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Abstract 

Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote 
homology detection. However, previous approaches to local structure prediction suffer from poor 
accuracy. In this paper, we propose a knowledge-based prediction method that assigns a measure 
called the local match rate to each position of an amino acid sequence to estimate the confidence of 
our approach. To remedy prediction results with low local match rates, we use a neural network pre-
diction method. Then, we have a hybrid prediction method, HYPLOSP (HYbrid method to Protein 
LOcal Structure Prediction) that combines our knowledge-based method with a neural network 
method. We test the method on two different structural alphabets and evaluate it by QN, which is 
similar to Q3 in secondary structure prediction. The experimental results show that our method yields 
a significant improvement over previous studies.  

1. Introduction 

Protein local structure is a set of protein peptides that share common physiochemi-
cal and structural properties. Researchers usually cluster protein fragments by different 
local criteria, such as solvent accessibility, residue burial [8], and backbone geometry [9], 
and represent these fragment clusters by an alphabet, called a local structure alphabet 
(also known as a structural alphabet or structural motifs) [9]. Local structure prediction 
predicts the local structure of a protein fragment expressed by a letter of the structural 
alphabet from its amino acid sequence. Local structure prediction helps improve the per-
formance of both profile and threading/fold-recognition methods for tertiary structure 
prediction [3, 6].  

Various local structure libraries have been constructed, some of which focus on the 
reconstruction of protein tertiary structures. In such libraries, the number of letters in 
each structural alphabet is large, e.g., 100 in Unger et al. [16], 40 and 100 in Micheletti et 
al. [12], 100 in Schuchhardt et al. [15], and 25-300 with fragment lengths from 5 to 7 in 
Kolodny et al. [10]. Though large alphabet sets can better approximate protein tertiary 
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structures, predicting protein local structures from amino acid sequences is much more 
challenging.  

Thus, smaller structural alphabet sets have been proposed, and their associated lo-
cal structure libraries have been constructed. Moreover, local structure prediction algo-
rithms using these libraries have been developed. Bystroff et al. [2] generated a library 
called I-site, which contains 13 structural motifs of different length. Prediction is based 
on profile-profile alignment between each structural motif and the PSI-BLAST [1] result 
of the input sequence. They further proposed a new model, HMMSTR, to improve pre-
diction accuracy. The structural alphabet of HMMSTR, denoted by SAH, is used in this 
paper to test our method. In [5], de Brevern et al. built their library, called Protein Blocks 
(PB), by clustering 5-mer protein fragments into a structural alphabet of 16 letters ac-
cording to a torsion angle space. They then used a Bayesian probabilistic approach for 
prediction. Karchin et al. [9] constructed an STR library, in which the structural alphabet 
consists of 13 letters obtained from eight secondary structure states by dividing β-sheet 
into 6 types. They used a hidden Markov model (HMM) for local structure prediction.  

The performance of local structure prediction depends on the definition of the un-
derlying structural alphabet and the prediction algorithm. However, there is no unifying 
performance measure for evaluation. Bystroff et al. regard a local structure correctly pre-
dicted if the MDA (Maximum Deviation of backbone torsion Angle) of an eight-residue 
window is less than 120 degrees to their native structure [2, 4]. However, a straightfor-
ward evaluation measure, QN, is used in [5], which is similar to Q3 used in secondary 
structure prediction. QN compares the predicted results with the encoded structural letter 
sequence, where N is the alphabet size, for example, N= 10 for SAH. Specifically, QN of 
a protein, p, is calculated as follows: 

QN = 100
 of residues all ofnumber  the
predictedcorrectly   of residues ofnumber  the

×
p

p . 

In [5], the accuracy of QN is 40.7%. QN is also used by Karchin et al. in [8, 9]. Thus in 
this paper, we use QN to evaluate different prediction methods, as discussed in Section 3.  

Previous studies indicate that accuracy is the main difficulty in local structure predic-
tion. In this study, we propose a local structure prediction algorithm to improve the cur-
rent accuracy. The proposed method is alphabet-independent, i.e., it is not designed for a 
specific structural alphabet. Furthermore, we use QN to evaluate the method and demon-
strate its capability. 

