machines such as
Kolmogorov-Uspensky machines. We can implement these machines only with some
accuracy using repellents, because to follow these machines and classical logic gates
is not natural for behavioural systems.

Usually, computations on Physarum are studied to approximate transportation
systems and hierarchies of planar proximity graphs, e.g. to approximate concurrent
phenomena. In our research, we are going to obtain an abstract chip based on
plasmodium and we need to find out logical systems which are natural for the plas-
modium behaviour and, therefore, they could be implemented with a high accuracy.

In this paper, we propose the implementation of Aristotelian syllogistic of [8] as
a system whose semantics can be expressed by Kolmogorov-Uspensky machines. In
this implementation we need many repellents and, thus, the behaviour of plasmod-
ium is not so natural here. Then we show how we can implement the performative
syllogistic of [15]. For this implementation we do not need repellents at all. The
performative syllogistic, on the one hand, is more expressive than the Aristotelian
syllogistic (it contains all tautologies of the latter, see [15]), on the other hand,
its semantics is context-based and depends on neighbors for plasmodium active
zones. Due to this semantics, the performative syllogistic is sound and complete on
plasmodium propagations which are performed without repellents. This semantics
cannot be expressed by Kolmogorov-Uspensky machines.

Logic circuits constructed on the basis of the performative syllogistic seem to
be natural for behavioural systems and these circuits have very high accuracy in
implementing. Our general motivation in designing logic circuits in behavioural
systems without repellents is as follows:

e in this way, we can present behavioural systems as a calculation process more
naturally;

e we can design devices, where there are much more outputs than inputs, for
performing massive-parallel computations in the bio-inspired way;

e we can obtain unconventional (co)algorithms by programming behavioural sys-
tems.

Biological and bio-inspired computations allow us to perform calculations
through behaviours of living organisms. The main disadvantage of these compu-
tations is that biological devices are much slower than digital computers, but they
can effectively solve complex massive-parallel tasks.
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3 Strings in the Physarum Growing Universe

Physarum Polycephalum behaves by plasmodia which can have the form either waves
or protoplasmic tubes. Plasmodia grow from active zones concurrently. At these
active zones, three basic operations stimulated by nutrients (attractants) and some
other conditions can be observed: fusion, multiplication, direction, and repelling
operations. (i) The fusion, Fuse, means that two active zones A; and Ay produce
a new active zone As. (ii) The multiplication, Mult, means that the active zone
Aq splits into two independent active zones As and Asz propagating along their own
trajectories. (iii) The direction, Direct, means that the active zone A moves to a
source of nutrients. (iv) The repelling, Repel, means that the active zone A avoids
repellents. These operations, Fluse, Mult, Direct, Repel can be determined by the
following stimuli: (1) the set of attractants {Ni, Na,...}, sources of nutrients, on
which the plasmodium feeds; (2) the set of repellents { Ry, Ra, ...}, light and some
thermo- and salt-based conditions.

The universe, where Physarum lives, consists of cells possessing different topolog-
ical properties according to the intensity of chemo-attractants and chemo-repellents.
The intensity entails the natural or geographical neighborhood of the set’s elements
in accordance with the spreading of attractants or repellents. As a result, we obtain
Voronoi cells. Let us define what they are mathematically. Let P be a nonempty
finite set of planar points and |P| = n. For points p = (p1,p2) and & = (x1,z2)
let d(p,z) = \/(p1 — 21)% + (p2 — x2)? denote their Euclidean distance. A planar
Voronoi diagram of the set P is a partition of the plane into cells, such that for any
element of P, a cell corresponding to a unique point p contains all those points of
the plane which are closer to p in respect to the distance d than to any other node
of P. A unique region

vor(p) = ﬂ {z e R?*:d(p,2) < d(m,2)}
mePm#p

assigned to the point p is called the Voronoi cell of the point p. Within one Voronoi
cell a reagent has the full power to attract or repel the plasmodium. The distance d
is defined by intensity of reagent spreading like in other chemical reactions simulated
by Voronoi diagrams. When two spreading wave fronts of two reagents meet, this
means that the plasmodium cannot choose any further direction, and splits (see
fig.1). Within the same Voronoi cell two active zones will fuse.

If a Voronoi center is presented by an attractant a that is activated and occupied
by the plasmodium, this means that there exists a string a. This string has the
meaning “a exists”. If a Voronoi center is presented by a repellent [a] that is activated
and avoided by the plasmodium, this means that there exists a string [a]. This string
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Figure 1: The Voronoi diagram for Physarum, where different attractants have
different intensity and power.

has the meaning “a does not exist”. If two neighbor Voronoi cells contain activated
attractants a and b, which are occupied by the plasmodium, and between both
centers there are protoplasmic tubes, then we say that there exists a string ab and a
string ba. The meaning of those strings is equal and it is as follows: “ab exist”, “ba
exist”, “some a is b”, “some b is a”.

If one neighbor Voronoi cell contains an activated attractant a which is occupied
by the plasmodium and another neighbor Voronoi cell contains an activated repellent
[b] which is avoided by the plasmodium, then we say that there exists a string a[b]
and a string [bJa. The meaning of those strings is equal and it is as follows: “ab do
not exist, but a exists without b”, “there exists a and no a is b”, “no b is a and there

exists a”, “a exists and b does not exist”.

If two neighbor Voronoi cells contain activated repellents [a] and [b] which are
avoided by the plasmodium, then there exists a string [ab] and a string [ba]. The
meaning of those strings is equal and it is as follows: “ab do not exist together”,

“there are no a and there are no b”, “no b is a”, “no a is b”.

Thus, the family of strings between nearest attractants presents a proximity
graph which continuously grows from one attractant to another. This expansion
could be demonstrated as a Toussaint hierarchy [1], where the family of strings
starts from a nearest-neighborhood graph and any next graph in the hierarchy is
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(a) Data points (b) NNG
(c) MST (d) RNG
Figure 2: Examples of proximity graphs (part 1).

produced from previous graph by adding some edges between non-adjacent nodes,

see fig.2:
NNG — MST — RNG — GG — DT,

where
1. NNG is a nearest-neighborhood graph. It is the simplest and possibly most
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(a) GG

Figure 3: Examples of proximity graphs (part 2).

natural of proximity graphs. A point in the graph is connected by an edge
to its nearest neighbor. Given planar set V we can define the graph as fol-
lows: NNG(V) = (V,E), where for a,b € V we have (ab) € E iff |ab] =
Minccy_{a} |ac|. In general case NNG is a disconnected directed graph.

2. MST is a minimal spanning tree. It is a connected acyclic graph which has
minimal possible sum of edges’ lengths.

3. RNG is a relative neighborhood graph. It is a graph, where any two points
(a,b) are connected by an edge if the intersection of open disks of radius |ab|
centered at a and b is empty: (ab) € E iff [ab] < max.cv_iq 1 {lac|, [be|}.

4. GG is a Gabriel graph. 1t is a graph, where points a and b are connected by
an edge if the closed disk having the segment (ab) as its diameter is empty:
(ab) € B iff |ab| > mingey_ (4.0 {|“52c]}.

5. DT is a Delaunay triangulation. It is a graph subdividing the space onto
triangles with vertices in 'V and edges in E where the circumcircle of any
triangle contains no points of V other then its vertices.

Each string in the Toussaint hierarchy could be interpreted as a syllogistic propo-
sition. At the beginning, we have just data points without strings (fig.2(a)). Then
some first strings have grown up (fig.2(b)) and in some cases we see the first syllogis-
tic conclusions, when three or more points are connected by protoplasmic tubes. At
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the end, we observe all possible syllogistic conclusions (fig.2(f)) in the topology of
attractants and repellents we have set up for Physarum. As a result, the growth of
plasmodia is considered syllogistic conclusions. Due to different stimuli, we can man-
age this growth in directions we want, therefore we can foresee all possible syllogistic
conclusions, which can be implemented within the certain topology of attractants
and repellents. Moreover, we can deal with different syllogistic systems in managing
the Physarum behaviour. In particular, we can implement the Aristotelian syllo-
gistic (section 3), performative syllogistic (section 4), and Talmudic reasoning by
qal wa-homer (section 5). For denoting all possible logic circuits of syllogistic sys-
tems implemented in the Physarum behaviour, we will use the so-called Physarum
diagrams which are a modification of the well-known Lewis Carroll’s diagrams [3],
[4].

4 Physarum Aristotelian Syllogistic

4.1 Plasmodium without repellents

The Aristotelian syllogistic is the first formal system, it was created in Ancient
time. Its axiomatization was laid first by Lukasiewicz [8]. In his axiomatization, the
alphabet consists of the syllogistic letters .S, P, M, ..., the syllogistic connectives
a, e, i, o, and the propositional connectivesA —, V, A, =. Atomic propositions are
defined as follows: Sz P, where = € {a,e,i,0}. All other propositions are defined
in the following way: (i) each atomic proposition is a proposition, (ii) if X,Y are
propositions, then =X, =Y, X xY, where x € {V, A\, =}, are propositions, also. The
axioms proposed by Yukasiewicz are as follows:

SaP := (AA(Ais S) AVA(Ais S = Ais P)); (1)
SiP:=3A(Ais S A Ais P); (2)

SeP := =(SiP); (3)

SoP := —(SaP); (4)

Sas; (5)

SisS; (6)
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(MaP N SaM) = SaP; (7)

(MaP A MiS) = SiP. (8)

In the Physarum implementation of Aristotelian syllogistic, all data points are
denoted by appropriate syllogistic letters as attractants. A data point S is consid-
ered empty if and only if an appropriate attractant denoted by S is not occupied
by plasmodium. We have syllogistic strings of the form SP with the following in-
terpretation: ‘S is P,” and with the following meaning: SP is true if and only if S
and P are neighbors and both S and P are not empty, otherwise SP is false. By
this definition of syllogistic strings, we can define atomic syllogistic propositions as
follows:

‘All S are P’ (SaP): In the formal syllogistic: there exists A such that A is S
and for any A, if A is S, then A is P. In the Physarum model: there is a
plasmodium A and for any A, if A is located at S, then A is located at P.

‘Some S are P’ (SiP): In the formal syllogistic: there exists A such that both
‘A is S’ is true and ‘A is P’ is true. In the Physarum model: there exists a
plasmodium A such that A is located at S and A is located at P.

‘No S are P’ (SeP): In the formal syllogistic: for all A, ‘A is S’ is false or ‘A is
P’ is false. In the Physarum model: for all plasmodia A, A is not located at
S or A is not located at P.

‘Some S are not P’ (SoP): In the formal syllogistic: for any A, ‘A is S’ is false or
there exists A such that ‘A is S’ is true and ‘A is P’ is false. In the Physarum
model: for any plasmodia A, A is not located at S or there exists A such that
A is located at S and A is not located at P.

Formally, this semantics is defined as follows. Let M be a set of attractants. Take
a subset || X|| € M of attractants occupied by the plasmodium as a meaning for each
syllogistic variable X. Next, define an ordering relation C on subsets ||S||, || P|| € M
as: ||S|| C || P|| iff all attractants from || P|| are reachable for the plasmodium located
at the attractants from ||S]|. Hence, ||S|| N ||P|| # @ means that some attractants
from || P|| are reachable for the plasmodium located at the attractants from ||.S|| and
IIS||N]|P|| = @ means that no attractants from || P|| are reachable for the plasmodium
located at the attractants from ||S||. This gives rise to models M = (M, || - ||) such
that
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M = SaPiff |[S]| € |[Pl);

M = SiP it [[S| [P # 0;

M = SeP iff [|S||n||P] = 0;

MEpAgiff M =pand M = g;
e MEpVqgift MEpor Mg
o M | —piff it is false that M |= p.

Proposition 1. The Aristotelian syllogistic is sound and complete relatively to M
if we understand C as an inclusion relation (it is a well-known result [19]).

However, relatively to all possible plasmodium behaviours the Aristotelian syl-
logistic is not complete. Indeed, the relation C can have the following verification
on Physarum according to our definitions: ||S|| C [|P| and [|S| C ||P’||, where
|P|| N ||P'|| = 0, i.e. all attractants from ||P]|| are reachable for the plasmodium
located at the attractants from ||S|| and all attractants from || P’|| are reachable for
the plasmodium located at the attractants from ||S||, but between || P|| and | P’||
there are no paths. In this case C is not an inclusion relation and proposition 1 does
not hold. Hence, we need repellents to make C the inclusion relations in all cases.

4.2 Plasmodium with repellents

In the Physarum diagrams for verifying all the basic syllogistic propositions, we
will use the following four cells: z, y, x’, ¥/, where 2’ means all cells which differ
from z, but they are neighbors for y, and ¢ means all cells which differ from y and
are neighbors for x. These cells express appropriate meanings of syllogistic letters.
The corresponding universe of discourse will be denoted by means of the following

/
diagram: 5 Z’ . Assume that a black counter denotes an attractant and if it is
placed within a cell z, this means that “this Voronoi cell contains an attractant NV,
activated and occupied by the plasmodium.” It is a verification of the syllogistic
letter S, at cell . A grey counter denotes a repellent and if it is placed within a cell
x, this means that “this Voronoi cell contains a repellent R, activated and there is
no plasmodium in it.” It is a verification of a new syllogistic letter [S;]. For the sake
of convenience, we will denote S; by = and [S;] by [z]. Using these counters, we
can verify all the basic existence syllogistic propositions in a way analogous, though
different to Carroll’s diagrams (see fig.4).

45



SCHUMANN AND ADAMATZKY

“Some x exist” . “No x exist” O

string x string [x]

“Some x'exist” “No x' exist”

string x' . string [x”] O

“Some y exist” “No y exist”

string y . string [y] O
“Some y' exist” . “No y' exist” O

string ' string [y']

Figure 4: The Physarum diagrams for the basic existence strings.

Physarum strings of the form zy, yx are interpreted as particular affirmative
propositions “Some z are y” and “Some y are x” respectively, strings of the form
[zy], [yx], z[y], y[x] are interpreted as universal negative propositions “No z are y”
and “No y are x.” A universal affirmative proposition “All x are y” are presented
by a complex string zy&x[y’]. The sign & means that we have strings zy and x[y/]
simultaneously and they are considered the one complex string. All these strings
are verified on the basis of the diagrams of fig.5.

For verifying syllogisms we will use the following diagrams symbolizing some
neighbor cells:

m | m/
m | x|y | m
m |y | 2 | m
m' | m

The motion of plasmodium starts from one of the central cells (z, y, 2/, 3’) and
goes towards one of the four directions (northwest, southwest, northeast, southeast).
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“Some xy exist”
=“Some x are y”
=“Some y are x”’;
strings xy and yx

“All x are y”
= “No x are y"’;

O

string xy & x[y’]

’

“Some  xy exist”
=“Some x are y”
=“Some y'are x”;

“All x are y”
="No x are ¥v’;

ﬁ..

strings xy' and y'x string xy' & x[y]
“Some  x% exist” “All x"are y”
=“Some x' are y” =“No x'are y”;

=“Some y are x"’;
strings x'y and yx' q. string x"y&x'Ly]

“Some xy' exist”

=“Some x' are »”
=“Some y'are x™;
strings x'y’ and y'x’

“All x"are y”
=*“No x'are y”;

string x"y'&x'[y]

EJO
000

“Some y are x”
“Some y are x"’;

1\10 xy SXISt” O WALy ane:i .
=“No x are y o

@ 5 =“No y are x"’;
=“No y are x; =
strings and [¥» .

ngs bl L] O string yx&y[x'] . O
“No xpt exist” O O “All y are x” O
=*No x are 3" =“No y are x”;
=“No y'are x”;
strings [xy'] and [y'x] string yx'&y[x] . .
“No xy exist” “All y'are x” ‘ .
=“No x' are " = “No y' are x™;
=“No yare x";
strings [x'y] and [yx] O O string y'x&y'[x'] O
“No x'y’ exist” O “All y"are x” O .
=“No x' are y” =“No y' are x7;
=“Noy'are x";
strings [x'] and [y'x'] Q string y'x'&y'[x] .

“Some x are y”, .
“Some x are y"’;

strings xy, yx, xy', yx .

strings xy, yx. x'y,
/

yx

“Some x' are y”,

“Some x'are y"’;

“Some y' are x”
“Some y'are x"’;

000
000

strings x'y', y'x', x'y|
'

X

strings  xy', y'x,
x'y', yx'

HE

Figure 5: The Physarum diagrams for syllogistic propositions.
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The syllogism shows a connection between two not-neighbor cells on the basis of its
joint neighbor and says if there was either multiplication or fusion. As a syllogistic
/
conclusion, we obtain another diagram: :1 ZL,
Different syllogistic conclusions derived show directions of plasmodium’s propa-
gation. Some examples are provided in fig.6-8:

Continuing in the same way, we can construct a syllogistic system, where conclu-
sions are derived from three premises. The motion of plasmodium starts from one of
the central cells (z, y, ', y') and goes towards one of the four directions (northwest,
southwest, northeast, southeast), then towards one of the eight directions (north-
northwest, west-northwest, south-southwest, west-southwest, north-northeast, east-
northeast, south-southeast, east-southeast), etc.

Hence, a spatial expansion of plasmodium is interpreted as a set of syllogistic
propositions. The universal affirmative proposition zy&z[y’] means that the plas-
modium at the place x goes only to y and all other directions are excluded. The
universal negative proposition z[y] or [zy] means that the plasmodium at the place
x cannot go to y and we know nothing about other directions. The particular affir-
mative proposition zy means that the plasmodium at the place x goes to y and we
know nothing about other directions. Syllogistic conclusions allow us to mentally
reduce the number of syllogistic propositions showing plasmodium’s propagation.

For the implementation of Aristotelian syllogistic we appeal to repellents to
delete some possibilities in the plasmodium propagation. So, model M defined
above should be understood as follows:

e M E All x are y iff zy&z[y], i.e. the plasmodium is located at x and can
move only to y and cannot move towards all other directions;

e M = Some x are y iff xy, i.e. the plasmodium is located at x and can move
to y;

e M [ No x are y iff z[y] or [xy], i.e. the plasmodium cannot move to y in any
case.

It is evident in this formulation that the Aristotelian syllogistic is so unnatu-
ral for plasmodia. Without repellents, this syllogistic system cannot be verified in
the medium of plasmodium propagations. In other words, we can prove the next
proposition:

Proposition 2. The Aristotelian syllogistic is not sound and complete on the plas-
modium without repellents.
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No v are x|
All y" are m.

