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This paper proposes algorithms for inferring a chemical structure from a feature vector based on fre-
quency of labeled paths and small fragments, where this inference problem has a potential application
to drug design. In this paper, chemical structures are modeled as trees or tree-like structures. It is
shown that the inference problems for these kinds of structures can be solved in polynomial time
using dynamic programming-based algorithms. Since these algorithms are not practical, a branch-
and-bound type algorithm is also proposed. The result of computational experiment suggests that the
algorithm can solve the inference problem in a few or few-tens of seconds for moderate size chemical
compounds.

1. Introduction

Drug design is one of the important targets of bioinformatics. For designing new drugs,
classification of chemical compounds is important and thus a lot of studies have been done.
Recently, kernel methods have been applied to classification of chemical compounds1,2,3,4.
In most of these approaches, chemical compounds are mapped to feature vectors (i.e., vec-
tors of reals) and then support vector machines (SVMs)5 are employed to learn classifica-
tion rules. Though several methods have been proposed, feature vectors based on frequency
of small fragments1,2 or frequency of labeled paths3,4 are widely used, where other chemi-
cal properties such as molecular weights, partial charges and logP are sometimes combined
with these, and weights/probabilities are sometimes put on paths/fragments.

On the other hand, a new approach was recently proposed for designing and/or opti-
mizing objects using kernel methods6,7. In this approach, a desired object is computed as
a point in the feature space using suitable objective function and optimization technique
and then the point is mapped back to the input space, where this mapped back object is
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Figure 1. Inference of a chemical compound from a feature vector. Multiple compounds may be mapped to the
same point in a feature space.

called a pre-image. Let φ be a mapping from an input space to a feature space. Then,
the problem is, given a point y in the feature space, to find a pre-image x in the input
space such that y = φ(x). It should be noted that φ is not necessarily injective or surjec-
tive. If φ is not surjective, we need to compute the approximate pre-image x∗ defined by
x∗ = arg minx dist(y, φ(x)) (see Fig. 1).

The pre-image problem has potential application to drug design7 by using a suitable
objective function reflecting desired properties. For example, suppose that we have two
chemical compounds x and y having different functions and we want to design a new
chemical compound having both functions. In such a case, we may develop a new com-
pound by computing a pre-image of the middle point of feature vectors corresponding to x

and y (i.e., a pre-image of (φ(x) + φ(y))/2). Though this example is too simple, several
ways can be considered for applications of the pre-image problem to drug design and other
bioinformatics problems.

There are several related works. Bakir, Weston and Scölkopf proposed a method to
find pre-images in a general setting by using Kernel Principal Component Analysis and
regression6. Bakir, Zien and Tsuda developed a stochastic search algorithm to find pre-
images for graphs7. However, the pre-image problems are not studied from a computational
viewpoint. Graphical degree sequence problems8, graph inference from walks9 and the
graph reconstruction problem10 are related to the pre-image problem for graphs. However,
results on these problems are not directly applicable to the pre-image problem.

In our previous works11,12, we studied a theoretical aspect of the pre-image problem
on graphs. In Ref. 11, we studied the problem of inferring a graph from the numbers
of occurrences of vertex-labeled paths. We showed that this problem can be solved in
polynomial time of the size of an output graph if graphs are trees of bounded degree and
the lengths of given paths are bounded by a constant, whereas this problem is NP-hard
even for planar graphs of bounded degree. In Ref. 12, these results were further improved.
We showed that the inference problem can be solved in polynomial time if graphs are
outerplanar of bounded degree and bounded face size and the lengths of given paths are
bounded by a constant, whereas this problem is NP-hard even for trees of bounded degree
if the lengths of paths are not bounded.

In this paper, we extend our previous algorithms so that constraints on valences of atoms
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are taken into account. Moreover, we modify and extend these so that feature vectors based
on frequencies of small fragments can be treated. These modifications are important be-
cause major feature vectors are based on either frequencies of small fragment structures1,2

or frequencies of labeled paths3,4. The modified algorithms have another application: elu-
cidation of chemical structures from mass/NMR spectra data. This elucidation problem has
a long history and many methods have been developed13,14. However, to our knowledge,
no polynomial time algorithm was known for the problem. A more important result of this
paper is that a heuristic algorithm is developed for inference of tree-like chemical struc-
tures. It works within a few or few-tens of seconds for inference of moderate size chemical
compounds with tree or tree-like structures.

