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Fast Exact Algorithms for the Closest String
and Substring Problems with Application
to the Planted (L, d)-Motif Model

Zhi-Zhong Chen and Lusheng Wang

Abstract—We present two parameterized algorithms for the closest string
problem. The first runs in O(nL + nd - 17.97%) time for DNA strings and in O(nL +
nd - 61.86%) time for protein strings, where n is the number of input strings, L is the
length of each input string, and d is the given upper bound on the number of
mismatches between the center string and each input string. The second runs in
O(nL + nd - 13.92%) time for DNA strings and in O(nL + nd - 47.21%) time for
protein strings. We then extend the first algorithm to a new parameterized
algorithm for the closest substring problem that runs in O((n — 1)m?(L +d -
17.97¢ - mllez: (1)) time for DNA strings and in O((n — 1)m?*(L + d - 61.86% -
mlz(+1)]Y) time for protein strings, where n is the number of input strings, L is the
length of the center substring, L — 1 4+ m is the maximum length of a single input
string, and d is the given upper bound on the number of mismatches between the
center substring and at least one substring of each input string. All the algorithms
significantly improve the previous bests. To verify experimentally the theoretical
improvements in the time complexity, we implement our algorithm in C and apply
the resulting program to the planted (L, d)-motif problem proposed by Pevzner and
Sze in 2000. We compare our program with the previously best exact program for
the problem, namely PMSPrune (designed by Davila et al. in 2007). Our
experimental data show that our program runs faster for practical cases and also
for several challenging cases. Our algorithm uses less memory too.

Index Terms—Parameterized algorithm, closest string, closest substring, DNA
motif discovery.
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1 INTRODUCTION

WE consider the closest string and the closest substring problems.
In the closest string problem, we are given a set S of n strings of
equal length L and an integer d (called radius). The objective is to
compute a string s’ of length L such that the Hamming distance
d(s', s) between s’ and each string s € S is at most d. Such a string s’
is called a center string of the given strings. Of course, center strings
may not exist. In that case, an algorithm for the problem should
output a special symbol (say, ®) to indicate this fact.

The closest substring problem is a more general problem. In this
problem, we are given a set S of n strings of equal length K and
two integers d and L. The objective is to compute a string s’ of
length L such that each string s € S has a substring ¢ of length L
with d(s',t) < d. Note that the letters of substring ¢ appear in string
s consecutively. Such a string s’ is called a center substring of the
given strings. Of course, center substrings may not exist. In that
case, an algorithm for the problem should output a special symbol
(say, ®) to indicate this fact.

The two problems have been formulated and studied in a

variety of applications in bioinformatics and computational
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biology, such as PCR primer design [6], [10], [12], [16], [22], [24],
genetic probe design [12], antisense drug design [5], [12], finding
unbiased consensus of a protein family [2], and motif finding [4],
[8], [10], [12], [13], [25]. All these applications share a task that
requires the design of a new DNA or protein string that is very
similar to (a substring of) each of the given strings.

The closest string and substring problems have been proved to
be NP-hard [9], [12]. This has motivated researchers to come up
with heuristics without performance guarantee [15], [19], [20],
parameterized algorithms [7], [11], [17], [23], [26], and polynomial-
time approximation algorithms [1], [2], [5], [12], [14] for these
problems. We here design parameterized algorithms for them.

Almost all known parameterized algorithms for the closest
string problem take d as the parameter. Stojanovic et al. [23]
presented a linear-time algorithm for the problem for d =1 only.
Gramm et al. [11] designed the first parameterized algorithm for the
problem. Their algorithm runs in O(nL +nd - (d + 1)d) time. Ma
and Sun [17] improved Gramm et al.’s algorithm to obtain a new
parameterized algorithm for the problem that runs in O(nL + nd -
(16(]2| — 1))%) time, where X is the alphabet of the input strings in
S. Ma and Sun’s improvement is significant because their new
algorithm is the first for the problem that can run in polynomial
time when the parameter d is logarithmic in the input size.
However, the base 16(|X| — 1) of the power (16(|X| — 1)) in the
time bound of their algorithm is very large. An improved algorithm
was given in [26], which runs in O(nL + nd - (2325(|3| — 1)) time.

In this paper, we propose two new algorithms for the closest
string problem. The first runs in O(nL +nd-61.86%) time for
protein strings and in O(nL + nd - 17.977) time for DNA strings,
while the second runs in O(nL + nd-47.219) time for protein
strings and in O(nL+ nd-13.929) time for DNA strings. In
comparison, the previously best algorithm in [26] runs in O(nL +
nd - 180.75%) time for protein strings and in O(nL + nd - 28.549)
time for DNA strings. We achieve the improvements by a new
idea that can be sketched as follows: Like previous algorithms, our
algorithm finds a required center string by selecting an arbitrary
input string (i.e., a string in S) as the initial candidate center string
and gradually modifying at most d letters of the candidate center
string so that it becomes a required center string. The modification
goes round by round. In each round, to modify the current
candidate center string ¢, the idea is to first find another string
s € Swith d(t, s) > d and then guess at most d positions among the
(at most 2d) positions where ¢t and s have different letters. When
using s to modify ¢, the algorithms in [17] and [26] modify one or
more letters in ¢ without looking at the letters in s, while the
algorithm in [11] modifies only one letter by looking at the letters in
s. In contrast, our algorithm modifies one or more letters in t by
looking at the letters in s. In more details, our algorithm guesses the
positions i of ¢ where the letter of ¢ at position i should be
modified to a letter that differs from both the current letter of ¢ at
position ¢ and the letter of s at position i. We then prove a crucial
lemma (Lemma 3.1) which says that not only d is halved in each
round but also the more such positions i exist, the faster our
algorithm is. We acknowledge that the idea of halving d in each
round goes back to Marx [18] and has also been used in [17] and
[26]. With the crucial lemma, we then prove a main lemma
(Lemma 3.2) which roughly says that the total number of guesses
made by our algorithm is at most (Qdd)(|2| +2\/\Z|——1)d. This
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lemma is a significant improvement over the main theorem
(Theorem 1) in [17], which roughly says that the total number of
guesses made by the algorithm in [17] is at most (%) (4|%| — 4)".
Indeed, the proof of our main lemma looks simpler. The bulk of
our paper is to show how to obtain an even better bound on the
total number of guesses made by our algorithm.

