September 28, 2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

COMPUTING THE ALL-PAIRS QUARTET DISTANCE ON A SET OF
EVOLUTIONARY TREES

M. STISSING, T. MAILUND; C. N. S. PEDERSEN AND G. S. BRODAL

Bioinformatics Research Center and Dept. of Computer Science, University of Aarhus, Denmark

R. FAGERBERG

Dept. of Mathematics and Computer Science, University of Southern Denmark, Denmark

We present two algorithms for calculating the quartet distance between all pairs of trees in a set of
binary evolutionary trees on a common set of species. The algorithms exploit common substructure
among the trees to speed up the pairwise distance calculations thus performing significantly better
on large sets of trees compared to performing distinct pairwise distance calculations, as we illustrate
experimentally, where we see a speedup factor of around 130 in the best case.

1. Introduction

In biology, trees are widely used for describing the evolutionary history of a set of taxa, e.g.
a set of species or a set of genes. Inferring an estimate of the (true) evolutionary tree from
available information about the taxa is an active field of research and many reconstruction
methods have been developed, see e.g. Felsenstein' for an overview. Different methods
often yield different inferred trees for the same set of species, as does using different in-
formation about the species, e.g. different genes, when using the same method. To reason
about the differences between estimates in a systematic manner several distance measures
between trees have been proposed.?® Given a set of estimates of evolutionary trees on
the same set of species, the differences between the trees can then be quantified by all the
pairwise distances under an appropriate distance measure.

This paper concentrates on computing the distance between all pairs of trees in a set
of unrooted fully resolved (i.e. binary) evolutionary trees on a common set of species
using a distance measure called the quartet distance. For an evolutionary tree, the quartet
topology of four species is determined by the minimal topological subtree containing the
four species. The four possible quartet topologies of four species are shown in Fig. 1. In
a fully resolved tree only the three fully quartet topologies can of course occur. Given
two evolutionary trees on the same set of n species, the quartet distance between them
is the number of sets of four species for which the quartet topologies differ in the two
trees. For binary trees, the quartet distance can be calculated in time O(nlogn), where

*Current affiliation: Dept. of Statistics, University of Oxford, UK.

September 28, 2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

a c a b a b a c a c a c
pg e g g e p<g g <y
(a) (b) © (d) (e ()

Figure 1. Figures (a)—(d) show the four possible quartet topologies of species a, b, ¢, and d. Topologies ab|cd,
aclbd, and ad|bc are butterfly quartets, while topology { X §, is a star quartet. For binary trees, only the butterfly
quartets are possible. Figures (e) and (f) show the two ordered butterfly quartet topologies induced by the butterfly
quartet topology in (a).

n is the number of species.” A simpler algorithm with running time O(n log;2 n) has been
implemented in the tool QDist.® For arbitrary degree trees, the quartet distance can be
calculated in time O(n?®) or O(n?d?), where d is the maximum degree of any node in any
of the two trees.”

As fully resolved trees are the focus of most reconstruction algorithms for evolutionary
trees, we, in this paper, develop an algorithm for computing the pairwise distances between
k fully resolved trees on a common set of species that exploits similarity between the input
trees to improve on the straightforward approach of performing the k? pairwise compar-
isons independently which has O(k?t) running time, where ¢ is the time for comparing two
trees, O(n logn) if the algorithm from Brodal et al.” is used. The worst case running time
of our approach remains O(k?t), if the input trees share very little structure, but experi-
ments show that the our algorithm achieves significant speedups of more than a factor 100
on more related trees. Our method has been implemented as an extension to the existing
tool QDist Mailund and Pedersen® as is available for download at the QDist www-page.

2. The Pair-wise Quartet Distance

The O(n log2 n) algorithm developed by Brodal et al.!? serves as a basis for our all-pairs
algorithm. The O(nlogn) works just as well, but as there is no known working implemen-
tation of it, we settled for the simpler O(n log2 n). In this section we describe the algorithm
for computing the quartet distance between a pair of trees. Two basic ideas are used in the
algorithm: instead of counting the number of quartet topologies that differs between the
two trees, the algorithm counts the number of quartet topologies that are shared and sub-
tract this number from the total number possible of quartets, (Z) and instead of counting
shared quartet topologies, it counts the shared ordered topologies. An (unordered) butterfly
quartet topology, ab|cd induces two ordered quartet topologies ab — cd and ab «— cd, by
the orientation of the middle edge of the topology, as shown in Fig. 1, (e) and (f). Clearly
there are twice as many ordered quartet topologies, and the quartet distance can thus be
obtained by subtracting from 2(2) the number of shared ordered quartet topologies and
then dividing by 2.

