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3 Mobile Robot Kinematics

3.1 Introduction

Kinematics is the most basic study of how mechanical systems behave. In mobile robotics,
we need to understand the mechanical behavior of the robot both in order to design appro-
priate mobile robots for tasks and to understand how to create control software for an in-
stance of mobile robot hardware.

Of course, mobile robots are not the first complex mechanical systems to require such anal-
ysis. Robot manipulators have been the subject of intensive study for more than thirty years.
In some ways, manipulator robots have been much more complex than early mobile robots:
a standard welding robot may have five or more joints, whereas early mobile robots were
simple differential drive machines. In recent years, the robotics community has achieved a
fairly complete understanding of the kinematics and even the dynamics (i.e. relating to force
and mass) of robot manipulators[30,31].

The mobile robotics community poses many of the same kinematic questions as the robot
manipulator community. A manipulator robot’s workspace is crucia because it defines the
range of possible positions that can be achieved by its end-effector relative to its fixture to
the environment. A mobile robot’s workspace is equally important because it defines the
range of possible posesthat the mobile robot can achievein itsenvironment. Therobot arm’s
controllability defines the manner in which active engagement of motors can be used to
move from poseto pose in the workspace. Similarly, amobile robot’ s controllability defines
possible paths and trajectories in its workspace. Robot dynamics places additional con-
straints on workspace and trajectory due to mass and force considerations. The mobile robot
isalso limited by dynamics; for instance, a high center of gravity limits the practical turning
radius of afast, car-like robot because of the danger of rolling.

But the chief difference between amobile robot and amanipulator arm also introducesasig-
nificant challenge for position estimation. A manipulator has one end fixed to the environ-
ment. Measuring the position of an arm’s end effector is ssimply a matter of understanding
the kinematics of the robot and measuring the position of all intermediate joints. The manip-
ulator’ s position is thus always computable by looking at current sensor data. But a mobile
robot is a self-contained automaton that can wholly move with respect to its environment.
There is no direct way to measure a mobile robot’ s position instantaneoudly. Instead, one
must integrate the motion of the robot over time. Add to this the inaccuracies of motion es-
timation due to dippage and it is clear that measuring a mobile robot’ s position precisely is
an extremely challenging task.

The process of understanding the motions of arobot begins with the process of describing
the contribution each wheel provides for motion. Each whedl has a role in enabling the
whole robot to move. By the same token, each wheel aso imposes constraints on therobot’s
motion, for example refusing to skid laterally. In the following section, we introduce nota-
tion that allows expression of robot motion in aglobal reference frame as well astherobot’s
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local referenceframe. Then, using this notation, we demonstrate the construction of simple
forward kinematic models of motion, describing how the robot as a whole moves as afunc-
tion of its geometry and individual wheel behavior. Next, we formally describe the kine-
matic constraints of individual wheels, and then combine these kinematic constraints to
expressthewholerobot’ s kinematic constraints. With thesetools, one can evaluate the paths
and trgjectories that define the robot’s maneuverability.
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Fig3.1 The global reference frame and the robot local reference frame

3.2 Kinematic Models and Constraints

Deriving a model for the whole robot’s motion is a bottom-up process. Each individual
wheel contributes to the robot’s motion and, at the same time, imposes constraints on robot
motion. Wheels are tied together based on robot chassis geometry, and therefore their con-
straints combine to form constraints on the overall motion of the robot chassis. But theforc-
es and constraints of each wheel must be expressed with respect to a clear and consistent
reference frame. This is particularly important in mobile robotics because of its self-con-
tained and mobile nature; a clear mapping between global and local frames of referenceis
required. We begin by defining these reference frames formally, then using the resulting
formalism to annotate the kinematics of individual wheels and whole robots. Throughout
this process we draw extensively on the notation and terminology presented in [35].

3.2.1 Representing robot position

Throughout this analysis we model the robot asarigid body on wheels, operating on ahor-
izontal plane. Thetotal dimensionality of thisrobot chassis on the planeisthree, two for po-
sition in the plane and one for orientation along the vertical axis, which is orthogonal to the
plane. Of course, there are additional degrees of freedom and flexibility due to the wheel ax-
les, wheel steering joints and wheel castor joints. However by robot chassiswe refer only to
the rigid body of the robot, ignoring the joints and degrees of freedom internal to the robot
and its wheels.

In order to specify the position of the robot on the plane we establish a rel ationship between
the global reference frame of the plane and the local reference frame of the robot asinfigure

3.1. Theaxes X; and Y, definean arbitrary inertial basis on the plane as the global reference
frame from some origin O: {X,, Y} . To specify the position of the robot, choose a point P

on therobot chassis asits position reference point. Thebasis {X, Yg definestwo axesrel-
ative to P on the robot chassis and is thus the robot’ s local reference frame. The position of
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P intheglobal referenceframeis specified by coordinatesx andy, and theangular difference
between the global and local reference framesis given by 6. We can describe the pose of

the robot as a vector with these three elements. Note the use of the subscript | to clarify the
basis of this pose as the global reference frame:

&) = (3.1

D X

To describe robot motion in terms of component motions, it will be necessary to map motion
along the axes of the global reference frame to motion along the axes of the robot’ s local
reference frame. Of course, the mapping is afunction of the current pose of the robot. This
mapping is accomplished using the orthogonal rotation matrix:

cosO sinB O
R(O) = |—sin® cosd 0 (3.2
0 0O 1

This matrix can be used to map motion in the global reference frame {X;, Y} to motionin

terms of the local reference frame {X, Yg . This operation is denoted by (8)& | because

the computation of this operation depends on the value of 6 :

&k = RGE| (33)
For example, consider the robot in Figure 3.2. For thisrobot, because 6 = g we can easily
compute the instantaneous rotation matrix R:
- 010
RG) = |-100 (34)
001

Given some velocity (%, Y, 8) in the global reference frame we can compute the compo-
nents of motion along this robot’s local axes X, and Yg. In this case, due to the specific

angle of the robot, motion along Xy, isequal to y and motion along Yy is—X:
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3.2.2 Forward kinematic models

In the simplest cases, the mapping described by Equation (3.3) issufficient to generate afor-
mula that captures the forward kinematics of the maobile robot: how does the robot move,
given its geometry and the speeds of its wheels? More formally, consider the example
shown in Figure 3.3.

Thisdifferential drive robot has two wheels, each with diameter r. Given apoint P centered
between the two drive wheels, each wheel isadistancel from P. Givenr, |, 6 and the spin-

ning speed of each wheel, ¢, and ¢, aforward kinematic model would predict the robot’s
overall speed in the global reference frame:

R. Siegwart, EPFL, lllah Nourbakhsh, CMU



44 Autonomous Mobile Robots

= 1(l, 1, 6, ¢1, $2) (3.6)

™
1
DO < X

From Equation (3.3) we know that we can compute the robot’s motion in the global refer-
ence frame from motion initslocal reference frame: &, = R(8)~1& 5. Therefore, the strat-
egy will beto first compute the contribution of each of the two wheelsin the local reference
frame, & . For this example of a differential-drive chassis, this problem is particularly
straightforward.

Suppose that the robot’ s local reference frame is aligned such that the robot moves forward
along +Xg, as shown in Figure (3.1). First consider the contribution of each wheel’ s spin-
ning speed to the translation speed at P in the direction of +Xi. If one wheel spinswhile
the other wheel contributes nothing and is stationary, since P is hafway between the two

whesls, it will move instantaneousy with half the speed: x¢, = 2réy and X, = 3r,. In

a differential drive robot, these two contributions can ssimply be added to calculate the x'R

component of & g. Consider, for example, a differential robot in which each wheel spins
with equal speed but in opposite directions. The result is a stationary, spinning robot. As

expected, x5 Will be 0in thiscase. The value of yi is even smpler to calculate. Neither
wheel can contribute to sideways motion in therobot’ sreference frame, and so y'R isalways

0. Finally, we must compute the rotational component G'R of & r. Once again, the contri-

butions of each wheel can be computed independently and just added. Consider the right
wheel (we will call thiswheel 1). Forward spin of this wheel results in counter-clockwise
rotation at point P. Recall that if wheel 1 spinsalone, the robot pivots around wheel 2. The

rotation velocity wy at P can be computed because the wheel is instantaneously moving

. . rg

along the arc of acircleof radius2l: wy = %1

The same calculation applies to the left wheel, with the exception that forward spin results
in clockwise rotation at point P:

