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In addition to the well-known edit operations, the alignment of minisatellite maps
includes duplication events. We model these duplications using a special kind of spanning
trees and deduce an optimal duplication scenario by computing the respective minimum
spanning tree. Based on best duplication scenarios for all substrings of the given se-
quences, we compute an optimal alignment of two minisatellite maps. Our algorithm
improves upon the previously developed algorithms in the generality of the model, in
alignment quality and in space-time efficiency. Using this algorithm, we derive evidence
that there is a directional bias in the growth of minisatellites of the MSY1 dataset.
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1. Introduction

1.1. Alignment of minisatellite maps

A genomic region is classified as a minisatellite locus if it spans more than 500 bp
and is composed of tandemly repeated DNA stretches. Each stretch, called unit,
is a sequence of nucleotides whose length ranges between 7-100 bp. A potential
mechanism responsible for the evolution of minisatellites is the unequal cross-over,
where the paired homologous chromosomes exchange unequal segments during the
cell division. This gives rise to a repeated segment in one chromosome and to a
deletion in the other; see Figure 1 (b).

A minisatellite map represents a minisatellite region, where each unit is encoded
by a character and handled as one entity; see Figure 1 (a). For one minisatellite
locus, both the type and the number of units vary between individuals in a popu-
lation. Therefore, minisatellite maps provide a means for studying the evolution of
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Fig. 1. (a): A minisatellite locus: five units, their nucleotide sequences, and the respective map
are shown. (b): The unequal cross over producing duplication of the unit 2. (c): Alignment of two
sequences. The matched copies are put above each other. The arcs represent duplication events.

populations. The key algorithm for this study is to align maps of individuals from
different populations.

The traditional model of sequence alignment is based on the edit operations of
replacement (including matches) and deletions/insertions (indels). In aligning min-
isatellite maps, one has to also consider that regions of the map have arisen as a
result of duplication events from the neighboring units. The single copy duplication
model, where only one unit can duplicate at a time, is the most popular, and its
biological validation was asserted for the MSY1 minisatellites; see [1, 2]. The scor-
ing of minisatellite map alignment accounts for common aligned units as well as for
individual duplication histories. For example, the score of the alignment in Figure 1
(c) is composed of (1) replacement scores for the unit pairs (s1, r1), (s2, r2), (s7, r3)
and (s8, r4), (2) costs of duplication of the units s3, s6 originated from the unit s2,
duplication of s4 from s5, and duplication of r5 from r4, and (3) insertion of the unit
s5. That is, the comparison delivers a three-stages scenario: The aligned units refer
to common ancestors, the duplications refer to differences in the individual duplica-
tion histories, and the indels refer to units (possibly emerged by a transposition [3])
not homologous to the map units.

1.2. Previous and new results

The problem of comparing two minisatellite maps under the single copy duplication
model was investigated for the first time by Bérard and Rivals [1] who presented
an algorithm that takes O(n4) time and O(n3) space, where n is the average map
length. Subsequently, Behzadi and Steyaert [4] followed a different approach and
presented a transformation-distance based algorithm: one sequence is considered
as a source and the other as a target. The optimal transformation distance is the
minimum cost set of operations required to transform the source to the target. Their
algorithm takes O(n3|Σ|) time and O(n2|Σ|) space, where |Σ| is the alphabet size.
Based on a run length encoding scheme, Behzadi and Steyaert [5] improved the
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running time of their algorithm to O(n2 + nn′2 + n′3|Σ|), where n′ is the length of
the run-length compressed sequence. Very recently, Bérard et al. [6] argued that the
alignment distance for two minisatellite sequences S and R is symmetric, while the
transformation distance is not. They correspondingly refined the algorithm of [1]
by incorporating ideas of [5] and presented an algorithm that takes O(n3 + n′3|Σ|).

In this paper, we present an alignment algorithm that improves upon the previ-
ous ones in many respects: The alignment model is more general and our algorithm
relaxes the constraint that the mutation distance M(a, b) between two units is
symmetric. The time complexity of our algorithm is alphabet-independent and we
show that the run length encoding scheme can be incorporated, which yields an
O(n2 + nn′2 + n′3) time and O(n2) space algorithm. This makes our algorithm the
fastest map alignment algorithm in theory, and in practice as well, as we demon-
strate by experiments.

