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Understanding how protein folds into a functional and structural configuration is arguably one of the
most important and challenging problems in computational biology. Currently, the protein folding
mechanism is often characterized by calculating the free energy landscape versus the reaction coordi-
nates such as the fraction of native contacts, the radius of gyration, the principal components and so
on. In this paper, we present a combinatorial algorithmic approach towards understanding the global
state changes of the configurations. The approach is based on cluster computation, each cluster being
defined by a pattern of a combination of various reaction coordinates. We present an algorithm of
time complexityO((N + nm) log n) whereN is the size of the output andn×m is the size of the
input. To date, this is the best time complexity for the problem. We next demonstrate that this ap-
proach extracts crucial information about protein folding intermediate states and mechanism. (1) The
method recovers states previously obtained by visually analyzing free energy contour maps. (2) It also
succeeds in extracting meaningful patterns and structures that had been overlooked in previous works,
which provide a better understanding of the folding mechanism (of aβ-hairpin protein). These new
patterns also interconnect various states in existing free energy contour maps versus different reaction
coordinates. (3) The approach does not require the free energy values, yet it offers analysis comparable
and sometimes better than the methods that use free energy landscapes, thus validating the choice of
reaction coordinates.

1. Introduction

Understanding protein folding is one of the most challenging problems in molecular biol-
ogy [1]. The interest is not just in obtaining the final fold (generally referred to as structure
prediction) but also understanding the folding mechanism and folding kinetics involved in
the actual folding process. Many native proteins fold into unique globular structures on
a very short time scale. The so-called fast folders can fold into the functional structure
from random coil in microseconds to milliseconds. Recent advances in experimental tech-
niques that probe proteins at different stages during the folding process have shed light on
the nature of the folding kinetics and thermodynamics [2, 3]. However, due to experimen-
tal limitations, detailed protein folding pathways remain unknown. Computer simulations
performed at various levels of complexity, can be used to supplement experiment and fill
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in some of the gaps in our knowledge about folding mechanisms. Meanwhile, effective
analyses of the trajectory data from the protein folding simulations, either by molecular dy-
namics or Monte Carlo, remains yet another challenge due to the large number of degrees of
freedom and the huge amount of trajectory data. Currently, the protein folding mechanism
is often characterized by calculating the free energy landscape versus the so-called reaction
coordinates [4, 5]. We and others have used various reaction coordinates [4, 5]. Searching
for better reaction coordinates is still of great interest in protein folding mechanism studies.
These analyses have provided important information for a better understanding of protein
folding. However, it often requires a priori knowledge about the system under study and
the free energy contour maps usually result in too much information reduction due to their
limit in dimensionality which is often as low as two or three. Thus better or complementary
analysis tools are in great demand.

It is also known that the folding process of many proteins takes the amino acid coil
through different states before stabilizing on the final folded state. Therefore, a first step
towards understanding the folding process is to identify these states. In this paper, we pro-
pose the use of a combinatorial pattern discovery technique to protein folding trajectory
data from simulation experiments. A novel aspect of the algorithm is that it incorporates
arbitrary and possibly different distribution functions of the data in each dimension and
guarantees complete and accurate solution to the patterned clustering problem. The pro-
cedure involves computations of clusters of the data: each cluster has a signature pattern
describing all the elements of the cluster. The simplicity of the pattern leads to easy in-
terpretation of and thus better understanding of the underlying processes. By appropriate
redundancy checks the number of clusters is made manageably small. The results of this
method are threefold. Firstly the method is validated by comparing its results with previ-
ously published results with a free energy landscape analysis. Secondly, the method suc-
ceeds in extracting meaningful new patterns and structures (from a folded state) that had
been overlooked before. These new structures provide a better understanding of the folding
mechanism of aβ-hairpin, which is used as a case study in this paper. These new patterns
also interconnect various states in existing free energy contour maps versus different re-
action coordinates. This success encourages us to postulate that the automatic discovery
will lead to much greater understanding of the folding process. Thirdly, the method vali-
dates the choice of reaction coordinates since the pattern discovery analysis based on these
reaction coordinates compares well with the previous free energy based approaches.