2. All y" are =x;
All y"are m’".

3. No x' are y
Some y are m'.

5. Some y are x';
No m are y.

6. No x' are m;
No m are y.

7. No y are x'
Some m' are y.

® O
@

No x"are m".

000 OO0

Some x are m'".

00
00

Some x are m".

Some x'"are m'".

00

There is no conclus

® O

Some x are m".

Figure 6: Physarum diagrams for syllogisms (part 1).
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8. All y' are x"
No y"are m.

OCeO ®
L] o

Some x'are m'.

9. Some x'are m"
No m are y'".

[ J©)
00O

There is no conclusion.

10. All y are x;

All y are m. .
@

Some m are x.

o
000
O

I11. No x' are m;
No m'are y.

OO

No x"are m.

00
00

12. All ' are x;
Some m are y'".

00

Some x are m'".

13. All y are m;

All x are y.
xarey .O .O

L JL @
O

All x are m.

Figure 7: Physarum diagrams for syllogisms (part 2).
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14.

15.

16.

17.

18.

Some y are x;

Nom'are y.

No x are y;

Some m are y.

Some y are x;

All y are m'.

All y are x;

All y"are m'.

Some x are y;

All y are m.

00 ®

Some m are x.

@O

Some m are x".

Some x are m".

0Oee

O

OO

No x’are m.

Some x are m.

Figure 8: Physarum diagrams for syllogisms (part 3).
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5 Physarum Non-Aristotelian Syllogistic

While in Aristotelian syllogisms we are concentrating on one direction of many
Physarum motions, and dealing with acyclic directed graphs with fusions of many
protoplasmic tubes toward one data point, in most cases of Physarum behaviour,
not limited by repellents, we observe a spatial expansion of Physarum protoplasm
in all directions with many cycles, see fig.9. Under these circumstances it is more
natural to define all the basic syllogistic propositions SaP, StP, SeP, SoP in a way
they satisfies the inverse relationship when all converses are valid: SaP = PaS,
SiP = PiS, SeP = PeS, SoP = PoS. In other words, we can draw more natural
conclusions for protoplasmic tubes which are decentralized and have some cycles.
The formal syllogistic system over propositions with such properties is constructed in
[15]. This system is called the performative syllogistic. The alphabet of this system
contains as descriptive signs the syllogistic letters .S, P, M, ..., as logical-semantic
signs the syllogistic connectives a, €, i, 0 and the propositional connectivesA —, V,
A, =. Atomic propositions are defined as follows: SxP, where x € {a,e,i,0}. All
other propositions are defined thus: (i) each atomic proposition is a proposition, (ii)
if X, Y are propositions, then =X, =Y, XxY, where x € {V, A, =}, are propositions,
too.

In order to implement the performative syllogistic in the behaviour of Physarum
plasmodium, we will interpret all data points denoted by appropriate syllogistic let-
ters as attractants. A data point S is considered empty if and only if an appropriate
attractant denoted by S is not occupied by plasmodium. Let us define syllogistic
strings of the form SP with the following interpretation: ‘S is P, and with the
following meaning: SP is true if and only if S and P are reachable for each other
by the plasmodium and both S and P are not empty, otherwise SP is false. Using
this definition of syllogistic strings, we can define atomic syllogistic propositions as
follows:

‘All S are P’ (SaP): In the formal performative syllogistic: there exists A such
that A is S and for any A, A is S and A is P. In the Physarum model: there
is a string AS and for any A which is a neighbor for S and P, there are strings
AS and AP. This means that we have a massive-parallel occupation of the
region where the cells S and P are located.

‘Some S are P’ (SiP): In the formal performative syllogistic: for any A, both ‘A
is S’ is false and ‘A is P’ is false. In the Physarum model: for any A which
is a neighbor for S and P, there are no strings AS and AP. This means that
the plasmodium cannot reach S from P or P from S immediately.
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Figure 9: Development of protoplasmic network by the plasmodium. Snapshots
(a)—(d) are recorded with 10 hour intervals. In this experiment we observe cycles
and decentralization of Physarum motions.

‘No S are P’ (SeP): In the formal performative syllogistic: there exists A such
that if ‘A is S’ is false, then ‘A is P’ is true. In the Physarum model: there
exists A which is a neighbor for S and P such that there is a string AS or
there is a string AP. This means that the plasmodium occupies S or P, but
not the whole region where the cells S and P are located.

‘Some S are not P’ (SoP): In the formal performative syllogistic: for any A, ‘A
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is S7 is false or there exists A such that ‘A is S’ is false or ‘A is P’ is false. In
the Physarum model: for any A which is a neighbor for S and P there is no
string AS or there exists A which is a neighbor for S and P such that there is
no string AS or there is no string AP. This means that the plasmodium does
not occupy S or there is a neighboring cell which is not connected to S or P
by a protoplasmic tube.

Composite propositions are defined in the standard way.
In the performative syllogistic we have the following axioms:

SaP := (JA(AisS) A (VA(Ais S N Ais P))); 9)

SiP :=VA(—-(AisS) A ~(Ais P)); (10)

SoP :=—~(3A(AisS) v (VA(Ais P AN Ais S))),i.e. (11)
(VA-(Ais S) AJA(—(Ais P) vV =(AisS)));

SeP := =VA(—-(Ais S) A ~(Ais P)),i.e. (12)

JA(Ais SV Ais P).

SaP = SeP; (13)

SaP = PalS; (14)

SiP = PiS, (15)

SaM = SeP; (16)

MaP = SeP; (17)

(MaP A SaM) = SaP; (18)

(MiP A SiM) = SiP. (19)

The formal properties of this axiomatic system are considered in [15]. In the
performative syllogistic we can analyze the collective dimension of behaviour. Within
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this system we can study how the plasmodium occupies all possible attractants in any
direction if it can see them. So, this system shows logical properties of a massive-
parallel behaviour (i.e. the collective dimension of behaviour). One of the most
significant notions involved in this implementation of the performative syllogistic in
Physarum topology is a neighborhood. We can define a distance for the neighborhood
differently, i.e. we can make it broader or narrower. So, from different neighborhoods
it will follow that we deal with different ‘universes of discourse.

In the Physarum diagrams for the performative syllogistic, the ‘universe of dis-
course’ cover cells z, y, non-z (which be denoted by '), non-y (which he denoted

/

by ¢): ;7 i’ . where z, y, 2/, 3y are neighbor cells containing attractants for
Physarum, x’ are all neighbors for y which differ from z, and 3 are all neighbors for
x which differ from y. Suppose that we have black, white, and grey counters and
(i) if a black counter is placed within a cell, this means that “this cell is occupied”
(i.e. “there is at least one thing in it”), (ii) if a white counter is placed within a cell,
this means that “this cell is not occupied” (i.e. “there is not thing in it”), (ii) if a
grey counter is placed within a cell, this means that “it is not known if this cell is
occupied”. All possible combinations of Physarum diagrams for atomic propositions
within our universe of discourse are pictured in fig.10.

The universe of discourse for simulating performative syllogisms by means of
Physarum behaviours covers cells x, y, m, 2’, ¥/, m’ in the following manner:
y | m|m | x
m | x|y | m

m |y |2 |m
z |m' | m|y
The motion of plasmodium starts from one of the central cells (z, y, 2/, y’) and
goes towards one of the four directions (northwest, southwest, northeast, southeast).
The Physarum diagram for syllogistic conclusions is as follows:

z | m
/

m| x
Some examples of performative syllogistic conclusions are regarded in fig.11. A
zone of true universal affirmative propositions is pictured in fig.12.

Thus, the performative syllogistic allows us to study different zones containing
attractants for Physarum if they are connected by protoplasmic tubes homogenously
as in fig.12.

A model M" = (M, ||-||) for the performative syllogistic, where M’ is the set of
attractants and || X ||, € M’ is a meaning of syllogistic letter X which is understood
as all attractants reachable for the plasmodium from the point x, is defined as
follows:
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“Some x are Y| ) “All x are y” .
=“Some y are x” - | =“All y are x7, .7
strings (& wand — [° — strings (x'&y"x and
(x'&y")y are false ) (x'&y")y are true .
Some x are "] [ 4 “All x are y™
=“Some )" are x”; i =“All y'" are x”; . .
strings (y&x")x and A strings  (y&xx and
(y&x")y' are false (\7 ) (y&x")y' are true ,

N
“Some x' are ) () “All x' are y” ‘
= “Some y are x"’; “'/ =“All y are x™";
strings (x&y)x'and . strings  (x&y ' and
(x&yy are false OO typaeme | @@
“Some x' are " : \:) “All x' are y™ .
= “Some ' are x™, e — =“All y' are x", _.
strings (x&y)x"and ~ strings  (x&y)x' and
(x&y)y" are false / (x&y)y' are true .

“Some x are not y’
< oA Y1
1\5‘0 x ame ¥y \D =“Some y are mnot| \__/
=“No yare x”, ._ o N
g 4 ’ E] L J
?::zg?) e m(;&y)xor o strings  (x'&xon ()
Yy - (x'&y")y are false -
e nl AT “Some x are not y”
,l\i?\l ,x ,?,re Y L/] <_> =“Some y' are nof O O
=“No )’ are x”, -
strings (y&x")x o] g N
(y&x')’ are true strings  (p&x")x or] O

“No x' are

(y&x")y' are false

“Some y are not y”’
=“Some y are not

=*“No y are x"’; .
strings (x&yyor — : Py
(cey")x’ are true ) strings  (x&y"y or { < O

“No x' are )"

© 0|0

(x&)y")x' are false

“Some x' are not y"’
=“Some y' are not

= S‘No yl are xn:; x,”. _‘// \\
strings (x&y)x’ of . 2
(x&y)y’ are true strings  (x&))x’ or O

(x&y)y' are false

Figure 10: The Physarum diagrams for premises of performative syllogisms. Strings
of the form (2'&y’)z mean that in cells 2’ and y’ there are neighbors A for z such that
Az, ie. (2/&y’) is a metavariable in (2'&y’)z that is used to denote all attractants
of 2’ and 3’ which are neighbors for the attractant of .
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All x are Yy;
All y are m.

®
e
®

All x are m.

®
® L Y

All x" are m".

All x" are vy;
All y are m'.

Some x' are y';
Some y' are m'.

O

O

Q0O

O
O

Some x"are m'.

Some « ar O =
allleYe el [C1N
S 1 10

Some x are m.

Figure 11: The Physarum diagrams for performative syllogisms with true conclu-
sions.
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Figure 12: The active zone, where all cells containing attractants are connected
by protoplasmic tubes, therefore the following syllogistic propositions are valid:
S1aS1g, S2aS3, Se9aS11, S7aSg, etc. and the following syllogistic conclusions are
true: ((511(159 A SgaSm) = SHaSw), ((SlaSQ A 52(154) = Sla5’4), etc.

o M' = All x are y iff || X[z # 0, | Xy # 0, and | X, N || X]|y # 0, more
precisely both (2'&y’)x and (2'&y’)y hold in M’, i.e. the plasmodium can
move from neighbors of y to # and it can move from neighbors of x to y;

o M' |= Some x are y iff y ¢ || X|, and = ¢ [ X|,, more precisely neither
(2’'&y")z nor (2'&y’)y hold in M’, ie. the plasmodium cannot move from
neighbors of y to x and it cannot move from neighbors of z to y;

e M' = Noz are y iff y € || X|; or € ||X]||,, more precisely (z'&y’)x or
(2'&y’)y hold in M’ i.e. the plasmodium can move from neighbors of y to x
or it can move from neighbors of = to y;

o M’ |= Some x are not y iff y ¢ || X||; or x ¢ || X||,, more precisely (2'&y’)z or
(2'&y’)y do not hold in M’, i.e. the plasmodium cannot move from neighbors
of y to = or it cannot move from neighbors of x to y;

e MEpAqgif M'=pand M | ¢;
e MEpVvqgif M =Epor M =g;
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o M’ = —piff it is false that M’ = p.

Proposition 3. The performative syllogistic is sound and complete in M'.

For more details on formal properties of performative syllogistic, please see [15].
This syllogistic describes the logic of plasmodium propagation in all possible direc-
tions. For the implementation of this syllogistic we do not need repellents. It is a
natural system.

6 Physarum Talmudic Reasoning

Deductions in Talmudic reasoning are constructed by using different inference rules.
The oldest family of these rules consists of the thirteen rules of Rabbi Ishmael. The
most important rule among them is called qal wa-homer. The direct meaning of
the word qal is ‘light in weight! From a logical point of view, qal is regarded as
minor, i.e. as being less important or less significant. The direct meaning of homer
is ‘heaviness’ It is major, i.e. more important, more significant. Hence, qal wa-
homer is an inference from minor to major, and vice versa, from major to minor.
For example, the Sabbath day is in some respects regarded as minor of a common
holiday or festival (yom tov). Therefore, if a certain kind of work is permitted on
the Sabbath we can infer that such a work is the more permissible on a festival; and
vice versa, if a certain work is forbidden on festival, it has to be forbidden on the
Sabbath also. Thus, gal wa-homer concerns actions when they are permitted to be
performed.

Notice that in the Talmud it is claimed that it is sufficient to derive from an
inference a result that is equivalent to the law from which it is made, i.e. the law
transferred to the major must never surpass in severity the original law in the minor,
from which the inference was drawn. This way of thinking is said to be the dayo
principle.

Let us consider a Talmudic example of qal wa-homer. In the Baba Qama (one
of the Talmudic books), different kinds of damages (nezeqin) are analyzed, among
which three genera are examined: foot action (regel), tooth action (shen) and horn
action (geren). These three are damages that could be caused by an ox (he can
trample (foot), eat (tooth) and gore (horn)). Due to the Torah it is known that
tooth damage (as well as foot damage) by an ox at a public place needs to pay zero
compensation. Horn damage at a public place entails payment of 50% the damage
costs as compensation. In a private area foot/tooth damage must be paid in full.
What can we say now about payments for horn actions of private places?
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Damages (nezeqin) | Public place | Private place
Horn action (geren) 50% ?

Foot action (regel) 0 100%
Tooth action (shen) 0 100%

In order to draw up a conclusion by gal wa-homer, we should define a two-
dimensional ordering relation on the set of data: (i) on the one hand, according to
the dayo principle, we know that payment for horn action in a private area cannot
be greater than the same in a public area, (ii) on the other hand, payment for horn
action at a private place cannot be greater than foot/tooth action at the same place.
Hence, we infer that payment of compensation for horn action at a private place is
equal to 50% of the damage costs.

The table above shows us that gal wa-homer can be interpreted spatially, too.
Already Yisrael Ury [23] proposed to use the Carroll’s bilateral diagrams for mod-

/

xy | xy
2y | 2y
plays the role of ‘universe of discourse’ for Talmudic reasoning over adjuncts x, vy,
non-z in the neighborhood (that is denoted by z’), non-y in the neighborhood (that
is denoted by y'). Assume that we have only black counters and if a black counter
is placed within a cell, this means that “this cell is occupied” (i.e. “there is at least
one thing in it”, “an appropriate Talmudic rule should be obeyed”). Thus, the cell
that does not contain a black counter indicates a situation in which the obligation
is not fulfilled, whereas the cell containing a black counter indicates a situation in
which the obligation is fulfilled.

Hence, if we have two rows and two columns, there are sixteen possible ways to
cover such a diagram by means of black counters, in connect to Yisrael Ury who
accepts only six of them (fig.13).

Let x mean proposition 1 and y mean proposition 2. Then the above mentioned
accepted diagrams (fig.13) have the following sense: (a) It is necessary and sufficient
to obey x; (b) It is necessary and sufficient to obey y; (c¢) It is sufficient to obey
either = or y; (d) It is not sufficient to obey x and/or y; (e) It is necessary and
sufficient to obey both z and y; (f) It is not necessary to obey either z or y.

that

elling conclusions by gal wa-homer. Let us take now the diagram

Let us return to our example. Let x3 be a ‘foot action’, zo a ‘tooth action’, x1
a ‘horn action’, 3/ ‘at public place’, y ‘at private place’. So, we obtain the following

diagram:
r1y | 21y
Ty’ | w2y
z3y’ | a3y

Assume that a black counter means an obligation to pay 100% of the damage
costs as compensation and a grey counter means an obligation to pay any 50%. We
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o oo
e e

d e f

Figure 13: Ury’s diagrams for conclusions by qal wa-homer.

O | O | O
o ®
o o

Figure 14: Ury’s diagrams for inferring whether we should pay a horn action at a
private place.

can cover this diagram by counters as shown in fig.14.

In so doing, we have supposed that there is a different power of intensity in
obligation. In this case our rule for inferring by qal wa-homer is formulated thus: if
a cell contains a black or grey counter, all cells above it and to its right also contain a
black or grey counter and the color of that counter has the minimal hardness of black
and grey in counters of the neighbor cells; if a cell does not contain any counter, all
cells below it and to its left are also without counters.

Talmudic diagrams defined above are closer to Carroll’s diagrams and are more
natural for Physarum behaviour than Ury’s diagrams (cf. [23]). In the Physarum
topology, Talmudic diagrams are built on syllogistic strings of the form xy, yx,
'y, yo', xy', y'x, 'y, y'2’, where x and y in zy are interpreted as two neighbor
attractants connected by protoplasmic tubes, x’ is understood as all attractants
which differ from z, but are neighbors of y, and 3’ is understood as all attractants
which differ from y and are neighbors of . The Talmudic diagrams for the Physarum
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Figure 15: The Physarum diagrams for qal wa-homer syllogisms (part 1): (a) If
the string xy’ is verified, then the string zy is verified, too (i.e. if xy’ is verified,
then z has a multiplication of plasmodium). (b) If the string yx’ is verified, then
the string xy is verified, too (i.e. if ya’ is verified, then y has a multiplication of
plasmodium). (c¢) If the strings zy’ and ya’ are verified, then the string zy is verified,
too (i.e. if both zy’ and ya’ are verified, then both z and y have multiplications of
plasmodium).

simulation have the following form ;U, g, where 2’ is a non-empty class of neighbor
attractants for y and 1/ is a non-empty class of neighbor attractants for . Then
qal wa-homer tells us whether a multiplication took place during the plasmodium’s
propagation at points x and/or y. In fig.15, all the possible conclusions inferred by
qal wa-homer in relation to x and y are considered, and they are defined if we have

a multiplication at those points.