2. Problem Definitions

First, we review the definition of the problem on inference of graph from path frequency11.
Let G(V, E) be an undirected vertex-labeled connected graph and Σ be a set of vertex
labels, where all results can be modified for including edge labels. Since we are consid-
ering chemical structures, we reasonably assume in this paper that the maximum degree
of vertices and the size of Σ are bounded by constants. Let Σ≤k be the set of label se-
quences (i.e., the set of strings) over Σ whose lengths are between 1 and k. Let l(v) be
the label of vertex v. For a path P = (v0, . . . , vh) of G, l(P ) denotes the label sequence
of P . For graph G and label sequence t, occ(t,G) denotes the number of paths P in G

such that l(P ) = t. Then, the feature vector fK(G) of level K for G(V, E) is defined by
fK(G) = (occ(t,G))t∈Σ≤K+1 . See Fig. 2 for an example. It should be noted that the
size (i.e., number of vertices) n of the original graph can be obtained from fK(G). In this
paper, we assume for simplicity that tottering paths (paths for which there exists some i

such that vi = vi+2) are not counted in feature vectors.
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Figure 2. Examples of feature vectors �K(G) for GIPF/CIPF (K = 1) and �F (G) for CIFF.
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Graph Inference from Path Frequency (GIPF)11 Given a feature vector v of level K ,
output a graph G(V, E) satisfying fK(G) = v. If there does not exist such G(V, E),
output “no solution”.

For the case of “no solution”, we can consider the problem (GIPF-M) of finding
G(V, E) which minimizes the L1 distance between v and fK(G) (see also Fig. 1)11.

We sometimes omit K from fK(G) if K is obvious or is not relevant. We may also
use f to denote a feature vector if G and K are not relevant. For a vector v, (v)i denotes
the i-th element of v (i.e., the value of i-th coordinate of v). For vectors v and u, v � u

means that (v)i ≤ (u)i for all i.
In order to treat chemical compounds, constraints on valences of atoms must be taken

into account. For example, a carbon atom can be connected to at most four other atoms.
If double bounds are used, it can be connected to at most two other atoms. Let Σ be the
set of atom types. For each a ∈ Σ, the maximum valence val(a) is associated. We also
assume that each edge e has multiplicity m(e) where m(e) is usually 1 (single bond), 2
(double bond) and 3 (triple bond). When treating aromatic structures, aromatic bond may
be modeled as an edge with multiplicity 1.5. In this paper, we use “degree” to mean the
number of edges connected to a vertex and “valence” to mean the sum of multiplicities of
edges connected to a vertex, respectively. Then, we define chemical compound inference
problem from path frequency as follows:

Chemical compound Inference from Path Frequency (CIPF) Given a feature
vector v of level K , output a graph G(V, E) satisfying fK(G) = v and∑

w:{v,w}∈E m({v, w}) ≤ val(l(v)) for all v ∈ V . If there does not exist such G(V, E),
output “no solution”.

For the case of “no solution”, CIPF-M is defined in the same way as in GIPF-M. Next,
we define pre-image problems for feature vectors based on frequencies of fragments. Let
F = {F1, . . . , FM} be a set of graphs (chemical substructures) satisfying the valence
conditions. Since information on the number of occurrences of each atom type is usually
included in feature vectors, we assume that a graph consisting of each single atom is con-
tained in F . We also assume that the size of each Fi is bounded by a constant K because
small fragments are usually employed. Let occ(Fi, G) denote the number of subgraphs
of G that are isomorphic to Fi, where we assume that subgraphs consisting of the same
vertices are counted only once for each Fi. Then, a feature vector fF (G) for G is defined
by fF (G) = (occ(Fi, G))Fi∈F . The pre-iamge problem from a feature vector based on
fragments is defined as below (see also Fig. 2).

Chemical compound Inference from Fragment Frequency (CIFF) Given a feature vec-
tor v based on a set of fragments F , output a graph G(V, E) satisfying fF (G) = v and∑

w:{v,w}∈E m({v, w}) ≤ val(l(v)) for all v ∈ V . If there does not exist such G(V, E),
output “no solution”.