2. Methods 

We propose a knowledge-based prediction method and use a measure called the 
local match rate to estimate the prediction confidence. The local match rate represents 
the amount of information at each position of an amino acid sequence acquired from the 
knowledge base. Empirically, by this method, a high match rate results in high prediction 
accuracy. To improve the low prediction accuracy of low-match-rate positions, we pro-
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pose a neural network prediction method that also provides confidence from its output. 
We propose a hybrid method, called HYPLOSP (HYbrid method to Protein LOcal Struc-
ture Prediction), which combines the results of these two methods according to the local 
match rate and neural network confidence.  

2.1 Knowledge-based approach 

2.1.1 Construction of a sequence-structure knowledge base (SSKB) 

Our knowledge base contains both local structure information and secondary 
structure information about peptides. The former is expressed by a structural alphabet 
(discussed in Section 3.1), and the latter is obtained from the DSSP database. For ease 
of exposition, we assume that we use a protein dataset with a known secondary struc-
ture and local structure based on a given structural alphabet. 

The strength of a knowledge base depends on its size. Since the number of proteins 
with known secondary structures is relatively small, we amplify our knowledge base by 
finding homologous proteins to inherit the structural information of the given dataset. To 
this end, we utilize PSI-BLAST [1] to find proteins remotely homologous to a protein 
with a known structure, referred to as a Query protein in the PSI-BLAST output. While 
using PSI-BLAST, we set the parameter j to 3 (3 iterations), e to 10 (E-value < 10), and 
use the NCBI nr database as the sequence database. For each Query protein, PSI-BLAST 
generates a large number of homologous protein segments as well as their pairwise 
alignment called high-scoring segment pairs, HSPs. In each HSP, the counterpart se-
quence aligned with the Query protein is denoted by Sbjct in the PSI-BLAST output.  

Performing PSI-BLAST on a Query protein, we obtain a large set of HSPs. Now 
we need to find the peptides in the Sbjct protein of each HSP that are similar to those of 
the Query protein so that similar peptides can inherit the structural information of the 
Query protein. We use a sliding window of length w to determine the peptides. In our 
experiments, we choose w = 7, which yields the best results among other lengths. Let p 
and q denote a pair of peptides in Query and Sbjct, respectively. We define the similarity 
score, S, between p and q as the number of positions that are identical or have a “+” sign 
in the sliding window. We call p and q similar if S ≧ 5. For the peptide q, which is simi-
lar to p, we define the voting score of q with respect to p as (S × A) / w to measure the 
confidence level for q to inherit the structural information of p, where A denotes the 
alignment score of the HSP reported in PSI-BLAST output. If p and q do not contain any 
gap, we add the record (q, the secondary structure of p, local structure of p, and voting 
score of q) to the knowledge base, in addition to the record (p, the secondary structure of 
p, local structure of p, and voting score of p). Otherwise, we discard this pair of similar 
peptides.  

Figure 1 shows part of an HSP. The pair of peptides marked by a box have a simi-
larity score of 5 and are thus considered similar. The voting score of the peptide in Sbjct 
with respect to that in Query is 180 (= 5×252 / 7). Suppose the structural alphabet is a set 
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of {A, B, C, D, E, F}, and the secondary structure and local structure of peptide 
VLSPADK are CCHHHHC and BBEEECD, respectively. Since this peptide pair does not 
contain any gap, the record (MLTAEDK, CCHHHHC, BBEEECD, 180) is added to the 
knowledge base as shown in Table 1(a). Note that a peptide may inherit structural infor-
mation from multiple peptides; if this is the case, we simply add new records to the ex-
isting record. For example, suppose the peptide MLTAEDK also inherits the structural 
information from another similar peptide with a voting score of 65. Then, the record of 
MLTAEDK in the knowledge base is updated, as shown in Table 1(b).  
 
>sp|P08849|HBAD_ACCGE Hemoglobin alpha-D chain 

 pir||A26544 hemoglobin alpha-D chain – goshawk  Length = 141 

 Score =  252 bits (646), Expect = 1e-66 

 

Query: 1   VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVK 

           +L+  DK  ++A W KV  H  ++GAEAL+RMF+++PTTKTYFPHFDLS GS QV+  

Sbjct: 1   MLTAEDKKLIQAIWDKVQGHQEDFGAEALQRMFITYPTTKTYFPHFDLSPGSDQVR 

Figure 1. An example of HSPs found by PSI-BLAST  

Table1. An example of knowledge base entries 
Peptide fragment M L T A E D K 

H 0 0 180 180 180 180 0 
E 0 0 0 0 0 0 0 Secondary 

Structure C 180 180 0 0 0 0 180 
A 0 0 0 0 0 0 0 
B 180 180 0 0 0 0 0 
C 0 0 0 0 0 180 0 
D 0 0 0 0 0 0 180 
E 0 0 180 180 180 0 0 