From the biological point of view, our algorithm is so flexible that investigators
can put constraints on the direction of duplications to study the structural variation
and duplication dynamics. Based on this feature, we could quantitatively verify the
assumption in [2] that the units duplicate in a biased fashion at the 5′ end.

Our algorithm computes an optimal alignment by first computing and storing the
cost of an optimal duplication history for each interval in each sequence separately.
Then it computes the optimal alignment based on the precomputed costs.

In fact, reconstructing duplication histories of a minisatellite map which occurs
here as a subproblem of map alignment is related, but in a somewhat modified form,
to the problem of inferring the duplication history of tandemly repeated genes;
see [7–10], and in particular [11], which is closely related to our work here. What
distinguishes the general construction of duplication histories from their use in the
map alignment problem is that here, it is required to compute, for each interval
of units, a duplication history originated either from the leftmost or the rightmost
unit. Furthermore, some units may be inserted (not duplicated from other units)
and may then undergo further duplications.

2. The Duplication History

Let S = s1, s2, . . . , sn denote a minisatellite map of n units. We write S[i..j] to
denote the j− i+1 contiguous units si, si+1, . . . , sj . A sequence T is a subsequence
of S, if there is a set of indices i1 < i2 < · · · < im, m ≤ n, such that T =
si1 , si2 , . . . , sim

. The cost of mutating a unit s′ to s′′ is denoted by M(s′, s′′) ≥ 0.
We denote the cost of a duplication event affecting a unit s′ by DUP (s′). We

call the total cost of duplicating and mutating the unit s′ to produce s′s′′ or s′′s′,
where s′, s′′ ∈ S, the duplication cost d(s′, s′′) =DUP (s′) + M(s′, s′′). Note that if
M(s′, s′′) = M(s′′, s′), andDUP (s′) is constant for every unit s′ ∈ S, then d(s′, s′′) =
d(s′′, s′), i.e., we speak of a symmetric distance function. Our algorithms work for
both symmetric and non-symmetric distance functions. We assume that d(s′, s′′) ≤
d(s′, s′′′) + d(s′′′, s′′), for all {s′, s′′, s′′′} ⊂ S.
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Fig. 2. (a) The table on the left shows the duplication events producing the sequence s1, . . . , s7,
we show also the resulting intermediate subsequences. We show the corresponding ORDST and
its arched-arrow representation (shown under the tree). (b) A spanning tree that cannot be an
ORDST, along with the duplication events and the resulting subsequences.

The duplication history of a sequence of units describes a series of duplication
events that created the observed sequence of units. Here, we represent these histories
by ordered directed spanning trees (ORDSTs). The nodes of an ORDST are labeled
with units of S, and an edge from s′ to s′′ corresponds to a duplication event where
the unit s′ is duplicated to s′s′′ or s′′s′. (For brevity, we will write “node s” to mean
the “node labeled with s”.)

Figure 2 (a) shows an example of an ORDST, its arched-arrow representation,
and the corresponding events for generating it. Note that the resulting sequences
after each duplication event are subsequences of S; we call this property the ordering
constraint. However, not every spanning tree on S is an ORDST describing the
duplication history. For example, in the same figure part (b) we show a subtree
that cannot lead to an ORDST. This is because the duplication of the unit s2

produces s6. Note that the resulting sequence s1, s2, s6, s3, s4 is not a subsequence
of S. In terms of the single copy duplication model, it is impossible to duplicate
the unit s2 to produce s6 after the emergence of s3 or s4. That is, the ordering
constraint preserves the properties of the evolutionary mechanism. The following
lemma specifies properties of the ORDST used in our algorithm.