For the closest substring problem, Marx [18] designed a
parameterized algorithm whose time complexity is O(|x|!% 42 .
NPe:d+0(1)) where N is the total length of input strings. Ma and Sun
[17] obtained a faster algorithm running in O(nm?L + nd - (16(|S| —
1))? - mllos(@Dl+2) time with m = K — L + 1, by extending their
parameterized algorithm for the closest string problem. We can also
extend our first algorithm for the closest string problem to an
algorithm for the closest substring problem that runs in O((n —
Dm?*(L+d-17.977 - mlee@+])) time for DNA strings and in
O((n — 1)m*(L + d - 61.867 - mlo22(@+1])) time for protein strings.

To verify experimentally the theoretical improvements in the
time complexity, we implement our algorithm for the closest
substring problem in C and apply the resulting program to the
following problem proposed in [21]:

Planted (L,d)-Motif Problem: Let M be a fixed but unknown
nucleotide sequence (the motif consensus) of length L. Suppose
that M occurs once in each of n background sequences of common
length K, but that each occurrence of M is corrupted by exactly d
point substitutions in positions chosen independently at random.
Given the n sequences, recover the motif occurrences and the
consensus M.

As in the previous studies [21], [3], we fix n = 20 and K = 600.
We compare our exact program with the previously best exact
program called PMSPrune (due to Davila et al. [4]) on randomly
generated problem instances. We note in passing that Davila et al.
already did experiments to show that PMSPrune is much faster
than all the other previously known exact programs for the
problem. Our experimental data show that our algorithm runs
faster than PMSPrune for practical cases where (L,d) = (12,3),
(13,3), (14,4), (15,4), or (17,5), and also runs faster for challenging
cases where (L,d) = (9,2) or (11,3). Our algorithm runs slower
than PMSPrune for some hard cases where (L,d) = (17,6), (18,6),
or (19,7). It should be pointed out that we have found a bug in
PMSPrune: For certain problem instances, PMSPrune does not
necessarily output all solutions. We found the bug by accident: We
ran our program and PMSPrune on the same instances, compared
their outputs, and happened to find out some solutions that can be
output by our program but cannot output by PMSPrune. We also
mention in passing that our program uses only O(nm) space while
PMSPrune needs O(nm?) space.

The remainder of this paper is organized as follows: Section 2
contains basic definitions and notations that will be used
throughout this paper. Section 3 presents an algorithm for the
closest string problem and Section 4 presents another. The former
algorithm is easier to understand and can be extended to an
algorithm for the closest substring problem. The latter algorithm
runs faster but it does not seem to have a natural extension to the
closest substring problem. Section 5 extends the former algorithm
to the closest substring problem. Section 6 discusses the application
to the planted (L, d)-motif problem.
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2 BAsIC DEFINITIONS AND NOTATIONS

Throughout this paper, ¥ denotes a fixed alphabet and a string
always means one over X. For a finite set S (such as X)), |S| denotes
the number of elements in S. Similarly, for a string s, |s| denotes
the length of s. A string s has |s| positions, namely, 1,2, ..., |s|. For
convenience, we use [1..k] to denote the set {1,2,...,k}. The letter
of s at position ¢ € [1..|s|] is denoted by s[i]. Two strings s and ¢ of
the same length L agree (respectively, differ) at a position i € [1..L] if
s[i] = t[i] (respectively, s[i] # t[i]). The position set where s and t agree
(respectively, differ) is the set of all positions ¢ € [1..L] where s and ¢
agree (respectively, differ).

The following special notations will be very useful. For two or
more strings sq,...,s, of the same length, {s; =sy=-- =3}
denotes the position set where s; and s; agree for all pairs (¢, j) with
1<i<j<h, while {s; # sy #--- # s} denotes the position set
where s; and s; differ for all pairs (i, j) with 1 <4 < j < h. Moreover,

for a sequence si,...,sy, ti,. ..ty ui,...,ue of strings of the same
lengthwithh>1,k>1,and (>0, {s1 =ss=---=s, Zl1 £l %
e F g =u=uww=---=w} denotes {s5=s=---=s,} N
{shnZEthZtoZ - ZhtN{tr=u =uw =---=w}, where {s}

denotes [1..]s1|] if h = 1, while {t;} denotes [L..|t;|] if £ = 0.
The hamming distance between two strings s and ¢ of the same
length is [{s # t}| and is denoted by d(s,?).

3 THE FIRST ALGORITHM

Instead of solving the closest string problem directly, we solve a
more general problem called the extended closest string (ECS)
problem. An instance of the ECS problem is a quintuple
(S,d,t, P,b), where S is a set of strings of equal length (say, L), ¢
is a string of the same length L, d is a positive integer less than or
equal to L, P is a subset of [1..L], and b is a nonnegative integer less
than or equal to d. A solution to (S, d,t, P,b) is a string s’ of length L
satisfying the following conditions:

1. For every position i € P, s'[i] = t[i].
2. The number of positions ¢ € [1..L] with s'[i] # t[i] is at
most b.

3. For every string s € S, d(¢',s) < d.

Intuitively speaking, the first two conditions require that the
center string s’ be obtained from the candidate string ¢ by
modifying at most b letters whose positions in ¢ are outside P.
Given an instance (S,d,t, P,b), the ECS problem asks to output a
solution if one exists. The output has to be a special symbol (say,
®) if no solution exists.

Obviously, to solve the closest string problem for a given
instance (S, d), it suffices to solve the ECS problem for the instance
(S.d,s,0,d), where s is an arbitrary string in S and () is the empty
set. That is, we can solve the closest string problem by calling any
algorithm for the ECS problem once. So, we hereafter focus on the
ECS problem instead of the closest string problem.