_ o

o (3.7)

Combining these individual formulae yields akinematic model for the differential-drive ex-
ample robot:
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& = RO)™ 0 (3.8)

We can now use this kinematic model in an example. However we must first compute
R(8)1. Ingeneral calculating theinverse of amatrix may be challenging. Inthiscase, how-

ever, it is easy because it is simply atransform from € g to & | rather than vice-versa:

. cosO —sinB 0
RO) " = |sn® cosd 0 (3.9
0 0 1

n

Supposethat therobot is positioned such that 6 = >

,andr=1and|=1. If therobot engages

its wheels unevenly, with speeds ¢1 = 4 and ¢, = 2, we can compute its velocity in the
global reference frame:

. X 0-10[[3] |0
& =1y =11 0 0llo[= |3 (3.10)
9 00 1/[1] |1

So, this robot will move instantaneously along they axis of the global reference frame with
speed 3 while rotating with speed 1. This approach to kinematic modeling can provide in-
formation about the motion of arobot given its component wheel speedsin straightforward
cases. However, we wish to determine the space of possible motions for each robot chassis
design. Todo this, we must go further, describing formally the constraints on robot motion
imposed by each wheel. The next section begins this process by describing constraints for
various wheel types, then the rest of this chapter provides tools for analyzing the character-
istics and workspace of arobot given these constraints.

3.2.3 Wheel kinematic constraints

The first step to a kinematic model of the robot is to express constraints on the motions of
individual wheels. Just as shown in the previous section, the motions of individual wheels
can later be combined to compute the motion of the robot asawhole. Asdiscussed in Chap-
ter 2, there are four basic wheel types with widely varying kinematic properties. Therefore,
we begin by presenting sets of constraints specific to each whedl type.

However several important assumptionswill simplify this presentation. We assume that the
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Fig34 Sandard fixed wheel and its parameters

plane of wheel alwaysremains vertical and that thereisin all cases one single point of con-
tact between the wheel and the ground plane. Furthermore we assume that thereisno sliding
at this single point of contact. That is, the wheel undergoes motion only under conditions of
pure rolling and rotation about the vertical axis through the contact point.

Under these assumptions, we present two constraints for every wheel type. The first con-
straint enforces the concept of rolling contact- that the wheel must roll when motion takes
place in the appropriate direction. The second constraint enforces the concept of no lateral
dlippage- that the wheel must not slide orthogonal to the wheel plane.

3.2.3.1 Fixed standard wheel

Thefixed standard wheel has no vertical axisof rotation for steering. Itsangleto the chassis
isthusfixed, and it is limited to motion back and forth along the wheel plane and rotation
around its contact point with the ground plane. Figure 3.4 depicts a fixed standard wheel A

and indicates its position pose relative to the robot’s local reference frame {Xg, Yg} . The
position of A is expressed in polar coordinates by distance | and angle a . The angle of the

wheel plane relative to the chassis is denoted by 3, which is fixed since the fixed standard
wheel isnot steerable. Thewheel, which hasradiusr, can spin over time, and so itsrotational
position around its horizontal axle isafunction of timet: ¢(t) .

Therolling constraint for thiswheel enforcesthat all motion along the direction of the wheel
plane must be accompanied by the appropriate amount of wheel spin so that there is pure
rolling at the contact point:

[sin(a+PB) —cos(a +B) (<) cosp|RO)E| —rd = 0 (3.11)

Thefirst term of the sum denotes the total motion aong the wheel plane. The three elements

of the vector on the left represents mappings from each of X, y, © to their contributions for
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motion along the wheel plane. Note that the R(G)E', term is used to transform the motion

parameters E', that are in the global reference frame {X,, Y|} into motion parametersin
the local reference frame {Xg, Yg as shown in example equation (3.5). Thisis necessary

because all other parametersin the equation, a1, 3, |, arein terms of the robot’s local refer-
ence frame. This motion along the wheel plane must be equal, according to this constraint,

to the motion accomplished by spinning the whesl, r¢ .

The dliding constraint for this wheel enforces that the component of the wheel’s motion or-
thogonal to the wheel plane must be zero:

[cos(a +B) sin(a +B) Isinp|RO)E, = 0 (3.12)

For example, suppose that wheel A is in a position such that {(a =0), (B = 0)} . This
would place the contact point of the wheel on X, with the plane of the wheel oriented par-

aleltoY,.If 8 = 0 then the diding constraint (3.12) reduces to:

10 0| [X X
[100/|010||y =[100]|y| =0 (313)
001|8 6

This constrains the component of motion along X, to be zero and since X; and X, are par-
alel inthis example, the wheel is constrained from sliding sideways, as expected.

3.2.3.2 Steered standard wheel

The steered standard wheel differs from the fixed standard wheel only in that thereis an ad-
ditional degree of freedom: the wheel may rotate around a vertical axis passing through the
center of the wheel and the ground contact point. The equations of position for the steered
standard wheel (figure 3.5) areidentical to that of the fixed standard wheel shown in figure
3.4 with one exception. The orientation of thewheel to the robot chassisisno longer asingle

fixed value, 3, but instead varies as a function of time: B(t). The rolling and sliding con-
straints are:

[sin(a+PB) —cos(a +B) (<) cosp|RO)E, —rd = 0 (3.14)
[cos(a +B) sin(a+B) Isinp|RO)&1 = 0 (3.15)

These constraints are identical to those of the fixed standard wheel because, unlike ¢, 8
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Fig 3.6 Castor wheel and its parameters

does not have a direct impact on the instantaneous motion constraints of a robot. It is only
by integrating over time that changes in steering angle can affect the mobility of avehicle.
This may seem subtle, but is a very important distinction between change in steering posi-

tion, 3, and change in wheel spin, ¢.

3.2.3.3 Castor wheel

Castor wheels are able to steer around a vertical axis. However, unlike the steered standard
wheel, the vertical axisof rotation inacastor wheel does not pass through the ground contact
point. Figure 3.6 depictsacastor wheel, demonstrating that formal specification of the castor
wheel’ s position requires an additional parameter.

The wheel contact point is now at position B, which is connected by arigid rod AB of fixed
length d to point A. A fixes the location of the vertical axis about which B steers, and this
point A has a position specified in the robot’ s reference frame asin Fig. 3.6. We assume that
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Fig 3.7 Office chair with five castor wheels

the plane of the wheel isaligned with AB at all times. Similar to the steered standard whedl,
the castor wheel hastwo parametersthat vary asafunction of time. ¢(t) representsthe wheel
spin over time as before. 3(t) denotes the steering angle and orientation of AB over time.

For the castor whedl, therolling constraint isidentical to before because the offset axis plays
no role during motion that is aligned with the wheel plane:

[sin(a+P) —cos(a +B) (<) cosp|RO)E, —rd = 0 (3.16)

The castor geometry does, however, have significant impact on the diding constraint. The
critical issueisthat the lateral force on the wheel occurs at point A because thisisthe attach-
ment point of the wheel to the chassis. Because of the offset ground contact point relative to
A, the congtraint that there be zero lateral movement would be wrong. Instead, the constraint
is much like arolling constraint, in that appropriate rotation of the vertical axis must take
place:

[cos(a +B) sin(a+B) (d+1)sinp|RO)E, +dB = 0 (3.17)

In equation (3.17), any motion orthogonal to the wheel plane must be balanced by an equiv-
alent and opposite amount of castor steering motion. Thisresult is critical to the success of

castor wheels because by setting the value of 3 any arbitrary lateral motion can be accept-

able. In a steered standard wheel, the steering action does not by itself cause a movement of
the robot chassis. But in a castor wheel the steering action itself moves the robot chassis be-
cause of the offset between the ground contact point and the vertical axis of rotation.

More concisely, it can be surmised from Equations (3.16) and (3.17) that, given any robot

chassis motion & |, there exists some value for spin speed ¢ and steering speed 3 such that

the constraints are met. Therefore, arobot with only castor wheels can move with any ve-
locity in the space of possible robot motions. We term such systems omnidirectional.

A real-world example of such asystem isthefive-castor wheel office chair shown in Figure
3.7. Assuming that all joints are able to move freely, you may select any motion vector on
the plane for the chair and push it by hand. Its castor wheelswill spin and steer as needed to
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Fig3.8 Swedish wheel and its parameters

achieve that motion without contact point diding. By the same token, if each of the chair’'s
castor wheels housed two motors, one for spinning and one for steering, then a control sys-
tem would be able to move the chair along any trajectory in the plane. Thus, although the
kinematics of castor wheelsis somewhat complex, such wheels do not impose any real con-
straints on the kinematics of arobot chassis.