Lemma 2.1. For an ORDST of n units, the following statements are equivalent:

a. For each node sk in an ORDST, we can write the nodes of its full subtree as
S[i..j], 1 ≤ i ≤ k ≤ j ≤ n. Moreover, this subtree can be divided into two subtrees
sharing the root sk and partitioning the interval [i..j] into S[i..k] and S[k..j].

b. Let the interval [i..j] include the nodes in the subtree of node sk, and let the
intervals [l1..r1], .., [lt..rt] include the subtrees of the child nodes of sk. Then k /∈
[li..ri], and [li..ri] ∩ [lj ..rj ] = φ for all 1 ≤ i, j ≤ t, i 6= j.

c. Let the interval [i..j] include the nodes in the subtree of node sk, and let sl be a
descendant node of sk. If every element in S[l + 1..j] is neither an ancestor nor
a right brother of sl, we can divide the tree over [i..j] at node sl into two subtrees
intersecting at sl: The first includes the nodes S[i..l] with sk as a root, and the
second includes S[l..j] with sl as a root.
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Fig. 3. The interval partitioning of the recurrence (3.1). The horizontal arrows correspond to left-
ORDMST or right-ORDMST extending from the arrow beginning to its end. The arched arrows
correspond to a duplication event between two units. The black circles correspond to roots of trees.
(a) The recurrence for CA

l (i, j) partitioning the tree at node sk. (b) The recurrence for CB
l (i, j).

(c): A general topology for left-ORDMST.

Proof. This follows from the ordering constraint on the units of S.

Definition 2.1. Each edge s′ → s′′ in an ORDST for a sequence S is assigned a
duplication cost d(s′, s′′), where s′, s′′ ∈ S. The ORDST cost is the total sum of all
duplication costs. An optimal ORDST for S is one of minimum cost.

3. Left- and Right Ordered Directed Spanning Trees

The alignment of minisatellites includes duplication events, where the duplicated
units originate from the left- or rightmost unit of the interval containing the du-
plications. Therefore, we compute for each interval two optimal histories: one orig-
inated from the leftmost unit and the other from the rightmost unit. For ease of
presentation, we will first present an algorithm that computes optimal histories
from duplications only, without insertions. Then we will extend this algorithm to
incorporate such insertions.

3.1. Computation of optimal trees without insertion

Based on Lemma 2.1, any ORDST can be expressed in terms of contiguous intervals.
This suggests that a dynamic programming algorithm can be used to construct an
optimal tree by recursively searching for an optimal partitioning of the intervals
enclosing the units.

Given an interval S[i..j] ⊆ S[1..n], we call an ORDST over this interval left-
ORDST if the root of the respective tree is the leftmost unit si, and we call it
right-ORDST if the root is the rightmost unit sj . Let Cl(i, j) denote the cost of a
minimum left-ORDST defined over the units S[i..j]. Similarly, let Cr(i, j) denote
the cost of a minimum right-ORDST over S[i..j]. The values of Cl(i, j) and Cr(i, j)
can be computed iteratively by examining subintervals of [i..j] as follows.

Figure 3 (c) shows the general decomposition of a left-ORDST. sk denotes the
rightmost son of si, and the overall left-ORDST decomposes into two left-ORDSTs
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Fig. 4. (a) An ORDST for S = (s1, .., s8) with the inserted units: {s2, s5, s6, s7}. The unit s2

was inserted but did not undergo further duplications. s6 was inserted then duplicated to s5 and
s7. An ORDST with insertions should be regarded as a forest; the dash-dotted lines are virtual
links between the forest roots and their potential parent nodes. On the left, the respective events.
The resulting sequences are subsequences of S, i.e., the ordering constraint property is conserved

over intervals S[i..k′] and S[k..j], and a right-ORDST over the interval S[k′+ 1..k].
However, this most natural decomposition leads to a recurrence of time complexity
O(n4), by iterating over k and k′. Therefore, we use different decompositions to
reach O(n3) time complexity.

Consider the two cases k < j and k = j in the interval partitioning of Figure
3 (c). Figure 3 (a) deals with the case k < j. We see a partitioning at sk into two
left-ORDSTs over S[i..k] and S[k..j], where the first one accounts internally for the
cost of generating sk from si. Figure 3 (b) deals with the case k = j. We see a left-
ORDST for S[i..k′] and a right-ORDST for S[k′+1..j]. Neither of the two accounts
for the generation of sj from si, so this must be added in the decomposition. (In the
recurrence given below for this case, k′ will be renamed to k.) In other words, the
decomposition in Figure 3 (c) can be regarded as the concatenation of the two cases
in Figure 3 (b) and (a). These two cases cover all tree topologies, and we reach the
following recurrences.