CIFF-M is defined in the same way as in GIPF-M and CIPF-M. In the case of eluci-
dation of chemical structures from mass/NMR spectra13, upper and lower bounds of the
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number of occurrences of each fragment are specified. Let ub and lb be vectors corre-
sponding to upper and lower bounds, respectively. Then, CIULF is defined as:

Chemical compound Inference from Upper and Lower bounds of frequencies of Frag-
ments (CIULF) Given feature vectors ub and lb based on a set of fragments F , output a
graph G(V, E) satisfying lb � fF(G) � ub and

∑
w:{v,w}∈E m({v, w}) ≤ val(l(v))

for all v ∈ V . If there does not exist such G(V, E), output “no solution”.

It is worthy to note that CIFF is clearly a subproblem of CIULF. It should also be noted
that CIPF is a subproblem of CIFF because each labeled path can be treated as a fragment.

3. Dynamic Programming Algorithms

In this section, we extend our previous algorithms11,12 for CIPF, CIFF and CIULF.

3.1. A Basic Algorithm for CIPF

As in Ref. 11 we begin with a very simple case: we consider inference of chemical com-
pounds with tree structures from a feature vector of level 1 (i.e., K = 1). For simplicity,
we assume that only two kinds of atoms N and H, and single bonds (i.e., edges with mul-
tiplicity 1) can appear in chemical compounds. In this case, a feature vector for tree T has
the following form: f1(T ) = (nN , nH , nNN , nNH , nHN , nHH), where nx denotes
the number of atoms of type x and nxy denotes the number of occurrences of a labeled path
of (x, y).

We construct the dynamic programming table D(. . . ) defined by

D(nN1, nN2, nN3, nH , nNN , nNH , nHN ) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if there exists a chemical compound (tree) T such that
f1(T ) = (nN1 + nN2 + nN3 , nH , nNN , nNH , nHN , 0),
the number of nitrogen atoms with degree 1 is nN1,

the number of nitrogen atoms with degree 2 is nN2,

and the number of nitrogen atoms with degree 3 is nN3,

0, otherwise.

It should be noted that we ignore chemical compound of H2 here and thus nHH should be
always 0. This table can be constructed by a dynamic programming procedure based the
following recursion where the initialization part is straight-forward.

D(nN1, nN2, nN3, nH , nNN , nNH , nHN ) = 1 iff.
D(nN1, nN2 − 1, nN3, nH , nNN − 2, nNH , nHN ) = 1 or
D(nN1 − 1, nN2 + 1, nN3 − 1, nH , nNN − 2, nNH , nHN ) = 1 or
D(nN1 + 1, nN2 − 1, nN3, nH − 1, nNN , nNH − 1, nHN − 1) = 1 or
D(nN1, nN2 + 1, nN3 − 1, nH − 1, nNN , nNH − 1, nHN − 1) = 1.

The correctness of the algorithm follows from the fact that any tree can be constructed
incrementally by adding a vertex (leaf) one by one. Since the value of each element of the
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feature vector is O(n), the table size is O(n7) and thus the computation time is O(n7).
Since it is straight-forward to extend this algorithm for a fixed number of atom types and a
fixed number of bond types, we have:

Theorem 3.1. CIPF for trees is solved in polynomial time in n for K = 1.

As in Ref. 11, we can modify the algorithm for CIPF-M (since we only need to examine
polynomial number of items in the DP table).

Corollary 3.1. CIPF-M for trees is solved in polynomial time in n for K = 1.

Recently, Nagamochi15 developed a much more efficient algorithm for GIPF/CIPF for
general graphs and K = 1. But, his algorithm can not be extended for cases of K > 1,
which are much more important. Our algorithm can be extended for cases of K > 1 as to
be shown below, and the idea in our algorithm is also used in a practical algorithm in Sec.
4.

3.2. Algorithm for CIPF

In this subsection, we show that CIPF can be solved in polynomial time for fixed K . For
that purpose, we modify our previous algorithm11 for GIPF as below, where details are
omitted here. As in the original algorithm, we maintain the current degrees and valences
of vertices of subtrees. When adding a new leaf u to an existing vertex w in a subtree,
we check the constraint on valences and update information about degrees and valences.
Clearly, this part can be done in constant time per addition of a leaf and thus does not affect
the order of the time complexity.

Proposition 3.1. CIPF (and CIPF-M) for trees can be solved in polynomial time in n if K

and Σ are fixed.