Given an ordered edge, e, let A denote the tree behind e, and B and C denote the two
trees in front of e. Each such edge induces a number of oriented quartets: aa’ — bc where
a,a’ € A, b € B, and ¢ € C, and each oriented quartet is induced by exactly one oriented
edge in this way. The number of oriented quartets induced by e is (Ié\) -|B| - |C| where
| X| is used to denote the number of leaves in the tree X.

September 28, 2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

For each inner node, v, each of the incidence oriented
edges, see Fig. 2, induces oriented quartets, and the number
of oriented quartets induced by the node is

(‘Y amicrs () avier (151 1amr o

When comparing two trees, 77 and 75, we can consider
a pair of inner nodes, vy in T} and vy in T, with sub-trees
Ay, By, Cy and As, Bo, Cy and incident edges ef', e, e Figure 2. The inner node v in-
and e3', el e, respectively, as in Fig. 2. The shared ori- duces oriented quartets through

. A A . each of the three incident edges.

ented quartets induced by edges e’ and e5 are the oriented
quartets aa’ — xy where a,a’ € A; N Ay and x and y are found in different subtrees in
front of e{' and e!, respectively. The number of shared oriented quartets induced by e:!
and ¢4, count(ef, e4') is then:

|A1 N Al
2

> (|Bl OBQ|'|01002|+|31 ﬂCQ|'|C1ﬁBQ|) 2)

where | X7 N Ya|, with a slight abuse of notation, denote the number of shared leaves in
sub-trees X and Y5. The number of shared oriented quartets for nodes v; and vy are the
sum of the shared quartets of their incident edges:

count(vy, vg) = Z Z count(ef' , e3) &)
Xe{A,B,C} Ye{A,B,C}

and the total count of shared quartets is the sum of counts for all pairs of nodes v; and vs.
We can express (2) slightly differently:

Let node v be an inner node in 7} with as- b

sociated sub-trees A, B and C' as in Fig. 2.

We can then colour all leaves in A with the el U1 el V9
colour A, the leaves in B with the colour 3, V

and the leaves in C with the colour C. The b

leaves in 15 can be coloured with the same

colours as in T}, and for any inner node, v, Figure 3. The coloured leaves for an inner node, v1
in T5, the sub-trees will then contain a num- in 7y and the same colouring for inner node vz, in Ts.
ber of leaves of each colour, see Fig. 3. The

size of the intersections of leaves in the sub-trees in T} and T3, respectively, is now cap-
tured by the colouring. The oriented quartets induced by both e and e' (see Fig. 3) are the
quartets aa’ — be where a and o’ are coloured .4 and present in the first subtree of vo and
one of b, ¢ is coloured B and the other C and present in the two other subtrees respectively.
Let a(i), b(7), c(i), i = 1,2, 3 denote the number of leaves with colour A, BB, and C in the
three sub-trees of vo. The “colouring analogue” to (2) is then

count(e”, e) = (a(21)) . (b(2) -¢(3)+b(3) - c(2)) 4)

Similar expressions can be derived for the remaining pairs of edges.

September 28, 2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

A naive approach simply colours the leaves with colours A, 3, and C, for each node in
T}, and then, for each node in T5, counts the numbers a(i), b(¢), ¢(¢) and evaluates the sum
in (3). The time complexity of this is the time it takes for the colouring of leaves according
to the inner node in 7} plus the time it takes to count a(i), b(4), c(¢) and evaluate the sums
in T5. Since the colouring is a simple matter of traversing 77, and assuming we connect
the leaves of 77 with the corresponding leaves in 7> with pointers, the colouring takes
time O(n) for each node of T} giving a total colouring time of O(n?). If we root T in an
arbitrary leaf, we can count a(), b(7), c(¢) in a depth-first traversal: we annotate each edge
with the number of leaves below it with colour A, B and C, respectively, and for a node vs,
the counts out of each child-edge is immediately available from this annotation. The counts
on the edge to the root can be obtained from the sum of the counts on the children-edges if
we remember the total number of leaves in each colour. This way we can count and then
evaluate the sum for all nodes in time O(n) for each colouring, with a total counting time
of O(n?), giving all in all a running time of O(n?).

