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Preface to the Special Issue on Reasoning
about Preferences, Uncertainty, and

Vagueness

Thomas Lukasiewicz
Department of Computer Science, University of Oxford, UK

thomas.lukasiewicz@cs.ox.ac.uk

Rafael Peñaloza
KRDB Research Centre, Free University of Bozen-Bolzano, Italy

penaloza@inf.unibz.it

Anni-Yasmin Turhan
Technische Universität Dresden, Germany

turhan@inf.tu-dresden.de

This special issue contains extended versions of a selection of the papers presented
at the First International Workshop on Reasoning about Preferences, Uncertainty,
and Vagueness (PRUV 2014), which took place on July 23–24th, 2014, in Vienna,
Austria, as part of the Vienna Summer of Logic.

Managing preferences, uncertainty, and vagueness has been a topic of interest for
artificial intelligence (AI) since its inception. In recent years, with the availability of
massive amounts of data in different repositories and the possibility of integrating
and exploiting these data, technologies for managing preferences, uncertainty, and
vagueness are playing a key role in other areas, most notably in databases and the
(Social and/or Semantic) Web. These application areas have sparked a new wave of
interest into logics capable of handling these, other kinds of meta-knowledge. Im-
portant examples are fuzzy and probabilistic approaches for description logics, rule
systems for handling vagueness and uncertainty in the Semantic Web, or formalisms
for handling user preferences in the context of ontological knowledge in the Social
Semantic Web.

The aim of PRUV 2014 was to bring together people from different communi-
ties such as AI, the Semantic Web, or automated reasoning to name a few. The
workshop started on each day with an inspiring invited talk: Tommie Meyer spoke
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on Preferential Semantics as the Basis for Defeasible Reasoning in description log-
ics, and Gabriele Kern-Isberner investigated in her talk on Multiple Iterated Belief
Revision for Ranking Functions richer epistemic structures like probabilities or qual-
itative rankings. The PRUV workshop’s audience included theorists and practition-
ers, working on logics for reasoning about preferences, uncertainty, and vagueness.
Making them aware of and fruitfully discuss the most recent application areas, new
challenges, and the existing body of work on logics for reasoning about preferences,
uncertainty, and vagueness was the desired outcome of the workshop. During the
two days of the event, this goal was greatly surpassed.

Continuing on the success of the event, this special issue contains six papers
which improve and extend those originally presented at PRUV 2014. These papers
cover the different topics of interest for the workshop:

• Resolution and Clause Learning with Restarts for Multi-Valued CNF Formulas,
by David Mitchell, proposes adaptations to the well-known methods developed
in the area of (classical) propositional satisfiability to two families of signed
CNF formulas. Thus, this work provides the basis for developing efficient
reasoning methods for multi-valued propositional logic and other logics for
vagueness.

• A different approach for handling vagueness in propositional logic is given in
Fuzzy Propositional Formulas under the Stable Model Semantics, by Joohyung
Lee and Yi Wang. In this work, the authors extend the ideas from answer
set programming to handle the intermediate truth degrees from fuzzy logic.
A comparison between their proposal and classical stable semantics shows that
many of the desirable properties of the latter are preserved in the former.

• In Multi-Attribute Decision Making with Weighted Description Logics, Erman
Acar, Manuel Fink, Christian Meilicke, Camilo Thorne, and Heiner Stucken-
schmidt show how to compactly represent attribute preferences and choices
using a description logic knowledge base extended with utility values. Com-
plementing the theoretical results, the work presents an empirical evaluation
of an implemented tool and its application to a use case based on DBpedia.

• The following paper, Preference Inference Based on Hierarchical and Simple
Lexicographic Models, by Nic Wilson, Anne-Marie George, and Barry O’Sulli-
van, deals with the problem of deducing new preference relationships from a
set of known preferences, using a lexicographic model. The authors show that
deciding whether a new preference statement can be decided from previous
observations is infeasible in general. However, they provide different restricted
settings that retain feasibility.
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• As a means to combine preference descriptions, possibly specified in different
languages, A Semantic Approach to Combining Preference Formalisms, by
Alireza Ensan and Eugenia Ternovska, proposes a modular framework with
combination operations. They show the effectiveness of their formalism by
combining different languages explicitly.

• Finally, A Framework for Versatile Knowledge and Belief Management Opera-
tions in a Probabilistic Conditional Logic, by Christoph Beierle, Marc Fintham-
mer, Nico Potyka, Julian Varghese, and Gabriele Kern-Isberner, deals with
notions of uncertainty. In this work, the authors propose using probabilistic
conditional logic with the principle of maximum entropy for modelling intel-
ligent agents. Interestingly, an implementation of this approach is used to
model data and expert knowledge from oncology.

We would like to thank all authors for their contributions to this special issue and all
referees (Mario Alviano, Daniel Borchmann, Marco Cerami, Simona Colucci, Fabio
G. Cozman, Dragan Doder, Souhila Kaci, Enrico Malizia, Felip Manya, Maria Van-
ina Martinez, Livia Predoiu, Fabrizio Riguzzi, Ganesh Ram Santhanam, Francesco
Santini, Steven Schockaert, Gerardo I. Simari, Matthias Thimm, Oana Tifrea-
Marciuska, and Kewen Wang) for their timely expertise in carefully reviewing the
contributions.

Thomas Lukasiewicz
Rafael Peñaloza

Anni-Yasmin Turhan

Received 27 June 20171903
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Resolution and Clause-Learning with
Restarts for Signed CNF Formulas

David Mitchell
Simon Fraser University

mitchell@cs.sfu.ca

Abstract
Motivated by the question of how to efficiently do model finding or theorem

proving for multi-valued logics, we study the relative reasoning power of reso-
lution proofs and a natural family of model-finding algorithms for Signed CNF
Formulas. The conflict-driven clause learning (CDCL) algorithm for SAT is
the basis of model finding software systems (SAT solvers) that have impressive
performance on many families of propositional formulas. CDCL with restarts
(CDCL-R) has been shown to have essentially the same reasoning power as un-
restricted propositional resolution. More precisely, they p-simulate each other.
We show that this property generalizes to two families of Signed CNF formulas,
those with unrestricted signs, and those where the truth value set is a lattice
and all signs are regular. We show that a natural generalization of CDCL-R to
these formulas has essentially the same reasoning power as natural generaliza-
tions of resolution found in the literature. Moreover, the algorithm efficiently
simulates bounded width resolution in these systems. These families of signed
formulas are possible reduction targets for a number of multi-valued logics, and
thus this algorithm has potential as a basis for efficient implemented reasoning
systems for many multi-valued logics.

1 Introduction
Multi-valued logics are among the most established and widely studied formalisms
for reasoning with uncertainty. In this paper we consider Signed CNF formulas, as
defined, for example, in [10, 6], and study the relative reasoning power of resolution
proofs and a natural class of algorithms to decide their satisfiability.

The dominant algorithm in modern implemented model-finders for propositional
satisfiability (SAT solvers) is the conflict-driven clause learning algorithm (CDCL)

This research was supported in part by a Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant.
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introduced in [15], with restarts [13], here denoted CDCL-R. Good solvers based on
CDCL-R have remarkable performance on many families of formulas. Consequently,
many practical reasoning tasks are carried out by reduction to propositional CNF,
or by adaptation of CDCL to other families of formulas. This leads us consider
whether we could best obtain effective model finders or theorem provers for multi-
valued logics by reduction to SAT or by adapting the CDCL algorithm to a multi-
valued context. The goal of this paper is to contribute to our understanding of the
potential of adaptations of CDCL-R to the multi-valued case.

Validity or satisfiability of many multi-valued and fuzzy logics (as well as anno-
tated logics, and others) can be reduced naturally to satisfiability of signed CNF
formulas [9]. Natural versions of resolution for signed CNF formulas have been pre-
sented in the literature, and it is possible to produce natural variants of the CDCL
algorithm for these formulas as well. We study two particular families of signed for-
mulas. One family, denoted here MV-CNF, is a very slight restriction on signed CNF
formulas with unrestricted signs; the other family consists of Regular CNF formu-
las with a domain that is a lattice, here denoted Reg-CNF. Corresponding versions
of binary resolution give us proof systems for each family, here denoted MV-RES
and Reg-RES, respectively. We give an abstract signed version of the CDCL-R algo-
rithm, denoted MV-CDCL-R, which can be instantiated for either family of formulas
and many others.

Here, as is generally the case in proof complexity, we measure the reasoning power
of a system in terms of minimum proof length. For an algorithm such as CDCL-R,
the corresponding notion is minimum length of execution given optimum decision
and restart policies. It has been shown that CDCL-R with unlimited restarts has, up
to a small polynomial factor, the same reasoning power as unrestricted propositional
resolution [18]. (It is not currently known whether restarts are essential or not.
See the brief discussion in Section 7.) In [2] it was shown that that CDCL-R can
efficiently refute CNF formulas that have bounded-width refutations.

The main purpose of this paper is to show that these properties generalize to
the multi-valued systems in question. The main result is that MV-RES and the
MV-CDCL-R algorithm for MV-CNF formulas are of essentially the same efficiency:
For unsatisfiable MV-CDCL-R formulas, the minimum size proofs of unsatisfiability
in the two systems differ in size by at most a small polynomial. Formally, the
two systems are said to p-simulate each other, meaning there are polynomial-time
functions mapping any proof in one system to a proof in the other. The same
property is shown for Reg-RES and the corresponding Reg-CNF version of MV-
CDCL-R.

The largest part of the proof consists of showing that the MV-CDCL-R algorithm
can efficiently simulate arbitrary resolution refutations. This simulation yields the
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following concrete bounds. A resolution refutation is of size r and width w if it has
r clauses and the largest clause has at most w literals. We show that, if Γ is an
unsatisfiable MV-CNF formula or Reg-CNF formula with s literals, over n atoms,
and has a resolution refutation (in the corresponding resolution proof system) of size
r and width w, then there is an execution of MV-CDCL-R that refutes Γ, with the
following properties:

1. It implicitly generates a resolution refutation of size O(wn2r).

2. It can be executed in time O(wn2sr);

It follows that, for any fixed w, MV-CDCL-R can refute formulas that have width-
w resolution refutations in time O(nw+2s), with an implicit resolution refutation
constructed of size O(nw+2).

Our proof is an adaptation of that in [18], with parts influenced by [2], although
our presentation is distinct. Rather than proceed from a detailed examination of
CDCL-R, we proceed from the key properties of resolution proofs, to a simplified
algorithm that performs the main reasoning in CDCL-R, and then to a highly ab-
stracted version of CDCL-R. This emphasizes the properties in the proofs and in the
algorithm that are most relevant, in particular those involving “empowering clauses”.
Intuitively, a clause C is empowering for a set Γ of clauses if more can be proven
by unit resolution from Γ ∪ {C} than from Γ alone. The key properties that are
exploited by the proofs are that:

1. Non-trivial resolution refutations can be decomposed into a sequence of deriva-
tions of empowering clauses;

2. The clauses derived by the clause learning mechanism in the CDCL algorithm
are empowering clauses.

Given a resolution refutation Π of clause set Γ, it is possible to use decision and
restart policies to direct CDCL-R to efficiently construct a refutation of Γ that is
not much longer than Π. This is done by repeatedly finding an empowering clause
from Π, and then causing CDCL-R to generate one or more learned clauses that are
“as good as” (in a sense to be made precise) that clause.

The main technical result in [18] is that, for any formula with a resolution refu-
tation Π of length r, CDCL-R can implicitly generate a resolution refutation of
length O(n4r). By slightly more careful counting, we obtain size O(wn2r), where w
is the width of the given refutation Π. For general refutations, with no restriction
on clause width, this gives us size O(n3r).

In [2] it is shown that CDCL-R, with sufficiently many random decisions and
sufficiently frequent restarts, with high probability refutes any formula having a
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width-w resolution refutation with using at most O(n2w+2) conflicts, and therefore
an implicit resolution refutation of size O(n2w+3). For the restriction to formulas
with refutations of width bounded by some fixed w, our deterministic bound gives
a resolution refutation size of O(n2r) which is O(nw+2) because r = O(nw).

The organization of the paper is as follows. In Section 2 we define signed CNF,
MV-CNF and Reg-CNF formulas, along with binary resolution rules for these for-
mulas. The properties of resolution proofs that are central to the proof are defined
and established in Section 3. In Section 4 we describe an algorithm that embodies
the core reasoning in MV-CDCL-R (as well as standard CDCL-R), while Section 5
shows that repeated calls to this algorithm can refute formulas almost as efficiently
as unrestricted resolution. In Section 6 we give our MV-CDCL-R algorithm, define
p-simulation and give the main theorem. We briefly discuss applicability issues in
Section 7, and conclude in Section 8.

A preliminary version of this paper appeared as [17]. The present version corrects
notational problems, simplifies and clarifies the presentation, gives tighter simula-
tions and adds the discussion on applicability.

2 Signed CNF Formulas and Resolution
Let T be a finite set of truth values, P a countably infinite set of multi-valued atoms
and ≺ a partial order on T . We assume throughout that T is fixed, so the size of
T is a constant in complexity analyses. Signed CNF formulas for T are constructed
from literals of the form p⊏−S, where S is a non-empty proper subset of T and p ∈ P.
We will use S and R for sets of truth values in literals, and l, often with subscripts,
for literals. Complementation of sets of truth values is taken with respect to T , so
S denotes {a ∈ T | a 6∈ S}. If l is the literal p⊏−S, its complement l̄ is the literal
p⊏−S. A clause is a disjunction of literals, and a formula is a conjunction of clauses.
When convenient we identify clauses with sets of literals, and formulas with sets of
clauses.

Remark 1. In the literature on signed formulas, literals are typically written S :p,
but we prefer the readability of a set-like notation such as p⊏−S. Formally S is a
sequence of constant symbols denoting elements of T and enumerating the set of
values p may take. Following usual practice in the literature, we overload S and use
it both for the set of truth values and the string representing this set.

An assignment τ for formula Γ and truth value set T is a function mapping the
propositional atoms of Γ to T . Our assignments will often be partial. Assignment τ
satisfies a literal p⊏−S if τ(p) ∈ S, satisfies a clause C if it satisfies at least one literal
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in C, and satisfies CNF formula Γ if it satisfies every clause in Γ. If X is a literal,
clause, or formula, we write τ |= X to indicate that τ satisfies X. A formula or set of
formulas Φ entails a formula Γ, written Φ |= Γ, if every assignment that satisfies each
formula in Φ also satisfies Γ. In particular, if S ⊂ R, then every assignment that
satisfies p⊏−S also satisfies p⊏−R. We say p⊏−S entails p⊏−R, and write p⊏−S |= p⊏−R.

The connectives in signed formulas are classical two-valued connectives. Signed
CNF formulas are intended as a reduction target so, for example, to find a model
of a multi-valued formula φ, we would transform it into an appropriate signed CNF
formula Γφ, and then run a model finder for signed CNF. It is the responsibility of
the transformation to correctly handle the semantics of non-classical connectives in
the source logic. A general, linear-time transformation of formulas from an arbitrary
finitely valued logic to Signed CNF is described in [9]

A number of variants of this basic logic have been studied. Typical variants
restrict the allowed literals or impose structure on the truth value set T . We will
explicitly examine two, although the method can be adapted to some others. (Unfor-
tunately, terminology is not uniform in the literature, so our terms may correspond
only roughly to those in some other papers.)

1. Many-Valued CNF (MV-CNF): Signed CNF formulas as just described,
with the restriction that each atom p occurs in at most one literal in any clause.
The order relation ≺ plays no role.

2. Regular CNF over a lattice (Reg-CNF): Let 〈T,≺〉 be a lattice. We call
a literal p⊏−S regular for 〈T,≺〉 iff S is either the upset ↑a = {b ∈ T | a � b},
or the downset ↓a = {b ∈ T | b � a} of some a ∈ T . A formula Γ is regular if
every literal in Γ is regular.

When making statements that apply to both families of formulas, we sometimes
use the terms “signed CNF” or “signed formula”, rather than explicitly saying “MV-
CNF or Reg-CNF formula".

Example 1. Consider the signed formulas with T = {0, 1}. The MV-CNF version
is equivalent to the classical case, as is the Reg-CNF version with 0 ≺ 1.

Example 2. MV-CNF formulas for 〈T,≺〉, with T = {0, 1
d−1 , 2

d−1 . . . 1}, for some
d ∈ N, and ≺ the standard order on Q, are a natural reduction target for commonly
used multi-valued logics, including the finite-valued Łukasiewicz logics. In the analo-
gous Reg-CNF version, literals are restricted to those equivalent to p < a and p > a,
for some a ∈ S. In MV-RES reasoning, the order on T is ignored.
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2.1 Signed Resolution
Let signed binary resolution be the following derivation rule (where A and B are
arbitrary disjunctions).

(p⊏−S ∨ A) (p⊏−R ∨ B)
(p⊏−(S ∩R) ∨ A ∨ B) (1)

We say the two antecedent (top) clauses in (1) were resolved on p to produce the
resolvent clause. Two literals p⊏−S and p⊏−R clash if S 6= R. If R ∩ S is empty, we
say the clash is annihilating, and otherwise we call the literal p⊏−(R ∩ S) the residue.
A pair of clashing literals that are annihilating are inconsistent.

As in the classical case, a resolution derivation Π of clause C from a set Γ of
clauses is a sequence of clauses 〈C1, . . . , Cr〉, where each Ci is either in Γ or derived
from two earlier clauses in Π by the resolution rule, and Cr = C. The length, or
size, of the derivation is the number of clauses r. A resolution refutation of Γ is a
resolution derivation from Γ of the empty clause, denoted �.

A resolution rule is sound and refutation complete for a family of formulas if, for
every formula Γ in the family, Γ is unsatisfiable iff it has a refutation constructed
using the rule. Rule (1) is the basis of resolution proof systems for our two families
of formulas, but we need different variants to obtain a sound and complete proof
system for each family.

Resolution for MV-CNF: We obtain a sound and refutation-complete proof
system by providing rule (1) with implicit merging and annihilation [10]. That is:

1. (Merging) If two literals p⊏−S and p⊏−R with the same atom p occur in the
resolvent, they are replaced by p⊏−(S ∪R).

2. (Annihilation) Whenever (S ∩R) is empty, the “false literal” p⊏−∅ is omitted
from the resolvent.

We denote the resulting system MV-RES.

Resolution for Reg-CNF: The following restricted signed resolution rule is sound
and complete for regular formulas over a lattice [5].

(p⊏−↑a ∨ A) (p⊏−↓b ∨ B)
(A ∨B) provided a 6� b. (2)

We denote the resulting system by Reg-RES.

The differences in the properties of the resolution rules of these two systems are
the main thing to be delt with in adapting the CDCL-R algorithm and the proofs
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from [18] to our setting. In MV-RES, literals have complements, and no atom
appears in multiple literals of any clause, but resolution is not annihilating and we
must allow for the residues. In Reg-RES, resolution is annihilating, but literals need
not have complements (more precisely, the complement of a regular literal may not
be a regular). Literal complementation and the annihilating property of classical
resolution both play central roles in the classical CDCL-R algorithm.

3 Empowering and Absorbed Clauses
The efficient simulation of resolution by CDCL-R relies on a property of resolution
refutations involving unit resolution. A unit clause is a clause with exactly one
literal, and unit resolution is application of the resolution rule when at least one
antecedent is a unit clause. We write Γ ⊢u (l), or simply Γ ⊢u l, if (l) can be derived
from Γ by unit resolution alone, and write Γ ⊢u � if there is a refutation of Γ using
only unit resolution. As in the classical case, with appropriate data structures it is
possible to check if Γ ⊢u l or Γ ⊢u � in linear time. (A proof of this is provided in
Appendix A).

We will use certain sets of literals that are inconsistent with a given clause. For
a set or sequence L of literals, we denote by L̃ the set of literals which are the
complements of literals in L. In particular, if C is a clause, then C̃ is the set of
complements of literals in C. Semantically, we view C̃ as a conjunction of literals
that is equivalent to ¬C. For Reg-CNF we must ensure all literals are regular, but
even if C contains only regular literals C̃ may not. We define a set L̂ as follows. If
L = l1, l2, . . . lk is a sequence of literals, L̂ denotes the set of all size-k sequences of
the form L′ = l′1, . . . l′k, where each l′i is a regular literal that is inconsistent with li.
If L is empty then L̂ contains only the empty sequence.

If Γ is a set of clauses and L a set or sequence of literals, we may write Γ,L as
an abbreviation for Γ ∪ {(l) | l ∈ L}. If C is a clause of size k then Γ,C̃ is the set
of all clauses from Γ plus k unit clauses corresponding to the k literals in C. Thus
Γ,C̃ ⊢u � indicates, intuitively, that the restriction of Γ obtained by setting all literals
of C false can be refuted by unit resolution.

Definition 1 (Empowering and Absorbed Clauses). Let Γ be a set of clauses and
C a clause with Γ |= C. For MV-CNF formula Γ we say C is l-empowering for Γ
iff C = (A ∨ l) and

1. Γ,C̃ ⊢u �;

2. Γ,Ã 6 ⊢u �;
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3. For any literal l′, if l′ |= l, then Γ,Ã 6 ⊢u l′.

For Γ a Reg-CNF formula, we say that C is l-empowering for Γ iff C = (A∨ l) and

1a. Γ,C ′ ⊢u �, for some C ′ ∈ Ĉ;

2a. Γ,A′ 6 ⊢u � for each A′ ∈ Â;

3a. Γ,A′ 6 ⊢u l′ for each A′ ∈ Â, and each l′ such that l′ |= l;

Clause C is empowering for Γ if it is l-empowering for some l ∈ C, and is absorbed
by Γ otherwise.

Lemma 1 (Existence of Empowering Clauses). Let Γ be a set of signed clauses for
which Γ 6⊢u �. If Π is a signed resolution refutation of Γ, then Π contains a clause
that is empowering for Γ.

Proof. Let C be the first clause in Π that does not satisfy condition 1 (or 1a, respec-
tively) of Definition 1. Such a clause exists, because � suffices if no earlier clause
does. C is the resolvent of two earlier clauses of Π, say C1 = (p⊏−S1 ∨ A1), and
C2 = (p⊏−S2 ∨ A2), where p⊏−S1 and p⊏−S2 clash. One of C1 or C2 is empowering
for Γ. To see this, first observe that both are logically implied by Γ, because they
are in Π and signed resolution is sound, and both satisfy condition 1 (respectively,
1a) of Definition 1 by choice of C.

We complete the argument for MV-RES as follows. Both C1 and C2 satisfy
condition 2 of Definition 1, because C = (p⊏−(S1 ∩ S2)∨A1 ∨A2), so if Γ,Ã1 ⊢

u � or
Γ,Ã2 ⊢

u � then Γ,C̃ ⊢u �, contradicting choice of C. Now, suppose both C1 and C2
fail condition 3 of Definition 1. That is, for some R1 ⊂ S1 and R2 ⊂ S2, we have
Γ,Ã1 ⊢

u (p⊏−R1) and Γ,Ã2 ⊢
u (p⊏−R2). Resolving (p⊏−R2) and (p⊏−R1) produces the

unit clause (p⊏−(R1 ∩R2)), where (R1 ∩ R2) ⊂ (S1 ∩ S2). If follows that Γ,C̃ ⊢u �,
because p⊏−(S1 ∩ S2) is in C̃ and we can resolve it with p⊏−(R1 ∩R2) to obtain �.
This again contradicts choice of C, so at least one of C1 or C2 is empowering for Γ.

The completion for Reg-RES is just a variation. C = (A1 ∨ A2), because Reg-
RES has no residuals, so if Γ,A′

1 ⊢
u � for some A′

1 ∈ Â1 then Γ,C ′ ⊢u � for some
C ′ ∈ Ĉ (because A1 ⊂ C) contradicting choice of C. By the symmetric argument,
there is no A′

2 ∈ Â2 for which Γ,A′
2 ⊢

u �. So, both C1 and C2 satisfy condition 2a.
Now, suppose both C1 and C2 fail condition 3. Then, for some A′

1 ∈ Â1, A′
2 ∈ Â2,

R1 ⊂ S1 and R2 ⊂ S2, we have that Γ,A′
1 ⊢

u (p⊏−R1) and Γ,A′
2 ⊢

u (p⊏−R2). Because
Reg-RES has no residuals, we know S1 ∩ S2 = ∅, so we also have that R1 ∩R2 = ∅
and (p⊏−R1) and (p⊏−R2) can be resolved to produce �. So if C ′ ∈ Ĉ then Γ,C ′ ⊢u �,
again contradicting the choice of C. So either C1 or C2 is empowering for Γ.
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4 Probing with Learning
The core of the CDCL algorithm can be viewed as a back-and-forth between two
tightly related processes, one which guesses at partial assignments, and one which
derives new clauses based on these guesses and what follows from them by unit
propagation. We first consider an algorithm, which we call Probe-and-Learn, that
embodies one stage of this interaction. Describing the algorithm requires some
terminology.

For signed formulas, the guesses (called “decisions” in the SAT literature) involve
restrictions on assignments, rather than absolute assignments. We will make use of
certain sequences of restrictions.

Definition 2 (Proper Restriction Sequence). A proper restriction sequence (or just
“restriction sequence”) δ for T and Γ is a sequence δ = 〈l1, l2, . . . lk〉 of distinct
literals for T such that:

1. If δ contains a literal p⊏−S then Γ has a literal with the atom p;

2. The set of literals in δ is satisfiable;

3. If li is p⊏−S, then ⋂{R | j < i and lj = p⊏−R} ∩ S 6= ∅

For any non-empty restriction sequence δ = 〈l1, . . . lk−1, lk〉, we denote by δ− the
maximal proper prefix δ− = 〈l1, . . . lk−1〉.

We will use δ and α for decision sequences. Condition 3 of the definition ensures
that each successive literal in the restriction sequence further restricts the allowed
assignments.

We say that assignment τ is consistent with restriction sequence δ if no literal in
δ is inconsistent with a literal in τ . For literal l and restriction sequence δ, we may
say that “δ makes l false” if l is not satisfied by any assignment consistent with δ,
and that “δ makes l true” if every assignment consistent with δ satisfies l.

Unit propagation is a key component of CDCL algorithms, and in particular
of the “back-and-forth” process embodied in Probe-and-Learn. We will define unit
propagation for signed formulas, as used in our algorithm, in terms of restriction
sequences.

Definition 3 (UP(Γ, δ)). For any clause set Γ and restriction sequence δ for Γ, we
denote by UP(Γ, δ) the restriction sequence δ′ defined by the fixpoint of the following
operation:

If Γ contains a clause C = (l∨B) where δ makes every literal of B false,
but does not make l either true or false, extend δ with l.
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Algorithm 1: Probe-and-Learn
Input: Clause set Γ; truth value set 〈T,≺〉; restriction sequence δ.
Output: Clause set Γ′; restriction sequence δ′.

1 α← a minimal extension of δ such that either UP(Γ, α) |= Γ or Γ,α ⊢u �
2 while Γ,α ⊢u � and α 6= 〈〉 do
3 α,C ← Handle-Conflict(Γ, α)
4 Γ← Γ ∪ {C}
5 end
6 return Γ,α

Unit propagation corresponds to unit resolution, in a context where we are in-
terested in collecting implied restrictions on truth assignments rather than derived
unit clauses. In particular, the restriction sequence UP(Γ, δ) makes a clause of Γ
false if and only if Γ,δ ⊢u �.

A second process, closely related to unit propagation, involves derivation of
clauses called “asserting clauses”. CDCL-R proofs of unsatisfiability are constructed
by a sequence of asserting clause derivations.

Definition 4 (Asserting Clause; Conflict Clause). Clause C is an asserting clause
for signed CNF formula Γ and restriction sequence δ iff

1. Γ,C̃ ⊢u � if Γ is MV-CNF; Γ, A ⊢u � for each A ∈ Ĉ if Γ is Reg-CNF;

2. For each literal l ∈ C, there is a literal l′ with l′ |= l̄ and Γ,δ ⊢u l′;

3. For exactly one literal l ∈ C, there is no literal l′ with l′ |= l̄ and Γ,δ− ⊢u l′.

C is a conflict clause for Γ and δ if it satisfies conditions 1 and 2.

The Probe-and-Learn algorithm is presented in Algorithm 1. It is parameterized
by T and ≺ so we don’t need to present distinct versions for MV-CNF and Reg-
CNF. The differences only affect low level details involving operations on literals.
In analyses, we take the parameter 〈T,≺〉 to be fixed, and allow the other two
arguments, the clause set Γ and restriction sequence δ, to vary.

Probe-and-Learn extends δ to a minimal extension α of δ for which unit propa-
gation either produces a satisfying assignment or makes a clause false. In the former
case, Γ and the satisfying assignment α are returned. In the latter case Handle-
Conflict is executed. Handle-conflict returns a proper prefix of α (which becomes
the new value of α) and a clause C which is added to Γ (“learned”).

We require Handle-Conflict to satisfy the following correctness property. If the
call Handle-Conflict(Γ, α) returns α′,C then
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1. α′ is a proper prefix of α;

2. If α′ is empty, then C is �;

3. If α′ is not empty, then C is an asserting clause for Γ and UP(Γ,α′).

If C is an asserting clause for Γ and α′, then UP(Γ ∪ {C}),α′) will be a proper
extension of UP(Γ,α), and it is possible for this propagation to reach a new conflict,
after which a new asserting clause may be derived. The loop on lines 2-5 of Probe-
and-Learn repeats this process until unit propagation no longer produces a conflict
(or Γ is proven unsatisfiable). Probe-and-Learn returns the resulting clause set and
restriction sequence.

For correctness, there is no restriction on the method by which Handle-Conflict
generates C and α. For the p-simulation results of Section 6.1, Handle-Conflict
must run in polynomial time. For the concrete simulation bounds of Section 5
and Section 6, it must run in time O(ns), where n is the number of atoms and s
is the total number of literal occurrences in the clause set, and there must be a
corresponding (possibly implicit) resolution derivation of each asserting clause.

For simplicity of the remainder of the presentation, we will assume that Handle-
Conflict is implemented by an algorithm analogous to the standard method that
forms the basis of conflict clause derivation in almost all CDCL SAT solvers. We
now describe this algorithm, and show that it does run in the require time bound
and construct an appropriate resolution derivation.

4.1 Asserting Clause Derivation
An execution of Handle-Conflict(Γ,α) must, except in the case it finds a satisfying
assignment, return an asserting clause for a proper prefix of α. The standard meth-
ods for this in CDCL SAT solvers involve a resolution derivation closely connected
to the unit propagation sequence that establishes a conflict. (The method may ei-
ther be implemented based on resolution, as we describe below, or the “implication
graph” [15].) A generalized version of this process can be used in our many-valued
Handle-Conflict procedure. We describe a particular version, the so-called “1UIP
asserting clause” derivation. Most CDCL SAT solvers use a refined version of this.

We make the assumption, consistent with standard practice, that UP(Γ, δ) is
computed incrementally according to the order of literals in δ. That is, if δ =
l1, l2, l3..., we first extend δ by computing UP(Γ,l1), then extend UP(Γ,l1) by any
additional literals in UP(Γ,〈l1, l2〉), etc., so that the last literals in UP(Γ,δ) are those
that are not also in UP(Γ,δ−). The elements of δ in UP(Γ,δ) are called “decisions”
(they are the guesses), and the others are there because they are implied.
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We obtain the desired asserting clause by means of a resolution derivation con-
structed as follows. Let L = l1, l2, . . . , ld, . . . , lk be the literals of UP(Γ,δ) in order,
and ld be the last literal of L that is in δ (i.e., the last decision literal in L). We
associate to each literal li in ld+1, . . . , lr a pair of clauses Bi and a Ci. For each i in
d + 1, . . . , r, let Bi be a clause of Γ that, when restricted by l1, . . . li−1, is the unit
clause (li). Such a Bi must exist, since li was obtained by unit propagation.

We define the Ci by induction in reverse order as follows. Let Cr+1 be a clause
of Γ that is made false by L. For each i in r . . . d + 1 (proceeding in that order) let
Ci be the resolvent of Bi and Ci+1 if they are resolvable, and Ci+1 if they are not.
It is clear that each clause Ci in the sequence can be derived from Γ by resolution,
and that the number of derived clauses in this derivation is at most the length of
the sequence L. Let j be the largest index in d + 1, . . . r for which Cj contains only
one literal that is inconsistent with a literal in the sequence lj , . . . lr. (Certainly
j = d + 1 will work, if no larger value does.) The clause Cj , which is known in
the SAT literature as the 1UIP clause (for “first unique implication point”), is the
clause to be returned by Handle-Conflict. The restriction sequence to be returned
by Handle-Conflict is the least prefix δ′ of δ such that UP(Γ,δ′) makes Cj a unit
clause.

Lemma 2. Each derived clause in the derivation of the 1UIP clause is a conflict
clause for δ and Γ, and the clause returned by HandleConflict is an asserting clause
for δ and Γ.

Proof. We give a proof for MV-RES. The proof for Reg-RES is almost identical.
Cr+1 satisfies property 1 of Definition 4, because Cr+1 ∈ Γ and trivially for any C

we have {C},C̃ ⊢u �, so Γ,C̃r+1 ⊢
u �. Also, by choice Cr+1 is made false by UP(Γ,δ),

so it satisfies property 2. So Cr+1 is a conflict clause. Now, assume that some Ci+1
is a conflict clause. δ, C̃i ⊢

u � because Ci contains every literal of Bi ∪ Ci+1 except
for possibly li and some literal l that clashes with it. So either C̃i makes Ci+1 false
or it makes Ci+1 and Bi clashing unit clauses. UP(Γ,δ) makes Ci false because each
of its literals is either in Ci+1 or in Bi\li, both of which are made false by UP(Γ,δ).
Thus, all the Ci are conflict clauses. Cj satisfies property 3 of Definition 4 by choice,
so is an asserting clause.

4.2 Complexity of Probe-and-Learn
In all complexity analyses, given a formula Γ, n will be the number of distinct atoms,
the size s the number of literal occurrences, and |Γ| the number of clauses.

Lemma 3. Let Γ be a formula of size s over n atoms. If δ is a restriction sequence
for Γ s.t. Γ,δ ⊢u �, and Probe-and-Learn(Γ, δ) returns Γ′, δ′, then
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1. The number of conflicts generated during execution is |Γ′| − |Γ| < |δ|;

2. The number of clauses derived in conflict clause derivation is at most |δ|O(n);

3. The execution can be carried out in time |δ|O(ns).

Proof. Each iteration of the body of the loop performs unit propagation and executes
Handle-Conflict, which performs the asserting clause derivation. On each iteration
of the loop, except possibly the terminating iteration in the case that a satisfying
assignment is found, δ is set to a proper prefix of its previous value. Therefore, the
number of iterations, the number of conflicts, and the number of asserting clauses
added to Γ, are all at most |δ|. The number of derivation steps during one asserting
clause derivation is at most the maximum number of literals in a restriction sequence,
which is |T |n = O(n). Each resolution derivation step can be carried out in time
O(n). The time spent by Handle-Conflict is the time to do one unit propagation
and up to n resolution steps, so is O(s + n2) = O(ns). So the total time for Probe-
and-Learn is |δ|O(ns) = O(n2s).

5 Simulating Resolution with Probe-and-Learn
We now show that, if Π is a resolution refutation of MV-CNF or Reg-CNF formula
Γ, there is a sequence of calls to Probe-and-Learn that refutes Γ in time polynomial
in the combined size of Π and Γ. We begin by showing that any empowering clause
can be absorbed by a sequence of calls to Probe-and-Learn. Througout, n is the
number of distinct atoms and s the number of literal occurrences, of formula Γ.

Lemma 4. Suppose C = (A ∨ l) is l-empowering for clause set Γ. Then there is a
sequence of calls to Probe-and-Learn that generates a superset Γ′ of Γ such that C
is not l-empowering for Γ′, and the following properties hold.

1. The number of calls to Probe-and-Learn is O(n);

2. The size of the underlying resolution derivation is O(n2)

3. The entire computation can be carried out in time O(n2s);

Proof. We state the proof for Reg-RES; that for MV-RES is similar. Let δ be a
restriction sequence consisting of the literals of some element of Â, in any order, fol-
lowed by a literal that is inconsistent with l. We construct a sequence Γ0, Γ1, . . . Γr of
increasing (by set inclusion) clause sets with Γ = Γ0, such that C is not l-empowering
for Γr, and set Γ′ = Γr. We obtain Γi+1 by setting Γi+1,α = Probe-and-Learn(Γi, δ),
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and ignoring α. Each execution of Probe-and-Learn involves one or more execu-
tions of Handle-Conflict(Γi,δ′), where δ′ is a prefix (not necessarily proper) of δ.
We consider the sequence of all calls to Handle-Conflict, over however many calls to
Probe-and-Learn are made. Each execution of Handle-Conflict returns a pair 〈α, B〉,
where α is a proper prefix of δ and B is an asserting clause for UP(Γi,α) and Γi.
The “learned clause” B is added to Γi. Clause B, when restricted by UP(Γi, δ−)
is a unit clause. By construction, for each call to Handle-Conflict this implied unit
clause will contain a distinct literal on the same atom as l. Therefore, after O(n)
calls to Handle-Conflict, Γi must contain either � a clause B for which the implied
unit clause entails l. In either case, C is not l-empowering for Γi. Each call to
Handle-Conflict requires time at most O(ns), and derives O(n) clauses.

Lemma 5. If C is empowering for Γ, and C is of width (size) w, then there is a
sequence of calls to Probe-and-Learn that generates a superset Γ′ of Γ which absorbs
C, and such that the following hold.

1. The number of calls to Probe-and-Learn is O(wn);

2. The size of the underlying resolution derivation is O(wn2);

3. The entire computation can be executed in time O(wn2s).
Proof. Apply Lemma 4 for each literal l ∈ C.

To see that an appropriate sequence of calls to Probe-and-Learn can refute Γ in
a number of steps not much greater than the size of any given refutation, we identify
a sequence of empowering clauses, and absorb each. By “refutes Γ”, we mean that
it produces a set Γ′ of clauses, each of which is implied by Γ, and containing �.
Lemma 6. Let Γ be a set of signed clauses and Π a signed resolution refutation of
Γ of size at most r clauses, in which no clause has width greater than w. Then there
is a sequence of calls to Probe-and-Learn that refutes Γ, such that the following hold.

1. The number of calls to Probe-and-Learn in the is O(wnr);

2. The size of the underlying resolution refutation is O(wn2r);

3. The entire computation can be executed in time O(wn2sr).
Proof. We generate a sequence Γ0 . . . Γk of supersets of Γ, where Γ0 = Γ, k ≤ r, and
� ∈ Γk, as follows. If Γi ⊢

u � we are done. Otherwise, let C be the first clause in
Π that is empowering for Γi. Lemma 1 ensures such a clause exists. By Lemma 5
there is a sequence of calls to Probe-and-Learn that generates a superset of Γi for
which C is absorbed. Let this set be Γi+1. The claims follow from Lemma 5 and
the fact that the number of clauses to be absorbed is at most r.
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Algorithm 2: Multi-Valued CDCL with Restarts (MV-CDCL-R)
Input: Finite set Φ of signed clauses; truth value set 〈T,≺〉

1 . Output: SAT or UNSAT
2 . Γ← Φ // Clause set, initialized to the input clauses
3 δ ← 〈〉 // Restriction sequence, initialized to empty
4 repeat
5 Γ, δ ← Probe-and-Learn(Γ, δ, 〈T,≺〉)
6 if UP(Γ, δ) |= Γ then
7 return SAT
8 if δ = 〈〉 then
9 return UNSAT

10 if Time to Restart then
11 δ ← 〈〉
12

13 end

6 CDCL with Restarts

We assume the reader is familiar with the standard CDCL-R algorithm. (A self-
contained description of CDCL and its relationship to resolution can be found in
[16], among other places. The reader may also want to refer to [18] and [2] for
distinct presentations of the algorithm, as well as the proofs we work from, and [3]
where a careful examination of the relation between resolution and the implication
graph method for obtaining conflict clauses appears.)

CDCL-R can be described in terms of a sequence of calls to Probe-and-Learn,
as illustrated in Algorithm 2. While many details have been abstracted away, Al-
gorithm 2 captures the core algorithm implemented by CDCL-R-based solvers. For
simplicity, let us assume the given formula is unsatisfiable. The algorithm begins
with the empty restriction sequence. In the first call to Probe-and-Learn, the restric-
tion sequence is extended until a clause is made false, after which clause learning
and back-jumping are carried out (by Handle-Conflict, within Probe-and-Learn).
In subsequent executions of the loop body, the restriction sequence resulting from
the most recent Handle-Conflict is extended until Probe-and-Learn again finds a
conflict. Each asserting clause derived by Handle-Conflict is new, so each call to
Probe-and-Learn extends the clause set with at least one new implied clause. This
is repeated, until the derived conflict clause is the empty clause.

At this level of abstraction, the signed versions and classical version are not
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distinguishable, except for the input parameter 〈T,≺〉, which affects only the low-
level steps in Probe-and-Learn and Handle-Conflict. We make 〈T,≺〉 a parameter
to make explicit the fact that Probe-and-Learn (and in particular Handle-Conflict),
must be appropriate to the order relation and the class of formulas in question. If
T is of size 2, then with appropriate choice for Probe-and-Learn, this algorithm is
equivalent to the classical CDCL-R.

Since CDCL-R can be viewed simply as a repeated application of Probe-and-
Learn, it is straightforward to see that MV-CDCL-R can be guided to refute any
formula that has a resolution refutation Π in time polynomial in the size of Π. We
need one more kind of object to complete the argument.

Definition 5 (Extended Restriction Sequence for MV-CDCL-R). An extended re-
striction sequence for MV-CDCL-R on input Γ and 〈T,≺〉 is a finite sequence of
symbols satisfying:

1. Each symbol is either a literal for 〈T,≺〉 or the distinguished symbol R;

2. Each maximal sub-sequence with no R is a restriction sequence for Γ.

We may take two views of an extended restriction sequence. On one view, we
may take it as a record or witness of an actual execution of MV-CDCL-R. On the
other, we may view it as a string to control an intended execution of MV-CDCL-R.

Lemma 7. Let Γ be an MV-CNF or Reg-CNF formula of size s over n atoms that
has a resolution refutation of size r and width w. Then there is an execution of
MV-CDCL-R that refutes Γ in time O(wn2sr) and with an underlying resolution
refutation of size O(wn2r).

Proof. It is sufficient to show there is an extended restriction sequence that produces
such an execution. Since MV-CDCL-R is repeated execution of Probe-and-Learn,
we need only to take the sequence of calls to Probe-and-Learn implied by Lemma 6,
produce a restriction sequence corresponding to each call, and concatenate all the
restriction sequences with an R separating each adjacent pair.

6.1 Proof Complexity and p-Simulation
Propositional proof complexity is the study of the relative power of proof systems for
propositional logic, measured by minimum length of proofs for tautological formulas.
The abstract definition of propositional proof system introduced in the seminal paper
of Cook and Reckow [8] can be trivially adapted to refutation proofs for unsatisfiable
signed CNF formulas (or indeed any co-NP complete set).
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Definition 6. A refutation proof system for a set S of unsatisfiable signed CNF
formulas is a set of strings L with a poly-time onto function VL from strings over the
alphabet of L to S∪⊥, such that VL(x) = Γ if x is an L-proof that Γ is unsatisfiable,
and VL(x) = ⊥ otherwise.

Intuitively, L is the proofs of the system and VL is an efficiently computable
function that verifies their correctness.

Proof system A p-simulates proof system B if there exists a polynomial function
p() such that, for every unsatisfiable formula Γ and every B-proof ΠB of Γ, there is
an A-proof ΠA of Γ with |ΠA |≤ p(|ΠB |).

As a simplifying convention, we require that the minimum size of a proof of Γ
is |Γ|. This is not standard in the proof complexity literature, but is necessary for
relevance to practical satisfiability algorithms, and is followed also in, e.g., [3, 7,
11, 18]. This is because a formula may be large but have a tiny proof, and any
reasonable satisfiability solver begins by reading the entire formula. Moreover, any
reasonable CDCL-R-based solver begins by executing unit propagation, which may
visit every clause of the formula.

To view a satisfiability algorithm as a proof system, we may take any trace of
the algorithm on an unsatisfiable clause set Γ as a proof of the unsatisfiability of
Γ, provided that the trace reflects the running time of the algorithm, and that we
can efficiently verify that the trace corresponds to an execution of the algorithm
that reports “unsatisfiable”. For present purposes, we may use extended restriction
sequences as MV-CDCL-R proofs.

Theorem 1. MV-CDCL-R p-simulates MV-RES and Reg-RES.

Proof. To show that CDCL-R p-simulates resolution, it is sufficient to show that for
any resolution refutation Π of clause set Γ there is an extended restriction sequence δ
such that, when CDCL-R is executed in accordance with δ on input Γ, it runs in time
polynomial in the length of Π, and reports UNSAT. This follows from Lemma 7.

Corollary 1 (Pipatsrisawat & Darwiche). CDCL-R p-simulates resolution.

To see that this is indeed a corollary, it is enough to observe that MV-CNF and
MV-RES for |T | = 2 are equivalent to the classical case.

Theorem 2. MV-RES and Reg-RES p-simulate MV-CDCL-R for MV-CNF and
Reg-CNF formulas respectively.

Proof. Consider an execution of MV-CDCL-R that halts and outputs “UNSAT”,
and let σ be the extended restriction sequence corresponding to this execution. The
implicit underlying resolution refutation of Γ consists of the sequence of asserting
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clauses returned by Handle-Conflict, and all the clauses implicitly used in their
derivation. It is clear that this sequence of clauses is of length polynomial in the
length of σ.

7 Application Issues

Our stated motivation was to better understand the question of whether reasoning
in multi-valued logics might be effectively carried out by reduction to multi-valued
CNF formulas followed by execution of a CDCL-R based algorithm adapted to the
multi-valued setting. Our simulation results provide one way of understanding the
power of MV-CDCL-R. To the extent that the theorems of [18, 2] are related to
positive performance characteristics of solvers based on CDCL-R, we now expect
the same to hold for solvers based on MV-CDCL-R. This provides some evidence
that reduction to multi-valued CNF may be a fruitful approach to multi-valued logic
reasoning.

The MV-CDCL-R algorithm seems quite reasonable to implement. Most of the
work is easily inherited from existing CDCL SAT solvers. For |T | up to 64, the sign
of a literal can be implemented in a single word on modern CPUs, and key operations
such as the check for clashing, computing the residual of two clashing literals, or
merging two non-clashing literals, can be done in a single CPU instruction. Even for
significantly larger T , most modern CPUs provide support to do these operations in
hardware.

A number of algorithms and solvers for signed or multi-valued formulas, or spe-
cial cases of them, have been described in the literature. Most of these are essentially
backtracking or tableau-based. Thus, they correspond to tree-like versions of resolu-
tion and we can expect that, as in the classical case, there will be formulas for which
they are exponentially less efficient than unrestricted resolution. We are aware of
two algorithms that seem closely related to our MV-CDCL-R, namely those of of
[14] and [12]. These do not use restarts, which are essential to our work here, but
otherwise seem very closely related to the instantiation of MV-CDCL-R for MV-
CNF. The interested reader will find a useful discussion of implementation issues
in both of those reports. In light of the importance of restarts in high-performance
SAT solvers, and of our results here, it would be very interesting to see the effect on
performance of modifying these solvers to execute good restart policies.

An alternate reasoning strategy is to reduce the multi-valued reasoning problem
to SAT, and then execute a classical (CDCL-R based) SAT solver. The advantage
of this approach is that SAT solvers are easily available and subject to constant
improvement efforts. We will not address reductions directly from multi-valued
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logics to SAT, but restrict our attention to the following observation. We can easily
reduce Signed CNF satisfiability to SAT as follows. The set of propositional atoms
will contain atoms we write as p = a, one for each signed atom p and each truth value
a ∈ T . Each literal p⊏−{a, b, c, . . .} then maps to the disjunction (p = a∨ p = b∨ p =
c∨ . . .). Each clause of a Signed CNF formula maps to a single propositional clause.
We add to the resulting clauses the set of binary clauses of the form (p = a∨ p = c),
for each atom p and each pair a, c ∈ T with a 6= c.

We may simulate Signed resolution using classical resolution on these clauses,
but this does not seem of potential use in practice. To simulate the single resolution
step

p⊏−S ∨ A p⊏−R ∨ B

p⊏−(S ∩R) ∨ A ∨ B
(3)

with classical resolution seems to require a number of 2-valued resolution steps that
is quadratic in |T |. Since T is fixed, this is only a constant blow-up, but constants
can be important in solver design. Moreover, this constant applies to optimal proofs,
adding a large amount of non-determinism to the proof simulations. In a practical
algorithm, expecting to make |T |2 correct decisions in order to simulate a single
multi-valued resolution step seems unreasonably optimistic.

Recently, it was been shown that for any CDCL-R solver S and any unsatisfiable
CNF formula F, it is easy to generate a CDCL solver S’ (with no restarts) and a
formula F’ (consisting of a conjunction of F with some new clauses) such that S’
generates exactly the same resolution refutation of F that S’ does, and with only a
small polynomial slow-down [4]. Thus, theoretically, restarts are not really required.
However, it is far from clear that this fact can be used to make implemented solvers
without restarts that are as fast in practice as solvers that use restarts.

The potential of using resolution-based methods for signed formulas to solve com-
binatorial optimization problems has been examined in [1]. It would be interesting
to relate that direction of work to the present one.

8 Conclusion
We have presented a natural generalization of the SAT algorithm known as CDCL
with restarts to signed CNF formulas, in particular to Multi-valued CNF formu-
las, and to Regular formulas when the truth value set is a lattice. Adapting the
proofs from [18, 2] we showed that the algorithm p-simulates natural forms of bi-
nary resolution for these formulas, and vice versa. The simulation of resolution by
the algorithm is quite efficient, both in terms of length and width. Explaining the
impressive performance of SAT solvers in practice in light of their worst-case per-
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formance and the NP-completeness of SAT is an area of active interest. We do not
know if the theorems of [18, 2] are significant in such an explanation, but it is plau-
sible and consistent with empirical observation. Moreover, there is a good deal of
evidence that frequent restarts are important in practice. To the extent that this is
so, we have shown that similar properties hold for the generalization to multi-valued
CNF formulas. We consider the algorithm we have described easily implementable
and of potential use in developing practical model finders and theorem provers for
multi-valued logics.
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A Linear-time Unit Propagation
We will show that unit propagation can be executed in linear time on MV-CNF and
REG-CNF formulas. The method uses a single watched literal in each clause, which
is a simplification of the method with head and tail watches of [19].

Lemma 8. Let Γ be a set of multi-valued clauses with s literals in total, over a
domain T of size t. Then UP(Γ), or UP(Γ,δ), can be computed in time O(st).

Proof. We assume a data structure for clauses that supports viewing each clause
as a list of literals, and each literal p⊏−S in a clause as a list of atom-value pairs
〈p, a〉, one for each a ∈ S, in no particular order. (This exact representation is not
important, but makes explanation simple.) We further assume that accessing the
next literal in a clause or the next value in S takes constant time. For each clause
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C we maintain a pointer or index to a single pair 〈p, a〉 for a single literal p⊏−S, and
call this the “watched value” for C. Initially, the watched value for each clause is
the first value of the first literal. As we execute the procedure, we keep track of a
set of assignments of values to each atom that remain possible. We will maintain
the following invariant:

If 〈p, a〉 in the representation of literal p⊏−S is the watched value for
clause C, then every 〈p, b〉 that precedes 〈p, a〉 in the representation of
p⊏−S is known to be impossible, and for every literal that precedes p⊏−S
in the representation of C, every value is known to be impossible.