Structural 
Alphabet 

F 0 0 0 0 0 0 0 

(a) 
Peptide fragment M L T A E D K 

H 0 0 180 180 245 245 65 
E 0 0 0 0 0 0 0 Secondary 

Structure C 245 245 65 65 0 0 180 
A 0 0 0 0 0 0 0 
B 245 245 0 0 0 0 0 
C 0 0 0 0 0 180 0 
D 0 0 0 0 0 0 180 
E 0 0 180 180 180 65 65 

Structural 
Alphabet 

F 0 0 65 65 65 0 0 
(b) 
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2.1.2 Local structure prediction based on SSKB 

Using the constructed knowledge base, SSKB, our knowledge-based local structure 
prediction method is comprised of the following steps: 
Step 1: Use PSI-BLAST to find all HSPs with respect to a target protein (i.e., a protein 

whose secondary and local structures are unknown and to be predicted). 
Step 2: Use similar peptides found in SSKB to vote for the local structure of each amino 

acid in the target protein. 
In Step 1, the parameters and the sequence database used in PSI-BLAST are the 

same as those used in knowledge base construction. To define similar peptides stated in 
Step 2, we use the same sliding window length of 7, same voting score, and the same 
similarity score of 5 with no gap to define similar peptides as before. We match all pep-
tides of the target protein and their similar peptides against SSKB. We then use the local 
structure information of the matched peptides in SSKB to vote for the local structure of 
the target protein. Let p be a peptide of the target protein. Throughout this section, we 
assume the structural alphabet is a set of {A1, A2,…, An}. We associate each position, x, in 
p with n variables given by Vp

i, where i = 1,…, n. Let q be p’s counterpart peptide with 
similarity score S in an HSP with an alignment score A. If q is similar to p and can be 
found in SSKB, the voting score of q is added to that of p, which is updated as follows: 
For each position, x, compute  

Vp
i(x)← Vp

i(x)+ Vq
i(x) × (S × A) / 7, i=1,…n, 

and repeat the above calculation for all similar peptides. The local structure of x in p is 
given by the letter corresponding to Max {Vp

1(x), Vp
2(x),… , Vp

n(x)}. 

2.2 Neural network method 

2.2.1 Neural network architecture 

We use a standard feed-forward back-propagation neural network [14] with a single 
hidden layer. The number of hidden units in the hidden layer is 35, which has been found 
to be the most effective number in our training stage. 

Taking each protein in the training set or testing set, we partition it into peptides by 
a sliding window of length 7. We also perform PSI-BLAST query to obtain the profile of 
the sequence, which is the Position-Specific Scoring Matrix (PSSM). Our neural network 
takes each peptide as input. Specifically, the input vector consists of the peptide’s 
corresponding segment of PSSM as well as its secondary structure. So, the length of each 
input vector is 161, i.e., 7×20 for PSSM and 7×3 for the secondary structure. The output 
reports the results corresponding to the amino acid located at the center of the peptide 
(called the “peptide center” for short). Specifically, the output is a vector of size n, i.e., 
the size of the underlying structural alphabet, and each entry represents the confidence 
score of the peptide center to be assigned a specific alphabet letter.  
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2.2.2 Training procedure 

An online back-propagation training procedure is used to optimize the weights of 
the network, whereby the weights are randomly initialized and updated with each input 
vector. The learning parameters of the hidden layer and the output layer are 0.075 and 
0.05, respectively. In addition, the sum of square errors is used during back propagation.  

In the training stage, the secondary structure information in the input vector is 
given by the true secondary structure from the DSSP database. The desired output is a 
vector with 1 at the entry corresponding to the true alphabet letter of the peptide center, 
and 0 elsewhere.  