3.2.3.4 Swedish wheel

Swedish wheels have no vertical axis of rotation, yet are able to move omnidirectionally like
the castor wheel. Thisis possible by adding adegree of freedom to the standard fixed wheel.
Swedish wheels consist of a standard fixed wheel with rollers attached to the wheel perim-
eter with axesthat are antiparallel to the main axis of the fixed wheel component. The exact

angley between theroller axes and the main axis can vary, as shown in figure 3.8.

For example, given a swedish 45 degree wheel, the motion vectors of the principal axisand
the roller axes can be drawn as in Fig. 3.8. Since each axis can spin clockwise or counter-
clockwise, one can combine any vector along one axiswith any vector along the other axis.
These two axes are not necessarily independent (except in the case of the swedish 90); how-
ever, it isvisually clear that any desired direction of motion is achievable by choosing the
appropriate two vectors.

The pose of aswedish wheel is expressed exactly asin afixed standard wheel, with the ad-
dition of aterm, y, representing the angle between the main wheel plane and the axis of ro-
tation of the small circumferential rollers. This is depicted in Fig. 3.8 within the robot’s
reference frame.

Formulating the constraint for a swedish wheel requires some subtlety. The instantaneous
constraint is due to the specific orientation of the small rollers. The axis around which these
rollers spin is a zero component of velocity at the contact point. That is, moving in that di-
rection without spinning the main axisis not possible without sliding. The motion constraint
that is derived looks identical to the rolling constraint for the fixed standard wheel in Equa-

tion (3.11) except that the formulais modified by addingy such that the effective direction
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along which the rolling constraint holds is along this zero component rather than along the
wheel plane:

sn(a+p+y) —cos(a+p +y) (-)cos(B +y)| ROE —récosy =0 (3.18)

Orthogonal to this direction the motion is not constrained because of the free rotation ¢, of
the small rollers.

‘cos(a+B+y) sin(a+p +y) lsin(B+y)|ROE, —résiny —ry,bsy = 0 (3.19)

The behavior of this constraint and thereby the swedish wheel changes dramatically as the
valuey varies. Consider y = 0. Thisrepresents the swedish 90 degree whesl. In this case,
the zero component of velocity isinlinewith thewheel plane and so Equation (3.18) reduces
exactly to Equation (3.11), the fixed standard wheel rolling constraint. But because of the
rollers, there is no sliding constraint orthogonal to the wheel plane (eg. (3.19). By varying

the value of ¢, any desired motion vector can be made to satisfy Equation (3.18) and there-

fore the wheel is omnidirectional. In fact, this specia case of the swedish design resultsin
fully decoupled motion, in that the rollers and the main wheel provide orthogonal directions
of motion.

At the other extreme, consider/ = T/ 2 In this case, the rollers have axes of rotation that

are parallel to the main wheel axisof rotation. Interestingly, if thisvalueis substituted for y

in Equation (3.18) the result is the fixed standard wheel diding constraint, Equation (3.12).
In other words, therollers provide no benefit in terms of |lateral freedom of motion sincethey
are simply aligned with the main wheel. However, in this case the main wheel never needs
to spin and therefore therolling constraint disappears. Thisis adegenerate form of the swed-

ish wheel and therefore we assume in the remainder of this chapter thaty # v 2.

3.2.3.5 Spheric wheel

Thefinal wheel type, aball or spheric wheel, places no direct constraints on motion (figure
3.9). Such amechanism has no principal axis of rotation, and therefore no appropriate roll-
ing or sliding constraints exist. Aswith castor wheel s and swedish wheels, the spheric wheel
is clearly omnidirectional and places no constraints on the robot chassis kinematics. There-

fore Equation (3.20) smply describes the roll rate of the ball in the direction of motion v,
of point A of the robot.

[sin(a+P) —cos(a +B) (<) cosp|RO)E| —rd = 0 (3.20)

By definition the wheel rotation orthogonal to this direction is zero.

R. Siegwart, EPFL, lllah Nourbakhsh, CMU



52 Autonomous Mobile Robots

| Robot chassis _("A ] b r
| VA @ |
|

a
P I >XR

Fig3.9 Spoheric wheel and its parameters

[cos(a +B) sin(a+B) Isinp|RO)&1 = 0 (3.21)

Ascan be seen, the equationsfor the spheric wheel are exactly the same asfor the fixed stan-
dard wheel. However, the interpretation of equation (3.21) is different. The omnidirectional
spheric wheel can have any arbitrary direction of movement, where the motion direction

given by 3 isafree variable deduced from equation (3.21). Consider the case that the robot
is in pure translation in the direction of Yg. Then equation (3.21) reduces to

sn(a+p) = 0,thus B = —a which makes sense for this special case.
3.2.4 Robot kinematic constraints

Given amobile robot with M wheels we can now compute the kinematic constraints of the
robot chassis. The key ideaisthat each wheel imposes zero or more constraints on robot mo-
tion, and so the process is simply one of appropriately combining all of the kinematic con-
straints arising from all of the wheels based on the placement of those wheels on the robot
chassis.

We have categorized all wheels into five categories: fixed and steerable standard wheels,
castor wheels, swedish wheels and spheric wheels. But note from the wheel kinematic con-
straints in equations (3.16) - (3.18) that the castor wheel, swedish wheel and spheric wheel

impose no kinematic constraints on the robot chassis, since & ; canrangefreely inall of these
cases due to the internal wheel degrees of freedom.

Therefore only fixed standard wheels and steerable standard wheels have impact on robot
chassis kinematics and therefore require consideration when computing the robot’ s kinemat-

ic constraints. Suppose that the robot has atotal of N standard wheels, comprising N; fixed
standard wheelsand N steerable standard wheels. We use B(t) to denotethe variable steer-

ing angles of the N steerable standard wheels. In contrast, 3; refersto the orientation of the
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N: fixed standard wheels as depicted in Fig. 3.4. In the case of wheel spin, both the fixed
and steerable wheel s have rotational positions around the horizontal axlethat vary asafunc-
tion of time. We denote the fixed and steerable cases separately as ¢(t) and ¢ (t), and use

d(t) as an aggregate matrix that combines both values:

_ 940
o) = (3.22)
|¢s(t)]

Therolling constraints of all wheels can now be collected in a single expression:

L(BIREO)E | ~3,0 = 0 (3.23)

This expression bears a strong resemblance to the rolling constraint of a single wheel, but
substitutes matricesin lieu of single values, thus taking into account all wheels. J, isacon-
stant diagonal NxN matrix whose entries are radii r of all standard wheels. J;(3,) denotesa
matrix with projections for all wheels to their motions along their individual wheel planes:

J1(By = |J J(lés)] (3.24)
1s

Notethat J;(By) isonly afunction of 3¢ and not [3; . Thisisbecause the orientations of steer-
able standard wheels vary as a function of time, whereas the orientations of fixed standard
wheels are constant. J,; is therefore a constant matrix of projections for all fixed standard
wheels. It hassize (N; x 3), with each row consisting of the three termsin the three-matrix

from Equation (3.11) for each fixed standard wheel. J, (B, is amatrix of size (Ngx 3),

with each row consisting of the three termsin the three-matrix from Equation (3.14) for each
steerable standard wheel.

In summary, Equation (3.23) represents the constraint that all standard wheels must spin
around their horizontal axis an appropriate amount based on their motions along the wheel
plane so that rolling occurs at the ground contact point.

We use the same technique to collect the diding constraints of all standard wheelsinto asin-
gle expression with the same structure as Equations (3.12) and (3.15):

C,(BJRO)E, = 0 (3.25)
C

C,B) =| ™ (3.26)

i) |cls<Bs>]
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Cy; and C;g are (N; x 3) and (Ng x 3) matrices whose rows are the three terms in the

three-matrix of Equation (3.12) and Equation (3.15) for all fixed and steerable standard
wheels. Thus Equation (3.25) isa constraint over all standard wheels that their components
of motion orthogonal to their wheel planesmust be zero. Thisdiding constraint over al stan-
dard wheels has the most significant impact on defining the overall maneuverability of the
robot chassis, as explained in the next section.