2. The Problem Description

Well known simulation methods exist to carry out the folding of a protein. However it is
often not sufficient to obtain a succinct understanding of the folding process. The task here
is to understand the folding mechanism by recognizing intermediate states that the folding
process goes through. For example, the folding of a small protein, aβ-hairpin, could be
understood at a global level in terms of a few states. Although we would aim to understand
the folding of every protein in this simplistic form, the current state-of-the-art is far from
this goal.
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At each step of the simulation process, a configuration of the solvated protein can be
computed. However, the simulation may be carried for nanoseconds to microseconds in
units of femtoseconds (10−15) and so the number of such intermediate configurations could
easily be millions in number. Hence the task is to identify and capture representative in-
termediate configurations. Since working in the structure space of the protein is extremely
complex, researchers often identify a few key characteristic features of the protein, or of-
ten so-called reaction coordinates, and study the trends and variations in these reaction
coordinates [5, 6].

In this paper we utilize a four step process towards understanding the folding of a
protein. The first step involves the in-silico simulation that gives rise to a large collection
of data points, each point being an array of the characteristic features of the folding protein
at that time point. For example, the radius of gyration or the number of hydrogen bonds
could be such features. In Section 4 we study theβ-hairpin folding as a show case and
describe seven such characteristic features that we have used previously in the study of this
particular protein.

In the second step, we study these data points to extract the characteristic set of features
which we call patterned clusters. Again, in the case of theβ-hairpin, the data points are
seven dimensional, corresponding to the characteristic features of the protein at each time
interval. See Figure 1 for a small portion of the data as an example. In the third step,
these patterns are filtered to retain the most significant ones. It is very difficult to model the
significant patterns in this domain, so we have combined the second and third steps and use
appropriate parameters to filter out possibly insignificant patterns. For instance, if a pattern
occurs less thank times, then the pattern is possibly not salient. Also we exercise control
by the use of meaningfulδ() functions (see the next section for details).

The fourth step is of analyzing the patterns: this involves extracting the structure of
the configuration using the time coordinates and studying the correlation of the different
structures. For instance, one could observe that the hydrophobic core is formed before the
beta-strand hydrogen bonds, or vice versa; and one can interconnect various free energy
states in different free energy contour maps by monitoring the high dimensional (multi-
column) patterns. These findings can provide a better understanding of the protein folding
mechanism. Further, the time correlation between various patterns or states could be stud-
ied. For example, it is extremely useful to know which pattern or state precedes the other
and by how much time.

3. On Patterned Clusters

Due to space constraints, the theoretical and algorithmic details such as proof of correctness
and complexity analysis will appear in the full version of the paper.
Definition 3.1 (δ-cluster, maximalδ-cluster) Givenδ() : R→ R+, vi ∈ R, 1 ≤ i ≤ n and
a quorumk. A δ-cluster is collection ofi with vi ∈ Vc, |Vc| ≥ k such that ifv1, v2 ∈ Vc,
then|v1 − v2| ≤ 1

2 (δ(v1) + δ(v2)). Further,Vc is maximal if there exists noV ′
c such that

Vc ⊂ V ′
c ⊆ V andV ′

c is a δ-cluster.
Definition 3.2 (crossδ-cluster, maximal crossδ-cluster) Givenδj() : R → R+, quorumk
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andvij ∈ R, 1 ≤ j ≤ m, 1 ≤ i ≤ n. A crossδ-cluster is collectioni andj with vij ∈ Vc

such that for eachj, {vij ∈ Vc|1 ≤ i ≤ n} is a δj-cluster. Further,Vc is maximal if there
exists no additionali′ or j′ with the correspondingV ′

c with Vc ⊂ V ′
c ⊆ V such thatV ′

c is a
crossδ-cluster.

Here we present an output sensitive algorithm that computes all the maximal patterned
(cross)δ-clusters. The algorithm has two main steps:Step 1: Maximal δj-cluster com-
putation. For eachj, 1 ≤ j ≤ m, compute the maximalδj-cluster,V j

l . For simplicity let
the number of these beL and the clusters beVcl, 1 ≤ l ≤ L. The pseudocode,Compute-
Cluster(), describes the maximalδ-cluster computations, for eachj. To avoid clutter, the
end-of-input check is not included in the code.Step 2: Maximal patterned (cross)δ-
cluster computation. The algorithm in this step is based on the Set Intersection Problem
(SIP) described in [7] in the context of computing redundant motifs from irredundant ones.
Let the elements be numbered1 . . . L. Assume a function Generate-Set(Vc) which creates
Vc, a subset ofVc1, Vc2, . . . , Vcn in an appropriate data structureD (say a tree). A query of
the form if a subsetVc exists inD takesO(log n) time. The pseudocode,Generate-Set(),
describes the algorithm. The initial call is Generate-Set({Vc1, Vc2, . . . , VcL}, n, 0). The
maximal patternedδ-clusters are{vij |Vcj ∈ Vk andvij ∈ Vcj}, for each computedVk

stored inD.
Compute-Cluster() [Step 1]