Intuitively speaking, given an instance (S,d,t, P,b), the ECS
problem asks us to modify the letters of at most b positions (outside
P) of ¢ so that ¢ becomes a string s’ with d(s, s) < d for every string
s € S. A naive way is to first guess at most b positions among the
L — |P| positions (outside P) of ¢ and then modify the letters at the
guessed positions. A better idea has been used in the algorithms in
[17] and [26]: First, try to find a string s € S with d(t,s) > d and
then use s to help guess the (at most b) positions of ¢ where the
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Fig. 1. Strings ¢, s, and s’ in Lemma 3.1, where for each position i € [1..L], two of the strings have the same letter at position i if and only if they are illustrated in the same

color or pattern at position i.

letters of t should be modified. For each guessed position 4,
the algorithms in [17] and [26] try all possible ways to modify ¢[i].
Note that there are |X| — 1 possible ways to modify ¢[i]. So, there
can be (|2| — 1) possible ways to modify ¢.

Our new observation is that there may be some guessed
positions i such that ¢[i] may be changed to s[i]. In other words, for
such a position 4, we do not have to guess a new letter for ¢[i]. This
can save us a lot of time, as justified by the following lemma:

Lemma 3.1. Let (S,d,t,P,b) be an instance of the ECS problem.
Assume that s' is a solution to (S, d,t, P,b). Let s be a string in S,
let £ =d(t,s) —d, let k be the number of positions i € {t # s} — P
with s'[i] # t[i], let ¢ be the number of positions i € {t # s} — P
with §'[i] # tli] and §'[i] # s[i], and let V' be the number of
positions i€ [l.L]— (PU{t#s}) with §[i]#t[i]. Then,
Y <min{b—k,k— ¢ — c}. Consequently, b <?=L=¢.

Proof. Obviously, d(t,s") = k+ V. Since ' is a solution to instance
(S,d,t,P,b), d(t,s') <b. Thus, b/ <b— k.

Let a = |PN{t # s}|, and let h be the number of positions
te{t#s}— P with t[i] = §'[i] (see Fig. 1). Then, |{t # s}| =
a+h+kand d(s',s) =a+h+c+V. So, by assumption, a +
h+k=d+landa+h+c+b <d Thus, V¥ <k—-/{—c. ]
We note that Lemma 3.1 is stronger than Lemma 1 in [17] and

Lemma 2 in [26].

Based on Lemma 3.1, we now design an algorithm called

CloseString for the ECS problem:

Algorithm 1. CloseString
Input: An instance (S,d,t, P,b) of the ECS problem.
Output: A solution to (S,d,t, P,b) if one exists, or ® otherwise.
If there is no s € S with d(t, s) > d, then output ¢ and halt.
Find a string s € S with d(t,s) > d.
Let £ =d(t,s) —dand R={t # s} — P.
If £ > min{b, |R|}, then return .
Make a copy t' of ¢.
For each subset X of R with ¢ < |X| < b and for each subset Y’
of X with |Y| < |X| — ¢, perform the following steps:
6.1.
6.2.

S

For each position ¢ € X — Y, change ¢[i] to s[i].

For all (|X| — 2)'” possible ways to change the letters
of ¢ at the positions in Y (so that the letter of ¢ at each
position 7 € Y is changed to a letter other than s[i]
and ¢[i]), change the letters of ¢ at the |Y| positions
and then call CloseString(S — {s},d,t, PUR,

min{b — | X|, | X| — £ — [Y|}) recursively.

6.3.  Restore ¢ back to t'.
7. Return .

To see the correctness of our algorithm, first observe that Step 1
is clearly correct. To see that Step 4 is also correct, first note that
d(t,s) = {t # s}| = d+ ¢. So, in order to satisfy d(t, s) < d, we need
to first select at least ¢ positions among the positions in {t # s} and
then modify the letters at the selected positions. By definition, we
are allowed to select at most b positions and the selected positions
have to be in R={t#s}—P; so no solution exists if
¢>min{b,|R|}. The correctness of Step 6.2 is guaranteed by
Lemma 3.1. This can be seen by viewing | X| in the algorithm as % in
Lemma 3.1, viewing |Y| in the algorithm as ¢ in Lemma 3.1, and
viewing 0 in Lemma 3.1 as the number of positions (outside
PU{t # s} = PUR) of t where the letters have to be modified in
order to transform ¢ into a solution. That is, min{b — | X|,|X| — ¢ —
|Y]} in Step 6.2 corresponds exactly to min{b—k,k—¢—c} in
Lemma 3.1.

The remainder of this section is devoted to estimating the
running time of the algorithm. The execution of algorithm
CloseString on input (S,d,t, P,b) can be modeled by a tree 7 in
which the root corresponds to (S,d,t, P,b), each other node
corresponds to a recursive call, and a recursive call A is a child
of another call B if and only if B calls A directly. We call 7 the
search tree on input (S,d,t, P,b). By the construction of algorithm
CloseString, each nonleaf node in 7 has at least two children.
Thus, the number of nodes in 7 is at most twice the number of
leaves in 7. Consequently, we can focus on how to bound the
number of leaves in 7. For convenience, we define the size of 7 to
be the number of its leaves. The following lemma shows an upper
bound on the size of 7:

Lemma 3.2. Let T(d,b) be the size of the search tree on input
(S,d,t, P,b). Then,

T(d,b) < (dzb) (1= +2\/|"z|"51)b.

Proof. By induction on b. In case b = 0, the algorithm will output
either ¢ or ® without making a recursive call; so, 7'(d,0) = 1 and
the lemma holds. Similarly, in case b is small enough that the
algorithm does not make a recursive call, we have 7'(d,b) =1
and the lemma holds. So, assume that b is large enough that the
algorithm makes at least one recursive call. Then, by the
algorithm, we have the following inequality:

ran <> (TS (F)em -

k=l c=0
T(d, min{b — k,k — € — c}).

1)
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Letm = min{b — k, k — ¢ — c}. Then, by the induction hypothesis

ran <> (TS (F)em -

k=t c=0

( :;m> <\2\ + 2\/|2|——1>

Sincem <b—k<d, (djn”") < (‘lﬁ;k). Moreover, since m < 2=£=-

and

IE\+2¢W:<1+\/‘E‘__1>27
(|E|+2m>7n§ (1+\/‘E‘—71)b—[1.