We maintain a queue Q of pairs 〈p, a〉 of atoms and values which we have determined
to be impossible, but for which we have not propagated the effects of that fact. We
initialize Q by inserting the set of pairs

{〈p, a〉 | C = (p⊏−S) is a unit clause of Γ and a 6∈ S}

For each pair 〈p, a〉 consisting of an atom p and value a, we construct a list of
watched occurrences of the pair. Now, until Q is empty, remove one pair 〈p, a〉 from
Q and handle it as follows. Traverse the list of watched occurrences of 〈p, a〉. For
each occurrence, scan the remaining values in the literal with 〈p, a〉 looking for a
value that is not known to be impossible, to be used as a new watch. If none is
found, search for one in the subsequent literals of the clause. If none is found, this
clause is now effectively an empty clause, so we are done with it and proceed to
the next watched occurrence of 〈p, a〉. If one was found but it is in the last literal
of the clause, then this clause is effectively unit, say (q⊏−R). Add the set of pairs
{〈q, b〉 | b 6∈ R and b is not already known to be impossible} to Q. If a new value
to watch was found and it is not in the last literal of the clause, then add the
corresponding pair to the appropriate watch list, and get the next pair from Q.

This algorithm visits each literal l in Γ at most once, and uses constant work for
each such visit, so runs in time O(st).

Since t is a constant in our analyses, this establishes the linear time unit prop-
agation we need. This algorithm works for both MV-CNF and REG-CNF, and
essentially amounts to reducing them to the two-valued case and performing stan-
dard watched-literal unit propagation.
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Abstract
We define a stable model semantics for fuzzy propositional formulas, which

generalizes both fuzzy propositional logic and the stable model semantics of
classical propositional formulas. The syntax of the language is the same as
the syntax of fuzzy propositional logic, but its semantics distinguishes stable
models from non-stable models. The generality of the language allows for highly
configurable nonmonotonic reasoning for dynamic domains involving graded
truth degrees. We show that several properties of Boolean stable models are
naturally extended to this many-valued setting, and discuss how it is related to
other approaches to combining fuzzy logic and the stable model semantics.

1 Introduction
Answer Set Programming (ASP) [18] is a widely applied declarative programming
paradigm for the design and implementation of knowledge-intensive applications.
One of the attractive features of ASP is its capability to represent the nonmonotonic
aspect of knowledge. However, its mathematical basis, the stable model semantics,
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is restricted to Boolean values and is too rigid to represent imprecise and vague
information. Fuzzy logic, as a form of many-valued logic, can handle such informa-
tion by interpreting propositions with graded truth degrees, often as real numbers
in the interval [0, 1]. The availability of various fuzzy operators gives the user great
flexibility in combining the truth degrees. However, the semantics of fuzzy logic is
monotonic and is not flexible enough to handle default reasoning as in answer set
programming.

Both the stable model semantics and fuzzy logic are generalizations of classical
propositional logic in different ways. While they do not subsume each other, it is
clear that many real-world problems require both their strengths. This has led to
the body of work on combining fuzzy logic and the stable model semantics, known
as fuzzy answer set programming (FASP) (e.g., [4,5,12,19,20,23,27,28]). However,
most works consider simple rule forms and do not allow logical connectives nested
arbitrarily as in fuzzy logic. An exception is fuzzy equilibrium logic [25], which
applies to arbitrary propositional formulas even including strong negation. However,
its definition is highly complex.

Unlike the existing works on fuzzy answer set semantics, in this paper, we extend
the general stable model semantics from [9, 10] to fuzzy propositional formulas.
The syntax of the language is the same as the syntax of fuzzy propositional logic.
The semantics, on the other hand, defines a condition which distinguishes stable
models from non-stable models. The language is a proper generalization of both
fuzzy propositional logic and classical propositional formulas under the stable model
semantics, and turns out to be essentially equivalent to fuzzy equilibrium logic, but
is much simpler. Unlike the interval-based semantics in fuzzy equilibrium logic,
the proposed semantics is based on the notions of a reduct and a minimal model,
familiar from the usual way stable models are defined, and thus provides a simpler,
alternative characterization of fuzzy equilibrium logic. In fact, in the absence of
strong negation, a fuzzy equilibrium model always assigns an interval of the form
[v, 1] to each atom, which can be simply identified with a single value v under our
stable model semantics. Further, we show that strong negation can be eliminated
from a formula in favor of new atoms, extending the well-known result in answer set
programming. So our simple semantics fully captures fuzzy equilibrium logic.

Also, there is a significant body of work based on the general stable model
semantics, such as the splitting theorem [8], the theorem on loop formulas [7], and
the concept of aggregates [15]. The simplicity of our semantics would allow for
easily extending those results to the many-valued setting, as can be seen from some
examples in this paper.

Another contribution of this paper is to show how reasoning about dynamic
systems in ASP can be extended to fuzzy ASP. It is well known that actions and
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their effects on the states of the world can be conveniently represented by answer set
programs [16,17]. On the contrary, to the best of our knowledge, the work on fuzzy
ASP has not addressed how the result can be extended to many-valued setting,
and most applications discussed so far are limited to static domains only. As a
motivating example, consider modeling dynamics of trust in social networks. People
trust each other in different degrees under some normal assumptions. If person A
trusts person B, then A tends to trust person C whom B trusts, to a degree which
is positively correlated to the degree to which A trusts B and the degree to which
B trusts C. By default, the trust degrees would not change, but may decrease when
some conflict arises between the people. Modeling such a domain requires expressing
defaults involving fuzzy truth values. We demonstrate how the proposed language
can achieve this by taking advantage of its generality over the existing approaches to
fuzzy ASP. Thus the generalization is not simply a pure theoretical pursuit but has
practical uses in the convenient modeling of defaults involving fuzzy truth values in
dynamic domains.

The paper is organized as follows. Section 2 reviews the syntax and the seman-
tics of fuzzy propositional logic, as well as the stable model semantics of classical
propositional formulas. Section 3 presents the main definition of a stable model of a
fuzzy propositional formula along with several examples. Section 4 presents a gen-
eralized definition based on partial degrees of satisfaction and its reduction to the
special case, as well as an alternative, second-order logic style definition. Section 5
tells us how the Boolean stable model semantics can be viewed as a special case of
the fuzzy stable model semantics, and Section 6 formally compares the fuzzy stable
model semantics with normal FASP programs and fuzzy equilibrium logic. Section 7
shows that some well-known properties of the Boolean stable model semantics can
be naturally extended to our fuzzy stable model semantics. Section 8 discusses other
related work, followed by the conclusion in Section 9. The complete proofs are given
in the appendix.

This paper is a significantly extended version of the papers [13, 14]. Instead of
the second-order logic style definition used there, we present a new, reduct-based
definition as the main definition, which is simpler and more aligned with the standard
definition of a stable model. Further, this paper shows that a generalization of the
stable model semantics that allows partial degrees of satisfaction can be reduced to
the version that allows only the two-valued concept of satisfaction.
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2 Preliminaries
2.1 Review: Fuzzy Logic
A fuzzy propositional signature σ is a set of symbols called fuzzy atoms. In addition,
we assume the presence of a set CONJ of fuzzy conjunction symbols, a set DISJ of
fuzzy disjunction symbols, a set NEG of fuzzy negation symbols, and a set IMPL of
fuzzy implication symbols.

A fuzzy (propositional) formula (of σ) is defined recursively as follows.

• every fuzzy atom p ∈ σ is a fuzzy formula;

• every numeric constant c, where c is a real number in [0, 1], is a fuzzy formula;

• if F is a fuzzy formula, then ¬F is a fuzzy formula, where ¬ ∈ NEG;

• if F and G are fuzzy formulas, then F ⊗ G, F ⊕ G, and F → G are fuzzy
formulas, where ⊗ ∈ CONJ, ⊕ ∈ DISJ, and → ∈ IMPL.

The models of a fuzzy formula are defined as follows [11]. The fuzzy truth values
are the real numbers in the range [0, 1]. A fuzzy interpretation I of σ is a mapping
from σ into [0, 1].

The fuzzy operators are functions mapping one or a pair of fuzzy truth values
into a fuzzy truth value. Among the operators, ¬ denotes a function from [0, 1] into
[0, 1]; ⊗, ⊕, and→ denote functions from [0, 1]×[0, 1] into [0, 1]. The actual mapping
performed by each operator can be defined in many different ways, but all of them
satisfy the following conditions, which imply that the operators are generalizations
of the corresponding classical propositional connectives:1

• a fuzzy negation ¬ is decreasing, and satisfies ¬(0) = 1 and ¬(1) = 0;

• a fuzzy conjunction ⊗ is increasing, commutative, associative, and ⊗(1, x) = x
for all x ∈ [0, 1];

• a fuzzy disjunction ⊕ is increasing, commutative, associative, and ⊕(0, x) = x
for all x ∈ [0, 1];

• a fuzzy implication → is decreasing in its first argument and increasing in its
second argument; and →(1, x) = x and →(0, 0) = 1 for all x ∈ [0, 1].

Figure 1 lists some specific fuzzy operators that we use in this paper.
1We say that a function f of arity n is increasing in its i-th argument (1 ≤ i ≤ n) if

f(arg1, . . . , argi, . . . , argn) ≤ f(arg1, . . . , arg′
i, . . . , argn) whenever argi ≤ arg′

i; f is said to be
increasing if it is increasing in all its arguments. The definition of decreasing is similarly defined.
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Symbol Name Definition
⊗l Łukasiewicz t-norm ⊗l(x, y) = max(x + y − 1, 0)
⊕l Łukasiewicz t-conorm ⊕l(x, y) = min(x + y, 1)
⊗m Gödel t-norm ⊗m(x, y) = min(x, y)
⊕m Gödel t-conorm ⊕m(x, y) = max(x, y)
⊗p product t-norm ⊗p(x, y) = x · y
⊕p product t-conorm ⊕p(x, y) = x + y − x · y
¬s standard negator ¬s(x) = 1− x

→r R-implicator induced by ⊗m →r(x, y) =
{

1 if x ≤ y

y otherwise
→s S-implicator induced by ⊗m →s(x, y) = max(1− x, y)
→l Implicator induced by ⊗l →l(x, y) = min(1− x + y, 1)

Figure 1: Some t-norms, t-conorms, negator, and implicators

The truth value of a fuzzy propositional formula F under I, denoted υI(F ), is
defined recursively as follows:

• for any atom p ∈ σ, υI(p) = I(p);

• for any numeric constant c, υI(c) = c;

• υI(¬F ) = ¬(υI(F ));

• υI(F ⊙G) = ⊙(υI(F ), υI (G)) (⊙ ∈ {⊗,⊕,→}).

(For simplicity, we identify the symbols for the fuzzy operators with the truth value
functions represented by them.)

Definition 1. We say that a fuzzy interpretation I satisfies a fuzzy formula F if
υI(F ) = 1, and denote it by I |= F . We call such I a fuzzy model of F .

We say that two formulas F and G are equivalent if υI(F ) = υI(G) for all
interpretations I, and denote it by F ⇔ G.

2.2 Review: Stable Models of Classical Propositional Formulas
A propositional signature is a set of symbols called atoms. A propositional formula
is defined recursively using atoms and the following set of primitive propositional
connectives: ⊥, ⊤, ¬, ∧, ∨, →.
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An interpretation of a propositional signature is a function from the signature
into {false, true}. We identify an interpretation with the set of atoms that are
true in it.

A model of a propositional formula is an interpretation that satisfies the formula.
According to [10], the models are divided into stable models and non-stable models
as follows. The reduct F X of a propositional formula F relative to a set X of atoms
is the formula obtained from F by replacing every maximal subformula that is not
satisfied by X with ⊥. Set X is called a stable model of F if X is a minimal set of
atoms satisfying F X .

Alternatively, the reduct F X can be defined recursively as follows:

Definition 2. • When F is an atom or ⊥ or ⊤, F X =
{

F if X |= F ;
⊥ otherwise;

• (¬F )X =
{
⊥ if X |= F ;
⊤ otherwise;

• For ⊙ ∈ {∧,∨,→},

(F ⊙G)X =
{

F X ⊙GX if X |= F ⊙G;
⊥ otherwise.

In the next section, we extend this definition to cover fuzzy propositional formu-
las.

3 Definition and Examples
3.1 Reduct-based Definition

Let σ be a fuzzy propositional signature, F a fuzzy propositional formula of σ, and
I an interpretation of σ.

Definition 3. The (fuzzy) reduct of F relative to I, denoted F I , is defined recur-
sively as follows:

• For any fuzzy atom or numeric constant F , F I = F ;

• (¬F )I = υI(¬F );

• (F ⊙G)I = (F I ⊙GI)⊗m υI(F ⊙G), where ⊙ ∈ {⊗,⊕,→}.
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Compare this definition and Definition 2. They are structurally similar, but also
have subtle differences. One of them is that in the case of binary connectives ⊙,
instead of distinguishing the cases between when X satisfies the formula or not as
in Definition 2, Definition 3 keeps a conjunction of F I ⊙GI and υI(F ⊙G).2

Another difference is that in the case of an atom, Definition 3 is a bit simpler as
it does not distinguish between the two cases. It turns out that the same clause can
be applied to Definition 2 (i.e., F X = F when F is an atom regardless of X |= F ),
still yielding an equivalent definition of a Boolean stable model. So this difference
is not essential.

For any two fuzzy interpretations J and I of signature σ and any subset p of σ,
we write J ≤p I if

• J(p) = I(p) for each fuzzy atom not in p, and

• J(p) ≤ I(p) for each fuzzy atom p in p.

We write J <p I if J ≤p I and J 6= I. We may simply write it as J < I when
p = σ.

Definition 4. We say that an interpretation I is a (fuzzy) stable model of F relative
to p (denoted I |= SM[F ; p]) if

• I |= F , and

• there is no interpretation J such that J <p I and J satisfies F I .

If p is the same as the underlying signature, we may simply write SM[F ; p] as SM[F ]
and drop the clause “relative to p.”

We call an interpretation J such that J <p I and J satisfies F I as a witness
to dispute the stability of I (for F relative to p). In other words, a model of F is
stable if it has no witness to dispute its stability for F .

Clearly, when p is empty, Definition 4 reduces to the definition of a fuzzy model
in Definition 1 simply because there is no interpretation J such that J <∅ I.

The definition of a reduct can be simplified in the cases of ⊗ and ⊕, which are
increasing in both arguments:

• (F ⊗G)I = (F I ⊗GI); (F ⊕G)I = (F I ⊕GI).

This is due to the following proposition, which can be proved by induction.
2In fact, a straightforward modification of the second subcases in Definition 2 by replacing ⊥

with some fixed truth values does not work for the fuzzy stable model semantics.
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Proposition 1. For any interpretations I and J such that J ≤p I, it holds that

υJ (F I) ≤ υI(F ).

In the following, we will assume this simplified form of a reduct.
Also, we may view ¬F as shorthand for some fuzzy implication F → 0. For

instance, what we called the standard negator can be derived from the residual
implicator→l induced by Łukasiewicz t-norm, defined as→l(x, y) = min(1−x+y, 1).
In view of Proposition 1, for J ≤p I,

υJ((F →l 0)I) = υJ((F I →l 0)⊗m υI(F →l 0))
= υJ(υI(F →l 0)) = υI(F →l 0) = υI(¬sF ).

Thus the second clause of Definition 3 can be viewed as a special case of the third
clause.

Example 1. Consider the fuzzy formula F1 = ¬sq →r p and the interpretation
I = {(p, x), (q, 1 − x)}, where x ∈ [0, 1]. I |= F1 because

υI(¬sq →r p) = →r(x, x) = 1.

The reduct F I
1 is

((¬sq)I →r p)⊗m 1 ⇔ (υI(¬sq)→r p) ⇔ x→r p

I can be a stable model only if x = 1. Otherwise, {(p, x), (q, 0)} is a witness to
dispute the stability of I.

On the other hand, for F2 = (¬sq →r p) ⊗m (¬sp →r q), for any value of
x ∈ [0, 1], I is a stable model. 3

F I
2 = (¬sq →r p)I ⊗m (¬sp→r q)I

⇔ (υI(¬sq)→r p)⊗m 1 ⊗m (υI(¬sp)→r q)⊗m 1
⇔ (x→r p) ⊗m ((1 − x)→r q).

No interpretation J such that J <{p,q} I satisfies F I
2 .

Example 2. • F1 = p→r p is a tautology (i.e., every interpretation is a model
of the formula), but not all models are stable. First, I1 = {(p, 0)} is a stable
model. The reduct F I1

1 is

(pI →r pI)⊗m 1 ⇔ p→r p ⇔ 1
3Strictly speaking, (1 − x) in the reduct should be understood as the value of the arithmetic

function applied to the arguments.
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and obviously, there is no witness to dispute the stability of I.
No other interpretation I2 = {(p, x)} where x > 0 is a stable model. The reduct
F I2

1 is again equivalent to 1, but I1 serves as a witness to dispute the stability
of I2.

• F2 = ¬s¬sp →r p is equivalent to F1, but their stable models are different.
Any I = {(p, x)}, where x ∈ [0, 1], is a stable model of F2. The reduct F I

2 is

((¬s¬sp)I →r pI)⊗m 1 ⇔ υI(¬s¬sp)→r p
⇔ x→r p.

No interpretation J such that J <{p} I satisfies F I
2 .

• Let F3 be ¬sp⊕l p. Any I = {(p, x)}, where x ∈ [0, 1], is a stable model of F3.
The reduct F I

3 is

(¬sp)I ⊕l pI ⇔ υI(¬sp)⊕l p ⇔ (1− x)⊕l p.

No interpretation J such that J <p I satisfies the reduct.

The following proposition extends a well-known fact about the relationship be-
tween a formula and its reduct in terms of satisfaction.

Proposition 2. A (fuzzy) interpretation I satisfies a formula F if and only if I
satisfies F I .

For any fuzzy formula F , any interpretation I and any set p of atoms, we say that
I is a minimal model of F relative to p if I satisfies F and there is no interpretation
J such that J <p I and J satisfies F . Using this notion, Proposition 2 tells us that
Definition 4 can be reformulated as follows.

Corollary 1. An interpretation I is a (fuzzy) stable model of F relative to p iff I
is a minimal model of F I relative to p.

This reformulation relies on the fact that ⊗m is intended in the third bullet of
Definition 3 instead of an arbitrary fuzzy conjunction because we want the truth
value of the “conjunction” of F I → GI and F → G to be either the truth value
of F I → GI or the truth value F → G. Conjunctions that do not have this prop-
erty lead to unintuitive behaviors, such as violating Proposition 2. As an example,
consider the formula

F = 0.6→r (1→r p)
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and the interpretation
I = {(p, 0.6)} .

Clearly, I satisfies F . According to Definition 3,

F I = (0.6→r (1→r p)I)⊗m υI(0.6→r (1→r p))
= (0.6→r ((1→r p)⊗m υI(1→r p)))⊗m 1
= 0.6→r ((1→r p)⊗m 0.6)

and

υI(F I) = (0.6→r ((1→r 0.6) ⊗m 0.6))
= 0.6→r 0.6 = 1

So I satisfies F I as well. However, if we replace ⊗m by ⊗l in the third bullet of
Definition 3, we get

υI(F I) = 0.6→r ((1→r 0.6) ⊗l 0.6)
= 0.6→r 0.2 = 0.2 < 1,

which indicates that I does not satisfy F I . Therefore, I is a fuzzy stable model of F
according to Definition 4, but it is not even a model of the reduct F I if ⊗l were used
in place of ⊗m in the definition of a reduct.

Similarly, it can be checked that the same issue remains if we use ⊗p in place
of ⊗m.

The following example illustrates how the commonsense law of inertia involving
fuzzy truth values can be represented.

Example 3. Let σ be {p0, np0, p1, np1} and let F be F1⊗m F2, where F1 represents
that p1 and np1 are complementary, i.e., the sum of their truth values is 1: 4

F1 = ¬s(p1 ⊗l np1)⊗m ¬s¬s(p1 ⊕l np1).

4This is similar to the formulas used under the Boolean stable model semantics to express that
two Boolean atoms p1 and np1 take complimentary values, i.e.,

¬(p1 ∧ np1) ∧ ¬¬(p1 ∨ np1).
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F2 represents that by default p1 has the truth value of p0, and np1 has the truth value
of np0: 5

F2 = ((p0 ⊗m ¬s¬sp1)→r p1)⊗m ((np0 ⊗m ¬s¬snp1)→r np1).

One can check that the interpretation

I1 = {(p0, x), (np0, 1− x), (p1, x), (np1, 1− x)}

(x is any value in [0, 1]) is a stable model of F relative to {p1, np1}: F I1 is equivalent
to

(p0 ⊗m x→r p1)⊗m (np0 ⊗m (1− x)→r np1).

No interpretation J such that J <{p1,np1} I1 satisfies F I1.
The interpretation

I2 = {(p0, x), (np0, 1− x), (p1, y), (np1, 1− y)},

where y > x, is not a stable model of F . The reduct F I2 is equivalent to

(p0 ⊗m y →r p1)⊗m (np0 ⊗m (1− y)→r np1),

and the interpretation {(p0, x), (np0, 1− x), (p1, x), (np1, 1− y)} serves as a witness
to dispute the stability of I2.

Similarly, when y < x, we can check that I2 is not a stable model of F relative
to {p1, np1}.

On the other hand, if we conjoin F with y →r p1 and (1 − y) →r np1 to yield
F ⊗m (y →r p1)⊗m ((1− y)→r np1), then the default behavior is overridden, and
I2 is a stable model of F ⊗m (y →r p1)⊗m ((1− y)→r np1) relative to {p1, np1}.6

This behavior is useful in expressing the commonsense law of inertia involving
fuzzy values. Suppose p0 represents the value of fluent p at time 0, and p1 represents
the value at time 1. Then F states that “by default, the fluent retains the previous
value.” The default value is overridden if there is an action that sets p to a different
value.

This way of representing the commonsense law of inertia is a straightforward
extension of the solution in ASP.

5This is similar to the rules used in ASP to express the commonsense law of inertia, e.g.,

p0 ∧ ¬¬p1 → p1.

6One may wonder why the part (1 − y) →r np1 is also needed. It can be checked that if we
drop the part (1 − y) →r np1 and have y less than x, then I2 (with y < x) is not a stable model of
F ⊗m (y →r p1) relative to {p1, np1} because J = {(p0, x), (np0, 1−x), (p1, y), (np1, 1−x)} disputes
the stability of I2.
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Example 4. The trust example in the introduction can be formalized in the fuzzy
stable model semantics as follows. Below x, y, z are schematic variables ranging
over people, and t is a schematic variable ranging over time steps. Trust(x, y, t) is
a fuzzy atom representing that “x trusts y at time t.” Similarly, Distrust(x, y, t) is
a fuzzy atom representing that “x distrusts y at time t.”

The trust relation is reflexive:

F1 = Trust(x, x, t).

The trust and distrust degrees are complementary, i.e., their sum is 1 (similar
to F1 in Example 3):

F2 = ¬s(Trust(x, y, t) ⊗l Distrust(x, y, t)),
F3 = ¬s¬s(Trust(x, y, t)⊕l Distrust(x, y, t)).

Initially, if x trusts y to degree d1 and y trusts z to degree d2, then we assume
x trusts z to degree d1 × d2; furthermore the initial distrust degree is 1 minus the
initial trust degree.

F4 = Trust(x, y, 0) ⊗p Trust(y, z, 0)→r Trust(x, z, 0),
F5 = ¬sTrust(x, y, 0)→r Distrust(x, y, 0).

The inertia assumption (similar to F2 in Example 3):

F6 = Trust(x, y, t)⊗m ¬s¬sTrust(x, y, t+1)→r Trust(x, y, t+1),
F7 = Distrust(x, y, t)⊗m ¬s¬sDistrust(x, y, t+1)→r Distrust(x, y, t+1).

A conflict increases the distrust degree by the conflict degree:

F8 = Conflict(x, y, t) ⊕l Distrust(x, y, t)→r Distrust(x, y, t+1),

Let FT W be F1 ⊗m F2 ⊗m · · · ⊗m F8. Suppose we have the formula FF act =
Fact1 ⊗m Fact2 that gives the initial trust degree.

Fact1 = 0.8→r Trust(Alice, Bob, 0),
Fact2 = 0.7→r Trust(Bob, Carol , 0).

Although there is no fact about how much Alice trusts Carol, any stable model of
FT W ⊗m FF act assigns value 0.56 to the atom Trust(Alice, Carol , 0). On the other
hand, the stable model assigns value 0 to Trust(Alice, David, 0) due to the closed
world assumption under the stable model semantics.
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When we conjoin FT W ⊗ FF act with 0.2 →r Conflict(Alice, Carol , 0), the stable
model of

FT W ⊗m FF act ⊗m (0.2→r Conflict(Alice, Carol , 0))

manifests that the trust degree between Alice and Carol decreases to 0.36 at time 1.
More generally, if we have more actions that change the trust degree in various ways,
by specifying the entire history of actions, we can determine the evolution of the trust
distribution among all the participants. Useful decisions can be made based on this
information. For example, Alice may decide not to share her personal pictures to
those whom she trusts less than degree 0.48.

Note that this example, like Example 3, uses nested connectives, such as ¬s¬s,
that are not available in the syntax of FASP considered in earlier work, such as
[12,19].

It is often assumed that, for any fuzzy rule arrow←, it holds that←(x, y) = 1 iff
x ≥ y [5]. This condition is required to use ← to define an immediate consequence
operator for a positive program whose least fixpoint coincides with the unique mini-
mal model. (A positive program is a set of rules of the form a← b1⊗ . . .⊗ bn, where
a, b1, . . . , bn are atoms.) Notice that →r in Figure 1 satisfies this condition, but →s

does not.

4 Generalization and Alternative Definitions
4.1 y-Stable Models
While the fuzzy stable model semantics presented in the previous section allows
atoms to have many values, like ASP, it holds on to the two-valued concept of
satisfaction, i.e., a formula is either satisfied or not. In a more flexible setting we
may allow a formula to be partially satisfied to a certain degree.

First, we generalize the notion of satisfaction to allow partial degrees of satisfac-
tion as in [27].

Definition 5. For any real number y ∈ [0, 1], we say that a fuzzy interpretation I
y-satisfies a fuzzy formula F if υI(F ) ≥ y, and denote it by I |=y F . We call I a
fuzzy y-model of F .

Using this generalized notion of satisfaction, it is straightforward to generalize
the definition of a stable model to incorporate partial degrees of satisfaction.

Definition 6. We say that an interpretation I is a fuzzy y-stable model of F relative
to p (denoted I |=y SM[F ; p]) if
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• I |=y F and

• there is no interpretation J such that J <p I and J |=y F I .

Fuzzy models and fuzzy stable models as defined in Section 2.1 and Section 3 are
fuzzy 1-models and fuzzy 1-stable models according to these generalized definitions.

Example 5. Consider the fuzzy formula F = ¬s p →r q and the interpretation
I = {(p, 0), (q, 0.6)}. I |=0.6 F because υI(¬s p→r q) =→r(1, 0.6) = 0.6.

The reduct F I is

((¬sp)I →r q)⊗m 1 ⇔ (υI(¬sp)→r q) ⇔ 1→r q

Clearly, for any J such that J <{p,q} I, we observe that J 6|=0.6 F I . Hence, I is a
0.6-stable model of F .

On the other hand, the generalized definition is not essential in the sense that it
can be reduced to the special case as follows.

Theorem 1. For any fuzzy formula F , an interpretation I is a y-stable model of F
relative to p iff I is a 1-stable model of y → F relative to p as long as the implication
→ satisfies the condition →(x, y) = 1 iff y ≥ x.

For example, in accordance with Theorem 1, {(p, 0.6)} is a 0.6-stable model of
¬s p→r q, as well as a 1-stable model of 0.6→r (¬s p→r q).

4.2 Second-Order Logic Style Definiton
In [9], second-order logic was used to define the stable models of a first-order for-
mula, which is equivalent to the reduct-based definition when the domain is finite.
Similarly, but instead of using second-order logic, we can express the same concept
using auxiliary atoms that do not belong to the original signature.

Let σ be a set of fuzzy atoms, and let p = (p1, . . . , pn) be a list of distinct atoms
belonging to σ, and let q = (q1, . . . , qn) be a list of new, distinct fuzzy atoms not
belonging to σ. For two interpretations I and J of σ that agree on all atoms in σ\p,
I ∪ Jp

q denotes the interpretation of σ ∪ q such that

• (I ∪ Jp
q )(p) = I(p) for each atom p in σ, and

• (I ∪ Jp
q )(qi) = J(pi) for each qi ∈ q.

For any fuzzy formula F of signature σ, F ∗(q) is defined as follows.

• p∗
i = qi for each pi ∈ p;
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• F ∗ = F for any atom F 6∈ p or any numeric constant F ;

• (¬F )∗ = ¬F ;

• (F ⊗G)∗ = F ∗ ⊗G∗; (F ⊕G)∗ = F ∗ ⊕G∗;

• (F → G)∗ = (F ∗ → G∗)⊗m (F → G).

Theorem 2. A fuzzy interpretation I is a fuzzy stable model of F relative to p iff

• I |= F , and

• there is no fuzzy interpretation J such that J <p I and I ∪ Jp
q |= F ∗(q).

5 Relation to Boolean-Valued Stable Models
The Boolean stable model semantics in Section 2.2 can be embedded into the fuzzy
stable model semantics as follows:

For any classical propositional formula F , define F fuzzy to be the fuzzy proposi-
tional formula obtained from F by replacing ⊥ with 0, ⊤ with 1, ¬ with ¬s, ∧ with
⊗m, ∨ with ⊕m, and→ with→s. We identify the signature of F fuzzy with the signa-
ture of F . Also, for any propositional interpretation I, we define the corresponding
fuzzy interpretation I fuzzy as

• I fuzzy(p) = 1 if I(p) = true;

• I fuzzy(p) = 0 otherwise.

The following theorem tells us that the Boolean-valued stable model semantics
can be viewed as a special case of the fuzzy stable model semantics.

Theorem 3. For any classical propositional formula F and any classical proposi-
tional interpretation I, I is a stable model of F relative to p iff I fuzzy is a stable
model of F fuzzy relative to p.

Example 6. Let F be the classical propositional formula ¬q → p. F has only one
stable model I = {p}. Likewise, as shown in Example 1, F fuzzy = ¬sq →s p has only
one fuzzy stable model I fuzzy = {(p, 1), (q, 0)}.

Theorem 3 may not necessarily hold for different selections of fuzzy operators,
as illustrated by the following example.
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Example 7. Let F be the classical propositional formula p∨p. Classical interpreta-
tion I = {p} is a stable model of F . However, I fuzzy = {(p, 1)} is not a stable model
of F fuzzy = p⊕l p because there is J = {(p, 0.5)} < I that satisfies (F fuzzy)I = p⊕l p.

However, one direction of Theorem 3 still holds for different selections of fuzzy
operators.

Theorem 4. For any classical propositional formula F , let F fuzzy
1 be the fuzzy for-

mula obtained from F by replacing ⊥ with 0, ⊤ with 1, ¬ with any fuzzy negation
symbol, ∧ with any fuzzy conjunction symbol, ∨ with any fuzzy disjunction symbol,
and → with any fuzzy implication symbol. For any classical propositional interpre-
tation I, if I fuzzy is a fuzzy stable model of F fuzzy

1 relative to p, then I is a Boolean
stable model of F relative to p.

6 Relation to Other Approaches to Fuzzy ASP
6.1 Relation to Stable Models of Normal FASP Programs
A normal FASP program [19] is a finite set of rules of the form

a ← b1 ⊗ . . .⊗ bm ⊗ ¬bm+1 ⊗ . . .⊗ ¬bn,

where n ≥ m ≥ 0, a, b1, . . . , bn are fuzzy atoms or numeric constants in [0, 1], and ⊗
is any fuzzy conjunction. We identify the rule with the fuzzy implication

b1 ⊗ . . .⊗ bm ⊗ ¬sbm+1 ⊗ . . .⊗ ¬sbn →r a,

which allows us to say that a fuzzy interpretation I of signature σ satisfies a rule R
if υI(R) = 1. I satisfies an FASP program Π if I satisfies every rule in Π.

According to [19], an interpretation I is a fuzzy answer set of a normal FASP
program Π if I satisfies Π, and no interpretation J such that J <σ I satisfies the
reduct of Π w.r.t. I, which is the program obtained from Π by replacing each negative
literal ¬b with the constant for 1− I(b).

Theorem 5. For any normal FASP program Π = {r1, . . . , rn}, let F be the fuzzy
formula r1 ⊗ . . . ⊗ rn, where ⊗ is any fuzzy conjunction. An interpretation I is a
fuzzy answer set of Π in the sense of [19] if and only if I is a stable model of F .

Example 8. Let Π be the following program

p← ¬q
q ← ¬p.
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The answer sets of Π according to [19] are {(p, x), (q, 1 − x)}, where x is any value
in [0, 1]: the corresponding fuzzy formula F is (¬sq →r p) ⊗m (¬sp →r q); As we
observed in Example 1, its stable models are {(p, x), (q, 1 − x)}, where x is any real
number in [0, 1].

6.2 Relation to Fuzzy Equilibrium Logic
Like the fuzzy stable model semantics introduced in this paper, fuzzy equilibrium
logic [25] generalizes fuzzy ASP programs to arbitrary propositional formulas, but
its definition is quite complex as it is based on some complex operations on pairs of
intervals and considers strong negation as one of the primitive connectives. Nonethe-
less, we show that fuzzy equilibrium logic is essentially equivalent to the fuzzy stable
model semantics where all atoms are subject to minimization.

6.2.1 Review: Fuzzy Equilibrium Logic

We first review the definition of fuzzy equilibrium logic from [25]. The syntax is the
same as the one we reviewed in Section 2.1 except that a new connective ∼ (strong
negation) may appear in front of atoms.7 For any fuzzy propositional signature σ,
a (fuzzy N5) valuation is a mapping from {h, t} × σ to subintervals of [0, 1] such
that V (t, a) ⊆ V (h, a) for each atom a ∈ σ. For V (w, a) = [u, v], where w ∈ {h, t},
we write V −(w, a) to denote the lower bound u and V +(w, a) to denote the upper
bound v. The truth value of a fuzzy formula under V is defined as follows.

• V (w, c) = [c, c] for any numeric constant c;

• V (w,∼a) = [1 − V +(w, a), 1 − V −(w, a)], where ∼ is the symbol for strong
negation;

• V (w, F ⊗G) = [V −(w, F ) ⊗ V −(w, G), V +(w, F ) ⊗ V +(w, G)]; 8

• V (w, F ⊕G) = [V −(w, F ) ⊕ V −(w, G), V +(w, F ) ⊕ V +(w, G)];

• V (h,¬F ) = [1 − V −(t, F ), 1− V −(h, F )];

• V (t,¬F ) = [1− V −(t, F ), 1− V −(t, F )];

• V (h, F → G) = [min(V −(h, F )→ V −(h, G), V −(t, F )→ V −(t, G)),
V −(h, F )→ V +(h, G)];

7The definition from [25] allows strong negation in front of any formulas. We restrict its occur-
rence only in front of atoms as usual in answer set programs.

8For readability, we write the infix notation (x ⊙ y) in place of ⊙(x, y).

1943



Joohyung Lee and Yi Wang

• V (t, F → G) = [V −(t, F )→ V −(t, G), V −(t, F )→ V +(t, G)].

A valuation V is a (fuzzy N5) model of a formula F if V −(h, F ) = 1, which
implies V +(h, F ) = V −(t, F ) = V +(t, F ) = 1. For two valuations V and V ′, we say
V ′ � V if V ′(t, a) = V (t, a) and V (h, a) ⊆ V ′(h, a) for all atoms a. We say V ′ ≺ V
if V ′ � V and V ′ 6= V . We say that a model V of F is h-minimal if there is no
model V ′ of F such that V ′ ≺ V . An h-minimal fuzzy N5 model V of F is a fuzzy
equilibrium model of F if V (h, a) = V (t, a) for all atoms a.

6.2.2 In the Absence of Strong Negation

We first establish the correspondence between fuzzy stable models and fuzzy equi-
librium models in the absence of strong negation. As in [25], we assume that the
fuzzy negation ¬ is ¬s.

Notice that a fuzzy equilibrium model assigns an interval of values to each atom,
rather than a single value as in fuzzy stable models. This accounts for the complexity
of the definition of a fuzzy model. However, it turns out that in the absence of strong
negation, all upper bounds assigned by a fuzzy equilibrium model are 1.

Lemma 1. Given a formula F containing no strong negation, any equilibrium model
V of F satisfies V +(h, a) = V +(t, a) = 1 for all atoms a.

Therefore, in the absence of strong negation, any equilibrium model can be
identified with a fuzzy interpretation as follows. For any valuation V , we define a
fuzzy interpretation IV as IV (p) = V −(h, p) for each atom p ∈ σ.

The following theorem asserts that there is a 1-1 correspondence between fuzzy
equilibrium models and fuzzy stable models.

Theorem 6. Let F be a fuzzy propositional formula of σ that contains no strong
negation.

(a) A valuation V of σ is a fuzzy equilibrium model of F iff V −(h, p) = V −(t, p),
V +(h, p) = V +(t, p) = 1 for all atoms p in σ and IV is a stable model of F
relative to σ.

(b) An interpretation I of σ is a stable model of F relative to σ iff I = IV for some
fuzzy equilibrium model V of F .

6.2.3 Allowing Strong Negation

In this section, we extend the relationship between fuzzy equilibrium logic and our
stable model semantics by allowing strong negation. This is done by simulating
strong negation by new atoms in our semantics.
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Let σ denote the signature. For a fuzzy formula F over σ that may contain
strong negation, define F ′ over σ ∪ {np | p ∈ σ} as the formula obtained from F by
replacing every strongly negated atom ∼p with a new atom np. The transformation
nneg(F ) (“no strong negation”) is defined as nneg(F ) = F ′ ⊗m

⊗
m

p∈σ
¬s(p⊗l np).

For any valuation V of signature σ, we define the valuation nneg(V ) of σ ∪
{np | p ∈ σ} as {

nneg(V )(w, p) = [V −(w, p), 1]
nneg(V )(w, np) = [1− V +(w, p), 1]

for all atoms p ∈ σ. Clearly, for every valuation V of σ, there exists a correspond-
ing interpretation Inneg(V ) of σ ∪ {np | p ∈ σ}. On the other hand, there exists an
interpretation I of σ ∪ {np | p ∈ σ} for which there is no corresponding valuation V
of σ such that I = Inneg(V ).

Example 9. Suppose σ = {p}. For the valuation V such that V (w, p) = [0.2, 0.7],
nneg(V ) is a valuation of {p, np} such that

nneg(V )(w, p) = [0.2, 1] and nneg(V )(w, np) = [0.3, 1].

Further, Inneg(V ) is an interpretation of {p, np} such that

Inneg(V )(p) = 0.2 and Inneg(V )(np) = 0.3.

On the other hand, the interpretation I = {(p, 0.6), (np, 0.8)} of σ∪{np | p ∈ σ} has
no corresponding valuation V of σ such that I = Inneg(V ) because [0.6, 0.2] is not a
valid valuation.

The following proposition asserts that strong negation can be eliminated in fa-
vor of new atoms, extending the well-known results with the Boolean stable model
semantics [9, Section 8] to fuzzy formulas.

Proposition 3. For any fuzzy formula F that may contain strong negation, a valua-
tion V is an equilibrium model of F iff nneg(V ) is an equilibrium model of nneg(F ).

Proposition 3 allows us to extend the 1-1 correspondence between fuzzy equi-
librium models and fuzzy stable models in Theorem 6 to any formula that contains
strong negation.

Theorem 7. For any fuzzy formula F of signature σ that may contain strong nega-
tion,

(a) A valuation V of σ is a fuzzy equilibrium model of F iff V (h, p) = V (t, p)
for all atoms p in σ and Inneg(V ) is a stable model of nneg(F ) relative to
σ ∪ {np | p ∈ σ}.
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(b) An interpretation I of σ ∪ {np | p ∈ σ} is a stable model of nneg(F ) relative
to σ ∪ {np | p ∈ σ} iff I = Inneg(V ) for some fuzzy equilibrium model V of F .

Example 10. For fuzzy formula F = (0.2→r p)⊗m (0.3→r∼p), formula nneg(F )
is

(0.2→r p)⊗m (0.3→r np)⊗m ¬s(p ⊗l np).

One can check that the valuation V defined as V (w, p) = [0.2, 0.7] is the only equi-
librium model of F , and the interpretation Inneg(V ) = {(p, 0.2), (np, 0.3)} is the only
fuzzy stable model of nneg(F ).

This idea of eliminating strong negation in favor of new atoms was used in
Examples 3 and 4.

The correspondence between fuzzy equilibrium models and fuzzy stable models
indicates that the complexity analysis for fuzzy equilibrium logic applies to fuzzy
stable models as well. In [25] it is shown that deciding whether a formula has a fuzzy
equilibrium model is ΣP

2 -hard, which applies to the fuzzy stable model semantics as
well. The same problem for a normal FASP programs, which can be identified with a
special case of the fuzzy stable model semantics as shown in Section 6.1, is NP-hard.
Complexity analyses for other special cases based on restrictions on fuzzy operators,
or the presence of cycles in a program have been studied in [3].

7 Some Properties of Fuzzy Stable Models
In this section, we show that several well-known properties of the Boolean stable
model semantics can be naturally extended to the fuzzy stable model semantics.

7.1 Theorem on Constraints
In answer set programming, constraints—rules with ⊥ in the head—play an impor-
tant role in view of the fact that adding a constraint eliminates the stable models
that “violate” the constraint. The following theorem is the counterpart of Theorem 3
from [9] for fuzzy propositional formulas.

Theorem 8. For any fuzzy formulas F and G, I is a stable model of F ⊗¬G
(relative to p) if and only if I is a stable model of F (relative to p) and I |= ¬G.

Example 11. Consider F = (¬sp →r q) ⊗m (¬sq →r p) ⊗m ¬sp. Formula F has
only one stable model I = {(p, 0), (q, 1)}, which is the only stable model of
(¬sp→r q)⊗m (¬sq →r p) that satisfies ¬sp.
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7.2 Theorem on Choice Formulas
In the Boolean stable model semantics, formulas of the form p∨¬p are called choice
formulas, and adding them to the program makes atoms p exempt from minimiza-
tion. Choice formulas have been shown to be useful in constructing an ASP program
in the “Generate-and-Test” style. This section shows their counterpart in the fuzzy
stable model semantics.

For any finite set of fuzzy atoms p = {p1, . . . , pn}, the expression pch stands for
the choice formula

(p1 ⊕l ¬sp1)⊗ . . .⊗ (pn ⊕l ¬spn),

where ⊗ is any fuzzy conjunction.
The following proposition tells us that choice formulas are tautological.

Proposition 4. For any fuzzy interpretation I and any finite set p of fuzzy atoms,
I |= pch.9

Theorem 9 is an extension of Theorem 2 from [9].

Theorem 9. (a) For any real number y ∈ [0, 1], if I is a y-stable model of F
relative to p ∪ q, then I is a y-stable model of F relative to p.

(b) I is a 1-stable model of F relative to p iff I is a 1-stable model of F ⊗ qch

relative to p ∪ q.

Theorem 9 (b) does not hold for an arbitrary threshold y (i.e., if “1−” is replaced
with “y−”). For example, consider F = ¬s¬sq and I = {(q, 0.5)}. Clearly, I is a
0.5-model of F , and thus I is a 0.5-stable model of F relative to ∅. However, I is
not a 0.5-stable model of F ⊗m {q}ch = ¬s¬sq ⊗m (q ⊕l ¬sq) relative to ∅ ∪ {q}, as
witnessed by J = {(q, 0)}.

Since the 1-stable models of F relative to ∅ are the models of F , it follows from
Theorem 9 (b) that the 1-stable models of F ⊗ σch relative to the whole signature σ
are exactly the 1-models of F .

Corollary 2. Let F be a fuzzy formula of a finite signature σ. I is a model of F iff
I is a stable model of F ⊗ σch relative to σ.

Example 12. Consider the fuzzy formula F = ¬sq →r p in Example 1, which has
only one stable model {(p, 1), (q, 0)}, although any interpretation I = {(p, x), (q, 1 −

9This proposition may not hold if ⊕l in the choice formula is replaced by an arbitrary fuzzy
disjunction. For example, consider using ⊕m instead. Clearly, the interpretation I = {(p, 0.5)} 6|=
p ⊕m ¬sp.
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x)} is a model of F . In accordance with Corollary 2, we check that any I is a stable
model of G = F ⊗m (p⊕l ¬sp)⊗m (q ⊕l ¬sq). The reduct GI is equivalent to

((1 − υI(q))→r p)⊗m (p⊕l (1− υI(p)))⊗m (q ⊕l (1− υI(q))).

It is clear that any interpretation J that satisfies GI should be such that υJ(p) ≥
υI(p) and υJ(q) ≥ υI(q), so there is no witness to dispute the stability of I.

8 Other Related Work
Several approaches to incorporating graded truth degrees into the answer set pro-
gramming framework have been proposed. In this paper, we have formally compared
our approach to [25] and [19]. Most works consider a special form h ← B where h
is an atom and B is some formula [4, 5, 23, 28]. Among them, [5, 23, 28] allow B to
be any arbitrary formula corresponding to an increasing function whose arguments
are the atoms appearing in the formula. [4] allows B to correspond to either an
increasing function or a decreasing function. [20] considers the normal program
syntax, i.e., each rule is of the form l0 ← l1⊗ . . .⊗ lm⊗not lm+1⊗ . . .⊗not ln, where
each li is an atom or a strongly negated atom. In terms of semantics, most of the
previous works rely on the notion of an immediate consequence operator and relate
the fixpoint of this operator to the minimal model of a positive program. Similar to
the approach [19] has adopted, the answer set of a positive program is defined as
its minimal model, while the answer sets of a non-positive program are defined as
minimal models of reducts. [27] presented a semantics based on the notion of an
unfounded set. Disjunctive fuzzy answer set programs were also studied in [3].

It is worth noting that some of the related works have discussed so-called resid-
uated programs [5, 20, 23, 28], where each rule h ← B is assigned a weight θ, and a
rule is satisfied by an interpretation I if I(h ← B) ≥ θ. According to [5], this class
of programs is able to capture many other logic programming paradigms, such as
possibilistic logic programming, hybrid probabilistic logic programming, and gener-
alized annotated logic programming. Furthermore, as shown in [5], a weighted rule
(h ← B, θ) can be simulated by h ← B ⊗ θ, where (⊗,←) forms an adjoint pair.
Notice that a similar method was used in Theorem 1 in relating y-stable models to
1-stable models.

It is well known in the Boolean stable model semantics that strong negation
can be represented in terms of new atoms [9]. Our adaptation in the fuzzy stable
model semantics is similar to the method from [20], in which the consistency of an
interpretation is guaranteed by imposing the extra restriction I(∼p) ≤ ∼I(p) for all
atom p. Strong negation and consistency have also been studied in [21,22].
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In addition to fuzzy answer set programming, there are other approaches devel-
oped to handle many-valued logic. For example, [26] proposed a logic programming
framework where each literal is annotated by a real-valued interval. Another exam-
ple is possibilistic logic [6], where each propositional symbol is associated with two
real values in the interval [0, 1] called the necessity degree and the possibility degree.
Although these semantics handle fuzziness based on quite different ideas, it has been
shown that these paradigms can be captured by fuzzy answer set programs [5].

While the development of FASP solvers has not yet reached the maturity level
of ASP solvers, there is an increasing interest recently. [1] presented an FASP solver
based on answer set approximation operators and a translation to bilevel linear
programming presented in [3]. The implementation in [24] is based on a reduction
of FASP to ASP. Independent from the work presented here, [2] presented another
promising FASP solver, named fasp2smt, that uses SMT solvers based on a transla-
tion from FASP into satisfiability modulo theories. A large fragment of the language
proposed in this paper can be computed by this solver. The input language allows
¬s, ⊗l, ⊕l, ⊗m, ⊕m as fuzzy operators, and rules of the form

Head ← Body

where Head is p1 ⊙ · · · ⊙ pn where pi are atoms or numeric constants, and ⊙ ∈
{⊗l,⊕l,⊗m,⊕m}, and Body is a nested formula formed from atoms and numeric
constants using ¬s, ⊗l, ⊕l, ⊗m, ⊕m.

Example 4 can be computed by fasp2smt. Assume a conflict of degree 0.1 be-
tween Alice and Bob occurred at step 0, no conflict occurred at step 1, and a conflict
of degree 0.5 between Alice and Bob occurred at step 2. Since the current version
of fast2smt 10 does not yet support product conjunction ⊗p, we use Łukasiewicz
conjunction ⊗l in formula F4. In the input language of fasp2smt, “:-” denote →r,
“,” denotes ⊗m, “*” denote ⊗l, “+” denotes ⊕l, and “not” denotes ¬s. Numeric
constants begin with “#” symbol, and variables are capitalized. The encoding in the
input language of fasp2smt is shown in Figure 2.

The command line to compute this program is simply:

python fasp2smt.py trust.fasp

Part of the output from fasp2smt is shown below:
trust(alice,bob,0) 0.800000 (4.0/5.0)
trust(bob,carol,0) 0.700000 (7.0/10.0)
trust(alice,carol,0) 0.500000 (1.0/2.0)
trust(alice,bob,1) 0.700000 (7.0/10.0)

10Downloaded in March 2016
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% domain
person(alice). person(bob). person(carol).
step(0). step(1). step(2). step(3).
next(0,1). next(1,2). next(2,3).

% F1: trust is reflexive
trust(X,X,T) :- person(X), step(T).

% F2, F3: UEC
:- trust(X,Y,T) * distrust(X,Y,T).
:- not (trust(X,Y,T) + distrust(X,Y,T)), person(X), person(Y), step(T).

% F4, F5: transitivity of trust
% F4 modified: product t-norm is replaced by Lukasiwicz t-norm since
% the solver does not support it.
trust(X,Z,0) :- trust(X,Y,0) * trust(Y,Z,0),

person(X), person(Y), person(Z).
distrust(X,Y,0) :- not trust(X,Y,0), person(X), person(Y).

% F6, F7: inertia
trust(X,Y,T2) :- trust(X,Y,T1), not not trust(X,Y,T2), next(T1,T2).
distrust(X,Y,T2) :- distrust(X,Y,T1), not not distrust(X,Y,T2), next(T1,T2).

% F8: effect of conflict
distrust(X,Y,T2) :- conflict(X,Y,T1) + distrust(X,Y,T1), next(T1,T2).

% initial State
trust(alice,bob,0) :- #0.8.
trust(bob,carol,0) :- #0.7.

% action
conflict(alice,bob,0) :- #0.1.
conflict(alice,bob,2) :- #0.5.

Figure 2: Trust Example in the Input Language of fasp2smt
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trust(bob,carol,1) 0.700000 (7.0/10.0)
trust(alice,carol,1) 0.500000 (1.0/2.0)
trust(alice,bob,2) 0.700000 (7.0/10.0)
trust(bob,carol,2) 0.700000 (7.0/10.0)
trust(alice,carol,2) 0.500000 (1.0/2.0)
trust(alice,bob,3) 0.200000 (1.0/5.0)
trust(bob,carol,3) 0.700000 (7.0/10.0)
trust(alice,carol,3) 0.500000 (1.0/2.0)
conflict(alice,bob,0) 0.100000 (1.0/10.0)
conflict(alice,bob,1) 0.0 (0.0)
conflict(alice,bob,2) 0.500000 (1.0/2.0)

The number following each atom is the truth value of the atom in decimal notation,
and the number in the parentheses is the truth value in fraction.

9 Conclusion

We introduced a stable model semantics for fuzzy propositional formulas, which
generalizes both the Boolean stable model semantics and fuzzy propositional logic.
The syntax is the same as the syntax of fuzzy propositional logic, but the semantics
allows us to distinguish stable models from non-stable models. The formalism allows
highly configurable default reasoning involving fuzzy truth values. The proposed
semantics, when we restrict threshold to be 1 and assume all atoms to be subject
to minimization, is essentially equivalent to fuzzy equilibrium logic, but is much
simpler. To the best of our knowledge, our representation of the commonsense
law of inertia involving fuzzy values is new. The representation uses nested fuzzy
operators, which are not available in other fuzzy ASP semantics with restricted
syntax.