If i = j, then Cl(i, j) = Cr(i, j) = 0. If i = j − 1, then Cl(i, j) = d(si, sj) and
Cr(i, j) = d(sj , si). (Note that in general d(si, sj) can be different from d(sj , si).)

For j − i > 1, we have, according to the above case analysis,
Cl(i, j) = min{CA

l (i, j), CB
l (i, j)} (3.1)

where
CA

l (i, j) = mink{Cl(i, k) + Cl(k, j)} i < k < j

CB
l (i, j) = mink{Cl(i, k) + Cr(k + 1, j) + d(si, sj)} i ≤ k < j

By symmetry, Cr(i, j), can be computed as follows:

Cr(i, j) = min

{
mink{Cr(i, k) + Cr(k, j)} i < k < j

mink{Cl(i, k) + Cr(k + 1, j) + d(sj , si)} i ≤ k < j

Computing this set of recurrences requires, for every i and j, to iterate over
all k, which has a total time complexity of O(n3). We store for every interval the
optimal Cl(i, j) and Cr(i, j), which takes O(n2) space.

3.2. Incorporating insertions in optimal trees

In the case of an insertion, a unit is not derived from a neighboring unit, but im-
ported as an unrelated DNA fragment. This inserted unit may undergo duplication
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events. Figure 4 shows an example of an ORDST with insertions over a sequence
S. It is not difficult to see that Lemma 2.1 still holds for ORDST with insertions
provided that the inserted units are taken into account. It is also clear that the tree
topology itself is not affected by whether sx ∈ S is inserted or copied from some
sk. In other words, we may consider sx as derived from some (arbitrary) sk. The
emergence of sx has an insertion cost I(sx) instead of d(sk, sx). To accommodate
insertions in Recurrence 3.1, d(si, sj) must be replaced by min{d(si, sj), I(sj)}. For
Cr(i, j), min{d(sj , si), I(si)} replaces d(sj , si).

4. The Alignment Algorithm

4.1. Formal model of map alignment

Let two sequences S = s1, s2, . . . , sn and R = r1, r2, . . . , rm be given. In the align-
ment of two minisatellite maps, we have the following operations: (1) Match of two
units si and rj , (2) Indels in S/R, (3) left duplications in S/R, and (4) right dupli-
cations in S/R. Figure 4.1 (left) shows generation rules formalizing the alignment
of minisatellite maps.

Relating models for map alignment is difficult. For comparison, we also show in
Figure 4.1 (right) the model of Bérard et al. It is not difficult to see that it lacks a
rule for simultaneous right duplications in S and R. In the example shown, there is
no rule for generating R[5..6] from r7, and at the same time generating S[7..9] from
r7.We clarify this point with an additional example. Consider S = ab and R = dc,
where d(a, b) = d(b, c) = d(c, d) < d(a, c) = d(b, d) < d(a, d). The optimal alignment
is to match b with c. Then b produces a by right duplication, and c produces d by
right duplication. In Bérard et al. model there is no way for generating d from
c, while b producing a. Our model overcomes this minor omission. Note also that
although the last two rules of Bérard et al. seem to have no counterpart in our
model, their effect is achieved by a combination of match, left and right duplication
rules.

4.2. An algorithm for computing an optimal alignment

Let two sequences S′ = s1, s2, . . . , sn and R′ = r1, r2, . . . , rm, m ≤ n, be given. For
ease of presentation, we prepend the character $ to both S′ and R′, i.e. the alignment
algorithm runs for S = $S′ = $, s1, s2, . . . , sn and R = $R′ = $, r1, r2, . . . , rm. From
left-to-right the units of S appear at positions 0, 1, 2, ..., n in S, and similarly for
R. The mutation and duplication costs between the unit $ and any other unit in S′

and R′ is much larger than the costs between the units of S′ and R′, i.e., d($, v) �
d(v, v′), where v, v′ ∈ {S′ ∪R′}. (The rationale for introducing this unit is to allow
that prefixes of S′ and/or R′ appear as insertions.) Let Cs(l, i, x) (Cr(l′, j, y)) denote
the cost of an optimal duplication history of the units S[l..i] (R[l′..j]) originating
from the unit sx (ry). Note that Cs(l, i, l) (Cr(l′, j, l′)) corresponds to an optimal left-
ORDST over the interval S[l..i] (R[l′..j]), because the duplications are originated
from the leftmost unit sl (rl′). Note also that Cs(l, i, i) (Cr(l′, j, j)) corresponds to