The algorithm in Brodal et al.'® improves on this using two tricks: it reuses parts of
the colouring when processing the nodes of 77 and uses a “smaller part” trick to reduce
the number of re-colourings, and it uses a hierarchical decomposition tree to update the
counts in 75 in a clever way thus reducing the counting time. As a preprocessing step, the
first tree is rooted in an arbitrary leaf, r, and traversed depth first to calculate the size of
each sub-tree. This size is stored in the root of each sub-tree, such that any inner node, v,
in constant time can know which of its children is the root of the smaller and the larger
sub-tree (with an arbitrary but fixed resolution in case of ties). When counting, initially,
r is coloured C and all other leaves are coloured A. The tree is then traversed, starting
from r, with the following invariant: before processing node v, all leaves in the subtree
rooted in v are coloured .4 and all remaining leaves are coloured C; after the processing,
all leaves in v’s subtree are coloured C. The processing of node v consists of first colouring
the smaller subtree of v B and then counting the number of shared quartets induced by v.
Then the smaller subtree is recoloured C allowing a calculation of the quartets shared in the
larger subtree—since all the leaves in the larger subtree have colour 4 and the rest of the
leaves now have the colour C. After this, the leaves in the larger subtree have, according
to the invariant, been coloured C. The leaves in the smaller subtree are then recoloured A
thus enabling a recursive count of the shared quartets in the smaller sub-tree. The number
of shared quartets in v’s subtree is the sum of the three counts. For the time usage on
colouring, observe that each leaf is only coloured initially and then only when it is part
of a smaller tree. Since each leaf can at most be part of O(logn) smaller trees, the total
colouring time is in O(nlogn).

The hierarchical decomposition trick is a balanced tree-structure that enables constant
time counting, but has an updating cost associated with re-colourings: updating the colour
of [leaves takes O(l + [log %) time. Ultimately this yields the O(n log? n) running time
of the algorithm. The details of this tree-structure is not important for the algorithm we
develop in this paper—it can be reused in this algorithm in a straight forward manner—we
will not go into details about them here but instead refer to Brodal et al. '

September 28, 2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

3. The All Pairs Quartet Distance

We consider four algorithms for calculating the all-pairs quartet distance between k trees.
The two simplest of these simply performs O(k?) single comparisons between two trees
using time O(n?) and O(n log® n) per comparison, respectively. These are the algorithms
we will attempt to improve upon by exploiting similarity between the compared trees to
obtain a heuristic speedup. The use of similarity utilizes a directed acyclic graph (DAG)
representation of the set of trees. Given our set of k trees, we can root all trees in the same
arbitrary leaf, i.e. a leaf label is chosen arbitrarily and all trees are rooted in the leaf with
that label. Given this rooting, we can define a representation of the trees as a DAG, D,
satisfying:

(1) D has k nodes with in-degree O: 71,72, ..., %, one for each root in the k trees; we
will refer to these as the roots.

(2) D has n — 1 nodes with out-degree 0, one for each of the non-root leaves in the
trees; these DAG leaves are labelled with the n — 1 non-root leaf labels; these are
the leaves.

(3) For each tree T there is an embedding of 7" in D, in the sense that there is a mapping
e; : v(T) — v(D) such that the root of T" is mapped to the root in D representing
T, r;, the leaves of T" are mapped to the leaves of D with the same labels, and for
each edge in T, (v, v’), the image of e;, (e;(v), e;(v')), is an edge in D.

(4) For any non-root nodes v; and vy from trees 77 and T5, respectively, if the tree
rooted in v; is isomorphic to the tree rooted in vo, then vy and v, are represented
by the same node in D, e (v1) = ea(v2).

Conditions 1-3 ensures that each of the k trees are represented in D, in the sense that tree T;;
can be extracted by following the directed edges from r; to the leaves. Condition 4 ensures
that this is the minimal such DAG. Condition 1 is implied by the remaining if no two trees
in the set are isomorphic. Since isomorphic trees will have distance 0, and this isomorphism
is easy to check for when building the DAG as described below, we assume that no trees
are isomorphic and thus that merging the trees will automatically ensure condition 1.