Hence, the main difference between the Aristotelian syllogistic and Talmudic
reasoning is that, on the one hand, we are concentrating on fusions of plasmod-
ium in the case of the Aristotelian syllogistic in the Physarum topology and, on
the other hand, we deal with multiplications of plasmodia in the case of Talmudic
reasoning. An example of an experiment with Physarum that satisfies the qal wa-
homer rule is shown in fig.17. Talmudic reasoning can describe only fragments of
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If then

If then

*®. . | P
e o0 oo
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Figure 16: The Physarum diagrams for qal wa-homer syllogisms (part 2): (d) If no
string is verified, then there is no multiplication of plasmodium. (e) If the string zy
is verified, then the there is no multiplication of plasmodium. (f) If the strings 2y’
is verified, then the strings xy/, 2'y, zy are verified, too (i.e. if 'y’ is verified, then
both z and y have multiplications of plasmodium).

plasmodium behaviours while the Aristotelian syllogistic describes some fragments
of plasmodium propagations. Only the performative syllogistic is sound and com-
plete on plasmodium interactions. For more details on Talmudic reasoning and its
modern formalizations see [17].

7 Conclusion

In this paper, we have considered bio-inspired implementations of several spatial
syllogistic calculi. The medium of implementations chosen is the plasmodium of
Physarum Polycephalum. These implementations are called Physarum diagrams for
syllogistic. One of the most interesting results is that the Aristotelian syllogistic is
quite unnatural in the sense that this system assumes fusions and concentrations of
all plasmodium motions in one conclusion. This is difficult for the plasmodium, as
it aims to be propagated in all possible directions.

The main theoretical result of our paper is to demonstrate that the performa-
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. A
o

Figure 17: The qal wa-homer with plasmodium (part 1): (a) position of oat flakes
representing data points, (b) the plasmodium tree corresponding to gal wa-homer,
where x =1,y =9, 2/ =8,y =2U 3, etc.,

tive syllogistic of [15] can simulate massive-parallel behaviours of living organisms
such as plasmodia. This result can find many applications in behavioural sciences,
because the plasmodium behaviour can be considered the simplest natural intelli-
gent behaviour solving complex tasks. Thus, our result may have an impact on
computational models.
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pessen

e

(f) (&)

Figure 18: The gal wa-homer with plasmodium (part 2): (c)—(g) dynamics of qal

wa-homer by the growing plasmodium.
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Abstract

Abduction has been on the back burner in logic programming, as abduction can be
too difficult to implement, and costly to perform, in particular if abductive solutions
are not tabled. On the other hand, current Prolog systems, with their tabling mecha-
nisms, are mature enough to facilitate the introduction of tabling abductive solutions
(tabled abduction) into them.

Our contributions are as follows. First, we conceptualize a tabled abduction technique
for abductive normal logic programs, permitting abductive solutions to be reused, from
one abductive context to another. The approach is underpinned by the theory of AB-
DUAL and relies on a transformation into tabled logic programs. It particularly makes
use of the dual transformation of ABDUAL that enables efficiently handling the prob-
lem of abduction under negative goals, by introducing dual positive counterparts for
them. Second, we realize this tabled abduction technique in TABDUAL, a system im-
plemented in XSB Prolog. The implementation poses several challenges to concretely
realize the abstract theory of ABDUAL, e.g., by taking care of all varieties of loops
(positive loops and loops over negation) in normal logic programs, now complicated
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by tabled abduction. Other challenges are pertinent to optimizations, by benefitting
from XSB features, e.g., constructing dual rules by need only. Third, we evaluate
TABDUAL with respect to various standpoints. The evaluations employ cases from
declarative debugging, and also touch upon tabling nogoods of subproblems in the
context of abduction.

The techniques introduced in TABDUAL intends to sensitize a general audience of
users, and of implementers of various LP systems, to the potential benefits of tabled
abduction, where a number of its techniques are also adaptable and importable into LP
systems that afford tabling mechanisms, other than XSB Prolog.

Keywords: Abduction, Abductive Logic Programming, Dual Transformation, Tabling

1 Introduction

Abduction has been well studied in the field of computational logic, and logic program-
ming (LP) in particular, for a few decades by now [4, 11, 14,17,20,22,44]. Abduction in
LP offers a formalism to declaratively express problems in a variety of areas, e.g. in di-
agnosis, planning, scheduling, reasoning of rational agents, decision making, knowledge
assimilation, natural language understanding, security protocols verification, and systems
biology [1,6, 16, 18,23-25,31,34]. On the other hand, many Prolog systems have become
mature and practical, and thus it makes sense to facilitate the use of abduction into such
systems, be it two-valued abduction (as adopted in this work) or three-valued, e.g. [9].

In abduction, finding some best explanations (i.e. adequate abductive solutions) to the
observed evidence, or finding assumptions that can justify a goal, can be very costly. It
is often the case that abductive solutions found within one context are also relevant in a
different context, and can be reused with little cost. In LP, absent of abduction, goal solution
reuse is commonly addressed by employing a tabling mechanism [46]. Therefore, tabling
appears to be conceptually suitable for abduction, so as to reuse abductive solutions. In
practice, abductive solutions reuse is not immediately amenable to tabling, because such
solutions go together with an abductive context.

In [32], we preliminarily explore the idea of how to benefit from tabling mechanisms
in order to reuse priorly obtained abductive solutions, from one abductive context to an-
other. This technique of tabling abductive solutions (tabled abduction) is underpinned by
ABDUAL [4], a theory for computing abduction over Well-Founded Semantics. The tech-
nique presented in [32] consists of a program transformation from abductive normal logic
programs into tabled logic programs, and it specifically employs the dual transformation
of ABDUAL. The dual transformation allows to more efficiently handle the problem of
abduction under negative goals, by introducing their positive dual counterparts.

In this paper, we formalize the tabled abduction transformation in [32], while also sim-
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plifying it, by abstracting away from implementation details, such as dealing with loops (i.e.
positive loops and loops over negation) in abductive normal logic programs, non-grounded
programs, etc. In other words, the present transformation focuses on an innovative re-uptake
of prior abductive solution entries in tabled predicates as well as the dual transformation of
ABDUAL, on which it relies.

Based on the formalization, we develop a tabled abduction system TABDUAL. The
implementation of TABDUAL poses several challenges [36], both in concretely realizing the
abstract theory of ABDUAL and in benefitting from features of XSB Prolog [48], in which
TABDUAL is implemented, for optimizations:

1. In the theory of ABDUAL, the dual transformation does not concern itself with pro-
grams having variables. Without violating the groundness assumption in the the-
ory of ABDUAL, the TABDUAL implementation takes care of such programs. More
precisely, TABDUAL helps ground (dualized) negative subgoals and deals with non-
ground negative goals. Note that, in dealing with non-ground negative goals, we look
just for abductive solutions of such non-ground negative goals, and not for constraints
on free variables of its calling arguments, i.e., no constructive negation is applied.

2. The tabling mechanism in XSB Prolog supports Well-Founded Semantics [51], and
allows dealing with loops in the program to ensure the termination of looping queries.
The implementation of TABDUAL employs XSB’s tabling as much as possible to
deal with loops. Nevertheless, tabled abduction introduces a complication concerning
some varieties of loops. This complication is resolved by some pragmatic approaches
using available tabling constructs in XSB, such as tabled negation.

3. TABDUAL allows modular mixes of abductive and non-abductive program parts, and
one can benefit from the latter part by enacting a simpler translation of predicates in
the program being comprised just of facts. This simpler treatment distinguishes the
transformation between rules in general and predicates defined extensionally by facts
alone. It particularly helps avoid superfluous transformation of facts, which would
hinder the use of large factual data.

4. We address the issue of potentially heavy transformation load due to producing all
dual rules in advance, regardless of their need. Such a heavy dual transformation
makes it a bottleneck of the whole abduction process. A natural solution is instead to
perform the dual transformation by-need, i.e. dual rules for a predicate are only cre-
ated as their need is felt during abduction. We detail two approaches to realizing the
dual transformation by-need: (a) by creating and tabling all dual rules for a predicate
on the first invocation of its negation; and (b) by lazily generating and storing its dual
rules in a trie (instead of tabling them), as new alternatives are required. The former
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approach leads to an eagerly by-need dual rules tabling (under local table scheduling
strategy), whereas the latter permits a lazily by-need dual rules construction (in lieu
of batched table scheduling).

5. TABDUAL provides a system predicate that permits accessing ongoing abductive solu-
tions. This is a useful feature and extends TABDUAL’s flexibility, as it allows manip-
ulating abductive solutions dynamically, e.g. preferring or filtering ongoing abduc-
tive solutions, e.g. checking them explicitly against nogoods at predefined program
points.

TABDUAL has been evaluated with various objectives, where several TABDUAL variants
(of the same underlying implementation) are examined, by separately factoring out TAB-
DUAL’s features relevant to each evaluation objective [38]. First, we evaluate the benefit
of tabling abductive solutions, where we employ an example from declarative debugging
to debug missing solutions of logic programs, via a process now characterized as abduc-
tion [39], instead of as belief revision [29, 30]. Second, we use the other case of declarative
debugging, that of debugging incorrect solutions, to evaluate the relative worth of the dual
transformation by-need. Third, we touch upon tabling so-called nogoods of subproblems
in the context of abduction (i.e. abductive solution candidates that violate constraints), and
show that tabling abductive solutions can be appropriate for tabling nogoods of subprob-
lems. Fourth and finally, we also evaluate TABDUAL in dealing with programs having loops,
where we compare its results with those obtained from an implementation of ABDUAL [5].

TABDUAL is an ongoing work, which primarily intends to sensitize a general audience
of users, and of implementers of various LP systems, to the potential benefits of tabled ab-
duction. Though TABDUAL is implemented in XSB Prolog, a number of its techniques are
adaptable and importable into other LP systems that afford required tabling mechanisms.
They add and aid to the considerations involved in the research of the still ongoing devel-
opments of tabling mechanisms in diverse LP systems, and serve to inspire these systems in
terms of solutions, options and experimentation results of incorporating tabled abduction.

The rest of the paper is organized as follows. Section 2 provides basic definitions in LP
and how abduction is accomplished in LP. Tabled abduction and the formalization of the
TABDUAL transformation are presented in Section 3. We justify soundness and complete-
ness of TABDUAL, based on the theory of ABDUAL, in Section 4, and discuss its complexity
in Section 5. The aforementioned implementation aspects of TABDUAL are detailed in Sec-
tion 6. Section 7 exhibits and analyses the evaluation results of TABDUAL. We conclude
in Section 8, by discussing related work and further developments, including their potential
joint use with other non-monotonic LP features, having their own tabling requirements and
attending benefits.
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2 Preliminaries

A logic rule has the form H < Bi,...,By,not By+1,...,not By, wheren > m > 0
and H, B; with 1 < ¢ < nare atoms; H and By, ..., By,,not By,41, .. .,not B, are called
the head and the body of the rule, resp. We use ‘not’ to denote default negation. The atom
B; and its default negation not B; are named positive and negative literals, resp. When
n = 0, we say the rule is a fact, simply written as H. The atoms frue and false are, by
definition, respectively true and false in every interpretation. A rule in the form of a denial,
i.e. with empty head, or equivalently with false as head, is an integrity constraint (IC). A
logic program is a set of logic rules, where non-ground rules (i.e. rules containing variables)
stand for all their ground instances. We focus on normal logic programs, i.e. those whose
heads of rules are positive literals or empty. As usual, p/n denotes predicate p with arity n.

Abduction (inference to the best explanation — a common designation in the philosophy
of science [21, 26]), is a reasoning method, whereby one chooses those hypotheses that
would, if true, best explain the observed evidence (satisfy some query), while meeting any
attending ICs. In LP, abductive hypotheses (abducibles) are named positive or negative
literals of the program, which have no rules, and whose truth value is not initially assumed.
Abducibles may have arguments, but for simplicity they must be ground when abduced. An
abductive normal logic program is a normal logic program that allows abducibles appearing
in the body of rules. Note that abducible ‘not a’ does not refer to the default negation of
abducible a, as abducibles do not appear in the head of a rule, but instead to the explicitly
assumed hypothetical negation of a. The truth value of abducibles may be independently
assumed frue or false, via either their positive or negated form, as the case may be, to
produce an abductive solution to a query, i.e. a consistent set of assumed hypotheses that
support it. An abductive solution to a query is a consistent set of abducible instances that,
when substituted by their assigned truth value everywhere in the program P, affords us with
a model of P (for the specific semantics used on P), which satisfies both the query and the
ICs — a so-called abductive model.

Abduction in LP can naturally be accomplished by a top-down query-oriented procedure
to find an (abductive) solution to a query (by-need, i.e. as abducibles are encountered),
where the abducibles in the solution are leaves in its procedural query-rooted call-graph,
i.e. the graph recursively engendered by the procedure calls from literals in bodies of rules
to heads of rules, and thence to the literals in the rule’s body. This top-down computation
is possible only when the underlying semantics is relevant, i.e. avoids having to computing
a whole model (to guarantee its existence) in order to find an answer to a query: it suffices
to use only the rules relevant to the query — those in its procedural call-graph — to find
its truth value. The Well-Founded Semantics (WES) [51] enjoys the relevance property,
and thus it allows abduction to be performed by need. This is induced by the top-down
query-oriented procedure, solely for finding the relevant abducibles and their truth value,
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whereas the values of abducibles not mentioned in the abductive solution are indifferent to
the query. Tabled abduction and its prototype TABDUAL is underpinned by the theory of
ABDUAL [4] that computes abduction over WFS. Note that though WES is three-valued, the
abduction mechanism in TABDUAL enforces, by design, two-valued abductive solutions;
that is, needed abducibles are assumed either true or false, so as not to contribute with
undefinedness towards the query.

3 Tabled abduction in TABDUAL

We start by giving the motivation for the need of tabled abduction, and subsequently show
how tabled abduction is conceptualized and realized in the TABDUAL transformation.

3.1 Motivation

Example 1. Consider an abductive logic program Py, with a and b abducibles:
q+ a. s+ b,q. t<+ s,q.

Suppose three queries: q, s, and t, are individually launched, in that order. The first query,
q, is satisfied simply by taking [a] as the abductive solution for q, and tabling it. Executing
the second query, s, amounts to satisfying the two subgoals in its body, i.e. abducing b
followed by invoking q. Since q has previously been invoked, we can benefit from reusing its
solution, instead of recomputing, given that the solution was tabled. That is, query s can be
solved by extending the current ongoing abductive context [b] of subgoal q with the already
tabled abductive solution |a] of q, yielding |a,b]. The final query t can be solved similarly.
Invoking the first subgoal s results in the priorly registered abductive solution [a, b], which
becomes the current abductive context of the second subgoal q. Since [a,b] subsumes the
previously obtained (and tabled) abductive solution [a] of q, we can then safely take [a, b]
as the abductive solution to query t. This example shows how [a], as the abductive solution
of the first query q, can be reused from one abductive context of q (i.e. [b] in the second
query, s) to its other context (i.e. [a,b] in the third query, t). In practice the body of rule q
may contain a huge number of subgoals, causing potentially expensive recomputation of its
abductive solutions and thus such unnecessary recomputation should be avoided.

Tabled abduction in TABDUAL consists of two stages: program transformation and ab-
duction. The program transformation produces tabled logic programs from abductive nor-
mal logic programs. Abduction is then enacted on the transformed program. Example 1
indicates two key ingredients of the transformation:

1. abductive context, which relays the ongoing abductive solution from one subgoal to
subsequent subgoals, as well as from the head to the body of a rule, via input and
output contexts, where abducibles can be envisaged as the terminals of parsing,
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2. tabled predicates, which table the abductive solutions for predicates defined in the
input program, such that they can be reused from one abductive context to another.

3.2 TABDUAL transformation

The TABDUAL transformation is underpinned by the theory of ABDUAL [4], but addition-
ally employs the aforementioned idea of tabling and of reusing abductive solutions.

The whole TABDUAL transformation (Section 3.2.4) consists of several parts, viz., the
transformations for tabling abductive solutions, for producing dualized negation, and for in-
serting abducibles into an abductive context. Their specifications are formalized in Sections
3.2.1,3.2.2, and 3.2.3, respectively. Finally, queries should also be transformed, as detailed
in Section 3.2.5.

3.2.1 Tabling abductive solutions

We show in Example 2, how the idea described in Example 1 can be realized by the pro-
gram transformation. It illustrates how every rule in Fj is transformed, by introducing a
corresponding tabled predicate with one extra argument for the abductive solution entry,
such that it can facilitate solution reuse from one abductive context to another.

Example 2. We show first how the rule t <— s, q in Py is transformed into two rules:
tan(E2) < s([], E1), q(En, Es). t(I,0) < taw(E), produce_context(O, I, E).
Predicate t o, (E) is the tabled predicate which is introduced to table one abductive solution
for t in its argument E. Its definition, in the rule on the left, follows from the original
definition of t. Two extra arguments, that serve as input and output contexts, are added to
the subgoals s and q in the rule’s body. The left rule expresses that the tabled abductive
solution Es of ty, is obtained by relaying the ongoing abductive solution stored in context
FE1 from subgoal s to subgoal q in the body, given the empty input abductive context of
s (because there is no abducible by itself in the body of the original rule of t). The rule
on the right shows how the tabled abductive solution in E of ty, can be reused for a given
(input) abductive context of t. This rule expresses that the output abductive solution O of t is
obtained from the solution entry E of t ., and the given input context I of t, via the TABDUAL
system predicate produce_context(O, I, E). This system predicate concerns itself with:
whether E is already contained in I and, if not, whether there are any abducibles from F,
consistent with I, that can be added to produce O. If E is inconsistent with I then the
specific entry E cannot be reused with I, produce_context/3 fails and another entry E is
sought. In other words, produce_context/3 should guarantee that it produces a consistent
output context O from I and E that encompasses both.

The other two rules in Py are transformed following the same idea. The rule s <— b, q
is transformed into:
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sap(E) < q([b], E). s(1,0) < sqp(E), produce_context(0O, I, E).
where sq,(E) is the predicate that tables, in E, the abductive solution of s. Notice how b,
the abducible appearing in the body of the original rule of s, becomes the input abductive
context of q. The same transformation is obtained, even if b comes after q in the body of the
rule s.