We showed that several traditional results in answer set programming can be
naturally extended to this formalism, and expect that more results can be carried
over. Also, it would be possible to generalize the semantics to the first-order level,
similar to the way the Boolean stable model semantics was generalized in [9].
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A Proofs
A.1 Proof of Proposition 1
Lemma 2. For any fuzzy conjunction ⊗, we have ⊗(x, y) ≤ x and ⊗(x, y) ≤ y.

Proof. By the conditions imposed on fuzzy conjunctions, we have ⊗(x, y) ≤
⊗(x, 1) = x and ⊗(x, y) ≤ ⊗(1, y) = y.

Proposition 1. For any interpretations I and J such that J ≤p I, it holds that

υJ (F I) ≤ υI(F ).
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Proof. By induction on F .
• F is an atom p. υJ(F I) = J(p) and υI(F ) = I(p). Clear from the assump-

tion J ≤p I.

• F is a numeric constant c. Clearly, υJ(F I) = c = υI(F ).

• F is ¬G. υJ(F I) = υJ(υI(¬G)) = υI(¬G) = υI(F ).

• F is G⊙H, where ⊙ is ⊗ or ⊕. υJ(F I) = υJ(GI)⊙ υJ(HI). By I.H. we have
υJ(GI) ≤ υI(G) and υJ(HI) ≤ υI(H). Since ⊗ and ⊕ are both increasing, we
have υJ(F I) = υJ(GI)⊙ υJ(HI) ≤ υI(G)⊙ υI(H) = υI(F ).

• F is G→ H. υJ(F I) = (υJ(GI)→ υJ(HI))⊗mυI(F ). By Lemma 2, υJ(F I) ≤
υI(F ).

A.2 Proof of Proposition 2
Lemma 3. For any (fuzzy) formula F and (fuzzy) interpretation I, we have υI(F ) =
υI(F I).
Proof. By induction on F .
• F is an atom p or a numeric constant. Clear from the fact F I = F .

• F is ¬G. Then we have υI(F ) = υI(¬G) = υI(υI(¬G)) = υI(F I).

• F is G⊙H, where ⊙ is ⊗, ⊕, or →. Then F I = (GI ⊙HI)⊗m υI(F ⊙G). By
I.H., we have υI(G) = υI(GI) and υI(H) = υI(HI). So we have

υI(F I) = min
{

υI(GI ⊙HI), υI(G⊙H)
}

= min
{
⊙(υI(GI), υI(HI)), ⊙(υI(G), υI(H))

}

= min {⊙(υI(G), υI (H)), ⊙(υI(G), υI(H))}
= ⊙(υI(G), υI(H))
= υI(F ).

Proposition 2 is an immediate corollary to Lemma 3.

Proposition 2. A (fuzzy) interpretation I satisfies a (fuzzy) formula F if and only
if I satisfies F I .
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A.3 Proof of Theorem 1
Lemma 4. For any fuzzy formula F , any interpretation I, and any implication →
that satisfies →(x, y) = 1 iff y ≥ x, we have that I is a y-model of F iff I is a
1-model of y → F .

Proof. By definition, I |=y F means that υI(F ) ≥ y. Since →(x, y) = 1 iff y ≥ x,
υI(F ) ≥ y iff →(y, υI(F )) = 1 iff υI(y → F ) = 1 iff I |=1 (y → F ).

Theorem 1. For any fuzzy formula F , an interpretation I is a y-stable model of F
relative to p iff I is a 1-stable model of y → F relative to p as long as the implication
→ satisfies the condition →(x, y) = 1 iff y ≥ x.

Proof.
I is a y-stable model of F relative to p

iff
I |=y F and there is no J <p I such that J |=y F I

iff (by Lemma 4)

I |=1 y → F and there is no J <p I such that J |=1 (y → F I)

iff (since υI(y → F ) = 1)

I |=1 y → F and there is no J <p I such that J |=1 (y → F I)⊗m υI(y → F )

iff (since (y → F I)⊗m υI(y → F ) = (y → F )I)

I is a 1-stable model of y → F relative to p.

A.4 Proof of Theorem 2
Lemma 5. For any formula F and any interpretations I and J such that J ≤p I,
υI∪Jp

q (F ∗(q)) = υJ(F I).

Proof. By induction on F .

• F is a numeric constant c, or an atom not in p. Immediate from the fact that
J and I agree on F ∗(q) = F = F I .
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• F is an atom pi ∈ p. F ∗(q) = qi and F I = pi. Clear from the fact that
υI∪Jp

q (qi) = υJ(pi).

• F is ¬G. υI∪Jp
q ((¬G)∗(q)) = υI(¬G) = υJ(υI(¬G)) = υJ (F I).

• F is G⊙H, where ⊙ is ⊗ or ⊕. Immediate by I.H. on G and H.

• F is G → H. By I.H., υI∪Jp
q (G∗(q)) = υJ (GI) and υI∪Jp

q (H∗(q)) = υJ(HI).
F ∗(q) is (G∗(q)→ H∗(q))⊗m (G→ H), and F I is (GI → HI)⊗m υI(G→ H).
Then the claim is immediate from I.H.

Theorem 2. A fuzzy interpretation I is a fuzzy stable model of F relative to p iff

• I |= F , and

• there is no fuzzy interpretation J such that J <p I and I ∪ Jp
q |= F ∗(q).

Proof.
I is a fuzzy stable model of F relative to p

iff
I |= F and there is no J <p I such that J |= F I

iff (by Lemma 5)

I |= F and there is no J <p I such that I ∪ Jp
q |= F ∗(q).

A.5 Proofs of Theorems 3 and 4
The following lemma immediately follows from Lemma 2.

Lemma 6. For any fuzzy conjunction ⊗, ⊗(x, y) = 1 if and only if x = 1 and y = 1.

Define the mapping defuz(I) that maps a fuzzy interpretation I = {(p1, x1), . . . ,
(pn, xn)} to a classical interpretation such that defuz(I) = {pi | (pi, 1) ∈ I}.

Lemma 7. for any fuzzy interpretation I and any classical propositional formula F ,

(i) if υI(F fuzzy) = 1, then defuz(I) |= F , and
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(ii) if υI(F fuzzy) = 0, then defuz(I) 6|= F .

Proof. We prove by induction on F .
• F is an atom p. (i) Suppose I |=1 F fuzzy. Then υI(p) = 1, and thus p ∈

defuz(I). So defuz(I) |= F . (ii) Suppose υI(F fuzzy) = 0. Then υI(p) = 0, and
thus p /∈ defuz(I). So defuz(I) 6|= F .

• F is ⊥. (i) There is no interpretation that satisfies F fuzzy = 0 to the degree 1.
So the claim is trivially true. (ii) Since no interpretation satisfies F , defuz(I) 6|=
F .

• F is ⊤. (i) All interpretations satisfy F . So defuz(I) |= F . (ii) There is no
interpretation I such that υI(F fuzzy) = 0. So (ii) is trivially true.

• F is ¬G. Then F fuzzy is ¬sGfuzzy. (i) Suppose I |=1 F fuzzy. We have
υI(F fuzzy) = 1 − υI(Gfuzzy) = 1, so υI(Gfuzzy) = 0. By I.H., defuz(I) 6|= G,
and thus defuz(I) |= F . (ii) Suppose υI(F fuzzy) = 0, Then 1−υI(Gfuzzy) = 0,
υI(Gfuzzy) = 1, i.e., I |=1 υI(Gfuzzy). By I.H., defuz(I) |= G, and thus
defuz(I) 6|= F .

• F is G ∧H. Then F fuzzy is Gfuzzy ⊗m Hfuzzy. (i) Suppose I |=1 F fuzzy. By
Lemma 6, υI(Gfuzzy) = υI(Hfuzzy) = 1, i.e., I |=1 Gfuzzy and I |=1 Hfuzzy.
By I.H., defuz(I) |= G and defuz(I) |= H. It follows that defuz(I) |= G ∧
H = F . (ii) Suppose υI(F fuzzy) = min(υI(Gfuzzy), υI(Hfuzzy)) = 0. Then
υI(Gfuzzy) = 0 or υI(Hfuzzy) = 0. By I.H., defuz(I) 6|= G or defuz(I) 6|= H.
It follows that defuz(I) 6|= G ∧H = F .

• F is G ∨ H. Then F fuzzy is Gfuzzy ⊕m Hfuzzy. (i) Suppose I |=1 F fuzzy,
and as the disjunction is defined as ⊕m(x, y) = max(x, y), υI(Gfuzzy) = 1 or
υI(Hfuzzy) = 1, i.e., I |=1 Gfuzzy or I |=1 Hfuzzy. By I.H., defuz(I) |= G
or defuz(I) |= H. It follows that defuz(I) |= G ∨ H = F . (ii) Suppose
υI(F fuzzy) = max(υI(Gfuzzy), υI(Hfuzzy)) = 0. Then υI(Gfuzzy) = 0 and
υI(Hfuzzy) = 0. By I.H., defuz(I) 6|= G and defuz(I) 6|= H. It follows that
defuz(I) 6|= G ∨H = F .

• F is G→ H. Then F fuzzy is Gfuzzy →s Hfuzzy. (i) Suppose I |=1 F fuzzy. We
have υI(F fuzzy) = max(1−υI(Gfuzzy), υI(Hfuzzy)) = 1, so that υI(Gfuzzy) =
0 or υI(Hfuzzy) = 1.11 By I.H., defuz(I) 6|= G or defuz(I) |= H. It follows

11This does not hold for an arbitrary choice of implication. For example, consider →l (x, y) =
min(1−x+y, 1), then from I |=1 G →l H , we can only conclude υI(H) ≥ υI(G). Furthermore, under
this choice of implication, the modified statement of the lemma does not hold. A counterexample
is F = ¬sp →l q, I = {(p, 0.5), (q, 0.6)}. Clearly, I |=1 F fuzzy but defuz(I) = ∅ 6|= F .
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that defuz(I) |= G→ H = F .
(ii) Suppose υI(F fuzzy) = max

{
1− υI(Gfuzzy), υI(Hfuzzy)

}
= 0. Then

υI(Gfuzzy) = 1 and υI(Hfuzzy) = 0. By I.H., defuz(I) |= G and defuz(I) 6|= H.
Therefore defuz(I) 6|= G→ H.

Lemma 8. For any classical interpretation I and any classical propositional for-
mula F , I |= F if and only if Ifuzzy |= F fuzzy.

Proof. By induction on F .

Theorem 3. For any classical propositional formula F and any classical proposi-
tional interpretation I, I is a stable model of F relative to p iff I fuzzy is a stable
model of F fuzzy relative to p.

Proof. (⇒) Suppose I is a stable model of F relative to p. From the fact that
I |= F , by Lemma 8, Ifuzzy |= F fuzzy.

Next we show that there is no fuzzy interpretation J <p Ifuzzy such that J |=
(F fuzzy)I . Suppose, for the sake of contradiction, that there exists such J . Since
J |= (F fuzzy)I , or equivalently, J |= (F I)fuzzy, by Lemma 7, we get defuz(J) |= F I .

Since J <p Ifuzzy, J and Ifuzzy agree on all atoms not in p. Since Ifuzzy

assigns either 0 or 1 to each atom, it follows that J , as well as defuz(J), assigns
the same truth values as Ifuzzy to atoms not in p. The construction of defuz(J)
guarantees that defuz(J)fuzzy ≤p J <p Ifuzzy. Since both defuz(J)fuzzy and Ifuzzy

assigns either 0 or 1 to each atom, there is at least one atom p ∈ p such that
υdefuz(J)fuzzy(p) = 0 and υIfuzzy(p) = 1, and consequently defuz(J)(p) = false and
I(p) = true. So defuz(J) <p I, and together with the fact that defuz(J) |= F I , it
follows that I is not a stable model of F , which is a contradiction. Thus, there is
no such J , from which we conclude that Ifuzzy is a stable model of F fuzzy relative
to p.

(⇐) Suppose Ifuzzy is a stable model of a fuzzy formula F fuzzy relative to p. Then
Ifuzzy |= F fuzzy. By Lemma 8, I |= F .

Next we show there is no J <p I such that J |= F I . Suppose, for the sake of
contradiction, that there exists such J . Then by Lemma 8, Jfuzzy |= (F I)fuzzy, and
obviously Jfuzzy <p Ifuzzy. It follows that Ifuzzy is not a stable model of F fuzzy

relative to p, which is a contradiction. So there is no such J , from which we conclude
that I is a stable model of F relative to p.
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The proof of Theorem 4 is the same as the right-to-left direction of the proof of
Theorem 3. Notice that the left-to-right direction of the proof of Theorem 3 relies on
Lemma 7, which assumes the particular selection of fuzzy operators, so this direction
does not apply to the setting of Theorem 4.

A.6 Proof of Theorem 5
Theorem 5. For any normal FASP program Π = {r1, . . . , rn}, let F be the fuzzy
formula r1 ⊗ . . . ⊗ rn, where ⊗ is any fuzzy conjunction. An interpretation I is a
fuzzy answer set of Π in the sense of [19] if and only if I is a stable model of F .

Proof. By ΠI we denote the reduct of Π relative to I as defined in [19], which is
also reviewed in Section 6.1.

(⇒) Suppose I is a fuzzy answer set of Π. By definition, I |= Π, and thus υI(ri) = 1
for all ri ∈ Π. So

υI(F ) = υI(r1 ⊗ . . .⊗ rn) = 1,

i.e., I |= F .
Next we show that there is no J <σ I such that J |= F I , where σ is the underlying

signature. For each ri = a ←r b1 ⊗ . . .⊗ bm ⊗ ¬bm+1 ⊗ . . .⊗ ¬bn,

rI
i = υI(ri)⊗m (a←r b1 ⊗ . . . ⊗ bm ⊗ υI(¬sbm+1)⊗ . . . ⊗ υI(¬sbn)).

Suppose, for the sake of contradiction, that there exists an interpretation J <σ I
such that J |= F I . Then, for all ri ∈ Π, J |= rI

i , i.e.,

J |= υI(ri)⊗m (a←r b1 ⊗ . . . ⊗ bm ⊗ υI(¬sbm+1)⊗ . . .⊗ υI(¬sbn)).

It follows that

J |= a←r b1 ⊗ . . .⊗ bm ⊗ υI(¬sbm+1)⊗ . . .⊗ υI(¬sbn).

So J |= ΠI . Together with the fact J <σ I, this contradicts that I is a fuzzy answer
set of Π. So there is no such J , from which we conclue that I is a stable model of F .

(⇐) Suppose I is a stable model of F . From the fact that I |= F , it follows that
υI(ri) = 1 for all ri ∈ Π. Thus I |= Π.

Next we show that there is no J <σ I such that J |= ΠI , where σ is the underlying
signature. The reduct ΠI contains the following rule for each original rule ri ∈ Π:

a← b1 ⊗ . . .⊗ bm ⊗ υI(¬bm+1)⊗ . . .⊗ υI(¬bn).
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Suppose, for the sake of contradiction, that there exists J <σ I such that J |= ΠI .
Then for each rule ri ∈ Π,

J |= a←r b1 ⊗ . . .⊗ bm ⊗ υI(¬sbm+1)⊗ . . .⊗ υI(¬sbn).

As I |= Π, for all ri ∈ Π, υI(ri) = 1, so

J |= υI(ri)⊗m (a←r b1 ⊗ . . .⊗ bm ⊗ ¬sυI(bm+1)⊗ . . .⊗ υI(¬sbn))

or equivalently, J |= rI
i for each ri ∈ Π. Therefore, J |= (r1⊗ . . .⊗rn)I , i.e., J |= F I .

Together with the fact J <σ I, this contradicts that I is a stable model of F . So
there is no such J , from which we conclude that I is a fuzzy answer set of Π.

A.7 Proof of Theorem 6
Let σ be a signature, and let F be a fuzzy formula of signature σ that does not
contain strong negation.

For any two interpretations I and J such that J ≤σ I, we define the fuzzy N5
valuation VJ,I as follows. For every atom p ∈ σ,

• VJ,I(h, p) = [υJ(p), 1], and

• VJ,I(t, p) = [υI(p), 1].

It can be seen that VJ,I is always a valid valuation as long as J ≤σ I. Clearly,
IVI,I

= I for any interpretation I.

Lemma 9. For any interpretations I and J such that J ≤σ I, it holds that vI(F ) =
V−

J,I(t, F ).

Proof. By induction on F .

• F is an atom p. Then υI(F ) = υI(p) = V−
J,I(t, p) = V−

J,I(t, F ).

• F is a numeric constant c. Then υI(F ) = c = V−
J,I(t, c) = V−

J,I(t, F ).

• F is ¬G. Then υI(F ) = ¬(υI(G)). By I.H., υI(F ) = ¬(V−
J,I(t, G)) = V−

J,I(t, F ).

• F is G ⊙H, where ⊙ is ⊗, ⊕ or →. Then υI(F ) = υI(G) ⊙ υI(H). By I.H.,
υI(F ) = V−

J,I(t, G)⊙ V−
J,I(t, H) = V−

J,I(t, F ).
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The following is a corollary to Lemma 9.

Corollary 3. I |= F if and only if VI,I is a model of F .

Proof. By Lemma 9, υI(F ) = V−
I,I(t, F ). Furthermore, V−

I,I(h, F ) = V−
I,I(t, F )

can be proven by induction.

Lemma 10. For any interpretations I and J such that J ≤σ I, it holds that
υJ (F I) = V−

J,I(h, F ).

Proof. By induction on F .

• F is an atom p or a numeric constant. Then υJ(F I) = υJ(F ) = V−
J,I(h, F ).

• F is ¬G. Then υJ(F I) = ¬υI(G), and by Lemma 9, ¬υI(G) = ¬V−
J,I(t, G) =

V−
J,I(h, F ).

• F is G⊙H, where ⊙ is ⊗ or ⊕. Then

υJ(F I) = υJ(GI ⊙HI) = υJ(GI)⊙ υJ(HI)
= (by I.H.)

V−
J,I(h, G) ⊙ V−

J,I(h, H)
= V−

J,I(h, G ⊙H) = V−
J,I(h, F ).

• F is G→ H. Then

υJ(F I) = υJ((GI → HI)⊗m υI(G→ H))
= min(υJ(GI → HI), υI(G→ H))
= (by I.H. and Lemma 9)

min(V−
J,I(h, G) → V−

J,I(h, H), V−
J,I(t, G)→ V−

J,I(t, H))
= V−

J,I(h, G→ H) = V−
J,I(h, F ).

The following is a corollary to Lemma 10.

Corollary 4. For any interpretations I and J such that J ≤σ I, J |= F I if and
only if VJ,I is a model of F .

Lemma 11. For two interpretations I and J , it holds that VJ,I ≺ VI,I if and only
if J < I.
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Proof. (⇒) Suppose VJ,I ≺ VI,I . For every atom a, VI,I(h, a) ⊆ VJ,I(h, a),
which means V−

J,I(h, a) ≤ V−
I,I(h, a). So J ≤ I. Furthermore, there is at least

one atom p satisfying VI,I(h, p) ⊂ VJ,I(h, p). By the definition of VI,I and VJ,I ,
V+

I,I(h, a) = V+
J,I(h, a) = 1 for all a. Consequently, V−

J,I(h, p) < V−
I,I(h, p), which

means υJ(p) < υI(p). So J < I.
(⇐) Suppose J < I. Then for every atom a, υJ(a) ≤ υI(a). It follows that

V−
J,I(h, a) ≤ V−

I,I(h, a) for all a, and as V+
I,I(h, a) = V+

J,I(h, a) = 1 for all a, we con-
clude VI,I(h, a) ⊆ VJ,I(h, a). Clearly, VI,I(t, a) = VJ,I(t, a) by definition. Further-
more there is at least one atom p such that υJ(p) < υI(p), i.e., V−

J,I(h, a) < V−
I,I(h, a).

So VJ,I ≺ VI,I .

Lemma 12. An interpretation I is a stable model of F if and only if VI,I is a fuzzy
equilibrium model of F .

Proof. (⇒) Suppose I is a stable model of F . As I is a model of F , by Corollary 3,
VI,I is a model of F . Next we show that there is no model V ′ of F such that
V ′ ≺ VI,I . Suppose, for the sake of contradiction, that there exists such V ′. Define
an interpretation J as υJ(a) = V ′−(h, a) for all atoms a. Obviously V ′ = VJ,I . As
V ′ = VJ,I is a model of F , by Corollary 4, J |= F I . Furthermore, as V ′ = VJ,I ≺ VI,I ,
by Lemma 11, J < I. Consequently, I is not a 1-stable model of F , which is a
contradiction. So there does not exist such V ′, from which we conclude that VI,I is
an h-minimal model of F . Clearly, VI,I(h, a) = VI,I(t, a) for all atoms a. So VI,I is
an equilibrium model of F .

(⇐) Suppose VI,I is an equilibrium model of F . As VI,I is a model of F , by
Corollary 3, I |= F . Next we show that there is no J <σ I such that J |= F I .
Suppose, for the sake of contradiction, that there exists such J . Then by Corol-
lary 4, the valuation VJ,I is a model of F . Furthermore, by Lemma 11, VJ,I ≺ VI,I .
Consequently, VI,I is not an h-minimal model of F , which contradicts that VI,I is
an equilibrium model of F . So there does not exist such J , from which we conclude
that I is a stable model of F .

Lemma 13. For any two valuations V and V ′ such that V −(w, a) = V ′−(w, a)(w ∈
{h, t}) for all atoms a, and any formula F containing no strong negation, V is a
model of F iff V ′ is a model of F .

Proof. We show by induction that V −(w, F ) = V ′−(w, F ), where w ∈ {h, t}.

• F is an atom p. V −(w, F ) = V −(w, p) = V ′−(w, p) = V −(w, F ).

• F is a numeric constant c. Clearly, V −(w, F ) = c = V ′−(w, F ).

1962



Fuzzy Propositional Formulas under the Stable Model Semantics

• F is ¬G. By I.H, V −(w, G) = V ′−(w, G).

V −(w, F ) = 1− V −(t, G) = 1− V ′−(t, G) = V ′−(w, F ).

• F is G⊙H where⊙ is ⊗ or ⊕. By I.H, V −(w, G) = V ′−(w, G) and V −(w, H) =
V ′−(w, H). So

V −(w, F ) = V −(w, G) ⊙ V −(w, H)
= V ′−(w, G) ⊙ V ′−(w, H)
= V ′−(w, F ).

• F is G→ H. By I.H, V −(w, G) = V ′−(w, G) and V −(w, H) = V ′−(w, H). So

V −(h, F ) = min((V −(h, G)→ V −(h, H)), (V −(t, G)→ V −(t, H)))
= min((V ′−(h, G)→ V ′−(h, H)), (V ′−(t, G)→ V ′−(t, H)))
= V ′−(h, F ).

And
V −(t, F ) = (V −(t, G)→ V −(t, H))

= (V ′−(t, G)→ V ′−(t, H))
= V ′−(t, F ).

So V −(h, F ) = V ′−(h, F ) and thus V −(h, F ) = 1 if and only if V ′−(h, F ) = 1,
i.e, V is a model of F if and only if V ′ is a model of F .

Lemma 1. Given a formula F containing no strong negation, any equilibrium
model V of F satisfies V +(h, a) = V +(t, a) = 1 for all atoms a.

Proof. Assume that V is an equilibrium model of F . It follows that V +(h, a) =
V +(t, a). Furthermore, for the sake of contradiction, assume that V +(h, a) =
V +(t, a) = v < 1. Define V ′′ as V ′′−(w, a) = V −(w, a), V ′′+(t, a) = V +(t, a) and
V ′′+(h, a) = v′ where v′ ∈ (v, 1]. Clearly, V ′′ ≺ V and by Lemma 13, V ′′ is a model
of F . So V is not an h-minimal model of F , which contradicts the assumption that
V is an equilibrium model of F . Therefore, there does not exist such V .

Theorem 6. Let F be a fuzzy propositional formula of σ that contains no strong
negation.

(a) A valuation V of σ is a fuzzy equilibrium model of F iff V −(h, p) = V −(t, p),
V +(h, p) = V +(t, p) = 1 for all atoms p in σ and IV is a stable model of F
relative to σ.
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(b) An interpretation I of σ is a stable model of F relative to σ iff I = IV for some
fuzzy equilibrium model V of F .

Proof. (a) (⇒) Suppose V is an equilibrium model of F . By Lemma 1, V +(h, a) =
V +(t, a) = 1 for all atoms a. And by the definition of fuzzy equilibrium model,
V −(h, a) = V −(t, a). It can be seen that VIV ,IV = V . Since VIV ,IV is an equilibrium
model of F , by Lemma 12, IV is a stable model of F relative to σ.

(⇐) Suppose V +(h, a) = V +(t, a) = 1, V −(h, a) = V −(t, a) for all atoms a, and IV
is a stable model of F relative to σ. By Lemma 12, VIV ,IV is an equilibrium model
of F . Since V +(h, a) = V +(t, a) = 1, V −(h, a) = V −(t, a) for all atoms a, it holds
that VIV ,IV = V . So V is an equilibrium model of F .

(b) (⇒) Suppose I is a stable model of F relative to σ. By Lemma 12, VI,I is an
equilibrium model of F . It can be seen that I = IVI,I

.

(⇐) Take any fuzzy equilibrium model V of F and let I = IV . By the definition
of fuzzy equilibrium model and Lemma 1, V −(h, a) = V −(t, a) and V +(h, a) =
V +(t, a) = 1 for all atoms a, which means VIV ,IV = V . So VIV ,IV is an equilibrium
model of F . By Lemma 12, IV is a stable model, so I is a stable model.

A.8 Proof of Theorem 7

Lemma 14. For any fuzzy formula F of signature σ that may contain strong nega-
tion and for any valuation V , it holds that V −(w, F ) = nneg(V )−(w, nneg(F )).

Proof. First we show by induction that V −(w, F ) = nneg(V )−(w, F ′), where F ′

is defined as in Section 6.2.3.

• F is an atom p in σ. Clear.

• F is ∼p, where p is an atom in σ. Then F ′ is np.

V −(w, F ) = V −(w,∼p) = 1− V +(w, p)
= nneg(V )−(w, np) = nneg(V )−(w, F ′).

• F is a numeric constant c. Clear.
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• F is ¬G. By I.H., V −(w, G) = nneg(V )−(w, G′).

V −(w, F ) = V −(w,¬G)
= 1− V −(t, G)
= 1− nneg(V )−(t, G′)
= nneg(V )−(w,¬G′)
= nneg(V )−(w, F ′).

• F is G ⊙H, where ⊙ is ⊗ or ⊕. By I.H., V −(w, G) = nneg(V )−(w, G′) and
V −(w, H) = nneg(V )−(w, H ′).

V −(w, F ) = V −(w, G ⊙H)
= ⊙(V −(w, G), V −(w, H))
= ⊙(nneg(V )−(w, G′), nneg(V )−(w, H ′))
= nneg(V )−(w, G′ ⊙H ′)
= nneg(V )−(w, F ′).

• F is G → H. By I.H., V −(w, G) = nneg(V )−(w, G′) and V −(w, H) =
nneg(V )−(w, H ′).

V −(h, F ) = V −(h, G→ H)
= min(→(V −(h, G), V −(h, H)),→(V −(t, G), V −(t, H)))
= min(→(nneg(V )−(h, G′), nneg(V )−(h, H ′)),

→(nneg(V )−(t, G′), nneg(V )−(t, H ′)))
= nneg(V )−(h, G′ → H ′)
= nneg(V )−(h, F ′).

And

V −(t, F ) = V −(t, G→ H)
= →(V −(t, G), V −(t, H))
= →(nneg(V )−(t, G′), nneg(V )−(t, H ′))
= nneg(V )−(t, F ′).

Now notice that, for any valuation V , it must be the case that for all atoms
p ∈ σ, V −(w, p) ≤ V +(w, p), i.e, V −(w, p) + 1− V +(w, p) ≤ 1. It follows that

nneg(V )−(w, p) + nneg(V )−(w, np) ≤ 1.
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Therefore, for all atoms p,

nneg(V )−(w,¬s(p ⊗l np)) = 1− nneg(V )−(t, (p ⊗l np))
= 1−⊗l(nneg(V )−(t, p), nneg(V )−(t, np))
= 1−max(nneg(V )−(t, p) + nneg(V )−(t, np)− 1, 0)
= 1− 0 = 1.

It follows that

V −(w, F ) = nneg(V )−(w, F ′)
= ⊗m(nneg(V )−(w, F ′), 1)
= ⊗m(nneg(V )−(w, F ′), nneg(V )−(w,⊗m

p∈σ
¬s(p ⊗l np)))

= nneg(V )−(w, F ′ ⊗m ⊗m
p∈σ
¬s(p ⊗l np))

= nneg(V )−(w, nneg(F )).

Corollary 5. For any fuzzy formula F that may contain strong negation, a valuation
V is a model of F iff nneg(V ) is a model of nneg(F ).

Proof. By Lemma 14, V −(h, F ) = nneg(V )−(h, nneg(F )). So V −(h, F ) = 1
iff nneg(V )−(h, nneg(F )) = 1, i.e., V is a model of F iff nneg(V ) is a model of
nneg(F ).

Lemma 15. for all atoms a ∈ σ, V (h, a) = V (t, a) iff

nneg(V )(h, a) = nneg(V )(t, a) and nneg(V )(h, na) = nneg(V )(t, na).

Proof. For all atoms a ∈ σ,

V (h, a) = V (t, a)
iff V −(h, a) = V −(t, a) and V +(h, a) = V +(t, a)
iff nneg(V )(h, a) = nneg(V )(t, a) and 1− V +(h, a) = 1− V +(t, a)
iff nneg(V )(h, a) = nneg(V )(t, a) and nneg(V )(h, na) = nneg(V )(t, na).

Lemma 16. For two valuations V and V1 of signature σ, it holds that V1 ≺ V iff
nneg(V1) ≺ nneg(V ).
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Proof.

V1 ≺ V

iff for all atoms p (from σ), V (t, p) = V1(t, p), V (h, p) ⊆ V1(h, p) and
there exists an atom a (from σ) such that V (h, a) ⊂ V1(h, a)

iff for all atoms p, V −(t, p) = V −
1 (t, p), V +(t, p) = V +

1 (t, p),
V −

1 (h, p) ≤ V −(h, p), V +
1 (h, p) ≥ V +(h, p), and

there exists an atom a such that V −
1 (h, a) < V −(h, a) or V +

1 (h, a) > V +(h, a)
iff for all atoms p, V −(t, p) = V −

1 (t, p), V +(t, p) = V +
1 (t, p),

V −
1 (h, p) ≤ V −(h, p), V +

1 (h, p) ≥ V +(h, p), and
there exists an atom a such that V −

1 (h, a) < V −(h, a) or
1− V +

1 (h, a) < 1− V +(h, a)
iff for all atoms p, V −(t, p) = V −

1 (t, p), V +(t, p) = V +
1 (t, p),

V −
1 (h, p) ≤ V −(h, p), 1− V +

1 (h, p) ≤ 1− V +(h, p), and
there exists an atom a such that V −

1 (h, a) < V −(h, a) or
nneg(V1)−(h, na) < nneg(V )−(h, na)

iff for all atoms p and np, nneg(V )(t, p) = nneg(V1)(t, p),
nneg(V )(t, np) = nneg(V1)(t, np),
nneg(V )(h, p) ⊆ nneg(V1)(h, p),
nneg(V )(h, np) ⊆ nneg(V1)(h, np), and

there exists an atom a or na such that nneg(V )(h, a) ⊂ nneg(V1)(h, a) or
nneg(V )(h, na) ⊂ nneg(V1)(h, na)

iff nneg(V1) ≺ nneg(V ).

Proposition 3. For any fuzzy formula F that may contain strong negation, a
valuation V is an equilibrium model of F iff nneg(V ) is an equilibrium model of
nneg(F ).

Proof. Let σ be the underlying signature of F , and let σ′ be the extended signature
σ ∪ {np | p ∈ σ}.

(⇒) Suppose V is an equilibrium model of F . Then V (h, p) = V (t, p) for all atoms
p ∈ σ and V is a model of F . By Lemma 15, nneg(V )(h, a) = nneg(V )(t, a) for all
atoms a ∈ σ′, and by Corollary 5, nneg(V ) is a model of nneg(F ).
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Next we show that there is no V1 ≺ nneg(V ) such that V1 is a model of nneg(F ).
Suppose, for the sake of contradiction, that there exists such V1. We construct V ′

as
V ′(w, p) = [V −

1 (w, p), 1 − V −
1 (w, np)]

for all atoms p ∈ σ. It is clear that nneg(V ′) = V1. We will check that

(i) V ′ is a valid N5 valuation,

(ii) V ′ ≺ V , and

(iii) V ′ is a model of F .

These claims contradicts the assumption that V is an equilibrium model of F . Con-
sequently, we conclude that nneg(V ) is an equilibrium model of F ′ once we establish
these claims.

To check (i), we need to show that 0 ≤ V −
1 (w, p) ≤ 1 − V −

1 (w, np) ≤ 1 and
V ′(t, p) ⊆ V ′(h, p) for all atoms p ∈ σ. Together they are equivalent to checking

0 ≤ V −
1 (h, p) ≤ V −

1 (t, p) ≤ 1− V −
1 (t, np) ≤ 1− V −

1 (h, np) ≤ 1

The first and the last inequalities are obvious. The second and the fourth inequalities
are clear from the fact that V1 is a valid valuation. To show the third inequality,
since V is a valid valuation,

V −(t, p) ≤ V +(t, p)

which is equivalent to

nneg(V )−(t, p) ≤ 1− nneg(V )−(t, np). (1)

Since V1 ≺ nneg(V ), we have V1(t, a) = nneg(V )(t, a) for all atoms a ∈ σ′, so (1) is
equivalent to

V −
1 (t, p) ≤ 1− V −

1 (t, np).
So (i) is verified.

To check claim (ii), notice nneg(V ′) ≺ nneg(V ) since V1 ≺ nneg(V ) and V1 =
nneg(V ′). Then the claim follows by Lemma 16.

To check claim (iii), notice nneg(V ′) is a model of nneg(F ) since V1 is a model
of nneg(F ), and V1 = nneg(V ′). Then the claim follows by Corollary 5.
(⇐) Suppose nneg(V ) is an equilibrium model of nneg(F ). Then nneg(V )(h, a) =
nneg(V )(t, a) for all atoms a ∈ σ′ and nneg(V ) is a model of nneg(F ). By Lemma
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15, V (h, a) = V (t, a) for all atoms a ∈ σ′ and by Corollary 5, V is a model of F .
Next we show that there is no V1 ≺ V such that V1 is a model of F . Suppose, for the
sake of contradiction, that there exists such V1. Then by Lemma 16, nneg(V1) ≺
nneg(V ) and by Corollary 5, nneg(V1) is a model of nneg(F ), which contradicts
that nneg(V ) is an equilibrium model of nneg(F ). Consequently, we conclude that
V is an equilibrium model of F .

Theorem 7. For any fuzzy formula F of signature σ that may contain strong
negation,

(a) A valuation V of σ is a fuzzy equilibrium model of F iff V (h, p) = V (t, p)
for all atoms p in σ and Inneg(V ) is a stable model of nneg(F ) relative to
σ ∪ {np | p ∈ σ}.

(b) An interpretation I of σ ∪ {np | p ∈ σ} is a stable model of nneg(F ) relative
to σ ∪ {np | p ∈ σ} iff I = Inneg(V ) for some fuzzy equilibrium model V of F .

Proof. (a) (⇒) Suppose V is an equilibrium model of F . By the definition of an
equilibrium model, V (h, a) = V (t, a) for all atoms a. By Proposition 3, nneg(V ) is
an equilibrium model of nneg(F ). By Theorem 6, Inneg(V ) in the sense of Theorem 6
is a stable model of nneg(F ) relative to σ ∪ {np | p ∈ σ}.
(⇐) Suppose Inneg(V ) in the sense of Theorem 6 is a stable model of nneg(F ) relative
to σ ∪ {np | p ∈ σ}. By Theorem 6, nneg(V ) is an equilibrium model of nneg(F ).
By Proposition 3, V is an equilibrium model of F .

(b) (⇒) Suppose I is a stable model of nneg(F ) relative to σ ∪ {np | p ∈ σ}. Then
I |= ⊗m

p∈σ
¬s(p ⊗l np). It follows that, for all atoms p ∈ σ, υI(p) + υI(np) ≤ 1 and

thus υI(p) ≤ 1 − υI(np). Construct the valuation V of σ by defining V (w, p) =
[υI(p), 1 − υI(np)]. Clearly, I can be viewed as Inneg(V ). By Theorem 6, nneg(V )
is an equilibrium model of nneg(F ). By Proposition 3, V is an equilibrium model
of F .
(⇐) Take any fuzzy equilibrium model V of F . By Proposition 3, nneg(V ) is an
equilibrium model of nneg(F ). By Theorem 6, Inneg(V ) is a stable model of nneg(F ).

A.9 Proof of Theorem 8
Theorem 8. For any fuzzy formulas F and G, I is a stable model of F ⊗¬G
(relative to p) if and only if I is a stable model of F (relative to p) and I |= ¬G.
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Proof.
(⇒) Suppose I is a 1-stable model of F ⊗¬G relative to p. Then I |=1 F ⊗¬G and
there is no J <p I such that J |=1 F I ⊗ (¬G)I . By Lemma 6, I |=1 F and I |=1 ¬G.
Note that υI(¬G) = 1. Further, it can be seen that there is no J <p I such that
J |=1 F I , since otherwise this J must satisfy J <p I and J |=1 F I ⊗ υI(¬G) (i.e.,
J |=1 F I ⊗ (¬G)I), which contradicts that I is 1-stable model of F ⊗¬G relative to
p. We conclude that I is a 1-stable model of F relative to p and I |=1 ¬G.
(⇐) Suppose I is a 1-stable model of F relative to p and I |=1 ¬G. Then I |=1 F
and I |=1 ¬G,. By Lemma 6, I |=1 F ⊗¬G.12 Next we show that there is no J <p I
such that J |=1 (F ⊗ ¬G)I = F I ⊗ (¬G)I . Suppose, to the contrary, that there
exists such J . Then by Lemma 6, J |=1 F I . This, together with the fact J <p I,
contradicts that I is a 1-stable model of F relative to p. So there does not exist
such J , and we conclude that I is a 1-stable model of F ⊗ ¬G relative to p.

A.10 Proof of Theorem 9
Proposition 4. For any fuzzy interpretation I and any set p of fuzzy atoms,
I |= pch.
Proof. Suppose p = (p1, . . . , pn).

υI(pch) = υI({p1}ch ⊗ . . .⊗ {pn}ch)
= υI((p1 ⊕l ¬s p1)⊗ . . .⊗ (pn ⊕l ¬s pn))
= min(υI(p1) + 1− υI(p1), 1)⊗ . . . ⊗min(υI(pn) + 1− υI(pn), 1)
= 1.

Theorem 9.

(a) For any real number y ∈ [0, 1], if I is a y-stable model of F relative to p ∪ q,
then I is a y-stable model of F relative to p.

(b) I is a 1-stable model of F relative to p iff I is a 1-stable model of F ⊗ qch

relative to p ∪ q.

Proof. (a) Suppose I is a y-stable model of F relative to p ∪ q. Then clearly
I |=y F . Next we show that there is no J <p I such that J |=y F I . Suppose, for the

12This does not hold if the threshold considered is not 1. For example, suppose υI(F ) = 0.5
and υI(G) = 0.5, and consider ⊗l as the fuzzy conjunction. Clearly, I |=0.5 F and I |=0.5 G but
I 6|=0.5 F ⊗l G.
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sake of contradiction, that there exists such J . Since υJ(q) = υI(q) for all q ∈ q, J
must satisfy J <pq I and J |=y F I , which contradicts the assumption that I is a
y-stable model of F relative to p ∪ q. So such J does not exist, and we conclude
that I is a y-stable model of F relative to p.

(b) (⇒) Suppose I is a 1-stable model of F relative to p. Clearly, I |= F . By
Proposition 4, I |= qch, and by Lemma 6, I |= F ⊗ qch.13

Next we show that there is no J <pq I such that J |= (F ⊗ qch)I . Suppose, for
the sake of contradiction, that there exists such J . Since J |= (F ⊗ qch)I , i.e.,

J |= F I ⊗ (q1 ⊕l (¬s q1)I)⊗ . . .⊗ (qn ⊕l (¬s qn)I),

by Lemma 6, it follows that J |= (qk⊕l υI(¬s qk)) for each k = 1, . . . , n, which means
that υJ(qk) ≥ υI(qk). On the other hand, since J <pq I, we have υJ(qk) ≤ υI(qk).
So we conclude υJ(qk) = υI(qk).14 Together with the assumption that J <pq I, this
implies that J <p I. From J |= (F ⊗ qch)I , it follows J |= F I , which contradicts
that I is a stable model of F relative to p. So such J does not exist, and we conclude
that I is a stable model of F relative to p ∪ q.

(⇐) Suppose I is a 1-stable model of F ⊗ qch relative to p ∪ q. Then I |= F ⊗ qch.
By Lemma 6, I |= F . Next we show that that there is no J <p I such that J |= F I .
Suppose, for the sake of contradiction, that there exists such J .

First, it is easy to conclude J <pq I from the fact that J <p I since J and I
agree on q. Second, by Proposition 4, J |= qch. Since J and I agree on q, it follows
that J |= (qch)I . Since J |= F I , by Lemma 6, J |= F I ⊗ (qch)I , or equivalently,
J |= (F ⊗ qch)I . This, together with the fact that J <pq I, contradicts that I is
a 1-stable model of F ⊗ qch relative to p ∪ q. So such J does not exist, and we
conclude that I is a 1-stable model of F relative to p.

13It is not necessary to have the threshold y = 1 for this to hold. In general, suppose I |=y F .
Since I |=1 pch, by the property of fuzzy conjunction(⊗(x, 1) = x), I |=y F ⊗ pch.

14This cannot be concluded if we have J |=y (qk ⊕l υI(¬s qk)), instead of J |=1 (qk ⊕l υI(¬s qk)).
So this direction of the theorem does not hold for an arbitrary threshold.
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Abstract
We introduce a decision-theoretic framework based on Description Logics

(DLs), which can be used to encode and solve single stage multi-attribute de-
cision problems. In particular, we consider the background knowledge as a DL
knowledge base where each attribute is represented by a concept, weighted by
a utility value which is asserted by the user. This yields a compact representa-
tion of preferences over attributes. Moreover, we represent choices as knowledge
base individuals, and induce a ranking via the aggregation of attributes that
they satisfy. We discuss the benefits of the approach from a decision theory
point of view. Furthermore, we introduce an implementation of the framework
as a Protégé plugin called uDecide. The plugin takes as input an ontology as
background knowledge, and returns the choices consistent with the user’s (the
knowledge base) preferences. We describe a use case with data from DBpedia.
We also provide empirical results for its performance in the size of the ontology
using the reasoner Konclude.

1 Introduction
The study of preference representation languages and decision support systems is an
ongoing research subject in artificial intelligence, gaining more popularity every day.
Since the inception multi-attribute utility theory (MAUT)[19], numerous approaches
have been studied, including probabilistic, possibilistic, fuzzy and graphical models
[9, 29, 18, 14] amongst others. One approach that has been gaining in interest over
the last two decades is the use of logical languages [5, 11, 17, 20, 26, 27] to encode
preferences and decision-theoretic problems.
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In this paper, we introduce a decision-theoretic framework to encode simple single
stage (or non-sequential) decision making problems using a weighted extension of
Description Logics (DLs). While we presented a first sketch of the framework in [2],
we now extend our formalism and give a full presentation in this paper. Furthermore,
we introduce our Protégé plugin uDecide which is based on this formalism. Our
framework combines ontology reasoning [4] in a basic MAUT [19] fashion to rank
the available choices with respect to a set of weighted attributes that have been
specified by the user; the greater the weight, the more important the attribute.
This yields a compact representation for a user’s preference over attributes. In that
manner, it is a multi-attribute account to decision making problems. The framework
may serve as a decision support system from three main perspectives: (1) in complex
domains in which an extensive amount of background knowledge is required and it
is hard to see the logical implications of any choice in terms of implying outcomes;
(2) in scenarios which the size of the set of possible choices is too large for a human
decision maker to operate; (3) when (1) and (2) are combined.

The required weighted DL (the DL decision base) can be built over any spe-
cific DL language. This provides flexibility in the sense that one can use tractable
fragments e.g., the DLLite family [7] or EL [3] if scalability is important, or more ex-
pressive fragments if the domain to be modelled requires, e.g., data types, a feature
desirable to express numeric domains, common in the literature of decision theory
[25].

A particular feature of our approach is that we make a distinction between choices
(alternatives, desired items or objects, etc.) and outcomes (which can be seen as
the result of an ontological approach to decision making). In particular, an outcome
is a subset of attributes which are represented by sets of description logic classes,
and choices are named individuals. We assume that the preferences of the user are
elicited (partially or completely) in the form of attributes, so that the preference
relation of the user rather than talking about any specific choices e.g., a, b, talks
about any anonymous or generic choices satisfying (i.e., instantiating) a given subset
of attributes or criteria.

The framework and its implementation can be understood as a generic out-of-
the-box expert system that turns an ontology for a specific domain into a decision
support system for the domain described by that ontology. Hereby, we note that we
do not make the strong claim that it can be directly applied to any decision prob-
lem scenario, but rather mean its applicability potential on domains where expert
knowledge is required e.g., to select between different treatments depending on char-
acteristics and preferences of a patient (medical domain), or a location for building a
power-plant depending on the preferences of corporate management (energy indus-
try domain). Our approach might also be used, for example, as a web-based decision
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support/recommender system for e-shopping. For the aforementioned perspective
(1), designed to stress the importance of logic reasoning, we will give a small example
in which the agent makes a decision between two cars with different specifications.
For the aforementioned perspective (2), we will present a use case to illustrate, us-
ing the implemented system, uDecide, how to to generate reading proposals from
thousands of choices. Loosely speaking, this use case will also demonstrate that our
approach can be easily applied to any kind of domain for which an ontological rep-
resentation or knowledge base is already available or can play a key role to encode
domain knowledge.

In the remainder of the paper, we present the basics of (classical) utility theory
and of DLs in Section 2.1. We assume that the reader has a basic familiarity with DL
and omit an extensive introduction, which can be found in [4]. Next, we introduce
the theoretical foundations of our framework in Section 3 and discuss it over an
example. In the example, we encode a car buying agents decision making problem
and show how our approach decides between two alternative cars according to the
patient preferences. In Section 4, we first give a general description of our plugin.
Then we present a use case which is based on an excerpt from DBpedia that deals
with books and authors. This use case illustrates how to convert an ontology into an
expert system by applying uDecide. Furthermore, we report on first runtime results
using Konclude [31] as reasoning engine in the background. In Section 5, we discuss
related works. Finally, we conclude and give a brief outline for future research in
Section 6.

2 Preliminaries

2.1 Preferences and Utility

Preferences are of central importance in the study of decisions. In formal sci-
ences such as mathematical economics, social choice theory and artificial intelli-
gence, preferences are usually modelled as a binary relation over the set of choices
C [16, 24, 30, 6] i.e., c1 � c2, is read c1 is at least as good as c2 (for the agent
which/who has the preference relation �), where c1, c2 ∈ C. Other commonly used
synonym terms are outcome, alternative and object. Moreover, it is often assumed
that � is complete and transitive. The preference relations associated with � are
defined as follows: for any c, c′ ∈ C,

c1 � c2 iff c1 � c2 and c2 6� c1, (Strict preference)
c1 ∼ c2 iff c1 � c2 and c2 � c1, (Indifference)
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where the former is read c1 is better than c2, and the latter is read the agent is
indifferent between c1 and c2. In order to represent the preference relation compactly,
one introduces a utility function u [13], which is a function that maps a choice to a
real number reflecting the degree of desire. Observe that there can be more than one
such function which represents a preference relation. For the classical results that
guarantees the existence of such functions, we refer to the so-called representation
theorems [13]. Formally, given a choice c ∈ C, a utility function, u : C → R represents
� if

c1 � c2 iff u(c1) ≥ u(c2). (Utility function)
The associated preferences � (strict preference) and ∼ (equivalent preference or in-
difference) are defined analogously. For instance, if it is the case that u(low-price) =
20 and u(high-price) = 5, this would induce the preference low-price � high-price
since 5 < 20. Usually, choices are formalised as values or elements of attribute(s).
Here, the choices low-price and high-price which represent any item of interest (e.g.,
a book, car or treatment) can be thought of as values of a single attribute price, or
equally in set notation price = {low-price, high-price}.

Most of the time, our decisions depend on more than a single attribute; for
instance, if we intend to buy a book, we are interested usually not only in its price,
but also in its author, to which genre it belongs. MAUT is the extended variant of
utility theory that deals with such decision problems [19, 28]. We will denote the set
of attributes by X and refer to a specific attribute by Xi ∈ X where i ∈ {1, . . . , |X |}.
Then, the set of choices is lifted to the cartesian product of the set of attributes
that we read as (possible) outcomes, denoted Ω i.e., C ⊆ X1 × . . . × Xn = Ω.
We say, u : Ω → R is the (multiattribute) utility function which represents � iff
∀(x1, . . . , xn), (y1, . . . , yn) ∈ Ω,

(x1, . . . , xn) � (y1, . . . ,yn) iff u(x1, . . . , xn) ≥ u(y1, . . . , yn).

Proving such representing functions exist, is a standard work in decision theory
(see e.g., [13] and [19] for basic proofs).

Since the size of the Ω is large i.e., 2|X |, making the assumption that u is additive,
significantly decreases the computational complexity. An additive function satisfies
the following.

u(x1, . . . , xn) = u(x1) + · · ·+ u(xn) (Additivity)

where (x1, . . . , xn) ∈ Ω.
The basic rationality principle in utility theory is that a rational agent should

always try to maximise its utility, or should take the choice with the maximum utility:

Opt(C) := arg max
c∈C

u(c) (Optimal choice)

1976



Multi-Attribute Decision Making with Weighted Description Logics

where Opt(C) corresponds to maximal elements in C w.r.t. u (therefore w.r.t. �).
Note that there can be more than one (since utility values of choices are not unique).
The class of decision making problems which we limit ourselves with, are discrete
choice problems [34], that is C is a finite set. Examples of such discrete choice
problems include choosing a medical treatment program with respect to a patient’s
criteria, or selecting a location for a nuclear power plant following environmental and
financial criteria.1 For a comprehensive treatment on MAUT, we refer the reader to
standard texts [12, 19].

2.2 Description Logics
We assume that the reader has some familiarity with DL. If that is not the case, we
refer the interested reader to [4]. The framework that we are presenting is indepen-
dent from the choice of a specific DL language, that is, higher the expressivity of the
chosen DL language, more complex the statements one can use about the problem
domain.This comes with the usual implication of the more demanding computational
resource requirements. In what follows we recall briefly the basics of DL.

DL signatures can be thought of as triples (NC , NR, NI), where NC is the set
of atomic concepts, NR is the set of role names, and NI is the set of individuals.
Along the text, we assume the unique name assumption, which means that different
individuals have different names. We denote concepts or classes by C andD, roles by
r and S, and individuals as a and b.2 Concept descriptions are defined inductively
from NC as ¬C, C u D, and C t D if C and D are concept descriptions, and
∃r.C and ∀r.C if r ∈ NR and C is a concept description. The top concept > is
abbreviation for C t ¬C and the bottom concept ⊥ for ¬>. An interpretation
is a pair I := (∆I , ·I) where the domain ∆I is a non-empty set, and ·I is an
interpretation function which assigns to every concept name C a set CI ⊆ ∆I and
to every role name R a binary relation RI ⊆ ∆I × ∆I . It is defined inductively
for every concept description as follows; (¬C)I := ∆I \ CI , (C uD)I := CI ∩DI ,
(C tD)I := CI ∪DI , (∃r.C)I := {a ∈ ∆I | exists b, (a, b) ∈ rI and b ∈ CI}, and
(∀r.C)I := {a ∈ ∆I | for all b, (a, b) ∈ rI implies b ∈ CI}. Any other extension is
defined accordingly, and will be clarified when it is necessary.