(1) Sortvi’s asv1, . . . , vn

(2) i ← 1, l ← i + 1
(3) If |vi−vl| ≤ 1

2 (δ(vi)+δ(vl))
(4) l ← l + 1, goto Step 3

(5) ElseCi = {vj |i ≤ j < l},
i ← i + 1, goto Step 3

Generate-Set(Vk, i, f lag) [Step 2]

(1) If (flag =0) addVk toD
(2) If (i ≤ 0) then exit
(3) LetV ′k = {Vcl ∈ Vk|i ∈ Vcl}
(4) If V ′k exists inD

Generate-Set(Vk, i− 1, 1)
(5) Else Generate-Set(V ′k, i−1, 0)

Complexity of the Algorithm. The time taken by the complete algorithm isO(nm log n+
N log n) whereN is the size of the output andnm is the size of the input.

4. Case Study: Folding ofβ-hairpin

A small but important protein system has been selected as an example to demonstrate
our approach to understanding the folding process. This small protein is a 16-residue
β-hairpin (GEWTYDDATKTFTVTE) from the C-terminus of protein G (2gb1.pdb). Its
folding mechanism and folding free energy states have been studied extensively in previous
works [5, 6]. The current study will use our new approach to analyzing the existing trajec-
tories from the previous molecular dynamics simulations in explicit solvent. Thisβ-hairpin
has received much attention recently from both experimental and theoretical fronts [3, 2, 8,
9, 10, 4, 11, 12, 13]. However, there are still a number of important aspects that remain
controversial, such as the relative importance and time sequential order between the beta-
strand hydrogen bonds formation and the hydrophobic core formation; and whether or not
the existence of alpha-helical intermediates during the folding.
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Figure 1. Raw data from the REM sampling of theβ-hairpin folding in explicit water. (1)Nβ
HB : the number

of native beta-strand hydrogen bonds, (2)Rcore
g : radius of gyration of the hydrophobic core residues (TRP43,

TYR45, PHE52 and VAL54). (3)ρ: radius of gyration of entire protein (Rg), (4) fraction of native contacts,
(5) PC-1: the first principal component from Principal Component Analysis (6)PC-2: the second principal
component, and (7)RMSD: the backbone root mean square deviation (RMSD) from the native structure.

J1 J2 J3 J4 J5 J6 J7

Nβ
HB Rcore

g Rg ρ PC-1 PC-2 RMSD

5.000 5.175 8.653 1.000 -7.819 -34.008 0.000
4.474 5.328 8.361 0.953 -7.972 -35.772 1.595
4.354 5.416 8.471 0.988 -7.899 -36.399 1.379
4.053 5.257 8.298 0.893 -8.373 -35.536 1.708
3.776 5.186 8.381 0.857 -7.777 -35.415 1.624
2.155 5.390 7.816 0.778 -2.277 -27.017 3.672
4.842 6.043 7.312 0.778 2.144 -33.772 5.208
0.000 8.303 10.033 0.242 -27.075 43.521 10.163
3.797 5.990 7.514 0.728 -3.084 -30.185 4.838
2.898 5.483 7.775 0.778 -2.888 -26.254 3.904

4.1. Simulation Parameters (Step 1)

In this study, an all-atom model is used for the description of the protein solvated in water.
The Optimized Potential for Liquid Simulations - All-Atom (OPLS-AA) force field [14]
with an explicit solvent model, Simple Point Charge (SPC) model is used. A total of 64
replicas of the solvated system consisting of 4342 atoms is simulated with temperatures
spanning from 270 K to 695 K. For each replica, a 3 nanosecond molecular dynamic sim-
ulation is run with replica exchanges attempted every 400 femtoseconds. The reader is
directed to [5, 6] for details of this simulation. For each conformation, seven different
reaction coordinates are used: see Figure 1 for details. There are a total of about 20,000
conformations saved for each replica. Figure 1 lists a small portion of the data for the
replica at 310Kelvin (37 Celsius), which is the biological temperature.