Finally, the rule q < a is transformed into:
qap([a)). q(I,0) < qup(E), produce_context(O, I, E).
where the original rule of q, which is defined solely by the abducible a, is simply transformed
into the tabled fact qqp/ 1.

Example 3. Consider the following program that contains rules of non-nullary predicate
q/1 with variables (a/1 abducible):

q(0).  q(s(X)) + a(X), qg(X).

The transformation results in rules as follows:
Qab(ov[])' Qab(S(X)7E) <_Q(X7 [G(X)],E)
q(X,1,0) < qu(X, E), produce_context(O, I, E).
Notice that the single argument of q/1 is kept in the tabled predicate qqu (as its first argu-
ment), and one extra argument is added (as its second argument) for tabling its abductive
solution entry. The transformed rules qq,/2 and q/3 are defined following the same idea
described in Example 2.

The transformation for tabling abductive solutions is formalized in Definition 1.

Consider an abductive normal logic program P, where every integrity constraint in P
with empty head is rewritten as a rule with false as its head, i.e. as a denial. In the sequel,
we write ¢ to denote [t1,...,t,], n > 0, and for predicate p/n, we write p(t) to denote
p(t1,... ,tn),l and we write H, and B, to denote the head and the body of rule r € P,

respectively. Mark that abducibles do not have rules.

Definition 1 (Transformation for tabling abductive solutions). Let A, C B, be the set of
abducibles (either positive or negative) in v € P, and r' be the rule, such that H,, = H,
and B, = B\ A,.

1. Forevery rule r € P withr' the rule I(t) < Ly, ..., Ly, we define 7/(r):

lap(t, Em) < a(Ly), ..., a(Ly,).

"In particular, we write X to denote [X1,. .., X,], p(X) to denote p(X1,...,X,), and p(X,Y, Z) to
denote p(X1,...,Xn,,Y, Z), where all variables are distinct.
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where o is defined as:

(L) = lLi(ti, Ei—1, E;) ,if Ly = 1;(t;)
v nOt_li({i) Ei—ly Ez) , lsz = not lz(t_z)

with1 <1 < m, E; are fresh rule variables,* and Ey = A,
2. For every predicate p/n defined in P, we define 77 (p):
p(X,1,0) < pap(X, E), produce_context(O, I, E).
where produce_context/3 is a TABDUAL system predicate.

Example 4. Consider the following program P, where rules are named with r; and a/1 is
an abducible.
1t (0,_).

ro: u(s(X),Y) « a(X),v(X,Y, Z),not w(Z).
rs: v(X, X, s(X)).

We have A, and 1}, for 1 < i <3, as follows:?

g g

o A, =[]andr}: u(0,_).
o A, =[a(X)]andrh: u(s(X),Y) + v(X,Y,Z),not w(Z).
o A, =[]andrh: v(X, X, s(X)).

The transformation of Definition I results in:

7'(r1) : uab(0, 1)

7'(r2) : uap(s(X),Y, Es) +— (XY, Z [a(X)], E1), not_w(Z, Ey, E5).

7'(r3) + van(X, X, s(X),[]).

7 (u): u(Xy,Xo,I,0) — ug(Xy, Xo, E), produce_context(O, I, F).
)

v(X71,Xo, X3,1,0) <+ vgp(X1, X9, X3, E), produce_context(O, I, E).

Notice that both arguments of u/2 are kept in the tabled predicate uy, (as its first two
arguments), and one extra argument is added (as its third argument) for tabling its abductive
solution entry. Similar reasoning also applies to v/3. We do not have 7+ (w), because there
is no rule of w/1 in the program, i.e. w/1 is not defined in P.

Variables E; serve as abductive contexts.
3We use Prolog list notation to represents sets.
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3.2.2 Abduction under negative goals

For abducing under negative goals, the program transformation employs the dual transfor-
mation from ABDUAL [4]. It makes negative goals ‘positive’ literals, thus permitting to
avoid the computation of all abductive solutions of the positive goal argument, and then
having to negate their disjunction. The dual transformation enables us to obtain one ab-
ductive solution at a time, just as when we treat abduction under positive goals. The dual
transformation defines for each atom A and its set of rules R in a normal program P, a
set of dual rules whose head not_A is true if and only if A is false by R in the employed
semantics of P. Note that, instead of having a negative goal not A as the rules’ head, we
use its corresponding ‘positive’ literal, not_A. Example 5 illustrates the main idea of how
the dual transformation is employed in TABDUAL.

Example 5. Consider program P», where a is an abducible:
p 4+ a. p 4 q,not r. 7.

o With regard to p, the transformation will create a set of dual rules for p which falsify
p with respect to its two rules, i.e. by falsifying both the first rule and the second rule,
expressed below by predicate p*' and p*2, respectively:

not_p(Ty, T») < p*' (T, T1), p**(T1, T2).

In the TABDUAL transformation, this single rule is known as the first layer of the
dual transformation. Note the addition of the input and output abductive context
arguments, Iy and T, in the head, and similarly in each subgoal of the rule’s body,
where intermediate context Ty relays the ongoing abductive solution from p*! to p*2.

The second layer contains the definitions of p*' and p*2, where p*' and p** are de-
fined by falsifying the body of p’s first rule and second rule, respectively.

— In case of p*': the first rule of p is falsified only by abducing the negation of a.
Therefore, we have:
p*(I,0) + not_a(I,0).
Notice that the negation of a, i.e. not a, is abduced by invoking the subgoal
not_a(I,O). This subgoal is defined via the transformation of abducibles, as
discussed below.

— In case of p*2: the second rule of p is falsified by alternatively failing one sub-
goal in its body at a time, i.e. by negating q or, instead, by negating not r.

p*2(I,0) < not_q(I,0). p*2(I1,0) + r(I,0).
o With regard to q, the dual transformation produces the fact
not_q(1,1).
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as its dual, because there is no rule for q in P>. Since it is a fact, the content of the
context I is simply relayed from the input to the output context, i.e. having no body,
the output context does not depend on the context of any other goals, but depends
only on its corresponding input context.

e With regard to r, since it is a fact, its dual contains

not_r(To, Ty) + r*'(Ty, T1).
but with no definition of r*! /2. It may equivalently be defined as:

not_r(_,_) < fail

Example 5 shows that the dual rules of nullary predicates are simply defined by falsi-
fying the bodies of their corresponding positive rules. But a goal of non-nullary predicates
may also fail (or equivalently, its negation succeeds), when its arguments disagree with the
arguments of its rules. For instance, if we have just a fact ¢(1), then goal ¢(0) will fail (or
equivalently, goal not ¢(0) succeeds). That is, besides falsifying the body of a rule, a dual
of a non-nullary predicate can additionally be defined by disunifying its arguments and the
arguments of its corresponding positive rule, as in Example 6.

Example 6. Consider program Ps:
q(0).  q(s(X)) < a(X).

where a/1 is an abducible. Let us examine the dual transformation of non-nullary predicate
q/1.

L. not Q(X TOvTQ) A q*l(X TDaTl) (X, Tl,Tg).
20 XD« X\

3.q(XII) (—X\=(),

4. ¢**(s(X),1,0) <« not_a(X,I,0).

Line 1 shows the first layer of the dual rules for predicate ¢/1, which is defined as usual,
i.e. q/1 is falsified by falsifying both its first and second rules. Lines 2-4 show the second
layer of the dual rules for non-nullary predicates:

e In case of ¢*!, the first rule of ¢/1, which is fact ¢(0), is falsified by disunifying ¢*!’s
argument X with O (line 2). Note that, this is the only way to falsify ¢(0), since it has
no body.

e In case of ¢*2, the second rule of ¢/1 is falsified by disunifying ¢*?’s argument X
with the term s(_) (line 3), or alternatively, by instead keeping the head unification
and falsifying its body, i.e. by abducing the negation of a/1 (line 4).
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Definition 2 provides the specification of the transformation to construct dualized nega-
tion in TABDUAL.

Definition 2 (Transformation of dualized negation).  I. For every predicate p/n, n > 0,
defined in P: ~
p(tl) <— L11, ey Llnl'

p(fm) < Lmly ey Lmnm-
withm; > 0,1 <7< m:

(a) The first layer of the dual transformation is defined by 7~ (p):
’I’LOt_p(X, TOa Tm) < p*l(Xv T07 T1)7 sy p*m(Xa Tmfly Tm)

with T;, 0 < i < m, are fresh rule variables.*

(b) The second layer of the dual transformation is defined by:
™(p) = U™, 7%(p), and 7**(p) is the smallest set that contains the following
rules:

p*(ti,1,0) + o(Lin,;,1,0).
where o is defined as follows:

3 _J U(t,1,0) if Lij = not 1;(t;5)
oLy, 1,0) = { not_lij(tij, I,0) , if Lij = li(t;)

Notice that, in case of p/0 (i.e. n = 0), rule p X, I,1) < X # t; is omitted, since
both X and t; are [].°

2. For every predicate v /n, n > 0, in P, that has no definition, we define 7'*(7“):‘S

not_r(X,I,I).

*Variables T; serve as abductive contexts.

>This means, when p/0 is defined as a fact in P, we have not_p(Ty, T1) + p**(To, T1) in the first layer,
but there is no rule of p*' /2 in the second layer. Equivalently, it may be defined as not_p(_, _) « fail. (cf. the
dual rule of predicate /0 in Example 5).

®In particular, if there is no integrity constraint in P, we have 7~ (false) : not_false(I, I).
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Example 7. Recall program P in Example 4. The transformation of Definition 2 results in:

77 (u) : not_u(X1, X2, To, Tp) + u*t (X1, Xo, Ty, T1), u*?(X1, X2, Ty, Tb).
(U) : nOt_U(Xl,XQ,Xg,T(),Tl) — ’U*l(Xl,Xg,Xg,To,Tl).
77 (w): not_w(X,1,I).
T (false): not_false(X,1,1).
( ) *I(leXZ’I I) — [leXZ] 7& [Ov—]
u* (XI,XQ,I I) [Xl, 2] ;é [S(X),Y]
u*?(s(X),Y,I,0) + not_a(X, I,0).
uw*?(s(X),Y, I,0) + not_v(X,Y, Z,1,0).
uw?(s(X),Y,1,0) + w(Z,1,0).
T*(?}) :ooF (X17X27X3,I I) [Xl,XQ,Xg] 7é [X,X,S(X)]

3.2.3 Transforming abducibles

In Example 5, p*}(I,0) is defined by abducing not a, achieved by invoking subgoal
not_a(I,0). Abduction in TABDUAL is realized by transforming each abducible atom
(and its negation) into a rule, which updates the abductive context with the abducible atom
(or its negation, respectively). Say, abducible a of Example 5 translates to:
a(l,0) « insert_abducible(a, I, O).
where insert_abducible(A, I,O) is a TABDUAL system predicate that inserts abducible A
into input context I, resulting in output context O. It keeps the consistency of the con-
text, failing if inserting A results in an inconsistent one. Abducible not « is transformed
similarly, where not a is renamed into not_a in the head:
not_a(I,0) <+ insert_abducible(not a, I, O).
The specification for the transformation of abducibles is given in Definition 3.

Definition 3 (Transformation of abducib}es). Let Ap be the set of abducible atoms in P.
For every a(X) € Ap, we define 7°(a(X)) as the smallest set that contains the rules:

a()_(,l,_O) — insert_abducible(a(X), 1,0).
not_a(X,1,0) <« insert_abducible(not a(X),I,0).

where insert_abducible/3 is a TABDUAL system predicate. Mark that, in the body of the
second rule, ‘not a’ is used instead of ‘not_a’.

Example 8. Recall program P in Example 4. We have Ap = {a(X)}. The transformation
of Definition 3 results in:

°(a(X)): a(X,I,0) « insert_abducible(a(X), 1, 0).
not_a(X,1,0) < insert_abducible(not a(X),I,0).
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3.2.4 TABDUAL program transformation

Finally, the specification of the TABDUAL program transformation is given in Definition 4.

Definition 4 (TABDUAL program transformation). Let P be an abductive normal logic
program, Pp be the set of predicates in P, and Ap be the set of abducible atoms in P.
Taking:

o 7' (P)={7(r)|re P}
o 7T (P)={7%(p) | p € Pp and p is defined}
o7 (P)={7"(p)|pcPr}

7*(P) ={7*(p) | p € Pp and p is defined}

To(P) = {7°(a) |a € Ap}
The TABDUAL transformation T transforms P into 7(P), where 7(P) is defined as:
7(P)=7(P)urT(P)Ur (P)UT*(P)ut°(P)

Example 9. The set of rules obtained in Example 4, 7, and 8 forms 7(P) of program P.

3.2.5 Transforming queries

A query to a program, consequently, should be transformed:

e A positive goal GG is simply augmented with the two extra arguments for the input
and output abductive contexts.

e A negative goal not G is made ‘positive’, not_G, and added the two extra input and
output context arguments.

Moreover, a query should additionally ensure that all ICs are satisfied. When there is no
IC defined in a program, then, following the dual transformation, fact
not_false(I, ).
is added. Otherwise, ICs, which are rules with false in their heads, are transformed just
like any other rules; the transformed rules with the heads false(E') and false(I,O) may be
omitted. Finally, a query should always be conjoined with not_false/2 to ensure that all
integrity constraints are satisfied.
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Example 10. Query
?— not p.
first transforms into not_p(I, O). Then, to satisfy all ICs, it is conjoined with not_false /2,
resulting in top goal:
?— not_p([],T), not_false(T, O).

where O is an abductive solution to the query, given initially an empty input context. Note,
how the abductive solution for not_p is further constrained by passing it to the subsequent
subgoal not_false for confirmation, via the intermediate context T

Definition 5 provides the specification of the query transformation.

Definition 5 (Transformation of queries). Let P be an abductive normal logic program and
Qp be a query to P as follows:

- Gy, ..., Gp.
TABDUAL transforms query Qp into A(Qp):
2= 0(G1), ..., 0(Gm),not_false(T,,, O).
where ¢ is defined as:

’ not_g;(ti, Ti—1,T;) ,if Gy = not g;(t;)

Ty is a given initial abductive context (or [ | by default), 1 < ¢ < m, T;, O are fresh rule
variables.”

Example 11. Recall program P in Example 4. Query:
?— u(0,(0)), not u(s(0),0).
is transformed by Definition 5 into:

?— u(0,s(0),[],T1), not_u(s(0),0,T1,T5), not_false(T,O).

"Notice that O is the output abductive context, which returns the abductive solution(s) of the query.
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4 Soundness and completeness

TABDUAL essentially exploits a LP engineering aspect of ABDUAL [4], by providing a
self-sufficient program transform to table and reuse abductive solutions from one abductive
context to another. As the TABDUAL transformation is underpinned by the theory of AB-
DUAL, its soundness and completeness stem from that of ABDUAL, notably from Theorem
3.2 of [4]. This theorem is adapted below in the context of TABDUAL, whose proof de-
tails can be found therein. The definitions of abductive framework (P, A, I') and abductive
solution (P, A, B, I) are referred to Definitions 2.6 and 2.8 of [4].

Theorem 1. Let (P, A, I) be an abductive framework and A(Q p) is the transform of query
Qp w.r.t. program P, following Definition 5.

e Soundness: If O is a solution to A(Qp), then (P, A, O, ) is an abductive solution

for Qp.

e Completeness: If (P, A, O, I) is an abductive solution for Qp, then O is a solution
to A(Q P)-

Note that the ABDUAL evaluation to query () stated in Theorem 3.2 [4] is obtained
by applying ABDUAL operations (cf. Definition 3.9 of [4]). With the exception of oper-
ations ABDUCTION, CO-UNFOUNDED SET REMOVAL, and ANSWER CLAUSE RESOLU-
TION, other operations are covered and justified by XSB’s SLG operations [46]. Indeed,
these SLG operations underlie tabling mechanisms employed in TABDUAL, which is im-
plemented in XSB. Other points worthy of note to relate the theory of ABDUAL and the LP
engineering aspects of TABDUAL:

e The input and output abductive contexts are operational representation of abductive
context Set in an abductive subgoal (L, Set), cf. Definition 2.6 of [4].

e The system predicate insert_abducible/3 in Definition 3 implements the ABDUAL
operation ABDUCTION. Predicate produce_context/3 in Definition 1 does a simi-
lar job, i.e., taking care of the union of abductive contexts that appears in ABDUAL
operations ANSWER CLAUSE RESOLUTION and SIMPLIFICATION.

e In [4], two forms of dual program are introduced, i.e. folded and unfolded dual
program. Their need is more theoretical, to show the soundness and completeness of
the dual transformation and ABDUAL. The folded form specifically deals with infinite
ground programs: it avoids infinite dual rule bodies, by swapping that infinite body
possibility with a folded recurrent call, to the first body literal, followed by a folded
call to the remaining body literals, and so on, possibly incurring in an infinite number
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of rules instead. On the other hand, the unfolded form differs from the folded one
only insofar as no folding rules are defined, but is equivalent to the folded form.

Though the theory of ABDUAL underpins TABDUAL, we need not be concerned with
the folded dual form in TABDUAL, as it deals only with real finite non-ground pro-
grams, whose rules stand for all their ground instances. Indeed, the dual transfor-
mation in TABDUAL of Definition 2 is another way of expressing the unfolded form.
Observe that p** of Definition 2 corresponds to default conjugate conjp (Li;,) in the
unfolded form, where the computation of conj D(Li,ji) for each j; is realized by the
second layer of the transformation in Definition 2.

e The TABDUAL implementation caters to programs with variables and non-ground
queries (cf. Example 6, and later discussed in Section 6.2). Its non-groundness does
not violate the groundness assumption in the theory of ABDUAL, since one can move
the head unifications of a rule to equalities in its the body, before applying the TAB-
DUAL transformation. Recall Example 6, the two rules of ¢/1 can be rewritten as:

(X)X =0. q(X) + X = s(X"), a(X").