In DLs, there is a distinction between terminological knowledge (TBox) and
assertional knowledge (Abox). A TBox is a set of concept inclusions: C v D which
has the semantics CI ⊆ DI under any interpretation I. Furthermore, a concept

1This setting is orthogonal to continuous set of choices (possibly a vector of arbitrary numerical
quantities) which corresponds to a real-valued optimisation problem.

2We will use the terms concept or class interchangeably. Both terms are common in DL litera-
ture.
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definition is C ≡ D if C v D and C v D. An ABox is a set of concept assertions
C(a) where a ∈ NI and C(a)I := aI ∈ CI , and role assertions R(a, b) where
(a, b) ∈ NI ×NI and R(a, b)I := (aI , bI) ∈ RI .

A concept is satisfiable if there is an interpretation I such that CI 6= ∅. A
concept is satisfiable with respect to a TBox T if and only if (iff) there is a model
I of T such that CI 6= ∅. An interpretation I satisfies a concept inclusion C v D
(I |= C v D) iff CI ⊆ DI . A concept C is subsumed by a concept D with respect
to a TBox T if CI ⊆ DI for every model of I of T (C vT D or T |= C v D).
An interpretation I is satisfies a TBox T if and only if I satisfies every concept
inclusion in T . A TBox T is called coherent if all of the appearing concepts in T are
satisfiable. We say that an assertion α is entailed by an ABox A and write A |= α,
if every model of A also satisfies α. An ABox A is consistent w.r.t. a TBox T if
there is an interpretation I which satisfies T and A. We call the pair K := 〈T ,A〉 a
knowledge base, and say that K is satisfiable if A is consistent w.r.t. T . One basic
reasoning service we will use is instance check: given a knowledge base K and an
assertion α, to check whether A |= α.

A concrete domain D is a pair (∆D, pred(D)) where ∆D is the domain of D and
pred(D) is the set of predicate names of D. It is assumed that ∆I ∩∆D = ∅, and
each P ∈ pred(D) with arity n is associated with PD ⊆ (∆D)n. We will denote
functional roles with lower case r. In DL with concrete domains, it is assumed that
NR is partitioned into a set of functional roles and the set of ordinary roles. A role r
is functional if for every (x, y) ∈ r and (w, z) ∈ r it implies that x = w =⇒ y = z.
Functional roles, in the extended language, are interpreted as partial functions from
∆I to ∆I × ∆D. Functional roles and ordinary roles are both allowed to be used
with both the existential quantification and the universal quantification. A concrete
domain is required to be closed under negation (denoted by P ), in order to be able to
compute the negation normal form of the concepts defined via extended constructs.

3 Weighted DLs for Decision Making

In this section, we introduce the theoretical underpinning of our plugin, which is
a framework based on weighted DLs. In a loose sense, we will follow a specific-to-
generic path while introducing definitions, ending up defining the generic framework,
the DL decision base.

As an ontological approach to decision making, our aim is to use an a priori
preference relation over attributes (ontological classes) to derive an a posteriori
preference relation over choices (ontological individuals). To this end, we define a
priori (given by the user) a utility function U over X . Then we extend it to the subset
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of attributes, via a utility function u defined over choices using logical entailment.
The use of lower case u, has two motivations: i) dealing with a technical subtlety,
that is, a choice is an individual while a corresponding outcome is a set of classes
(which are mathematically different types of objects), and ii) flexibility to aggregate
U in different forms e.g., max, mean, or a customized arbitrary aggregation.

3.1 Modeling Attributes as DL Concepts

We represent each attribute in the original decision making problem by a class.
Furthermore, for every value of an attribute in the original decision making problem,
we introduce a new (sub)class to the set of classes at hand. For instance, if colour
is an attribute in the decision making problem we would like to model, we simply
represent it by the class Colour (i.e., Colour ∈ X ). Being a colour can be considered
as it has a desirability on its own. Moreover, if its value is available; if blue is a value
of the attribute colour, we extend our attribute set X simply by adding the class
Blue, as a subclass of Colour. Furthermore, for each further available value e.g.,
red, we can add Red as a subclass, along with adding an axiom guaranteeing the
disjointness e.g., Red v ¬Blue. Note that w.l.o.g. this simple process will yield a
binary term vector for X . This is indeed our aim since in the sequel the aggregation
of utilities of classes will be done with respect to the entailed class membership (i.e.,
K |= X(c)) which has two possible cases in return : an individual c (as a choice) is
either a member of the class X or not.

We assume a total and transitive preference relation (i.e., �X ) over an ordered
set of attributes X that are not necessarily atomic, and a function U : X → R that
represents � (i.e., U(X1) ≥ U(X2) iff X1 �X X2 for X1, X2 ∈ X ). The function U
can be thought of as a weight function, which assigns an a priori weight to each
class X ∈ X , and makes the description logic weighted. We denote the utility
of a class X ∈ X by U(X). This reflects an agent’s preference relation over the
set of attributes X . The greater the utility an attribute has, the more preferable
the attribute is. Furthermore, we partition the attribute set X into two subsets;
desirable that is the set of attributes with non-negative weights, denoted X+, and
undesirable X−, i.e., X ∈ X iff U(X) ≥ 0 and X = X+ ∪ X− with X+ ∩ X− = ∅.
Intuitively, any attribute that is not desirable is undesirable, and a zero-weighted
attribute can be interpreted as desirable with zero utility.

3.2 From Utility of Criteria to Utility of Choices

We call NI as the set of named individuals. A choice is an individual c ∈ NI . We
denote by C the finite set of choices. In order to derive a preference relation (a
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posteriori) over C (i.e., �C) which respects �X , we will introduce a utility function
u(c) ∈ R, which measures the utility of a choice c relative to the attribute set X
and the utility function U over attributes as an aggregator. For simplicity, we will
abuse the notation and use the symbol � for both choices and attributes whenever
it is obvious from the context. In the following, we define a particular u, which we
call σ-utility. It is intuitively defined relative to a knowledge base.

Definition 3.1 (σ-utility of a choice). Given a consistent knowledge base K, and a
set of choices C, the sigma utility of a choice c ∈ C is

uσ(c) :=
∑
{U(X) | X ∈ X and K |= X(c)}.

It is easy to see that uσ induces a preference relation over C i.e., uσ(c1) ≥ uσ(c2)
iff c1 � c2. For a representability proof, see e.g., Theorem 2.2 in [13].

Also, notice that each choice corresponds to a set of attributes, those whose
membership is logically entailed e.g., K |= X(c). Such a summation function forms
an additive multi-attribute utility function given in previous section in the sense
that every choice c corresponds to an outcome.3.

Following DL terminology and putting things together, we introduce the notion
of a generic UBox, denoted by U which is the component we need, to generate utility
functions.

Definition 3.2 (UBox). A UBox is a pair U := (uσ, U), where U is a utility function
over X and u is the utility function over C.

Next, we introduce the key notion of decision base, which can be interpreted as
a (formal, logical) model for an artificial agent in a decision situation, or a decision
support system. A decision base is a triple which consists of a consistent background
knowledge, a DL knowledge base K, a finite set of available choices C which is
represented as a set of individuals, a utility box, the component to encode user
preferences and to generate a respective a utility function. For simplicity, we will
drop the subscript σ and write u instead.

Definition 3.3 (Decision Base). A decision base is a triple D = (K, C,U) where
K = (T ,A) is a consistent knowledge base, T is a TBox and A is an ABox, C ⊆ NI

is the set of choices, and U = (u, U) is a UBox.

3Note that such simple additive utility function is a strong simplification in decision theory
literature such that it assumes implicitly that those values can be added. In contrast, additive
forms are common in Artificial Intelligence literature [28].
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Informally, the role of K is to provide assertional information about the choices
at hand, along with the general terminological knowledge information that the agent
may require to reason further over choices. Note that this is just as in the case of
σ-utility, that is meant to measure the value of a choice with respect to the classes
(possibly deduced) which it belongs to. In this work, we will restrict ourselves to uσ
and the maximality principle (picking up the choice(s) with the maximum utility).

The proposed ontological approach to decision making provides an intuitive rela-
tion between attributes. Assume that we limit ourselves to desirable attributes X+.
Then ceteris paribus anything that belongs to a particular class should be at least as
desirable as something that belongs to its superclass. For instance, a new sport car
is at least as desirable as a sport car (since anything that is a new sport car is also
a sport car i.e., new sport car v sport car). Generalizing this fact about desirable
attributes: the more specific the attributes a choice satisfies, the more utility it gets.
The opposite is the case for undesirable attributes: the more specific the attributes
a choice satisfies, the less utility it gets. The following result formalizes this idea.

Proposition 1. Let K be a knowledge base from a decision base D and c1, c2 ∈ C be
any two choices. i) Assume that c1 and c2 are instances of exactly the same set of
attributes from X−. If for every X2 ∈ X+ with K |= X2(c2) there is a X1 ∈ X+ with
K |= X1(c1) such that K |= X1 v X2, then c1 � c2. ii) If X+ is mutatis mutandis
replaced by X− in i), then c2 � c1.

Proof. i) Let c1, c2 ∈ C. By assumption, the negative utilities c1 and c2 get are
equal (i.e., u−(c1) = u−(c2) = ∑

K|=X(c2)∧X∈X− U(X)). Let us call this value ∆. It
follows that u(c1) ≥ u(c2) if and only if u+(c1) + ∆ ≥ u+(c2) + ∆ if and only if
u+(c1) ≥ u+(c2), where u+(c1) (resp. u+(c2)) is the overall positive utility that c1
(resp. c2 has). Therefore, all we need to show is that u+(c1) ≥ u+(c2). Now assume
that u+(c2) is generated by the set {X1

2 , . . . , X
m
2 } ⊆ X+, and u+(c1) is generated by

the set {X1
1 , . . . , X

k
1 } ⊆ X+. Since for every X2 ∈ X+ with K |= X2(c2) there is a

X1 ∈ X+ with K |= X1(c1) such that K |= X1 v X2 (by assumption), it follows that
{X1

2 , . . . , X
m
2 } ⊆ {X1

1 , . . . , X
k
1 }, hence u+(c1) ≥ u+(c2). ii) Similar to the previous

case.

The following corollary is a natural result of this approach to decision theory,
which says that two choices are of same desirability (i.e., indistinguishable w.r.t.
desirability) if they belong to exactly the same classes.

Corollary 1 (Indistinguishableness). Let D be a decision base, then for any c1, c2 ∈
C, c1 ∼ c2 iff {X1 ∈ X | K |= X1(c1)} = {X2 ∈ X | K |= X2(c2)}.

Proof. By applying Proposition 1 in both directions.
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The intuitive explanation for Corollary 1 is that we measure the desirability
(and non-desirability) of things, according to what they are, or which classes they
do belong to. This brings forward the importance of reasoning, since it might not
be obvious at all that two choices actually belong to exactly the same classes as
attributes.
Remark 1. Note that w.l.o.g. the complexity of calculating the optimal choice is
as high as the complexity of the instance checking problem in the employed DL
language, since to calculate the optimal choice, given m choices and n attributes, in
the worst case there are m · n instance checking to be performed.

Decision bases offer high flexibility in representing preferences, due to having
both qualitative (logical) and quantitative (weights) components. The following
example illustrates their main properties.

3.3 Example: Car Buyer
Consider an agent who wants to buy a second hand sports car. After visiting various
car dealers, he finds two alternatives as fair deals; a sport Mazda (Mx-5 Miata
Roadster, 2013 ) which fits his original purpose and a BMW (335i Sedan, 2008 )
which is also worth considering since it has a very strong engine (300 horsepower
(hp)) and also comes with a sport kit. The car buyer’s decision base (background
knowledge (T ,A), choices C = {car1, car2}, and attributes mentioned in U) is as in
Figure 1.

As the use of numerical domains is common to classical Decision Theory, we
will use the language with concrete domains. If the reader is already familiar with
concrete domains, she can skip the technical definitions and go directly to Figure 1.

Let us clarify concrete domains and predicates which are used in the example.
We take the concrete domain Car and ∆Car := ∆$ ∪ ∆sec ∪ ∆mpg ∪ ∆mph ∪ ∆hp

with ∆$ ∩∆sec ∩∆mpg ∩∆mph ∩∆hp = ∅, and pred(Car) := pred($)∪ pred(mpg)∪
pred(mph) ∪ pred(sec). For S ⊂ Q is a sufficiently large finite set of rationals, we
define the partition (of the domain ∆Car) ∆$ as {i$ | i ∈ S}, pred($) := {<$, >$,≥$
,≤$,=$, 6=$}. (<$)$(x, y) = {(x, y) ∈ ∆$×∆$ | i, j ∈ S with x := i$ and y := j$ such
that i < j}. Other predicates are defined similarly in an obvious way parallel to usual
binary relations over S. For convenience, we extend pred($) with finitely many unary
predicates in the form of <x:= {∀y ∈ ∆$ |<$ (x, y)} and also of >x, ≤x, ≥x, =x, 6=x

which are similarly defined, enough to express the intended TBox. Note that pred($)
is closed under negation: <$(x, y) =≥$ (x, y), etc. For other partitions, we take
∆sec := {i sec | i ∈ S+ \ {0}}, ∆mpg := {i mpg | i ∈ S}, ∆mph := {i mph | i ∈ S},
∆hp := {i hp | i ∈ S\{0}}. The rest of the respective predicate names and functional
roles are defined in an obvious way (hasPriceI : ∆I ×∆$, hasKit : ∆I ×∆I , etc).
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T = {∃hasPrice. ≤30000 $≡ InexpensiveCar, Bmw uMazda v ⊥,
ExpensiveCar v HighClassCar, Bmw335i v Bmw,
HighClassCar v PrestigiousCar, ∃hasModelY ear. ≥2012≡NewCar,
∃hasFuelConsumpt. ≥20mpg≡ EconomicCar, Bmw v PrestigiousCar,
Roadster v PrestigiousCar, SportsCaruConvertible≡Roadster,
MiddleClassCar uHighClassCar v ⊥, ClassicalKit v Kit,
SportsCar t ∃hasHP. ≥200hpv StrongCar, SportKit v Kit,
2Doors u 4Doors v ⊥, Car uKit v ⊥,
∃has0− 60mph. ≤7.0sec u ClassicalKit u SportKit v ⊥}
∃hasHP. ≥270hpv V eryStrongCar,
2Doors u ¬Convertible ≡ Coupé,
¬ Coupé u¬Convertible u ¬Hatchback v Sedan,
2Doors u ∃has0− 60mph. ≤7.0sec u
∀hasKit.SportKit v SportsCar,

A = {MazdaMx5Miata(car1), Bmw335i(car2),
hasHP (car1, 167hp), hasHP (car2, 300hp),
hasFuelConsumption(car1, 24mpg), hasFuelConsumption(car2, 19mpg),
hasModelY ear(car1, 2013), hasModelY ear(car2, 2008),
has0− 60mph(car1, 6.9sec), has0− 60mph(car2, 4, 8sec),
hasPrice(car1, 29960$), hasPrice(car2, 42560$),
Convertible(car1), Sedan(car2),
2Doors(car1), 4doors(car2),
ClassicalKit(kit1) SportKit(kit2),
hasKit(car1, kit1), hasKit(car2, kit2)}

U = {(InexpensiveCar, 30), C = {car1, car2}
(PrestigiousCar, 55),
(V eryStrongCar, 50),
(StrongCar, 40),
(EconomicCar, 30),
(NewCar, 35),
(Convertible, 10),
(Sedan, 5),
(∃hasKit.SportKit, 20),
(∃hasKit.ClasicalKit, 10)}

Figure 1: The car buyer’s background knowledge K = (T ,A), the set of choices
C = {car1, car2}, and preferences encoded as U . We omit the trivial axioms with
the super concept Car: HighClassCar v Car, PrestigiousCar v Car, . . . , etc.
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According to the agent, taking T into account, a Bmw is a prestigious car.
Considering a 200 hp or above is enough to refer to a car as strong. An economic
car should go for more than 20 miles per gallon (mpg). A car is new if it was
manufactured in 2012 or later.

Considering U in Figure 1, the agent (car buyer) is more interested in having
a prestigious car than having an inexpensive car. He prefers convertible to sedan.
However, these are not as important as a car to be an economic car, or a strong car.
Using the given decision base, we can calculate the utility of each choice (uσ(car1) =
220, uσ(car2) = 170), which implies (by the assumption: the greater the utility, the
more desirable is the choice) that car1 � car2.
Remark 2. Note that the DL we have used in this example is quite expressive. The
aim here is to simply show that using an enough expressive DL, one can talk about
some natural decision problems in a reasonable way. As an example we chose a com-
mon human decision problem, dealing with it in an automated manner to support
the intuition that it can be used in, say, e-shopping scenario. For convenience, in
the example we set the concrete domain to a sufficiently large finite subset of ratio-
nals. Moreover without arithmetic functions over the concrete domain, it should be
convenient that it is decidable [22].

4 System Description
We implemented our approach as Protégé plugin available at the link https://
code.google.com/p/udecide/. We first briefly describe the functionality and ar-
chitecture of our plugin in Section 4.1. Then we present a use case that shows how
a user interacts with the plugin in Section 4.2. This use case also illustrates how the
plugin can be used as an out-of-the-box expert system for any knowledge domain
available as ontology.

4.1 Implementation
Our Protégé plugin is compatible with both Protégé Desktop version 4.3 and 5.0. As
reasoning component we used the Konclude reasoner [31] which turned out to be the
best OWL reasoner for our purpose with regards to performance issues.4 When we
start Protégé Konclude is required to be running in the background. The connection
to Konclude is established via OWLlink.

Our implementation is straightforward. First, an ontology needs to be loaded via
the standard Protégé file menu. This ontology acts as a knowledge base K. After

4We would like to thank Andreas Steigmiller for his support related to using Konclude.
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switching to the uDecide tab, the user can specify the set of possible choices by
specifying a class C defined in K 5. All instances of C are treated as choices, which
corresponds to the set of choices C in the theoretical framework. The attributes
and their utility can then be specified on top of the vocabulary defined in K. Once
the type of choices and the attributes with their corresponding utility have been
specified, a connection to Konclude is established via HTTP. We will illustrate these
steps in the subsequent section in more details. For each attribute, we request from
the reasoner all named individuals satisfying the intersection of the attribute’s class
expression and the class that defines the type of choices. The result shown consists of
a ranked list of all individuals returned by at least one query and their utility which
is derived from the satisfied attributes. Since Konclude does not support instance
satisfaction queries for anonymous class expressions, we create a temporary ontology
that is transferred to Konclude at runtime. We add to this ontology an equivalent
classes axiom between each utility assertion’s class expression and a named dummy
class. We then separately query the individuals for each named dummy class.

As described on our homepage we recommend to configure Konclude to load
the knowledge base already on start-up to speed up the calculation. Because of
increasing computation time and memory limitations it is required to do this when
working with large knowledge bases. If the knowledge base was already loaded into
Konclude at start-up, only a (very small) temporary ontology will be built and
used by Konclude. Otherwise the union of both the temporary ontology and the
(potentially very large) knowledge base will be loaded in primary memory. This
behaviour can be controlled by a checkbox which is used to specify if the knowledge
base is already loaded into Konclude at start-up.

4.2 Use Case
As an illustrating use case, we applied our approach to the domain of books and
authors. In particular, we used our framework to support a user in finding interesting
books or authors by specifying his interests as attributes. Instead of working with
an artificial example, we used an existing subset of DBpedia that deals with the
chosen topic. The core domain contains relevant information about books and their
authors. With respect to our use case, DBpedia suffers a bit from its restricted set
of terminological axioms and its incompleteness regarding the sparse usage of some
properties.

In order to illustrate how to overcome such problems, we decided to extend it
with information about cities. In particular, we added for each city the country
in which it is located. Furthermore, we added some axioms specifying nationality

5Recall that the number of named instances for any class is finite.
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classes e.g., "Spanish" is defined as "the set of those persons that were born in or
died in a city located in Spain or whose nationality is Spain, Spanish_language or
Spanish_people". Thus, by using the nationality classes, the nationality of authors
for whom no nationality object property assertion exists, can still be inferred by their
birth and death places. We did so because in the core domain the nationality was
specified directly for only 21,3% authors, while 46,9% have a "derived nationality"
via our axiomatisation. Note that these axioms are not always true, because there
obviously exist some people that were born in Spain whose nationality is not Spanish.

This extension illustrates that, in the context of a reasoning based approach,
it is possible to leverage background knowledge that seemed not to be relevant at
first sight. Information that Barcelona is located in Spain and that some author
was born in Barcelona can affect the ranking of choices, if we specified that we
prefer Spanish authors as an attribute. It shows that a reasoning based approach
can help to overcome some problems related to incomplete data in the knowledge
base. The dataset and some instructions on how to use it can be found at https:
//code.google.com/p/udecide/wiki/BookUseCaseExample.

Suppose that a user wants to find a new author who writes books that are
similar to the ones that she likes. First of all, feasible choices have to be defined as
the instances of the class dbp:Author. Figure 2 depicts a screenshot of the uDecide
tab. The class to which the choices belong has been specified in the respective text
field in the upper right corner. An arbitrary concept description can be specified as
long as it is in the signature of the previously loaded ontology.

Now suppose that our user likes the authors Stephen King, Edgar Allan Poe,
and H.P. Lovecraft. Thus, she adds for each of the three authors an attribute to U :

U = {(∃influencedBy.{Stephen_King}, 70), . . . }.

The resulting list of attributes can be seen in the uDecide tab on the left side of
Figure 2. Note that the concept descriptions are specified in the Manchester syntax6

supported by the Protégé Editor. All attributes are specified within a dialog box
that uses the auto-complete functionality of Protégé as well as its syntax checking
capability. Only if a class expression is syntactically correct, a button will be enabled
to add it to the UBox.

Overall, nine attributes have been specified. The first three attributes express
that the user prefers authors that are influenced by her favourite authors. By adding
a negative value to the fourth attribute, the user ensures that the three authors that
she already knows will be ranked low in the ranking of choices. The fifth attribute
is added to increase the utility of those authors that received some award by 50.

6http://www.w3.org/TR/owl2-manchester-syntax/#The_Grammar
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Figure 2: Screenshot of uDecide displaying a ranked list of authors according to the
attribute specification of a user.

Moreover, the user specifies that she likes authors writing books that belong to
the genre of horror fiction or science fiction. These attributes have a relatively low
utility value. Finally, it is specified that the user likes American and British authors,
slightly preferring British.

The results that are finally calculated will only include individuals that satisfy
the choice class expression and at least one of the attributes.7 This calculation
is started by clicking on the "Calculate Utilities” button. The ranked choices are
presented on the right side of Figure 2 in descending order based on their utility.
The best choice is the author Wolfgang Hohlbein (240), followed by Joyce Carol
Oates (230) and many lower ranked choices. Thus, the most reasonable choice for
the user is to look at the author Wolfgang Hohlbein in more details, given that his
attribute specification and the underlying knowledge base is complete and correct.

However, it might often be the case that a user wants to explore the results in

7The rationale with at least one of the attributes is the large knowledge bases; when one deals
with large knowledge bases, most of the time, we experienced that the list is filled with so many
choices with 0 utility. In order to overcome that, we filter them out by default. However it is still
easy to have the whole list of choices, simply by entering the restriction class as an attribute with
0 weight.
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more detail, for example to get an explanation about their ranking position. This can
be done by clicking on one of the proposed choices. Figure 2 illustrates this for Joyce
Carol Oates. The utility score of 230 is based on the fact that Joyce Carol Oates
was influenced by Edgar Allen Poe and by H.P. Lovecraft, that she won at least one
award and that she was born in New York, therefore being classified as American.
Each of the satisfied attributes is highlighted in the left panel. Furthermore, all
assertions about the selected choice are shown in a panel in the lower right corner.
Again, we have used the Protégé default way of presenting this information. Vice
versa, it is also possible to select one of the (or multiple) attributes. This results in
those choices being highlighted that satisfy the selected (all the selected) attribute(s)
(not shown in Figure 2).

Our use case and the presented example illustrate both the benefits as well as
some drawbacks of our approach. First of all, we could apply our Protégé plugin to
the domain of books and authors without the plugin requiring any further modifica-
tions or extensions. This resulted in an expert system which makes proposals about
interesting authors or books. The only required ingredient was an ontology that
covers the domain in an appropriate way. We decided to use DBpedia, which fea-
tures a comprehensive ABox but a flat and inexpressive TBox. Thus, the potential
reasoning capabilities of our approach had only a limited impact: whether a choice
satisfies an attribute can be decided by a direct look-up over most attributes. This
changes with the use of an expressive TBox where some of the attributes are satis-
fied due to a chain of non-trivial logical dependencies and background knowledge.
In such a setting our approach can be used to provide non-immediately obvious
recommendation, as well as elicit their explanation, a key issue in decision support.

4.3 Scalability

In some preliminary experiments we have also tested the scalability of our approach.
We used both (1) standard datasets of our DBpedia book use case as well as (2) ex-
tended datasets (in the sense that new –not present in DBpedia– terminological and
assertional knowledge was added). For each case we created subsets that differed
with respect to the contained number of instances. The smallest dataset contained
13307 individuals and 51149 assertions and axioms. The largest dataset contained
54018 individuals and 300653 assertions and axioms covering all authors and books
in DBpedia. The extended datasets are slightly larger in each case because they
contain assertions about the countries of the cities. To further highlight the differ-
ences between the standard and the extended datasets, we used different UBoxes to
measure their runtime. The UBoxes as well as the resulting choice ranking for the
complete dataset can be seen in Figures 3 and 4.
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Figure 3: Screenshot of uDecide performance test displaying a ranked list of authors
using the standard DBpedia book knowledge base.

Figure 4: Screenshot of uDecide performance test displaying a ranked list of authors
using the extended DBpedia book knowledge base.

The UBoxes share most of their attributes, differing only on the attributes giving
preference to authors with American and British nationality. In the standard case
they were expressed only with the nationality object property on the domain of
dbp:Author while in the extended case the added nationality classes were used. The
results of our experiments are shown in Tables 1 and 2.

We conducted our experiments on a Win 7 desktop machine with four 3,4
Ghz cores and 8 GB DDR3-Ram using Protege 5.0 Desktop Beta build 17 and
Konclude-v0.6.1-527-Windows-x64-VS05-Dynamic-Qt4.8.5. As described above, we
forced Konclude to load the knowledge base already on start-up. This required less
than 4 seconds for each of the datasets listed in the table. It can be seen that the
runtime behaviour of uDecide is linear with respect to the size of the knowledge
base. However, the runtime of uDecide is mainly based on the reasoning system
that is used in the background which was Konclude in our experiments. It can also
be observed that the extended case takes more time than the standard case. This

1989



E. Acar et al.

Size # Individuals # Axioms Runtime
66 MB 53991 297926 5.8 sec
55 MB 47311 249126 4.6 sec
44 MB 40044 199898 4.1 sec
33 MB 33253 150900 3.1 sec
22 MB 23456 101162 2.1 sec
11 MB 13307 51149 1.0 sec

Size # Individuals # Axioms Runtime
66 MB 54018 300653 8.2 sec
55 MB 47338 251454 6.9 sec
44 MB 40068 201883 5.3 sec
33 MB 32114 152023 3.8 sec
22 MB 23487 102357 2.6 sec
11 MB 13335 51893 1.3 sec

Table 2: Runtime results for different
sizes of the DBpedia extended book
knowledge base.

is no surprise, given that the added nationality classes, being rather complex DL
concepts, required more expressive reasoning than the original flat attributes. In
any case, even for the complete and extended dataset, we measured a runtime of not
more than 8.2 seconds, which is probably still acceptable for an application where a
user is waiting for an on-the-fly response.

As already described above, our experiments are currently based on an the DB-
pedia ontology which corresponds to a very light weight DL; without disjunction
and negation, yet with (simple) concrete domains. Further experiments have to be
conducted where we use more expressive knowledge bases. We are not expecting a
linear runtime behaviour in such a setting.

5 Related Work
On the theory side, regarding preference representations, approaches [11, 20, 33]
among many others have been proposed using propositional logic. This body of
works is especially relevant to mention as they provided the inspirational basis for
the design of our framework.

In [11, 33], authors investigate expressiveness of weighted propositional logics
on representing classes of utility functions. In doing so, they present some corre-
spondences between particular types of weighted formulas and well-known classes
of utility functions such as monotonic, concave, and study succinctness of differ-
ent types of weighted formulas for representing the same class of utility functions.
The work [20] using the similar framework focuses on representing group prefer-
ences. They consider to aggregation functions sum (like our uσ) and max (simply
considering the maximum weight).

In [15] authors propose a propositional modal logic, multi-attribute preference
logic, to represent and reason about multi-attribute preferences. Their main objec-

1990



Multi-Attribute Decision Making with Weighted Description Logics

tive is to represent well-known preference relations, rather than proposing a decision
support model. It must also be noted that their work is purely qualitative in contrast
to ours.

On DL side, there have also been some works [26, 27] which have a machinery
similar to ours. In their work, the utility of a concept (proposal) is defined as the sum
of the weights of its superconcepts. In particular, in [26], Ragone et al. show how to
represent preferences using weighted DL- formulas. Claiming that the definition of
utility by subsumption yields unintuitive results, they base their modified definition
of utility on semantic implication. This means that the utility of a concept C w.r.t.
a TBox is defined as the sum of the weights of the concepts that are logically implied
by C. According to terminology they used, our approach can be understood as an
implication-based approach. However, they define logical implication in terms of
membership, i.e., m |= C iff m ∈ CI . The minimal model that they introduced in
order to define the minimal utility value is more restrictive than ordinary models in
DL. They change this definition to ordinary models in their next paper [27], while
keeping the formal machinery the same (except the way they compute utilities). We
should note that their preference set, which is a set of weighted concepts, is similar
to our UBox. Hence, the main difference of our approach is the formal extension to
multiple alternatives and the use of individuals; they represent choices as concepts.
Moreover, we provide an implementation of our framework as a decision support
tool.

In [32], authors show how to encode fuzzy multicriteria decision making (MCDM)
problems in the formalism of fuzzy DL. They base their work on a standard feature
of MCDM on continuous domains: a decision matrix wherein the performance score
of each choice over each criteria is explicitly stated. Criteria are expressed as fuzzy
concepts. The optimal choice (w.r.t the fuzzy knowledge base) is the one with
the highest maximum satisfiability degree. The authors do not explicitly make a
distinction between the knowledge base and the set of criteria. In general, the focus
of the work is to show the potential and flexibility of fuzzy DL in encompassing the
usual numerical methods used in MCDM, rather than leveraging a formal concept
hierarchy in MCDM for expressing relations and handling inconsistencies between
criteria, choices, and the knowledge base.

On the practical side, we briefly mention [8, 10] mainly because they are deci-
sion support systems and they use Protégé (to our knowledge the only ones). It
is important to note that these systems have no multiattribute character. They
are designed to serve solely as a clinical decision support system. The basic idea
is to represent clinical practice guidelines (CPGs) as ontologies and make use of
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ontological inference, SWRL8 and Jess9.

6 Conclusion and Further Work
We have presented a DL based decision theoretic framework for representing ba-
sic decision problems which arise in a multiattribute fashion. This work can be
understood as the first step of our working line. A preliminary version of this frame-
work was first described in [2]. Within this paper we have improved this framework
and presented a refined version. However, the main contribution of this paper is
the Protégé plugin uDecide. This plugin is a straightforward implementation of the
proposed framework. It computes the utility for each of the defined choices by aggre-
gating the utility value for each satisfied attribute. Since each attribute corresponds
to a class description, standard reasoning techniques can be used to check whether
an attribute is satisfied. We have used the Konclude [31] reasoning system to con-
duct the required reasoning tasks. The results of this computation are presented to
the user as a ranked list of choices.

Since we implemented our approach as a Protégé plugin, our approach can easily
be used by the DL community. The current form of uDecide works with the uσ utility
function and we are currently working on extending the plug-in as an implementation
of a generic decision base, where one can also define arbitrary utility functions.

We have demonstrated within our use case, where we used a DBpedia fragment
concerned with the book domain, how to use uDecide as an expert system that
recommends new authors to a user. Moreover, we have also shown that our current
implementation, by using the reasoning system Konclude, is capable to deal with
large real-world datasets. We already pointed out that the benefits of reasoning
are rather limited in the context of the DBpedia subset we used. For that reason,
we have to identify another use case where we can clearly show that reasoning is
beneficial by making logical dependencies explicit in calculating the final ranking.
It will also be interesting to perform runtime experiments on the dataset of such a
use case. We are currently investigating datasets from the biomedical domain and
from the domain of life sciences. A remaining task is to conclude user-experiments
to check how satisfying is the choices uDecide provides for the users. This is in our
agenda.

As in many other disciplines, in decision theory it is common to deal with deci-
sions where uncertainty is present. For that reason, one major future research direc-
tion is to extend the framework with probabilistic description logics, e.g., [21, 23].

8http://www.w3.org/Submission/SWRL/
9http://herzberg.ca.sandia.gov/jess/
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A first attempt in that direction can be found in [1]. A probabilistic approach would
allow us to face the challenge of representing typical problems defined in the decision
theoretic literature, along with lots of new application possibilities. In particular,
a probabilistic extension would allow us to compute the expected utility of choices
(lotteries) in terms of logical entailment, beside the possibility for employing differ-
ent logics for different types of probabilities (e.g., subjective, statistical) that the
decision problem involves. Having said that, the work we presented in this paper
must be understood as a very first step in that direction with strong simplifications
regarding decision problems.

A second major plan is to keep developing the theory and extend the frame-
work with a functionality that one can use concrete domains as a part of the utility
function. This would allow in return to construct ontologies which represent op-
timisation problems with continuous domain that is common to MAUT literature
[12, 19, 18].

Another future plan is to extend the framework to sequential decisions (e.g.,
Di → Di+1, sequence of decision bases). Once sequential decisions are defined, we
can deal with policies, strategies and decision-theoretic planning. Besides all we
believe that, with a proper multi-agent extension, uDecide could also be used to
reason for group decisions, along with potential applications in computational social
choice or algorithmic game theory.
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Abstract

Preference Inference involves inferring additional user preferences from elicited
or observed preferences, based on assumptions regarding the form of the user’s pref-
erence relation. In this paper we consider a situation in which alternatives have an
associated vector of costs, each component corresponding to a different criterion, and
are compared using a kind of lexicographic order, similarly to the way alternatives are
compared in a Hierarchical Constraint Logic Programming model. It is assumed that
the user has some (unknown) importance ordering on criteria, and that to compare two
alternatives, firstly, the combined cost of each alternative with respect to the most im-
portant criteria are compared; only if these combined costs are equal, are the next most
important criteria considered. The preference inference problem then consists of deter-
mining whether a preference statement can be inferred from a set of input preferences.
We show that this problem is coNP-complete, even if one restricts the cardinality of
the equal-importance sets to have at most two elements, and one only considers non-
strict preferences. However, it is polynomial if it is assumed that the user’s ordering
of criteria is a total ordering (which we call a simple lexicographic model); it is also
polynomial if the sets of equally important criteria are all equivalence classes of a given
fixed equivalence relation. We give an efficient polynomial algorithm for these cases,
which also throws light on the structure of the inference. We give a complete proof
theory for the simple lexicographic model case, and analyse variations of preference
inference.1

1 Introduction

There are increasing opportunities for decision making/support systems to take into account
the preferences of individual users, with the user preferences being elicited or observed from

1This is an extended version of an IJCAI-2015 paper [19].
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the user’s behaviour. However, users tend to have limited patience for preference elicitation,
so such a system will tend to have a very incomplete picture of the user preferences. Pref-
erence Inference involves inferring additional user preferences from elicited or observed
preferences, based on assumptions regarding the form of the user’s preference relation.
More specifically, given a set of input preferences Γ, and a set of preference models M
(considered as candidates for the user’s preference model), we infer a preference statement
ϕ if every model inM that satisfies Γ also satisfies ϕ. Preference Inference can take many
forms, depending on the choice ofM, and on the choices of language(s) for the input and
inferred statements. For instance, if we just assume that the user model is a total order (or
total pre-order), we can setM as the set of total [pre-]orders over a set of alternatives. This
leads to a relatively cautious form of inference (based on transitive closure), including, for
instance, the dominance relation for CP-nets and some related systems, e.g., [3, 5, 4, 1].

Often it can be valuable to obtain a much less cautious form of inference. In recom-
mender systems for example, we aim to present the user with a relatively small set of al-
ternatives. We can determine this set of alternatives as the undominated alternatives of a
preference inference relation based on previously expressed user preferences [7, 14], with
a more adventurous form of inference generating a smaller set of alternatives. Another ex-
ample arises in a multi-objective context (as in a simple form of a Multi-Attribute Utility
Theory model [9]). Again, it is often better if the number of optimal (undominated) solu-
tions is relatively small, which can be achieved with a less cautious order relation on the
set of objectives. These less cautious forms of inference include assuming that the user’s
preference relation is a simple weighted sum as considered in [7, 13, 12], or different lex-
icographic forms of preference models as in [16, 14, 18]. A comparison of Pareto orders,
weighted sums and lexicographic orders in an multi-objective context shows that the lexico-
graphic case is the least cautious and results in the least undominated solutions [12]. Note
that all these systems involve reasoning about what holds in a set of preference models that
coincide with the user’s preference statements. This contrasts with work in preference learn-
ing that typically learns a single model, with the intention that this model closely resembles
the real user’s preference model [11, 8, 10, 6, 2].

In this paper we consider a situation in which alternatives have an associated vector of
costs, each component corresponding to a different criterion, and are compared using a kind
of lexicographic order, similarly to the way alternatives (feasible solutions) are compared
in a Hierarchical Constraint Logic Programming (HCLP) model [15]. It is assumed that
the user has some (unknown) importance ordering on criteria, and that to compare two
alternatives, firstly, the combined cost of each alternative with respect to the most important
criteria are compared; only if these combined costs are equal, are the next most important
criteria considered. Implicitly, we assume that the costs of the alternatives are available to
the user in order to express preference statements. Also, we assume to know all criteria the
user might use and their costs.
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We consider the case where the input preference statements are of a simple form that
one alternative is preferred to another alternative, where we allow the expression of both
strict and non-strict preferences (in contrast to most related preference logics, such as
[17, 3, 16, 18] where only non-strict preferences are considered). We assume that the cri-
teria by which the alternatives are compared are unfavorable facts like costs, distances, etc.
Thus the lower the values on the alternatives are the better. Accordingly, a strict prefer-
ence α < β expresses that alternative α is better than β; a non-strict preference α ≤ β
means that α is at least as good as β. This form of preference is natural in many contexts,
including for conversational recommender systems [7]. The preference inference problem
then consists of determining whether a preference statement can be inferred from a set of
input preferences, i.e., if every preference model (of the assumed form) satisfying the inputs
also satisfies the query. We show that this problem is coNP-complete, even if one restricts
the cardinality of the equal-importance sets to have at most two elements, and one only
considers non-strict preferences. However, it is polynomial if it is assumed that the user’s
ordering of criteria is a total ordering (which we call the simple lexicographic model case);
it is also polynomial if the sets of equally important criteria are all equivalence classes of a
given fixed equivalence relation. We give an efficient polynomial algorithm for these cases,
which also throws light on the structure of the inference.

Briefly, the idea behind the polynomial algorithm is as follows. Preference inference
can be expressed in terms of testing consistency of a set of preference statements Γ. It turns
out to be helpful to consider Γ(≤), which is the same as Γ except that strict statements are
replaced by non-strict ones on the same alternatives. We show that Γ is consistent if and
only if some maximal model of Γ(≤) satisfies Γ, which is if and only if every maximal
model of Γ(≤) satisfies Γ. Generating a maximal model of Γ(≤) can be done in a simple
and efficient way, using a greedy algorithm, thus allowing efficient testing of consistency
(and thus preference inference). We also show that preference inference is compact, i.e.,
that if ϕ can be inferred from Γ then it can be inferred from a finite subset of Γ; and we
analyse variations of preference inference, based on only considering maximal models, and
only considering models that involve all the criteria.

We have defined our logics of preference inference in a semantic way. It is natural
to consider whether we can define a complete proof theory, based on syntactic notion of
consequence. We show how this can be done, if we extend the set of alternatives.

Section 2 defines our simple preference logic based on hierarchical models, along with
some associated preference inference problems. Section 3 shows that in general the prefer-
ence inference problem is coNP-complete. Section 4 considers the case where the impor-
tance ordering on criteria is a total order, and gives a polynomial algorithm for consistency;
here we also consider variations of preference inference and relationships with a logic of
disjunctive ordering constraints. In Section 5 we construct a complete proof theory, based
on an extended set of alternatives. Section 6 concludes.
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2 A preference logic based on hierarchical models

We consider preference models, based on an importance ordering of criteria, that is basically
lexicographic, but involving a combination of criteria which are at the same level in the
importance ordering. We call these “HCLP models", because models of a similar kind
appear in the HCLP system [15] (though we have abstracted away some details from the
latter system).

HCLP structures: Define an HCLP structure to be a tuple S = 〈A,⊕, C〉, where A
(the set of alternatives) is a (possibly infinite) set; ⊕ is an associative, commutative and
monotonic operation (x ⊕ y ≤ z ⊕ y if x ≤ z) on the non-negative rational numbers
Q+, with identity element 0; and C (known as the set of (A-)evaluations) is a finite set2of
functions from A to Q+. We also assume that operation ⊕ can be computed in linear time
(which holds for natural definitions of ⊕, including addition and max). The evaluations
in C may be considered as representing criteria or objectives under which the alternatives
are evaluated. For c ∈ C and α ∈ A, if c(α) = 0 then α fully satisfies the objective
corresponding to c; more generally, the smaller the value of c(α), the better α satisfies the
c-objective.

Example 1. Suppose, a user wants to buy a new prepay mobile phone SIM card. She wants
to make her decision between different providers based on the price per 10MB data usage
d, the price per text message m and the price per minute for calls to the same provider c.
These prices of d, m and c can be combined by addition. Consider four different options
(providers) α, β, γ and δ with the following prices in cents.

α β γ δ

d 18 15 13 14

m 15 17 15 13

c 10 11 14 15

In this context, the HCLP structure 〈A,⊕, C〉 is given by the set of alternatives A =
{α, β, γ, δ}, the operator ⊕ being the ordinary addition on the integers and the set of eval-
uation functions C = {d,m, c}.

2We could easily extend this to the case where C is a multi-set. (Or alternatively, we can reason about the
latter case using the current formalism by adding an artificial alternative that every evaluation differs on.)
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HCLP orderings: With each subset C of C we define ordering 4⊕
C on A by α 4⊕

C β if
and only if

⊕
c∈C c(α) ≤ ⊕

c∈C c(β). Relation 4⊕
C represents how well the alternatives

satisfy the set of evaluations C if the latter are considered equally important. 4⊕
C is a total

pre-order (a weak order, i.e., a transitive and complete binary relation). We write ≡⊕
C for

the associated equivalence relation on A, given by α ≡⊕
C β ⇐⇒ α 4⊕

C β and β 4⊕
C α.

We write ≺⊕
C for the associated strict weak ordering, defined by α ≺⊕

C β ⇐⇒ α 4⊕
C β

and β 64⊕
C α. Thus, α ≡⊕

C β if and only if
⊕
c∈C c(α) = ⊕

c∈C c(β); and α ≺⊕
C β if and

only if
⊕
c∈C c(α) < ⊕

c∈C c(β).

HCLP models: An HCLP model H based on 〈A,⊕, C〉 is defined to be an ordered parti-
tion (C1, . . . , Ck) of a (possibly empty) subset of C; we label this subset as σ(H), so that
σ(H) = C1 ∪ · · · ∪ Ck. The sets Ci are called the levels of H , which are thus non-empty,
disjoint and have union σ(H). If c ∈ Ci and c′ ∈ Cj , and i < j, then we say that c appears
before c′ (and c′ appears after c) in H . Associated with H is an ordering relation 4⊕

H on A
given by:

α 4⊕
H β if and only if either:

(I) for all i = 1, . . . , k, α ≡⊕
Ci
β; or

(II) there exists some i ∈ {1, . . . , k} such that (i) α ≺⊕
Ci
β and (ii) for all j with 1 ≤ j <

i, α ≡⊕
Cj
β.

Relation 4⊕
H is a kind of lexicographic order on A, where the set Ci of evaluations at the

same level are first combined into a single evaluation. 4⊕
H is a weak order on A. We

write ≡⊕
H for the associated equivalence relation (corresponding with condition (I)), and

≺⊕
H for the associated strict weak order (corresponding with condition (II)), so that 4⊕

H is
the disjoint union of ≺⊕

H and ≡⊕
H . If σ(H) = ∅ then the first condition for α 4⊕

H β holds
vacuously (since k = 0), so we have α 4⊕

H β for all α, β ∈ A, and ≺⊕
H is the empty

relation.

Preference language inputs: Let A be a set of alternatives. We define LA
≤ to be the

set of statements of the form α ≤ β (“α is preferred to β”), for α, β ∈ A (the non-strict
statements); we write LA

< for the set of statements of the form α < β (“α is strictly preferred
to β”), for α, β ∈ A (the strict statements); and we letLA = LA

≤∪LA
<. If ϕ is the preference

statement α ≤ β then ¬ϕ is defined to be the preference statement β < α. If ϕ is the
preference statement α < β then ¬ϕ is defined to be the preference statement β ≤ α.

Satisfaction of preference statements: For an HCLP model H over the HCLP structure
〈A,⊕, C〉, we say that H satisfies α ≤ β (written H |=⊕ α ≤ β) if α 4⊕

H β holds.
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Similarly, we say that H satisfies α < β (written H |=⊕ α < β) if α ≺⊕
H β. For Γ ⊆ LA,

we say that H satisfies Γ (written H |=⊕ Γ) if H satisfies ϕ for all ϕ ∈ Γ. If H |=⊕ ϕ then
we sometimes say that H is a model of ϕ (and similarly, if H |=⊕ Γ).

Satisfaction of negated preference statements behaves as one would expect:

Lemma 1. Let H be a HCLP model over HCLP structure S . Then, H satisfies ϕ if and
only if H does not satisfy ¬ϕ.

Proof: Write S as 〈A,⊕, C〉. It is sufficient to show that, for any α, β ∈ A, H satisfies
α ≤ β if and only if H does not satisfy β < α. We have that H satisfies α ≤ β if and only
if α 4⊕

H β, which, since 4⊕
H is a weak order, is if and only if β 6≺⊕

H α, i.e., H does not
satisfy β < α. ✷

Example 2. Consider Example 1 of a user choosing between different providers to buy a
prepay SIM card. Suppose that the user is not interested in using data, and regards m and
c as equally important. She can express her preferences by the corresponding HCLP model
H = ({m, c}). Since m(α) + c(α) = 25 < m(β) + c(β) = 28 = m(δ) + c(δ) = 28 <
m(γ) + c(γ) = 29, H satisfies α ≺⊕

H β ≡⊕
H δ ≺⊕

H γ. The evaluations involved in H
are σ(H) = {m, c}. If the user is most interested in the text message prices, and only if
these are equal in the call prices, and only if these are also equal in the data prices, then
the corresponding HCLP model is H ′ = ({m}, {c}, {d}). The induced order relation for
this model satisfies δ ≺⊕

H′ α ≺⊕
H′ γ ≺⊕

H′ β, since m(δ) < m(α) = m(γ) < m(β) and
c(α) < c(γ). The evaluations involved in H ′ are σ(H ′) = {d,m, c}.

Preference inference/deduction relation: We are interested in different restrictions on
the set of models, and the corresponding inference relations. Let M be a set of HCLP
models over HCLP structure 〈A,⊕, C〉. For Γ ⊆ LA, and ϕ ∈ LA, we say that Γ |=⊕

M ϕ, if
H satisfies ϕ for every H ∈M satisfying Γ. Thus, if we elicit some preference statements
Γ of a user, and we assume that their preference relation is an HCLP model inM (based on
the HCLP structure), then Γ |=⊕

M ϕ holds if and only if we can deduce (with certainty) that
the user’s HCLP model H satisfies ϕ.

Consistency: For set of HCLP models M over HCLP structure 〈A,⊕, C〉, and set of
preference statements Γ ⊆ LA, we say that Γ is (M,⊕)-consistent if there exists H ∈
M such that H |=⊕ Γ; otherwise, we say that Γ is (M,⊕)-inconsistent. In the usual
way, because of the existence of a negation operator, deduction can be reduced to checking
(in)consistency.

Proposition 1. Γ |=⊕
M ϕ if and only if Γ ∪ {¬ϕ} is (M,⊕)-inconsistent.
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Proof: Suppose that Γ |=⊕
M ϕ. By definition, H satisfies ϕ for every H ∈ M satisfying

(every element of) Γ. Thus, using Lemma 1, there exists no H ∈ M that satisfies Γ and
¬ϕ, which implies that Γ ∪ {¬ϕ} is (M,⊕)-inconsistent.

Conversely, suppose Γ ∪ {¬ϕ} is (M,⊕)-inconsistent. By definition, there exists no
H ∈M that satisfies Γ∪¬ϕ. Thus, every H ∈M that satisfies Γ does not satisfy ¬ϕ, and
therefore satisfies ϕ, by Lemma 1. Hence, Γ |=⊕

M ϕ. ✷

Let t be some number in {1, 2, . . . , |C|}. We define C(t) to be the set of all HCLP models
(C1, . . . , Ck) based on HCLP structure 〈A,⊕, C〉 such that |Ci| ≤ t, for all i = 1, . . . , k.
An element of C(1) thus corresponds to a sequence of singleton sets of evaluations; we
identify it with a sequence of evaluations (c1, . . . , ck) in C. Thus, Γ |=⊕

C(t) ϕ if and only if
H |=⊕ ϕ for all H ∈ C(t) such that H |=⊕ Γ. Note that for t = 1, these definitions do not
depend on ⊕ (since there is no combination of evaluations involved), so we may drop any
mention of ⊕.

Let ≡ be an equivalence relation on C, and let E be the set of equivalence classes of
≡. Thus, for each c ∈ C there exists a unique element E ∈ E such that E ∋ c, and
E = {c′ ∈ C : c′ ≡ c}. We define C(≡) to be the set of all HCLP models (C1, . . . , Ck)
such that each Ci is an equivalence class with respect to ≡, i.e., Ci ∈ E . It is easy to see
that the relation |=⊕

C(≡) is the same as the relation |=C′(1) where C ′ is defined as follows. C ′

is in 1-1 correspondence with E . If E is the ≡-equivalence class of C corresponding with
c′ ∈ C ′ then, for α ∈ A, c′(α) is defined to be

⊕
c∈E c(α), so that each Ci in an HCLP

model is replaced by a single evaluation equivalent to the combination of all the elements
of Ci.

For |= either being |=⊕
C(t) for some t ∈ {1, 2, . . . , |C|}, or being |=⊕

C(≡) for some equiv-
alence relation ≡ on C, we consider the following decision problem.

HCLP-DEDUCTION FOR |=: Given C, Γ and ϕ is it the case that Γ |= ϕ?

In Section 4, we will show that this problem is polynomial for |= being |=⊕
C(t) when

t = 1. Thus it is polynomial also for |=⊕
C(≡), for any equivalence relation ≡. It is coNP-

complete for |= being |=⊕
C(t) when t > 1, as shown below in Section 3.

Theorem 1. HCLP-DEDUCTION FOR |=⊕
C(t) is polynomial when t = 1, and is coNP-

complete for any t > 1, even if we restrict the language to non-strict preference statements.
HCLP-DEDUCTION FOR |=⊕

C(≡) is polynomial for any equivalence relation ≡.