So, by Inequality (2), we have

< zb: (dzz) ’:f (IZ)(\E\ gy (d:f; k) (1 N \/‘—E—‘:—I)b%ﬂz
O

Il
/
—
+
™
I
—
SN——

k=t

%] -2
1+ -1

bt L (d-i—b) (d+b—k> <1+
2\ k b—k
b
+ b
) ;Q)(H

%] -2
145 -1
b

)

= ("3 ") (e +2vET=T

—
>

3)

where Inequality (3) follows from the binomial theorem and the

fact that ¢ < b. O

We note that Lemma 3.2 is much stronger than Theorem 1 in
[17], which seems to be the main result in [17]. In particular, when
b=d, our upper bound (*)(|Z|+2/[[—1)* is already better
than the upper bound (%)(|Z| - 1)? 217 in [26], if [Z] > 5.

We next show an even better upper bound on T'(d, d). The idea
is to distinguish the first recursive call of algorithm CloseString
with the other recursive calls. With this idea, the parameter ¢
comes into play when we analyze T'(d,d). First, we need the
following technical lemma:

Lemma 3.3. Suppose that o is a real number with 0 < o <% and m is a
positive integer with 1< |am] <m—1. Then, (@Zuj) <
aom(1 — ) em,

Proof. By Stirling’s formula, for any integer h >0, hl=

V2rh(t) et with i < A, < 145- So,

1403

(Lan:nj) " (lam])! (Z!_ lam])!

_ m—|am] ,
2m(m — [am)]) <m> em}
(&

mm

- \_amJ lam] (m _ LOth )meamJ :
The last inequality holds because the assumption 1 <
lam] <m —1 guarantees that 27|am](m — |am]) >m and
12|lam] +1 < 12m.

Now, since & <1 and the function f(z) =a*(m — =

)mfz is

decreasing when 0 <z <, we have

)7(1701)711 )

_ . —am
m—am — & (1 -

(LaTZnJ) < ]

Now, we are ready to show the main theorem of this section:

Theorem 3.4. T(d,d) < (15{/2/%| +3\/3(S— 1) + 3v3 - 3y/2)"

Proof. As mentioned in the proof of Lemma 3.2, if our algorithm
makes no recursive calls, then T(d,d) =1 and hence the
theorem clearly holds. So, assume that our algorithm makes
at least one recursive call. Then, by Inequality (1), we have

=0

T(d,min{d — k,k — { — c}).

7(d,d) < kzd; (dzg) ki (IZ) (1% -2) (4)

Using Inequality (4) and the fact that 7'(d,0) < 1, one can
easily verify that 7'(1,1) < 2 and T'(2,2) < 63| — 6. Since

2 < 15¢/2/5] + 3305~ 1) +3v3 - 3(/2 and
6% —6 < (1.5{‘/§|2| +3v3( = 1) +3vV3 - 3\‘/5)

2
)

the theorem holds when d < 2. So, in the sequel, we assume that
d>3.

For convenience, let o' = min{d — k,k —¢—c}. Then, by
Lemma 3.2

T(dd) <3 () 5 (5 -2

k= =0 \7

(“3") =1+ 2viT=1)"

Since V' < 4==¢, b < L‘”THJ and in turn (’jz,l’/) < (l{{’;’él) More-
3
over, since d >3, 1< [%UJ <d+¥ -1 So, fixing a =1 in

Lemma 3.3, we have

d+b'

dtt/ 2(d+t)

G
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TABLE 1
Comparison of Bases of the Powers in the Time Bounds

[ [£]=4 (DNA) | [£] = 20 (protein) ||

16(2 - 1) [17] 8 304
25 ([2] - 1) [26] 2854. .. 180.75. ..
1.5%/2|2| +34/3(1Z| - 1) + 33~ 33/2 [this paper] 17.97... 61.86...

Hence, by Inequality (5), we have

T(d7 d) d+b'
d d+£ k—¢ k 3 ,
< ; k ) 2 <C)(|E| -2) ﬁ <|E| + 2\/|E|——1>

< 3
d+'17_§7(

3d—l—c

S50 RS 12

S (k;)( i2051-2) )
=\ \VB+VB(E[-1)

3d—1
<(£) (1+ El)d[§;<d+€)
.
(1+ 32051 - 2) ) o
‘ d+e
\/5<|z|2>> o

V3+B(Z-1)
(‘ V3+/3(S - 1)
(1.5{/§|2|+3 3(|Z|—1)+3\/§_3</5>d

i2(2v3+ 2305 D) + /215 - 2/2)
3(|2| +2\/\2\——1)

< (1.5;/§|2|+3\/3(|2| 71)+3\/§f3{/§>d, (9)

&

IN
®)

) (1 + \/\E\—fl)H (2 +

where Inequality (6) holds for &' < ==¢ and || +2/[X] -1 =

1+VE-17

binomial theorem, and Inequality (9) follows from the fact that

;ﬂ(zx/h 23S~ 1) + /28] - 2\/5> <3(I9 + 215 -1)

for |X| > 2. This finishes the proof.

Inequalities (7) and (8) follow from the

Corollary 3.5. Algorithm CloseString solves the ECS problem in time
d
O(nL +nd- (1.5{/5@\ +3V3(%] - 1) +3v3 - 3{/5) )

Proof. Obviously, each leaf of the search tree takes O(nL) time. As
observed in previous works (e.g., [17]), we can improve this
time bound by carefully remembering the previous distances
and only updating the O(d) positions changed. The conclusion
is this: With an O(nL)-time preprocessing, each leaf of the
search tree takes O(nd) time. So, by Theorem 3.4, the total time
complexity of algorithm CloseString is as stated in the
corollary. O

The best algorithm in [26] for the closest string problem runs in
O(nL + nd - (22%(]2| — 1))7) time, while the algorithm in [17] for
the same problem runs in O(nL 4+ nd- (16(|2| — 1)) time. For
these two previous algorithms as well as our new algorithm
CloseString, their time bounds contain a power whose exponent is
d. Table 1 shows a comparison of the bases of the powers.