Using the above rewritten rules, it now becomes obvious how ¢*! and ¢*2 in Example
6 are derived by the dual transformation. Mark that, because the dual transformation
needs only fail one subgoal in the body at a time, the second definition of ¢*?, i.e.
¢*%(5(X), I,0) + not_a(X, I,0) is obtained by assuming the equality X = s(X’)
in the body, but alternatively failing a(X"):3

¢ (X,1,0) + X = s(X"), not_a(X', 1,0).

which is equivalent to rule 4 in Example 6, treating back the equality X = s(X')
in the body as head unification modulo variable renaming. To sum up, applying the
above rewriting (before the TABDUAL transformation) to rules with variables allows
to avoid defining a specific dual transformation for particularly dealing with such
rules. Inasmuch as head unifications of a rule are moved to equalities in its body, one
can think of the ground instances of all the rules, and stick to the dual transformation
of ABDUAL with its groundness assumption.

e When dealing with loops, TABDUAL relies as much as possible on XSB’s tabling
mechanism. This is specifically true for direct positive loops (Section 6.4.1). For
positive loops in dualized negation (Section 6.4.2) and negative loops over negation

8 As shown in Section 6.2.1, the implementation includes all positive literals that precede the negated literal
in a dual rule. Indeed, this is just another instance of requiring one failed literal in the body and allowing to
assume other (preceding) positive literals to succeed.
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(Section 6.4.3) additional treatments in the implementation are required, to deal with
these loops correctly, now in the presence of the TABDUAL transformation. For in-
stance, the CWA list introduced in dealing with positive loops in dualized negation
(Section 6.4.2) implements the co-unfounded set of literals and supports its corre-
sponding operation CO-UNFOUNDED SET REMOVAL in ABDUAL. Indeed, the same
technique is also implemented in the ABDUAL meta-interpreter [5]. The other treat-
ment, viz., for negative loops over negation (Section 6.4.3), benefits from XSB’s
tabled negation to explicitly enact DELAYING operation in ABDUAL, now within the
TABDUAL transformation. All these techniques and their rationale are detailed in
Section 6.4.

In summary, constructs introduced in the TABDUAL transformation as well as the imple-
mentation technical details, such as how to deal with non-groundness and programs having
loops, are just a concrete realization of the more abstract theory of ABDUAL and its oper-
ations. Other implementation aspects, e.g., the dual transformation by-need (Section 6.5),
are extra optimizations pertinent to XSB features, like tabling and tries.

5 Complexity

In terms of complexity, the size of the program produced by the TABDUAL transformation
is linear in the size of the input program, as shown in Theorem 2, which is similar to that of
ABDUAL using the folded dual form (cf. Lemma A.5 in [4]).

Definition 6. Let P be a finite logic program and B, be the body of rule r € P.

e preds(P) denotes the number of predicates in P.

heads(P) denotes the number of predicates defined (i.e. with rules) in P.

rules(P) denotes the number of rules in P.

size(P|,) denotes the size of rules in P whose head is the predicate p.

size(P) denotes the size of P and is defined as

size(P) = £/ (14 |B,,)

where |B,,| denotes the number of body literals in r;.°

The following theorem shows that the size of the program produced by the TABDUAL trans-
formation is linear in the size of the original program.

That is, the size of a rule r is defined as the total number of (head and body) literals in r.
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Theorem 2. Let P be an abductive normal logic program and Ap be the set of abducible
atoms in P. Then size(T(P)) < 9.size(P) + 4.|Ap|.

The proof is contained in Appendix A.

The problem of query evaluation to abductive frameworks is NP-complete, even for
those frameworks in which entailment is based on the WES [14]. In [4], it is shown that
the complexity of an ABDUAL query evaluation is proportional to the maximal number of
abducibles in any abductive subgoals, and to the number of abducible atoms in the pro-
gram. In particular, if the set of abducible atoms and ICs are both empty, then the cost
of query evaluation is polynomial. The complexity of TABDUAL query evaluation should
naturally be based on that of ABDUAL. One may observe that the table size, used in tabling
abductive solutions, would be proportional to the number of distinct (positive) subgoals in
the procedural call-graph, i.e. each first call of the subgoals in a given query will table, as
solution entries, the abductive solutions of the called subgoal. Besides tabling, a number of
implementation aspects discussed in Section 6 may help improve performance in practice.

6 Implementation aspects of TABDUAL

Next, we discuss several aspects pertaining to the implementation of the TABDUAL trans-
formation. The implementation aspects of TABDUAL introduced in this section aims at
realizing the abstract theory of ABDUAL as well as benefitting from XSB’s features for
TABDUAL optimizations to foster its more practical use.

6.1 Abductive and non-abductive program parts

We start by specifying TABDUAL’s input programs and its basic constructs.

Example 12. An example of input programs of TABDUAL:

abds(la/1]).
s(X) « prolog(atom(X)),a(X).
s(X) « prolog(nat(X)), a(X).
beginProlog.
nat(0). nat(s(X)) < nat(X).
endProlog.

The input program of TABDUAL, as shown in Example 12, may consist of two parts:
abductive and non-abductive parts. Abducibles need to be declared, in the abductive part,
using predicate abds/1, whose sole argument is the list of abducibles and their arities.
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The non-abductive part is distinguished from the abductive part by the begin Prolog and
endProlog identifiers. Any program between these identifiers will not be transformed,
i.e. it is treated as a usual Prolog program. Access to the program in the non-abductive
part is established using the TABDUAL system predicate prolog/1. That is, prolog/1 is a
meta-predicate that calls a user-defined predicate specified in the non-abductive part, e.g.,
in prolog(nat(X)) of Example 12. This meta-predicate’s argument may also be a Prolog
built-in predicate, e.g., in prolog(atom(X)). In essence, it executes the goal in its only
argument not subject to TABDUAL’s transformation.

6.2 Dealing with non-ground programs

This section touches upon abduction in programs with variables. The implementation deals
with two issues, viz., grounding the dualized negative subgoals in the dual transformation
and dealing with non-ground negative goals.

6.2.1 Grounding dualized negated subgoals
Example 13. Consider program Pg, with a/1 abducible:

q(1). r(X) < a(X). — q(X),r(X).

The TABDUAL transformation results in (notice that the last rule in Py is an IC):

L aw(L]]).

2. ¢(X,I1,0) — qu(X, E), produce_context(O, I, E).
3. not_q(X,1,0) <« q¢(X,I,0)

4. ¢N(X,I,I) +— X \=1

5. 7ﬁab(‘Xr? [CL(X)])

6. r(X,I,0) — ra(X, E),produce_context(O, I, E).
7. not_r(X,1,0) <+ r*YX,I,0)

8. rNX,I,I) — X \=_

9. rY(X,I,0) «— not_a(X,1,0).

10. not_false(I,0) < false*!(I,0).
11. false*!(1,0) +— not_q(X,I,0).
12. false*'(I,0) <« mnot_r(X,I,0).

Consider query ¢(1), which is transformed into:

2= q(1,]],T),not_false(T,O).
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Invoking the first subgoal, ¢(1,[ ],7'), results in 7" = [ ]. Invoking subsequently the
second subgoal, not_false(] |,O), results in the abductive solution of the given query:
O = [not a(X)], obtained via rules 10, 12, 7, and 9. Note that rule 11, an alternative to
false*!, fails due to uninstantiated X in its subgoal not_q(X, I, O), which leads to failing
rules 3 and 4. For the same reason, rule 8, an alternative to r*1, also fails.

Instead of having [not a(1)] as the abductive solution to the query ¢(1), we have the
incorrect non-ground abductive solution [not a(X)]. It does not meet our requirement, in
Section 2, that abducibles must be ground on the occasion of their abduction. The problem
can be remedied by instantiating X, in rule 12, thereby eventually grounding the abducible
not a(X) when it is abduced, i.e. the argument X of subgoal not_a/3, in rule 9, becomes
instantiated.

In the implementation, grounding a dualized negated subgoal is achieved as follows: in
addition to placing a negated literal, say not_p, in the body of the second layer dual rule,
all positive literals that precede literal p, in the body of the corresponding original positive
rule, are also kept in the body of the dual rule. For rule 12, introducing the positive subgoal
q(X), originating from the positive rule, before the negated subgoal not_r(X, I, O) in the
body of rule 12, helps instantiate X in this case. Rule 12 now becomes (all other rules
remain the same):

12. false* (I,0) < q(X,I,T),not_r(X,T,O).

Notice that, differently from before, the rule is now defined by introducing all positive liter-
als that appear before r in the original rule; in this case we introduce ¢/3 before not_r/3.
As the result, the argument X in not_r/3 is instantiated to 1, due to the invocation of ¢/3,
just like the case in the original rule. It eventually helps ground the the negated abducible
not a(X), when it is abduced, and the correct abductive solution [not a(1)] to query ¢(1)
is returned. By implementing this technique, we are also able to deal with non-ground pos-
itive goals, e.g., query ¢(X) gives the correct abductive solution as well, i.e. [(not a(1)] for
X =1L

There are some points to remark on regarding this implementation technique. First, the
semantics of dual rules does not change because the conditions for failure of their positive
counterpart rules are that one literal must fail, even if the others succeed. The cases where
the others do not succeed are handled in the other alternatives of dual rules. Second, this
technique may benefit from the TABDUAL’s tabled predicate, e.g. ¢, for predicate ¢, as
it helps avoid redundant derivations of the newly introduced positive literals in dual rules.
Finally, knowledge of shared variables in the body and whether they are local or not, may
be useful to avoid introducing positive literals that are not contributing to further grounding.
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6.2.2 Non-ground negative goals

Example 14. Consider program Py, with a/1 abducible:
p(1) <a(l).  p(2) < al(2).

Query p(X) to program P; succeeds under TABDUAL, giving two abductive solutions:
[a(1)] and [a(2)] for X = 1 and X = 2, respectively. But query not p(X) does not deliver
the expected solution. Instead of returning the abductive solution [not a(1), not a(2)] for
any instantiation of X, it returns [not a(1)] for a particular X = 1. In order to find the
culprit, we first look into the definition of not_p/3:

1. not_p(X,1,0) « pYX,I,T),p*X,T,O).
2. p*N(X,I,I) — X\= 1

3. p*(1,1,0) < not_a(1,1,0).

4. p*(X,I,1) — X\=2.

5. p*2(2,1,0) +— mnot_a(2,1,0).

Recall that query not p(X) is transformed into:

?— not_p(X,[], N),not_false(N, O).

When the goal not_p(X,[], N) is launched, it first invokes p*! (X, [], T). It succeeds by the
second rule of p*l, in line 3 (the first rule, in line 2, fails it), with variable X is instantiated
to 1 and T to [not a(1)]. The second subgoal of not_p(X,[ ], N) is subsequently invoked
with the same instantiation of X and 7T, i.e. p*2(1, [not a(1)],0), and it succeeds by the
first rule of p*2, in line 4, and results in N = [not a(1)]. Since there is no IC in Pg, the
abductive solution [not a(1)] is just relayed from NNV to O, due to the fact not_false(I,I) in
the transformed program (cf. Section 3.2.5), thus returning the abductive solution [not a(1)]
with X = 1 for the given query.

The culprit of this wrong solution is that both subgoals of not_p/3, i.e. p*'/3 and
p*2/3, share the argument X of p/1. This should not be the case, as p*! /3 and p*?/3 are
derived from two different rules of p/1, hence failing p should be achieved by invoking p**
and p*? with an independent argument X . In other words, different variants of the calling
argument X should be used in p*!/3 and p*?/3, as shown for rule not_p/3 (line 1) below:

1. nOt_p(Xa TOaTQ) <~ copy_term([X], [Xl])7p*1(X17T07T1)7
copy_term([X], [Xa]), p**(X2, Ty, T?).

where the Prolog built-in predicate copy_term /2 provides a variant of the list of arguments;
in this example, we simply have only one argument, i.e. [X].
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Now, p*!/3 and p*2/3 are invoked using variant independent calling arguments, viz.,
X7 and Xo, respectively. The same query first invokes p*! (X7, [ ],71), which results in
X1 = land Ty = [not a(1)] (by the second rule of p*!), and subsequently invokes
p*2(Xa, [not a(1)], Ty), resulting in Xo = 2 and Ty = [not a(1),not a(2)] (by the second
rule of p*2). It eventually ends up with the expected abductive solution: [not a(1), not a(2)]
for any instantiation of X, i.e. X remains unbound.

The technique ensures, as this example shows, that p(X) fails for every X, and its
negation, not p(X), hence succeeds. The dual rules produced for the negation are tailored
to be, by definition, an ‘if and only if” with regard to their corresponding positive rules. If
we added the fact p(Y') to P, then the same query not p(X) would not succeed because
now we have the first layer dual rule:

nOt—p(Xv T07T3) < copy_term([X], [Xl])’p*l(X17T07T1))
copy_term([X], [Xa]), p** (X2, T1, T»),
copy_term([X], [X3)), p*3 (X3, To, T3).

and an additional second layer dual rule p*3(X,_, ) +~ X # _ that always fails; its abduc-
tive contexts are thus irrelevant.

6.3 Transforming predicates with facts only

TABDUAL transforms predicates that comprise of just facts as any other rules in the program
(cf. fact ¢(1) and its transformed rules, in Example 13). This is clearly superfluous as
facts do not induce any abduction, and the transformation would be unnecessarily heavy for
programs with large factual data, which is often the case in many real world problems.

A predicate, say ¢/1, comprised of just facts, can be much more simply transformed.
The transformed rules ¢,;/2 and ¢/3 can be substituted by a single rule:

¢(X,1.1) + q(X).
and their negations, rather than using dual rules, can be transformed to a single rule:
not_q(X,1,1) < not q(X).
independently of the number of facts ¢/1 are there in the program. Note that the input and
output context arguments are added in the head, and the input context is just passed intact
to the output context. Both rules simply execute the fact calls.

Facts of predicate ¢/1 can thus be defined in the non-abductive part of the input pro-
gram. For instance, if a program contains facts ¢(1), ¢(2), and ¢(3), they are listed as:

beginProlog. q(1). q(2). q(3). endProlog.

Though this new transformation for facts seems trivial, it considerably improves the
performance, in particular if we deal with abductive logic programs having large factual
data. In this case, not only the time and space in the transformation stage can be reduced,
but also in the abduction.
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6.4 Dealing with loops

The tabling mechanism in XSB supports the Well-Founded Semantics, therefore it allows
dealing with loops in the program, ensuring termination of looping queries. In TABDUAL,
tabling for loops is taken care by its transformation, as shown in this section. TABDUAL
relies as much as possible on XSB’s tabling mechanism in dealing with loops; this is specif-
ically the case for direct positive loops (Section 6.4.1). Nevertheless, the presence of tabled
abduction requires some varieties of loops, viz., positive loops in (dualized) negation and
negative loops over negation, to be handled carefully in the transformation, as we detail in
Sections 6.4.2 and 6.4.3, respectively. Additional examples, besides the ones below, are to
be found in Appendix B.

6.4.1 Direct positive loops

Example 15. Consider program Pg which involves a direct positive loop between predi-
cates:

P q. q < p-

The tabling mechanism in XSB would detect direct positive loops and fail predicates in-
volved in such loops. The TABDUAL transformation may simply benefit from it. For Py,
query p fails, due to the direct positive loop between tabled predicates p,p, and qgp:

pab(E) A Q([ ]a E) p(Iv O) A pab(E),produce_conte:nt(O, I, E)
qar(E) < p([], E). q(1,0) < qup(E), produce_context(O, I, E).
On the other hand, query not p should succeed with the abductive solution: [ |. But,

instead of succeeding, this query will loop indefinitely! Recall that the call to query not p,
after the transformation, becomes not_p([ |, 1), not_false(T,O). The indefinite loop oc-
curs in not_p([ |, T) because of the mutual dependency between not_p and not_g through

not_p(I,0) < p**(I,0). p*t(I,0) < not_q(I,0).
not_q(I,0) « ¢*(I,0). ¢**(I,0) < not_p(I,0).

The dependency creates a positive loop on negative non-tabled predicates, and such
loops should succeed, precisely because the corresponding source program’s loop is a direct
one on positive literals, which hence must fail. We now turn to how to deal with such loops
in TABDUAL.

6.4.2 Positive loops in (dualized) negation

Since any source program’s direct positive loops must fail, the loops between their corre-
sponding transformed negations, i.e. positive loops in dualized negation (introduced via the
dual transformation), must succeed [4]. For instance, whereas r <— r fails query 7, perforce
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not_r < not_r succeeds query not_r. This is formalized in the notion of co-unfounded
set of literals in ABDUAL (cf. Definition 3.5 of [4])

We detect positive loops in (dualized) negation, PLoN for short, by tracking the ances-
tors of negative subgoals, whenever they are called from other negative subgoals. In the
transformation, a list of ancestors, dubbed the close-world-assumption (CWA) list is main-
tained. It contains only negative literals and serves as another extra argument in the first
and second layers of dual rules. Indeed, the role of this ancestor list to deal with PLoN
implements the co-unfounded set of literals in ABDUAL.

The TABDUAL transformation, with PLoN detection, of Ps results in the following first
and second layers of dual rules (other transformed rules remain the same):

1. not_p(I,1,C) <+ member(notp,C),!.
not_p(I,0,C) + p*Y(I,0,C).
e

3. p*(1,0,C) not_q(I,0, [not p | C)).
4. not_q(I,1,C) <+ member(notq,C),!.

5. not_q(I,0,C) <+ q¢**(1,0,0).

6. ¢*'(1,0,C) «— not_p(I,0,[not q | C]).

The CWA list C'is only updated in the second layer of dual rules (cf. rules p*! and ¢*!
in line 3 and 6, respectively), i.e. by adding the negative literal corresponding to the dual
rule into list C. For example, in case of p*! (line 3), not p is added into the CWA list C.
Note that, since the CWA list is intended to detect PLoN, the list is reset in positive subgoals
occurring in the body of a dual rule. This guarantees that there are no interposing positive
calls between the negative calls and their ancestor, which would break such loops.

The updated CWA list C' is then used to detect PLoN via an additional rule of not_p
(line 1, and similarly in line 4, for not_q). The idea is to test, whether we are returning to
the same call of not_p, which is simply realized by a membership testing. If that is the case,
the output context is set equal to the input context, and PLoN is anticipated by immediately
succeeding not_p with the extra cut to prevent the call to the next not_p rule (which would
otherwise lead to looping). This detection technique thus establishes the CO-UNFOUNDED
SET REMOVAL operation in the ABDUAL theory.

This technique of PLoN detection consequently requires query not p to be transformed
into:

?2— not_p([],T,[]), not_false(T, O).
1.e. it is initially called with an empty CWA list.
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6.4.3 Negative loops over negation

The other type of loops that XSB’s tabling mechanism already properly deals with, is the
negative loops over negation (NLoN).