These simulations have revealed a hydrophobic-core driven folding mechanism from
free energy contour map analysis [5]. Since this is a well studied system and a large
amount of data is available, comparisons with other analysis tools, such as the free energy
contour map analysis, might be easier and more straightforward. Various reaction coordi-
nates obtained from previous runs serve as the starting point.

4.2. Discovery Parameters (Steps 2 & 3)

The δ function of the cluster detection problem is defined as a constant. Thusδ(x) = c,

for some constantc ∈ R for eachx. The δ functions for each column of Figure 1 is
given as follows:δ1(x) = 0.2, δ2(x) = 0.6, δ3(x) = 0.35, δ4(x) = 0.15, δ5(x) = 5.0,
δ6(x) = 16.5, δ7(x) = 1.0 for all x. Further, the quorumk is defined to be 2000. Figure 2
lists some representative patterns of size two with these parameters. The time sequences
are not shown due to the space constraints. These simple patterns can be directly compared
with the previous free energy states in the 3-D free energy contour maps. These are 3-D
plots of free energy versus a pair of reaction coordinates or data columns of Figure 1.
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Figure 2. Simple patterns of size two. These patterns can be easily compared to the 3-D free energy landscapes
using a pair of corresponding reaction coordinates.

Size Cluster Pattern
2 J1 = 4.886+ 0.2 J2 = 5.448+ 0.6
2 J1 = 2.875+ 0.2 J2 = 5.448+ 0.6
2 J2 = 4.979+ 0.6 J4 = 0.816+ 0.15
2 J2 = 5.871+ 0.6 J4 = 0.686+ 0.15
2 J2 = 4.979+ 0.6 J3 = 8.144+ 0.35

One might often want to study detailed patterns or structures in some predefined sub-
regions such as the structures in the unfolded ensemble. More and more evidences have
shown that the protein structures in unfolded states are not fully extended, but often have
well-defined structures instead [15]. This can also avoid the problem that important pat-
terns in these less populated areas are being overlooked due to a smaller population than
the predefined quorumk. Thus, some less populated free energy states in free energy land-
scapes can be recovered by reducing the quorum. Hence another set of parameters have
been used and here we confine our search to data points withNβ

HB = 0.0 andRcore
g > 5.0

Å (see Figure 1 for definitions of these reaction coordinates) withk = 100. Yet another
set of parameters have includedNβ

HB = 0.0 andRcore
g > 9.0 Å with k = 50. A subset

of the results are shown in Figure 5. Thus this approach might be useful for hierarchical
pattern searches which gradually zoom into the predefined subsets of data.

4.3. Analysis of Results (Step 4)

To obtain a representative structure(s) from a set of configurationsci, the set is partitioned
into a minimum number of groupsGj such that for eachGj there exists a representative
cj
i ∈ Gj and for eachck ∈ Gj , the structure corresponding tock is at most 1Å RMSD

from cj
i . Thus eachGj will be represented by a structure corresponding tocj

i [5, 16].
Recovering known free energy states.Obviously, the first question of importance is:
Can we recover the previously found free energy states in the new approach? The “time
sequence” of each pattern is then used to extract the corresponding conformations of the
protein. Figure 3(a) shows a representative or most populated structure for the first pattern
in Figure 2. This structure mimics the representative structure from the folded state (F
state) in the free energy contour map versusNβ

HB andRcore
g very well. Thus this pattern

resembles the F state of the free energy contour map. Similarly, the second pattern of
Figure 2 resembles the partially folded state, P state, in the same free energy landscape.
The structures for the two patterns are shown in Fig. 3. Thus our approach recovers the
most populated states in the free energy landscape analysis.