Example 3. Consider the HCLP structure of Example 1. Suppose, the user states that she
prefers α to β, i.e. α ≤ β, and strictly prefers β to γ, i.e. β < γ. Only the HCLP models
of the forms ({c}, . . . ), ({m}, . . . ), ({c,m}, . . . ) or ({d,m, c}) satisfy α ≤ β. Only the
HCLP models ({c}, . . . ), ({c, d}, . . . ) or ({c,m}, . . . ) satisfy β < γ. Thus, the models
({c}, . . . ) and ({c,m}, . . . ) are the only ones that satisfy the set Γ = {α ≤ β, β < γ}
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of the user’s input preferences. Let t ∈ {1, 2, 3}. Then Γ 6�⊕
C(t) δ ≤ β since the model

H = ({c}) ∈ C(1) ⊆ C(t) satisfies Γ and β ≺⊕
H δ, i.e., H 6�⊕ δ ≤ β. Furthermore,

Γ 6�⊕
C(2) β ≤ δ since the model H ′ = ({c,m}, {d}) ∈ C(2) satisfies Γ and δ ≺⊕

H′ β, i.e.,
H ′ 6�⊕ β ≤ δ. However, we can infer Γ �⊕

C(1) β ≤ δ, and even Γ �⊕
C(1) β < δ, since

all Γ-satisfying HCLP models in C(1), i.e., ({c}), ({c}, {m}), ({c}, {d}), ({c}, {m}, {d}),
and ({c}, {d}, {m}), satisfy the relation β < δ.

3 Proving coNP-completeness of HCLP-deduction for |=⊕C(t) for
t > 1

Given an arbitrary 3-SAT instance we will show that we can construct a set Γ and a statement
α ≤ β such that the 3-SAT instance has a satisfying truth assignment if and only if Γ 6|=⊕

C(t)
α ≤ β (see Proposition 2 below). This then implies that determining if Γ 6|=⊕

C(t) α ≤ β

holds is NP-hard.
We have that Γ 6|=⊕

C(t) α ≤ β if and only if there exists an HCLP-model H ∈ C(t)
such that H |=⊕ Γ and H 6|=⊕ α ≤ β. For any given H , checking that H |=⊕ Γ and
H 6|=⊕ α ≤ β can be performed in polynomial time. This implies that determining if
Γ 6|=⊕

C(t) α ≤ β holds is in NP, and therefore is NP-complete, and thus determining if
Γ |=⊕

C(t) α ≤ β holds is coNP-complete.

Consider an arbitrary 3-SAT instance based on propositional variables p1, . . . , pr, con-
sisting of clauses Λj , for j = 1, . . . , s. For each propositional variable pi we associate two
evaluations q+

i and q−
i , where q−

i corresponds with literal ¬pi, and q+
i corresponds with

literal pi.
The idea behind the construction is as follows: we generate a (polynomial size) set

Γ ⊆ LA
≤ as the disjoint union of sets Γ1, Γ2 and Γ3, and we choose a non-strict statement

α ≤ β. For the remainder of this section, let H be an arbitrary HCLP-model in C(t). Γ1 is
chosen so that if H |=⊕ Γ1 then, for each i = 1, . . . , r, σ(H) cannot contain both q+

i and
q−
i , i.e., q+

i and q−
i do not both appear in H . (Recall H is an ordered partition of σ(H),

so that σ(H) is the subset of C that appears in H .) If H |=⊕ Γ2 and H |=⊕ β < α then
σ(H) contains either q+

i or q−
i . Together, this implies that if H |=⊕ Γ and H 6|=⊕ α ≤ β

then for each propositional variable pi, model H involves either q+
i or q−

i , but not both. Γ3
is used to make the correspondence with the clauses. For instance, if one of the clauses is
p2 ∨ ¬p5 ∨ p6 then any HCLP model H ∈ C(t) of Γ ∪ {β < α} will involve either q+

2 , q−
5 ,

or q+
6 .
Suppose that H satisfies Γ but not α ≤ β. We can generate a satisfying assignment of

the 3-SAT instance, by assigning pi to 1 (TRUE) if and only if q+
i appears in H .
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The monotonicity assumption for operation ⊕ implies that 1 ⊕ 1 > 0, since we have
1⊕ 1 ≥ 1⊕ 0 = 1 > 0. In fact, in the proof below we do not need to assume monotonicity
of ⊕; it is sufficient to just assume that 1⊕ 1 > 0.

We describe the construction more formally below.

Defining A and C: The set of alternatives A is defined to be the union of the following
sets

• {α, β} ∪ {αi, βi, δi : i = 1, . . . , r}

• {γki : i = 1, . . . , r, k = 1, . . . , t− 1}

• {θj, τj : j = 1, . . . , s}.

We define the set of evaluations C to be {c∗} ∪ {q+
i , q

−
i : i = 1, . . . , r} ∪ A1 ∪ · · · ∪ Ar,

where Ai = {aki : k = 1, . . . , t− 1}. Both A and C are of polynomial size.

Satisfying β < α: The evaluations on α and β are defined as follows:

• c∗(α) = 1, and for all c ∈ C − {c∗}, c(α) = 0.

• For all c ∈ C, c(β) = 0.

It immediately follows that: H |=⊕ β < α ⇐⇒ σ(H) ∋ c∗.

The construction of Γ1: We define Γ1 = ⋃r
i=1 Γi1 where, for each i = 1, . . . , r, we

define Γi1 = {δi ≤ γki , γki ≤ δi : k = 1, . . . , t− 1}. We make use of auxiliary evaluations
Ai = {a1

i , . . . , a
t−1
i }. The values of the evaluations on γki and δi are defined as follows:

• aki (γki ) = 1, and for all c ∈ C − {aki } we set c(γki ) = 0.

• q+
i (δi) = q−

i (δi) = 1, and for other c ∈ C, c(δi) = 0.

Thus, for any B ⊆ Ai, we have (⊕a∈B a⊕ q+
i )(δi) = ⊕

a∈B a(δi)⊕ q+
i (δi) = 0 ⊕ · · · ⊕

0 ⊕ 1 = 1. Similarly, (⊕a∈B a⊕ q−
i )(δi) = 1. Furthermore, (⊕a∈B a⊕ q+

i )(γki ) = 1 ⇔
aki ∈ B and (⊕a∈B a⊕ q−

i )(γki ) = 1⇔ aki ∈ B.

Lemma 2. H |=⊕ Γi1 if and only if either (i) σ(H) does not contain any element in Ai
or q+

i or q−
i , i.e., σ(H) ∩ (Ai ∪ {q+

i , q
−
i }) = ∅; or (ii) Ai ∪ {q+

i } is a level of H , and
σ(H) 6∋ q−

i ; or (iii) Ai ∪ {q−
i } is a level of H , and σ(H) 6∋ q+

i . In particular, if H |=⊕ Γi1
then σ(H) does not contain both q+

i and q−
i .
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Proof: Consider any H ∈ C(t), so that for each level E of H we have |E| ≤ t. We have
that H |=⊕ Γi1 if and only if for each level E of H and for all k = 1, . . . , t− 1, δi ≡⊕

E γki .
Now, δi ≡⊕

E γki if and only if
⊕
c∈E c(δi) = ⊕

c∈E c(γki ). Also,
⊕

c∈E c(δi) = 0 unless E
contains either q+

i or q−
i ; and

⊕
c∈E c(δi) = 1 ⊕ 1 > 0 if E contains both q+

i and q−
i ; and

equals 1 if E contains either q+
i or q−

i , but not both.
⊕
c∈E c(γki ) equals 1 if and only if E

contains aki , and equals 0 otherwise.
This implies that if for all k = 1, . . . , t − 1, δi ≡⊕

E γki and E contains q+
i or q−

i then
for all k = 1, . . . , t − 1, E contains aki , and so E ⊇ Ai. Because of the condition that
|E| ≤ t (since H ∈ C(t)), and |Ai| = t − 1, we then have that E equals either Ai ∪ {q+

i }
or Ai ∪ {q−

i }.
Similarly, if for all k = 1, . . . , t − 1, δi ≡⊕

E γki and E contains aki for some k ∈
{1, . . . , t− 1}, then E contains q+

i or q−
i , and so, by the previous paragraph, E equals

either Ai ∪ {q+
i } or Ai ∪ {q−

i }.
Thus, if H |=⊕ Γi1, then for at most one level E of H do we have E ∩ (Ai ∪ {q+

i , q
−
i })

non-empty (else we would have two levels both containing Ai, contradicting disjointness
of levels); also if E ∩ (Ai ∪ {q+

i , q
−
i }) is non-empty then E equals either Ai ∪ {q+

i } or
Ai ∪ {q−

i }. In particular, if H |=⊕ Γi1 then σ(H) does not contain both q+
i and q−

i .
Regarding the converse, let us suppose first that (i) σ(H) does not intersect with Ai ∪

{q+
i , q

−
i }. Then for all levels E of H , and for all k = 1, . . . , t− 1, we have

⊕
c∈E c(δi) =⊕

c∈E c(γki ) = 0, and thus δi ≡⊕
E γ

k
i , which implies H |=⊕ Γi1.

Now suppose (ii) that Ai ∪ {q+
i } is a level E′ of H and σ(H) 6∋ q−

i . Then every
other level E is disjoint from Ai ∪ {q+

i , q
−
i }, so for all k = 1, . . . , t − 1,

⊕
c∈E c(δi) =⊕

c∈E c(γki ) = 0, and thus δi ≡⊕
E γki . Also,

⊕
c∈E′ c(δi) = ⊕

c∈E′ c(γki ) = 1, and thus
H |=⊕ Γi1. Case (iii), when Ai ∪ {q−

i } is a level E′ of H and σ(H) 6∋ q+
i , is essentially

identical to Case (ii), just switching the roles of q+
i and q+

i . ✷

The construction of Γ2: For each i = 1, . . . , r, define ϕi to be αi ≤ βi. We let Γ2 =
{ϕi : i = 1, . . . , r}. The values of the evaluations on αi and βi are defined as follows. We
define c∗(αi) = 1, and for all c ∈ C − {c∗}, c(αi) = 0. Define q+

i (βi) = q−
i (βi) = 1,

and for all c ∈ C − {q+
i , q

−
i }, c(βi) = 0. Thus, similarly to the previous observations

for Γ1, (c∗ ⊕ q+
i )(βi) = (c∗ ⊕ q−

i )(βi) = 1 and (c∗ ⊕ q+
i )(αi) = (c∗ ⊕ q−

i )(αi) = 1.
Also, (q+

i ⊕ q−
i )(αi) = 0 and (q+

i ⊕ q−
i )(βi) ≥ 1, because of the monotonicity of ⊕, and

(c∗ ⊕ q+
i ⊕ q−

i )(αi) = 1 and (c∗ ⊕ q+
i ⊕ q−

i )(βi) ≥ 1.
The following result easily follows.

Lemma 3. If q+
i or q−

i appears before c∗ in H then H |=⊕ ϕi. If σ(H) ∋ c∗ and H |=⊕ ϕi
then σ(H) ∋ q+

i or σ(H) ∋ q−
i .
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Proof: Consider any H ∈ C(t), and consider any i ∈ {1, . . . , r}. Then the following hold
for any level E of H .

(I) If E does not contain any of {c∗, q+
i , q

−
i } then

⊕
c∈E c(αi) = ⊕

c∈E c(βi) = 0 so
αi ≡⊕

E βi.

(II) If E contains c∗ but neither of q+
i or q−

i , then
⊕
c∈E c(αi) = 1 and

⊕
c∈E c(βi) = 0,

so αi 64⊕
E βi.

(III) If E contains q+
i or q−

i but not c∗ then
⊕
c∈E c(αi) = 0 and

⊕
c∈E c(βi) > 0 using

the fact that 1⊕ 1 > 0, so αi ≺⊕
E βi.

Assume that σ(H) ∋ c∗. If σ(H)∩{q+
i , q

−
i } = ∅ then by considering the level contain-

ing c∗ we can see, using (I) and (II), that αi 64⊕
H βi, so H 6|=⊕ ϕi. This proves the second

half of the lemma.
If q+

i or q−
i (or both) appear before c∗ in H then (I) and (III) imply that αi ≺⊕

H βi and
thus H |=⊕ ϕi. ✷

The construction of Γ3: For each i = 1, . . . , r, define Q(pi) = q+
i and Q(¬pi) = q−

i .
This defines the function Q over all literals. Let us write the jth clause as l1 ∨ l2 ∨ l3
for literals l1, l2 and l3. Define Qj = {Q(l1), Q(l2), Q(l3)}. For example, if the jth
clause were p2 ∨ ¬p5 ∨ p6 then Qj = {q+

2 , q
−
5 , q

+
6 }. We define ψj to be θj ≤ τj , and

Γ3 = {ψj : j = 1, . . . s}. Define c∗(θj) = 1 and c(θj) = 0 for all c ∈ C − {c∗}. Define
q(τj) = 1 for q ∈ Qj , and for all other c (i.e., c ∈ C −Qj), define c(τi) = 0.

Lemma 4. If some element of Qj appears in H before c∗, and no level of H contains more
than one element of Qj , then H |=⊕ ψj . If σ(H) ∋ c∗ and H |=⊕ ψj then σ(H) contains
some element of Qj .

Proof: The proof of this result is similar to that of Lemma 3. Consider any H ∈ C(t) any
clause j. Then the following hold for any level E of H .

(I) If E does not contain any element of Qj ∪ {c∗} then
⊕
c∈E c(θj) = ⊕

c∈E c(τj) = 0
so θj ≡⊕

E τj .

(II) If E contains c∗ but no element of Qj neither of q+
i or q−

i , then
⊕
c∈E c(θj) = 1 and⊕

c∈E c(τj) = 0, so θj 64⊕
E τj .

(III) If E contains exactly one element of Qj but not c∗ then
⊕

c∈E c(θj) = 0 and⊕
c∈E c(τj) = 1, so θj ≺⊕

E τj .
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Assume that σ(H) ∋ c∗. If σ(H) ∩ Qj = ∅ then by considering the level containing
c∗ we can see, using (I) and (II), that θj 64⊕

H τj , so H 6|=⊕ ϕi. This argument proves that if
σ(H) ∋ c∗ and H |=⊕ ψj then σ(H) contains some element of Qj .

If some element of Qj appears in H before c∗, and no level of H contains more than
one element of Qj , then (I) and (III) imply that θj ≺⊕

H τj and thus H |=⊕ ϕi. ✷

We set Γ = Γ1∪Γ2∪Γ3. The following result implies that the HCLP deduction problem
is coNP-hard (even if we restrict to the case when Γ ∪ {ϕ} ⊆ LA

≤).

Proposition 2. Using the notation defined above, the 3-SAT instance is satisfiable if and
only if Γ 6|=⊕

C(t) α ≤ β.

Proof: First let us assume that Γ 6|=⊕
C(t) α ≤ β. Then by definition, there exists an HCLP

model H ∈ C(t) with H |=⊕ Γ and H 6|=⊕ α ≤ β. Since H 6|=⊕ α ≤ β ⇐⇒
H |=⊕ β < α, we have H |=⊕ Γ ∪ {β < α}. Because H |=⊕ β < α, we have σ(H) ∋ c∗.

Because also H |=⊕ Γi2, either σ(H) ∋ q+
i or σ(H) ∋ q−

i , by Lemma 3. Since
H |=⊕ Γi1, the set σ(H) does not contain both q+

i and q−
i , by Lemma 2.

Let us define a truth function f : P → {0, 1} as follows: f(pi) = 1 ⇐⇒ σ(H) ∋ q+
i .

Since σ(H) contains exactly one of q+
i and q−

i , we have f(pi) = 0 ⇐⇒ σ(H) ∋ q−
i . We

extend f to negative literals in the obvious way: f(¬pi) = 1− f(pi), and thus, f(¬pi) = 1
⇐⇒ σ(H) ∋ q−

i .
Since H |=⊕ Γ3 and σ(H) ∋ c∗, then σ(H) contains at least one element of each Qj ,

by Lemma 4. Thus for each j, f(l) = 1 for at least one literal l in the jth clause, and hence
f satisfies clause Λj . We have shown that f satisfies each clause of the 3-SAT instance,
proving that the instance is satisfiable.

Conversely, suppose that the 3-SAT instance is satisfiable, so there exists a truth function
f satisfying it. We will construct an HCLP model H ∈ C(t) such that H |=⊕ Γ∪{β < α},
and thus H 6|=⊕ α ≤ β, proving that Γ 6|=⊕

C(t) α ≤ β.

For i = 1, . . . , r, let Si = Ai ∪ {q+
i } if f(pi) = 1, and otherwise, let Si = Ai ∪ {q−

i }.
Thus, if f(pi) = 1 then Q(pi) ∈ Si; and if f(¬pi) = 1 then Q(¬pi) ∈ Si. We then define
H to be the sequence S1, S2, . . . , Sr, {c∗}. Since σ(H) ∋ c∗, we have that H |=⊕ β < α.
By Lemma 2, for all i = 1, . . . , r, H |=⊕ Γi1 and so H |=⊕ Γ1. By Lemma 3, for all
i = 1, . . . , r, H |=⊕ ϕi, so H |=⊕ Γ2.

Consider any j ∈ {1, . . . , s}, and, as above, write the jth clause as l1 ∨ l2 ∨ l3. Truth
assignment f satisfies this clause, so there exists k ∈ {1, 2, 3} such that f(lk) = 1. Then
Q(lk) appears in H before c∗, so, by Lemma 4, H |=⊕ ψj . Thus H |=⊕ Γ3. Since
Γ = Γ1 ∪Γ2∪Γ3, we have shown that H |=⊕ Γ∪{β < α}, proving that Γ 6|=⊕

C(t) α ≤ β.✷
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Example 4. Let (p1 ∨ p2 ∨ ¬p3) ∧ (¬p1 ∨ p2 ∨ p3) be an instance of 3-SAT with the
three propositional variables p1, p2, p3 and clauses Λ1,Λ2. From this we construct a C(2)
HCLP-Deduction instance as in the previous paragraphs (so with t = 2). Corresponding
to the two possible assignments of each of the propositional variables p1, p2, p3, we con-
struct evaluation functions q+

1 , q
+
2 , q

+
3 and q−

1 , q
−
2 , q

−
3 . We also introduce the additional

evaluation functions c∗ and A1 = {a1
1, a

1
2, a

1
3}. Furthermore, we construct alternatives

α, β, α1, α2, α3, β1, β2, β3, δ1, δ2, δ3, γ1
1 , γ

1
2 , γ

1
3 , θ1, θ2, τ1, τ2 for the preference statements

α > β, Γ1, Γ2 and Γ3, with the values of the evaluation functions given as follows:

Γ2 Γ1 Γ3

α > β α1 ≤ β1 α2 ≤ β2 α3 ≤ β3 δ1 ≤,≥ γ1
1 δ2 ≤,≥ γ1

2 δ3 ≤,≥ γ1
3 θ1 ≤ τ1 θ2 ≤ τ2

q+
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0

q+
2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1

q+
3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

q−
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

q−
2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

q−
3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

c∗ 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

a1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

a1
2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

a1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Here, the values of τ1 and τ2 correspond to the occurrences of the literals pi or ¬pi in
the clauses Λ1 and Λ2, respectively. Since the statement α > β is strict, the evaluation c∗

has to be included in any satisfying HCLP modelH of Γ∪{α > β}, where Γ = Γ1∪Γ2∪Γ3.
To satisfy a non-strict preference statement ν ≤ ρ, if a level contains an evaluation function
with value 1 for ν then the same or an earlier level must contain an evaluation function
with value 1 for ρ. The preference statement e.g., α1 ≤ β1 in Γ2 then enforces that either
q+

1 or q−
1 appears in some level of H (and no later than c∗) because c∗(α1) = 1 and

q+
1 (β1) = q−

1 (β1) = 1. Since Γ1 contains δ1 ≤ γ1
1 and γ1

1 ≤ δ1, a C(2)-HCLP model H
satisfying Γ ∪ {α > β} must have a1

1 appearing in the same level as q+
1 or q−

1 , and both
q+

1 and q−
1 cannot then appear in H . Thus H involves either q+

1 or q−
1 but not both. Γ3

contains ψ1, i.e., θ1 ≤ τ1, which ensures that at least one element in Q1 = {q+
1 , q

+
2 , q

−
3 }

appears in some level of a satisfying HCLP model, which corresponds to satisfying the first
clause. The assignment p1 = true, p2 = true, p3 = false satisfies the instance (p1 ∨ p2 ∨
¬p3) ∧ (¬p1 ∨ p2 ∨ p3). A corresponding Γ ∪ {α > β}-satisfying HCLP model in C(2) is
({q+

1 , a
1
1}, {q+

2 , a
1
2}, {q−

3 , a
1
3}, {c∗}).
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4 Simple lexicographic models

In this section, we consider the case where we restrict to HCLP models which consist of
a sequence of singletons; thus each model corresponds to a sequence of evaluations, and
generates a lexicographic order based on these. We call such models: simple lexicographic
models.

Let C be a set of evaluations on A. To simplify notation, we redefine a C(1)-model
to be a sequence of different elements of C (rather than a sequence of singleton sets). As
mentioned earlier, the operation ⊕ plays no part, so we can harmlessly abbreviate ordering
4⊕
H to just 4H , for any C(1)-model H , and similarly for ≺H and ≡H . The deduction

problem for the sequence of singletons case is thus as follows. Given Γ ∪ {ϕ} ⊆ LA, is it
the case that Γ |=C(1) ϕ? That is, is it the case that for all C(1)-models H (over A), if H
satisfies Γ then H satisfies ϕ?

Given set of evaluations C and set of preference statements Γ, we introduce in Sec-
tion 4.1 the important concept of maximal inconsistency base (Γ⊥, C⊥), where Γ⊥ ⊆ Γ
and C⊥ ⊆ C. No model of Γ involves any element of C⊥, and it turns out (Corollary 1)
that Γ is C(1)-inconsistent if and only if Γ⊥ contains a strict element. It is helpful (see
Section 4.2) to consider Γ(≤), a version of Γ where each strict element is replaced by the
corresponding non-strict one. Models of Γ(≤) can be generated in a simple iterative way.
If one model of Γ(≤) extends another, then the former satisfies at least as many elements
of Γ as the latter does. It is natural to then consider maximal models of Γ(≤). We show
(Proposition 8) that maximal models of Γ(≤) involve every evaluation except the ones in
C⊥, and satisfy every element of Γ except the strict statements in Γ⊥. This implies that
all maximal models of Γ(≤) involve the same evaluations and satisfy the same subset of Γ.
Thus to determine if Γ is C(1)-consistent, we just have to generate any maximal model of
Γ(≤) (see Theorems 2 and 3), which can be done with a simple greedy algorithm, and test
if this model satisfies Γ.

A nice mathematical property of this form of preference inference is compactness (see
Corollary 2): any inference from an infinite set Γ also follows from some finite subset of it.

Our notion of preference inference is an intuitive one; however, there are also natural
variations based on only considering models that involve all the evaluations; or alternatively,
only considering maximal models. We explore such variations of preference inference in
Section 4.3, and show strong connections with the main notion of preference inference. In
Section 4.4 we show how the preference inference based on simple lexicographic models is
very closely related to a logic based on disjunctive ordering statements.
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4.1 Some basic definitions and results

We write ϕ ∈ LA as αϕ < βϕ, if ϕ is strict, or as αϕ ≤ βϕ, if ϕ is non-strict. We consider
a set Γ ⊆ LA, and a set C of evaluations on A.

SuppϕC , OppϕC and IndϕC : For ϕ ∈ Γ, define SuppϕC to be {c ∈ C : c(αϕ) < c(βϕ)}; define
OppϕC to be {c ∈ C : c(αϕ) > c(βϕ)}; and define IndϕC to be {c ∈ C : c(αϕ) = c(βϕ)}.
Thus, SuppϕC , OppϕC and IndϕC form a partition of C, for any ϕ ∈ LA. Note that these
three sets do not depend on whether ϕ is strict or not. We may abbreviate SuppϕC to Suppϕ,
and similarly for OppϕC and IndϕC . Suppϕ are the evaluations that support ϕ; Oppϕ are the
evaluations that oppose ϕ. Indϕ are the other evaluations, that are indifferent regarding ϕ.
For a model H to satisfy ϕ it is necessary that no evaluation that opposes ϕ appears before
all evaluations that support ϕ. More precisely, we have the following:

Lemma 5. Let H be an element of C(1), i.e., a sequence of different elements of C. For
strict ϕ, H |= ϕ if and only if an element of SuppϕC appears in H which appears before any
(if there are any) element in OppϕC that appears. For non-strict ϕ, H |= ϕ if and only if
an element of SuppϕC appears in H before any element in OppϕC appears, or no element of
OppϕC appears in H (i.e., σ(H) ∩ OppϕC = ∅).

Proof: Let H = (c1, . . . ck) be a C(1)-model. Suppose that ϕ is a strict statement. Then
H |= ϕ, i.e., αϕ ≺H βϕ, if and only if there exists some i ∈ {1, . . . , k} such that
{c1, . . . ci−1} ⊆ Indϕ and ci ∈ SuppϕC , which is if and only if an element of SuppϕC ap-
pears in H before any element in OppϕC appears.

Now suppose that ϕ is a non-strict statement. Then H |= ϕ, i.e., αϕ 4H βϕ, if and
only if either (i) for all i = 1, . . . , k, α ≡ci β; or (ii) there exists some i ∈ {1, . . . , k}
such that α ≺ci β and for all j such that 1 ≤ j < i, α ≡cj β. (i) holds if and only if
σ(H) ⊆ Indϕ, i.e., no element of SuppϕC or OppϕC appears in H . (ii) holds if and only if an
element of SuppϕC appears in H before any element in OppϕC appears, and some element of
SuppϕC appears in H . Thus, H |= ϕ holds if and only if either no element in OppϕC appears
in H or some element of SuppϕC appears in H and the first such element appears before any
element in OppϕC appears. ✷

The following defines inconsistency bases, which are concerned with evaluations that
cannot appear in any model satisfying the set of preference statements Γ (see Proposition
3 below). They are a valuable tool in understanding the structure of the set of satisfying
models (see e.g., Proposition 8 below).

Definition 1. Let Γ ⊆ LA, and let C be a set of A-evaluations. We say that (Γ′, C ′) is an
inconsistency base for (Γ, C) if Γ′ ⊆ Γ, and C ′ ⊆ C, and
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(i) for all ϕ ∈ Γ′, SuppϕC ∪OppϕC ⊆ C ′ (and thus C − C ′ ⊆ IndϕC ); and

(ii) for all c ∈ C ′, there exists ϕ ∈ Γ′ such that OppϕC ∋ c.

Thus, for all ϕ ∈ Γ′, the set C ′ contains all evaluations that are not indifferent regarding
ϕ, and for all c ∈ C ′ there is some element of Γ′ that is opposed by c.

Example 5. Consider evaluations C = {e, f, g, h} with values for alternatives α, β, γ and
δ as in the following table.

α β γ δ

e 2 2 3 3

f 0 3 1 1

g 0 2 2 0

h 1 1 3 2

Consider the strict preference statement ϕ1 : α < β, and the non-strict preference
statements ϕ2 : β ≤ γ, ϕ3 : γ ≤ δ. Let Γ = {ϕ1, ϕ2, ϕ3}. Then, Oppϕ1

C = ∅, Suppϕ1
C =

{f, g} and Indϕ1
C = {e, h}. Similarly, Oppϕ2

C = {f}, Suppϕ2
C = {e, h} and Indϕ2

C = {g}.
For ϕ3, Oppϕ3

C = {g, h}, Suppϕ3
C = ∅ and Indϕ3

C = {e, f}.
The HCLP model (e, f) satisfies Γ. As stated in Lemma 5, the evaluation e ∈ Suppϕ2

C
precedes the only element f in Oppϕ2

C . The tuple (Γ′, C′) = ({ϕ3}, {g, h}) is an inconsis-
tency base of (Γ, C). Condition (i) of Definition 1 is satisfied by Suppϕ3

C ∪Oppϕ3
C = {g, h} ⊆

C′. Since for g, h ∈ C′, g ∈ Oppϕ3
C and h ∈ Oppϕ3

C , condition (ii) is satisfied as well.

The following result motivates the definition of inconsistency bases, showing that no
model of Γ can involve any element of C ′, and that if Γ′ contains a strict element then Γ is
C(1)-inconsistent.

Proposition 3. Let (Γ′, C ′) be an inconsistency base for (Γ, C). Let H be an element of
C(1). If H |= Γ′ then C ′∩σ(H) = ∅ and for any ϕ ∈ Γ′, αϕ ≡H βϕ, so H 6|= αϕ < βϕ. In
particular, no C(1) model of Γ can involve any element of C ′. Also, if Γ is C(1)-consistent
then Γ′ contains no strict preference statements.

Proof: Let (Γ′, C ′) be an inconsistency base for (Γ, C). Let H = (c1, . . . ck) be an element
of C(1) with H |= Γ′. Suppose H contains some element in C ′ and let ci be the element
in C ′ ∩ σ(H) with the smallest index. By Definition 1(ii), there exists ϕ ∈ Γ′ such that
OppϕC ∋ ci. Furthermore, since cj /∈ C ′ for all 1 ≤ j < i, Definition 1(i) implies cj ∈ IndϕC .
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But then, an evaluation that opposes ϕ appears before all evaluations that support ϕ. By
Lemma 5, this is a contradiction to H |= Γ′; hence we must have C ′ ∩ σ(H) = ∅. Also,
for all ϕ ∈ Γ′, σ(H) ⊆ C − C ′ ⊆ IndϕC by Definition 1(i). Therefore, for any ϕ ∈ Γ′,
αϕ ≡H βϕ, and thus H 6|= αϕ < βϕ. Since H |= Γ′, this implies that Γ′ contains no strict
elements. The last parts follow from the fact that Γ′ is a subset of Γ, so if H |= Γ then
H |= Γ′. ✷

We next give a small technical lemma that will be useful later. In particular, part (i) will
be used in proving compactness of preference inference.

Lemma 6. Assume that (Γ′, C ′) is an inconsistency base for (Γ, C). Then the following
hold.

(i) There exists a finite set Γ′′ ⊆ Γ such that (Γ′′, C ′) is an inconsistency base for (Γ, C),
and if Γ′ contains a strict statement then Γ′′ does also.

(ii) For any ∆ such that Γ′ ⊆ ∆ ⊆ Γ, (Γ′, C ′) is an inconsistency base for (∆, C).

Proof: (i): By condition (ii) of the definition of an inconsistency base, for each c ∈ C ′,
there exists ϕc ∈ Γ′ such that OppϕcC ∋ c. If Γ′ contains a strict statement ψ then let
Γ′′ = {ψ} ∪ {ϕc : c ∈ C ′}; else let Γ′′ = {ϕc : c ∈ C ′}. Because C is finite, Γ′′ is finite.
The definition implies that (Γ′′, C ′) is an inconsistency base for (Γ, C).

Part (ii) follows immediately from Definition 1, since conditions (i) and (ii) of the defi-
nition do not directly refer to Γ, but just to Γ′, which is a subset of Γ. ✷

We will show there is, in a natural sense, a unique maximal inconsistency base for
(Γ, C).

For inconsistency bases (Γ1, C1) and (Γ2, C2) for (Γ, C), define (Γ1, C1) ∪ (Γ2, C2) to
be (Γ1 ∪ Γ2, C1 ∪ C2). More generally, for inconsistency bases (Γi, Ci), i ∈ I , we define
∪i∈I(Γi, Ci) to be (∪i∈IΓi,∪i∈ICi), which can be easily shown to be an inconsistency
base.

Lemma 7. Suppose, for some (finite or infinite) non-empty index set I , and for all i ∈ I ,
that (Γi, Ci) is an inconsistency base. Then ∪i∈I(Γi, Ci) is an inconsistency base.

Proof: For all i ∈ I , by Definition 1(i), for all ϕ ∈ Γi, SuppϕC ∪ OppϕC ⊆ Ci; thus, for all
ϕ ∈ ∪i∈IΓi, SuppϕC ∪ OppϕC ⊆ ∪i∈ICi. This proves condition (i). To prove condition (ii):
for all i ∈ I , by Definition 1(ii), for all c ∈ Ci, there exists ϕ ∈ Γi such that OppϕC ∋ c.
Thus, for all c ∈ ∪i∈ICi, there exists ϕ ∈ ∪i∈IΓi such that OppϕC ∋ c. ✷

Define MIB(Γ, C), the maximal inconsistency base for (Γ, C), to be the union of all
inconsistency bases for (Γ, C), i.e.,

⋃ {(Γ′, C ′) ∈ I}, where I is the set of inconsistency
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bases for (Γ, C). This is well-defined, because I is non-empty, since it always contains the
tuple (∅, ∅).

The next result states that MIB(Γ, C) is an inconsistency base for (Γ, C).

Proposition 4. MIB(Γ, C) is an inconsistency base for (Γ, C), which is maximal in the
following sense: if (Γ1, C1) is an inconsistency base for (Γ, C) then Γ1 ⊆ Γ⊥ andC1 ⊆ C⊥,
where MIB(Γ, C) = (Γ⊥, C⊥).

Proof: By Lemma 7, the union of an arbitrary set of inconsistency bases is an inconsistency
base. Consequently, MIB(Γ, C) is an inconsistency base. Let MIB(Γ, C) = (Γ⊥, C⊥). The
definition immediately implies that if (Γ1, C1) is an inconsistency base for (Γ, C), then
Γ1 ⊆ Γ⊥ and C1 ⊆ C⊥. ✷

By Proposition 3, if Γ is C(1)-consistent then Γ⊥ contains no strict elements, proving
the next result. The converse also holds—see Corollary 1.

Proposition 5. Suppose that Γ is C(1)-consistent, i.e., there exists a C(1) model of Γ. Then
for any inconsistency base (Γ′, C ′) of (Γ, C), Γ′ ∩ LA

< = ∅. In particular, if MIB(Γ, C) =
(Γ⊥, C⊥) then Γ⊥ ∩ LA

< = ∅.

Example 6. Consider the HCLP structure and preference statements as in Example 5. The
only inconsistency bases of (Γ, C) are (∅, ∅) and ({ϕ3}, {g, h}). Thus, ({ϕ3}, {g, h}) is the
maximal inconsistency base MIB(Γ, C) and does not contain any strict statements of Γ.

In the following sections, it will be important to consider models extending other mod-
els.

Definition 2. For H,H ′ ∈ C(1), write H as (c1, . . . , ck) and H ′ = (c′
1, . . . , c

′
l). we say

that H ′ extends H if l > k and for all j = 1, . . . , k, c′
j = cj .

Lemma 8. Suppose that H,H ′ ∈ C(1) and that H ′ extends H . Then,

(i) If H |= α < β then H ′ |= α < β.

(ii) If H ′ |= α ≤ β then H |= α ≤ β.

Proof: (i) Suppose that H |= α < β, so that α ≺H β. Write H as (c1, . . . , ck). For some
i, ci(α) 6= ci(β); and let i be minimal such that ci(α) 6= ci(β). Since α ≺H β, we have
ci(α) < ci(β). Because, H ′ extends H , this implies that α ≺H′ β, i.e., H ′ |= α < β.

(ii) Suppose that H ′ |= α ≤ β. Then H ′ 6|= β < α, by Lemma 1. Part (i) implies that
H 6|= β < α, and thus H |= α ≤ β, using Lemma 1 again. ✷
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4.2 Towards a polynomial algorithm for consistency and deduction

Throughout this section we consider a set Γ ⊆ LA of input preference statements, and a set
C of A-evaluations.

Define OppΓ(c) (usually abbreviated to Opp(c)) to be the set of elements opposed by
c, i.e., ϕ ∈ Γ such that c(αϕ) > c(βϕ), and define SuppΓ(c) (abbreviated to Supp(c)) to
be the set of elements ϕ of Γ supported by c, (i.e., c(αϕ) < c(βϕ)). For for C ′ ⊆ C,
we define SuppΓ(C ′) to be the elements of Γ that are supported by some element of C ′,
i.e., Supp(C ′) = ⋃

c∈C′ Supp(c). Also, for sequence of evaluations (c1, . . . , ck), we define
Supp(c1, . . . , ck) to be

⋃k
i=1 Supp(ci), which equals Supp({c1, . . . , ck}).

We thus have ϕ ∈ Supp(c) ⇐⇒ c(αϕ) < c(βϕ) ⇐⇒ c ∈ Suppϕ; and ϕ ∈ Opp(c)
⇐⇒ c(αϕ) > c(βϕ) ⇐⇒ c ∈ Oppϕ.

Γ(≤), the non-strict version of Γ: It turns out to be helpful to consider a non-strict version
of Γ; we define Γ(≤) to be {αϕ ≤ βϕ : ϕ ∈ Γ}, i.e., Γ where the strict statements are
replaced by corresponding non-strict statements. Clearly, if H |= Γ then H |= Γ(≤) (since
H |= α < β implies H |= α ≤ β).

The next lemma follows immediately, since the definition of maximal inconsistency
base does not depend on whether elements of Γ are strict or not.

Lemma 9. For any Γ and C, MIB(Γ(≤), C) = MIB(Γ, C).

In order to determine the consistency of set of preference statements Γ, we want a
method for generating a model H ∈ C(1) satisfying Γ. (Determining (non-)inference can
be similarly performed by generating a model satisfying Γ ∪ {¬ϕ}, using Proposition 1.)
A necessary condition for H |= Γ is H |= Γ(≤). There is a simple necessary and sufficient
condition for H |= Γ(≤), where H = (c1, . . . , ck), which is that every ϕ ∈ Γ that is
opposed by cj is supported by some earlier element in the sequence (see Proposition 6).
This condition allows one to easily incrementally grow models of Γ(≤), until one has a
maximal model of Γ(≤). We only need to consider maximal models because if a model H
of Γ(≤) satisfies Γ then any maximal model of Γ(≤) extending H satisfies Γ (see Lemma 11).
The results about maximal inconsistency bases allow us to show (Theorem 2) that if Γ is
consistent then any maximal model of Γ(≤) satisfies Γ, so to determine consistency of Γ we
just need to generate any maximal model of Γ(≤), which can be done in a straight-forward
iterative way. This is the basis of the algorithm.

4.2.1 Γ-allowed sequences, i.e., models of Γ(≤)

We define the notion of Γ-allowed sequence, which turns out to be the same as a model of
Γ(≤) (see Proposition 6), and derive important properties (Proposition 7), which are useful
for deriving the main results about maximal Γ-allowed sequences in Section 4.2.2.
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Define NextΓ(C ′) to be the set of all c ∈ C − C ′ such that Opp(c) ⊆ Supp(C ′), i.e., the
set of c ∈ C −C ′ that only oppose elements in Γ that are supported by elements of C ′. The
following result gives an equivalent condition for c ∈ NextΓ(C ′).

Lemma 10. Consider any c ∈ C. Then, c ∈ NextΓ(C ′), i.e., Opp(c) ⊆ Supp(C ′), if and
only if for all ϕ ∈ Γ− Supp(C ′), c ∈ Suppϕ ∪ Indϕ.

Proof: Suppose first that Opp(c) ⊆ Supp(C ′), and consider any ϕ ∈ Γ − Supp(C ′). Since
ϕ /∈ Supp(C ′), then ϕ /∈ Opp(c), and thus, c /∈ Oppϕ. This implies that c ∈ Suppϕ ∪ Indϕ.

Conversely, suppose that for all ϕ ∈ Γ − Supp(C ′), c ∈ Suppϕ ∪ Indϕ. Consider any
ϕ ∈ Opp(c). Then c ∈ Oppϕ and so c /∈ Suppϕ ∪ Indϕ, and therefore, ϕ ∈ Supp(C ′). ✷

Consider an arbitrary sequence H = (c1, . . . , ck) of elements of C. Let us say that
H is a Γ-allowed sequence (of C) if for all j = 1, . . . , k, cj ∈ Next({c1, . . . , cj−1}), i.e.,
Opp(cj) ⊆ Supp({c1, . . . , cj−1}). These turn out to be just models of Γ(≤).

Example 7. Consider the HCLP structure as in Example 5 and preference statements Γ =
{ϕ1, ϕ2} with ϕ1 : α < β and ϕ2 : β ≤ γ. Then H = (h, f, e) is a Γ-allowed sequence
since:

• e ∈ Next({h, f}), i.e., Opp(e) = ∅ ⊆ Supp({h, f}) = {ϕ1, ϕ2}.

• f ∈ Next({h}), i.e., Opp(f) = {ϕ2} ⊆ Supp({h}) = {ϕ2}.

• h ∈ Next(∅), i.e., Opp(h) = ∅ ⊆ Supp(∅) = ∅.

H satisfies both preference statements in Γ.

Proposition 6. Consider an arbitrary sequence H = (c1, . . . , ck) of elements of C. Then,
H |= Γ(≤) if and only H is a Γ-allowed sequence.

Proof: Suppose that H 6|= Γ(≤), so there exists some ϕ ∈ Γ such that H 6|= αϕ ≤ βϕ.
If all elements cj of H were indifferent to ϕ (i.e., cj(αϕ) = cj(βϕ)) then we would have
H |= αϕ ≤ βϕ. Thus, some element cj in H is not indifferent to ϕ; let ci be the first such
element in H . If it were the case that ci(αϕ) < ci(βϕ) then we would have H |= αϕ ≤ βϕ,
so we must have ci(αϕ) > ci(βϕ), and thus, ϕ ∈ Opp(ci). Now, ϕ /∈ Supp({c1, . . . , ci−1}),
since cj(αϕ) = cj(βϕ) for all j < i, and hence, Opp(ci) 6⊆ Supp({c1, . . . , ci−1}). This
shows that ci /∈ Next({c1, . . . , ci−1}), and so H is not a Γ-allowed sequence.

Conversely, suppose that for some j ∈ {1, . . . , k}, cj /∈ Next({c1, . . . , cj−1}), and
let ci be the first such cj . Then for all j < i, cj ∈ Next({c1, . . . , cj−1}). Since ci /∈
Next({c1, . . . , ci−1}), there exists some ϕ ∈ Γ − Supp({c1, . . . , ci−1}) such that ϕ ∈
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Opp(ci). so that ci(αϕ) > ci(βϕ). Let j be minimal such that cj(αϕ) 6= cj(βϕ). Since
ϕ /∈ Supp({c1, . . . , ci−1}), we do not have cj(αϕ) < cj(βϕ), so we must have cj(αϕ) >
cj(βϕ). This implies that H 6|= αϕ ≤ βϕ, where αϕ ≤ βϕ is an element of Γ(≤), and thus
H 6|= Γ(≤). ✷

We also have the following property of Γ-allowed sequences.

Proposition 7. Suppose that H is a Γ-allowed sequence. Then, for all ϕ ∈ Supp(H),
H |= αϕ < βϕ, and for all ϕ ∈ Γ−Supp(H), αϕ ≡H βϕ, so, in particular H 6|= αϕ < βϕ.
Thus, for ϕ ∈ Γ, we have H |= αϕ < βϕ if and only if ϕ ∈ Supp(H). Also, H |= Γ if and
only if every strict element of Γ is in Supp(H).

Proof: First, consider any ϕ ∈ Supp(H). Thus there exists cj ∈ σ(H) such that cj(αϕ) <
cj(βϕ), so, in particular, cj(αϕ) 6= cj(βϕ). Let i be minimal such that ci(αϕ) 6= ci(βϕ).
Proposition 6 implies that H |= αϕ ≤ βϕ, which implies that ci(αϕ) 6> ci(βϕ), and thus
ci(αϕ) < ci(βϕ), proving that H |= αϕ < βϕ.

Now, consider ϕ ∈ Γ − Supp(H). If it were the case that there exists cj ∈ σ(H)
such that cj(αϕ) 6= cj(βϕ), then the argument above implies that there exists i such that
ci(αϕ) < ci(βϕ), and thus ϕ ∈ Supp(H). Thus, for all cj ∈ σ(H), cj(αϕ) = cj(βϕ), and,
hence, αϕ ≡H βϕ.

For the last part, since, by Proposition 6, H |= Γ(≤), we have: H |= Γ if and only if for
every strict element ϕ of Γ, H |= αϕ < βϕ, i.e., ϕ ∈ Supp(H). ✷

4.2.2 Maximal Γ-allowed sequences, i.e., maximal models of Γ(≤)

We say that H is a maximal Γ-allowed sequence of C if H is a Γ-allowed sequence of C
and no extension of H is a Γ-allowed sequence of C, i.e., Next(σ(H)) = ∅. More generally,
when talking about maximal models, with respect to some set of models D, we mean max-
imality with respect to the extension relation, so a model in D is (D-)maximal if there is no
element of D that extends it.

Lemma 11. Suppose that H,H ′ ∈ C and H,H ′ |= Γ(≤), and that H ′ extends H . Then for
all ϕ ∈ Γ, if H |= ϕ then H ′ |= ϕ. In particular, if H |= Γ then H ′ |= Γ.

Proof: Assume that H,H ′ |= Γ(≤), and H ′ extends H . Consider any ϕ ∈ Γ, and suppose
that H |= ϕ. If ϕ is non-strict then ϕ ∈ Γ(≤) and so H ′ |= ϕ. If ϕ is strict, then Lemma 8(i)
implies that H ′ |= ϕ. ✷

We use this in proving the next result, which shows that if we are interested in finding
models of Γ it is sufficient to only consider maximal Γ-allowed sequences, i.e., maximal
models of Γ(≤).
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Lemma 12. If H is a Γ-allowed sequence, then either H is a maximal Γ-allowed sequence
or there exists a maximal Γ-allowed sequence H ′ that extends H . Then, for all ϕ ∈ Γ, if
H |= ϕ then H ′ |= ϕ. In particular, if H |= Γ then H ′ |= Γ.

Proof: The extends relation on the finite set of Γ-allowed sequences is transitive and acyclic.
It follows that for any Γ-allowed sequence H there exists a maximal Γ-allowed sequence
extending H . The last part follows from previous result, Lemma 11 (using the equivalence
stated by Proposition 6). ✷

The following key lemma shows the close relationship between maximal Γ-allowed
sequences and the maximal inconsistency base.

Lemma 13. Suppose that H is a maximal Γ-allowed sequence. Then (Γ − Supp(H), C −
σ(H)) equals MIB(Γ, C).

Proof: We first check the two conditions in the definition of an inconsistency base (see Def-
inition 1). Consider any element ϕ of Γ− Supp(H). Proposition 7 implies that αϕ ≡H βϕ,
so that for all c ∈ σ(H), c(αϕ) = c(βϕ), and so σ(H) ⊆ Indϕ, showing that Condition (i)
holds. Now, consider any evaluation c in C − σ(H). By definition of a maximal Γ-allowed
sequence, Next(σ(H)) = ∅, so c /∈ Next(σ(H)). Therefore, by Lemma 10, there exists
ϕ ∈ Γ− Supp(H) such that c /∈ Suppϕ ∪ Indϕ, so c ∈ Oppϕ, showing that Condition (ii) of
an inconsistency base holds.

Write MIB(Γ, C) as (Γ⊥, C⊥). Thus, by definition, Γ − Supp(H) ⊆ Γ⊥ and C −
σ(H) ⊆ C⊥. Proposition 6 implies that H |= Γ(≤). Lemma 9 implies that MIB(Γ(≤), C) =
(Γ⊥, C⊥). Proposition 3 then implies that C⊥∩σ(H) = ∅, and so, C−σ(H) ⊇ C⊥. Thus,
C − σ(H) = C⊥.

Consider any ϕ ∈ Γ⊥. By definition of an inconsistency base, C − C⊥ ⊆ Indϕ, i.e.,
σ(H) ⊆ Indϕ, which implies αϕ ≡H βϕ, and so, by Proposition 7, ϕ ∈ Γ − Supp(H).
Thus, Γ⊥ ⊆ Γ − Supp(H), and hence, Γ⊥ = Γ − Supp(H), completing the proof that
(Γ− Supp(H), C − σ(H)) equals (Γ⊥, C⊥). ✷

Different maximal Γ-allowed sequences satisfy the same subset of Γ and involve the
same subset of C:

Proposition 8. Suppose that H is a maximal Γ-allowed sequence. Write MIB(Γ, C) as
(Γ⊥, C⊥). Then Γ⊥ = Γ− Supp(H) and C⊥ = C −σ(H). Thus, if H ′ is another maximal
Γ-allowed sequence, then σ(H ′) = σ(H) and Supp(H ′) = Supp(H). Also, for all ϕ ∈ Γ,
H |= ϕ ⇐⇒ H ′ |= ϕ, which is if and only if ϕ is not a strict element of Γ⊥. Hence, every
maximal Γ-allowed sequence satisfies the same elements of Γ.
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Proof: By Lemma 13, Γ⊥ = Γ−Supp(H) andC⊥ = C−σ(H). For any maximal Γ-allowed
sequence H ′, σ(H ′) = C − C⊥ = σ(H), and Supp(H ′) = Γ− Γ⊥ = Supp(H).

To prove the last part, suppose that ϕ ∈ Γ is such that H 6|= ϕ. Proposition 6 implies
that ϕ is strict. Proposition 7 implies that ϕ /∈ Supp(H) and thus ϕ ∈ Γ⊥. Conversely, if ϕ
is strict and ϕ ∈ Γ⊥ then ϕ /∈ Supp(H), so H 6|= ϕ by Proposition 7. We have shown, for
ϕ ∈ Γ, that H |= ϕ if and only if ϕ is not a strict element of Γ⊥; the same argument applies
to H ′, so H |= ϕ ⇐⇒ H ′ |= ϕ. ✷

No model of Γ(≤) satisfies any element of Γ that is not satisfied by a maximal Γ-allowed
sequence H .

Proposition 9. Consider any maximal Γ-allowed sequence H , and any H ′ ∈ C(1) such
that H ′ |= Γ(≤). For any ϕ ∈ Γ, if H ′ |= ϕ then H |= ϕ.

Proof: Suppose that ϕ ∈ Γ and H 6|= ϕ, and so, by Proposition 7, ϕ is strict and ϕ ∈ Γ −
Supp(H). Consider any model H ′ |= Γ(≤). By Proposition 6, H ′ is a Γ-allowed sequence.
By Lemma 12, there exists some maximal Γ-allowed sequence H ′′ that extends or equals
H ′. We have Supp(H ′) ⊆ Supp(H ′′). Proposition 8 implies that Supp(H) = Supp(H ′′), so
ϕ /∈ Supp(H ′). Since ϕ is strict, H ′ 6|= ϕ, again using Proposition 7. ✷

The theorem below shows that to test consistency, one just needs to generate a single
maximal Γ-allowed sequence (i.e., maximal model of Γ(≤)), which can be easily done using
an iterative algorithm.

Theorem 2. Γ is C(1)-consistent if and only if some maximal Γ-allowed sequence satisfies
Γ, which is if and only if every maximal Γ-allowed sequence satisfies Γ.

Proof: First assume that Γ is C(1)-consistent, so there exists some HCLP model H ∈ C(1)
such thatH |= Γ. This trivially implies thatH |= Γ(≤) (since H |= α < β⇒H |= α ≤ β),
so by Proposition 6, H is a Γ-allowed sequence. By Lemma 12, there exists a maximal Γ-
allowed sequence H ′ that extends or equals H , and H ′ |= Γ. We have proved that some
maximal Γ-allowed sequence satisfies Γ. The converse is obvious: if some maximal Γ-
allowed sequence satisfies Γ then Γ is C(1)-consistent. The last part of Proposition 8 implies
that some maximal Γ-allowed sequence satisfies Γ, if and only if every maximal Γ-allowed
sequence satisfies Γ. ✷

This leads to a simple characterisation of C(1)-consistency using the maximal incon-
sistency base: Γ is C(1)-consistent if and only if no inconsistency base involves any strict
element of Γ.

Corollary 1. Write MIB(Γ, C) as (Γ⊥, C⊥). Γ is C(1)-consistent if and only if Γ⊥∩LA
< = ∅,

which is if and only if Γ⊥ is C(1)-consistent. If Γ is C(1)-inconsistent then there exists a
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finite set Γ′ ⊆ Γ⊥ such that Γ′ is C(1)-inconsistent, and (Γ′, C⊥) is an inconsistency base
for (Γ, C).