4 THE SECOND ALGORITHM

Motivated by an idea in [26], we obtain the second algorithm by
modifying Step 2 of the algorithm in Section 3 as follows:

2. Find a string s € S such that d(¢, s) is maximized over all
strings in S.

We call the modified algorithm CloseString2. The intuition
behind CloseString2 is this: By Lemma 3.1, the larger ¢ is, the
smaller V' is. Note that ' means the number of letters of ¢ we need
to further modify. Thus, by maximizing ¢, we can make our
algorithm run faster.

Throughout the remainder of this section, fix an input
(S.d,t, P,b) to algorithm CloseString2 and consider the search
tree 7 of CloseString2 on this input. Let  denote the root of 7.

During the execution of CloseString2 on input (S,d,t, P,b), d
does not change but the other parameters may change. That is,
each node of 7 corresponds to a recursive call whose input is of the
form (S',d,t', P',b'), where &' is a subset of S, ' is a modification of
t, P' is a superset of P, and ¥’ is an integer smaller than b. So, for
each node u of 7, we use S, t,, P,, and b, to denote the first, the
third, the fourth, and the fifth parameter, respectively, in the input
given to the recursive call corresponding to u. For example, S, = S,
t, =t, P. = P, and b, = b. Moreover, for each node u of 7, we use
s, and £, to denote the string s and the integer ¢ computed in
Steps 2 and 3 of the recursive call corresponding to u, respectively.

Obviously, if the set R computed in Step 3 of the algorithm is
small, then the number of subsets X tried in Step 6 should be
small. Intuitively speaking, the next lemma shows that |R| cannot
be so large.

Lemma 4.1. Suppose that u is a nonleaf descendant of r in T. Then,
‘P)u N {tu $ Su}' 2 w

Proof. For ease of explanation, we define the following notations
(cf. Fig. 2):
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{t.#s,} 1

! {{trzsrzi

{t,;ésriétﬁésu} ; =S

U \ '
{trfsﬁés zétu} {t-#t,#s, =54} ! {trfs iétﬁésu} {trftﬁés ZSu)t ‘{z,,s,f n f Htr=s,= Wt =s.=
u u {trztufi t, isu} {tr*sri {tr—Sﬁé {tr—sr }‘ 3 t %Su} fufsu}i

)
{trfszﬁésrftu} {tr?‘ésuisrftu} {tris,ftufsu} {trft $S 75,,} Suisr}i nNe : 4 isu} tufsu} 1, =5y ; =h =P,
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= S —— 1 S— |
L R S | Emas S ‘ |
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Fig. 2. Strings ¢,, s,, t,, and s, in Lemma 4.1, where for each position i € [1..L], two of the strings have the same letter at position 7 if and only if they are illustrated in the
same color or pattern at position i.

o i=|{t,=s,Z s Ztu}+ {tr =50 ZE s =t} The following lemma is similar to Lemma 3.2:

s J j_é'{t" isifé tuZ sudl+ [ty Z 0 # 5 = su}[ +[{t: # Lemma 4.2. Suppose that r has at least one child in T. For each
Sy Sp = lyg|-

o j=7+H{tr=s FtiZsu}H +{trZs =t,= 5.} descendant v of r in T, let F(d,b,) denote the number of nodes in the

o h={t,=tyZEs Zsu |+ [{t =ty E s = su}l- subtree of T rooted at u. Then, for each descendant v of r in T,

L4 g:|{tr5tu55u7_é57}‘~

o a=|{t,=s=t, Zs,t NP, L?d—d(tu.t,)+f, +I;“J b,

o Y =|{tr=s Ftu#su}l (d,by) < ( b? >(|z|+2\/21)

o y=y+|{tr=s Ft.=s.}| “

o z=|{t, =5 #ty, = su}l|

o a=|{t,=s, =t,#s,)— Pl Proof. The proof is similar to that of Lemma 3.2 and is by induction

By simply counting the number of positions where ¢, and s, on b,. In case b, is small enough that algorithm CloseString2 on

differ, we have the following equation immediately: input (S,,d, t,, P,,b,) does not make a recursive call, we have
dty,s;)=i+j+h+g=d+4,. (10) F(d,b,) =1 and the lemma holds. So, assume that b, is large
Similarly, we have the following four equations: enough that algorithm CloseString2 on input (Su, d, tu, P, bu)

. makes at least one recursive call. Then, by the algorithm and
d(ty,s) =j+h+x+y+a (
d(ty,s) =i+j+h+x+y +z+a=d+40, (12 Lemma 4.1
(
(

Aty ty) =i+j+y+z
|[Pan{tuZ s}l =i+ +h+z+y +2

NN NI

|"1(ﬁu-fr )—4r+1?.1‘|

F(d,bu)<z<d+guk 2 )

By Step 2 of algorithm CloseString2, d(t,, s,) < d(t,, s,). So, k=t,
(10) and (11) imply the following inequality: k=ly /1 .
Z %] F(d, min{b, — k,k — €, — c})
r+y+a<i+ag. (15) =0 (19)
M LZd—d(tmt,)M,H“J k=4, k
By (13) and (14), in order to finish the proof, we need only to _ 2 ( )
prove the following inequality: =, k 5 \¢

4l dytotl, (18] = 2)°F(d, min{b, — k,k — £, — c}).

i+f+htarty 2> 5

(16)

Let h=2Ululdtbth| and m = min{b, — k,k — £, — c}.