The third and fourth patterns in Figure 2 also resemble the F state and P state, respec-
tively, in the same free energy contour map versusNβ

HB andRcore
g . Numerous other pat-

terns have shown similar results, i.e., recovering various previously found free energy states
in the free energy contour maps versus different reaction coordinates. It should be noted
though that many patterns might be redundant, either because theδ() function values given
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(a) (b)

Figure 3. Representative structures for two patterns are shown here. In the schematic diagram the hydrophobic
residues TRP43, TYR45, PHE52, and VAL54 are represented by spacefill and the rest of the residues are repre-
sented by ribbons. (a) Pattern 1 in Figure 2 captures the folded state (F state) in free energy contour map analysis
(b) Pattern 2 in Figure 2 captures the partially folded state (P state) in the same free energy contour map.

Figure 4. Complex patterns of size up to six.

Size Cluster Pattern
3 J2= 5.375+ 0.6 J3= 7.971+ 0.35 J5= -5.881+ 5.0
3 J2= 5.375+ 0.6 J4= 0.743+ 0.15 J5= -5.881+ 5.0
3 J1= 4.903+ 0.2 J4= 0.796+ 0.15 J6= -33.574+ 16.5
4 J1= 4.903+ 0.2 J2= 5.375+ 0.6 J4= 0.870+ 0.15 J6= -33.574+ 16.5
4 J1= 4.903+ 0.2 J2= 5.375+ 0.6 J5= -5.881+ 5.0 J6= -33.574+ 16.5
5 J3= 8.144+ 0.35 J4= 0.815+ 0.15 J5= -5.881+ 5.0

J6= -33.574+ 16.5 J7= 3.292+ 1.0
5 J3= 8.144+ 0.35 J4= 0.902+ 0.15 J5= -3.855+ 5.0

J6= -33.574+ 16.5 J7= 3.292+ 1.0
6 J1= 4.950+ 0.2 J3= 8.013+ 0.35 J4= 0.848+ 0.15

J5= -5.881+ 5.0 J6= -33.574+ 16.5 J7= 3.292+ 1.0
6 J2= 5.748+ 0.6 J3= 8.013+ 0.35 J4= 0.848+ 0.15

J5= -5.881+ 5.0 J6= -33.574+ 16.5 J7= 3.800+ 1.0

for reaction coordinates are too wide, or some of the reaction coordinates are highly corre-
lated. For example the fifth pattern of Figure 2 isRcore

g = 4.979+0.6, Rg = 8.144+0.35.
Clearly, these two reaction coordinates are highly correlated, sinceRcore

g measures the ra-
dius of gyration of 4 key residues out of the total 16 which is measured byRg. However
for many other cases it may not be so obvious.
Interconnecting various free energy contour maps. More complicated patterns with
many reaction coordinates are also found in the current approach which had been previ-
ously undetected. While in the traditional free energy contour map analysis, typically one
or two reaction coordinates are used at each time, since a 2-D or 3-D free energy contour
map is usually plotted. It is extremely difficult to visualize high dimensional free energy
landscapes in order to identify the free energy basins or barriers. Figure 4 lists some of
these complicated patterns with up to 6 reaction coordinates. Of course, as pointed out ear-
lier, some reaction coordinates might be correlated, so the data in each reaction coordinate
may not be totally independent. Nevertheless, it still reveals some interesting new findings.
First of all, these patterns can interconnect various free energy states in different free en-
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Figure 5. Clusters with (1)J1 = 0.0, J2 ≥ 5.0, k = 50 and (2)J1 = 0.0, J2 ≥ 10.0, k = 100. To avoid
clutter theJ1 values are not shown.

Sz Cluster Pattern
1 J2= 5.448+0.5
2 J3= 10.218+0.2 J4= 0.050+0.15
2 J3= 10.773+0.2 J5= -21.188+15
3 J3= 10.208+0.2 J4= 0.050+0.15 J7= 9.299+0.8
4 J2= 9.632+0.5 J3= 10.302+0.2 J5= -21.188+15 J7= 9.299+0.8
5 J2= 9.951+0.5 J4= 0.050+0.15 J5= -21.188+15