Proof: Let Γ< = Γ∩LA
<. First, suppose that Γ is C(1)-consistent. Then, by Theorem 2, any

maximal Γ-allowed sequence H satisfies Γ. By Proposition 7, Γ< ⊆ Supp(H), and thus,
Γ< ⊆ Γ− Γ⊥, by Proposition 8. Hence, Γ< ∩ Γ⊥ = ∅, and so Γ⊥ ∩ LA

< = ∅.
Conversely, suppose that Γ⊥ ∩ LA

< = ∅. Proposition 8 implies that for any maximal
Γ-allowed sequence H , Γ− Γ⊥ = Supp(H) and thus, Γ< ⊆ Supp(H). Proposition 7 then
implies that H |= Γ, and so Γ is C(1)-consistent.

If Γ is C(1)-consistent then Γ⊥ is C(1)-consistent, since Γ⊥ ⊆ Γ. Conversely, suppose
that Γ⊥ is C(1)-consistent. Lemma 6 implies that (Γ⊥, C⊥) is an inconsistency base for
(Γ⊥, C). Proposition 5 implies that Γ⊥ ∩ LA

< = ∅, which by the first part, implies that Γ is
C(1)-consistent.

Now suppose that Γ is C(1)-inconsistent. The first part implies that Γ⊥ contains a strict
statement. By Lemma 6(i), there exists finite Γ′ ⊆ Γ⊥ such that (Γ′, C ′) is an inconsistency
base for (Γ, C), and Γ′ contains a strict statement. By Lemma 6(ii), (Γ′, C ′) is an inconsis-
tency base for (Γ′, C), and thus, by Proposition 5, Γ′ is C(1)-inconsistent, since it contains
a strict statement. ✷

The following result shows that this kind of preference inference is compact.

Corollary 2. Consider any Γ ⊆ LA and ϕ ∈ LA.

(i) If Γ is C(1)-inconsistent then there exists finite Γ′ ⊆ Γ which is C(1)-inconsistent.

(ii) If Γ |=C(1) ϕ then there exists finite Γ′ ⊆ Γ such that Γ′ |=C(1) ϕ.

Proof: (i) Suppose that Γ is C(1)-inconsistent. The last part of Corollary 1 implies that then
there exists finite Γ′ ⊆ Γ which is C(1)-inconsistent.

(ii) Suppose that Γ |=C(1) ϕ. Then Γ ∪ {¬ϕ} is C(1)-inconsistent, by Proposition 1.
Part (i) implies that there exists finite C(1)-inconsistent ∆ ⊆ Γ ∪ {¬ϕ}. If ∆ ⊆ Γ then we
can let Γ′ = ∆, since trivially ∆ |=C(1) ϕ. Otherwise, ∆ ∋ ϕ, and we let Γ′ = ∆ − {ϕ}.
We have Γ′ ⊆ Γ, and Γ′ |=C(1) ϕ, again by Proposition 1. ✷

4.2.3 The algorithm

The idea behind the algorithm is to build up a maximal Γ(≤)-satisfying sequence by repeat-
edly adding evaluations to the end; suppose that we have picked a sequence of elements of
C, C ′ being the set picked so far. We need to choose next an evaluation c such that, if c
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opposes some ϕ in Γ, then ϕ is supported by some evaluation in C ′ (or else the generated
sequence will not satisfy ϕ).

H is initialised as the empty sequence () of evaluations. H ← H + c means that
evaluation c is added to the end of H .

Function Cons-check(Γ, C)
H ← ()
for k = 1, . . . , |C| do

if ∃ c ∈ C − σ(H) such that Opp(c) ⊆ Supp(H)
then choose some such c; H ← H + c

else stop
end for

return H

Note that at each stage, an element of NextΓ(σ(H)) is chosen, so at each stage H is
a Γ-allowed sequence. Also, the termination condition is equivalent to NextΓ(σ(H)) = ∅,
which implies that the returned H is a maximal Γ-allowed sequence.

The algorithm involves often non-unique choices. However, if we wish, the choosing
of c can be done based on an ordering c1, . . . , cm of C, where, if there exists more than
one c ∈ C − σ(H) such that Opp(c) ⊆ Supp(H), we choose the element ci fulfilling
this condition that has smallest index i. The algorithm then becomes deterministic, with a
unique result following from the given inputs.

A straight-forward implementation runs in O(|Γ||C|2) time; however, a more careful
implementation runs in O(|Γ||C|) time, which we now describe. Let Hk be the HCLP
model after the k-th iteration of the for-loop. In every iteration of the for-loop, we update
sets Opp∆

k (c) = Opp(c) − Supp(Hk) and Supp∆
k (c) = Supp(c) − Supp(Hk) for all c ∈

C−σ(Hk). This costs us O(|C −σ(Hk)|× |Supp(Hk)\Supp(Hk−1)|) = O(|C −σ(Hk)|×
|Supp∆

k−1(ck)|) more time for every iteration k in which we add evaluation ck to Hk−1.
However, the choice of the next evaluation ck can be performed in constant time by marking
evaluations cwith Opp∆

k−1(c) = ∅. Suppose the algorithm stops after 1 ≤ l ≤ |C| iterations.
Since all Supp∆

k−1(ck) are disjoint,
∑l
k=1 |Supp∆

k−1(ck)| = |Supp(Hl)| ≤ |Γ|. Altogether,
the running time isO(∑l

k=1 |C−σ(Hk)|×|Supp∆
k−1(ck)|) ≤ O(|C|×∑l

k=1 |Supp∆
k−1(ck)|),

and thus the running time is O(|C| × |Γ|).

Properties of the Algorithm

The algorithm will always generate an HCLP model satisfying Γ if Γ is C(1)-consistent. It
can also be used for computing the maximal inconsistency base. The following result sums
up some properties related to the algorithm.
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Theorem 3. Let H be a sequence returned by the algorithm with inputs Γ and C, and write
MIB(Γ, C) as (Γ⊥, C⊥). Then C⊥ = C − σ(H) (i.e., the evaluations that don’t appear in
H), and Γ⊥ = Γ − Supp(H). We have that H |= Γ(≤). Also, Γ is C(1)-consistent if and
only if Supp(H) contains all the strict elements of Γ, which is if and only if Γ⊥ ∩ LA

< = ∅.
If Γ is C(1)-consistent then H |= Γ.

Proof: By the construction of the algorithm, H is a maximal Γ-allowed sequence, as ob-
served earlier. Proposition 8 implies that C⊥ = C − σ(H) and Γ⊥ = Γ − Supp(H). By
Proposition 6, we have H |= Γ(≤). Corollary 1 implies that Γ is C(1)-consistent if and
only if Γ⊥ ∩ LA

< = ∅. Theorem 2 implies that Γ is C(1)-consistent if and only if H |= Γ.
Proposition 7 implies that H |= Γ if and only if Supp(H) contains all the strict elements of
Γ. ✷

The algorithm therefore determines C(1)-consistency, and hence C(1)-deduction (be-
cause of Proposition 1), in polynomial time, and also generates the maximal inconsistency
base.

4.2.4 The case of inconsistent Γ

For the case when Γ is not C(1)-consistent, the output H of the algorithm is a model which,
in a sense, comes closest to satisfying Γ: it always satisfies Γ(≤), the non-strict version of
Γ, and if any model H ′ ∈ C(1) satisfies Γ(≤) and any element ϕ of Γ, then H also satisfies
ϕ.

Proposition 10. Let H be a sequence returned by the algorithm with inputs Γ and C, and
suppose that H ′ ∈ C(1) is such that H ′ |= Γ(≤). Then, for all ϕ ∈ Γ, if H ′ |= ϕ then
H |= ϕ.

Proof: Since H is a maximal Γ-allowed sequence, we have (by Proposition 6) that H |=
Γ(≤). Suppose that H ′ ∈ C(1) is such that H ′ |= Γ(≤). Proposition 9 implies that ifH ′ |= ϕ
then H |= ϕ. ✷

These properties suggest the following way of reasoning with C(1)-inconsistent Γ. Let
us define Γ′ to be equal to (Γ−Γ⊥)∪Γ(≤). By Theorem 3, this is equal to Supp(H)∪Γ(≤),
where H is a model generated by the algorithm, enabling easy computation of Γ′. Γ′ is
C(1)-consistent, since it is satisfied by H . We might then (re-)define the (non-monotonic)
deductions from C(1)-inconsistent Γ to be the deductions from Γ′.
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4.3 Strong consistency and max-model inference

In the set of models C(1), we allow models involving any subset of C, the set of evaluations.
We could alternatively consider a semantics where we only allow models H that involve all
elements of C, i.e., with σ(H) = C.

Let C(1∗) be the set of elements H of C(1) with σ(H) = C. Γ is defined to be strongly
C(1)-consistent if and only if there exists a model H ∈ C(1∗) such that H |= Γ. Let
MIB(Γ, C) = (Γ⊥, C⊥). Proposition 3 implies that, if Γ is strongly C(1)-consistent then
C⊥ is empty, and Γ⊥ consists of all the elements of Γ that are indifferent to all of C, i.e., the
set of ϕ ∈ Γ such that c(αϕ) = c(βϕ) for all c ∈ C.

There is an associated preference inference based on this restricted set of models. We
write Γ |=C(1∗) ϕ if H |= ϕ holds for every H ∈ C(1∗) such that H |= Γ.

This form of deduction can be expressed in terms of strong consistency, as the following
result shows.

Lemma 14. If Γ is strongly C(1)-consistent then Γ |=C(1∗) ϕ holds if and only if Γ ∪ {¬ϕ}
is not strongly C(1)-consistent.

Proof: First suppose that Γ∪{¬ϕ} is strongly C(1)-consistent. Then there exists H ∈ C(1)
such that H |= Γ ∪ {¬ϕ} and σ(H) = C. Thus H |= Γ and H 6|= ϕ (using Lemma 1),
showing that Γ 6|=C(1∗) ϕ.

Now suppose that Γ 6|=C(1∗) ϕ. Then there exists H ∈ C(1) such that H |= Γ and
σ(H) = C and H 6|= ϕ. Then H |= Γ ∪ {¬ϕ} (again using Lemma 1), so Γ ∪ {¬ϕ} is
strongly C(1)-consistent. ✷

In the next section we will consider a related (and, in a sense, more general) form of
preference inference, where we only consider maximal models.

4.3.1 Max-model inference

For Γ ⊆ LA, letMmax
C(1)(Γ) be the set of maximal models within C(1) of Γ, i.e., the set of

H ∈ C(1) such that H |= Γ, and for all H ′ ∈ C(1) extending H , H ′ 6|= Γ. We define the
max-model inference relation |=max

C(1) by:

Γ |=max
C(1) ϕ if and only if H |= ϕ for all H ∈Mmax

C(1)(Γ).
The following result shows that maximal models of Γ involve the same set of evaluations.
It also shows that, if Γ is C(1)-consistent, the maximal models are the same as the maximal
Γ-allowed sequences discussed earlier.

Proposition 11. Suppose that Γ is C(1)-consistent. Then, for H ∈ C(1), we have H ∈
Mmax

C(1)(Γ) if and only if H is a maximal Γ-allowed sequence in C. Thus, for all H,H ′ ∈
Mmax

C(1)(Γ), we have σ(H) = σ(H ′) = C − C⊥, where MIB(Γ, C) = (Γ⊥, C⊥).

2023



Proof: Consider any H ∈ Mmax
C(1)(Γ). Since H |= Γ we have H |= Γ(≤), and so Proposi-

tion 6 implies that H is a Γ-allowed sequence. Suppose that H is not a maximal Γ-allowed
sequence. Then, by Lemma 12, there exists a maximal Γ-allowed sequence H ′ extending
H , and H |= Γ. This contradicts H ∈Mmax

C(1)(Γ).
Conversely, suppose that H is a maximal Γ-allowed sequence in C. Theorem 2 implies

that H |= Γ. To prove a contradiction, suppose that H 6∈ Mmax
C(1)(Γ), so that there exists

H ′ ∈ Mmax
C(1)(Γ) with H ′ extending H . The argument above implies that H ′ is a maximal

Γ-allowed sequence, which contradicts H being a maximal Γ-allowed sequence.
The last part follows from Proposition 8. ✷

The next result shows that the same non-strict preference statements are inferred for the
max-model inference relation |=max

C(1) as for the inference relation |=C(1).

Proposition 12. Consider any Γ ⊆ LA, and any preference statement α ≤ β in LA.

(i) Γ is C(1)-consistent if and only ifMmax
C(1)(Γ) 6= ∅.

(ii) Γ |=max
C(1) α ≤ β ⇐⇒ Γ |=C(1) α ≤ β.

Proof: (i) follows easily: if Γ is C(1)-consistent, then there exists someH ∈ C(1) withH |=
Γ, so there exists H ′ ∈Mmax

C(1)(Γ) extending or equalling H . The converse is immediate: if
there exists H ∈Mmax

C(1)(Γ) then H ∈ C(1) and H |= Γ, so Γ is C(1)-consistent.
(ii) If Γ is not C(1)-consistent then by part (i),Mmax

C(1)(Γ) = ∅, so Γ |=max
C(1) α ≤ β and

Γ |=C(1) α ≤ β both hold vacuously. Let us thus now assume that Γ is C(1)-consistent.
⇒: Assume Γ |=max

C(1) α ≤ β, and consider any H ∈ C(1) such that H |= Γ. We need

to show that H |= α ≤ β. Since H |= Γ, we have H |= Γ(≤), and so H is a Γ-allowed
C-sequence, by Proposition 6. Choose, by Lemma 12, any maximal Γ-allowed sequence H ′

extending or equalling H , and we haveH ′ |= Γ. By, Proposition 11,H ′ ∈Mmax
C(1)(Γ). Then,

Γ |=max
C(1) α ≤ β implies that H ′ |= α ≤ β. Lemma 8(ii) then implies that H |= α ≤ β.
⇐: Assume Γ |=C(1) α ≤ β, and consider any H ∈ Mmax

C(1)(Γ). This implies that
H ∈ C(1) and H |= Γ, so H |= α ≤ β showing that Γ |=max

C(1) α ≤ β. ✷

We write Γ |=C(1) α ≡ β as an abbreviation of the conjunction of Γ |=C(1) α ≤ β and
Γ |=C(1) β ≤ α; and similarly for other inference relations. The last result can be used to
prove that inferred equivalences are the same for max-model inference, and have a simple
form.

Proposition 13. Consider any C(1)-consistent Γ ⊆ LA, and any C. Let MIB(Γ, C) equal
(Γ⊥, C⊥). Consider any α, β ∈ A. Then, Γ |=C(1) α ≡ β if and only if Γ |=max

C(1) α ≡ β if
and only if for all c ∈ C − C⊥, c(α) = c(β).
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Proof: First assume that Γ |=C(1) α ≡ β. This trivially implies that Γ |=max
C(1) α ≡ β, since

|=max
C(1) ⊆ |=C(1).

Now assume that Γ |=max
C(1) α ≡ β. Γ is C(1)-consistent soMmax

C(1)(Γ) 6= ∅, by Propo-
sition 12(i). Consider any H ∈ Mmax

C(1)(Γ). Then α ≡H β, which implies that for all
c ∈ σ(H), c(α) = c(β), and thus, by Proposition 11, for all c ∈ C − C⊥, c(α) = c(β).

Finally, let us assume that for all c ∈ C − C⊥, c(α) = c(β). Consider any H ∈ C(1)
such that H |= Γ. Proposition 3 implies that σ(H)∩C⊥ = ∅, i.e., σ(H) ⊆ C−C⊥. So, for
all c ∈ σ(H), c(α) = c(β), and thus α ≡H β, and hence Γ |=C(1) α ≡ β. This completes
the proof that the three statements are equivalent. ✷

The following result shows that the strict inferences with |=max
C(1) are closely tied with the

non-strict inferences.

Proposition 14. Γ |=max
C(1) α ≤ β if and only if either Γ |=max

C(1) α ≡ β or Γ |=max
C(1) α < β.

Also, if Γ is C(1)-consistent then Γ |=max
C(1) α < β holds if and only if Γ |=max

C(1) α ≤ β and
Γ 6|=max

C(1) α ≡ β.

Proof: If Γ is not C(1)-consistent then, by Proposition 12(i), Mmax
C(1)(Γ) = ∅, so Γ |=max

C(1)
α ≤ β and Γ |=max

C(1) α ≡ β (and Γ |=max
C(1) α < β) hold vacuously, and therefore the

equivalence holds. Let us thus now assume that Γ is C(1)-consistent. One direction holds
easily: suppose that Γ |=max

C(1) α ≡ β or Γ |=max
C(1) α < β, and consider any H ∈ Mmax

C(1)(Γ).
We have either α ≡H β or H |= α < β, so either α ≡H β or α ≺H β, and thus α 4H β,
and H |= α ≤ β, showing that Γ |=max

C(1) α ≤ β.
Now, let us assume that Γ |=max

C(1) α ≤ β, and that it is not the case that Γ |=max
C(1) α ≡ β.

It is sufficient to show that Γ |=max
C(1) α < β. Consider any H ∈ Mmax

C(1)(Γ). Since, Γ |=max
C(1)

α ≤ β, we have H |= α ≤ β. Proposition 13 implies that there exists c ∈ C − C⊥ such
that c(α) 6= c(β), where MIB(Γ, C) = (Γ⊥, C⊥). By, Proposition 11, σ(H) = C − C⊥, so
there exists some c ∈ σ(H) such that c(α) 6= c(β); let c be earliest such element of σ(H).
Since H |= α ≤ β, we have c(α) < c(β), so H |= α < β. This shows that Γ |=max

C(1) α < β,
as required.

Assume that Γ is C(1)-consistent. Suppose that Γ |=max
C(1) α < β holds. Then clearly,

Γ |=max
C(1) α ≤ β. Consider any H |= Γ. Then we have α ≺H β, so we do not have α ≡H β,

which implies that Γ |=C(1) α ≡ β does not hold. Conversely, suppose that Γ |=max
C(1) α ≤ β

and Γ 6|=max
C(1) α ≡ β. The first part then implies that Γ |=max

C(1) α < β. ✷

4.3.2 Properties of strong consistency and of the associated inference

The following result shows that the consequences of Γ with respect to |=C(1∗) are the same
as those with respect to |=max

C(1), when Γ is strongly C(1)-consistent. (Of course, if Γ is not
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strongly C(1)-consistent then all ϕ in LA are consequences of |=C(1∗).)

Lemma 15. If Γ is strongly C(1)-consistent then, for any ϕ ∈ LA, Γ |=C(1∗) ϕ ⇐⇒
Γ |=max

C(1) ϕ.

Proof: Assume that Γ is strongly C(1)-consistent, so there exists a model H ′ with σ(H ′) =
C. By definition of |=C(1∗) and |=max

C(1) it is sufficient to show that Mmax
C(1)(Γ) is equal to

the set H of all H ∈ C(1) such that H |= Γ and σ(H) = C. It immediately follows
that Mmax

C(1)(Γ) ⊇ H. Conversely, consider any H ∈ Mmax
C(1)(Γ). Since H ′ ∈ H, we have

H ′ ∈Mmax
C(1)(Γ). Proposition 11 implies that σ(H) = σ(H ′) = C, proving that H ∈ H. ✷

The next result shows that the non-strict |=C(1∗) inferences are the same as the non-strict
|=C(1) inferences, and that (in contrast to the case of |=C(1)) the strict |=C(1∗) inferences
almost correspond with the non-strict ones. The result also implies that the algorithm in
Section 4.2 can be used to efficiently determine the |=C(1∗) inferences.

To illustrate the difference between the |=C(1) inferences and the |=C(1∗) inferences for
the case of strict statements, consider some strongly C(1)-consistent Γ which only includes
non-strict statements. Then, for every strict preference statement α < β, we will have
Γ 6|=C(1) α < β since the empty sequence satisfies Γ but not α < β. However, we will
have Γ |=C(1∗) α < β if Γ |=C(1) α ≤ β and Γ 6|=C(1) β ≤ α. For example, if Γ is just
{α ≤ β}, where for some c ∈ C, c(α) < c(β), then we will have Γ |=C(1∗) α < β but not
Γ |=C(1) α < β.

Proposition 15. Let MIB(Γ, C) = (Γ⊥, C⊥). Γ is strongly C(1)-consistent if and only if
C⊥ = ∅ and Γ ∩ LA

< ⊆ Supp(C).
Suppose that Γ is strongly C(1)-consistent. Then,

(i) Γ |=C(1) α ≤ β ⇐⇒ Γ |=C(1∗) α ≤ β;

(ii) Γ |=C(1∗) α ≡ β if and only if α and β agree on all of C, i.e., for all c ∈ C, c(α) =
c(β);

(iii) Γ |=C(1∗) α < β if and only if Γ |=C(1) α ≤ β and α and β differ on some element of
C, i.e., there exists c ∈ C such that c(α) 6= c(β).

Proof: First, suppose that Γ is strongly C(1)-consistent. Then there exists H ′ ∈ C(1) such
that H ′ |= Γ and σ(H ′) = C. Since H ′ |= Γ(≤), by Proposition 6, H ′ is a Γ-allowed
sequence. By Lemma 12, there exists a maximal Γ-allowed sequence H extending or
equalling H ′, so, since σ(H ′) = C, we must have H = H ′. Proposition 8 implies that
C⊥ = ∅ and Γ⊥ = Γ − Supp(H) = Γ − Supp(C), and Corollary 1 shows then that
(Γ− Supp(C)) ∩ LA

< = ∅, which implies that Γ ∩ LA
< ⊆ Supp(C).
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Conversely, suppose that C⊥ = ∅ and Γ ∩ LA
< ⊆ Supp(C). Let H be a maximal Γ-

allowed sequence. Proposition 8 implies that σ(H) = C. Then Supp(H) = Supp(C), and
Proposition 7 implies that H |= Γ, showing that Γ is strongly C(1)-consistent.

Now suppose that Γ is strongly C(1)-consistent. Lemma 15 implies that for anyϕ ∈ LA,
Γ |=C(1∗) ϕ ⇐⇒ Γ |=max

C(1) ϕ. Part (i) then follows by Proposition 12(ii). Part (ii) follows
from Proposition 13, using the fact that C⊥ is empty. Part (iii) follows from part (ii) and
Proposition 14. ✷

The next result shows that |=C(1) inference is not affected if one removes the evaluations
in the MIB.

Proposition 16. Suppose that Γ is C(1)-consistent, let MIB(Γ, C) = (Γ⊥, C⊥), and let
C ′ = C−C⊥. Then Γ is strongly C ′(1)-consistent, and Γ |=C(1) ϕ if and only if Γ |=C′(1) ϕ.

Proof: By Theorem 3, any output of the algorithm is in C ′(1∗) and satisfies Γ. Thus Γ is
strongly C ′(1)-consistent. Let H′ = {H ∈ C ′(1) : H |= Γ} and H = {H ∈ C(1) :
H |= Γ}. Then H′ ⊆ H, because C ′(1) ⊆ C(1). By Proposition 3, for every H ∈ H, we
have σ(H) ∩ C⊥ = ∅, and hence H ∈ H′. Thus H′ = H and Γ |=C(1) ϕ if and only if
Γ |=C′(1) ϕ. ✷

4.4 Orderings on evaluations

The preference logic defined here is closely related to a logic based on disjunctive ordering
statements. Given set of evaluations C, we consider the set of statements OC of the form
C1 < C2, and of C1 ≤ C2, where C1 and C2 are disjoint subsets of C.

We say that H |= C1 < C2 if some evaluation in C1 appears in H before every element
of C2, that is, there exists some element of C1 in H (i.e., C1 ∩ σ(H) 6= ∅) and the earliest
element of C1 ∪ C2 to appear in H is in C1.

We say that H |= C1 ≤ C2 if either H |= C1 < C2 or no element of C1 or C2 appears
in H: (C1 ∪ C2) ∩ σ(H) = ∅. By Lemma 5 we have that

H |= αϕ < βϕ ⇐⇒ H |= SuppϕC < OppϕC ,
and H |= αϕ ≤ βϕ ⇐⇒ H |= SuppϕC ≤ OppϕC .

This shows that the language OC can express anything that can be expressed in LA. It can
be shown, conversely, that for any statement τ in OC , one can define αϕ and βϕ, and the
values of elements of C on these, such that for all H ∈ C(1), H |= τ if and only if H |= ϕ
(where ϕ is strict if and only if τ is strict). For instance, if τ is the statement C1 < C2, we
can define c(αϕ) = 1 for all c ∈ C2, and c(αϕ) = 0 for c ∈ C − C2; and define c(βϕ) = 1
for all c ∈ C1, and c(βϕ) = 0 for c ∈ C − C1.

The algorithm adapts in the obvious way to the case where we have Γ consisting of
(or including) elements in OC . When viewed in this way, the algorithm can be seen as a
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simple extension of a topological sort algorithm; the standard case corresponds to when the
ordering statements only involve singleton sets.

5 Proof theory for simple lexicographic inference

Preference inference has been defined semantically, and we have an efficient algorithm for
the simple lexicographic case. From a logical perspective, it is natural to consider if we can
construct an equivalent syntactical definition of inference via a proof theory; this can give
another view of the assumptions being made by the logic. In this section we construct such
a proof theory for preference inference based on simple lexicographic models, involving an
axiom schema and a number of fairly simple inference rules. We consider a fixed set of
evaluations C here, and we abbreviate |=C(1) to just |=.

We make use of a form of Pareto (pointwise) ordering on alternatives, and we define a
kind of addition and rescaling operation on alternatives and thus on preference statements.

We define the following pointwise (or weak Pareto) ordering on alternatives. For α, β ∈
A, α �par β ⇐⇒ for all c ∈ C, c(α) ≤ c(β). We also define the Pareto Difference relation
between elements of LA. For ψ, θ ∈ LA, we say that ψ �parD θ holds if and only if (i)
ψ and θ are either both strict or both non-strict; and (ii) for all c ∈ C, c(βψ) − c(αψ) ≤
c(βθ)− c(αθ). Thus, if ψ �parD θ and c(αψ) ≤ c(βψ) then c(αθ) ≤ c(βθ). If ψ �parD θ
and H |= ψ then H |= θ (see Lemma 16(vi) below).

Pointwise multiplication of alternatives and preference statements: Let F be the set
of functions from C to the strictly positive rational numbers. For f ∈ F , we define 1

f ∈ F
in the obvious way, by, for c ∈ C, 1

f (c) = 1
f(c) . Let f be an arbitrary element of F .

• For α, γ ∈ A, we say that α .= fγ if for all c ∈ C, c(α) = f(c) × c(γ) (where × is
the standard multiplication).

• For ϕ,ψ ∈ LA, we say that ϕ .= fψ if (i) αϕ
.= fαψ and βϕ

.= fβψ , and (ii) ϕ is
strict if and only if ψ is strict.

Note that if ϕ .= fψ then for all c ∈ C, c(αϕ) ≤ c(βϕ) ⇐⇒ c(αψ) ≤ c(βψ). It is
then easy to show that if H ∈ C(1) and ϕ .= fψ then H |= ϕ if and only if H |= ψ: see
Lemma 16(iv).

Addition of alternatives and preference statements:

• For α, β, γ ∈ A, we say that γ .= α+ β if for all c ∈ C, c(γ) = c(α) + c(β).
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• For ϕ,ψ, χ ∈ LA, we say that ϕ .= ψ + χ if (i) αϕ
.= αψ + αχ, and βϕ

.= βψ + βχ;
and (ii) ϕ is non-strict if both ψ and χ are non-strict, and otherwise, ϕ is strict.

5.1 Syntactic deduction ⊢ and soundness of inference rules

As usual the proof theory is constructed from axioms and inference rules.
Axioms:
α ≤ β for all α, β ∈ A with α �par β.

Inference rules schemata:
(1) From Strict to Non-Strict: For any α, β ∈ A the following rule:

From α < β deduce α ≤ β.
(2) Addition: For χ ∈ LA such that χ .= ϕ+ ψ the following inference rule

From ϕ and ψ deduce χ.
(3) Pointwise Multiplication: For any f ∈ F and ϕ ∈ LA such that ϕ .= fψ the following
rule

From ψ deduce ϕ.
(4) Inconsistent Statement: For any α ∈ A and any ϕ ∈ LA,

From α < α deduce ϕ.
(5) Pareto Difference: For any ψ, θ ∈ LA such that ψ �parD θ:

From ψ deduce θ.

Defining syntactic deduction ⊢: Let Γ be a subset of LA and ϕ ∈ A. We say that ϕ
can be proved from Γ, written Γ ⊢ ϕ, if there exists a sequence ϕ1, . . . , ϕk of elements
of LA such that ϕk = ϕ and for all i = 1, . . . , k, either ϕi ∈ Γ or ϕi is an axiom, or
there exists an instance of one of the inference rules with consequent ϕi and such that the
antecedents are in {ϕ1, . . . , ϕi−1}. Relation ⊢ depends strongly on the set of alternatives
A; e.g., {ϕ,ψ} ⊢ ϕ + ψ (if and) only if ϕ + ψ ∈ LA, i.e., only if αϕ + αψ and βϕ + βψ
are in A. We write ⊢ as ⊢A if we want to emphasise this dependency. It can happen that
for Γ ∪ {ϕ} ⊆ LA ⊆ LB, we have Γ ⊢B ϕ, but Γ 6⊢A ϕ. (We could also write |=A
to emphasise the dependency on A; however, it isn’t usually important to do so, since for
Γ ∪ {ϕ} ⊆ LA ⊆ LB, we have Γ |=B ϕ ⇐⇒ Γ |=A ϕ.)

Any given set of alternatives may not be closed under addition (for instance), and there
may be α, β ∈ A with no γ ∈ A such that γ .= α + β. We assume that we can augment
A with additional alternatives, and for any function g : C → Q+, we can construct an
alternative α with, for all c ∈ C, c(α) = g(c).

Next we state a lemma showing soundness of the axioms and inference rules, which is
used to prove soundness of the associated syntactic deduction (Proposition 17).
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Lemma 16. Consider any H ∈ C(1), any α, β ∈ A, and any ϕ,ψ, χ, θ ∈ LA.

(i) If α �par β then H |= α ≤ β.

(ii) If H |= α < β then H |= α ≤ β.

(iii) If χ .= ϕ+ ψ, and H |= ϕ and H |= ψ then H |= χ.

(iv) If ϕ .= fψ then H |= ϕ ⇐⇒ H |= ψ.

(v) H 6|= α < α.

(vi) If H |= ψ and ψ �parD θ then H |= θ.

Proof: Write H as (c1, . . . , ck). For ϕ ∈ LA we define iϕ to be k+ 1 if for all i = 1, . . . , k,
ci(αϕ) = ci(βϕ); otherwise, we define iϕ to be the minimum i such that ci(αϕ) 6= ci(βϕ).
Then αϕ ≡H βϕ ⇐⇒ iϕ = k + 1, and H |= αϕ < βϕ ⇐⇒ iϕ ≤ k and ciϕ(αϕ) <
ciϕ(βϕ).

(i): Assume that α �par β, so that for all c ∈ C, we have c(α) ≤ c(β). This implies
α 4H β and thus H |= α ≤ β.

(ii): Assume that H |= α < β, so that α ≺H β. This implies α 4H β and hence
H |= α ≤ β.

(iii): Assume that χ .= ϕ+ ψ, and H |= ϕ and H |= ψ.
Case (I): iϕ = iψ = k + 1. Then for all i = 1, . . . , k, ci(αϕ) = ci(βϕ) and ci(αψ) =

ci(βψ). Then, ci(αχ) = ci(αϕ) + ci(αψ) = ci(βϕ) + ci(βψ) = ci(βχ), so iχ = k + 1,
which implies that αχ ≡H βχ. We have αϕ ≡H βϕ, and also H |= ϕ, so ϕ is non-strict.
Similarly, ψ is non-strict. Thus χ is non-strict, and so H |= χ.

Case (II): iϕ = iψ ≤ k. Because ciϕ(αϕ) 6= ciϕ(βϕ) and H |= ϕ, we have ciϕ(αϕ) <
ciϕ(βϕ). The same argument implies that ciϕ(αψ) < ciϕ(βψ). We then have ciϕ(αχ) <
ciϕ(βχ), and iχ = iϕ. This implies that H |= αχ < βχ, and thus, H |= χ, whether χ is
strict or non-strict.

Case (III): iϕ < iψ . Arguing as in Case (II), we have ciϕ(αϕ) < ciϕ(βϕ). We also
have ciϕ(αψ) = ciϕ(βψ). We then have ciϕ(αχ) < ciϕ(βχ), and iχ = iϕ. Again we have
H |= χ, whether χ is strict or non-strict.

Case (IV): iϕ > iψ . This is similar to Case (III), but with the roles of ϕ and ψ reversed.

(iv): Assume that ϕ .= fψ, and consider any c ∈ C. Because f(c) > 0, we have c(αϕ) =
c(βϕ) if and only if c(αψ) = c(βψ); and c(αϕ) < c(βϕ) if and only if c(αψ) < c(βψ). This
shows that H |= ϕ ⇐⇒ H |= ψ.

(v): H 6|= α < α follows since α ≡H α and so α 6≺H α.
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(vi): Suppose that H |= ψ and ψ �parD θ, so that ψ and θ are either both strict or both
non-strict; and for all c ∈ C, c(βψ)−c(αψ) ≤ c(βθ)−c(αθ). If it were the case that iψ < iθ

then, because H |= ψ, we would have that ciψ (αψ) < ciψ (βψ) and ciψ(αθ) = ciψ(βθ), and
thus, ciψ(βψ)− ciψ(αψ) > 0 = ciψ(βθ)− ciψ (αθ), which contradicts ψ �parD θ. Thus we
must have that iψ ≥ iθ .

First consider the case when iθ = k + 1. Then iψ = k + 1, and so αθ ≡H βθ and
αψ ≡H βψ . The latter implies that ψ is non-strict, since H |= ψ. Then θ is non-strict and
thus, H |= θ.

Now consider the case when iθ ≤ k, and thus ciθ (αθ) 6= ciθ (βθ). We showed earlier that
iθ ≤ iψ . If iθ = iψ then H |= ψ implies that ciθ (αψ) < ciθ(βψ). If iθ < iψ then ciθ (αψ) =
ciθ (βψ). So, in either case we have ciθ (αψ) ≤ ciθ (βψ), i.e., ciθ(βψ) − ciθ(αψ) ≥ 0. The
assumption ψ �parD θ then implies that ciθ(βθ)− ciθ (αθ) ≥ 0, and so, ciθ(αθ) ≤ ciθ (βθ).
Since iθ ≤ k we have ciθ(αθ) < ciθ(βθ), showing that H |= αθ < βθ , and therefore H |= θ
whether θ is strict or non-strict. ✷

We are now ready to state and prove the soundness result.

Proposition 17. For Γ ∪ {ϕ} ⊆ LA, and any B ⊇ A, if Γ ⊢B ϕ then Γ |=A ϕ.

Proof: First note that if Γ is C(1)-inconsistent, then there is nothing to prove, since Γ |=A ϕ
follows trivially. So, let us assume now that Γ is C(1)-consistent. We use an inductive proof
based on Lemma 16. Suppose that Γ ⊢B ϕ. Consider any H ∈ C(1) such that H |= Γ. We
need to show that H |= ϕ. Since Γ ⊢B ϕ there exists a sequence ϕ1, . . . , ϕk of elements of
LB such that ϕk = ϕ and for all i = 1, . . . , k, either ϕi ∈ Γ or ϕi is an axiom, or there exists
an instance of one of the inference rules with consequent ϕi and such that the antecedents
are in {ϕ1, . . . , ϕi−1}. Consider any i ∈ {1, . . . , k}. We will prove that, if for all j < i,
H |= ϕj then H |= ϕi. This then implies that for all i = 1, . . . , k, we have H |= ϕi, and
thus H |= ϕk, as required.

Therefore, let i be some arbitrary element in {1, . . . , k}, and assume that for all j < i,
H |= ϕj . We will prove that H |= ϕi. Let us abbreviate ϕi to be θ. One of the cases (1)–(7)
below applies. We consider each case in turn.

(1): θ equals α ≤ β for some α, β ∈ B, and there exists some j < i with ϕj equalling
α < β. Since H |= ϕj , by Lemma 16(ii), we have H |= α ≤ β, i.e., H |= θ.

(2): θ equals χ for some χ ∈ LB such that χ .= ϕ + ψ, and for some j, l < i we have
ϕ = ϕj and ψ = ϕl. Since H |= ϕj , ϕk , Lemma 16(iii) implies that H |= θ.

(3): There exists j < i and f ∈ F such that θ .= fϕj . Lemma 16(iv) implies that H |= θ.

(4): There exists α ∈ B and j < i such that ϕj equals α < α, so we have H |= α < α.
However, by Lemma 16(v), this is impossible, so Case (4) cannot arise.
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(5): There exists j < i such that ψ = ϕj ∈ LB and ψ �parD θ. Lemma 16(vi) implies
H |= θ.

(6): θ ∈ Γ. Then H |= θ.

(7): θ is equal to α ≤ β for some α, β ∈ B such that α �par β. Lemma 16(i) implies
H |= θ.

✷

5.2 Completeness of proof theory

We now give a pair of technical lemmas which we will use in the completeness proof.

Lemma 17. Consider any C(1)-inconsistent Γ ⊆ LA, and suppose that ({ϕ1, . . . , ϕk}, C ′)
is an inconsistency base for (Γ, C), with {ϕ1, . . . , ϕk} being inconsistent. Then there exist
strictly positive functions f1, . . . , fk ∈ F , set of alternatives B ⊇ A with B − A finite,
preference statement ρ ∈ LB and strict preference statement ψ in LB such that ρ .= f1ϕ1 +
· · · + fk−1ϕk−1 and ψ .= f1ϕ1 + · · ·+ fkϕk, and Γ ⊢B ρ and Γ ⊢B ψ, and βψ �par αψ .

Proof: Let T = {|c(αϕi)− c(βϕi)| : c ∈ C, i ∈ {1, . . . , k}} − {0}. If T = ∅ then set
a = b = 1, and if T 6= ∅ let a = minT and let b = max T , so 0 < a ≤ b. For i = 1, . . . , k
and c ∈ C, we define fi(c) = 1 if c(αϕi) > c(βϕi), and otherwise, we define fi(c) = d
where d = a/(kb) > 0.

For i = 1, . . . , k we include elements γi, δi, ǫi, λi in B, where γi
.= fiαϕi , and δi

.=
fiβϕi ; and we let ǫ1 = γ1 and λ1 = δ1, and for i = 2, . . . , k, ǫi

.= ǫi−1 + γi, and
λi

.= λi−1 + δi.
There exists ψ1 ∈ LB with ψ1

.= f1ϕ1, and αψ1 = γ1 = ǫ1 and βψ1 = δ1 = λ1.
Similarly, for i = 2, . . . , k, there exists ψi ∈ LB with ψi

.= ψi−1 + fiϕi, and αψi = ǫi and
βψi = λi.

By the Addition and Pointwise Multiplication rules, for each i = 1, . . . , k, we have
Γ ⊢B ψi. Abbreviate ψk to ψ and ψk−1 to ρ. We have Γ ⊢B ψ and ψ .= f1ϕ1 + · · ·+ fkϕk,
and Γ ⊢B ρ and ρ .= f1ϕ1 + · · · + fk−1ϕk−1. Since {ϕ1, . . . , ϕk} is inconsistent, some
ϕi is strict (else the empty model satisfies them all), and therefore, ψ is a strict preference
statement.

Consider any c ∈ C − C ′. By Definition 1(i), c(αϕi) = c(βϕi) for all i = 1, . . . , k.
Thus c(αψ) = c(βψ).

Now consider any c ∈ C ′. For any j ∈ {1, . . . , k}, c(αϕj ) − c(βϕj ) ≥ −b, and so
c(γj) − c(δj) ≥ −bd = −a/k. By Definition 1(ii), there exists some i ∈ {1 . . . , k} such
that c(αϕi) > c(βϕi). This implies that T 6= ∅. We have c(αϕi) − c(βϕi) ≥ a, and thus
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c(γi) − c(δi) ≥ a > 0. Now, c(αψ) = ∑k
j=1 c(γj) and c(βψ) = ∑k

j=1 c(δj). Therefore,
c(αψ)− c(βψ) ≥ a− (k − 1)a/k > 0. We have shown that for all c ∈ C, c(αψ) ≥ c(βψ),
so βψ �par αψ . ✷

Lemma 18. Suppose Γ∪ {ϕ} ⊆ LA, and that Γ is C(1)-consistent and Γ |= ϕ. Then there
exists B ⊇ A (with B − A finite), and χ, θ ∈ LB such that Γ ⊢B χ, and θ is strict and
θ
.= χ+ ¬ϕ, and βθ �par αθ.

Proof: By Lemma 1, Γ ∪ {¬ϕ} is C(1)-inconsistent. By Corollary 1 there exists an incon-
sistency base (∆, C ′) for (Γ ∪ {¬ϕ}, C) with ∆ being a finite and C(1)-inconsistent subset
of Γ ∪ {¬ϕ}, and C ′ ⊆ C. Now, ∆ contains ¬ϕ, since ∆ is C(1)-inconsistent and Γ is
C(1)-consistent. We write ∆ as {ϕ1, . . . , ϕk} with ϕk = ¬ϕ.

By Lemma 17, there exist strictly positive functions f1, . . . , fk ∈ F , set of alternatives
B ⊇ A with B−A finite, preference statement ρ ∈ LB and strict preference statement ψ in
LB such that ρ .= f1ϕ1 + · · ·+fk−1ϕk−1 and ψ .= f1ϕ1 + · · ·+fkϕk, Γ ⊢B ρ and Γ ⊢B ψ,
and βψ �par αψ .

Let B′ = B ∪ {αχ, βχ, αθ, βθ}, where αχ
.= 1
fk
αρ and βχ

.= 1
fk
βρ, and αθ

.= αχ + βϕ

and βθ
.= βχ+αϕ, and χ, θ (which are thus in LB′

) are such that χ .= 1
fk
ρ and θ .= χ+¬ϕ,

i.e., θ .= χ+ ϕk. We have fkθ
.= fkχ+ fkϕk

.= ρ+ fkϕk and thus ψ .= fkθ. This implies
that θ is a strict statement and that βθ �par αθ. Now, Γ ⊢B ρ implies that Γ ⊢B′ ρ (because
B′ ⊆ B). Since χ .= 1

fk
ρ, we have Γ ⊢B′ χ, using the Pointwise Multiplication inference

rule, completing the proof. ✷

These lemmas lead to the completeness theorems.

Theorem 4. Consider any Γ ⊆ LA and any ϕ ∈ LA. Then there exists B ⊇ A, with B−A
finite such that Γ |= ϕ ⇐⇒ Γ ⊢B ϕ.

Proof:⇐ follows by Proposition 17. To prove the converse, let us assume that Γ |= ϕ; we
will show that A can be extended to B such that Γ ⊢B ϕ.

First let us consider the case when Γ is C(1)-inconsistent. By Corollary 1 there exists
C ′ ⊆ C and a C(1)-inconsistent subset {ϕ1, . . . , ϕk} of Γ, such that ({ϕ1, . . . , ϕk}, C ′)
is an inconsistency base for (Γ, C). By Lemma 17, there exist strictly positive functions
f1, . . . , fk ∈ F , set of alternatives B ⊇ A with B−A finite, and strict preference statement
ψ in B such that ψ .= f1ϕ1 + · · · + fkϕk, and Γ ⊢B ψ and βψ �par αψ . Consider any
γ ∈ A. Then βψ �par αψ implies for all c ∈ C, c(βψ) − c(αψ) ≤ 0 = c(γ) − c(γ). The
Pareto Difference inference rule then implies that Γ ⊢B γ < γ, since ψ is strict, and hence,
by the Inconsistent Statement inference rule, Γ ⊢B ϕ, as required.

Now we consider the case when Γ is C(1)-consistent. By Lemma 18, we have that there
exists set of alternatives B ⊇ A with B−A finite, and χ, θ ∈ LB such that Γ ⊢B χ, and θ is
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strict, θ .= χ+¬ϕ, and βθ �par αθ. Then, by definition of ¬ϕ, we have αθ
.= αχ +βϕ and

βθ
.= βχ + αϕ. This implies that for all c ∈ C, c(βχ) + c(αϕ) ≤ c(αχ) + c(βϕ), and thus,

for all c ∈ C, c(βχ)− c(αχ) ≤ c(βϕ)− c(αϕ). Now, since θ .= χ+ ¬ϕ and θ is strict, if χ
is non-strict then ¬ϕ must be strict and so ϕ is non-strict. The Pareto Difference inference
rule then implies that Γ ⊢B ϕ. If, on the other hand, χ is strict then the Pareto Difference
inference rule implies that Γ ⊢B αϕ < βϕ, and thus Γ ⊢B αϕ ≤ βϕ, using the From Strict
to Non-Strict rule. Therefore Γ ⊢B ϕ whether ϕ is strict or non-strict. ✷

Let A∗ be a set of alternatives including for each function g : C → Q+, an alternative
α with, for all c ∈ C, c(α) = g(c), and let A′ = A ∪ A∗. Consider any Γ ⊆ LA and any
ϕ ∈ LA. Then Γ ∪ {ϕ} ⊆ LA′

. If we use A′ instead of A in the proofs of Lemma 17
and 18, and Theorem 4, we can use B = A′ in each case. This leads, for arbitrary Γ and ϕ,
to: Γ |=A′ ϕ ⇐⇒ Γ ⊢A′ ϕ, which since Γ |=A′ ϕ holds if and only if Γ |=A ϕ holds,
gives the following version of the completeness result.

Theorem 5. For any A, there exists A′ ⊇ A such that for any Γ ⊆ LA and any ϕ ∈ LA,
Γ |= ϕ ⇐⇒ Γ ⊢A′ ϕ.

Discussion of related preference inference based on weighted sum

Another natural notion of preference inference, which is similar to that defined e.g., in
[13, 12], is based on weighted sums. In each model a non-negative weight is assigned to
each evaluation, and the overall desirability of an alternative is the weighted sum of the
evaluations on the alternative. More precisely, let the set of models be the set of functions e
from C to Q+. We say that e satisfies α ≤ β if

∑
c∈C e(c)c(α) ≤∑

c∈C e(c)c(β). Similarly,
we say that e satisfies α < β if

∑
c∈C e(c)c(α) <

∑
c∈C e(c)c(β). As for the other kinds

of preference inference, we say, for Γ ∪ {ϕ} ⊆ LA, that Γ entails ϕ if e satisfies ϕ for
every e satisfying Γ. This preference inference satisfies the above axiom schema, and all
the inference rules except for (3) Pointwise Multiplication (and thus is weaker than |=C(1)).
Instead a weaker form of (3) holds, based on using only constant functions f . The Point-
wise Multiplication inference rule might thus be considered as characteristic of preference
inference based on simple lexicographic models.

6 Discussion and conclusions

We defined a class of relatively simple preference logics based on hierarchical models.
These generate an adventurous form of inference, which can be helpful if there is only
relatively sparse input preference information. We showed that the complexity of preference
deduction is coNP-complete in general, and polynomial for the case where the criteria are
assumed to be totally ordered (the simple lexicographic models case, Section 4).
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The latter logic has strong connections with the preference inference formalism de-
scribed in [18]. To clarify the connection, for each evaluation c ∈ C we can generate a
variable Xc, and let V be the set of these variables. For each alternative α ∈ A we gen-
erate a complete assignment α∗ on the variables V (i.e., an outcome as defined in [18])
by α∗(Xc) = c(α) for each Xc ∈ V . Note that values of α∗(Xc) are non-negative num-
bers, and thus have a fixed ordering, with zero being the best value. A preference statement
α ≤ β in LA

≤ then corresponds with a basic preference formula α∗ ≥ β∗ in [18]. Each
model H ∈ C(1) corresponds to a sequence of evaluations, and thus has an associated
sequence of variables; this sequence together with the fixed value orderings, generates a
lexicographic model as defined in [18].

In contrast with the lexicographic inference system in [18], the logic developed in this
paper allows strict (as well as non-strict) preference statements, and allows more than one
variable at the same level. However, the lexicographic inference logic from [18] does not
assume a fixed value ordering (which, translated into the current formalism, corresponds to
not assuming that the values of the evaluation function are known); it also allows a richer
language of preference statements, where a statement can be a compact representation for a
(possibly exponentially large) set of basic preference statements of the form α ≤ β. Many
of the results of Section 4 immediately extend to richer preference languages (by replacing a
preference statement by a corresponding set of basic preference statements). In future work
we will determine under what circumstances deduction remains polynomial when extending
the language, and when removing the assumption that the evaluation functions are known.

The coNP-hardness result for the general case (and for the |=⊕
C(t) systems with t ≥ 2)

is notable and perhaps surprising, since these preference logics are relatively simple ones.
The result obviously extends to more general systems. The preference inference system
described in [16] is based on much more complex forms of lexicographic models, allow-
ing conditional dependencies, as well as having local orderings on sets of variables (with
bounded cardinality). Theorem 1 implies that the (polynomial) deduction system in [16] is
not more general than the system described here (assuming P 6= NP). It also implies that if
one were to extend the system from [16] to allow a richer form of equivalence, generalising
e.g., the |=⊕

C(2) system, then the preference inference will no longer be polynomial.
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Abstract

We propose a versatile framework for combining knowledge bases in modular sys-
tems with preferences. In our formalism, each module (knowledge base) can be speci-
fied in a different language. We define the notion of a preference-based modular system
that includes a formalization of meta-preferences. We prove that our formalism is ro-
bust in the sense that the operations for combining modules preserve the notion of a
preference-based modular system. Finally, we formally demonstrate correspondences
between our framework and the related preference formalisms of cp-nets, preference-
based planning, and answer set optimization. Our framework allows one to use these
preference formalisms (and others) in combination, in the same modular system.

1 Introduction

Combining knowledge bases (KBs) is very important when common sense reasoning is in-
volved. For example, in planning, we may want to combine temporal and spatial reasoning,
or reasoning from the point of view of several agents. Here, we consider each knowl-
edge base, that is called module, as a set of structures.1 Modular Systems (MS) [28] is a
framework to combine heterogeneous knowledge bases. Modules are combined through the
operators of production, union, projection, complementation and selection. An algorithm
for finding models of MSs was proposed in [29]. An improvement of the algorithm, in the

1A structure, e.g. A = (A, RA
1 , ..., RA

n , fA
1 , ..., fA

m , cA
1 , ..., cA

l ) is a domain A together with an interpre-
tation function I of relations (R) such that RA = I(R) ⊆ An, function symbols (f ) where fA = I(f) :
Am → A, and constants (c) where cA = I(c) ∈ A.

Vol. 4 No. 7 2017
IFCoLog Journal of Logics and Their Applications



ENSAN AND TERNOVSKA

same paper, uses approximations to reduce the search space. Connections to Satisfiability
Modulo Theory and other systems were discussed in [29]. In [20] lazy clause generation
has been applied to decide if a given modular system has any model.

An important aspect of knowledge representation systems is the capability to represent
preferences. The literature presents a variety of approaches to formalize preferences, e.g.
[6], [24], [12], [10], [25], [4], [13], [32] and [15]. Several surveys have appeared in recent
years categorizing preference formalisms from various perspectives. For example, in [2],
a set of preference formalisms for planning have been introduced. The authors of [11]
classified preference frameworks in non-monotonic reasoning.