2.2.3 Local structure prediction based on a neural network 

Our neural network prediction method consists of two steps: 
Step 1: Perform secondary structure prediction on a target protein. 
Step 2: Use the neural network method to predict the local structure of each amino acid in 

the target protein. 
Unlike proteins in the training set, target proteins do not have secondary structure 

information. Thus, in Step 1 we use HYPROSP II [7] to predict the secondary structure. 
The predicted secondary structure and PSSM, extracted by a sliding window of length 7, 
constitute the input to the trained neural network. The letter with the highest confidence 
score in the output vector is then considered to be the local structure of the peptide center. 
Step 2 is repeated to predict all amino acids in the target protein. 

2.3 Hybrid mechanism 

Our knowledge-based method and the neural network method have different 
strengths. To better utilize their respective strengths, we propose a hybrid mechanism that 
uses the local match rate, to combine the two methods. At each position, x, of the target 
protein, we obtain from HSPs a set of similar peptides, Q(x), that contains the position x. 
The local match rate is defined as follows: 

Local Match Rate(x) = 100%
|Q(x)|

|SSKBQ(x)|
×

I . 

The local match rate represents the amount of information for each position x that 
can be extracted from the knowledge base. It is possible for the target protein to have a 
high local match rate in some positions and a low local match rate in others. Intuitively, a 
higher local match rate implies higher confidence in the result of the knowledge-based 
prediction method. 

2.4 HYPLOSP: a hybrid method for protein local structure prediction 

Our hybrid prediction method, HYPLOSP, combines the prediction results of the 
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knowledge-based method and the neural network method at each position of the target 
protein. The neural network returns a confidence score for each output letter. In order to 
output these values to a text file, we normalize them into a range of 0 to 94, since there 
are only 95 printable ASCII codes. Then the neural network generates a set of normalized 
confidence scores {Conf_NN1, Conf_NN2,…, Conf_NNn} associated with each letter.  

The knowledge-based method generates a set of voting scores, denoted by {V1, 
V2,…, Vn}, associated with each position. We define the confidence score of letter Ai as  

Conf_KBBi= Min{ Rate(x)LocalMatch
V

V

j
j

i ×
∑

, 94}. 

Using Conf_NNi and Conf_KBBi, we determine the final predicted structure at position x to 
be Ak if  

Conf_NNk + Conf_KBBk =MaxU . 
m

mm KBConfNNConf )__( +

3. Experimental Results 

3.1 Datasets 

We downloaded 25,288 proteins from the DSSP database (dated 9/22/2004) as our 
first dataset. These proteins were divided into 46,745 protein chains. In our method, we 
use PSI-BLAST and pairwise sequence alignment to filter out protein chains with a pair-
wise sequence identity over 25%. Moreover, protein chains of length less than 80 are 
removed. Finally, we have a non-redundant DSSP dataset, called nrDSSP, containing 
3,925 unique protein chains along with their secondary structures. To evaluate our pre-
diction methods, we transform nrDSSP into structural alphabets of our choice. 

Furthermore, we use another dataset, containing new proteins for the period of Oct. 
2004 to May 2005, to compare HYPLOSP with other prediction methods. Fifty-six pro-
tein chains remain after we filter out those with a sequence identity over 25% in this 
dataset and in nrDSSP.  

We test our methods on two structural alphabets: SAH and PB. There are originally 
11 alphabet letters in SAH, including 10 Φ−Ψ plane partitions for trans peptide and one 
for cis peptide. We follow Karchin’s approach [9] and assign the cis residues among the 
other 10 partitions according to their Φ−Ψ values. We encode each amino acid with a 
SAH letter by assigning the letter of the Φ−Ψ plane that is the nearest to the amino acid. 
The PB alphabet is composed of 16 letters, each of which is 5-residue in length and rep-
resented by 8 dihedral angles. We use a sliding window of length 5 to extract peptides 
from amino acid sequences. The Root Mean Square Deviation on Angular values 
(RMSDA) between the peptide and each of the 16 PB letters is calculated, and the letter 
with the smallest RMSDA is assigned to the peptide center.  
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3.2 Cross-validation test of our methods 

We perform 10-fold cross-validation experiments on each chosen structural alpha-
bet to evaluate our knowledge-based (KB) method, neural network (NN) method, and the 
hybrid method, HYPLOSP. In each experiment, the dataset is randomly divided into ten 
sets. A set is selected as the testing set (containing predicted secondary structure informa-
tion) and the other nine sets are integrated as the training set (containing true secondary 
structure information) for neural network training and the construction of SSKB. This 
process must be repeated for each set to be a testing set. In addition, we modify our 
methods that do not use secondary structure information as follows. For the knowl-
edge-based method, we do not record secondary structure element (SSE) information 
while constructing SSKB, or while finding similar peptides in SSKB. For the neural net-
work method, we do not take the SSE of a peptide as input for either training or testing 
(prediction); thus, the input of the network becomes a vector of size 140.  