J6= 36.517+15 J7= 9.872+0.8

ergy contour maps. This might not be so obvious in free energy contour maps themselves.
For example the sixth pattern in Figure 4 interconnects the following two free energy con-
tour maps:PC-1 andPC-2 andρ andRg in Figures 3(a) and 3(b) respectively in [5].
The states corresponding to the free energy well (of value≈ -9KT) nearPC-1 = −5.9,
PC-2= −33.6 in the first contour map andρ = 0.82, Rg = 8.1 in the second contour map
are indeed the same free energy state consisting of the same structures. In this particular
case, they all represent the folded state (F state).
Better understanding folding mechanism.More importantly, the new approach reveals
important structures overlooked previously, which might help understand the folding mech-
anism better. Eaton and coworkers [3] proposed a ”hydrogen bond zipping” mechanism for
thisβ-hairpin in which folding initiates at the turn and propagates toward the tails by mak-
ing beta-strand hydrogen bonds one by one, so that the hydrophobic core, from which most
of the stabilization derives, form relatively late during the folding. In our previous study,
we proposed a different folding mechanism that thisβ-hairpin undergoes a hydrophobic
core collapse first, then makes nativeβ-strand hydrogen bonds to make over the free en-
ergy loss due to the loss of H-bonds between the backbone atoms and water. Figure 6(a)
shows a representative structure for the eighth pattern in Figure 4. The structure shows
that all the five nativeβ-strand H-bonds have been formed, but the hydrophobic core is
not completely aligned yet. The loop region also bends towards the hydrophobic core to
somewhat offset the non-perfect hydrophobic core. These structures with H-bonds formed
but hydrophobic core not perfectly aligned (RMSDs up to 4Å) implies that the hairpin can
also have a path to formβ-strand hydrogen bonds before the core is finalized. The current
findings indicate that the final hydrophobic core andβ-strand hydrogen bonds might be
formed almost simultaneously. This can also be seen from the low free energy barrier in
free energy landscapes as discussed before [5]. Interestingly, Thirumalaiet al. also found
that the lag time between collapse and hydrogen bond formation is very short and the two
processes occur nearly simultaneously [17].

Finally, the patterns of subsets of data in less populated states, such as the unfolded
state, are studied in detail by zooming into these regions with a smaller quorumk and a
different set ofδ(). As mentioned earlier, more and more evidences have shown that the
protein structures in unfolded states are not fully extended, but often have well-defined
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(a) (b) (c)

Figure 6. (a) Pattern 6 of Figure 4 which represents a new class of structures previously overlooked in free
energy landscape analysis. (b) Pattern 1 of Figure 5 which captures the H state (hydrophobic core formed but no
beta-strand H-bonds) in free energy contour map analysis (c) Pattern 2 in Figure 2 captures the unfolded state (U
state) in the same free energy contour map. The hydrophobic residues TRP43, TYR45, PHE52, and VAL54 are
represented by spacefill and the rest are represented by ribbons.

structures instead [15]. The first pattern in Figure 5 resembles the previous H-state in free
energy contour map versusNβ

HB andRcore
g , where the hydrophobic core is largely formed

but no native beta-strand H-bonds have been made yet. Figure 6(b) shows a representative
structure of this pattern, which mimics the structures from previous H-state very well. Fig-
ure 6(c) shows a representative structure for the sixth pattern in Figure 5. This is the most
populated structure of thisβ-hairpin in unfolded state. Even though not much structural
features are found in this structure, it is certainly not fully extended either. Since this is a
very small protein with only one secondary structure in the native state, not much has been
identified in the unfolded state; for larger and more complicated protein systems, such as
lysozyme, more structural features might be expected in the unfolded state [15].

5. Conclusion & Ongoing Work

In this paper we have presented a method to enhance our understanding of protein folding
mechanisms. At the heart of this method is a combinatorial pattern discovery algorithm
that analyzes multi-dimensional data from the simulation of the protein folding trajectory.
The approach is based on cluster computation, each cluster being defined by a pattern of the
reaction coordinates. A small but important protein system, aβ-hairpin from C-terminus of
protein G, is then used to demonstrate this approach. It is shown that the method not only
reproduces the previously found free energy states (most populated states) in free energy
contour maps, but also reveals new information overlooked previously in free energy land-
scape analysis about the intermediate structures and folding mechanism. It is also shown to
be useful in making interconnections between various 3-D free energy contour maps versus
different reaction coordinates and also explain the mechanisms of the folding process. The
method also validates the choice of reaction coordinates as the analysis without using free
energy values compares well the ones that use them. The success withβ-hairpin is very
encouraging and we are currently exploring the application of this method to other larger
protein molecules.
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