October 2, 2007 21:43 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc080a

8
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A
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−−−→
S[l..i]−−−−→
R[l′..j]

A
B

Right dup. in S
and/or R:

A
B →

←−−−
S[l..i]←−−−−
R[l′..j]

A
B

Termination: A
B →

ε
ε

Bérard et al. Model

Operation Generation rule

Insertion in S: A
B →

si A
B

Insertion in R: A
B →

A
rj B

Left dup. in S and/or
R:

A
B →

−−−→
S[l..i]−−−−→
R[l′..j]

A
B

Dup. in S from a unit
in R:

A
B →

←−−→
S[l..i]

rj

A
B

Dup. in R from a unit
in S:

A
B →

si←−−−→
R[l′..j]

A
B

Termination: A
B →

ε
ε

Example :
s1
−−−−−−−→s2 s3 s4 s5 s6

←−−−−−s7 s8 s9
r1 ∼ ∼ ∼ r2

←−−−−−r3 r4 r5

Example :
s1
−−−−−−−→s2 s3 s4 s5 s6

←−−−−→s7 s8 s9
r1 ∼ ∼ ∼ ∼ −−−−−→r2 r3 r4 r5

Fig. 5. The generation rules produces the alignment from left to right, where A and B are the
alignment strings for S and R. (Think of them as a Turing machine writing on two tapes A and B.)
The units of the interval S[l..i] (R[l′..j]) are produced by duplication events, and the arrows→,←,
and ↔ above them specify if the duplications originate from the leftmost, rightmost, or any unit
in the interval, respectively. In the example under our model, the alignment is generated through
the following rules: Matching s1 to r1, insertion of s2, left duplication of S[2..4] originated from
s2, matching s6 to r2, right duplication of S[7..9] from s9 and right duplication of R[3..5] from r5,
and finally matching s9 to r5. On the right, we show the Bérard et al. model. In this model there
is neither explicit match nor right duplication. Instead, the duplication in S (R) from a unit in R
(S) includes these events. In the respective example, r5 produces S[7..9]. If r5 produces, say s9,
then we can tell that r5 matches s9 and there is a right duplication of S[7..9] from s9.

an optimal right-ORDST over the interval S[l..i] (R[l′..j]), because the duplications
are originated from the rightmost unit si (rj). We have Cs(t, t, t) = Cr(t′, t′, t′) = 0,
where t ∈ [0..n], t′ ∈ [0..m]. Moreover, let M ′(s′, s′′) = min{M(s′, s′′),M(s′′, s′)}.

Let A(i, j) be the cost of aligning S[0..i] to R[0..j], where 0 ≤ i ≤ n and
0 ≤ j ≤ m. We have the boundary values A(0, 0) = M($, $) = 0. A(i, j) is computed
by the following recurrence (noting the limits of i, j):

A(i, j) = min

8>>><>>>:
M ′(si, rj) +A(i− 1, j − 1) ∀ i > 0 and ∀ j > 0
Cs(l, i, l) +A(l, j) ∀l ∈ [0, i− 1], i > 0, j ≥ 0
Cr(k, j, k) +A(i, k) ∀k ∈ [0, j − 1], i ≥ 0, j > 0
Cs(ts, i, i) + Cr(tr, j, j) +
M ′(si, rj) +A(ts − 1, tr − 1) ∀ts ∈ [1..i], ∀tr ∈ [1..j], ∀i > 0, ∀j > 0