We can build the DAG iteratively by merging one tree at a time into D. Initially, we set
D := Ty, then from 7 = 2 to i = k we merge T; into D using a depth first traversal of 75,
for each node inserting a corresponding node in the DAG if it isn’t already present. Since
the set of leaves is the same for all trees, each leaf node can be considered already merged
into D. For each inner node v, with children v and w, recursively merge the subtrees of
u and w, obtaining the mapped DAG nodes e(u) and e(w). If these share a parent in D,
v is mapped to that parent, otherwise a new node e(v) is inserted in the DAG. The test
for a shared parent of two nodes can be made efficiently by keeping a table mapping pairs
of DAG nodes to their shared ancestor—two DAG nodes can never share more than one
parent, since such two parents would be merged together. This table can be kept updated
by inserting (e(u), e(w)) — e(v) whenever we insert e(v) as above. Note that each inner
DAG node has out-degree 2.

September 28, 2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

We observe that if two tree nodes map to the same DAG node, they induce the same
oriented quartets: if e;(v;) = e;(v;) for inner nodes v; in T; and v; in T}, then, by condi-
tion 3, the subtrees of v; and v; are isomorphic, i.e. one child of v; is isomorphic with one
of v; and the other child with the other of v;. Thus, a colouring as on the left in Fig. 3, if
the isomorphic child-trees are coloured the same colour, result in the same leaf-colourings
in the two trees T; and 7). Counting the oriented quartets in the DAG, as opposed to the
trees, we reduce the amount of work necessary, since merged nodes (tree nodes mapped to
the same DAG node) need only be processed once, not once for each tree.

Calculating the pairwise quartet distance between a set of trees S = {T1,Ts, ..., Tk}
and a single tree 7" can be done by first merging the trees in S into a DAG D. We then
preprocess D depth-first for each of its k roots calculating sizes of subtrees, such that each
inner node v in D will know which of its two children is root in the smaller and the larger
subtree. This enables us to use the same “smaller part” trick when colouring the subtrees
of D as is used when comparing two trees. The algorithm starts by colouring all roots of
D using C. Now, for each root r; in D, the algorithm colours all leafs in the embedded tree
rooted at r;, T}, using the colour A and traverses 7T; recursively, following the colouring
schema and invariants used in the one-against-one tree comparison. However, whenever
we process a node in the DAG, we store the sum of the count for that node plus the count
for all nodes below it (this is done recursively). Since all counts for that node will be the
same, regardless of which root we are currently processing, we can reuse the count if we
see the node again when processing later trees. The counting as such can run exactly as
described in the previous section, except that when a previously counted node v is met,
we simply reuse the count and colour the subtree rooted at v with C in accordance with
the stated invariant. It is still possible to use a hierarchical decomposition of the tree 7" to
speed up the counting. Since we only recursively count each node in D once, not each time
a node appears in one of the trees in .S, we potentially save a significant amount of time if
the trees are closely related and thus D is comparably small.

When calculating the all-pairs distance between k trees, this approach will still have an
O(k?t) worst case time bound. In practice though, especially for highly similar trees, we
suspect that this algorithm will outperform the naive approach. In the case of similar trees,
that is comparing S = {T3,T1,...,T1} of k identical trees and a tree 7" the time used is
O(kn) for building D, O(t) for comparing the first embedded tree of D with T" and O (kn)
for comparing and recolouring the rest of the trees embedded in D with T (this covers the
cost of constructing and updating a hierarchical decomposition tree aswell). As we do this
k times in order to get the all-pairs distance we obtain a total running time of O (k(kn +1t))
which is superior to the naive approach when 7 is a true lower bound for ¢, i.e. t € w(n).
We expect that nontrivial comparisons will be somewhere in between the stated bounds.

Calculating the distance between all pairs of trees, or more generally the pairwise dis-
tances between two sets of trees, S = {71, T5,..., T} and S = {T7, T3, ..., T}, } might
clearly be done, as stated above: for each T; € S calculate the &’ distances between T; and
S’ using the algorithm described above. Merging both sets into DAGs, however, will let us
exploit similar tree structure in both sets.