3.2.5 Examples: Robot kinematic models and constraints

In Section (3.2.2), we presented a forward kinematic solution for & | in the case of asimple

differential drive robot by combining each wheels contribution to robot motion. We can
now use the tools presented above to construct the same kinematic expression by direct ap-
plication of therolling constraints every wheel type. We proceed with thistechnique applied
again to the differential drive robot, enabling verification of the method as compared to the
results of Section (3.2.2). Then, we proceed to the case of three-wheeled omnidirectional
robot.

3.2.5.1 A differential drive robot example

First, refer to Equation (3.23). Thisequation relates robot motion to the rolling constraints,

J;(B) and the wheel spin speed of the robot’swheels, ¢. Isolating & , yieldsthe following
expression:

£, = RO) (B 3,0 (3.27)

Once again, consider the differential drive robot in Figure 3.3. We will construct J,(B,)

directly from the rolling constraints of each wheel. The castor is unpowered and is free to
movein any direction, so weignorethisthird point of contact altogether. Thetwo remaining

drive wheels are not steerable, and therefore J; (3 simplifiesto J;;. To employ the Fixed
standard whedl’s rolling constraint formula, Equation (3.11), we must first identify each
wheel’svaluesfor a and 3. Suppose that the robot’s local reference frameis aligned such
that the robot moves forward along + X, asshown in Figure (3.1). Inthiscase, for theright

whed o = —g, B = 1 and for theleft whed o = g B = 0. Notethevaueof B for theright

wheel is necessary to ensure that positive spin causes motion in the +X direction (figure

3.4). Now we can compute the J;; matrix using the matrix terms from Equation (3.11):

Jyg = ﬁ 8 _'J (3.28)

Substitution into Equation (3.27) yields the kinematic equation specific to our differential




3 Mobile Robot Kinematics 25

v(t)
uft) 0

Fig 3.10 A three wheel omni-drive robot developed by Carnegie Mellon University
(Wwww.cs.cmu.edu/~pprk).

drive robot;

-1
£, = R(e)‘lhg 'J 3,0 (3.29)

Inorder to usethisformulato calculate € | for aspecific differential drive robot’swheel spin

speeds requires matrix inversion of both R(6) and J;;. R(e)_1 is easy to compute, as dem-

onstrated by Equation (3.9). J;; does not technically have an inverse because it is non-

square in this case. However, it does have a pseudoinverse such that ; [J J;.L 0J; = J;

General methods for calculating the inverse or pseudoinverse of matrices are well known
but will not be discussed further here. For details see Golub and Kahan [92]. But note the

similarity of Equation (3.29) to Equation (3.8). Recall that J, isadiagonal matrix contain-
ing r for each wheel. Rewriting Equation (3.8) yields:

&, = R@O)* 3,0 (3.30)

I~ © NI
||,_\ o NIR

)
)

Asisevident by comparing Equation (3.29) and Equation (3.30), we aready have Jlfl . This

demonstrates that, for the simple differential drive case, the combination of wheel rolling
constraints describe the kinematic behavior, based on our manual calculation in Section
3.2.2.

3.2.5.2 An omnidirectional robot example

Consider the omni-wheel robot show in Figure 3.10. This robot has three swedish 90
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Fig3.11 The local reference frame plus detailed parameters for wheel 1

whesls, arranged radially symmetrically, with therollers perpendicul ar to each main whesel.

First we must impose a specific local reference frame upon the robot. We do so by choosing
point P at the center of the robot, then aligning the robot with the local reference frame such

that Xy, is co-linear with the axis of wheel 2. Figure 3.11 shows the robot and its local ref-
erence frame arranged in this manner.

We assume that the distance between each wheel and P is|, and that all three wheels have
the same radius, r. Once again, the value of E', can be computed as a combination of the

rolling constraints of the robot’s three omnidirectional wheels, as in Equation (3.27). As
with the differential drive robot, since this robot has no steerable wheels, J,(By) simplifies

to Jys:

£, = RO) 5,0 (3.31)

We calculate J;; using the matrix elements of the rolling constraints for the swedish whes!,

given by Equation (3.18). But to usethese values, we must establishthevauesa, 3, y for

each wheel. Referring to Figure (3.8), we can seethaty = O for the Swedish 90 wheel. Note
that this immediately simplifies Equation (3.18) to Equation (3.11), the rolling constraints
of afixed standard wheel. Given our particular placement of the local reference frame, the

value of a for each wheel is easily computed: %xl = % (a, = m), 813 = —%. Further-

more, 3 = 0 for al wheels because the wheels are tangent to the robot’s circular body.
Congtructing and simplifying J;; using Equation (3.11) yields:
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I} _ n ] £3 _1 ]
sln3 cos3 I > 5 |
Jig = 0 ——cosm-|l =0 14 (3.32)
It Jé 1
—— _COS— —] ik
_sm 3 coS 37 - 3 ]

Once again, computing the value of E', requires calculating the inverse, J}L , as needed in

Equation (3.31). One approach would be to apply rote methods for calculating the inverse
of a 3x3 square matrix. A second approach would be to compute the contribution of each
swedish wheel to chassis motion as shown in Section (3.2.2). We leave this process as an

exercise for the enthusiast. Oncetheinverseis obtained, &, can be isolated:

1,1
J3 43
£ =RO|_1 2 134 (3.33)
3 3 3
2111
EREEE]

Consider aspecificomnidrive chassiswith1=1 and r=1for all wheels. Therobot’ slocal ref-
erence frame and global reference frame are aligned, sothat 6 = 0. If wheels1, 2 and 3
spin at speeds(¢, = 4), (¢, =1), (¢5 = 2), what is the resulting motion of the whole ro-
bot? Using the equation above, the answer can be calculated readily:

1,1 2
X [100|¥3  B[100|[4 |3
& =1y =lo10 _%g _% 010/ |1/= _‘é‘ (3.34)
ol loo1 0012
111 7
7373 3] 3

S0, this robot will move instantaneously along the x axis with positive speed and along the
y axis with negative speed while rotating clockwise. We can see from the above examples
that robot motion can be predi cted by combining therolling constraints of individual wheels.

The sliding constraints comprising C;(B,) can be used to go even further, enabling us to

evaluate the maneuverability and workspace of the robot rather than just its predicted mo-
tion. Next, we examine methods for using the sliding constraints, sometimes in conjunction
with rolling constraints, to generate powerful analyses of the maneuverability of a robot
chassis.
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3.3 Mobile Robot Maneuverability

The kinematic mobility of arobot chassisisits ability to directly move in the environment.
The basic constraint limiting mobility is the rule that every wheel must satisfy its sliding
congtraint. Therefore, we can formally derive robot mobility by starting from Equation
(3.25).

In addition to instantaneous kinematic motion, a mobile robot is able to further manipulate
its position, over time, by steering steerable wheels. As we will see in Section (3.3.3), the
overall maneuverability of arobot is thus a combination of the mobility available based on
the kinematic diding constraints of the standard wheels, plusthe additional freedom contrib-
uted by steering and spinning the steerable standard wheels.

3.31 Degree of mobility

Equation (3.25) imposes the constraint that every wheel must avoid any lateral dip. Of
course, thishold separately for each and every wheel, and so it is possible to specify thiscon-
straint separately for fixed and for steerable standard wheels:

C,R®)E, =0 (3.35)
Ci(BIRO)E, = 0 (3.36)

For both of these constraints to be satisfied, the motion vector R(8) E', must belong to the
null space of the projection matrix C,(By) , which issimply acombination of C,; and C;.
Mathematically, the null space of C;(By) is the space N such that for any vector nin N

C,(Bgn = 0. If the kinematic constraints are to be honored, then the motion of the robot

must always be within this space N. The kinematic constraints (3.35) and (3.36) can also be
demonstrated geometrically using the concept of arobot’s I nstantaneous Center of Rotation
(ICR).

Consider a single standard wheel. It is forced by the sliding constraint to have zero lateral
motion. This can be shown geometrically by drawing azero motion line through its horizon-
tal axis, perpendicular to the wheel plane (Figure 3.12). At any given instant, wheel motion
along the zero motion line must be zero. In other words, the wheel must be moving instan-
taneoudly along some circle of radius R such that the center of that circle is located on the
zeromotion line. Thiscenter point, called the Instantaneous Center of Rotation, may lie any-
where aong the zero motion line. When Ris at infinity, the wheel movesin a straight line.