By (10), Inequality (16) is equivalent to the following Note that ¢, < b, and k means the number of positions i €

inequality: [1..L] such that ¢,[i] is changed by algorithm CloseString2 on
input (S,,d,t,, P,,b,). Now, by Inequality (19) and the
2%+2] +3h+20+2 +2+g>d+L, +y. (17) induction hypothesis,
By (12), Inequality (17) is equivalent to the following b N hl | P ltute) =kt
inequality: F(d.b,) < }; ( ) ; ( )(|E| -2) 7?1 (20)
i+j+2htaty +g>aty. (18) (191 +2v151-1)"
By Inequality (15), Inequality (18) holds. This finishes the
proof. 0 By Lemma 3.1, b, < "5 So, b, < ‘51 for b, < d. We also have

d(ty,t,) + b, <b,. Using these facts, one can verify that
We note in passing that there is a lemma in [26] similar to but w > 2(b, — k). Thus, by the fact that m < b, — k,
much weaker than Lemma 4.1. we have
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by, k=L, k L?d—d(t,, ,t7)—2k+[,+b,,J
< _ 2

c=0

(|2| +2V/]5[— 1)
a h)““(k) (h—k
=1-2 (%)
=25 (¢

(151 +2vI51=1) "
Since m <%=t and |3 +2V/[Z[-1=(1++/[3[- 1),

Inequality (21) implies the following:

v =5 ()5 (oo (171

. =0

(1+VE1) et
- (B ()

k=t
k—2,

b=t iy /R h—k
§<1+ |Z|—1> ;(k)(bu—k)
<1 +|E|2>A @2)
1+/[5[-1
bty [ I by by |E| -2 k
(1 = *1) (b) & (k:) <1+1+\/IEI—1>
by
< (1+ \/W (2 +ﬁ%> =

()= +2¢|2|—1) “

where Inequalities (22) and (23) follow from the binomial
theorem. This completes the proof. O
Now, we are ready to prove the main theorem in this section:
Theorem 4.3. If || = 2, then the size T(d,d) of tree T is at most 8.

Otherwise,
T(d,d) < (\/5|2| + \/5(\/5+ ) (1+VIE-1) - m)d.

Proof. The proof is similar to that of Theorem 3.4. If our algorithm
makes no recursive calls, then T'(d,d) =1 and hence the
theorem clearly holds. So, assume that our algorithm makes

at least one recursive call. Then, by the algorithm, we have

7(d,d) S(Z](dM)Z@(IE\—z)“ o

k=, c=0
F(d,min{d — k,k — ¢, — c}).

For convenience, let m = min{d — k,k — ¢, — c}. Then, by
Lemma 4.2,

A £SOy (V57)

k: =0

(19 +2v51-1)"
£ (15
)

c=0

(IZ1 +2v/T=1

d k—t,
Z si-kitr [d E
k=L, c=0

(vV2(Iz1+2v/Er= 1))
Note that m < ©4=¢ and [2| + 2/[E[ = 1 = (1 + /[E[ - 1)%

So, by Inequality (25), we have

k=t, c

(\‘/5(1+¢|2|——1

_ d QHickit d+ ¢,
k

k=,

T(d,d) < Zz” gt ((”];/ ) kzé (’2)(|2| oy
d

—l,—c

)
(0 v9) £

c=0

c

X -2

< Yo <d;/)<\‘/§(1+ |2|—1)>H

k=t,

X -2

1+

(26)

-4 Vi) 3 (1)

I O e

R )

< 2d+%<\4/§(1+ VIE= 1))
d+-4,
o E=-2

f (1 vETT)
— (\/5\2\ +\*/§(x/§+ ) (1+VET=1) —2\/§)d

({5 + /) (- IET 1) 15
Va(I]+ 25T 1)

(27)

where Inequalities (26) and (27) follow from the binomial
theorem.

First, consider the case where |X| > 3. In this case, one can
verify that

(g/§+</5>(1+¢rz\“—“1) 151 -2 < V3(15] + 2y/[ET - 1).
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TABLE 2
Comparison of Bases of the Powers in the Time Bounds

[[=T=2 (binary) [ [ =4 (DNA) [ [¥[= 20 (protein) |

16(]x [ 1) [17] 16 48 304
2325(]2] - 1) [26] 9.51... 28.54... 180.75. ..
V2IT|+ /8 (V2 + 1) (1 ++/IZ|- 1) — 2v2 [this paper] 13.92... 4721...
8 [this paper] 8

Consequently, 7T'(d,

(V2IZ] + /82 + 1)1 + VST -
2v/2)? by Inequality (28)

Next, con51der the case where |Z| =2 In this case,

Yo ()31 = 2 (V2(IS| 4 2¢/[B[— 1) = (4v2)", where
m' = min{d — k, k 4,}. So, Inequahty (25) can be simplified
into the following:

d

T(d,d) < 3 2" <d+£>(4f)

k=,

(29)

Note that 0.4m' <0.4d — 0.4k and 0.6m' < 0.6k — 0.6¢,. So,
m' <0.4d + 0.2k — 0.6/,. Plugging this inequality into Inequal-
ity (29), we have

d ’ B
T(d,d) < 2224 ity (d+€ ) (4\/§>0,4d+0,2k 0.60,

=,
)0.411—0.6[, zd: (d + K,) ((4\/§)O.Z> k
k=¢, k \/i
=1, k

04d-0.66,
) Todt,

S

— 9d+05¢, (4

()

< dH05t, <4\/§
=g

where the last inequality follows from the binomial theorem.
This completes the proof. 0

Corollary 4.4. If || = 2, then CloseString2 solves the ECS problem in
O(nL +nd - 8") time ; otherwise, it solves the problem in O(nL +

nd- (VIS + {82+ 1)1+ VST 1) - 2v2)") time.

Proof. Similar to the proof of Corollary 3.5. 0

The time bound for algorithm CloseString2 may be difficult to
appreciate. So, we compare it with the bounds of the algorithm in
[17] and the best algorithm in [26]. Table 2 summarizes the result of
comparison.

5 EXTENSION TO CLOSEST SUBSTRING

In this section, we extend algorithm CloseString to an algorithm
for the closest substring problem. We do not know if it is possible
to extend algorithm CloseString2 to an algorithm for the closest
substring problem, because we do not know how to prove a lemma
similar to Lemma 4.1 when the target problem becomes the closest
substring problem.

Again, instead of solving the closest substring problem directly,
we solve a more general problem called the extended closest substring
(ECSS) problem. The input to the ECSS problem is a quintuple
(S,d,t, P,b), where S is a set of strings of equal length (say, K), tisa
string of some length L with L < K, d is a positive integer less than
orequalto L, Pisasubsetof [1..L], and bis anonnegative integer less

than or equal to d. A solution to (S,d,t, P,b) is a string s’ of length L
satisfying the following conditions:

1. For every position i € P, s'[i] = t[i].

2. The number of positions ¢ with s'[i] # ¢[i] is at most b.

3. For every string s € S, s has a substring w of length L with

d(s',w) < d.