September 28,2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

Let D and D’ be the DAG representations of S and S’, respectively. Finding the dis-
tances between all pairs of trees can be done by counting, for each tree 7T; embedded in
D, the number of shared quartets between T; and each tree in S’. This amounts to run-
ning through D, colouring recursively as stated above, and counting how many quartets are
shared between v € v(D) and each 7" in S’. Storing this set of counts in v, lets us process
each v only once. Given a colouring, calculating how many quartets, for each 77 embedded
in D', is compatible with this colouring, might reuse the technique from above. Running
through D’ recursively, root for root, storing the number of quartets compatible with the
current colouring in the subtree rooted at v’ for each v’ in D’, enables reusing this number
when v’ is once again processed. The worst case time for this approach remains O (k*n?).
If we consider identical trees, the time used in calculating the all-pairs quartet distance
between such is O(n? + k) for comparing the first tree with all others and O(k(k + n))
for comparing and colouring the remaining pairs. In total, this is O(n? + k?2). In real life
examples, we suspect a running time somewhere between these bounds.

4. Experimental Results

The new algorithms are expected to obtain significant speedups when comparing multiple
trees of high similarity. In this section we report on experiments to validate this. An es-
sential assumption for the expected speedup of using DAGs is that the trees share much
structure, i.e. that the number of nodes in the DAGs are significantly smaller than the num-
ber of nodes in all pairs of trees. To evaluate this, we calculated the sizes of the DAGs
obtained by merging the trees, see Fig. 4. The results of these experiments are very en-
couraging. The trees were obtained using the following method: First, to construct similar
trees of size n (trees with n leaves), a phylogenetic tree of size n is constructed (using the
tool 78s!'!). This tree is then used in simulating evolution along its phylogeny, hence evolv-
ing n sequences of a given length m (using the tool Seq-Gen'?). The distances between
these sequences give rise to an n X n matrix of distances (calculated using ednadist). This
matrix, when neighbour-joined (done using QuickJoin'3), will result in a tree of size n.

Size of DAG for m = 100 Size for m = 1000 Size for m = 10000

s

8000
s

Nodes in DAG
5000 10000 15000
L ! L
Nodes in DAG
4000 6000
L L

!

30000 40000

!

Nodes in DAG

L

10000 20000

2000
L

0
L

Number of trees Number of trees Number of trees

Figure 4. Sizes of DAGs constructed. As predicted, as m grows, the size of the DAG is reduced, and as shown
the number of nodes in the DAG is considerably lower than the number of nodes in the sets of trees. (By construc-
tion, leaves in a DAG are shared, meaning that the number of nodes in a DAG will be approximately less than
half the number of nodes in the corresponding trees.) Note that for & = 100, n = 1000 and m = 10000, the

collection of trees contain 100-1998 nodes, whereas the average size of the DAG is 8588. This is

t 8588
1998

8588 ., 1
100-1998 ~ 23

the size of the corresponding set of trees or jus = 4.3 times the size of one single tree.

September 28, 2006

Time usage for m = 100

1| ™ k=100
m k=90

Time in seconds

500 1000 1500

AN
[AANNNN

g4

T
100 200 300 400

Number of leaves

Time in seconds

20000 30000 40000

10000

16:44 Proceedings Trim Size: 9.75in x 6.5in

Time usage form = 100

Time usage form = 1000

apbcl45a

Time usage for m = 10000

OEEO00BONEDENE

Time in seconds

2000 3000 4000

1000

°

Time in seconds

| AN

o 44

T
100 150 200 250 300

Number of leaves.

100 150 200 250 300

Number of leaves

T
100 150 200 250 300

Number of leaves.

(@) O(k?n?) (b) O(k? - nlog?n)

Figure 5. The performance of the two O(k2t) algorithms. (a) Time used in tree against tree comparison, i.e.
applying the O(n?) one against one algorithm for each pair of trees taken from the k trees. As this algorithm
is independent of the similarity of the trees (the size of m) only m = 100 is included. This experiment has
only been repeated six times with n € {100, 200, 300, 400, 500} due to its quite time consuming nature and the
above mentioned independence of similarity. For k and n the time used is seen to be close to 1.23- 1076 . k2 . n2
seconds. This method seems most appropriate for fewer smaller trees of little similarity due to its O(k%n?) time
complexity. (b) Time used in tree against hierarchical decomposition tree comparison. This experiment consists
of constructing hierarchical decomposition trees for each of the k trees and running the original O(n log? n)
algorithm for each possible pair of tree and hierarchical decomposition tree. This experiment has only been
repeated six times with values of n € {100, 200, 300}, because of its time consumption. (We note that the graph
considering m = 100 is not as regular as the others. This might be due to the relatively few experiments run.)