The optimal duplication costs for each interval originated from the unit either
on the left or right boundary are computed in a pre-processing step, using the
algorithm of Section 3. This takes totally O(n3) time and O(n2) space. Note that
indels are not explicitly incorporated in this recurrence, because the duplication
histories already take them into account. For computing the recurrences including
Cs(l, i, l) and Cr(k, j, k), one iterates for all i and j over all l (concurrently k),
which takes O(n3) time. For computing the recurrence involving Cs(ts, i, i) and
Cr(tr, j, j), one iterates for all i and j over all ts and tr. This naively takes O(n4),
but the time complexity can be reduced to O(n3), as follows. The righthand side
Cs(ts, i, i)+Cr(tr, j, j)+M(si, rj)+A(ts−1, tr−1) can be rewritten as Cs(ts, i, i)+
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M(si, rj) +A′(ts − 1, j), where A′(ts − 1, j) = A(ts − 1, tr − 1) + Cr(tr, j, j). If the
cost Cs(ts, i, i) + Cr(tr, j, j) + M(si, rj) + A(ts − 1, tr − 1) is to be minimal, then
A′(ts− 1, j) must also be minimal. If the value A′(ts− 1, j) is already precomputed
and stored, then it takes only O(n3) time to compute the respective recurrence. To
this end, an optimal A′(ts−1, j) is computed earlier when computing the alignment
A(ts− 1, j). For given ts and j, this computation minimizes over tr. Altogether, for
computing A(i, j), one has to pre-compute and store an optimal A′(ts−1, j); which
takes totally O(n3) and requires one extra table. Adding the complexity of the
preprocessing step, the total complexity is O(n3) time and O(n2) space.

The run length encoding (RLE) scheme can be readily incorporated to further
reduce the time complexity to O(n2 + nn′2 + n′3), where n′ is the length of the
run-length compressed sequence. We layout this improvement in Appendix I.

5. Experimental Results

5.1. Performance evaluation

For constructing the duplication history, we compare our algorithm to the alphabet-
dependent algorithm using different alphabet sizes. We use random sequences be-
tween 80 and 60 units long, where each unit can duplicate at most 50 times. Figure
6 (left and middle) shows the results of the experiment over 1000 such random se-
quences. It is clear that our algorithm is invariant against the alphabet size, while
the other is linearly dependent. We show also the results of applying the run-length
encoding (RLE) scheme. The usage of RLE scheme has actually attenuated the
running time of both algorithms, but our algorithm is still invariant against the
alphabet size. Naturally, the effect of RLE decreases when increasing the alphabet
without also increasing sequence length.

Regarding the alignment phase, we compared our algorithms MSATcompare

(without RLE) and MSATcompareRLE (with RLE) to the only existing program for
this task, MS ALIGN [6], that runs without RLE. The table on the right of Figure
6 summarizes the comparison results for simulated and the largest real datasets.
Our algorithms are faster than MS ALIGN. Clearly, MSATcompareRLE is superior to
other algorithms: It reduced the time of analyzing large datasets to a few minutes,
including output of results. It is worth mentioning that for the MSY1 dataset our
algorithms and MS ALIGN yielded identical pairwise scores; that is, the limitation
in the alignment model of Bérard et al. discussed in Section 4.1, did not matter.
However, for other datasets, this may not be the case.

5.2. Detecting directional duplication bias in minisatellites

We analyzed the updated (and the largest available) dataset MSY1 [2, 12] that
contains 465 maps of individuals from different populations. We excluded repeated
maps (to have a non-redundant dataset) and also excluded those maps including
ambiguous unit types. In the remaining 345 maps, the number of distinct unit types,
including null repeats, is eight, i.e., the alphabet size is eight. The types are assigned
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Without RLE
|Σ| Dep. Indep.

5 147 65
10 262 65
20 472 61
30 703 65
50 1165 65
60 1428 67

With RLE
|Σ| Dep. Indep.