Given (S,d,t, P,b), the ECSS problem asks to output a solution if
one exists. The output has to be a special symbol (say, ®) if no
solution exists.

Obviously, to solve the closest substring problem for a given

instance (S, d, L), it suffices to perform the following three steps:

1. Select an arbitrary string s € S.
2. For every substring w of s with |w| = L, solve the ECSS
problem for the instance (S, d,w,0,d).

3. If no solution is found in Step 2, output ¢ and halt.
That is, we can solve the closest substring problem by calling any
algorithm for the ECSS problem K — L + 1 times, where K is the
length of a single input string. So, we hereafter focus on the ECSS
problem instead of the closest substring problem, and design the
following algorithm for solving it:

Algorithm 3: CloseSubstring

Input: An instance (S, d,t, P,b) of the ECSS problem.

Output: A solution to (S,d,t, P,b) if one exists, or ® otherwise.

1. If every string s € S has a substring w with |w| = [¢| and
d(t,w) < d, then output ¢ and halt.

2. Find a string s € S such that s has no substring w with |w| = ||
and d(t,w) < d.

3. If all substrings w of s with |w| = |¢| satisfy
d(t,w) — d > min{b, |{t # w} — P|}, then return ®.

4. For all substrings w of s with |w| = |¢| and
d(t,w) — d < min{b, |{t # w} — P|}, perform the following steps:

41.Let R={t #w} — P and ¢ = d(t,w) — d.

4.2. Make a copy t' of t.

4.3. For each subset X of R with ¢ < |X| <b and for each
subset Y of X with |Y| < |X]| — ¢, perform the following
steps:

4.3.1. For each position i € X — Y, change t[i] to w[i].

4.3.2. For all (]3| — 2)‘” possible ways to change the
letters of ¢ at the positions in Y (so that the letter of
t at each position i € Y is changed to a letter other
than wi] and ¢[¢]), change the letters of ¢ at the |Y|
positions and then call CloseSubstring(S — {s},
d,t,PUR,min{b — | X|,|X| — £ — |Y|}) recursively.

4.3.3. Restore t back to t'.

5. Return .

Algorithm CloseSubstring is based on the following lemma
which is similar to Lemma 3.1; its proof is omitted here because it
is almost identical to that of Lemma 3.1.
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Lemma 5.1. Let (S,d,t,P,b) be an instance of the ECSS problem.
Assume that s' is a solution to (S, d,t, P,b). Let s be a string in S, let
w be a substring of s with |w| =t and d(s',w)<d, let
0 =d(t,w) —d, let k be the number of positions i € {t # w} — P
with §'[i] # t[i], let ¢ be the number of positions i € {t # w} — P
with §'[i] # t[i] and §'[i] # w[i], and let V' be the number of positions
i e [L.Jt]] — (PU{t £ w}) with §'[i] # t[i]. Then, ¥’ <b—k and
Y < k— £ —c. Consequently, b <2=L=,

Algorithm CloseSubstring is similar to algorithm CloseString
in Section 3. The only difference is this: If the given input
(S,d,t, P,b) has a solution ¢, then for each s € S, we need to guess
a substring w of s with |w| = |t| such that d(w, s") < b. Note that s
can have |s| — [¢t| + 1 substrings w with |w| = |¢.

Similar to the correctness of algorithm CloseString, we can
prove the correctness of algorithm CloseSubstring based on
Lemma 5.1. We next estimate its running time. Let 7"(d,b) denote
the size of the search tree of algorithm CloseSubstring on input
(S,d,t, P,b). Then, we have a lemma similar to Lemma 3.2:

Lemma 5.2. Let K be the length of a single string in S. Then,

T(d,b) < (d“’) (121 + 2V =1) ¢

—Jt|+ l)llﬁgz(bH)J.

Proof. The proof is similar to that of Lemma 3.2 and hence is by
induction on b. In case b is small enough that the algorithm does
not make a recursive call, we have 7"(d,b) = 1 and the lemma
holds. So, assume that b is large enough that the algorithm
makes at least one recursive call. For a string w of length |¢|, let
l(w) denote d(t,w) — d. Then, by the algorithm, we have the

following inequality:
d+ﬁ (w) i) 3
c=0 ¢

b
T'(d,b) < Z Z (30)
(=] = 2) T'(d, min{b — k, k — £(w) — c}),

w o k=l(w

where w ranges over all length-|t| substrings of the string s
selected in Step 2.

Let ¢ = min,/(w), where w ranges over all length-|¢t| sub-
strings of the string s selected in Step 2. For convenience, let
m =min{b — k,k - — c} and h = K — L + 1. Then, by Inequal-
ity (30) and the induction hypothesis,

<h Z (d+ b) Z (k:)(m' —

c=0

d+m m
( ) (RERNSESY
<h10gz(b+1)JZ d+b - (F (1] = 2)°
< >

(“m)(zwwz—o)

where the last inequality holds because m < =t=¢ < b1
As in the proof of Lemma 3.2, we can prove the followmg
inequality:

S (S (e (45 (1 2V

k=t =0

< (3 ") (1 2vET1)"

Corollary 5.4. Let m =

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO.5, SEPTEMBER/OCTOBER 2011

TABLE 3
Time Comparison of PMSPrune and Others in
Challenging Cases of (L, d) [4]

[ Program || (11,3) | (13,4) [ (15,5) [ (17,6) | (19,7) |

PMSPrune 5s 53s 9m 69m 9.2h
PMSP 6.9s 152s 35m 12h -
Voting 8.6s 108s 22m - -

RISOTTO 54s 600s 100m 12h -

The following theorem shows that when b = d, we have a better
bound on T'(d,b) than the one in Lemma 5.2. Its proof is very
similar to that of Theorem 3.4.

Theorem 5.3. T'(d, d) < 15\/»\2\—&-3\/%-&-3\/5—3\/‘

( 7 |t| n 1) logz(d+1
Proof. If our algorithm makes no recursive calls, then the theorem

clearly holds. So, assume that our algorithm makes at least one

recursive call. Then, by Inequality (30), we have

<d+ﬁ )) k*i”

c=0

S

w o k=l(w

(i) (I%] = 2)° T'(d, min{d — k, k — £(w) — c}).