A robot such as the Ackerman vehicle in Figure 3.12a can have several wheels, but must
always have a single ICR. Because all of its zero motion lines meet at a single point, there
isasingle solution for robot motion, placing the ICR at this meet point.

This|CR geometric construction demonstrates how robot mobility is afunction of the num-
ber of constraints on the robot’ s motion, not the number of wheels. In Figure 3.12b, the bi-
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Fig 3.12 a) 4-wheel with car-like Ackermann steering
b) bicycle
b)

Fig3.13 a) Differential Drive Robot with two individually motorized wheels
and a castor wheel, e.g. the Pygmalion robot at EPFL
b)Tricycle with two fixed standard wheels and one steered standard whesl,
e.g. Piaggio mini transporter

cycle shown has two wheels w; and w,. Each wheel contributes a constraint, or a zero

motion line. Taken together the two constraints result in asingle point as the only remaining
solution for the ICR. Thisis because the two constraints are independent, and thus each fur-
ther constrains overall robot motion.

But in the case of the differential drive robot in Figure 3.13a, the two wheels are aligned
along the same horizontal axis. Therefore, the ICRis constrained to liealong aline, not at a
specific point. In fact, the second wheel imposes no additional kinematic constraints on ro-
bot motion since its zero motion line isidentical to the first wheel’s. Thus although the bi-
cycle and differential drive chassis have the same number of non-omnidirectional wheels,
the former has two independent kinematic constraints while the latter has only one.

The Ackerman vehicle of Figure 3.12a demonstrates another way in which awheel may be
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unable to contribute an independent constraint to the robot kinematics. This vehicle hastwo
steerable standard wheels. Given the instantaneous position of just one of these steerable
wheels and the position of the fixed rear wheels, there is only a single solution for the ICR.
The position of the second steerable wheel is absolutely constrained by the ICR. Therefore,
it offers no independent constraints to robot motion.

Robot chassis kinematicsistherefore afunction of the set of independent constraints arising
from all standard wheels. The mathematical interpretation of independence isrelated to the
rank of amatrix. Recall that the rank of amatrix isthe smallest number of independent rows
or columns. Equation (3.25) represents al dliding constraints imposed by the wheels of the

mobile robot. Therefore rank [C1(|3 s)} is the number of independent constraints.

The greater the number of independent constraints, and therefore the greater the rank of
C,(By) , themore constrained isthe mobility of the robot. For example, consider arobot with

asingle fixed standard wheel. Remember that we consider only standard wheels. This robot
may be aunicycle or it may have several swedish wheels; however it has exactly one fixed

standard wheel. The wheel is at position specified by parameters a, (3, | relativeto thero-
bot’s local reference frame. C,(B,) iscomprised of C;; and C, . However, since there are
no steerable standard wheels C, ¢ isempty and therefore C,(B,) containsonly C,; . Because

thereis one fixed standard whesdl, this matrix hasrank one and therefore thisrobot has asin-
gle independent constrain on mobility:

Ci(B9 = Cyr = [cos(a +B) sin(a+P) Isinf| (3.37)

Now let usadd an additional fixed standard wheel to create adifferential driverobot by con-
straining the second wheel to be aligned with the same horizontal axisasthe original wheel.
Without loss of generality, we can place point P at the midpoint between the centers of the

two wheels. Given a,, 3,, |, forwhed w, and a,, B,, I, for wheel w,, it holds geomet-
rically that {(1, =1,), (B; =B, =0), (a,+ 1= 0,)}. Therefore, in this case, the matrix

C,(By hastwo constraints but arank of one:

3 3 cos(al;) sin(a;) O
C = C, = 3.38
1B ! cos(a, + 1) sin(a, + 1) 0 (3:38)

Alternatively, consider the case when w,, is placed in the wheel plane of w,; but with the

same orientation, as in a bicycle with the steering locked in the forward position. We again
place point P between the two wheel centers, and orient the wheels such that they lie on axis

X;. This geometry implies that (I, =1,), (B, =B, =1/ 2), (a; =0), (a, =) and,

therefore, the matrix C;(By) retains two independent constraints and has a rank of two:
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>1 then the vehicle can, at best, only travel along acircle or along

In generdl, if rank[clf

a straight line. This configuration means that the robot has two or more independent con-
straints due to fixed standard wheels that do not share the same horizontal axis of rotation.
Because such configurations have only adegenerate form of mobility in the plane, we do not
consider them in the remainder of this chapter. Note, however, that some degenerate config-
urations such as the four wheeled dip-skid steering system are useful in certain environ-
ments, such as on loose soil and sand, even though they fail to satisfy diding constraints.
Not surprisingly, the price that must be paid for such violations of the dliding constraintsis
that dead-reckoning based on odometry becomes less accurate and power efficiency is re-
duced dramatically.

In general, arobot will have zero or more fixed standard wheels and zero or more steerable
standard wheels. We can therefore identify the possible range of rank values for any robot:

Osrank[cl(gsﬂ <3. Consider the case rank[cl(Bs)J = 0.Thisisonly possibleif thereare

zero independent kinematic congtraints in C;(By) . In this case there are neither fixed nor

steerable standard wheel s attached to the robot frame: N; = N = 0.

Consider the other extreme, rank[cl(|3 s)} = 3. Thisisthe maximum possible rank since

the kinematic constraints are specified along three degrees of freedom (i.e. the constraint
matrix isthree columns wide). Therefore, there cannot be more than three independent con-

straints. In fact, when rank[c1(|3 S)} = 3 then therobot iscompletely constrained in al di-

rections and is, therefore, degenerate since motion in the planeis totally impossible.

Now we are ready to formally define a robot’ s degree of mobility J,,:

&m = dimN|C,(By] = 3-rank|c,(By) (3.40)

The dimensionality of the Null Space (dimN) of matrix C,(By) isameasure of the number

of degrees of freedom of the robot chassis that can be immediately manipulated through
changes in wheel velocity. It islogical thereforethat o,, must range between 0 and 3.

Consider an ordinary differential drive chassis. On such arobot there are two fixed standard
wheels sharing a common horizontal axis. As discussed above, the second wheel adds no

independent kinematic constraints to the system. Therefore, rank[cl(Bs)J =1 and

O, = 2. Thisfits with intuition: a differential drive robot can control both the rate of its
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change in orientation and its forward/reverse speed, simply by manipulating wheel veloci-
ties. In other words, its ICR is constrained to lie on the infinite line extending from its
wheels' horizontal axles.

In contrast, consider a bicycle chassis. This configuration consists of one fixed standard
wheel and one steerable standard wheel. In this case, each wheel contributes an independent

sliding congtraint to C,(B,) . Therefore, d,, = 1. Note that the bicycle has the same total

number of non-omnidirectional wheels as the differential drive chassis, and indeed one of
itswheelsis steerable. Y et it has one less degree of mobility. Upon reflection thisis appro-
priate. A bicycle only has control over its forward/reverse speed by direct manipulation of
wheel velocities. Only by steering can the bicycle change itsICR.

As expected, based on Equation (3.40) any robot consisting only of omnidirectional wheels
such as swedish or spheric wheels will have the maximum mobility, ,, = 3. Such arobot

can directly manipulate all three degrees of freedom.
3.3.2 Degree of steerability

The degree of mobility defined above quantifies the degrees of controllable freedom based
on changes to wheel velocity. Steering can also have an eventual impact on arobot chassis

pose¢ , although the impact is indirect because after changing the angle of a steerable stan-
dard wheel, the robot must move for the change in steering angle to have impact on pose.

Aswith mobility, we care about the number of independently controllable steering parame-
ters when defining the degree of steerability d:

5 = rank|C, (B (3.41)

Recall that in the case of mobility, anincreaseintherank of C;(B,) implied morekinematic

constraints and thus a less mobile system. In the case of steerability, an increase in the rank
of ,(Bs) impliesmore degreesof steering freedom and thus greater eventual maneuverabil-

ity. Since C;(By) includes C,(BJ) , this means that a steered standard wheel can both de-

crease mobility and increase steerability: its particular orientation at any instant imposes a
kinematic constraint, but its ability to change that orientation can lead to additional trajecto-
ries.

Therange of &, can be specified: 0, < . Thecase d, = 0 impliesthat therobot hasno

steerable standard wheels, N = 0. Thecase §, = 1 ismost common when arobot config-
uration includes one or more steerable standard wheels.