This process is repeated (using the same phylogenetic tree) k times to obtain k trees. The
length of the simulated sequences, m, influence the similarity of the trees: as m grows, the
sequences evolved, will contain more of the information contained in the original phyloge-
netic tree, and ultimately the k trees developed will be nearer the original phylogenetic tree
and thus the pairwise similarity of the k trees constructed will grow as m grows. For each
n € {100,200, ...,1000}, k = 100 trees of sequence lengths m € {100, 1000, 10000}
were constructed. Construction of data was repeated 30 times. Experiments were run on
these 30 sets of data except where otherwise stated.®
To have a baseline to compare our new algorithms

with, we then timed the two tree-against-tree algorithms. N
First, we compared the simple O(n?) algorithm with the
more complex O(n log? n) algorithm, both implemented in
QDist.® Since the O(nlog? n) time complexity is achieved
through a number of complex polynomials in the nodes of <
the hierarchical decomposition tree, we expect it to have a
significant overhead compared to the much simpler O(n?)
algorithm, which is verified in Fig. 6. Observe that for
n = 100 the simpler algorithm is 8 times faster than the

‘Time usage for 2 random trees.

Time in seconds.

Figure 6. Time used in calculating
the quartet distance between two
trees. Random trees were used as
none of the algorithms should be
favoured. The graphs show the av-
erage time of 30 runs for each size.

more complex. For n = 1000 this factor has shrunk to 2
and for n > 2000 the complex algorithm is preferable.
This is not the full story, however. The O(nlog®n) al-

26 identical, Intel Pentium 4 1.80 GHz, 512 MB, dedicated machines were used for the experiments.

September 28,2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

Time usage form = 100 Time usage for m = 1000 Time usage for m = 10000

=100

s

600
s

400
L

N

o
0
0
0
0
0
0
0
0
0

CSEROOEOEDER

K
k=
k
K
K
K
k
k
K
K
K

Time in seconds

Time in seconds

Time in seconds
0 200 400 600 800 1000 1200
T S R

L

L
0
L

T T T T T T T
100 150 200 250 300 100 150 200 250 300 100 150 200 250 300
Number of leaves Number of leaves Number of leaves

(a) DAG against hierarchical decomposition tree.

Time usage form = 100 Time usage for m = 1000 Time usage for m = 10000

NI

!
CSEROOEOEDER

N

Time in seconds
Time in seconds
Time in seconds

.\.

VNN

[N

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

Number of leaves Number of leaves Number of leaves

(b) DAG against DAG.

Figure 7. The performance of the two DAG-based algorithms. (a) The DAG-against-tree algorithm. Here we
construct a DAG D on top of the k trees as well as constructing a set S of hierarchical decomposition trees, each
constructed from one of the k trees. Calculating the k2 quartet distances is accomplished by comparing each
H € S against D. Each experiment is only repeated six times due to the long running times. The graphs show
that as m and k grows the algorithm “speeds up” and in the extreme case of l = 10000 and & = 100 the
algorithm is approximately 50 times faster than the same algorithm run on m = 100 and k = 100. (b) The
DAG-against-DAG algorithm. Here we construct a DAG D on top of the k trees and comparing D against a copy
of itself. The experiments show that DAG against DAG is the fastest way of calculating the quartet distances (for
the values of k, n and m examined) and that the speedup gained in comparison with the naive tree against tree
algorithm is in the vicinity of a factor of 130 for £ = 100, n = 500 and m = 10000.

gorithm, as implemented in the tool QDist caches information about polynomial manip-
ulation when handling the hierarchical decomposition tree® and is not independent of m
when computing all pair-wise distances. It is therefore conceivable that the more complex
algorithm is superior for comparing all pair-wise distances for smaller trees than this. Fig-
ure 5, however, indicates that the simpler, but O(k?n?), is faster than the more complex,
but O(k? - n log? n), algorithm for tree sizes up to at least 500 leaves.