Example 16. Consider program Py:
p<4q. q < not p.

In XSB, the tabling mechanism makes p and ¢ (also their default negations) undefined. But
under TABDUAL, query p (also ¢) will fail, instead of being undefined. It fails, because the
tabled predicate p_ab is involved in a direct positive loop as shown in the transformation
below:

p(1,0) — pa(E),produce_context(O, I, E).
Pab(E) <~ q(], B).

q(1,0) —  qup(E),produce_context(O, 1, E).
qab(F) +— not_p([], E).

not_p(I,0) < p*Y(I,0)

p*t(I,0) + not_q(I,0)

not_q(I,0) <« ¢*(I,0)

¢'(1,0)  «+ p(1,0)

More precisely, whereas in the original program Py, ¢ is defined by the negative subgoal
not p, in the resulting transformation ¢ is defined by the positive subgoal not_p via the
tabled predicate qp.

One way to resolve the problem is to wrap the positive subgoal not_p in the body of
the rule g, with the tabled negation predicate (tnot/1 in XSB) twice: on the one hand it
preserves the semantics of the rule (keeping the truth value by applying tnot twice), and on
the other hand introducing tnot creates NLoN (instead of direct positive loops). Predicate
Qqp 18 thus defined as follows (other transformed rules remain the same):

1. Qab(E) — not_ptu([],E).

2. not_pw(I,I) < call_tv(tnot over(not_p(I)), undefined).
3. not_pu(I,0) <+ call_tv(tnot over(not_p(I)), true), p**(I,0).

4. not_p(I) — pi(I,.).

Here, tnot over(not_p(I)) is the double-wrapping of not_p with tnot. It is realized via the
intermediate tabled predicate over /1, defined as:
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over(G) + tnot(G).

The double-wrapping is called through a new auxiliary predicate not_py, /2. The XSB
system predicate call_tv/2 calls the double-wrapping and is used to distinguish the two
cases (lines 2 and 3): whether NLoN exists or not. In the former case, the returned truth
value is undefined; therefore not_py, itself is undefined and its input context is simply
relayed to the output context. In the latter case, where the returned truth value is true, the
output context O of not_py, is obtained from the input context I as usual, i.e. by invoking
p*(1,0).

Notice that, instead of using the existing not_p(I, O) in the double-wrapping, we use
an auxiliary predicate not_p(I) to avoid floundering in the call to over/1, due to the unin-
stantiated output context O. For this reason, the newly introduced not_p/1 is thus free from
the output context, but otherwise defined exactly as not_p/2.

6.5 Dual transformation by-need

The TABDUAL transformation conceptually constructs all (first and second layer) dual rules,
in advance, for every defined atom in an input program, regardless whether they are needed
in abduction. We refer to this conceptual construction of dual rules in the sequel as the dual
transformation STANDARD.

The dual transformation STANDARD should be avoided in practice, as potentially large
sets of dual rules are created in the transformation, though only a few of them might be
invoked during abduction. As real world problems typically consist of a huge number of
rules, such dual transformation may suffer from a heavy computational load, and therefore
hinders the subsequent abduction phase to take place, not to mention the compile time, and
space requirements, of the large thus produced transformed program.

One solution to this problem is to compute dual rules by-need. That is, dual rules are
concretely created in the abduction stage (rather than in the transformation stage), based on
the need of the on-going invoked goals. The transformed program still contains the single
first layer rule of the dual transformation, but its second layer is defined using a newly
introduced TABDUAL system predicate, which will be interpreted by the TABDUAL system
on-the-fly, during abduction, to produce the concrete rule definitions of the second layer.

Example 17. Recall Example 5. The dual transformation by-need contains the same first
layer: not_p(Ty, Ty) < p**(To, Th), p**(T1,Tz). But the second now contains, for each
i€ {1,2}:

p*(I,0) « dual(i,p,I,0).

Predicate dual /4 is a TABDUAL system predicate, introduced to facilitate the dual transfor-
mation by-need:
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1. It constructs generic dual rules, i.e. dual rules without any context attached to them,
by-need, from the i-th rule of p/1, during abduction,

2. It instantiates the generic dual rules with the provided arguments and input context,
3. Finally, it subsequently invokes the instantiated dual rules.

The dual transformation by-need clearly reduces the size of the second layer dual rules.
Recall from Definition 6, that the size of a rule r is the total number of (head and body)
literals in p. Therefore, each rule r** has a constant size 4, which is obtained from its
two rules: (1) a rule that disunifies its arguments, viz. r*i()_( S T) X # t; and, (2)
a rule defined with the above TABDUAL system predicate dual/4, viz. 7*(t;,I,0) «
dual(i,r(t;), I,0). Compared to the dual transformation STANDARD, whose size of 7*(P)
for constructing its second layer dual rules size(7*(P)) = 2.size(P) (cf. proof of Theorem

1, in Appendix A), the size of 7,7, ;(P) for the dual transformation by-need, assuming there

are m rules of r, is size(7*__,(P)) = SI*") 4y = 4 rules(P). Given the definition
of size(P) in Definition 6, it is straightforward to verify, that the advantage of the dual
transformation by-need over the STANDARD one becomes apparent when the body of r
contains as little as two literals, rendering size(7,’..,(P)) < size(7*(P)). More concrete
evaluation of the dual-transformation by-need is exemplified and discussed in Section 7.3.

Having said that, constructing dual rules on-the-fly clearly introduces some extra cost in
the abduction stage. Such extra cost can be reduced by memoizing the already constructed
generic dual rules. Therefore, when such dual rules are later needed, they are available for
reuse and their recomputation avoided.

We examine two approaches for memoizing generic dual rules for the dual transforma-
tion by-need. Their definitions of system predicate dual/4 are different, which distinguish
how generic dual rules are constructed by-need. The first approach (Section 6.5.1) benefits
from tabling to memoize generic dual rules, whereas the second one (Section 6.5.2) em-
ploys XSB’s trie data structure [S0]. They are referred in the sequel as BY-NEED(EAGER)

and BY-NEED(LAZY), respectively, due to their dual rules construction mechanisms.

6.5.1 Dualization BY-NEED(EAGER): tabling generic dual rules

The straightforward choice for memoizing generic dual rules is to use tabling. The system
predicate dual/4 is defined as follows (abstracting away irrelevant details):

dual(N, P, I,0) < dual_rule(N, P, Dual), call_dual(P, 1,0, Dual).

where dual_rule/3 is a tabled predicate that constructs a generic dual rule Dual from the
N-th rule of atom P, and call_dual /4 instantiates Dual with the provided arguments of P
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and the input context . It also invokes the instantiated dual rule to produce the abductive
solution in O.

Though predicate dual/4 helps realize the construction of dual rules by-need, i.e. only
when a particular p*’ is invoked, this approach results in the eager construction of all
dual rules for the i-th rule of predicate p, because of tabling (assuming XSB’s local table
scheduling is in place, rather than its alternative, in general less efficient, batched schedul-
ing). For instance, in Example 5, when p*2(I, O) is invoked, which subsequently invokes
dual_rule(2,p, Dual), all two alternatives of dual rules from the second rule of p, i.e.
p*2(I,0) + not_q(I,0) and p*2(I, O) «+ r(I, O) are constructed before call_dual /4 is
invoked for each of them. This is a bit against the spirit of a full by-need dual transforma-
tion, where only one alternative dual rule is constructed at a time, just before it is invoked.
That is, generic dual rules could be constructed lazily.

As mentioned earlier, the reason behind this eager by-need construction is the local table
scheduling strategy, that is employed by default in XSB. This scheduling strategy may not
return any answers out of a strongly connected component (SCC) in the subgoal dependency
graph, until that SCC is completely evaluated [48].

Alternatively, batched scheduling is also implemented in XSB, which allows returning
answers outside of a maximal SCC as they are derived. In terms of the dual rules construc-
tion by-need, this means dual_rule/3 would allow dual rules to be lazily constructed. That
is, only one generic dual rule is produced at a time before it is instantiated and invoked.
Since the choice between the two scheduling strategies can only be made for the whole
XSB installation, and is not (as yet) predicate switchable, we pursue another approach to
implement lazy dual rule construction.

6.5.2 Dualization BY-NEED(LAZY): storing generic dual rules in a trie

Trie is a tree data structure that allows data, such as strings, to be compactly stored by a
shared representation of their prefixes. That is, all the descendants of a node in a trie have a
common prefix of the string associated with that node.

XSB offers a mechanism for facts to be directly stored and manipulated in tries. Figure
1, taken from [50], depicts a trie that stores a set of Prolog facts:

{rt(a, f(a,b),a),rt(a, f(a, X),Y),rt(b,V,d)}.
For trie-dynamic code, trie storage has advantages, both in terms of space and time [50]:

e A trie can use much less space to store many sets of facts than standard dynamic code,
as there is no distinction between the index and the code itself.
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Figure 1: Facts stored as a trie.

e Directly inserting into or deleting from a trie is faster (up to 4-5 times) than with
standard dynamic code, as discrimination can be made on a position anywhere in a
fact.

XSB provides predicates for inserting terms into a trie, unifying a term with terms in a trie,
and other trie manipulation predicates, both in the low-level and high-level API.

Generic dual rules can be represented as facts, thus once they are constructed, they can
be memoized and later (a copy) retrieved and reused. Given the aforementioned advantages
for storing dynamic facts and XSB support for its manipulation, a trie is preferable to the
common Prolog database to store dynamically generated (i.e., by-need) dual rules. The
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availability of XSB system predicates to manipulate terms in a trie permits explicit control in
lazily constructing generic dual rules compared to the more eager tabling approach (Section
6.5.1), as detailed below.

A fact of the form d(N, P, Dual, Pos) is used to represent a generic dual rule Dual
from the N-th rule of P with the additional tracking information Pos, which informs the
position of the literal used in constructing each dual rule. In the current TABDUAL imple-
mentation, we opt for the low-level API trie manipulation predicates, as they can be faster
than the higher-level APL

Using this approach, the system predicate dual/4 is defined as follows (abstracting
away irrelevant details):

1. dual(N,P,I1,0) «— trie_property(T,alias(dual)), dual(T, N, P, I,0).

2. dual(T,N,P,I,0) < trie_interned(d(N,P, Dual,_),T),
call_dual(P, 1,0, Dual).

3. dual(T,N,P,I,0) < current_pos(T,N, P, Pos),
dualize(Pos, Dual, NextPos),
store_dual(T, N, P, Dual, NextPos),
call_dual(P, 1,0, Dual).

Assuming that a trie 7" with alias dual has been created, predicate dual/4 (line 1) is
defined by an auxiliary predicate dual/5 with an access to the trie 7', the access being pro-
vided by the trie manipulation predicate trie_property/2. Lines 2 and 3 give the definition
of dual/5. In the first definition (line 2), an attempt is made to reuse generic dual rules,
which are stored already as facts d/4 in trie 7. This is accomplished by unifying terms
in T" with d(N, P, Dual, _), one at a time through backtracking, via the trie manipulation
predicate trie_interned/2. Predicate call_dual/4 then does the job as before. The sec-
ond definition (line 3) constructs generic dual rules lazily. It finds, via current_pos/4,
the current position Pos of the literal from the N-th rule of P, which can be obtained
from the last argument of fact d(N, P, Dual, Pos) stored in trie T'. Using this Pos infor-
mation, a new generic dual rule Dual is constructed by means of dualize/3. The latter
predicate additionally updates the position of the literal, NextPos, for the next dualization.
The dual rule Dual, together with the tracking information, is then memoized as a fact
d(N, P, Dual, NextPos) in trie T, via store_dual/5. Finally, the just constructed dual
Dual is instantiated and invoked using call_dual /4.

Whereas the first approach constructs generic dual rules by-need eagerly, the second
one does it lazily. But this requires memoizing dual rules to be carried out explicitly, and
additional tracking information is needed to correctly pick up on dual rule generation at
the point where it was last left. This approach affords us a simulation of batched table
scheduling for dual /5, within the default local table scheduling.
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6.6 Accessing ongoing abductive solutions

TABDUAL encapsulates the ongoing abductive solution in an abductive context, which is
relayed from one subgoal to another. In many problems, it is often the case that one needs
to access the ongoing abductive solution in order to manipulate it dynamically, e.g. to filter
abductive solutions using preferences, or eliminate so-called nogood combinations (those
known to violate constraints). But since it is encapsulated in an abductive context, and
such a context is only introduced in the transformed program, the only way to accomplish
it would be to modify directly the transformed program rather than the original problem
representation. This is inconvenient and clearly unpractical when we deal with real world
problems with a huge number of rules.

The aforementioned issue is overcome by introducing the TABDUAL system predicate
process_ongoing(P) that allows to access the ongoing abductive solution and to manipu-
late it, while also allowing to abduce further, using the rules of P. This system predicate is
transformed by unwrapping it and adding an extra argument to P (besides the usual input
and output context arguments) for the ongoing abductive solution.

Example 18. Consider a fragment of an input program:

q < 1, process_ongoing(s). $(X) + v(X).
Notice that, predicate s wrapped by process_ongoing/1 has no argument; more precisely,
one less argument than its definition, i.e. rule s on the right. The extra argument of rule
s is indeed dedicated for the ongoing abductive solution. The tabled predicate qup in the
transformed program is defined as follows:

qa(E) < r([],T),s(T,T, E).

That is, s/3 now gets access to the ongoing abductive solution T from r /2, via its additional
first argument. It still has the usual input and output contexts, T' and F, respectively, in its
second and third arguments. It indicates that, while manipulating the ongoing abduction
solution, abduction may take place in s. Rule s/1 transforms as usual.

The system predicate process_ongoing/1 permits modular mixes of abductive and
non-abductive program parts. For instance, the rule of s/1 in P; may be defined by some
predicates from the non-abductive program part, e.g. the rule of s/1 can be defined instead
as:

s(X) < prolog(preferred(X)), a(X).

where a/1 is an abducible and preferred(X') defines, in the non-abductive program part,
some preference rule on a given solution X.
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6.7 Other implementation aspects
Various other aspects have also been considered in implementing TABDUAL:

e XSB’s built-in predicate numbervars/1 is used to help writing variables, e.g. ar-
guments of a predicate, in transformed programs. This is to avoid the problem of
mixing of variables writing due to stack expansion (or garbage collection), a bug that
occurs in most Prolog systems [49]. This problem particularly arises when we deal
with rather big input programs.

e The list of abductive solutions is represented using two separate lists: the lists of
positive and negative parts. This enables faster consistency checking of abductive so-
lutions, in predicates insert_abducible/3 and produce_context/3. That s, to check
consistency with respect to a literal, only the list of literals with different polarity is
inspected; there is no need to traverse all literals. Moreover, both lists are ordered, in
order to improve efficiency.

e The second layer dual rules are defined by giving priority to abducibles. For in-
stance, given rule p < ¢,a (where a is an abducible), the first rule for p*! will be
p*! < not_a, instead of p*! < not_q (even though, in the body of the correspond-
ing positive rule, a comes later than ¢). In this way, it allows obtaining abductive
solutions to negative goals earlier: not_a is returned first before not_g is invoked
(the latter could involve a deep derivation before it successfully abduces a solution).
Also, since the abducible will be required anyway, giving it priority may constrain
earlier any solutions. Of course, care has to be taken when we deal with rules having
variables, in particular concerning grounding issues (cf. Section 6.2.1). Knowledge
of shared variables in the body, and whether they are local or not, may help in this
case. Furthermore, the use of a domain predicate for abducibles may come in handy.

e When a program contains NLoN, the dual rules of some predicates are also tabled.
These are the predicates that appear as negative subgoals in the bodies of rules. Re-
call the definition of ¢,p, in Section 6.4.3, where rules not_py, are introduced for
the negative goal not p that appears in the body of rule g. Predicate not_py, is in
turn defined by not_p/1; the latter predicate is defined by invoking the dual rules of
p: in that example, p*! /2 (line 4). By tabling p*! /2, its recomputation, when it is
subsequently invoked as the last subgoal of the not_py,’s second rule (line 3), can be
avoided.

7 Evaluation of TABDUAL

We evaluate TABDUAL from various standpoints:
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1. Our first evaluation (Section 7.2) aims at evaluating the benefit of tabling abductive
solutions.

2. We evaluate in Section 7.3 the relative worth of three approaches of the dual trans-
formation (as discussed in Section 6.5), viz., STANDARD, BY-NEED(EAGER), BY-
NEED(LAZY).

3. We touch upon the evaluation of tabling nogoods of subproblems in abduction, in
Section 7.4.

4. Finally, in Section 7.5 we evaluate TABDUAL, implementing the technique discussed
in Section 6.4, for programs with loops, and compare the results with those returned
by the ABDUAL meta-interpreter of [5].

In the first two evaluations, examples from declarative debugging are employed, which
are now characterized as abduction [39], rather than as belief revision [29,30]. We specifi-
cally consider two cases of declarative debugging: missing solutions and incorrect solutions,
in the evaluation of Sections 7.2 and 7.3, respectively. Before discussing the aforementioned
four evaluations, we revisit in Section 7.1 our declarative debugging of definite logic pro-
grams viewed as abduction. For normal logic programs, the reader is referred to [39].

7.1 Declarative debugging of definite logic programs

Example 19. Consider program Py [29] as a buggy program:
a(l). a(X) « b(X),c(Y,Y).
b(2). b(3). c(1,X). c(2,2).

7.1.1 Incorrect solutions

Suppose that a(3) is an incorrect solution. To debug its cause, the program is first processed
using the transformation in [30], by adding default literal not incorrect(i, [ X1, ..., X,)])
to the body of each i-th rule of P, to defeasibly assume their correctness by default, where
n is the rule’s arity and X;s, for 1 < < n, its head arguments. This yields program P :

a(1) < not incorrect(1, [1]). a(X) < b(X),c(Y,Y),not incorrect(2, [ X]).
b(2) < not incorrect(3,[2]). b(3) < not incorrect(4, [3]).
c(1, X) < not incorrect(5,[1, X]).  ¢(2,2) + not incorrect(6,[2,2]).

In terms of abduction, one can envisage incorrect/2 as an abducible. To express, while
debugging, that a(3) is an incorrect solution, we add to Pj, an IC: < «(3). Running
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TABDUAL on PJ, returns three solutions as the possible sufficient causes of the incorrect
solution:

[incorrect(2,[3])], [incorrect(4,[3])], [incorrect(5,[1,1]),incorrect(6, [2,2])].