For example, consider an ordinary automobile. In thiscase N; = 2 and N = 2. But the

fixed wheels share a common axle and so rank[clJ = 1. The fixed wheels and any one

of the steerable wheels constrain the ICR to be a point along the line extending from the rear
axle. Therefore, the second steerable wheel cannot impose any independent kinematic con-
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Fig3.14 The five basic types of three-wheel configurations. The spheric wheels can

be replaced by castor or swedish wheels without influencing the maneuver-
ability. More configurations with various numbers of wheels are found
chapter 2.

straint and so rank[cls(gsﬂ = 1.Inthiscased, = 1and o, = 1.

The case ; = 2 isonly possible in robots with no fixed standard wheels: N; = 0. Under

these circumstances, it is possible to create a chassis with two separate steerable standard
whesels, like a pseudo-bicycle (or the two-steer) in which both wheels are steerable. Then,
orienting one wheel constrains the ICR to a line while the second wheel can constrain the

ICRto any point along that line. Interestingly, this means that the o, = 2 implies that the
robot can place its | CR anywhere on the ground plane.
3.3.3

The overall degrees of freedom that a robot can manipulate, called the degree of maneuver -
ability d,,, can be readily defined in terms of mobility and steerability:

Robot maneuverability

Sy = O+ O (3.42)

Therefore maneuverability includes both the degrees of freedom that the robot manipul ates
directly through wheel velocity and the degrees of freedom that it indirectly manipul ates by
changing the steering configuration and moving. Based on the investigations of the previous
sections, one can draw the basic types of wheel configurations. They are depicted in figure
3.14

Note that two robots with the same 9, are not necessarily equivalent. For example differ-
ential drive and tricycle geometries (fig. 3.13) have equal maneuverability &, = 2. Indif-
ferential drive all maneuverability is the result of direct mobility because o, = 2 and
O, = 0. Inthe case of atricycle the maneuverability results from steering also: 9, = 1

and &, = 1. Neither of these configurations allows the ICR to range anywhere on the
plane. In both cases, the ICR must lie on a predefined line with respect to the robot reference
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Steering pulley

Direction of motion Drive pulley

Drive motor
Wheel steering axis

Fig 3.15 The synchro drive configuration

frame. In the case of differentia drive, this line extends from the common axle of the two
fixed standard wheels, with the differential wheel velocities setting the ICR point on this
line. In atricycle, this line extends from the shared common axle of the fixed whedls, with
the steerable wheel setting the ICR point along this line.

More generally, for any robot with &, = 2 the ICRis always constrained to lie on aline

and for any robot with 3, = 3 the ICR can be set to any point on the plane.

Onefina examplewill demonstrate the use of the toolswe have devel oped above. One com-
mon robot configuration for indoor mobile robotics research is the synchro drive configura-
tion (Figure 3.15). Such arobot has two motors and three wheels that are locked together.
One motor provides power for spinning all three wheels while the second motor provides

power for steering al three wheels. In a three-wheeled synchro drive robot N; = 0 and

N. = 3. Therefore rank|C can be used to determine both 6, and d. . The three
S 1s(|3$) m S

wheels do not share a common axle, therefore two of the three contribute independent did-
ing constraints. The third must be dependent on these two constraints for motion to be pos-

sible. Therefore rank[cls(gs)} = 2 and 0, = 1. Thisis intuitively correct. A synchro

drive robot with the steering frozen manipulates only one degree of freedom, consisting of
traveling back and forth on a straight line.

However an interesting complication occurs when considering 9, . Based on Equation

(3.41) therobot should have &, = 2 . Indeed, for athree-wheel-steering robot with the geo-

metric configuration of a synchro drive robot this would be correct. However, we have ad-
ditional information: in a synchro drive configuration a single motor steers all three wheels
using a belt drive. Therefore, although ideally, if the wheels were independently steerable,

then the system would achieve &, = 2, in the case of synchro-drive the drive system fur-
ther constrainsthe kinematics such that inredity o, = 1 . Finally, we can compute maneu-

verability based on these values: &, = 2 for asynchro drive robot.
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This result implies that a synchro drive robot can only manipulate, in total, two degrees of
freedom. In fact, if the reader reflects on the wheel configuration of a synchro drive robot it
will become apparent that there is no way for the chassis orientation to change. Only the x-
y position of the chassis can be manipulated and so, indeed, a synchro-drive robot has only
two degrees of freedom, in agreement with our mathematical conclusion.
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3.4 Mobile Robot Workspace

For arobot, maneuverability isequivalent to its control degrees of freedom. But therobot is
situated in some environment, and the next question is to situate our analysisin the environ-
ment. We care about the ways in which the robot can use its control degrees of freedom to
position itself in the environment. For instance, consider the Ackerman vehicle, or automo-

bile. The total number of control degrees of freedom for such a vehicle 3, = 2, one for
steering and the second for actuation of the drive wheels. But what is the total degrees of
freedom of thevehicleinitsenvironment? In fact it isthree: the car can positionitself on the
plane at any X,y point and with any angle 6.

Thusidentifying arobot’ s space of possible configurationsisimportant because surprisingly
it can exceed g, . In addition to workspace, we care about how the robot is able to move

between various configurations. what are the types of paths that it can follow and, further-
more, what are its possible trgj ectories through this configuration space? In the remainder of
this discussion, we move away from inner kinematic details such as wheels and focus in-
stead on the robot chassis pose and the chassis degrees of freedom. With thisin mind, let us
place the robot in the context of its workspace now.

34.1 Degrees of Freedom

In defining the workspace of a robot, it is useful to first examine its admissible velocity
space. Given the kinematic constraints of the robot, itsvelocity space describes the indepen-
dent components of robot motion that the robot can control. For example, the velocity space
of aunicycle can be represented with two axes, one representing the instantaneous forward
speed of the unicycle and the second representing the instantaneous change in orientation,

8, of the unicycle.

The number of dimensions in the velocity space of arobot is the number of independently
achievable velocities. Thisisalso called the differ entiable degrees of freedom. A robot’ sdif-

ferential degrees of freedom (DDOF) is always equal to its degree of mobility d,. For ex-

ample, abicycle has the following degree of maneuverability:
Oy =90,+9 = 1+1 = 2.The DDOF of abicycleisindeed 1.

In contrast to a bicycle, consider an omnibot, a robot with three swedish wheels. We know
that in this case there are zero standard wheels and therefore o, = 0, + 9, = 3+0 = 3.

So, the omnibot has three differential degrees of freedom. Thisis appropriate, given that be-
cause such a robot has no kinematic motion constraints, it is able to independently set all

three pose variables: %, y, 0.

Given the difference in differential degrees of freedom between a bicycle and an omnibot,
consider the overall degrees of freedom in the workspace of each configuration. The omni-
bot can achieve any pose x, y, 0 inits environment and can do so by directly achieving
the goal positions of all three axes ssmultaneously because DDOF=3. Clearly, it hasawork-
space with DOF=3.
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Can abicycle achieve any pose x, y, 0 in its environment? It can do so, but achieving
some goal points may require more time and energy than an equivalent omnibot. For exam-
ple, if abicycle configuration must move laterally one meter, the simplest successful ma-
neuver would involve either aspiral or aback and forth motion similar to parallel parking
of automobiles. Nevertheless, a bicycle can achieve any 'x, y, 8’ and therefore the work-
space of a bicycle has DOF=3 as well.

Clearly there is an inequality relation at work: DDOF <3,, <DOF . Although the dimen-

sionality of arobot’s workspaceis an important attribute, it is clear from the example above
that the particular paths available to arobot matter as well. Just as workspace DOF governs
the robot’s ability to achieve various poses, so the robot’'s DDOF governs its ability to
achieve various paths.

3.4.2 Holonomic Robots

In the robotics community, when describing the path space of amobile robot, often the con-
cept of holonomy is used. The term holonomic has broad applicability to several mathemat-
ical areas, including differential equations, functions and constraint expressions. In mobile
robotics, the term refers specifically to the kinematic constraints of the robot chassis. A ho-
lonomic robot is arobot that has zero non-holonomic kinematic constraints. Conversely, a
non-holonomic robot is a robot with one or more non-holonomic kinematic constraints,

A holonomic kinematic constraint can be expressed as an explicit function of position vari-
ables only. For example, in the case of a mobile robot with asingle fixed standard wheel, a
holonomic kinematic constraint would be expressible using a,, B4, I4, rq, ¢4, X, y, 6

only. Such a constraint may not use derivatives of these values, such as ¢ or & . A non-ho-
lonomic kinematic constraint requires a differential relationship, such as the derivative of a
position variable. Furthermore, it cannot be integrated to provide a constraint in terms of the
position variables only. Because of this latter point of view, non-holonomic systems are of -
ten called non-integrable systems.