Based on these experiments, we expect the DAG-against-DAG algorithm to outperform
the DAG-against-tree algorithm for similar sizes of trees, and indeed, as shown in Fig. 7,
this is the case. The DAG-against-tree algorithm (Fig. 7(a)) is clearly superior to the tree
against hierarchical decomposition algorithm in all cases, and as m grows this superiority
becomes more and more apparent, but compared with the DAG-against-DAG algorithm
(Fig. 7(b)) it performs rather poorly (notice that the number of leaves for Fig. 7(b) grows
from 100 to 1000 while for Fig. 7(a) it grows only to 500). The DAG-gainst-DAG algo-
rithm, however, achieves a speedup factor around 130, compared to the simple (but fastest)
tree-against-tree algorithm for £ = 100, n = 500 and m = 10000.

September 28, 2006 16:44 Proceedings Trim Size: 9.75in x 6.5in apbcl45a

10 REFERENCES

5. Conclusions

We have presented two new algorithms for computing the quartet distance between all pairs
of a set of trees. The algorithms exploit shared tree structure to speed up the computation
by merging the set into a DAG and memorize counts in each node in the DAG. Our experi-
ments show that the algorithms developed works well in practise (on simulated, but realistic
trees), with a speedup factor of around 130 in the base case. Calculating the quartet dis-
tances between trees with different leaves is not trivially done using the above construction.
Two such trees might be compared by removing any leaf not in both trees prior to calcu-
lation or by using a fourth colour. When comparing many such trees it is apparent that
the DAG approach is not applicable since, assuming we adopt the same mapping of tree
nodes to DAG nodes as used above, two tree nodes mapping to the same DAG node does
not necessarily induce the same set of quartets and therefore it is not clear how to reuse the
count of nodes in the DAG. This might be interesting looking further in to.

References

1. J. Felsenstein. Inferring Phylogenies. Sinauer Associates Inc., 2004.

2. B.L. Allen and M. Steel. Subtree transfer operations and their induced metrics on
evolutionary trees. Annals of Combinatorics, 5:1-13, 2001.

3. G. Estabrook, F. McMorris, and C. Meacham. Comparison of undirected phylogenetic
trees based on subtrees of four evolutionary units. Syst. Zool., 34:193-200, 1985.

4. D. F. Robinson and L. R. Foulds. Comparison of weighted labelled trees. In Combi-
natorial mathematics, VI, Lecture Notes in Mathematics, pages 119-126. 1979.

5. D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53:131-147, 1981.

6. M. S. Waterman and T. F. Smith. On the similarity of dendrograms. Journal of Theo-
retical Biology, 73:789-800, 1978.

7. G.S. Brodal, R. Fagerberg, and C.N. S. Pedersen. Computing the quartet distance
between evolutionary trees in time O(nlogn). Algorithmica, 38:377-395, 2003.

8. T. Mailund and C.N.S. Pedersen. QDist—Quartet distance between evolutionary trees.
Bioinformatics, 20(10):1636-1637, 2004.

9. C. Christiansen, T. Mailund, C.N.S. Pedersen, and M. Randers. Algorithms for com-
puting the quartet distance between trees of arbitrary degree. In Proc. of WABI, volume
3692 of LNBI, pages 77-88. Springer-Verlag, 2005.

10. G.S. Brodal, R. Fagerberg, and C.N.S. Pedersen. Computing the quartet distance be-
tween evolutionary trees. In Proc. of ISAAC, pages 731-742, 2001.

11. M.J. Sanderson. r8s: inferring absolute rates of molecular evolution, divergence times
in the absence of a molecular clock. Bioinformatics, 19(2):301-302, 2003.

12. A. Rambaut and N.C. Grassly. Seq-gen: an application for the monte carlo simulation
of dna sequence evolution along phylogenetic trees. Computer Applications in the
Biosciences, 13(3):235-238, 1997.

13. T. Mailund and C.N.S. Pedersen. QuickJoin—fast neighbour-joining tree reconstruc-
tion. Bioinformatics, 20(17):3261-3262, 2004. ISSN 1367-4803.