Preferences in database systems have been studied by different researchers such as [18],
[3] and [27]. A primary well-known preference language in database systems was proposed
in [18]. In this language, some preference constructors were introduced to express basic
preference terms. For example, consider the following statement: to buy a car, it is preferred
to have BMW or Mercedes-Benz than other models. POS is a constructor that can be used to
express this statement. In the aforementioned example, POS includes BMW and Mercedes-
Benz. Formally speaking, given two n-arity tuples A = (a1, ..., an), B = (b1, ..., bn) and a
set called POS, A is preferred to B (notation A >P B) with respect to ith attribute (column)
in the database table if and only if A[i] ∈ POS and B[i] /∈ POS. Likewise, P is a NEG
preference and A >P B if and only if A[i] /∈ NEG and B[i] ∈ NEG. In addition to POS,
Pareto and prioritized accumulation are two operators broadly used in several frameworks.
Prioritized accumulation that is denoted by & gives priority to a preference. Let A and B
be tuples of the same relational schema R. A is preferred to B (notation A >P1&P2 B) if
and only if A >P1 B ∨ (A ≯P1 B ∧ B ≯P1 A ∧ A <P2 B). Pareto operator combines
two preferences such that A is preferred to to B with respect to composition of P1 and P2
(P = P1 ⊗ P2) if and only if (A >P1 B ∧ ¬(B >P2 A) ∨ (A >P2 B ∧ ¬B >P1 A).
In practical settings, systems such as web services, planners, business process controllers,
and so on consist of intricate interconnected parts. Each component may interact with other
parts and its associated knowledge base may be updated during a process being executed.
Current frameworks are incapable of modelling preferences in such dynamic environments.
For example, in [8] and [9], preferences are defined by some rules in Answer Set Program-
ming (ASP). However, a knowledge base of ASP preferences and rules, cannot be updated
or connected to other systems. Similarly, in [33] a language for preference representation
and inference is proposed but the framework does not address how to do reasoning when
preferences are combined. Some attempts have been made to combine preferences such as
in [23], [18], and [1]. But these frameworks have two main shortcomings: 1) preferences
of two components can be combined only when their languages are the same. For instance
in [23] and [18] preferences are expressed in first-order logic. So these languages cannot
model heterogeneous data systems such as web services that each part may have its own
language, 2) two components are sequentially composed. Nonetheless, many real world
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systems have more complicated structure (see feedback connection in Example 1 below).
The following example clarifies the complexity of formalizing a modular system with pref-
erences. In the real word, a complex can interact in much more complicated way, such as
feedback in Example 1.

Example 1. A Logistic Service Provider (LSP) is a modular system that can be used by a
company that provides logistic services. It decides how to pack goods and deliver them. It
solves two NP-complete tasks interactively, – Multiple Knapsack (module MK) and Trav-
elling Salesman Problem (module MT SP ). The system takes orders from customers (items
Items(i) to deliver, their prices p(i), weights w(i)), and the capacity of trucks available
c(t), decides how to pack Pack(i, t) items in trucks, and for each truck, solves a TSP prob-
lem. The feedback about solvability of TSP is sent back to MK . Module MT SP takes a
candidate solution from MK , together with the graph of cities and routes with distances,
allowable distance limit and destinations for each product. The output of this module is the
route, for each truck Route(t, n, cr), where t is a truck, n is the number in the sequence, and
cr is a city. The Knapsack problem is written, in, e.g. Integer Linear Programming (ILP),
and TSP in Answer Set Programming (ASP). The modules MK and MT SP are composed
in sequence, with a feedback going from an output of MT SP to an input of MK . A solu-
tion to the compound module, MLSP , to be acceptable, must satisfy both sub-systems. The
company may have preferences for packing and delivery of products. E.g. if a fragile item
is packed in a truck, it may be preferred to exclude heavy items. Among certain routes with
equal costs, some of them may be preferred to others. It is possible that preferences in the
Knapsack problem are formalized by cp-nets [4] and the TSP’s preferences are represented
in preference-based Answer Set Programming framework [9]. In Figure 1, Pk denotes the
preferences of the knapsack module and PT SP denotes the TSP module’s preferences. For-
malizing this modular problem with preferences is not easy because: 1) the Knapsack and
the TSP are axiomatized in different languages, 2) preferences of each module are repre-
sented by a different formalism, 3) preference formalisms use different languages than the
axiomatizations of the modules themselves, 4) two modules communicate in a complex way
that includes a feedback loop from MT SP to MK .

1.1 Contributions

We propose model-theoretic foundations for combining KBs with preferences in modular
systems. On the logic level, each module is represented by a KB in some logic L, and its
preferences (and meta-preferences) are represented by (strict) partial orders on partial struc-
tures in a preference formalism named P-MS .2 Different logics and preference formalisms

2Any logic with model-theoretic semantics can be used, including logic programs.
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Figure 1: Logistics Service Provider MLSP = σB≡B′(MK ×MT SP )

can be used for modules in the same system. Operations for combining modules are gen-
eralized to combine preferences of each module. We prove that our formalism is closed in
the sense that the operations for combining modules preserve the notion of a preference-
based modular system. Our formalism is consistent with (and extends) the model-theoretic
semantics of modular systems [28]. In model theoretic semantics, each module is viewed as
a set of structures. We also prove that our formalism represent cp-nets, preference-based
planning, and answer set optimization. Thus we can combine them in one modular system.

1.2 Novelty

With our formalism, each module can be formalized in a different framework. To our knowl-
edge, this is the first multi-language preference formalism. This generality is achieved
through the model-theoretic semantics of modular systems. Another novelty is the ability
of handling preferences in complexly structured systems. For instance, in Example 1, there
is a complex combination of Knapsack and TSP problems (feedback from TSP to Knap-
sack). In contrast, these complex systems were not representable in previous work. E.g., in
[18].

1.3 Paper Structure

After giving preliminaries, we discuss how preferences in an atomic module can be rep-
resented. Then we extend the idea to modular systems and study preference specification
in modular systems when some preferences of their components are given. After that, we
formally analyze three well-known preference formalisms through our approach to prefer-
ences. We conclude the paper with a summary and future work.

This paper significantly extends IJCAI paper [14] by adding complete and detailed
proofs and novel examples illustrating how the formalism generalizes and combines other
approaches to handling preferences. We also use a newer version of the algebra of modular
systems [31, 30] to which our preference framework is adapted.
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2 Algebra of Modular Systems

In this section we briefly review some aspects of modular systems proposed in [31], [30],
[28], [29], and [21].
A vocabulary (denoted, e.g. τ, σ, ε) is a set of non-logical (predicate and function) symbols.
A τ -structure is a domain (a set), and interpretation of vocabulary symbols in τ . We use
notations vocab(A), vocab(φ), vocab(M) to denote the vocabulary of structure A, formula
φ and module M , respectively, and we useA|σ to mean structure B restricted to vocabulary
σ.
Partial structures allow interpretation of some vocabulary symbols to be partially specified.
The idea of partial structures originates from the notion of three-valued logic that a truth
value of a statement can be true, false, or unknown [19]. The algorithm for solving modular
systems [29] constructs expansions incrementally, by adding information to partial struc-
tures.

Definition 1. B is a τp-partial structure over vocabulary τ if: (1) τp⊆ τ , (2) B gives a total
interpretation to symbols in τ\τp, and (3) for each n-ary symbol R in τp , B interprets R
using two sets R+ and R− such that R+ ∩R− =∅, and R+ ∪R− 6= [dom(B)]n.

For two partial structures B and B′ over the same vocabulary and domain, we say that B
extends B′ if all undefined symbols in B are also undefined in B′.

Notation 1. Let V ={a1, a2, ..., an} be a set of vocabulary symbols. Let A be a partial
structure that interprets a subset X⊆V such that V -X is undefined. Each ai∈X can be
interpreted as false, represented by a−

i , or as true, represented by ai or a+
i . Suppose Y is

a set of the form {aA
i |ai∈X} where aA

i = a+
i or a−

i is an interpretation of ai by A. We
assume that Y is the representation of A.

2.1 Syntax of Modular Systems

In our framework, a module is considered as a class of structures. Let τM ={M1, M2, ...}
be a fixed vocabulary of atomic module symbols and let τ be a fixed vocabulary. Algebraic
expression for modules are built by the grammar:

E ::=⊥ |Mi |E × E |E + E | − E|πδE |σΘE.

We call × product, + union, - complement, πδ projection onto δ, and σR≡Q selection.
Modules that are not atomic are called compound. Each atomic module symbol Mi has
an associated vocabulary vocab(Mi)⊆ τ . Vocabulary of a compound module is given by
vocab(⊥)= τ , vocab(E1 ×E2)= vocab(e1)∩ vocab(E2), vocab(E1 + E2)= vocab(e1)∪
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vocab(E2), vocab(−E)= vocab(E), vocab(πδE)= δ, and vocab(σΘE)= vocab(E). The
three set-theoretic operations are union (+), intersection (×), complementation (-). Projec-
tion (πδ) is a family of unary operations, one for each δ. Each relational symbol (constant
or variable) in δ must appear in E. The operation restricts each structure A of M to A|δ to
leaving the interpretation of other symbols open. Thus, it increases the number of models.
The condition Θ in selection is an expression of the form R≡Q , where R, Q∈ vocab(E).
Selection can model feedback in dynamic systems when output Q is connected to input R.
A module can be given by any decision procedure, be a set of models of a KB, be given by
an inductive definition, a C or an ASP program, or by an agent making decisions.

2.2 Semantics of Modular Systems

Let C be the set of all τ -structures with domain A. Modules are interpreted by subsets of C.
A module interpretation assigns to each atomic module Mi∈ τM a set of τ -structures such
that two τ -structures A1 and A2 that coincide on vocab(Mi) satisfying A1∈I(M), where
I(M) denotes the interpretation of M as a set of structures by I , iffA2∈I(M). The value
of a modular expression E in I , denoted JEKI is defined as follows.

J⊥KI =∅
JMiKI =I(Mi)
JE1 × E2KI = JE1KI ∩ JE2KI

JE1 + E2KI = JE1KI ∪ JE2KI

J−EKI =C − JEKI

Jπδ(E)KI ={A | ∃A′ (A′∈ JEKI and A|δ =A′|δ)}
JσQ≡REKI ={A | A∈ JEKI and QA = RA}

We call A a model of E in I (denoted A|=I E) if A∈ JEKI . From now, we assume that a
module interpretation I is given and fixed. Slightly abusing notation, we often omit refer-
ence to I and write, e.g., A|= E if A∈E instead of A|=I E when A∈ JEKI .

Model-theoretic semantic associates, with each modular system, a set of structures. We
assume that the domains of all structures are included in a (potentially infinite) universal
domain U .

2.3 Algebra with Information Flow

Modules that have inputs and outputs are very common. Many software programs and hard-
ware devices are of that form. In the Logistics Service Provider (Example 1), e.g. users’
requests could be on the input, and the truck rout and packing solutions on the output. In
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this section, we add information propagation to the algebra, so that modules become binary
higher-order input-output relations. This version of the algebra may be called "dynamic".
Fixing an input and an output vocabularies in some modules allows us to talk about model
expansion (MX) task [21]. In this task, a given structure, which might have an empty vocab-
ulary, is expanded with interpretations of new vocabulary symbols to satisfy a specification.
Complexity-wise, MX lies in-between model checking (full structure is given) and satisfia-
bility (no structure is given). The task generalizes to the formalism of Modular Systems.

Definition 2 (Model Expansion (MX) Task). Given: B|σ (instance structure) and algebraic
expression α with input symbols σ. Find: B such that B satisfies α. Structure B expands
structure B|σ and is called a solution of modular system α for a particular input B|σ.

Thus, the algebra with information flow may be called "a logic of hybrid MX tasks", and it
will be interpreted over transition systems.

Example 2. In the graph 3-coloring problem (with three possible colors including red, blue,
and green), the problem axiomatization α in first order logic is specified as follows:

α =∀x [(R(x) ∨B(x) ∨G(x))
∧¬((R(x) ∧B(x)) ∨ (R(x) ∧G(x)) ∨ (B(x) ∧G(x)))]

∧ ∀x∀y [E(x, y)⊃ (¬(R(x) ∧R(y))
∧¬(B(x) ∧B(y)) ∧ ¬(G(x) ∧G(y)))].

Where R, G, B denote red, green, and blue colors respectively. An instance structure A=
B|σ for vocabulary σ ={E} is a graph G= (V, E). The MX task is to find an interpretation
for the symbols {R, B, G} satisfying α:

A︷ ︸︸ ︷
(V ; EA, RB, BB, GB)︸ ︷︷ ︸

B

|= α.

The structures B which satisfy α are 3-colourings of G.

Model Expansion tasks are common in AI such as in planning, scheduling, logistics, supply
chain management, etc. Java programs, if they are of input-output type, can be viewed as
model expansion tasks, regardless of what they do internally. ASP systems, e.g., Clasp [17]
mostly solve model expansion, and so do CP languages such as Essence [16], as shown in
[22]. CSP in the traditional AI form (respectively, in the homomorphism form) is repre-
sentable by model expansion where mappings to domain elements (respectively, homomor-
phism functions) are expansion functions.
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3 P-MS: Preference-based Modular Systems

In this section, we define a primitive preference P in an atomic module M . Then, binary
relation ≻P is introduced to compare structures in M with respect to P. After that, we
consider a primitive module M with a set of primitive preferences Π ={P1, ...,Pn} and a
preference relation MP on elements of Π. In this setting, a preferred structure is defined
based on binary relation ≻MP . For modular systems, we introduce the notion of compound
preferences constructed by modular systems operators. A modular system with preferences
(primitive or compound) is called a Preference-based Modular Systems (P-MS). We show
that when we combine modular systems with preferences, the result is also a P-MS .
To have a formalism compatible with model theoretic semantics of modular systems, we
define preference statements based on the concept of structures. However, using structures
to model preferences is not always practical. Formally speaking, some interpreted symbols
may be preferred to others, and there could not be enough information to decide about the
rest. Unlike structures, partial structures interpret a subset of vocabulary symbols, while
interpretation of other symbols is unknown. In our formalism, a preference statement can
be represented by a partial order over a set of partial structures when certain conditions
hold. First, we explain the meaning of strict partial order.

Definition 3. A strict partial order O over a set S is a pair O := (S,≺) such that ≺ is a
binary relation over elements of S that is anti-reflexive, asymmetric and transitive.

Preference statements in natural language are represented as conditional statements, e.g.,
Mary prefers to buy Ford to Toyota if car’s body-type is SUV or coupe. If it is sedan,
Mary prefers Toyota to Ford. We present this statement as P= (O, Γ) where Γ represents
premise of the statement ( i.e., if body-type is SUV or coupe) and O denotes the conclusion
(i.e., Ford is preferred to Toyota). We define primitive preference for an atomic module as
follows.

Definition 4. Let M be an atomic module and vocab(M)= τ . A τo-preference (or simply
called preference) P= (O, Γ) in M is a pair whereO= (S,≺) is a strict partial order over
S that is the set of all τo-partial structures in M where τo⊆ τ . As well, Γ ={γ1, γ2, ..., γm}
is a set of τpi-partial structures, 1≤ i≤m, in M that τpi⊆ τ .

In the above definition, Γ is a set of partial structures (Γ ={SUV, coupe}) and O={Ford ≻
Toyota}. Binary relation ≻P is defined as follows:

Definition 5. Let M be an atomic module, and B, B′ be two structures in M . Given a
τo-preference P= (O, Γ) in M , let ∆ be a set of all structures in M that extend at least one
member of Γ. We say structure B is preferred to B′ with respect to P (denoted by B≻P B′) if
1) B,B′∈∆, 2) there are partial structures Bi and Bj over vocab(M) that can be extended
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to structures in M such that Bi≻Bj , and B is an extension of Bi, where B′ extends Bj , and
3) there are no partial structures Bk and Bm such that B and B′ extend them respectively
and Bm≻Bk.

This definition states that B is preferred to B′ with respect to P if Bτo≻B′
τo

with respect
to O and both B and B′ agree on at least a member of Γ (B|vocab(γr) =B′|vocab(γr) = γr

where γr ∈Γ). It makes no difference how the rest of the vocabulary (vocab(M) − τo) is
interpreted because it is irrelevant to P.

Example 3. In Example 1, consider that safety of delivering items is an important prefer-
ence for the company. So, it is preferred to avoid packing heavy and light items together to
reduce the risk of damage to the light items. Each item i with its attributes (price, weight,
and capacity) are associated with structure Itemi. Let Psafe = (Osafe, Γsafe) be the safety
preference where Osafe = (S,≺) is a partial order over S that is the set of all structures
(Itemis). Relation "≺" is defined as {pack−(i)≺pack(i)|w(i)≤W}; it means that for
each item i that is lighter than a constant weight W , it is preferred to not put i in the pack.
According to Notation 1, pack−(i) is representation of a partial structure that interprets
ground atom pack(i) as false. The premise of the conditional statement is formalized by
Γsafe ={C1, C2, ..., Cm} where Ci ={item(i), w(i)} such that w(i)≥W ′. This states when
there is an item with weight not less than W ′, it is preferred to not include items lighter than
W in the pack.

POS preferences can be represented by P in our formalism. The following example shows
how a POS is translated to a preference P.

Example 4. Imagine that we want to buy a car from a dealership. Let’s assume POS set
includes BMW and the POS preference indicates BMW cars are preferred to others. In
the context of modular systems, we consider a module M that specifies a set of available
cars in the dealership. Each structure of the module characterizes properties of a set of
cars such as model, color, and body-type. Suppose Model is an unary relation (predicate)
that indicates a car model, e.g. Model(Benz). Assume P= (O, Γ) where O= (S,≺)
is a strict partial order over car properties such that ≺ is defined as: Model(BMW )≻
Model(x), for all x 6= BMW , or simply Model(BMW )≻Model−(BMW ). According
to Notation 1, this statements means that all structures that interpret Model as Model(BMW)
are preferred. If car A is specified as A={Model(BMW), Color(white), Body-type(sedan)}
and for car B we have B={Model(Benz), Color(Black), Body-type(SUV)}, then car A is
preferred to car B through binary relation ≺P that is equivalent with the the semantics
of the POS preference. Considering a similar argument, NEG constructor can also be
expressed in our language.

The notions of two structures are equally preferred or incomparable are defined in the fol-
lowing.
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Definition 6. For two structures B,B′∈M , if a) neither B≻P B′ nor B′≻P B, b) for any
B′′∈M , if B′′≻P B then B′′≻P B′, and c) if B≻P B′′ then B′≻P B′′, they are called
equally preferred with respect to P and are represented by B≈P B′. If one of the con-
ditions (b) or (c) does not hold, then, B and B′ are incomparable and are represented by
B∼P B′. Also, B�P B′ means that B≻P B′ or B≈P B′.

The following results are concluded from Definition 4, 5 and 6.

Proposition 1. Given a preference P= (O, Γ) in a module M , ≺P is a strict partial order,
≈P is an equivalence relation over structures of M , and �P is a transitive and reflexive
binary relation over structures of M .

Proof: As it has been specified in Definition 3, a binary relation is a strict partial order if
it is anti-reflexive, asymmetrical, and transitive. Let B be a structure in M and P= (O, Γ)
be a τo-preference where τo⊆ vocab(M). Assume that B≻P B. According to Definition 5,
there are partial structures Bi and Bj over vocab(M) that can be extended to B such that
Bi≻Bj . Since both Bi and Bj are τo-partial structures, and they can be extended to the same
total structure B, we can conclude that Bi=Bj . An immediate consequence is Bi≻Bi. This
is impossible because O is a strict partial order. Therefore, it can be concluded that ≻P is
anti-reflexive. To prove asymmetry property, assume two structures B,B′∈M and B≻P B′.
From Definition 5, there exist partial structures Bi and Bj , that can be extended to B and
B′ respectively that are ordered as Bi≻Bj. If ≻P is symmetrical then we have B′≻P B
that implies there exists partial structure Bm, extendible to B, and Bn, extendible to B′, over
vocab(M) such that Bn≻Bm. With respect to Definition 5, we know that Bi,Bj ,Bm,Bn

are τo-partial structures, where τo⊆ vocab(M). Since Bi and Bn are extendible to the same
total structure B, immediate result isBi =Bn. Having the same argument, we conclude Bj =
Bm. Consequently, we have Bi≻Bj and at the same time Bj≻Bi. This is a contradiction,
so binary relation ≺P is not symmetrical. It is straightforward to prove that the relation ≺P
is transitive. LetB, B′, and B′′ be total structures in M . Assume that B≻P B′ and B′≻P B′′.
Definition 5 states that there exist partial structures Bi,Bj ,Bm,Bn over vocab(M) that B
is an extension of Bi, Bj and Bm are extendible to B′, and Bn can be extended to B′′. Also
we have B≻B′ and B′≻B′′. Considering the fact that partial structures Bj and Bm can be
extended to the same total structure, it can be concluded that they are same. Consequently,
we have Bi≻Bj and Bj≻Bn. Since O is a strict partial order, we have Bi≻Bn that results
in B≻P B′′. Consequently, ≺P is a strict partial order.
To show that ≈P is an equivalence relation, assume a structure B. According to Definition
6, the relation ≈P holds because ≻P is not true due to the fact that ≺P is a strict partial
order. So, ≈P is a reflexive relation. Similarly, according to Definition 6 condition a, ≈P
is symmetric. Also, conditions b and c guarantee that ≈P is transitive. Therefore, ≈P is
an equivalence relation. Since �P means that ≻′

P or ≈P , it is clear that �P is transitive
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because both ≈P and B≻P B′ are transitive. Also, �P is reflexive since ≈P is reflexive.
However, �P is not guaranteed to be symmetric because ≈P is not symmetric. So, �P is a
reflexive and transitive (pre-order) relation.

Meta-Preferences

In practice, each module may have more than one preference. Some of them may be pre-
ferred to others. For example, consider the following scenario: a transportation planning
system decides one of three ways of transportation: walk, taxi, and bus. Let preference over
time of travel be Pt, and let preference over cost of travel be Pc. Assume that a decision
maker considers time more important than cost. It means that Pt is preferred to Pc. The
question then arises how a preferred transportation plan is identified in this case. The notion
of meta-preference addresses this question in our framework.

Definition 7. Given a module M and a set of preferences Π ={P1,P2, ...,Pn}, let Ωi :=
{Pj ∈Π| (Pi≻Pj) ∨ (Pj ≻Pi)} be a subset of Π such that its elements have order relation
with Pi. AssumeOMP = (Π,≺) is a strict partial order over elements of Π. Binary relation
≻MP∗ over structures of M is defined as:
B≻MP∗ B′ if there is a preference Pi∈Π such that B≻Pi B′ and
• there does not exist Pj ∈Ωi that Pj≻Pi with respect to OMP and B′≻Pj B, and
• there is not a preference Pk ∈Π\Ωi that B′≻Pk

B.

Meta-preference MP is characterized as MP :=OMP . We say structure B is preferred
to B′ with respect to binary relation ≻MP ⊆M × M (notation B≻MP B′) whenever if
∃B′′∈M ;B′≻MP∗ B′′, then B′′⊁MP∗ B.

This definition states that structure B is preferred to B′ with respect toMP if we can find a
preference such as Pi that B≻Pi B′ and there is no preference that makes B′ preferred to B.
If there is a preference Pj such that B′≻Pj B then B is not preferred to B′ with respect to
the meta-preference unless Pi is preferred to Pj . Also, the definition prevents conflicts may
happen between a mix of preferences, though it does not guarantee transitivity of ≻MP . If
B is preferred to B′ with respect to MP , and if B′ is preferred to B′′, then B′′ cannot be
preferred to B with respect toMP .

Example 5. In Example 1, assume that the company has more than one preference. If an
expensive item is selected for delivery, it is not secure to have another precious item in the
pack that is specified by Psecurity. Assume we have a meta-preference MP such that
ΠK ={Psafe,Psecurity} andMP={Psafe≺Psecurity}. To have a preferred packing for
the Knapsack module, when there is a heavy and expensive item in the pack, it is preferred
to not include another heavy item, but it is fine to have two expensive items in the pack.
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Preference-based Modular Systems

Up to now, we defined primitive preference P in atomic modules. In what follows, we
study how compound preference in a modular system is constructed when preferences of its
components are given. First, we define product of preferences.

Definition 8. Assume M = M1 ×M2 is a modular system such that vocab(M1)= τ1 and
vocab(M2)= τ2. Let P1 and P2 be (primitive or compound) preferences in M1 and M2
respectively. We say that P is product of P1 and P2 (notation P=P1×P2) and extend ≻P
to products by what follows. Let’s consider B,B′∈M . Structure B is preferred to structure
B′ (denoted by B≻P1×P2 B′) if and only if B|τi ≻Pi B′|τi for i∈{1, 2}.

Informally, B is preferred to B′ with respect to P=P1 × P2, if B is preferred to B′ with
respect to P1 when they are restricted to the vocabulary of M1 and with respect to P2 when
they are restricted to the vocabulary of M2.

Example 6. In Example 1, for module Mtsp, suppose that if cities c1, c2, c3, c4 are in the
set of destinations, there is a path from c1 to c4 through c2 that is preferred to the path
from c1 to c4 through c3. This can be formalized by preference Ptsp = (Otsp, Γtsp) where
Otsp = (Stsp,≺) is a partial order over Stsp that is the set of all possible routes. For a
positive integer k and truck t,

{Route(k, c1, t), Route(k + 1, c2, t), Route(k + 2, c4, t)≻
Route(k, c1, t), Route(k + 1, c3, t), Route(k + 2, c4, t)} and
Γtsp = {Dest(1, c1), Dest(2, c2), Dest(3, c3), Dest(4, c4)}.

A preferred plan of packing and delivery with respect to Psafe × Ptsp is the one where
heavy and light items are not in the same pack and if the truck is supposed to visit cities
c1, c2, c3, c4, then taking road (c1, c2) is preferred to (c1, c3).

Given MP1 on Π1 ={P11, ...,P1r} in M1 and MP2 on Π2 ={P21, ...,P2s} in M2, we
introduce binary relationMP=MP1×MP2 on Π ={P1, ...,Pr×s}wherePi =P1i×P2i

as follows:

Definition 9. Binary relation ≻MP is defined as {(A,B)|A,B∈M1×M2 and A|τ1≻MP1

B|τ1 andA|τ2≻MP2 B|τ2}.

A compound preference can be constructed by union of two preferences as follows:

Definition 10. Let M = M1 + M2 be a modular system. Suppose vocab(M1)= τ1 and
vocab(M2)= τ2. Assume P1 and P2 are preferences in M1 and M2 respectively. For
B,B′∈M , if B|τ1 ≻P1 B′|τ1 or B|τ2≻P2 B′|τ2 then B is preferred to B′ with respect to
P1 ∪ P2 and is denoted by B≻P1+P2 B′.
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For meta-preferences, similar to Definition 9, givenMP=MP1 ∪MP2, binary relation
≻MP is {(A,B)|A,B∈M1 ×M2 andA|τ1 ≻MP1 B|τ1 orA|τ2≻MP2 B|τ2}.

Selection operator can be applied on preference P ′ in module M ′ that is denoted by
P= σQ≡R(P ′). Let us comment briefly on the selection operator. Assume M is a τ -
modular system and R, Q∈ τ . Selection does not change the vocabulary of M . Hence,
definition of preference remains unchanged. Given a preference P in M , when B≻P B′

holds in M , if B and B′ are also structures of σR≡QM , we can conclude that B is preferred
to B′ in σR≡QM .

Definition 11. Let’s assume M ′ = σR≡QM and P= (O, Γ) is a preference in M . We intro-
duce compound preference P ′ = σQ≡RP. For B,B′∈M , whenever B≻P B′, if B,B′∈M ′

then B≻P ′ B′.

This definition says that if two structures B and B′ are in M , and B is preferred to B′ with
respect to P then B remains preferred to B′ in module M ′ that is module M with selection
operator. For module M with meta-preference MP over preferences Π, binary relation
≻σR≡QMP={(A,B)|(A,B)∈M, M ′andA≻MP B} is defined.

Projection is another operator that can be used to build compound preferences. Projec-
tion operator hides some vocabulary symbols so it restricts number of models. Intuitively,
given two structures A′ and B′ in M ′ = πδ(M), if all structures in M which their projection
to δ are equal to A′, are preferred to all structures in M that their projection to δ are equal
to B′, we can conclude A′ is preferred to B′. The following definition formulates projected
preference.

Definition 12. Assume M ′ = πδ(M) where vocab(M)= τ and vocab(M ′)= δ. Let P be
a preference in M . We define P ′ = πδ(P) and binary relation ≻P ′={(A′,B′)|A′,B′∈
M ′ ∧ ∀A∈M ;A|δ =A′⇒ (∀B;B|δ =B′⇒A≻P B)}.

Analogously, we introduce the concept projected meta-preference MP ′ in M ′. Binary
relation ≻πδ(MP) is defined as {(A′,B′)|A′,B′∈M ′ ∧ ∀A∈M ;A|δ =A′⇒ (∀B;B|δ =
B′⇒A≻MP B)}.
The last operator for constructing compound preferences is complement. Similar to selec-
tion operator, vocabulary of module M ′ =−M is not changed (vocab(M)= vocab(M)′).
So, preferences in M ′ are the same as preferences in M .

Definition 13. Let’s assume M ′ =−M be a modular system and P be a preference in M .
Binary relation ≻−P is defined as {(A,B)|A,B) 6∈MandA≻P B}. Similarly for meta-
preferenceMP in M , we define ≻−MP as {(A,B)|A,B) 6∈MandA≻MP B}.

We introduce the notion of preference-based modular system P-MS that is a modular
system with a partial order over its compound or atomic preferences.
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Definition 14. A modular system MS with a set of compound or atomic preferences Π is a
preferred modular system, notation P-MS , if it is specified by a pair (≺MP , MS) where
MP is a meta-preference in MS.

The following result is a major property of our framework that is closed in the sense that
the operations for combining modules preserve the notion of a preference-based modular
system. This property is proven by structural induction.

Theorem 1. Assume for some n, a modular system MS is obtained from M1, M2, ..., Mn

, where Mis, 1≤ i≤n are modular systems, by using operations in modular systems in-
cluding product, union, complement, selection, and projection. For all 1≤ i≤n, if Mi is
P-MS then M is also P-MS .

Proof: A preference-based modular system (P-MS) is a pair (≻MP , MS) where ≻MP is
meta-preference over preferences on vocabulary of MS. Assume that M = M1⊛M2⊛ ...⊛
Mn where Mi i∈{1..., n} is a preference-based modular system and ⊛ is an operator of
modular systems. We prove by induction that M is a P-MS . For n = 1, it is trivial that MS
is a P-MS . Let’s assume M ′ = M1 ⊛ M2. According to Definition 14, M ′ is a modular
system. Assume ⊛ is product operator (for other operators we use the same argument). So,
vocab(M ′)= vocab(M1)∪vocab(M2), andMP ′ =MP1×MP2 is meta-preference over
vocab(M ′). Therefore, M ′ is a modular system with meta-preference over its vocabulary.
Thus, M ′ is a P-MS . We can rewrite M = M ′ ⊛M3...⊛Mn. Having the same argument,
if M ′ = M1 ⊛ M3... ⊛ Mk, k < n, a P-MS , then M ′ ⊛ Mk+1 is P-MS . Consequently,
MS is a preference-based modular system.

4 Relationship of P-MS to other Preference Formalisms

We now describe two preference formalisms and show how they can be related to our for-
malism.

4.1 CP-Nets

Ceteris paribus (cp) network is a graphical representation of conditional preferences with
reasoning capability [5]. The idea underlying cp-nets is to compare different assignments
to a set of variables as some of these variables are conditionally dependent on each other.
Each node represents an attribute (variable) connected to its parents through directed edges.
A preference order over domain values of a variable is dependent on value of its parent
variables. The dependency is shown by a Conditional Preference Table (CPT) represented
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as an annotation for each node. There exists an induced graph derived from each cp-net
that shows ordering relation between a subset of outcomes. Each node in the induced graph
represents an outcome and each directed edge exhibits ordering relation between nodes.
An outcome o1 is preferred to o2 if in the induced graph, there is a path from o1 to o2.
An induced graph comprises all information about preferences over outcomes that can be
derived from a cp-net.

From the syntactic point of view, P-MS is able to capture the notion of attributes in
cp-nets. Each attribute can be viewed as an interpreted predicate symbol in the context of
P-MS . Therefore, an outcome in a cp-net can be represented by a structure that interprets
vocabulary symbols. The relation between cp-nets and P-MS in this way implies that
the space of all outcomes in a cp-net can be modelled by a set of structures interpreting
vocabulary symbols in P-MS . A preference statement visualized by a cp-net over a set
of variables V ={V1, ..., Vn} is an ordering over domain values of a variable that may or
may not be dependent on some other variables, and a preference in P-MS is defined as
P= (O, Γ) where O is a partial order given a set of partial structures Γ. In a sense, a
partial structure in P-MS is a combination of some interpreted vocabulary symbols. Thus,
a partial structure can stipulate a value assigned to an attribute. Orderings over partial
structures in our formalism are in fact orderings over attribute values in cp-nets when partial
structures in O are assumed to interpret only one vocabulary symbol. Transforming the
condition part of the preference statement in a cp-net is straightforward. Order relation
holds for partial structures which extend Γ. Therefore, parents of each cp-net attribute can
be represented by Γ.

In order to establish the correspondence between the semantic of cp-nets and P-MS ,
first we explain the concept of flip-over in cp-nets. In an induced graph derived from a cp-
net, each outcome node has one attribute value preferred to its child’s while other attributes
are assumed to be fixed. Therefore, by moving from a node to its children one attribute
value is changed that is called a flip-over. A path in an induced graph is a chain of flip-
overs between two outcomes. Hence, an outcome is preferred to another when single or
multiple flip-over(s) exist between them. Now, we show how a flip-over can be represented
in P-MS . Consider two structures B and B′; if B�MP B′ (�MP means that ≻MP or
≈MP that is an equivalence relation), we have enough information to know that B is pre-
ferred to B′ at least at one vocabulary symbol interpretation or they are equally preferred.
The concept of a single flip-over can be specified by �MP when OMP =∅ (there is no
meta-preference in cp-nets). In this case, �MP has the transitivity property and a chain of
flip-overs can be modelled by P-MS as well. If OMP is not empty, MP represents the
notion of relative importance (meta-preference) in TCP-net [7] that is an extension of cp-
nets to model meta-preferences. This reasoning leads us to the following theorem, relating
cp-nets and the P-MS formalism.
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Theorem 2. LetN be a cp-net andMP be the representation of G in the context ofP-MS .
If an outcome oi is preferred to outcome oj in the induced graph G of N , then, for oi and
oj that are transformed into the P-MS , we have oi�MP oj .

Proof: Theorem 2 Recall that a structure is a domain together with interpretation of a
set of non-logical symbols. For a set of variables X ={X1, X2, ..., Xn} and a domain
D = D(X1)×...×D(Xn), an outcome o ={x1, ..., xn} in G is a structureA over vocabulary
{X1, X2, ..., Xn} such that A= (D,I) where I is an interpretation function such that xi∈
D(Xi) and xi =I(Xi), i∈{1, ..., n}. In graph G, an outcome node oi is preferred to its
child oj and they are all the same except in one variable called Xd. Consider in oi, we
have Xd = xdi and for oj , we have Xd = xdj . Since oi is preferred to oj , the following
holds: xdi≻xdj . Now, suppose A is a structure representing oi and oj is represented by
B. Consider two partial structures Ai and Bj such that IAi(Xd)= xdi and IBj (Xd)= xdj .
Since xdi≻xdj , in P-MS framework, there is a preference P that Ai≻P Bj . According
to Definition 5, we conclude that A≻P B such that A and B are representation of o1 and
o2 respectively. If o1 and o2 are not adjacent nodes in G but there is a path from o1 to o2,
by induction it is derived that A≻MP B where OMP =∅ (there is no meta-preference in
cp-nets).

The following example shows how cp-nets can be expressed in P-MS .

Example 7. Consider car dealership scenario in Example 4. Each car has three attributes
including model, type, and color. Model can be Benz or BMW in white or black color. Each
car can be in SUV or sedan type. Available cars in the dealership is listed in Table 1. It
can be observed from Figure 2.a, that black car is always better than white one regardless
of type or model. For a black color, Benz is preferred to BMW, and vice versa. Similarly,
sedan BMW is preferred to SUV type. Conversely for Benz, it is preferred to buy SUV rather
than sedan. The graph induced from this cp-net is illustrated in Figure 2.b. The induced
graph shows whether a certain outcome is preferred to another one. For example outcome
o1 that is a black SUV Benz is preferred to o6 that is white SUV BMW because there is a
path form o1 to o6.

To represent this cp-net in P-MS formalism, we consider a primitive module (there
is no combination of cp-nets) MS. Let’s assume M is an unary relation (predicate) that
indicates a car model, e.g. M(Benz) or M(BMW ). Similarly, T specifies type, including
T (sedan) and T (SUV ). For color, predicate C can take value white and black (C(white)
and C(black)). Let P1 = (O1, Γ1) where O= (S1,≺1) is a strict partial order over color
attribute such that ≺1 is defined as: C(black)≻C(white), and Γ1 =∅. Infact, P1 repre-
sents the first row in Figure 2.a. In a similar way, P2 = (O1, Γ1) is defined as Γ2 = C(black)
and O2 = (S2,≺2) where S2 = T (BMW )≻T (Benz). We construct P3 and P4 likewise.
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Outcome Model Color Type
o1 Benz Black SUV
o2 BMW Black SUV
o3 Benz White SUV
o4 Benz Black Sedan
o5 Benz White Sedan
o6 BMW White SUV
o7 BMW Black Sedan
o8 BMW White Sedan

Table 1: Outcomes in the car dealership example

Black ≻White
Color= Black BMW ≻ Benz
Color=White Benz ≻ BMW
Model= Benz SUV ≻ Sedan
Model=BMW Sedan ≻ SUV

(a) CP-net

o1

o2 o4 o3

o6 o7 o5

o8

(b) Induced graph

Figure 2: CP-net example: car dealership

For a set of preferences Π ={P1,P2,P3,P4}, meta-preference OMP = (Π,≻) is defined
as ≻=∅ because there is no preference over preferences. Assume structure Ai represents
outcome oi. According to Definition 7, it can be proven that Ai is preferred to Aj if and
only if there is a path from oi to oj in Figure 2.b.

4.2 Preference-based Planning

In what follows, we show how P-MS is able to assert preference statements expressed in
PP [26] that is a preference language for planning problems. While we do not discuss the
full details of PP here, we recall the main definitions found in [26]. Given a set of fluent
symbols F and a set of actions A, a state is defined as a subset of F . A planning problem
is a triple 〈D, I, G〉 where D indicates pre-conditions and effects of actions, I is the initial
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state, and G stands for the goal state. A solution to a planing problem, that is called a plan,
is a chain of actions and states I, a1, ...an, G that starts from I and ends to G. A basic
desire φ is identified as one of the following: 1) a certain action occurs in the plan denoted
by φ≡ occ(a), 2) a set of certain fluents are satisfied that is denoted by φ≡ (fi∧ ...∧ fi+n),
3) any combination of basic desires by using classical logic connectives (e.g. ∧, ∨, and
¬) or temporal connective stemmed from temporal logic such as Next(φ1), Until(φ1, φ2),
Always(φ), and Eventually(φ).

[26] states that a planning problem 〈D, I, G〉 can be reduced to an Answer Set Program-
ming (ASP) problem Π(D, I, G) such that for a feasible plan pM there is an answer set M
in program Π. In the context of answer set programming, a formula φ is satisfied in M if it
is a subset of vocabulary symbols that M makes true. For two plans p1 and p2, we say p1
is preferred to p2 with respect to a basic desire φ if φ is satisfied in p1 but not in p2. In the
context of ASP, if M1 and M2 are two answer sets of p1 and p2 respectively, M1 satisfies φ
but M2 does not.

To express basic desires in P-MS , it suffices to show that answer sets can be translated
to structures in the context of modular systems. Consider a vocabulary {a1, ..., an} and
an answer set M ={a1, ..., ak} (k≤n). As it can be observed from the notion of answer
sets, M can be viewed as a structure that interprets each atom ai, i≤k, as true and for all
aj , k < j≤n, as false. Having the same argument, a basic desire φ is a partial structure in
modular systems such that a subset of atoms in M is true. As a result, a planning problem
〈D, I, G〉 with preferences can be translated into answer sets and then to modular systems.
Assume that structure B represents plan p1 , structure B′ is the translation of p2, and formula
φ is translated into partial structure Bφ. A plan p1 is preferred to p2 with respect to φ when
B is preferred to B′ with respect to Bφ. This completely coincides with our definition of
preferences in modular systems. The following result follows from what we discussed.

Theorem 3. Let p1 and p2 be two feasible plans of a planning problem 〈D, I, G〉 that can
be translated to ASP program Π(D, I, G). Let Mp1 and Mp2 be ASP translation of p1 and
p2 respectively. Suppose that Mp1 is translated to structure B and Mp2 to structure B′ in
the context of P-MS . Given a basic desire φ, if p1 is preferred to p2 with respect to φ in
language PP , then B≻MPφ

B′ in P-MS whereMPφ is translation of φ into P-MS .

Proof:Theorem 3 Without loss of generality, for a set of atoms τ ={a1, ..., an}, assume
Mp1 ={am, ..., ak} where 1≤m≤n and m≤k≤n, and Mp2 ={ap, ..., aq} where 1≤
p≤n and p≤p≤n. Consider structure A= (I, D) over τ such that D ={True, False}
and I(ai)=True or False, ai∈Mp1. A is a presentation of Mp1 . Similarly, B represents
Mp2 . Assume a basic desire φ that is a subset of τ and is defined as {aφr , ..., aφs}. Let
Ai ={aφr

+, ..., aφs
+} be a τo-partial structure that satisfies φ. Also, let Bj be a τo-partial

structure that falsifies φ. According to Notation 1, Bj has at least an atom in the form of
aφt

−, r≤ t≤ s. Consider a preference P= (Γ,O) such that Γ =∅ and O={Ai≻Bj}. If
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A extends Ai and B is an extension of Bj , then A≻P B. This means that structure A that
satisfies φ is preferred to structure B that does not satisfy φ. Thus, a basic desire preference
can be expressed in P-MS .

Example 8. Assume we want to travel from location l1 to l3 through l2. Action Travel (no-
tation T1) from l1 to l2 can be done by taxi, bus, or train. Similarly, T2 is travel from l2
to l3 by train or walk. Because of expensive cost, two consecutive travels cannot be com-
pleted by taking train. Also, walking is preferred to taking train or bus. Valid travel plans
in PP are p1 ={T1(train), T2(walk) }, p2 ={T1(bus), T2(walk)}, p3 ={T1(bus), T2(train)},
p4 ={T1(taxi), T2(walk)}, and p5 ={T1(taxi), T2(train)}. Preference is a basic desire that
implies, for example, p1 is preferred to p3. Assume structures Mp2 and Mp3 are translation
of p2 and p3 respectively inP-MS . For structure Mp2 = (D, T

Mp2
1 , T

Mp2
2 ), D ={taxi, walk,

bus, train} is domain and T
Mp2
1 ={T1(bus)} and T

Mp2
2 ={T2(walk)} are interpretations of

T1 and T2. Also, Mp3 = (D, T
Mp3
1 , T

Mp3
2 ) where D ={taxi, walk, bus, train}, interprets T1

as T
Mp3
1 ={T1(bus)} and T2 as T

Mp3
2 ={T2(train)}. Basic desire is expressed in P-MS

as a preference P= (Γ,O) where Γ =∅ and O={T1(walk)+≻T1(walk)−, T2(walk)+≻
T2(walk)−}. According to Definition 5, Mp2≻P Mp3 that is exactly suggested by Theorem
3.

4.3 Answer Set Optimization

Answer Set Optimization (ASO) is a framework to represent preferences in the context of
Answer Set Programming [9]. An ASO program P is a pair (Pgen, Ppref ) where Pgen is
the generating program and Ppref is a set of rules in the form of
r : C1 > ... > Ck←a1, ..., an, not b1, ..., not bm

In each rule, Ci is a combination of atoms integrated through classical logic connectives.
Moreover, ai and bi are literals. Given a set of l rules r1, ..., rl , each model of Pgen is
associated with a vector V (M)={v1(M), ..., vl(M)} where vi(M) is the rank of model M
in ri. The notion of rank denotes the minimum j of Cjs in ri that are satisfied by M . If M1
and M2 are two models of Pgen, M1 is preferred to M2 with respect to Ppref if V (M1)<
V (M2). In other words, suppose the right hand side (body) of the rule is satisfied by M1
and M2 while Cp and Cq are the most preferred Cis satisfied by M1 and M2 respectively. If
Cp is preferred to Cq then M1 is preferred to M2. Also, when a model M does not satisfy
body of a rule rk, it is assumed that v(M)= 1.

We show the connection between ASO and P-MS . Assume {M1, ..., Mn} are models
of an ASO program P = (Pgen, Ppref ). Each model Mi ={l1, l2, ..., lmi}, generated by
Pgen, is a set of literals. Mi can be viewed as a mathematical structure that its domain
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is formed from only two elements: true and false. So, Pgen is a modular system (a set
of structures). Consider a preference rule r : C1 > ... > Ck←a1, ..., an, not b1, ..., not bm.
A partial structure Bi (or a set of partial structures in the case of logical combinations of
literals) can represent each Ci. The body of the rule is a set of positive and negative literals
that can be simply expressed by a partial structure as well. In the view of this observation,
a preference in the form of P= (Γ,O) can assert a preference rule in ASO. The body of
such rule is modelled by Γ and O that can represent the head of the rule. Each rule ri

can be represented by a preference Pi. Therefore, a set of rules Ppref can be presented by
meta-preferenceMP .

To clarify the relation between ASO and P-MS , let us consider the food planner ex-
ample discussed in [9]. Suppose a food menu consists of four sections: appetizer, main-
food, drink, and dessert. The domain of each variable is defined as:D(food) ={fish, beef},
D(drink)={red-wine, white-wine, beer}, D(appetizer)={soup, salad}, and D(dessert)={ice-
cream, pie}. Let’s assume the preference rules as below:

r1 = white-wine> red-wine> beer←fish
r2 = red-wine> beer > white-wine← beef
r3 = pie> ice-cream← beer

And consider a Pgen that generates the following models:

M1 ={soup, beef, beer, ice-cream}
M2 ={salad, beef, beer, ice-cream}
M3 ={soup, fish, beer, ice-cream}
M4 ={salad, fish, beer, ice-cream}

As noted above, the representation of r1 in P-MS is: P1 = (O1, Γ1) where O1 =
{drink(white-wine) ≻ drink(red-wine) ≻ drink(beer)} and Γ1={main-food(fish)}. For r2,
we consider P2 = (O2, Γ2),O2={drink(red-wine) ≻ drink(white-wine) ≻ drink(beer)}, and
Γ2={main-food(beef)}. Furthermore, r3 is specified as P3 = (O3, Γ3), O3=
{appetizer(pie) ≻ appetizer(ice-cream)}, and Γ3 ={drink(beer)}. Finally, we have Π =
{P1, P2, P3} and OMP =∅. In ASO, M2 is preferred to M3. Similarly, in P-MS , we
have M1�MP M2.

Theorem 4. Let (Pgen, Ppref ) be an ASO program, andMP be the representation of Ppref

in P-MS . Given two ASP models M1 and M2 in ASO, Assume structures A and B in
P-MS , represent M1 and M2 respectively. If M1 is preferred to M2 with respect to Ppref ,
then we have A≻MP B in P-MS .

Proof: Assume {m1, ..., mn} are models of an ASO program P = (Pgen, Ppref ). Let’s
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consider each model mi ={l1, l2, ..., lni}, generated by Pgen, is a set of literals. Each mi

can be associated to a mathematical structure Ai = (I, D) where D ={T rue, False} and
I(mi)= T rue. So, Pgen is a modular system (a set of structures). We show how a prefer-
ence rule in ASO formalism can be translated into a preference in P-MS .

Consider a preference rule r : C1 > ... > Ck←a1, ..., an, not b1, ..., not bn. T A partial
structure Bi (or a set of partial structures in case of logical combination of literals) can
represent each Ci. The body of the rule is a set of positive and negative literals that can be
simply expressed by a partial structure as well. A preference in the form of P= (Γ,O) can
assert a preference rule in ASO. The body of such rule is modelled by Γ and O represents
the head of the rule. Each rule ri can be represented by a preference Pi. Therefore, a set of
rules Ppref can be presented by meta-preferenceMP .

5 Conclusion and Future Work

We proposed an abstract framework for unifying preference languages in modular systems.
We introduced the notion of preference-based modular systems (P-MS). We demonstrated
that a system obtained through combination of some P-MS is also a P-MS . We studied
how preferences expressed in other languages (three languages as examples) can be trans-
lated to our framework. Examples included three common preference languages: cp-nets,
planning, and answer set optimization. Our future work will address expressivity and com-
putational issues of the framework. We will continue our study of practical aspects of our
framework in AI applications, in particular, Business Processes that have complex modular
structures and different users may communicate through different formal languages.
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Abstract
Intelligent agents equipped with epistemic capabilities are expected to carry

out quite different knowledge and belief management tasks like answering
queries, performing diagnosis and hypothetical reasoning, or revising and up-
dating their own state of belief in the light of new information. In any realistic
setting, such agents must also take vagueness and uncertainty into account. In

Vol. 4 No. 7 2017
IFCoLog Journal of Logics and Their Applications



Beierle, Finthammer, Potyka, Varghese, Kern-Isberner

this paper, we report on an approach that uses probabilistic conditional logic
for modelling such an intelligent agent. We propose a simple, yet powerful agent
model supporting versatile knowledge and belief management operations. The
semantics of a knowledge base consisting of a set of probabilistic conditionals is
obtained by employing the principle of maximum entropy. We give an overview
of the MEcore system providing the core functionalities needed for realizing
the agent model. In order to illustrate the use of MEcore’s functionalities,
we present a case-study of applying probabilistic logic to the analysis of clini-
cal patient data in neurosurgery. Probabilistic conditionals are used to build a
knowledge base for modelling and representing both clinical brain tumor data
and expert knowledge of physicians working in this area.

1 Introduction

Using probabilities for expressing uncertainty on the one hand and exploiting the
rich power and formal groundings of a logical language on the other hand has a long
tradition in knowledge representation and Artificial Intelligence (e.g. [44, 51, 14, 18]).
Various forms of conditional logics have been proposed and studied for expressing
uncertain, but reasonable, plausible, possible, or probable relationships between the
antecedent and the consequence of a conditional (e.g. [1, 45, 7, 12, 6]).

Probabilistic conditionals can conveniently be used to model uncertain rules like
“If symptoms S1, S2, and S3 are present, then there is a probability of 70% that the
patient has disease D.”, which occur frequently in the medical domain. An intelligent
agent providing decision support for performing medical diagnosis and for choosing
a therapy must be able to deal with pieces of knowledge expressed by such rules,
requiring elaborate knowledge representation and reasoning facilities. For instance,
in neurosurgery, such an agent should be able to answer diagnostic questions in the
presence of evidential facts like “Given the evidence that the patient has perceptual
disturbances, suffers from unusual pain in the head and that there are symptoms for
increased intracranial pressure, what is the probability that he has a cranial nerve
tumor?”, and the agent should be able to perform hypothetical reasoning as in:
“There is evidence that the patient has perceptual disturbances and that there are
symptoms for increased intracranial pressure. If we chose a surgery for therapy and
if the correct diagnosis was gliobastoma, what would be the patient’s chance to recover
completely without any serious complications?” Moreover, when the agent lives in an
uncertain and dynamic environment, she has to adapt her epistemic state constantly
to changes in the surrounding world and to react adequately to new demands (cf.
[10], [24]).

In this paper, we investigate and use probabilistic conditional logic from three
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different points of view. As the first main contribution, we present a simple, yet
powerful agent model that is based on probabilistic conditional logic. We develop a
framework supporting versatile knowledge and belief management operations. The
semantics of a knowledge base consisting of a set of probabilistic conditionals is
obtained by employing the principle of maximum entropy [58, 46, 27, 30]. Using
this principle, a given knowledge base is not required to fulfill any particular com-
pleteness or independence constraints; instead, any missing or unspecified knowledge
can be inductively completed in an information-theoretically optimal way. This in-
ductive completion will be demonstrated, and we will show how answering queries
and performing diagnosis and hypothetical reasoning is done. A special focus will
be put on change operations that have to be carried out when new information
becomes available. We distinguish between revision and update, and elaborate in
detail iterative belief changes.