Consider the fixed standard wheel dliding constraint:
[cos(a +B) sin(a+B) Isinp|RO)E, = 0 (3.43)

This constraint must use robot motion & rather than pose€ because the point isto constrain
robot motion perpendicular to the wheel plane to be zero. The constraint is non-integrable,
depending explicitly on robot motion. Therefore, the diding constraint is a non-holonomic
constraint. Consider a bicycle configuration, with one fixed standard wheel and one steer-
able standard wheel. Because the fixed wheel sliding constraint will be in force for such a
robot, we can conclude that the bicycle is a non-holonomic robot.

But suppose that one locksthe bicycle steering system, so that it becomes two fixed standard
wheels with separate but parallel axes. We know that 8,, = 1 for such aconfiguration. Isit

non-holonomic? Although it may not appear so because of the diding and rolling con-
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straints, the locked bicycleis actually holonomic. Consider the workspace of thislocked bi-
cycle. It consists of asingle infinite line along which the bicycle can move (assuming the
steering was frozen straight-ahead). For formulaic smplicity, assume that this infinite line
is aligned with X, inthe global reference frameand that {3, , =1 2, a; =0, a, =T1.
In this case the sliding constraints of both wheels can be replaced with an equally complete
set of constraints on the robot pose: {y = 0, 8 = 0}. This eliminates two non-holonomic
constraints, corresponding to the sliding constraints of the two wheels.

The only remaining non-holonomic kinematic constraints are therolling constraints for each
wheel:

[—sin(a+B) cos(a +B) lcosp|ROE +r1d = 0 (3.44)

This congtraint is required for each wheel to relate the speed of wheel spin to the speed of
motion projected along the wheel plane. But in the case of our locked bicycle, given theini-

tial rotational position of awheel at the origin, ¢, we can replace this constraint with one

that directly relates position on the line, X, with wheel rotationangle, ¢: ¢ = (x/ r) +¢,.

Thelocked bicycle is an example of thefirst type of holonomic robot- where constraints do
exist but are all holonomic kinematic constraints. Thisis the case for all holonomic robots

with &, < 3. The second type of holonomic robot exists when there are no kinematic con-

straints, i.e. N; = 0 and Ng = 0. Since there are no kinematic constraints, there are also no

non-holonomic kinematic constraints and so such arobot is always holonomic. Thisisthe
case for al holonomic robots with &, = 3.

An alternative way to describe a holonomic robot is based on the relationship between the
differential degrees of freedom of a robot and the degrees of freedom of its workspace: a
robot isholonomicif and only if DDOF = DOF. Intuitively, thisisbecauseitisonly through
non-holonomic constraints (imposed by steerable or fixed standard wheels) that arobot can
achieve aworkspace with degrees of freedom exceeding its differential degrees of freedom,
DOF>DDOF. Examplesinclude differential drive and bicycle/tricycle configurations.

In mobile robotics, useful chassis generally must achieve poses in aworkspace with dimen-
sionality 3, so in genera we require DOF=3 for the chassis. But the "holonomic™" abilities
to maneuver around obstacleswithout affecting orientation, and to track at atarget whilefol-
lowing an arbitrary path are important additional considerations. For these reasons, the par-
ticular form of holonomy most relevant to mobile robotics is that of DDOF=DOF=3. We
define this class of robot configurations as omnidirectional: an omnidirectional robot is a
holonomic robot with DDOF=3.

3.4.3 Path and trajectory considerations

In mobile robotics, we care not only about the robot’ s ability to reach the required final con-
figurations, but also about how it gets there. Consider the issue of arobot’ s ability to follow
paths:. in the best case, arobot should be ableto trace any path through its workspace of pos-
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es. Clearly, any omnidirectional robot can do this because it is holonomic in a 3D work-
space. Unfortunately, omnidirectional robots must use unconstrained wheels, limiting the
choice of wheels to swedish wheels, castor wheels and spheric wheels. These wheels have
not yet been incorporated into designs allowing far large amounts of ground clearance and
suspensions. Although powerful from a path space point of view, they are thus much less
common than fixed and steerable standard wheels, mainly because their design and fabrica-
tion is somewhat complex and expensive.

Additionally non-holonomic constraints might drastically improve stability of movements.
Consider an omnidirectional vehicle driving at high speed on a curve with constant diame-
ter. During such a movement the vehicle will be exposed to a non-negligible centripetal
force. This lateral force pushing the vehicle out of the curve has to be counteracted by the
motor torque of the omnidirectional wheels. In case of motor or control failure, the vehicle
will be thrown out of the curve. However, for a car-like robot with kinematic constraints, the
lateral forces are passively counteracted through the diding constraints, mitigating the de-
mands on motor torque.

But recall an earlier example of high maneuverability using standard wheels: the bicycle on
which both wheels are steerable, often called the two-steer. This vehicle achieves a degree
of steerability of 2, resulting in a high degree of maneuverability:

Oy =90y +90, = 1+2 = 3. Interestingly, this configuration is not holonomic, yet has a
high degree of maneuverability in aworkspace with DOF=3.

The maneuverability result, 3, = 3, meansthat the two-steer can select any ICR by appro-
priately steering its two wheels. So, how does this compare to an omnidirectional robot?
The ability to manipulate its ICR in the plane means that the two-steer can follow any path
in its workspace. More generally, any robot with d,, = 3 can follow any path in its work-
spacefromitsinitial poseto itsfinal pose. An omnidirectional robot can aso follow any path
in its workspace and, not surprisingly, since d,, = 3 in an omnidirectional robot, then it

must follow that 3,, = 3.

But there is still adifference between a degree of freedom granted by steering versus by di-
rect control of wheel velocity. This difference is clear in the context of trajectories rather
than paths. A tragjectory islike a path, except that it occupies an additional dimension: time.
Therefore, for an omnidirectional robot on the ground plane a path generally denotes atrace
through a 3D space of pose; for the same robot a tragjectory denotes a trace through the 4D
space of pose plustime.

For example, consider agoal trgjectory in which the robot moves aong axis X, at aconstant
speed of 1 m/sfor 1 second, then changes orientation counter-clockwise 90 degrees also in
1 second, then moves parallel to axis Y, for 1 final second. The desired 3-second trajectory
isshown in Fig. 3.16 using plots of X, y, and 8 in relation to time.

Can the omnidirectional robot accomplish thistrajectory? We assume that the robot achieve
some arbitrary, finite velocity at each wheel. For simplicity, we further assume that acceler-
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Fig 3.16 Example of robot trajectory with omnidirectional robot:

- move for 1 swith constant speed of 1m/salong axis X|

- change orientation counter-clockwise 90° in1s
- move for 1 swith constant speed of 1nVsalong axis Y,

ationisinfinite; that is, it takes zero time to reach any desired velocity. Under these assump-
tions, the omnidirectional robot can indeed follow the trajectory of Fig. 3.16. The transition
between the motion of second 1 and second 2, for example, involves only changes to the
whesel velocities.

Because the two-steer has 9,, = 3 it must be able to follow the path that would result from

projecting this trajectory into time-less workspace. However, it cannot follow this 4D tra-
jectory. Evenif steering velocity isfinite and arbitrary, although the two-steer would be able
to change steering speed instantly, it would have to wait for the angle of the steerable wheels
to change to the desired position before initiating a change in the robot chassis orientation.
In short, the two-steer requires changes to internal degrees of freedom and because these
changestake time, arbitrary trajectories are not attainable. Figure 3.17 depicts the most sm-
ilar trgjectory that atwo-steer can achieve. In contrast to the desired three phases of motion,
thistrgjectory has five phases.

3.5 Beyond Basic Kinematics

The above discussion of mobilerobot kinematicsisonly anintroduction to afar richer topic.
When speed and force are also considered, asis particularly necessary in the case of high
speed mobile robots, dynamic constraints must be expressed in addition to kinematic con-
straints. Furthermore, many mobile robots such astank-type chassis and four wheel slip-skid
systems violate the kinematic models above. When analyzing such systems, it is often nec-
essary to explicitly model the dynamics of viscousfriction between the robot and the ground
plane.