3.3. Algorithms for CIFF and CIULF

We develop algorithms for CIFF and CIULF by modifying the algorithm for GIPF. Since
CIULF is more general than CIFF, we only consider CIULF here. We modify the table
D(v, e, d) in Ref. 11 as follows. Let h = (h1, h2, . . . , hM ) be a vector of non-negative
integers, where hi corresponds to the number of occurrences of fragment Fi. Then, we
define the table D′(h, e, d) by

D′(h, e, d) = 1 iff. there exists a tree T such that fF(T ) = h, gK(T ) = e, and d(T ) = d.

Based on this table, we can develop a dynamic programming algorithm, where details are
omitted here.

Theorem 3.2. CICF and CIULF (and CICF-M) for trees of bounded degree can be solved
in polynomial time in n if K , M and Σ are fixed.
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As a negative result, it was shown12 that GIPF (a subproblem of CIFF) is NP-hard for
trees of bounded degree if K is not fixed. This suggests that the time complexity increases
non-polynomially in K . Here, we show another hardness result for CIULF (proof omitted),
which suggests that the time complexity increases non-polynomially in M .

Theorem 3.3. CIULF can not be solved in polynomial time unless P=NP even if the max-
imum degree is bounded by 2, where the size and number of fragments are not bounded by
a constant.

3.4. Extensions to Outerplanar Graphs

Though many chemical compounds have tree structures, many other chemical compounds
have rings such as benzene rings. Therefore, it is desirable to develop algorithms for more
general structures than trees. In the case of GIPF, the algorithm for trees11 was extended
for outerplanar graphs12. The same technique can also be applied to CICF and CIFF.

Theorem 3.4. CIPF, CIPF-M, CICF, CICF-M and CIULF for chemical compounds with
outerplanar structures can be solved in polynomial time in n if K , M and Σ are fixed and
the number of edges of each face is bounded by a constant.

4. A Branch-and-Bound Type Algorithm

Though the algorithms in the previous section work in polynomial time, these are not prac-
tical. Thus, we develop a branch-and-bound type algorithm (called BB-CIPF) for CIPF,
where this algorithm can be modified for inferring more general classes of chemical com-
pounds and/or for feature vectors based on frequency of small fragments.

Before presenting BB-CIPF, we need several definitions. Let f target be the given fea-
ture vector for which a pre-image should be computed. Since information on paths of
length 0 is included in f target, we know the number of occurrences of atom types in the
pre-image of f target. Let atomset(f) be the multi-set of atom types in the pre-image of
a feature vector f . Let ATOMBONDPAIRS be a set of possible atom-bond pairs. For
example, if we only consider C,N, O,H and do not consider aromatic bonds, the set is de-
fined as {(C, 1), (C, 2), (C, 3), (N, 1), (N, 2), (N, 3), (O, 1), (O, 2), (H, 1)}. It should
be noted that (C, 4) is not included since it is not necessary.

The basic idea of BB-CIPF is similar to that of the algorithm in Sec. 3.1: beginning
from a small tree, a leaf is added one by one. Though trees are not explicitly constructed in
Sec. 3.1, BB-CIPF maintains trees.

When adding a leaf u, BB-CIPF basically examines all combinations of an atom-bond
pair (a, b) and a vertex w in the current tree. However, we do not need to examine the fol-
lowing cases, where T cur be the current tree and T next be the next candidate tree obtained
by adding a leaf to T cur:

(i) Addition of a leaf with atom label a violates the condition on the numbers of
atoms,



September 28, 2006 10:43 Proceedings Trim Size: 9.75in x 6.5in apbc118a

8

(ii) Connection of a leaf to w ∈ T cur by bond type b violates the condition on the
valence of w,

(iii) Connection of a leaf to w ∈ T cur violates the condition on feature vectors (i.e.,
f(T next) � f(T target) must hold since T next must be a subgraph of T target).

Therefore, we do not examine T next further in these cases. These conditions significantly
contribute to reducing the search space and are implemented in BB-CIPF.

BB-CIPF employs a kind of distance defined by:

dist(f , f target) =
{∞, if (f target)i < (f)i for some i,∑

i ck(i)((f target)i − (f)i), otherwise.

where summation is taken over all elements (i.e., dimensions) of feature vectors, c is a
constant (currently, c = 10) and k(i) denotes the length of a path corresponding to the
i-th element of a feature vector. Though we use the word “distance” for the sake of con-
venience, this measure is not symmetric and thus does not satisfy the conditions on usual
distances. The meaning of weighting factor ck(i) is that priorities are put on longer paths
when calculating distances. The pseudocode of BB-CIPF is given below.