5 0.46 0.46
10 0.59 0.55
20 0.95 0.59
30 1.11 0.56
50 1.5 0.48
60 1.7 0.6

Data Algn. No. MS ALIGN MSATcompare MSATcompareRLE

rand 50 1225 5.58 2.3 0.23
rand 100 4950 24.2 10.2 0.98
rand 150 11175 49.8 21.4 2.1
rand 250 3112 161.5 70 5.9
rand 350 61075 317 140 12

MSY1 345 59340 87 25 4.8

Fig. 6. Left and middle tables: The running times, in seconds, of constructing duplication history
for different alphabet sizes |Σ| without and with RLE scheme, respectively; this is measured on
a PC with 1.5GHz CPU and 512M RAM. The columns “Dep.” and “Indep.” are for Alphabet-
dependent and independent algorithms, respectively. Right table: Running times, in minutes, of
our algorithms compared to MS ALIGN. The first four rows contain results for random data, and
the last row is for the MSY1 real dataset. (“rand 50” means 50 random sequences). The second
column contains the number of pairwise alignments for each set of sequences.

the codes {null, 1, 1a, 2, 3, 3a, 4, 4a}. The pairwise hamming distances dH between
the units (except for null) range between 1 and 3. The null repeats are unidentified
types due to further base substitutions [2]; hence, we assumed it has dH = 4 to
other units. We consider three versions of this dataset. The first includes all 345
unique maps. The second (329 maps) excludes maps with more than 3 adjacent null
repeats, as suggested in [6]. The third (249 maps) contains no null repeats.

The MSY1 dataset was previously analysed for studying population evolution [6].
Here, we ask whether the units duplicate at the 5′ end (to the left) more than at
the 3′ end (to the right), or not; i.e., to verify the assumption given in [2]. In
terms of our alignment model, Subsection 4.1, we want to examine if left and right
duplications contribute equally to the duplication history. To answer this question,
we measured the effect of ignoring left/right duplications in all pairwise alignments
by comparing the respective costs to the optimal costs considering both kinds. The
rationale is that if both kinds contribute equally, we obtain nearly the same number
of alignments with increased cost. Otherwise, the numbers will be different. To this
end, we used five cost schemes given in Figure 7 (left). These schemes sample the
range from 1 to ∞ of the ratio M/DUP . The fourth scheme is the one recommended
by [6], and the final scheme reduces the comparison of two maps to the comparison
of their modular structures [2], e.g., the map “aaabbc” reduces to “abc”.

We then ran three experiments under these cost schemes: In experiment Efull,
we performed all-against-all comparisons over the above-mentioned three dataset
versions. In Experiment Eleft, we allowed only left-duplications (achieved by switch-
ing off the recurrence corresponding to right duplications). In experiment Eright,
we allowed only right duplications (achieved by switching off the recurrences cor-
responding to left duplications). In the latter two experiments, we counted the
number of alignments whose costs are higher than in Efull. All results of running
Eleft and Eright compared to Efull using various distance functions and versions of
the dataset are shown in Figure 7 (right).

Interestingly, the number of alignments with optimal cost increased relative to
Efull is clearly smaller in Eright than in Eleft. Since our model is symmetric, this
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(M,DUP, I)

1 (1× dH , 1, 40)
2 (2× dH , 1, 40)
3 (5× dH , 1, 40)
4 (10× dH , 1, 40)
5 (1× dH , 0, 40)

Dataset Total r=1× dH r=2×dH r=5×dH r=10×dH r =∞
with Algn. L R L R L R L R L R

nulls 59340 186 0 616 16 3005 57 1977 127 3219 107
max. 3 nulls 53956 148 0 398 0 2403 8 1487 10 2604 44

no nulls 30876 0 0 0 0 869 0 876 0 1040 0

Fig. 7. Left: The cost schemes used in our experiments. The triple (M,DUP, I) denotes the costs
for mutation M(x, y) as a function of dH(x, y), duplication DUP (x), and insertion I(x), x, y ∈
{null, 1, .., 4a}. For all schemes, the insertion cost I = 40. Right: The results for three versions of
the dataset with the inclusion of all, at most three, and no null types. The 2nd column contains
the total number of pairwise alignments for each dataset version. The other table entries are the
number of alignments with costs higher than the optimal under different cost schemes, where
r = M/DUP is the ratio between the mutation and duplication costs. The columns titled with “L”
and “R” correspond to Eleft and Eright, respectively.

directly suggests a bias in vivo in the contribution of left- and right-duplications.
To check against artefacts, we generated sequences representing minisatellites of
random structural variations. The result was as expected: The number of optimal
alignments with increased cost in Eleft and Eright, compared to Efull, over this
random dataset is nearly the same.