More significantly, the kinematic analysis of a mobile robot system provides results con-
cerning the theoretical workspace of that mobile robot. However to effectively move in this
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Fig 3.17 Example of robot trajectory similar to fig. 3.16 with two steered wheels:
- move for 1 swith constant speed of 1nVs along axis X, .
- rotate steered wheels -50° / 50° respectively

- change orientation counter-clockwise 90° in1s
- rotate steered wheels 50° / -50° respectively

- move for 1 swith constant speed of 1nVsalong axis Y,

workspace a mobile robot must have appropriate actuation of its degrees of freedom. This
problem, called motorization, requires further analysis of the forces that must be actively
supplied in order to realize the kinematic range of motion available to the robot.

In addition to motorization, there is the question of controllability: under what conditions
can amobilerobot travel from theinitial pose to the goal posein bounded time? Answering
this question requires knowledge both knowledge of the robot kinematics and knowledge of
the control systems that can be used to actuate the mobile robot. Mobile robot control is
therefore areturn to the practical question of designing a real-world control algorithm that
can drive the robot from pose to pose using the trajectories demanded for the application.
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YIA

Fig3.18 Open loop control of amobilerobot based on straight linesand circular tra-
jectory segments

3.6 Motion Control (kinematic control)

A's seen above, motion control might not be an easy task for non-holonomic systems. How-
ever, it has been studied by various research groups, e.g. [1, 35, 36, 37, 38] and some ade-
quate solutions for motion control of a mobile robot system are available.

3.6.1 Open Loop Control (trajectory following)

The objective of akinematic controller isto follow atrajectory described by its position and/
or velocity profiles as function of time. This is often done by dividing the trajectory (path)
in motion segments of clearly defined shape, e.g. straight linesand segmentsof acircle. The
control problem isthusto pre-compute asmooth trajectory based on line and circle segments
which drivestherobot fromtheinitial positionto thefinal position (fig. 3.18). Thisapproach
can be regarded as open-1oop motion control, because the measured robot position is not fed
back for velocity or position control. It has several disadvantages:

* Itisnot at all an easy task to pre-compute a feasible trajectory if al limitations and
constraints of the robots velocities and accel erations have to be considered.

» Therobot will not automatically adapt or correct the trajectory if dynamic changes
of the environment occur.

» Theresulting trajectories are usually not smooth, because the transitions from one
trajectory segment to another are for most of the commonly used segments (e.g. lines
and part of circles) not smooth. This means there is a discontinuity in the robots ac-
celeration.

3.6.2 Feedback control

A more appropriate approach in motion control of a mobile robot isto use areal state feed-
back controller. With such a controller the robot’ s path-planning task is reduced to setting
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Fig3.19 Typical situation for feedback-control of a mobile robot

intermediate positions (sub-goals) lying on the requested path. One useful solution for asta-
bilizing feedback control of differential drive mobile robots is presented in the following
section. It is very similar to the controllers presented in [36] and [86]. Others can be found
in[1, 35, 37, 38].

Problem statement

Consder the situation shown in figure 3.19, with an arbitrary position and orientation of the
robot and a predefined goal position and orientation. The actual pose error vector given in
the robot reference frame {Xg, Yg, 0} ise = R[x, Y, G]T with x, y, and 6 being the goal
coordinates of the robot.

The task of the controller layout isto find a control matrix K, if it exists

ki, Ky, K
= |2 withk; = K(t e) (3.45)
k21 k22 k23

such that the control of v(t) and u{t)

R

{V(t)} - KOe=K

(3.46)
a(t)

D X

drives the error e towards zero™.

L Remember that v(t) is always heading in the Xg-direction of the robot’ sreference frame due to the
non-holonomic constraint
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Fig3.20 Robot kinematics and its frames of interests
lime(t) = 0 (3.47)
t 50

Kinematic model
We assume, without loss of generality, that the goal is at the origin of the inertial frame (fig.

3.20). In the following the position vector [X, V, e]T is always represented in the inertial
frame.

The kinematics of a differential drive mobile robot described in the inertial frame {X, Y,
0} aregiven by,

|
X cosO 0 y
y| = |sin6 0 U (3.48)
6

0 1

where x and y arethe linear velocitiesin the direction of the X; and Y) of theinertial frame.

Let o denote the angle between the xg axis of the robots reference frame and the vector x
connecting the center of the axle of the wheels with the final position. If a0 1, , where

L _Onm
1_D2’

NI

J (3.49)

then consider the coordinate transformation into polar coordinates with its origin at the goal
position.
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p = JAXE + Ay2 (3.50)

_ Ay TH]
a = —0 + aan N mod@ (3.51)
B=-0-a mod(TI) (3.52)

Thisyields a system description, in the new polar coordinates, using a matrix eguation

—cosa 0

F') ;
d % -1 m (3.53)

sna
p

where p is the distance between the center of the robot’s wheel axle and the goal position,
8 denotes the angle between the Xg axis of the robot reference frame and the X, axis associ-

ated with the final position and v and ware the tangent and the angular velocity respectively.

On the other hand, if a O I,,, where

- O T~
I, = o _ZJ [ O ] (3.54)

redefining the forward direction of the robot by setting v = -v, we obtain a system described
by a matrix equation of the form

cosa O

P sina
a=1"p 1 m (3.55)
B 809

L P

Remarks on the kinematic model in polar coordinates (equation (3.53) and
(3.55))

* The coordinate transformation is not defined at x =y = 0; as in such a point the de-
terminant of the Jacobian matrix of the transformation is not defined, i.e. it is un-
bounded.

 For a1, theforward direction of the robot points toward the goal, form I |, itis
the reverse direction.

By properly defining the forward direction of the robot at itsinitial configuration, it
isalwayspossibletohave o [ 1, att= 0. However, thisdoes not mean that aremains

inl, for al timet. Hence, to avoid that the robot changes direction during approach-
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ing the goal, itisnecessary to determine, if possible, the controller in such away that
a1, forallt, whenevern (0) O 1, . Thesame appliesfor thereverse direction (see

stability issues below).

The control law

The control signalsv and wmust now be designed to drive the robot from its actual config-
uration, say (Pg, 0o, Bo), to the goal position. It is obvious that equation (3.53) presents a

discontinuity at p = 0, thus the theorem of Brockett does not obstruct smooth stabilizability.

If we consider now the linear control |aw
vV = kpp (3.56)
W= ko + kBB (3.57)

we get with equation (3.53) a closed |oop system described by

0 —kpp cosa
4l = [kosina—k,a—kgpB (3.58)
—kpsina

The system does not have any singularity at p = 0 and has a unique equilibrium point at
(P, 0, B) = (0, 0, 0). Thusit will drive the robot to this point which is the goal position.

* In the Cartesian coordinate system the control law (3.57) leads to equations which
arenot defined at x =y = 0.

» Observethat the control signal v has always a constant sign, i.e. it is positive when-
ever a(0) O I, and it is aways negative otherwise. Thisimpliesthat the robot per-

forms its parking maneuver always in a single direction and without reversing its
motion.

In figure 3.21 you find the resulting paths when the robot is initially on a circle in the xy-
plane. All movements have smooth trgjectories toward the goal in the center. The control
parameters for this simulation where set to

k= (ky k, kg) = (3, 8 -15). (3.59)

Local stability issue

It can further be shown, that the closed loop control system (3.58) islocally exponentially
stable if

ky>0; ky<0; ky—k,>0 (3.60)
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Fig3.21 Resulting paths when the robot is initially on the unit circle in the xy-plane
Proof:

Linearized around the equilibrium (cosx =1, sin X = X) position, equation (3.58) can bewrit-
ten as

—k 0 0

P P
= | 0 —(kyk,) kg |al (3.61)
0 &, O0][B

hence it islocally exponentialy stableif the eigenvalues of the matrix
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%, 0 0
A =10 —(kek,) kg (3.62)
0 —k 0

p

all have anegativereal part. The characteristic polynomia of the matrix Ais

(A + k) (A% + A(Kq — k) —kokg) (3.63)

and all roots have negative real part if
kp>0; —kB>0; ka—kp>0 (3.64)
which proves the claim.

For robust position control, it might be advisable to apply the strong stability condition, that
ensures that the robot does not change direction during its approach to the goal:

. . 5, _2
>0 Kg<0; ky+2kg=7Kk >0 (3.65)

This implies that a1, for all t, whenevera (0) 01, and a O1, for al t, whenever

a(0) O I, respectively. Thisstrong stability condition has also been verified in applications.
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