The performance results using SSE information are shown in Table 2. For the SAH 
alphabet, HYPLOSP reports a QN of 61.51% and outperforms our KB and NN methods 
(which report a QN of 56.7% and 59.53% on average) by approximately 5% and 2%, re-
spectively. For the PB alphabet, our KB and NN methods achieve on average a QN of 
57.79 % and 59.54%, respectively. Our hybrid method, HYPLOSP with an overall QN of 
63.24% outperforms the KB and NN methods by 3.7% and 5.5%, respectively. In sum-
mary, HYPLOSP reports a QN over 60%, whether on the 10-letter SAH alphabet or the 
16-letter PB alphabet.  

The results not using SSE information are also shown in Table 2. Both the KB and 
NN methods suffer a considerable decrease in QN (between 3% and 5%). Therefore, the 
SSE information plays a role in these two methods. However, the QN of HYPLOSP is 
reduced by at most 1.37%, which is comparatively lower than the KB and NN methods. 
This implies that HYPLOSP is less sensitive to the absence of SSE and better utilizes 
both the neural network and knowledge-based methods.  

Table 2. The performance of our methods on SAH and PB 
 Using SSE Not using SSE 
 QN on SAH QN on PB QN on SAH QN on PB 
NN 59.53% 59.54% 55.72% 54.65% 
KB 56.70% 57.79% 53.14% 53.79% 
HYPLOSP 61.51% 63.24% 60.14% 61.91% 

3.3 Comparison with the previous studies 

To compare HYPLOSP with the prediction methods used by the authors of SAH 
and PB, we use the second dataset (56 new proteins) for evaluation. The HYPLOSP 
model is trained on nrDSSP and tested on the testing dataset. We compare our methods 
with the HMMSTR server developed by Bystroff et al. [4] for the SAH alphabet, and 
with the LocPred server developed by de Brevern et al. [5] for the PB alphabet. Note that 
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there are three models in LocPred server: Bayesian prediction, sequence families, and a 
new version of sequence families. We only compare HYPLOSP with the last one, since it 
is the best of the three. 

The experimental results are shown in Table 3. HYPLOSP outperforms HMMSTR 
on the SAH alphabet by 4.4% and achieves a 13.24% improvement over LocPred on the 
PB alphabet. Furthermore, HYPLOSP demonstrates an alphabet-independent prediction 
capability and a relatively stable performance irrespective of the alphabet size. To be spe-
cific, HYPLOSP has a QN of 57.44% for the 10-letter SAH alphabet, and 55.17% for the 
16-letter PB alphabet. Although the alphabet size grows by 60% ( %)( 100101016 ×÷− ), 
QN only decreases by 2.27%.  

Table 3. Comparison of HYPLOSP with other prediction methods  
 QN

HMMSTR 53.04% 
HYPLOSP 57.44% SAH 
Improvement 4.40% 
LocPred 41.93% 
HYPLOSP 55.17% PB 
Improvement 13.24% 

5. Concluding Remarks 

Existing local structure prediction methods show that prediction accuracy is a very 
challenging issue. We use two different prediction methods: one is knowledge-based and 
the other is neural network-based. To better utilize the advantage of these two methods, 
we propose a hybrid method called HYPLOSP, which is alphabet-independent. We select 
two current structural alphabets, SAH and PB, to evaluate HYPLOSP. We have per-
formed a 10-fold cross-validation test on the nrDSSP dataset of nearly 4,000 protein 
chains to evaluate our KB, NN methods in comparison with HYPLOSP. In addition, we 
have also performed a test on 56 protein chains to compare HYPLOSP with the predic-
tion methods used the authors of SAH and PB. The experimental results not only show 
better performance of HYPLOSP in terms of QN accuracy, but also demonstrate its capa-
bility to be alphabet-independent. We further analyze the relation between our prediction 
accuracy rate and the secondary structure. The analysis shows that improving current 
secondary structure prediction accuracy leads to a substantial improvement in local 
structure prediction. 
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