7.1.2 Missing solutions

Suppose a(5) should be a solution of Pjg, but is missing. To find this bug, P is trans-
formed [29] by adding to each predicate p/n a rule:

p(X1, ..., Xpn) < missing(p(X1,...,Xn)).
That is, P is transformed into PJj, that contains all rules from Pj plus three new rules:
a(X) «+ missing(a(X)). b(X) + missing(b(X)). ¢(X,Y) + missing(c(X,Y)).

Similarly to before, missing/1 can be viewed as an abducible. But now, to express that
we miss a(5) as a solution, we add to Pjj, an IC: < not a(5). TABDUAL returns the three
abductive solutions on PJ|, as the causes of missing solution a(5) in Pj:

[missing(a(5))], [missing(b(5))], [missing(b(5)), missing(c(X, X))].

Differently from [29,30], where minimal solutions are targeted, TABDUAL also returns non-
minimal solution [missing(b(5)), missing(c(X, X))]. Finding minimal abductive solu-
tions is not always desired — here bugs may well not be minimal and, in this case, TABDUAL
allows one to identify and choose those bugs that satisfice so far, and to continue searching
for more solutions if needed.

Next, we discuss the evaluation of TABDUAL. The experiments in all evaluations were
run under XSB-Prolog 3.3.7 on a 2.26 GHz Intel Core 2 Duo with 2 GB RAM. The time
indicated in all results refers to the CPU time (as an average of several runs) to aggregate
all abductive solutions, unless otherwise stated.

7.2 Evaluation of tabling abductive solutions

The first evaluation aims at ascertaining the relative benefit of TABDUAL’s main feature,
i.e. tabling abductive solutions. We employ the case of missing solutions from declarative

103



SAPTAWIJAYA AND PEREIRA

debugging (Section 7.1.2). Consider program Pg,,; below as buggy:

0(0,1). q0(X,0).
a(1). a1 (X ) < qo(X, X).
q2(2). q2(X) + q1(X).

(3) q3( ) < q2(X).

¢1000(1000). qlooo(X) — G999(X).

Following the transformation for debugging missing solutions in Section 7.1.2, program
Pryq transforms into an abductive logic program ng ., that contains all rules of Pr,q; plus
rules below (with abducible missing/1):

q1(X) + missing(q1(X)

q@(X,Y) missing(qo(if, Y))
q2(X) < missing(q2(X))

q1000(X) + missing(qiooo(X))

Program Py, ., thus serves as the input for TABDUAL.

In order to evaluate tabling abductive solutions, a set of benchmarks is created that cor-
responds to a set of missing solutions in the buggy program Pg,,;. More precisely, we want
to debug this program for missing solutions ¢,,(1001), where m € {100, 200, ...,1000}.
Recall from Section 7.1.2, that missing a solution ¢,,, (1001), for a particular m, is expressed
by adding IC < not ¢,,(1001) to the program Py, .. In our experiments, we alternatively
pose query ¢,,(1001) for each m, which is equivalent to satisfying its corresponding IC.

This set of benchmarks is suitable for showing the benefit of tabling abductive solu-
tions. It is easy to verify that debugging missing solution ¢100(1001) obtains 101 abduc-

tive solutions: [missing(qi00(1001))],[missing(qee(1001))], ..., [missing(q1(1001))],
[missing(qo(1001,1001))]. By employing tabled abduction, the causes of missing solution
q200(1001):  [missing(ga00(1001))], [missing(qioe(1001))], ..., [missing(qi1(1001))],

[missing(qo(1001,1001))], is subsequently found without recomputing those 101 abduc-
tive solutions priorly obtained from the query ¢109(1001). This advantage is accumulatively
enjoyed by subsequent values of m (m = 300, ..., 1000).

Since in this first evaluation we focus on the benefit of tabling abductive solutions,
we consider a variant of TABDUAL (with the same underlying implementation) where its
feature of tabled abduction is stripped off. That is, by disabling the table declarations of
abductive predicates g;,, , for every predicate ¢;, 0 < 7 < 1000. We refer below this variant
as TABDUAL(NO TABLING).
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Figure 2: The abduction time for finding the causes of missing solutions ¢,,(1001), where
m € {100,200, ...,1000} with respect to program Pp,q;.

Figure 2 shows the time required in the abduction stage of TABDUAL and TABDUAL(NO
TABLING), by consecutively evaluating query ¢,,,(1001), where m € {100, 200, . ..,1000}.
Note that, the time needed in the transformation stage between the two variants do not
differ, as both of them rely on the same implementation of the transformation. The result
reveals that, with some little cost of tabling abductive solutions in earlier values of m (i.e.
m < 300), TABDUAL consistently outperforms its counterpart in performance. Tabling
pays off for subsequent values of m in TABDUAL, as greater /m may reuse tabled abductive
solutions of smaller m, due to the consecutive evaluation of queries. Moreover, TABDUAL
scales better than TABDUAL(NO TABLING), i.e. as the values of m grows, its abduction
time increases slower than the other. We also observe, that TABDUAL’s abduction time
tends to grow linearly, whereas that of its counterpart exponentially.

7.3 Evaluation of the dual transformations

For this evaluation, we resort to the same buggy program Pg,,; used in the evaluation of
tabling abductive solutions (cf. Section 7.2). But instead of debugging the program for
missing solutions, we consider the case of incorrect solutions.

The transformation for debugging incorrect solutions (Section 7.1.1) turns Pgy,; into an
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abductive logic program Py, ., below (with abducible incorrect /2 abbreviated as inc/2):

70(0,1) < not inc(1, [0, 1]). q0(X,0) < not inc(2, [ X, 0]).
q1(1) < not inc(3, [1]). q1(X) < not inc(4, [X]), go(X, X).
q2(2) < not inc(5,[2]). q2(X) < not inc(6, [X]), ¢1(X).
q3(3) + not inc(7,[3]). ( [ (X).

q3(X) < not inc(8, [X]), ¢2

q1000(1000) < not inc(2001, [1000]) Q1000(X) < not inc(2002, [X]), QQgg(X).

Let us consider a set of incorrect solutions ¢, (0), for m € {100, 200, ..., 1000}, with
respect to Pryq. The set of benchmarks for the purpose of this evaluation amounts to
debugging each of these incorrect solutions. Recall from Section 7.1.1, that debugging an
incorrect solution g, (0) for a specific m is realized by adding to program Py, , an IC
< ¢m/(0). In our experiments, we alternatively pose query not ¢,,(0) for each m, which
is equivalent to satisfying its corresponding IC. Because finding the causes of incorrect
solution bugs ¢,,(0) amounts to satisfying negative goal not g, (0), this debugging case
appropriately serves as benchmarks for evaluating dual transformations: such a negative
query should be answered using dual rules computed by TABDUAL from program Py, ;.

Since our aim is this particular evaluation focuses on the relative worth of the dual
transformation by-need, we consider the three versions of dual transformations (Section 6.5)
implemented in TABDUAL, viz.: STANDARD, BY-NEED(EAGER), and BY-NEED(LAZY). By
experimenting on these three variants, we obtain results as follows:

1. Ittakes 1.164 seconds for TABDUAL that implements either BY-NEED(EAGER) or BY-
NEED(LAZY), whereas the implementation STANDARD 1.674 seconds. It is obvious
that BY-NEED(EAGER) and BY-NEED(LAZY) require less transformation time than
STANDARD, since they do not produce all dual rules in advance as STANDARD does.

Take an example ¢2. The second layer dual rules produced, in advance, by STANDARD
are: (apart from the dual rule that disunifies arguments ¢3(X, I, 1) + X # 2):

@Y 2,1,0) <« incorrect(5,[2],1,0).
GAHX,1,0) + mcorrect(ﬁ,[ ,1,0).
GAHX,1,0) <+ not_qi(X,1,0).

whereas BY-NEED(EAGER) and BY-NEED(LAZY) just produce their skeleton:

¢'(2,1,0) + dual(1,92(2),1,0).
@AHX,1,0) <+ dual(2,q2(X),I,0).

and only construct dual rules, by-need, during abduction.
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Figure 3: The abduction time for finding the causes of incorrect solutions g,,(0), where
m € {100,200, ...,1000} with respect to program Pp,q;.

2. In terms of the number of dual rules (apart from those dual rules defined by dis-
unifying arguments), STANDARD creates 3002 second layer dual rules during the
transformation, regardless their need. On the other hand, BY-NEED(EAGER) and BY-
NEED(LAZY) create only 2002 (skeleton of) second layer dual rules, shown above.

3. During abduction, BY-NEED(EAGER) and BY-NEED(LAZY) construct only 60% of
second layer dual rules produced by STANDARD. That is, 40% of dual rules con-
structed by STANDARD are actually not needed. Take again the above case of gs.
In finding the causes of an incorrect solution g, (0) (for some m), query not ¢, (0)
does not need to invoke dual rule ¢3'(2,1,0) < incorrect(5,[2],1,0), as they
are bound to fail. In this case, the other dual rule that disunifies arguments, viz.,
@ (X, I,1) < X # 2, already succeeds (as X is instantiated by 0) and is sufficient
to satisfy the ¢3! part.

Point (1) above tells us that the dual transformation by-need, either BY-NEED(EAGER)
or BY-NEED(LAZY), requires less time in the transformation stage compared to STANDARD.
On the other hand, as explained in Section 6.5 (cf. explanation for Example 17), predicate
dual /4, in the rule skeleton of point (2) above, constructs generic dual rules and instanti-
ates them only in the abduction stage. Figure 3 shows the performance of each dual trans-
formation in terms of time needed in the abduction stage of consecutively running query
not ¢, (0) with different values of m € {100, 200, ...,1000}. Note that, the time needed
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for the transformation is not included in the figure, as we want to measure the cost incurred
by BY-NEED(EAGER) and BY-NEED(LAZY) in the abduction stage. In Figure 3, we observe
that STANDARD is faster than BY-NEED(EAGER) and BY-NEED(LAZY). This is expected,
due to the overhead incurred for computing dual rules on-the-fly, by need, during the ab-
duction stage of BY-NEED(EAGER) and BY-NEED(LAZY).

On the other hand, if we consider the whole process (i.e., the time needed in the trans-
formation plus the abduction stages), the time overhead of BY-NEED(EAGER) and BY-
NEED(LAZY) in the abduction stage is well-compensated by their transformation time. That
is, the time for the whole process (transformation plus abduction) of STANDARD is 1.929
seconds, whereas BY-NEED(EAGER) and BY-NEED(LAZY) need 1.521 and 1.620 seconds,
respectively.

In this evaluation scenario, where all abductive solutions are aggregated, the perfor-
mance of BY-NEED(LAZY) is slightly worse than BY-NEED(EAGER). This can be explained
by the extra maintenance of the tracking information needed for the explicit memoization
in BY-NEED(LAZY). It may as well explain that the time gap between BY-NEED(LAZY)
and BY-NEED(EAGER) is wider as m grows, meaning more dual rules are stored in the
trie. Nevertheless, BY-NEED(LAZY) returns the first abductive solution much faster than
BY-NEED(EAGER), e.g. at m = 1000 the lazy one needs 0.0003 seconds, whereas the eager
one 0.0146 seconds. Aggregating all solutions may not be a realistic scenario in abduction
as one cannot wait indefinitely for all solutions, whose number might even be infinite. In-
stead, one chooses a solution that satisfices so far, and may continue searching for more, if
needed. In that case, it seems reasonable that the lazy dual rules computation may be com-
petitive against the eager one. Nevertheless, the two approaches are available as options for
TABDUAL customization.

7.4 Evaluation of tabling nogoods of subproblems

The technique of recording nogoods of subproblems, i.e. inconsistent solutions of sub-
problems that cannot be extended to derive any solution of the given problem, has been
employed in truth maintenance systems [10, 13], constraint satisfaction problems [45], SAT
solvers [27], and in answer set solvers [19], to help prune search space.

We employ TABDUAL and show that tabling abductive solutions can be appropriate
for tabling nogoods of subproblems. For this purpose, we consider the well-known N-
queens problem, where abduction is used to find safe board configurations of N queens.
The problem is represented in TABDUAL as follows:
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Figure 4: The abduction time of different N queens.

Q(M>N) <~ M>O7 q(M_laN)> d(Y)a pOS(MaY)v
process_ongoing(not con flict).

conflict(Conf) <« prolog(conflicting(Conf)).

and the query is ¢(N, N) for N queens. Here, pos/2 is the abducible representing the
position of a queen, and d/1 is a column generator predicate, available as facts d(¢) for 1 <
i < N. Predicate conflicting/1 is defined in a non-abductive program module, to check
whether the ongoing board configuration C'on f of queens is conflicting. By scaling up the
problem, i.e. increasing the value of N, we aim at evaluating the scalability of TABDUAL,
concentrating on tabling nogoods of subproblems (essentially, tabling nogoods for use by
ongoing abductive solutions); in this case, it means tabling conflicting configurations of
queens.

Since this benchmark is used to evaluate the benefit of tabling nogoods of subproblems
(as abductive solutions), and not the benefit of the dual by-need improvement, we evalu-
ate TABDUAL compared to its non-tabling variant TABDUAL(NO TABLING), as in Section
7.2. The transformation time of the problem representation is similar for both of them,
i.e. around 0.003 seconds. Figure 4 shows abduction time for NV queens, 4 < N < 11.
The reason that TABDUAL performs worse than TABDUAL(NO TABLING) is that the con-
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Abduction Time 11-queens: Multiple Constraints
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Figure 5: The abduction time of 11 queens with increasing complexity of conflict con-
straints.

flict constraints in the [N-queens problem are quite simple, i.e. consist of only column and
diagonal checking. It turns out that tabling such simple conflicts does not pay off, that the
cost of tabling overreaches the cost of Prolog recomputation. But what if we increase the
complexity of the constraints, e.g. adding more queen’s attributes (colors, shapes, etc.) to
further constrain its safe positioning?

Figure 5 shows abduction time for 11 queens with increasing complexity of the con-
flict constraints. To simulate different complexity, the conflict constraints are repeated m
number of times, where m varies from 1 to 400. It shows that TABDUAL’s performance is
remedied and, benefitting from tabling the ongoing conflict configurations, it consistently
surpasses the performance of TABDUAL(NO TABLING), showing increasing improvement
as m increases, up to 15% for m = 400. That is, it is scale consistent with respect to the
complexity of the constraints.

7.5 Evaluation of programs with loops

We also evaluate TABDUAL for programs with loops in the presence of tabled abduction, as
detailed in Section 6.4. For that purpose, we employ a set of ground programs with various
combination of loops, many of which cover difficult known cases of such programs. The
test-suite has previously been used in evaluating the ABDUAL meta-interpreter in [5].
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Consider the following six ground programs from the test-suite:

Po < qo- DP3 < gs. P4 < Q4.

Po — a. qs < not rs. q4 < P4.

qo < Po- T3 < P3. q4 < not a, not b.
qo < b.

pg < not qg, a. p11 < not q11, a.

qg <— not ps. qi1 < p11, not a.

qs < b.

where a and b are abducibles.

We provide a comparison of the results returned by both implementations, focusing
particularly on those that differ. Table 1 lists the answers of the given queries to the cor-
responding programs, returned by TABDUAL and the ABDUAL meta-interpreter. It shows
that TABDUAL returns correct answers according to the ABDUAL theory which underpins
it, even now in the presence of tabled abduction. On the other hand, in the cases we are
showing here, the ABDUAL meta-interpreter does not correctly return answers as computed
by its theory. The answers returned by TABDUAL for queries in Table 1 are explained as
follows:

e For query not pg, [not a, not b should be the only solution, because not py succeeds
by abducing not a and failing go. To fail g, not b has to be abduced and pg has
to fail. Here, there is a positive loop on negation between not py and not qg, so the
query succeeds and gives the solution [not a, not b] as the only solution.

e For queries p3 and not p3, unlike answers returned by the ABDUAL meta-interpreter,
TABDUAL returns undefined (and abduces nothing) as expected, due to the negative
loops over negation.

e Query not py shows that TABDUAL does less abduction than the ABDUAL meta-
interpreter, by abducing a or b only, but not both.

e For query gg, TABDUAL has an additional solution [ ], i.e. nothing is abduced, making
particularly a false and consequently pg false (or, not pg true). Thus, query gg is true
(by its first rule) under this solution, which is missing in answers returned by the
ABDUAL meta-interpreter.

e For query not qi1, the first solution is obtained by abducing a to fail g11. Another way
to fail ¢ is to fail p11, which gives another solution, by abducing not a. These are the
only two abductive solutions which are returned by TABDUAL and follows correctly
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Queries TABDUAL  ABDUAL meta-interpreter

not pg  [not a,not b [not a,not bl, [not a)
p3  []undefined []

not p3 || undefined []

not py [a], [b] [a], [b], [a, b]
qs [ ], [not a], [b] [not al, [b]

not qi1  [a], [not a [],[a], [not a

Table 1: Answers by TABDUAL vs. ABDUAL meta-interpreter.

the definition of abductive solutions. There is no direct positive loop involving g1
in the program, hence not ¢11 will never succeed with the [ ] abductive solution, as
returned by the ABDUAL meta-interpreter.

In addition to ground programs, we also evaluate TABDUAL on non-ground programs,
i.e. programs having variables (with or without loops), which is not afforded by ABD-
UAL. The latter system does not allow rules having variables, i.e. rules with variables in a
program have first to be ground with respect to the Herbrand universe (like in answer set
programming systems). The complete test-suite and the evaluations results are detailed in
Appendix B.

8 Concluding remarks

We have addressed the issue of tabling abductive solutions, in a way that they can be reused
from one abductive context to another. We do so by resorting to a program transformation
approach, resulting in a tabled abduction prototype, TABDUAL, implemented in XSB Pro-
log. TABDUAL is underpinned by the ABDUAL theory and employs its dual transformation,
which allows to more efficiently handle the problem of abduction under negative goals. In
TABDUAL, abducibles are treated much like terminals in grammars, with an extra argu-
ment for input and another for output abductive context accumulation. A few other original
innovative and pragmatic techniques are employed to handle programs with variables and
loops, as well as to make TABDUAL more efficient and flexible. It has been evaluated with
various objectives in mind, in order to show the benefit of tabled abduction and to gauge
its suitability for likely applications. An issue that we have touched upon in the TABDUAL
evaluation is that of tabling nogoods of subproblems in the context of tabled abduction, and
how it may improve performance and scalability. The other evaluation result reveals that
each approach of the dual transformation by-need may be suitable for different situations,
i.e. both approaches, BY-NEED(EAGER) or BY-NEED(LAZY), are options for TABDUAL
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customization.