T'(d,d)

Using this inequality, one can easily verify that the theorem
holds when d < 2. So, in the sequel, we assume that d > 3.

For convenience, let ¥ =min{d—k,k—{(w) —c} and
h =K — L+ 1. Note that / <4=I=¢. By Lemma 5.2,

() S (B oy

c=0

T'(d,d) <> zd:

w o f=0(w)

(d+b)(|2|+2\/\2\—1> o (0 +1))
d k—L(w)

< ploms(an) - 12 Z (d”“’) S (’Z)(\z\-z)"
0

(d“’)(muzw‘z‘\“)

As in the proof of Theorem 3.4, we can prove the following
inequality:

z”: (d+£(w)) ki(:) </Z>(|E|_ 2)° <d+b>(|z|+2m)

k=l(w) c=0
d
< <1.5{ﬁ\2\ +3V/3(5 = 1) +3v3 - 3\ﬁ) .
This finishes the proof. O

K — L+ 1. Algorithm CloseSubstring solves
the ECSS problem in time

O((nl)m(Ler- (1.5{/§|z|+3¢m+3\/§73</5)d

mUogz(dJrl)J))'
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TABLE 4
Time Comparison of Provable and PMSPrune in Practical Cases of (L, d)

[ Program [ (10,2) [ (1L,2) | (12,3) | (13,3) | (14,4) [ (154) | (16,5) | (17,5) | (18,6) ]
Provable 0.20s 0.20s 0.81s 0.33s 15.98s 2.42s 4.55m | 48.73s | 59.30m
PMSPrune 0.16s 0.11s 1.36s 0.51s 20.25s 5.07s 3.97m 50.71s | 34.83m

Consequently, the closest substring problem can be solved in time

o<(n_ L <L+d- (Lg/omt + VAT + 35 - 34f2)
.mtlogz(dH)J)).

When implementing algorithm CloseSubstring, it is important to
perform the following preprocessing:

e  For each string s € S, compute the set W; of all substrings
w of s with |w| = [t| and d(t,w) < 2d.
Suppose that we have done the above preprocessing. Then, when
performing Steps 1 through 4 of the algorithm, we don’t have to
search for w in the whole s but rather only in W;. This simple idea
was first used in [4] and can save us a lot of time.

6 APPLICATION TO THE PLANTED (L, d)-MOTIF
PROBLEM

An algorithm for the planted (L, d)-motif problem is exact if it finds
all center substrings for each given input. We can transform our
algorithm in Section 5 for the closest substring problem into an
exact algorithm for the planted (L, d)-motif problem, by modifying
Step 1 as follows:

1. If every string s € S has a substring w with |w| = |¢| and
d(t,w) < d, then return t.

In other words, our algorithm for the planted (L,d)-motif
problem outputs all solutions instead of only one. Note that all the
time bounds proved in Section 5 still hold even if we require that
the algorithm finds all solutions instead of only one.

We have implemented our new exact algorithm for the planted
(L, d)-motif problem in C. We call the resulting program Provable
because its time complexity can be proved rigorously to be good,
as already shown in Section 5. As in previous studies, we produce
problem instances as follows: First, a motif consensus M of length
L is chosen by picking L bases at random. Second, n =20
occurrences of the motif are created by randomly choosing d
positions per occurrence (without replacement) and mutating the
base at each chosen position to a different, randomly chosen base.
Third, we construct n = 20 background sequences of length K =
600 using n - K bases chosen at random. Finally, we assign each
motif occurrence to a random position in a background sequence,
one occurrence per sequence. All random choices are made
uniformly and independently with equal base frequencies.

TABLE 5
Time Comparison of Provable and PMSPrune in Challenging Cases
of (L,d)
[ Program [[ (9,2) [ (11,3) [ (13,4) [ (155) [ (17,6) [ (19,.7) ]
[ Provable [[ 0.33s [ 6.09s | 1.78m [ 25.97m [ 5.13h [ 49.85h ||

[ PMSPrune || 0585 | 6.38s | 1.02m | 855m | 1.23h | 12./5h ||

To show that Provable runs fast, we compare it against the
previously fastest exact program (called PMSPrune [4]) for the
planted (L, d)-motif problem. Table 3, copied from the paper [4],
summarizes the average running times of PMSPrune and other
previously known exact programs for some challenging cases of
the planted (L, d)-motif problem.

Since PMSPrune is obviously the previously fastest, we ignore
the other previously known exact programs and only run Provable
and PMSPrune on the same randomly generated instances and
counted their running times. Table 4 summarizes the average
running times of Provable and PMSPrune on a 3.33 GHz Windows
PC for practical problem instances, each randomly generated as
described above. The number of tested instances for each case is 10.
As can be seen from the table, our program runs faster for the cases
where (L,d) = (12,3), (13,3), (14,4), (15,4), or (17,5).

Table 5 summarizes the average running times of Provable and
PMSPrune on a 3.33 GHz Windows PC for challenging problem
instances, each randomly generated as described above. Again, the
number of tested instances for each case is 10. As can be seen from
the table, our program runs faster for the cases where (L, d) = (9,2)
or (11,3).

As can be seen from Tables 4 and 5, Provable runs slower than
PMSPrune for some hard cases such as the cases where
(L,d) = (18,6), (17,6), or (19,7).

Table 6 summarizes the behavior of Provable and that of
PMSPrune when the motif length L changes. As can be seen from
the table, both programs do not necessarily slow down when L
increases; instead, they significantly slow down when (L,d)
becomes a challenging instance.

In summary, it turns out that except really hard challenging
cases of (L,d) (such as (17,6) and (19,7)), our new program
Provable runs well compared to (the buggy version of) PMSPrune.

7 CONCLUSION

We have presented a fast exact algorithm for the closest substring
problem and have also implemented it (in C) into a program for the
planted (L,d)-motif problem. The program is available upon
request to the first author. We have run the program and compared
it with the previously fastest program, namely, PMSPrune [4]. Our
experimental data show that our program runs well compared to the
buggy version of PMSPrune. It remains to be seen how much better
it will run compared to the corrected version of PMSPrune.
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