The second contribution of this paper is to present an overview of the MEcore
system. MEcore realizes and implements the agent model and its belief man-
agement operations developed for probabilistic conditional logic under maximum
entropy semantics.

In the third main contribution, we report on a case study on the application of
probabilistic modelling and reasoning to clinical patient data in neurosurgery. A
knowledge base BT representing and integrating both statistical frequencies of brain
tumors reported in the literature as well as physicians’ expert beliefs is developed
and used to perform reasoning regarding the diagnosis of brain tumor types or the
prognosis for patients (see [61, 60] for more information on the medical background).
We show how reasoning with BT is done using MEcore, and we argue that the
obtained results are well in accordance with a physician’s point of view.

This article is a revised and largely extended version of [4]. The extensions cover
in particular the presentation of the formal foundations of the underlying proba-
bilistic conditional logic, a detailed elaboration of the evolution of an agent’s epis-
temic state under iterated belief change operations, and concepts for implementing
MEcore’s belief management functionalities. The rest of this article is organized as
follows. After recalling the required background of probabilistic conditional logic in
Section 2, epistemic states and belief management operations for probabilistic logic
under optimum entropy semantics are developed in Section 3. The MEcore system
is presented in Section 4. In Section 5, the knowledge base BT is developed and used
for illustrating MEcore’s reasoning facilities. In Section 6, we conclude and point
out further work.
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2 Background: Probabilistic Conditional Logic
The basics of propositional logic with multi-valued variables and the language of
conditionals are presented, followed by a specification of a probabilistic semantics of
conditionals.

2.1 Propositional Logic with Multi-Valued Variables
We start with a propositional language L built up over a finite set Σ of possibly multi-
valued propositional variables. Each variable V ∈ Σ is associated with a set of values
domain(V ) called its domain. If domain(V ) = {0, 1}, V is called a Boolean variable
and a multi-valued variable otherwise. For instance, the variable warningSymptoms
with domain {0, 1} is a Boolean variable, while the variable therapy with domain
{conservative, surgery, none} is a multi-valued variable.

The set L of formulas over Σ is the smallest set containing the following elements:
1. If V ∈ Σ and v ∈ domain(V ), then (V = v) ∈ L, and (V = v) is called an

atomic formula.

2. If F ∈ L, then (¬F ) ∈ L.

3. If F, G ∈ L, then (F ∧ G) ∈ L.
The formulas of L will be denoted by uppercase Roman letters A, B, C and so on.
In order to enhance readability, we will sometimes omit parentheses and the logical
conjunction, writing AB instead of A∧B, and an overbar will indicate negation, i.e.
A means ¬A. Moreover, if V is a Boolean variable, we will abbreviate the atomic
formula (V =1) by just V , and the atomic formula (V =0) by ¬V or by V .

A possible world over L assigns to each variable from L a value from its domain,
and Ω denotes the set of all possible worlds over L. I.e., for Σ = {V1, . . . , Vn}, a
possible world ω ∈ Ω is of the form

ω = (V1 =v1) ∧ . . . ∧ (Vn =vn)

where vi ∈ domain(Vi) for i ∈ {1, . . . , n}. Thus, as usual for propositional logic,
each possible world ω can be identified uniquely with an interpretation Iω; this
interpretation is given by

Iω : Σ →
⋃

V ∈Σ
domain(V )

with I(V ) ∈ domain(V ) for all V ∈ Σ such that I(V ) = v iff (V =v) appears in ω.
The satisfaction relation |= between possible worlds and formulas is defined re-

cursively, for every ω ∈ Ω, as follows:
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1. If (V =v) is an atomic formula, then ω |= (V =v) if and only if Iω(V ) = v.

2. If F ∈ L, then ω |= ¬F if and only if ω |= F does not hold.

3. If F, G ∈ L, then ω |= F ∧ G, if and only if ω |= F and ω |= G.

Note that for the case where all variables in Σ are Boolean variables, we obtain
standard propositional logic. For instance, for Σ = {a, b} with Boolean variables
a, b, the set of possible worlds (or interpretations) is given by Ω = {ab, ab, ab, ab}.

2.2 Conditionals
By introducing a new binary operator |, we can define the set of all (unquantified)
conditionals (or rules) over L as

(L | L) = {(B|A) | A, B ∈ L}.

A conditional of the form (B|⊤) with a tautological antecedent ⊤ is also called
a fact and can simply be written as (B). Intuitively, (B|A) expresses “if A then
B” and establishes a plausible (or probable, possible, etc.) connection between
the antecedent A and the consequent B. Here, we are interested in the set of all
probabilistic conditionals (or probabilistic rules)

(L | L)prop = {(B|A)[x] | A, B ∈ L, x ∈ [0, 1]},

which contains conditionals enriched with a probability that reflects the likelihood
of B given A. Thus, a conditional (B|A)[x] is read as “if A holds, then B holds with
probability x”. The powerset of probabilistic conditionals is denoted by

COND = {R | R ⊆ (L | L)prop}.

Syntactically, our probabilistic conditional language is closely related to probabilis-
tic logic programming as studied in [37, 30] where intervals of lower and upper
probabilities are allowed, while in this paper we only consider point probabilities.

2.3 Probabilistic Semantics
To give appropriate semantics to conditionals, they are usually considered within
richer structures such as epistemic states. Besides certain (logical) knowledge, epis-
temic states also allow the representation of e.g. preferences, beliefs, assumptions
of an intelligent agent. Basically, an epistemic state allows one to compare for-
mulas or worlds with respect to plausibility, possibility, necessity, probability etc.
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In a quantitative framework, popular representations of epistemic states are pro-
vided by probability functions (or probability distributions). Given the underlying
propositional language L and its induced set of possible worlds Ω, a corresponding
probability distribution

P : Ω → [0, 1]

with
∑

ω∈Ω P (ω) = 1 assigns a probability to each possible world. The function P
is extended to arbitrary formulas, denoted by P : L → [0, 1], by defining

P (A) =
∑

ω∈Ω, ω|=A

P (ω)

for every A ∈ L.
Thus, in this setting, the set of epistemic states we will consider is

EpState = {P | P : Ω → [0, 1] is a probability function}.

In this structure, conditionals are interpreted via conditional probability. The prob-
ability of a conditional (B|A) ∈ (L | L) with P (A) > 0 is defined as P (B|A) =
P (AB)/P (A), the corresponding conditional probability. So the satisfaction rela-
tion

|=C ⊆ EpState × (L | L)prop

of probabilistic conditional logic is defined by

P |=C (B|A) [x] iff P (B|A) = x.

As usual, the satisfaction relation |=C is extended to a set R ∈ COND of conditionals
by defining P |=C R iff P |=C (B|A) [x] for all (B|A) [x] ∈ R. A set R of conditionals
is consistent iff there is a probability distribtion P such that P |=C R; otherwise, R
is inconsistent.

3 Epistemic States and Belief Management Operations
for Probabilistic Logic under Optimum Entropy

Using probability distributions for modelling the epistemic state of an intelligent
agent allows to take the uncertainty of knowledge and belief into account. In this
section, we consider the main belief management tasks of such an intelligent agent
like abductive reasoning or revising or updating her own state of belief, and model
them in the setting of probabilistic conditional logic. In [5], related knowledge and
belief operations for a conceptual agent model in a setting based on qualitative
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default rules are given, using the general approach to belief change developed in
[27, 29] where belief change is considered in a very general form by revising epistemic
states by sets of conditionals.

3.1 Initialization
Initially, an epistemic state has to be built up on the basis of which the agent can
start her computations. If no knowledge is at hand, the epistemic state should reflect
complete ignorance. In our probabilistic setting, this corresponds to the uniform dis-
tribution where the same probability is assigned to each possible world. If, however,
a set of probabilistic rules is at hand to describe our problem domain, we have to
determine an epistemic state that represents our prior knowledge appropriately. To
this end, we assume an inductive representation method to establish the desired
connection between sets of sentences and epistemic states. Whereas generally, a set
R of sentences allows a (possibly large) set of models (or epistemic states), in an
inductive formalism we have a function

inductive : COND → EpState

such that inductive(R) selects a unique, “best” epistemic state from all those states
satisfying R.

In a probabilistic framework, a probability distribution is a suitable representa-
tion of an epistemic state. Given a set R of probabilistic conditionals, the principle
of maximum entropy states to select the distribution P ∗ = MaxEnt(R) that satisfies
all conditionals in R and maximizes entropy among all distributions that do so.
More formally, MaxEnt(R) is the solution to the maximization problem

arg max
P ′|=R

H(P ′) (1)

with the entropy H(P ′) of a distribution P ′ being defined by

: H(P ′) = −
∑

ω

P ′(ω) log P ′(ω) (2)

If R is consistent, there exists indeed a unique solution P ∗. This follows from the
fact that the set of all distributions that satisfy R form a compact and convex set
and the entropy is a continuous and strictly concave function, see [46] for the details.

The rationale behind this is that MaxEnt(R) represents the knowledge given by
R most faithfully, i.e. without adding information unnecessarily (cf. [23, 49]). The
principle of maximum entropy has also been justified by properties of commonsense
reasoning [47] and by conditional-logical considerations [26, 25]. In contrast to Bayes
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nets [51], which are based on assumptions about conditional independencies and re-
quire certain conditional probabilities to be given, the principle of maximum entropy
completes the actually available knowledge R in an information-theoretically opti-
mal way. Thus, aside from consistency, the available knowledge R does not have
to comply with any additional requirements, thereby avoiding any unwanted bias in
the knowledge modelling process.

We will illustrate the maximum entropy method by a small example.

Example 1 (Running example; Initialization). Consider the three propositional
Boolean variables:

s : being a student
y : being young
u : being unmarried

Students and unmarried people are mostly young. This commonsense knowledge an
agent may have can be expressed probabilistically e.g. by the set

R1 = { (y|s)[0.8], (y|u)[0.7] }

of conditionals. The MaxEnt-representation P ∗
1 = MaxEnt(R1) over the set of pos-

sible worlds Ω = {syu, syu, syu, . . . s y u} is computed by MEcore by employing an
iterative algorithm (which we will consider more closely in Section 4.1). The result
(modulo rounding) is:

ω P ∗
1 (ω) ω P ∗

1 (ω) ω P ∗
1 (ω) ω P ∗

1 (ω)
syu 0.1950 syu 0.1758 syu 0.0408 sy u 0.0519
syu 0.1528 syu 0.1378 s yu 0.1081 s y u 0.1378

3.2 Querying an Epistemic State
Querying an agent about her beliefs amounts to posing a set of unquantified sen-
tences and asking for the corresponding degrees of belief with respect to her cur-
rent epistemic state. In our probabilistic framework, a query is an unquantified
conditional (B|A) and we are interested in a probability x such that we have
P ∗ |=C (B|A)[x] for our epistemic state P ∗.

Example 2 (Query). Suppose the current epistemic state is P ∗
1 = MaxEnt(R1)

from Example 1, and our question is:

“What is the probability that unmarried students are young?”
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So, the query is expressed by the unquantified conditional (y|s ∧ u). Then MEcore
returns:

(y|s ∧ u)[0.8270]
That is, unmarried students are supposed to be young with probability 0.8270.

3.3 New Information and Belief Change
Belief revision, the theory of dynamics of knowledge, has been mainly concerned with
propositional beliefs for a long time. The most basic approach here is the AGM-
theory presented in the seminal paper [2] as a set of postulates outlining appropriate
revision mechanisms in a propositional logical environment. This framework has
been widened by Darwiche and Pearl [10] for (qualitative) epistemic states and
conditional beliefs in order to be able to do revision iteratively. An even more general
approach, unifying revision methods for quantitative and qualitative representations
of epistemic states, is described in [27]. The crucial meaning of conditionals as
revision policies for belief revision processes is made clear by the so-called Ramsey
test, according to which a conditional (B|A) is accepted in an epistemic state Ψ, iff
revising Ψ by A yields belief in B: Ψ |= (B|A) iff Ψ ∗ A |= B where ∗ is a belief
revision operator (see e.g. [17]).

Beside belief revision, also belief updating [24] has been studied for belief change.
Generally, it is understood that revision takes place when new information about a
static world arrives, whereas updating tries to incorporate new information about a
(possibly) evolving, changing world. Further belief change operators are expansion,
focusing, contraction, and erasure (cf. [17, 13, 24]). However, the techniques that
have been proposed for such change operations are mostly limited to the traditional
AGM framework for change, i.e., to propositional logic. In this paper, we rely upon
the more general approach to epistemic change developed in [27] where belief change
is considered in a very general and advanced form: Epistemic states are revised
by sets of conditionals – this exceeds by far the classical AGM-theory and related
approaches which only deal with pieces, or sets of propositional beliefs. Nevertheless,
connections to belief change theory can be found when looking into works on iterated
belief change [10] that extends AGM to the epistemic level. This has been elaborated
in detail e.g. in [28]. Therefore, the belief change operations to be used in the
following share the underlying intention and rationale with the propositional change
operations of the respective same name. In particular, we stick to the view that
revision is a change operation within a static context, while updating may take
changes in the world, or context, respectively, into account.

In the following, we present in particular how the core belief change functional-
ities of update and revision are realized in our setting.
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3.3.1 Belief Change Operator MinCEnt

In the probabilistic framework, a powerful operator to change probability distribu-
tions by sets of probabilistic conditionals is provided by the principle of minimum
cross-entropy which generalizes the principle of maximum entropy in the sense of
(1): Given a (prior) distribution P and a set R of probabilistic conditionals, the
MinCEnt-distribution P ∗ = MinCEnt (P, R) obtained by the function

MinCEnt : EpState × COND → EpState (3)

is the distribution that satisfies all constraints in R and has minimal cross-entropy
(also called Kullback-Leibler divergence) Hce with respect to P , i.e. P ∗ solves the
minimization problem

arg min
P ′|=R

Hce(P ′, P ) (4)

with:

Hce(P ′, P ) =
∑

ω

P ′(ω) log P ′(ω)
P (ω) (5)

If R is basically compatible with P (i. e. P -consistent, cf. [27]), then again there
exists a unique solution P ∗ (for further information and lots of examples, see [9, 49,
27]). The cross-entropy between two distributions can be taken as a directed (i.e.
asymmetric) information distance [57] between these two distributions. Following
the principle of minimum cross-entropy means to modify the prior epistemic state P
in such a way as to obtain a new distribution P ∗ which satisfies all conditionals in
R and is as close to P as possible. So, the MinCEnt-principle yields a probabilistic
belief change operator, associating to each probability distribution P and each P -
consistent set R of probabilistic conditionals the changed distribution

P ∗ = MinCEnt (P, R)

in which R holds. Similar to the MaxEnt-principle, the MinCEnt-principle can be
axiomatized from first principles [26] and shows an excellent handling of conditional
relationships [28] under change operations. Indeed, it generalizes Bayesian condi-
tionalization: If R consists of just one piece of sure information, i.e., R = {A[1]},
then MinCEnt (P, R) = P (·|A). However, please note that in general,

MinCEnt (P, R ∪ S) 6= MinCEnt (MinCEnt (P, R) , S) .

Observing (and indeed relying upon) this subtle difference will be crucial in the rest
of this section.
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3.3.2 Belief Bases

Both probabilistic revision and update operations can be defined by means of the
belief change operator MinCEnt. For the distinction between revision and update,
we have to distinguish whether the new knowledge to be taken into account reflects
new information about an unchanged, static world, or whether it is due to a change
of the world. Towards this end, we introduce the notion of a belief base which is a
pair

〈P, R〉
consisting of a probability distribution P and a knowledge base R. Here, P is
understood as a kind of background knowledge that is used for adapting to the rules
explicitly stated in R. For instance, P can reflect the generic knowledge that an
employee has about how usually companies work and people in companies behave,
while R may contain information about the structure and work flows of a specific
company in which the employee has just started to work. The employee is still
able to follow general rules of business life (encoded in P ), but she can also change,
modify, or adapt such rules according to R. In particular, more specific information
in R can override general knowledge in P in case of conflict. However, if there is no
conflict between knowledge in P established from experience and new information
in R, this established knowledge is still available to the employee.

The set of belief bases is denoted by BBase, and the function

ES : BBase → EpState (6)
ES(〈P, R〉) 7→ MinCEnt (P, R)

yields the epistemic state induced by a belief base. Thus, for the belief base 〈P, R〉
the induced epistemic state is

P ∗ = ES(〈P, R〉) = MinCEnt (P, R)

i.e., the probability distribution that is obtained from P and R by applying our belief
change operator. In this way, we distinguish between the explicit beliefs specified
by R, and the implicit knowledge in P ∗ that is derived from P and R.

Example 3 (Belief base). Let us reconsider Example 1 with our new concepts. Our
initial belief base is B1 = 〈P0, R1〉, where P0 is the uniform distribution over the pos-
sible worlds in Example 1 and R1 is the knowledge base from Example 1. Note that
maximizing entropy corresponds to minimizing relative entropy to the uniform dis-
tribution. Therefore, the epistemic state induced by B1 is the probability distribution
P ∗

1 from Example 1 since MinCEnt (P0, R1) = P ∗
1 .

2073



Beierle, Finthammer, Potyka, Varghese, Kern-Isberner

3.3.3 Revision

Our revision operator deals with new knowledge in a static world, where the belief
state may change but the explicit knowledge remains valid. Therefore, in contrast
to update operations, revision is performed under the assumption that the new
knowledge is consistent with the old explicit knowledge and extends this knowledge.
Former explicit knowledge remains valid, even though the corresponding epistemic
state usually changes. The revision operator ◦ taking a belief base and a set of
conditionals as input and yielding a new belief base is defined by:

_ ◦ _ : BBase × COND → BBase (7)
〈P, R〉 ◦ R′ 7→ 〈P, R ∪ R′〉

Thus, the epistemic state induced after a revision operation is given by:

ES(〈P, R〉 ◦ R′) = MinCEnt
(
P, R ∪ R′) (8)

Note that the component P of the belief base is not changed by a revision,
but that the former explicit knowledge R is preserved. This also illustrates the
similarities between revision and expansion which have also been studied in AGM
theory [2]. But note that while revision is realized by an expansion on the level of
belief bases, it yields a true, non-trivial revision on the level of epistemic states.

Example 4 (Revision). Consider again the belief base B1 = 〈P0, R1〉 from Example
3. Suppose that we learn that in our population there are 40% students. We revise
our belief base appropriately and get the new belief base

B2 = 〈P0, R1 ∪ {(s)[0.4]}〉.

The new induced epistemic state

P ∗
2 = MinCEnt (P0, R1 ∪ {(s)[0.4]})

as determined by MEcore is:

ω P ∗
2 (ω) ω P ∗

2 (ω) ω P ∗
2 (ω) ω P ∗

2 (ω)
syu 0.1703 syu 0.1496 syu 0.0340 sy u 0.0459
syu 0.1760 syu 0.1547 s yu 0.1144 s y u 0.1547

While the epistemic state P ∗
2 is different from the epistemic state P ∗

1 from Exam-
ples 1 and 3, also P ∗

2 satisfies all conditionals in R1, i.e., P ∗
2 |=C (y|s)[0.8] and

P ∗
2 |=C (y|u)[0.7].
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3.3.4 Update

Intuitively, our update operation deals with new beliefs in a dynamic world (or con-
text) where the background knowledge may change. So, update does not presuppose
consistency between old and new explicit knowledge, and former explicit knowledge
does not necessarily remain valid but becomes part of the background knowledge.
The update operator • taking a belief base and a set of conditionals as input and
yielding a new belief base is defined by:

_ • _ : BBase × COND → BBase (9)
〈P, R〉 • R′ 7→ 〈MinCEnt (P, R) , R′〉

So, the new background knowledge after the update is MinCEnt (P, R), and the
new explicit knowledge is R′. Thus, the epistemic state induced after an update
operation is given by

ES(〈P, R〉 • R′) = MinCEnt
(
MinCEnt (P, R) , R′) (10)

which is known to be different from MinCEnt (P, R ∪ R′) (cf. Equation 8).
When comparing (7) and (8) with (9) and (10), the methodological differences

between revision and update operations in our framework become clear: Whereas
former explicit knowledge is preserved under revision, it becomes part of the back-
ground knowledge under updating.

Example 5 (Update). Consider again the belief base B2 = 〈P0, R2〉 with

R2 = R1 ∪ {(s)[0.4]} = {(y|s)[0.8], (y|u)[0.7], s[0.4]}

from Example 4. Suppose that some time later, the relationship between students
and young people has changed in the population, so that students are young with a
probability of 0.9. In order to incorporate this new knowledge (y|s)[0.9] which is in
conflict with R2, the agent applies an updating operation to modify the belief base
B2 appropriately. The new belief base is

B3 = 〈MinCEnt (P0, R2) , {(y|s)[0.9]}〉.

The new epistemic state induced by B3 is

P ∗
3 = MinCEnt (MinCEnt (P0, R2) , {(y|s)[0.9]})

= MinCEnt (P ∗
2 , {(y|s)[0.9]})

where P ∗
2 is as in Example 4. P ∗

3 as determined by MEcore is:
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ep. state Pi−1 Pi Pi+1 . . . Pi+(k−1) Pi+k Pi+(k+1)

new inf . Ri−1 Ri Ri+1 . . . Ri+(k−1) Ri+k Ri+(k+1)

. . . >

time ti−1 ti ti+1 . . . ti+(k−1) ti+k ti+(k+1)✻ ✻

world change world change

Figure 1: Time scale for iterated belief change.

ω P ∗
3 (ω) ω P ∗

3 (ω) ω P ∗
3 (ω) ω P ∗

3 (ω)
syu 0.1874 syu 0.1646 syu 0.0166 sy u 0.0224
syu 0.1786 syu 0.1569 s yu 0.1161 s y u 0.1569

It is easily checked that indeed, P ∗
3 (y|s) = 0.9 (taking rounding into account), whereas

P ∗
2 (y|s) = 0.8. With the update operation, also the probabilities of the other con-

ditionals in R2 have changed, in an entropy-optimal way by minimizing the cross-
entropy from P ∗

2 to the epistemic state P ∗
3 satisfying the new knowledge (y|s)[0.9];

for instance, we have P ∗
2 (y|u) = 0.7, and P ∗

3 (y|u) = 0.73. Thus, updating the agent’s
belief base with an increased probability for the conditional knowledge that students
are young also slightly increases the agent’s belief that unmarried people are young.

3.3.5 Iterated Belief Changes

We will now demonstrate how iterated belief change is realized by means of the
concepts introduced above. Our illustration focuses on how the epistemic state of
an agent changes over time in a sequence of revision and update steps.

When considering the process of iterated belief change, we may assume a discrete
time scale as sketched in Figure 1 (cf. [5]). For any j, Pj is the agent’s epistemic state
at time tj , and Rj is the new information given to the agent at time tj. Furthermore,
for any j, the agent has to adapt her own epistemic state Pj in the light of the new
information Rj, yielding Pj+1. Now suppose that at times ti and ti+k the agent
receives the information that the world has changed (i.e., a world change occurred
between ti−1 and ti and between ti+(k−1) and ti+k). Thus, the changes from Pi−1
to Pi and from Pi+(k−1) to Pi+k are done by an update operation. Suppose further,
that the world remains static in between, implying that all belief changes from Pi up
to Pi+(k−1) are revisions. Furthermore, let the world remain static also after ti+k,
i.e., the belief change from Pi+k to Pi+(k+1) is also achieved by a revision.
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Now using the binary belief change operator MinCEnt as described in Sec-
tion 3.3.1, we can precisely describe how the agent’s epistemic states

Pi, Pi+1, . . . , Pi+(k−1), Pi+k, Pi+(k+1)

are obtained. Denoting MinCEnt by the infix operator ⋄me, we have the following
situation:

update : Pi = Pi−1 ⋄me (Ri−1)
revision : Pi+1 = Pi−1 ⋄me (Ri−1 ∪ Ri)
revision : Pi+2 = Pi−1 ⋄me (Ri−1 ∪ Ri ∪ Ri+1)

. . .
revision : Pi+(k−1) = Pi−1 ⋄me (Ri−1 ∪ Ri ∪ . . . ∪ Ri+(k−2))

update : Pi+k = Pi+(k−1) ⋄me (Ri+(k−1))
revision : Pi+(k+1) = Pi+(k−1) ⋄me (Ri+(k−1) ∪ Ri+k)

For the realization of such an agent with evolving epistemic state it suffices to
store and modify a single belief base 〈P, R〉 where:

• P denotes the epistemic state of the agent before the last update took place,
and

• R is the union of all probablitistic conditionals that the agent received as new
information and that have been used to revise her epistemic state since the
last update occurred.

In Section 4, we will describe how this approach is implemented in the MEcore
system.

3.4 Diagnosis
A very common operation in knowledge-based systems is to come up with a di-
agnosis for a given case. Given some case-specific evidence E (formally, a set of
quantified facts), diagnosis assigns degrees of belief to the atomic propositions D
to be diagnosed (formally, D = {d1, . . . dn} is a set of unquantified atomic propo-
sitions). Thus, making a diagnosis in the light of some given evidence corresponds
to determine what is believed in the state obtained by focusing the current state P
on the given evidence, i.e. querying the epistemic state MinCEnt(P, E) with respect
to D. Thus, here focusing corresponds to conditioning P with respect to the given
evidence E since we are looking for the probabilities xi such that

MinCEnt (P, E) (di) = xi

holds.
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Example 6. Let P ∗
1 be the epistemic state from Example 3. If there is now certain

evidence for being a student and being unmarried, i. e., E = {(s ∧ u)[1.0]}, and
we ask for the degree of belief of being young, i. e., D = {y}, MEcore computes
y[0.8270] since

MinCEnt (P ∗
1 , {(s ∧ u)[1.0]}) (y) = 0.8270.

Thus, if there is certain evidence for being an unmarried student, then the degree of
belief for being young is 0.8270.

While the given evidence in Example 6 is certain since its probability is 1.0, of
course also uncertain evidence with any probability can be handled in the same way
for diagnosis.

3.5 What-If-Analysis: Hypothetical Reasoning
Hypothetical reasoning asks for the degree of belief of complex relationships (goals)
under some hypothetical assumptions. This is useful, e. g., to exploit in advance the
benefits of some expensive or intricate medical investigations. Note that whereas in
the diagnostic case both evidence E and diagnoses D are just simple propositions,
in hypothetical reasoning both the assumptions A (formally, a set of quantified con-
ditionals) as well as the goals G (formally, G = {(L1|K1), . . . (Ln|Kn)} is a set of
unquantified conditionals) may be sets of full conditionals. However, since the under-
lying powerful MinCEnt-change operator can modify epistemic states by arbitrary
sets of conditionals, our framework can handle hypothetical what-if-analysis struc-
turally analogously to the diagnostic case, i. e. by conditioning the current epistemic
state P with respect to the assumptions A and querying the resulting state with
respect to G. Thus, we are looking for the probabilities xi such that

MinCEnt (P, A) (Li|Ki) = xi

holds. Note that since this is hypothetical reasoning, the agent’s current epistemic
state remains unchanged.
Example 7. Given P ∗

2 from Example 4 as present epistemic state, a hypothetical
reasoning question is given by:

“What would be the probability of being young under the condition of
being unmarried, provided that the probability of a student being young
changed to 0.9?”

So we have the goal G = {(y|u)} and the assumption A = {(y|s)[0.9]}. Then
MEcore’s answer is (y|u)[0.73] since

MinCEnt (P ∗
2 , {(y|s)[0.9]}) (y|u) = 0.73.
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Note that this probability is the probability given by P ∗
3 from Example 5 since

MinCEnt (P ∗
2 , {(y|s)[0.9]}) = P ∗

3 ,

but unlike the update operation in Example 5, hypothetical reasoning neither changes
the agent’s belief base nor her epistemic state.

4 The MEcore system
Besides providing the core functionalities needed for probabilistic reasoning at op-
timum entropy, the main objective of MEcore is to support advanced belief man-
agement operations like revision, update, diagnosis, or what-if-analysis in a most
flexible and easily extendible way1. MEcore is implemented in Java and provides
several implementations for computing MinCEnt(P, R).

4.1 Computation of MinCEnt
As elaborated in Section 3, the change function MinCEnt lies at the core of al-
most all knowledge and belief management operations in MEcore. Computing
MinCEnt (P, R) requires to solve the numerical optimization problem given by Ex-
pression (4) in Section 3.3.1. MEcore provides two alternative algorithms to de-
termine the probability distribution MinCEnt(P, R) induced by a given belief base
〈P, R〉, and one can also choose optimized versions of these algorithms to exploit
special structures of knowledge bases.

The first basic algorithm is an implementation of Csiszar’s Iterative I-Projections
algorithm [9]. An I-projection is a projection that is defined by information-theoretic
means as explained in the following. The algorithm starts with P and then iterates
over the conditionals in R. In each iteration, a conditional r ∈ R is selected and
the current distribution P is I-projected on the set of probability distributions that
satisfy r. That is, the next distribution P ′ is the distribution MinCEnt(P, {r})
that satisfies r and minimizes the cross-entropy to P . This process converges
to MinCEnt(P, R) if R is consistent [9]. Note, however, that in each iteration
MinCEnt(P, {r}) has to be computed for some r ∈ R and it is not at all clear how this
is easier than computing MinCEnt(P, R). Indeed, the main challenge in implement-
ing Iterative I-Projections is to find an efficient way to compute MinCEnt(P, {r}).
Fortunately, in our framework, MinCEnt(P, {r}) can be obtained by a simple update
formula (see [41], Lemma 4.2).

1MEcore is available at:
http://sourceforge.net/p/kreator-ide/code/HEAD/tree/Software/MECore/
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MEcore’s second basic algorithm is based on Limited Memory BFGS (L-BFGS)
[35]. Roughly speaking, BFGS is a Quasi-Newton method which approximates New-
ton’s method to find local optima of functions. Newton’s method is a line-search
method like gradient descent, but it takes second-order information from the Hessian
matrix into account and in this way provides better convergence guarantess. How-
ever, computing the Hessian matrix is too expensive in many applications, therefore
Quasi-Newton methods use an approximation. L-BFGS is a memory-optimized ver-
sion that avoids storing the whole matrix and turned out to be very efficient for
probabilistic reasoning problems [40, 42]. In our framework, Iterative I-Projections
is often the better choice for small or loosely correlated knowledge bases, whereas
L-BFGS becomes preferable for more complex knowledge bases (see [53] for some
benchmarks).

Both algorithms can be optimized if the knowledge base features special struc-
ture. First, deterministic conditionals with probability 0 or 1 let worlds become
meaningless by enforcing zero probabilities. These worlds can be deleted in a pre-
processing step to decrease the size of the probability tables. Second, worlds are
often indifferent with respect to the ME-optimal distribution and can be combined
in an equivalence class to further reduce the number of worlds [16, 30, 15].

4.2 Performing Revision More Efficiently

Once a belief base 〈P, R〉 is defined or modified in MEcore, the current epistemic
state

P ∗
cur := ES(〈P, R〉) = MinCEnt(P, R) (11)

induced by 〈P, R〉 is computed immediately. Since determining MinCEnt(P, R) by
one of the available algorithms (see Section 4.1) may be computationally expen-
sive, the epistemic state P ∗

cur induced by 〈P, R〉 is only determined once and stored
afterwards for later use, e. g., for answering queries. Therefore, for a pair 〈P, R〉
representing a belief base, actually the triple (P, R, P ∗

cur) is stored in MEcore.
If the current belief base 〈P, R〉 is revised by a set of conditionals R′, i. e. when

performing the revision

〈P, R〉 ◦ R′ = 〈P, R ∪ R′〉, (12)

then MEcore has to compute the revised epistemic state

P ∗
rev := ES(〈P, R ∪ R′〉) = MinCEnt(P, R ∪ R′) (13)
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induced by the revised belief base 〈P, R∪R′〉. However, MEcore also allows to com-
pute P ∗

rev in a more efficient way by exploiting the fact that the following equation
holds for MinCEnt (as shown in [27]):

MinCEnt(P, R ∪ R′) = MinCEnt(MinCEnt(P, R)︸ ︷︷ ︸
P ∗

cur

, R ∪ R′) (14)

That is, MEcore can directly consider the current epistemic state P ∗
cur and compute

P ∗
rev = MinCEnt(P ∗

cur, R ∪ R′). (15)

In many cases, considering P ∗
cur (as in (15)) instead of P (as in (13)) when computing

P ∗
rev can be more efficient, since P ∗

cur already satisfies all of the conditionals in R (cf.
(11)). That is, the actual computation of MinCEnt can often be performed faster
by starting from P ∗

cur, since P ∗
cur is already “closer” to P ∗

rev.

4.3 The User Interface
MEcore can be controlled by a text command interface or by scripts, i. e. text files
that allow the batch processing of command sequences. These scripts and the text
interface use a programming language-like syntax that allows to define, manipulate
and display variables, propositions, rule sets and epistemic states. The following
sequence of MEcore commands and appendant outputs (marked by ◮) illustrates
how the particular results from Example 1 to Example 5 have been determined:

// define a set of rules (cf. Example 1)
R := ( (y|s)[0.8], (y|u)[0.7] )

// start with an initial belief base consisting of the uniform distribution and R,
// and compute the induced epistemic state (cf. Example 3)
currBBase := initBeliefBase(R);
◮ P (syu) = 0.1950, P (syu) = 0.1758, P (syu) = 0.0408, . . .

// query the epistemic state induced by the current belief base
// about the conditional (y|s ∧ u) (cf. Example 2)
currBBase.query((y|s ∧ u));
◮ (y|s ∧ u)[0.8270]

// revise the current belief base by (s)[0.4]
// and compute the induced epistemic state (cf. Example 4)
currBBase.revise((s)[0.4]);
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◮ P (syu) = 0.1703, P (syu) = 0.1496, P (syu) = 0.0340, . . .

// query the current induced epistemic state about (y|u) (cf. Example 4)
currBBase.query((y|u));
◮ (y|u)[0.7]

// update the current belief base by (y|s)[0.8]
// and compute the induced epistemic state (cf. Example 5)
currBBase.update((y|s)[0.8]);
◮ P (syu) = 0.1874, P (syu) = 0.1646, P (syu) = 0.0166, . . .

// query the current induced epistemic state about (y|u) (cf. Example 5)
currBBase.query((y|u));
◮ (y|u)[0.73]

Hence, one is able to use both previously defined rule sets and rules that are
entered just when they are needed, and combinations of both. The ability to ma-
nipulate rule sets, to automate sequences of updates and revisions, and to output
selected (intermediate) results for comparing, yields a very expressive command
language. This command language is a powerful tool for experimenting and testing
with different setups. All core functions of the MEcore system are also accessible
through a software interface (in terms of a Java API). So MEcore can easily be
extended by a GUI or be integrated into another software application.

4.4 Related Work
There are many systems performing inferences in probabilistic networks, especially in
Bayesian networks [51]. Some software systems supporting knowledge representation
and reasoning with maximum entropy are SPIRIT [54], PIT [56], and the approach
described in [55]. SPIRIT has been used in different applications involving credit
analysis, investment business, or diagnosis in Chinese medicine, and LEXMED is a
successfully working system for the diagnosis of appendicitis implemented in PIT.
Graph based methods as they are used e.g. in SPIRIT [54] to implement reasoning at
optimum entropy, are known to feature a very efficient representation of probability
distributions via junction trees and hypergraphs, whereas the current version of
MEcore works on a model based representation of probabilities. While this is
less efficient, the primary aim of the MEcore project is to implement subjective
probabilistic reasoning, as it could be performed by agents, making various belief
operations possible. In particular, it allows changing of beliefs in a very flexible
way by taking new, complex information into account. This is not possible with
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graph-based systems for probabilistic inference, as efficient methods of restructuring
probabilistic networks as they would be required for the framework described in this
paper still have to be developed.

Logical approaches to probabilistic reasoning have been made popular in artifi-
cial intelligence by Nilsson [44] and various probabilistic logics have been considered
since then [22, 48, 3]. Halpern classified probabilistic logics in three types depen-
dent on the way in which uncertainty is incorporated [19]. Whereas logics of the first
type introduce probabilities over the elements of the domain of the logical language,
logics of the second type consider probabilities over possible worlds. The third type
combines the first and second type. Like many recent approaches [38, 11, 39], our
formalism belongs to the second type. Reasoning under optimum entropy has been
investigated extensively, see, e.g., [48, 30, 31]. Another popular approach is to con-
sider all probability distributions that satisfy a knowledge base to derive probability
intervals for queries [20, 37, 30]. Other successful approaches to probabilistic reason-
ing are based on graphical models [34, 32, 11] or extensions of classical probabilistic
programming techniques [33].

5 Modelling and Reasoning with Probabilistic Logic in
a Medical Application

In order to illustrate the use of the maximum entropy principle for probabilistic con-
ditional logic and MEcore’s reasoning facilities, this section reports on a case study
carried out in a medical scenario involving clinical patient data in neurosurgery. By
modelling clinical brain tumor data and physicians’ expert knowledge, we developed
a prototype that could serve as a decision support system by giving informative feed-
back to the physicians who are responsible for deciding about the medical treatment
of a patient. The evaluation of the results computed by MEcore was carried out
by a physician in neurosurgery by assessing MEcore’s output on a real documented
patient case and deciding whether or not the system’s results are plausible according
to his medical knowledge and experience.

5.1 Brain Tumors

In this paper, we use the term brain tumor to refer to intracranial tumors which
are tumorous neoplasms localized in the brain or its meningeal tissues. Two major
clinical and neurophysiological problems are caused by a growing brain tumor pro-
cess. One is the local infiltration of tumor tissue which destroys closely spaced brain
tissue. Another one is caused by the increase of global intracranial pressure leading
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to a comprehensive brain damage. This is due to the fact that the cranium can be
seen as a rigid box, since after birth the cranial fontanels start to ossify leaving the
whole brain with very limited pressure releasing openings.

The prevalence of brain tumors is about 50:100.000 in the middle European
region [52]. The incidence is about 1:10.000 per year. There are two age peaks,
one within the range of 40 years and 70 years, another one within the childhood.
Noteworthy, in childhood, brain tumors are the second most common tumor entity
after leukemia. While adult patients mostly suffer from gliomas, meningeomas and
metastases of other primary tumors, children mostly suffer from medulloblastomas,
cerebellar astrozytomas and ependymomas [8]. Guiding symptoms are neurological
failures; the brain tumor itself is mostly confirmed by medical imaging through
CT/MRI-Scans. A histopathological tissue analysis secures the diagnosis and the
exact classification-type and the grading of the brain tumor. Depending on the exact
tumor type, the treatment consists of surgical removement and/or chemotherapy. In
rare cases of very small tumor sizes and probable benignity, surgery can be avoided
if repeated medical imaging does not show any malignant potential within the next
months.

5.2 Modelling Clinical Brain Tumor Data

For generating an initial knowledge base for clinical brain tumor data we will use
various binary and multi-valued variables considering aspects of the patient, the pa-
tient’s medical history, the observed symptoms, the possible diagnosis, etc; a medical
justification for these variables and their values along with references to the relevant
medical literature is given in [60, 61]. Since the prevalence of different tumor types
varies with the age of patients, the variable age distinguishes patients with respect
to the three values le20 (less or equal 20 years old), 20to80 (between 20 and 80
years), and ge80 (greater or equal 80 years). The binary variable warningSymptoms
is true iff warning symptoms like perceptual disturbances or unusual pain in the head
are present. Given results of a magnetic resonance tomography (MRT), the variable
malignancy corresponds to the assumed malignancy of the tumor with respect to the
WHO grading system [36]; a higher index corresponds to a higher malignancy. The
binary variable icpSymptoms indicates whether MRT results provide symptoms for
increased intracranial pressure (ICP). The preoperative physical fitness of patients
is evaluated by the ASA (American Society of Anesthesiologists) classification sys-
tem represented by the variable ASA. It is associated with perioperative risks, and a
higher value indicates a higher risk. Only the first four states are considered here,
as treatment of a brain tumor is of low priority for a higher value. Thus, so far we
have:
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age : le20, 20to80, ge80
warningSymptoms : true, false

malignancy : 1, 2, 3, 4, other
icpSymptoms : true, false

ASA : 1, 2, 3, 4

In BT, the ten most common brain tumor types like gliomas and meningiomas
[50] are taken into account. Together with the value other for any other tumor
types, these brain tumor types constitute the values of the variable diagnosis:

diagnosis : glioblastoma,
pilocytic-astrocytoma,
diffuse-astrocytoma,
anaplastic-astrocytoma,
oligodendroglioma,
ependymoma,
meningeoma,
medulloblastoma,
cranialnerve-tumor,
metastatic-tumor,
other

Finally, there are three variables denoting the therapy, possible complications,
and the expected health of the patient. The variable

therapy : conservative, surgery, none

refers to the therapy to be chosen. We distinguish a conservative therapy without
surgery, surgery, or no therapy at all. Possible complications during an inpatient
stay are expressed by the variable

complication : 1, 2, 3

which distinguishes the three stages 1 (no complications or minor, completely re-
versible complications like temporary pain after surgery), 2 (medium or heavy com-
plications with uncertain reversibility like neurological or other functional disorders),
and 3 (life-threatening complications like serious internal bleeding or neurological
deficits at the risk of brain death). Thus, higher values correspond to more serious
complications. The expected health of the patient after inpatient stay is denoted
by:
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diagnosis Adults Children
glioma
- glioblastoma 15% unspecified
- pilocytic-astrocytoma unspecified 35%
- diffuse-astrocytoma 10% unspecified
- anaplastic-astrocytoma 10% unspecified
- oligodendroglioma 10% unspecified
- ependymoma 4% 8%
meningeoma 20% unspecified
medulloblastoma 7% 25%
cranialnerve-tumor 7% unspecified
metastatic-tumor 10% unspecified
other unspecified unspecified

Table 2: Empirical frequencies of brain tumor types, where unspecified stands for
rare or unknown (collected from [8, 21, 43, 59]).

prognosis : very_good, good, intermediate, poor, very_poor

The knowledge base BT uses these nine propositional variables as its vocabulary
to represent clinical brain tumor data and corresponding expert knowledge. Note
that although we have only 9 variables, due to the multiple values they induce
22 × 33 × 4 × 52 × 11 = 118.800 possible worlds.

5.3 Initialization
There are various publications containing empirical frequencies of certain brain tu-
mor types. For our initial version of our knowledge base BT, we encode the fre-
quencies given in Table 2 that are collected from [8, 21, 43, 59] and that are given
relative to the patient being an adult (age=20to80 or age=ge80) or being a child
(age=le20). The representation of these frequencies is given by conditionals of the
form

(diagnosis=glioblastoma| !(age=le20))[0.15]
(diagnosis=pilocytic-astrocytoma| age=le20)[0.35]

...
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(diagnosis=cranialnerve-tumor| !(age=le20))[0.07]
(diagnosis=metastatic-tumor| !(age=le20))[0.10]

where, using the input syntax of MEcore, ! denotes negation. Additionally, BT
contains the probabilistic facts

(age=le20)[0.15]
(age=20to80)[0.62]

reflecting the age distribution in Germany in the year 2009.
Note that there are some missing frequencies in Table 2, and thus, there are no

conditionals in BT for these missing frequencies. In order to obtain a full probability
distribution over all variables and their values, the missing knowledge is completed
in an information-theoretically optimal way by employing the principle of maximum
entropy, thus by being as unbiased as possible with respect to each diagnosis with
unspecified probability. In MEcore, the computation of the epistemic state induced
by the belief base which incorporates the knowledge given by BT is started by

line 1: currBBase := initBeliefBase(BT);
so that the belief base currBBase induces the maximum entropy distribution over
BT.

In order to be able to ask a set of queries instead of just a single query at the
same time, MEcore allows the introduction of an identifier to denote a set of queries.
Here, we will illustrate this feature with a singleton set containing an unquantified
conditional for the diagnosis under the premise that the patient is older than 80 and
that he suffers from warning symptoms

line 2: queriesBT := (diagnosis|(age=ge80) ∧ warningSymptoms);
line 3: currBBase.query(queriesBT);

which yields the following probabilities:
diagnosis probability

glioblastoma 0.150
pilocytic-astrocytoma 0.035
diffuse-astrocytoma 0.100
anaplastic-astrocytoma 0.100
oligodendroglioma 0.100
ependymoma 0.040

diagnosis probability
meningeoma 0.200
medulloblastoma 0.070
cranialnerve-tumor 0.070
metastatic-tumor 0.100
other 0.035

Note that up to now, BT does not contain any information about the influence
of warning symptoms or the observation that the patient is more than 80 years
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old. Therefore, in the maximum entropy distribution induced by currBBase, the
corresponding premise given in the queries in queriesBT (cf. line 2) does not cause
a deviation from the probabilities given in the original conditionals in BT and taken
from Table 2. Note also that the prababilities for the two possible diagnosis values
pilocytic-astrocytoma and other missing for adults in Table 2 have also been
computed as expected.

5.4 Revising BT

Besides available statistical data, another important knowledge source is the clini-
cal expert knowledge of a physician. For example, for adults, Table 2 tells us that
the most frequently appearing glioma tumor type is glioblastoma, but no infor-
mation is provided about its probability given specific symptoms. An experienced
physician working with brain tumor patients might state the following conditionals
expressing his expert beliefs about the probability of a glioblastoma given various
observations:

(diagnosis=glioblastoma| !(age=le20) ∧ warningSymptoms)[0.20] (16)
(diagnosis=glioblastoma| !(age=le20) ∧ icpSymptoms)[0.20] (17)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=4))[0.40] (18)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=3))[0.10] (19)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=2))[0.05] (20)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=1)[0.01] (21)

Taking into account only Table 2, the probability for glioblastoma is 15%. There-
fore, given the respective preconditions, rules (16) - (18) would increase the proba-
bility, whereas rules (19) - (21) would decrease it.

In [60], about 90 conditionals expressing such expert knowledge from a physi-
cian’s point of view are formulated. With expertBT denoting the set of these con-
ditionals, we will incorporate this new knowledge into the current belief base. We
can achieve this in such a way as if it had been available already in the original
knowledge base BT by using the belief change operation revision (cf. Section 3 and
[29]). In MEcore, this is easily expressed by

line 4: currBBase.revise(expertBT);

Now, asking the queriesBT (cf. line 2) again, the probabilities have changed con-
siderably in the new epistemic state induced by the revised belief base:
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diagnosis probability
glioblastoma 0.223
pilocytic-astrocytoma 0.050
diffuse-astrocytoma 0.098
anaplastic-astrocytoma 0.106
oligodendroglioma 0.086
ependymoma 0.039

diagnosis probability
meningeoma 0.156
medulloblastoma 0.065
cranialnerve-tumor 0.057
metastatic-tumor 0.106
other 0.011

For example, the probability for glioblastoma increased from 15% to 22.3%, while
the probability for meningeoma decreased from 20% to 15.6%. This is well in accor-
dance with the observations made by physicians working in this area [60].

For illustrating MEcore’s copying mechanism for belief bases, let us assume
that we want to store the current belief base and its associated epistemic state for
later use. This is achieved by instructing MEcore to make a copy:

line 5: revBB := currBBase.copy();
In this way, we can perform any further change operations on currBBase and can
still come back to the belief base obtained so far by just using revBB.

5.5 Updating BT

Now suppose that later on, there has been some change in the environment and
experts think that the conditionals (16) - (18) hold with other probabilities. So
let gliobNew denote the set consisting of the following conditionals, which have
modified probabilities:

(diagnosis=glioblastoma| !(age=le20) ∧ warningSymptoms)[0.15] (22)
(diagnosis=glioblastoma| !(age=le20) ∧ icpSymptoms)[0.25] (23)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=4))[0.45] (24)

Revision of the current belief base with gliobNew would lead to an inconsistency
since the conditionals (16) - (18) and the conditionals (22) - (24) in gliobNew cannot
be satisfied simultaneously. However, MEcore’s update operation of currBBase by
gliobNew can incorporate the new knowledge into the current belief base. After-
wards, the epistemic state induced by the updated belief base satisfies gliobNew and
has minimum cross entropy with respect to previous epistemic state (cf. Section 3).
Note that update (in contrast to revision) is the more appropriate operation here,
since the shift of the probabilities reflects a changed environment. So we perform
the update operation in MEcore by stating:

line 6: currBBase.update(gliobNew);
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Next, we could, e. g., address further queries to the updated belief base to analyze
the effects of the update operation.

5.6 Prognosis and What-If-Analysis

Now, we come back to the belief base revBB obtained in Section 5.4, which has not
been affected by the update operation in Section 5.5. For the real documented case
[60] of a patient being older than 80 years, with warningSymptoms, icpSymptoms,
and malignancy=4, we ask MEcore about the diagnosis:

line 7: revBB.query( (diagnosis | (age=ge80) ∧ warningSymptoms
∧ icpSymptoms ∧ (malignancy=4)) );

MEcore returns a probability of 55.6% for the diagnosis glioblastoma, being
very plausible from a physician’s point of view. Assuming that glioblastoma were
indeed the correct diagnosis and assuming further that a surgery would be chosen,
the prognosis for complications that might occur are determined by:

line 8: hypothesis := ( (diagnosis=glioblastoma)[1.0],
(therapy=surgery)[1.0] );

line 9: whatIfQ := (complication| (age=ge80) ∧ warningSymptoms
∧ icpSymptoms ∧ (malignancy=4));

line 10: revBB.whatif(hypothesis, whatIfQ);

Note that what-if is similar to an update except that it does not change the
current belief base. The resulting probabilities for complications of grade 1, 2, and
3 are 0.4%, 45.4%, and 54.2%, respectively. While complications of grade 2 or 3 are
rare in general, the provided evidence and the given assumptions caused MEcore
to rise the probabilities for these types of complications considerably. After surgical
treatment of the given patient, there was indeed a complication of grade 2. From a
clinical perspective, the probabilities for complication computed by MEcore is an
adequate warning; however, the probability for grade 3 is a bit too pessimistic, since
compared to similar patient-risk constellations, life-threatening complications are
frequent, but less than 50%. Here, a corresponding adaptation of the conditionals
constraining the probabilities for grade 3 complications might lead to a more realistic
probability value for this query. Further types of queries for BT asking MEcore
for the expected health of patients after inpatient stay, returned a very realistic
prognosis from a medical point of view [60].
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6 Conclusions and Further Work
In this paper, we proposed a framework for powerful knowledge and belief manage-
ment operations as needed by an intelligent agent acting in an uncertain, evolving
environment. Using probabilistic logic with optimum entropy semantics, the core
functionality of a change operator based on minimum cross entropy supports re-
vision, update, and iterative belief changes in a setting where epistemic states are
modified by sets of conditionals, thus exceeding by far the classical AGM theory and
related approaches dealing only with propositional beliefs. We gave an overview on
the MEcore system realizing and implementing the agent model, including diagno-
sis and hypothetical reasoning. As an application scenario for MEcore, we reported
on a case study using probabilistic conditional logic and the principle of maximum
entropy to model clinical brain tumor data and medical expert knowledge in neu-
rosurgery. The resulting knowledge base contains approximately 110 probabilistic
conditionals over nine multi-valued variables that medical experts identified to be at
the core of clinical brain tumor data analysis. Using MEcore for working with this
knowledge base produced realistic probabilities for diagnosis and prognosis from a
clinical physician’s point of view.

In future work, we plan to further investigate and elaborate the formal prop-
erties of the knowledge and belief management operations, to employ graph-based
methods for representing probability distributions in MEcore, and to extend and
refine the medical modelling in the brain tumor application. For representing uncer-
tainty or ignorance about probabilities, probability intervals could be used. Thus, a
further area of our future work is to investigate whether it is possible to extend the
framework presented in this article by considering not only point probabilities, but
allowing for stating lower and upper probabilities as well.
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