8.1 Related work

There have been a plethora of work on abduction in logic programming, cf. [12,22] for a
survey on this line of work. But, with the exception of ABDUAL [4], we are not aware of
any other efforts that have addressed the use of tabling in abduction for abductive normal
logic programs, which may be complicated with loops. Like ABDUAL, we use the dual
transformation and rely on the same theoretic underpinnings, but ABDUAL does not allow
variables in rules. The reader is referred to Section 5.2 of [4] on how the dual transformation
and its properties relate to other works.

From the implementation viewpoint, tabling has only been employed in ABDUAL limit-
edly, i.e. to table its meta-interpreter, which in turn allows abduction to be performed (also
in the presence of loops in a program), but it does not address at all the specific issues raised
by the desirable reuse of tabled abductive solutions. TABDUAL generates a self-sufficient
program transform (plus system predicates), which employs no meta-interpreter, even in the
presence of loops in programs.

Our approach also differs from that of [2]. Therein, abducibles are coded as odd loops, it
is compatible with and uses constructive negation, and it involves manipulating the residual
program. It suffers from a number of problems, which it identifies, in its Sections 5 and 6,
and its approach was not pursued further.

TABDUAL does not concern itself with constructive negation, like NEGABDUAL [3]
and its follow-up [7]. NEGABDUAL uses abduction to provide constructive negation plus
abduction, by making the disunification predicate an abducible. Again, it does not concern
itself with the issues of tabled abductive solution reuse, which is the main purpose of TAB-
DUAL. However, because of its constructive negation ability, NEGABDUAL can deal with
problems that TABDUAL does not. Consider program below, with no abducibles, just to
illustrate the point of constructive negation induced by dualization:

p(X) —q(Y).  q1).

In NEGABDUAL, the query not p(X) will return a qualified ‘yes’, because it is always
possible to solve the constraint Y = 1, as long as one assumes there are at least two con-
stants in the Herbrand Universe. Distinct from NEGABDUAL, TABDUAL answers ‘no’ to
not p(X). It is correct, in the absence of conditional answers; the former answer is af-
forded only by having constructive negation in place. It is interesting to explore in the
future, whether TABDUAL can be extended to take care such constraints (as abducibles),
given that XSB supports low-level constraint handling through attributed variables, and that
attributed variables can be tabled in XSB.

TABDUAL, being implemented in XSB, is based on the WFS, which enjoys the rele-
vance property, induced by the top-down query-oriented procedure, solely for finding the
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relevant abducibles and their truth value. This is not the case with the bottom-up approaches
for abduction, e.g. [43], where stable models for computing abductive explanations, not nec-
essarily related to an observation, are constructed. This disadvantage of the bottom-up TMS
approach is in fact later avoided by adding a top-down procedure, as in [44]. TABDUAL
also allows dealing with odd loops in programs because of its 3-valued program semantics,
whilst retaining 2-valued abduction and the use of integrity constraints. This is not enjoyed
by the bottom-up approach and its 2-valued implementation.

The tabling technique, within the context of statistical abduction, is employed in [42].
But it concerns itself with probabilistic logic programs, whereas TABDUAL concerns abduc-
tive normal logic programs. Moreover, the tabling technique in [42] imposes the so-called
‘acyclic support condition’, a constraint that does not allow loops in a program, which pose
no restrictions at all in TABDUAL. Tabling is also used recently in PITA [35], for statisti-
cal abduction. Though PITA is also based on the Well-Founded Semantics like TABDUAL,
tabling (in particular its feature, answer subsumption) applies specifically to probabilistic
logic programs, e.g. to compute the number of different explanations for a subgoal (in terms
of Viterbi path), which is not our concern in TABDUAL, and thus does not employ the dual
transformation and other techniques described here.

8.2 Future work

TABDUAL still has much room for improvement. Future work will consist in continued
exploration of our applications of abduction, which will provide feedback for system im-
provement. Tabled abduction may benefit from answer subsumption [47] in tabling abduc-
tive solutions to deal with redundant explanations, in the sense that it suffices to table only
smaller abductive solutions (with respect to the subset relation). Another potential XSB
feature to look into is the applicability of interning ground terms [52] for tabling abductive
solutions, which are ground, and study how extra efficiency may be gained from it.

The implementation technique of BY-NEED(LAZY) consists in operational details that
are facilitated by XSB’s trie manipulation predicates, to simulate the batched-like table
scheduling within XSB’s current default local table scheduling. In order to have a more
transparent implementation of those operations, it is desirable that XSB permits a mixture in
using batched and local table scheduling strategies, or alternatively, stopping the evaluation
at some first answers to a subgoal within the currently default local table scheduling.

In another related research line, it would be interesting to explore whether abduction
could be used with XSB’s partial support of Transaction Logic in its storage module. There
is a certain similarity in that Transaction Logic rules may cause updates in a manner that is
reminiscent of abduction, although Transaction Logic also allows a commit.

TABDUAL opens up a potential joint use with other non-monotonic LP features, having
their own tabling requirements and attending benefits. In [40], we combine tabled abduction
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with LP updating [37]. The latter employs incremental tabling to automatically propagate
updates bottom-up, being triggered by a top-down query. The implemented system of this
joint LP abduction and updating is part and parcel of our research to employ LP in agent
moral reasoning [41]. We envisage a couple of applications using this joint system, and
tabled abduction particularly, in this field. For one, people often engage counterfactual
thoughts in moral situations, where their function is not just evaluative (to correct wrong
behavior in the past), but also reflective (to simulate possible alternatives for a careful con-
sideration before making a moral decision) [15]. In [33], we propose a LP approach to
model counterfactual reasoning, based on Pearl’s structural approach [28] (abstaining from
probability), by benefitting from the aforementioned joint system. The role of abduction
is this LP counterfactual approach is to hypothesize background conditions from given evi-
dences or observations, a required step in Pearl’s approach, so as to provide an initial abduc-
tive context for the counterfactual being evaluated. In this case, tabled abduction permits
reusing this initial abductive context in another subsequent context acquired by the agent
during its life cycle.

Another morality related application we consider is the dual-process model in moral
judgment [8] that stresses the interaction between deliberative and reactive behaviors in
delivering moral judgment. Given that abductive solutions represent some actions according
to a specific moral principle, tabled abduction may play several roles. For one thing, it
allows an agent to deliver an action in exactly the same context without repeating the same
deliberative reasoning, thus simulating a form of low-level reactive behavior (realized by
system-level tabling) of the dual-process model. For another, in a dynamic environment
(hence the need of LP updating), the agent may later be required to achieve new goals in
addition to the former ones, due to a moral principle it follows. While achieving these new
goals requires deliberative reasoning, the decisions that have been abduced for former goals
can immediately be retrieved from the table and are subsequently involved in (as the context
of) the deliberative reasoning for the new goals. It thus provides a computational model of
collaborative interaction between deliberative and reactive reasoning in the dual-process
model.

Abduction is by now a staple feature of hypothetical reasoning and non-monotonic
knowledge representation. It is already mature enough in its concept, deployment, applica-
tions, and proof-of-principle, to warrant becoming a run-of-the-mill ingredient in a Logic
Programming environment. We hope this work will lead, in particular, to an XSB System
that can provide its users with specifically tailored tabled abduction facilities, by migrating
some of TABDUAL’s features to its engine level.
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A Proof of Theorem 2

Theorem 1. Let P be an abductive normal logic program and Ap be the set of abducible
atoms in P. Then size(T(P)) < 9.size(P) + 4.|Ap|.

Proof. Let p; be a predicate for which there are m > 0 rules in P with the total size
size(P|p,), and ¢ > 0 be the number of abducibles in the body of a rule of p;.

e Since the abducibles in the body of a rule are moved from the body to abductive
context (cf. point (1) of Definition 1), we have the size of 7/(P) as size(7'(P)) =
size(P) — c.rules(P).

e Since 7 (p;) for every defined p; € P has three literals (cf. point (2) of Definition
1), we have the size of 77 (P) as size(7(P)) = 3.heads(P).

e For 7=, we have two cases, based on Definition 2:

1. By point 1(a), i.e. for p; defined in P, the size of 7~ (p;) will be m + 1. There-
fore, the size of the transformed program in P by 7~ for all predicates defined
in P will be heads(P).(m + 1) = rules(P) + heads(P).

2. By point 2, the size of the transformed program in P by 7~ for all predicates
that have no definition in P will be preds(P) — heads(P).

Summing up the size from both cases, we have:
size(t—(P)) = rules(P) + preds(P).

e For 7%, the total size of rules with heads of the form p*i(t;, I, O), cf. point 1(b) of Def-
inition 2, will be 2.(size(P|,,) —m). Since the size of the other rule, i.e. the one with
the head p**(X, I, I), is two (for each i), the total size of 7*(p;) is 2.(size(P|p;) —

m) + 2m = 2.size(P|,,). Therefore, the size of the transformed program in P by

7 for all predicates defined in P will be size(r*(P)) = SI*(P) 9 gize(Pl,) =

2.size(P).

e Finally for 7°, since the size of rules for each abducible atom is four, we have
size(T°(P)) = 4.|Ap|, where | Ap| denotes the cardinality of Ap.

Note that preds(P) < size(P), as also for heads(P) and rules(P). Thus:
size(T(P)) = size(7'(P))+size(tH(P))+size(r™ (P))+size(T*(P))+size(t°(P)) <
9.size(P) + 4.|Ap|. O
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Po < qo- P1 <= not qi,r1. P2 < Q2.
Po — a. 1 < not q1, p1. qo < T2.
qo < Po- q1 < not pr. T2 < D2.
qo < b.
P3 < qs. P4 < Q4. D5 < G5.
qs3 < not rs. q4 < P4. qs < not rs.
r3 < p3. qq < not a,not b. r5 < not Ss.
S5 < Ps-
pe < not gg. p7 +— not q7,717, Q. pg < not qg, a.
Q6 < T6. r7 < not q7, pr, b. qs < not ps.
rg < Sg- q7 < not p7,not ry. gs < b.
S¢ <— not pg.
Pp1o < not qig, a. p11 < not qi1, a. P12 < a,not q1a.
q10 < P10, G- q11 < P11, not a. q12 < not a, pi2.

Figure 6: Collection of Ground Programs with Loops

B Test-suite

The test-suite consists of two collections of programs: ground programs with loops, and
programs with variables (also containing loops). In the evaluation of ground programs with
loops, a comparison with the ABDUAL meta-interpreter [5] is made. Both systems run on
the same platform under XSB version 3.3.7.

B.1 Programs with loops

Collection of programs Figure 6 lists a collection of programs, including difficult cases,
used to compare TABDUAL and the ABDUAL meta-interpreter. The collection is specific to
ground programs, since ABDUAL caters only to ground programs and queries. The evalua-
tion results are shown subsequently. These programs involve various loops: direct positive
loops, negative loops over negation, positive loops in (dualized) negation, and some combi-
nations amongst them. In this collection, a, b, and ¢ are abducibles.

Evaluation results Table 2 compares the results returned by TABDUAL and the ABDUAL
meta-interpreter for queries to the ground programs in Figure 6.
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Queries TABDUAL ABDUAL meta-interpreter
Po [al, [b] [a], [0]
not po [not a, not b] [not a, not bl, [not a]
not py [] []
it [] []
P2 no no
not ps [] []
P3 [ ] undefined []
not p3 [ | undefined []
o [not a,not b] [not a,not bl
not py [a], [b] [a], [b], [a, b]
D5 [ ] undefined no
not ps [ ] undefined []
Pe [ | undefined []
not pg [ | undefined no
pr no no
not p; [ ], [not a], [not b], [not a,not b] [], [not al, [not b], [not a, not b]
» [}, [not al, 1] [not al, ¢
not ps [], [not a, [b] [not al, [b]
P10 [a] undefined [a]
not p1o [not al, [a] undefined [a], [not a]
P11 ] )
not p11 [not al [not al
ot 1 ], [not o [1,lal, [not a
P12 [a] [a]
not pio [not a] [not a]
not qi2 [a], [not a] [, [a], [not a

Table 2: Comparison of results: TABDUAL vs. ABDUAL meta-interpreter

B.2 Programs with variables

Collection of programs Figure 7 lists programs with variables; many of them contain
loops as well. In this collection, a/1, b/1, and ¢/1 are abducibles.

Evaluation results Table 3 presents the evaluation results returned by TABDUAL and the
ABDUAL meta-interpreter for queries to programs in Figure 7.
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p6(X) « t6(X), not g6(X)
qG(X) — T’G(X).

r6(X) « s6(X).

s6(X) < ts(X), not pg(X)
te(1).

ps(X) = s5(X), not gs(X)
qs(X) < not pg(X).

qs(2) < a(2)

sg(1) <+ a(1)

s8(2) < a(2)

p1(X) + not ¢1(X), r1(X).
r1(X) < not ¢1(X), p1(X).
q1(X) < s1(X), not p1(X).
51(

1

~—

—_
~—

X) + s7(X), not g7(X),r7(X).
X) = t7(X),not q7(X), pr(X).
X) < not p7(X), not r7(X).

plo(X) — Slo(X),TLOt qlo(X).
X) <—p10(X),CL(X).
810(1) — a(l).

Figure 7: Collection of Programs with Variables
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Queries Results by TABDUAL*
po(X) [a(1)] for X = 1; [a(2)] for X =2
q0(X) [a(1)] for X = 1; [a(2)] for X =2

not po(X) [not a(1),not a(2)] for X = _

not qo(X) [not a(1), not a(2)] for X = _
q1(X) [[for X =1

not q1(X) no

not p1(X) []for X = _
pQ()i) ) g no

not pa (X for X = _
p3(X) [ | undefined for X = 1

not p3(X) [ ] undefined for X = _
pa(X) [not a(1),not a(2)] for X =1

not pa(X) [a(1)], [a(2)] for X = _
p5(X) [ | undefined for X = 1

not p5(X) [ ] undefined for X = _
p6(X) [ | undefined for X = 1

not pe(X) [ ] undefined for X = _
p7(X) no

not pr(X)  [a(1)], [not a(1)], [a(1),b(1)], [a(1), not b(1)] for X = _

ps(X) [a(1)|undefined for X =1
not ps(X) [a(1)], [a(2)], [a(1),a(2)], [not a(1),not a(2)] for X = _
p10(X) [a(1)]undefined for X =1
not p1o(X) [a(1)] undefined, [not a(1)] for X = _
p11(X) [a(1)] undefined for X =1
not p11(X) [not a(1)] undefined for X =
q13(X) [a(1),not b(1)] for X = 1; [a(2), not c(2)] for X =2

not q13(X)  [a(1),b(1)], [a(2),c(2)], [not a(1),not a(2)] for X = _
not p13(X) [not b(1),not ¢(2)], [not a(1),not ¢(2)] for X = _

“Underscore (_) denotes some variable, for instance in X = _ (i.e. X is left uninstantiated).

Table 3: Evaluation results of Programs with Variables
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CUT-FREE PROOF SYSTEMS FOR GEACH LocgGIcs

MELVIN FITTING
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Abstract

Prefxed tableaus for modal logics have been around since the early 1970s,
and are quite familiar by now. Rather recently it was found that they were
dual to nested sequents, which have a complicated history but which also trace
back to the 1970s. Both have provided very natural proof systems for the most
common modal logics, including those in the so-called modal cube. In this
paper we add some simple machinery to both prefxed tableaus and to nested
sequents, producing cut-free proof systems for all logics axiomatized by Geach
formulas, that is, by axiom schemes of the form ¢*'X > ™™ X. This again
provides proof mechanisms for the modal cube, but mechanisms of a different
nature than usual. But further, it provides proof mechanisms for an infnite
family of modal logics, and does so in a modular way with a clear separation
between logical and structural rules. The version of nested sequents presented
here has a direct relationship with the formal machinery of (Negri 2005), and
can be thought of as a notational variant of a natural and interesting fragment
of what can be handled using that methodology.
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META-LEVEL ABDUCTION

KatsuMi INOUE
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Abstract

Meta-level abduction (M LA) has been proposed as a method to abduce
missing laws in completing proofs and explaining observations at the meta-level.
Based on a simple logic of causality, (Inoue et al 2010) firstly proposed meta-
level abduction to discover physically unobserved causality in terms of hidden
rules to explain given empirical rules with respect to skills for music playing.
Meta-level abduction has also been applied to completion of biological networks
containing both positive and negative causal effects (Inoue et al. 2013). In this
paper, we define a general framework for meta-level abduction together with
a logical system for it, and analyze its potential power in various patterns of
abductive reasoning. We will see that meta-level abduction can realize second-
order existential abduction by (Schurz 2008). Moreover, meta-level abduction
can be coordinated with selective, creative and other types of abductions.
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Abstract

In this paper we emphasize two different aspects of abduction in Logic Pro-
gramming (LP): (1) the engineering of LP abduction systems, and (2) appli-
cation of LP abduction, complemented with other non-monotonic features, to
model morality issues. For the LP engineering part, we present an implemented
tabled abduction technique in order to reuse priorly obtained (and tabled) ab-
ductive solutions, from one abductive context to another. Aiming at the inter-
play between LP abduction and other L P non-monotonic reasoning, this tabled
abduction technique is combined with our own-developed LP updating mech-
anism AAS the latter also employs tabling mechanisms, notably incremental
tabling of XSB Prolog. The first contribution of this paper is therefore a survey
of our tabled abduction and updating techniques, plus further development of
our preliminary approach to combine these two techniques. The second contri-
bution of the paper pertains to the application part. We formulate a LP-based
counterfactual reasoning, based on Pearl’s structural theory, via the aforemen-
tioned unified approach of our LP abduction and updating. The formulation
of counterfactuals allows us to subsequently demonstrate its applications to
model moral permissibility, according to the Doctrines of Double and Triple
Effect, and to provide its justification. The applications are shown through
classic moral examples from the literature, and tested in our prototype, Qualm,
an implementation reifying the presented unified approach.

* Affiliated with Faculty of Computer Science at Universitas Indonesia, Depok, Indonesia.