Back to the MSY1 dataset of [2], we can state that left and right duplications
do not contribute equally to the duplication history, which (1) supports the idea
that the types appear non-randomly at that locus and they are generated at the 5′

ends with a limitation regarding type mutations [2], or (2) assumes the existence
of further unkown dynamic constraints limiting the duplication of the MSY1 units.
This observation calls for closer investigation.
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Appendix I: The Inclusion of Run-length Encoding Scheme

In Run-Length Encoding (RLE) of sequences, i consecutive occurrences of symbol x

is shown by xi, which is called a run. For example, S = aaaabbbbcccabbbcc is encoded
as a4b4c3a1b3c2. For brevity, we call the sequence of symbols in the encoded sequence
the compressed sequence and denote it with S′, in the previous example S′ = abcabc.
Minisatellites are ideal patterns for using run-length encoding technique, because
they consists of a large number of tandem repeats. As a result, the length of run-
length encoded representation of minisatellite sequences is generally much shorter
than the initial length.

The RLE technique helps us in both computing the duplication history and
the alignment algorithm. If we compute the duplication histories for the RLE ver-
sion of strings, then Cl(i, j) and Cr(i, j) for the non-compressed sequences, can
be computed in constant time for any i and j. More precisely, let e(i) denote the
position of S[i] = xi in the compressed sequence S′, and let Ĉl(i, j) (Ĉr(i, j)) de-
note the cost for constructing the history in S′. If DUP (xi) is constant for all
xi, then Cl(i, j) = Ĉr(e(i), e(j)) + (j − i) − (e(j) − e(i)). Otherwise, Cl(i, j) =
Ĉr(e(i), e(j))+F (j)−F (i)−

∑y=e(j)
y=e(i)DUP (S′[y]), where F (i)=

∑r=i
r=1DUP (sr). Note

that e(i) and F (i) can be pre-computed in linear time.
The scoreA(i, j) in the alignment algorithm can be correctly determined without

iterating over all possible values of k, l, ts and tr. More precisely, it is enough to
iterate over the block boundaries in S and R. Moreover, these iterations are launched
only if i or j are block boundaries. We show how this works for the second clause
that involves left duplications in S in the alignment recurrence of Subsection 4.2. Let
Êl(i) and Êr(i) be the set of positions in S of all leftmost and rightmost boundaries
of each block before si ∈ S. Let Ê(i) = Êl(i) ∪ Êr(i) be an ordered list, w.r.t.
positions in S, and let Ex denote the xth entry in this list. During the iteration, if
si = si−1, i.e., si is not the leftmost unit of a block. Then it is enough to consider
only one value of l, namely l = i −1. The idea is that si−1 = si, and the iteration
over other values of l ∈ [0..i] yields no better score. If si 6= si−1, it is enough that
l iterates over all values of Ê(i). The idea is as follows: Let lx < i denote the
position of an element within a block Ex (Ex is the position of the leftmost unit of
block x/2 + 1), then C(lx, i, lx) = C(Ex+1, i, Ex+1) + Dup(lx)× (Ex+1 − lx), where
Ex+1 is the rightmost unit. The optimal value A(lx, j) + C(lx, i, lx) = A(lx, j) +
C(Ex+1, i, Ex+1) + Dup(lx) × (Ex+1 − lx) = A(Ex+1, j) + C(Ex+1, i, Ex+1). The
time complexity is derived as follows: for each sj , we examine each si and si−1. We
iterate over all the block boundaries in S only if i is a block boundary. This yields
O(n2 + nn′2) time. With similar arguments, we can prove how the RLE scheme
works for the other clauses in the recurrence.

Computing the duplication histories for the RLE version of strings using our
algorithm takes O(n′3). The aligment phase will take O(n2 + nn′2). That is, our
algorithm in this paper with the RLE techniques takes O(n2 +nn′2 +n′3) time and
O(n2) space, which is also independent of the alphabet size.