Procedure BB − CIPF (n,f target)
Let T cur be an initial tree constructed from a longest path appearing in f target;
Compute feature vector f cur from T cur;
if DFS − CIPF (T cur, fcur, n, f target)=false then output “no solution”;

Procedure DFS − CIPF (T cur, fcur, n, f target)
if |V (T cur)| = n then

if fcur = f target then output T cur; return true;
else return false;

for (a, b) ∈ ATOMBONDPAIRS do
L← ∅;
if {l(v)|v ∈ V (T cur)} ∪ {a} � atomset(f target); (set means multiset)
then continue (i.e., examine the next pair in ATOMBONDPAIRS);
for all w ∈ V (T cur) do

Let T next be a tree got by connecting new leaf u with label a to w by bond b;
if w does not satisfy the valence constraint then continue;
Compute fnext from T next and fcur;
distnext ← dist(fnext, f target);
if distnext �=∞ then Add (T next, fnext, distnext) to L;

while L is not empty do
Remove (T next, fnext, distnext) from L such that distnext is the minimum;
if DFS − CIPF (T next, fnext, T target, f target) =true then return true;

return false;
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The details of the implemented code are slightly different from the above. The follow-
ings are the main differences: (i) Hydrogen atoms are added at the last stage of the search
procedure: hydrogen atoms are added only if the frequencies of the other atoms are the
same as those in the target feature vector. (ii) L does not contain T next and fnext (in order
to save memory space). These are reconstructed just before the recursive call of DFS-CIPF.
(iii) When calculating fnext from T next and fcur , paths beginning from and ending at a
new leaf are only computed. (iv) Benzene rings can be added as if these were leaves, where
structural information on benzene is utilized for calculating feature vectors. (v) A benzene
ring is given as an initial structure when a compound is small and contains a benzene ring.

It should be noted that BB-CIPF finds an exact solution (i.e., an exact pre-image of a
given feature vector) if it exists. BB-CIPF may be modified so that it can find a kind of
approximate pre-image or it can enumerate all possible pre-images.

5. Computational Experiment

We performed computational experiment on BB-CIPF in order to evaluate practical com-
putation time. We used a PC cluster with Intel Xeon 2.8GHz CPUs working under the
LINUX operating system where only one CPU was used per execution.

We examined several chemical structures by varying K . As mentioned before, BB-
CIPF can handle chemical compounds with tree structures where benzene rings can also
appear in structures. In the experiment, a target feature vector is computed from a target
chemical compound and is given as an input for BB-CIPF (a target chemical compound
is not given to BB-CIPF). Then, BB-CIPF computes a chemical structure whose feature
vector coincides with the target feature vector. We examined 8 chemical compounds with
K = 1, 2, 3, 4. CPU times are shown in Table 1. CPU time is shown with underline if
the same structure as the target compound was obtained. N/A means that search did not
succeed in 10 minutes.

Table 1. Computation time of BB-CIPF for various chemical compounds.

Name Chemical Formula CPU time (sec.)
K = 1 K = 2 K = 3 K = 4

Methionine C5H11NO2S 9.08 0.16 0.019 0.002
Phenylalanine C9H11NO2 0.020 0.010 0.010 0.014
Arginine C6H14N4O2 N/A 500.0 19.9 1.51
Aspirin C9H8O4 0.060 0.001 0.002 0.003
2-Ethylhexyl phthalate C16H22O4 N/A 4.29 6.04 7.88
Etidocaine C17H28N2 N/A N/A N/A 0.470
Esatenolol C14H22N2O3 N/A N/A 25.6 1.46
Trimethobenzamide C21H28N2O5 N/A N/A N/A 30.7

It is seen from the table that the computation time decreases as K increases in general.
It is reasonable that pruning operations are effectively performed if longer paths are em-
ployed. It is also seen that the same structures as the target ones are inferred when larger
K is used. From this table, it is suggested that the algorithm can output a solution for
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moderate size chemical structures (e.g., the number of carbon atoms is less than 20) if K is
3 or 4. Though further improvements are required, the result of computational experiment
suggests that it is possible to solve the pre-image problem practically.

The current implementation of BB-CIPF can only output one solution. But, there are
many possible solutions especially when K is small. Therefore, it is important future
work to modify BB-CIPF so that it can efficiently output all possible solutions. It is also
important future work to develop a method to select the best solution from the possible
solutions.
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