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Asynchronous BCI and Local Neural Classifiers:
An Overview of the Adaptive Brain Interface Project

José del R. Millán and Josep Mouriño

Abstract—In this communication, we give an overview of our work on
an asynchronous brain–computer interface (where the subject makes self-
paced decisions on when to switch from one mental task to the next) that
responds every 0.5 s. A local neural classifier tries to recognize three dif-
ferent mental tasks; it may also respond “unknown” for uncertain samples
as the classifier has incorporated statistical rejection criteria. We report
our experience with 15 subjects. We also briefly describe two brain-actu-
ated applications we have developed: a virtual keyboard and a mobile robot
(emulating a motorized wheelchair).

Index Terms—Asynchronous protocol, brain-actuated applications,
brain–computer interfaces (BCIs), electroencephalogram (EEG),
local-neural classifier.

I. INTRODUCTION

Over the last seven years, our brain–computer interface (BCI) labo-
ratory, in cooperation with the Institute Santa Lucia, Rome, Italy, and
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the Computational Engineering Laboratory of the Helsinki University
of Technology, Finland, has developed a portable BCI, calledAdaptive
Brain Interface (ABI), based on the on-line analysis of spontaneous
electroencephalogram (EEG) signals measured with eight scalp elec-
trodes and able to recognize three mental tasks. Our approach relies on
anasynchronousprotocol where the subject decides voluntarily when
to switch between mental tasks and uses a simplelocal neural classi-
fier to recognize, every 0.5 s, the mental task on which the subject is
concentrating [1]. ABI is being used to operate two brain-actuated de-
vices: a virtual keyboard and a mobile robot (emulating a motorized
wheelchair) [2]–[4].

Like some of the other BCIs reported in the literature, our BCI is
based on the analysis of EEG signals associated with spontaneous
mental activity. In particular, we look at local variations of EEG over
several cortical areas related to different cognitive mental tasks such
as imagination of movements, arithmetic operations, or language.
The approach aims at discovering EEG patterns embedded in the
continuous EEG signal and associated with different mental states
[1], [5], [6]. It applies machine-learning techniques to train the
classifier and follows amutual learningprocess where the user and
the brain interface are coupled and adapt to each other [1], [6], [7].
This accelerates the training process. In the presence of feedback, our
subjects achieve good performance in just a few hours of training.
Analysis of learned EEG patterns confirms that for a subject to operate
satisfactorily his/her personal BCI, the personal BCI must fit the
individual features of the subject [1], [8].

Most BCIs are based on synchronous protocols where the subject
must follow a fixed repetitive scheme to switch from one mental task
to the next [7], [9], [10]. In these synchronous BCI systems, the EEG
phenomena to be recognized are time-locked to a cue, and a trial typ-
ically lasts from 4 to 10 s or longer. In contrast, ABI and a few other
systems rely on asynchronous protocols in which the subject makes
voluntary, self-paced decisions on when to stop performing a mental
task and when to start the next one [1], [11]. This makes the system
very flexible and natural to operate and yields rapid response times
(e.g., 0.5 s in our case).

Typically, EEG-based BCIs make binary decisions as they seek to
recognize two different mental states and reach accuracy levels that, in
general, are around 90%. ABI achieves error rates below 5% for three
mental tasks, while correct recognition is 70% (or higher). In the re-
maining cases (around 20%–25%), the classifier doesn’t respond, since
it considers the EEG samples as uncertain. The incorporation of rejec-
tion criteria to avoid making risky decisions is an important concern
in BCI. From a practical point of view, a low classification error is a
critical performance criterion for a BCI; otherwise users can become
frustrated and stop utilizing the interface. The system of Roberts and
Penny [6] applies Bayesian techniques for rejection purposes.

The classification rates of our system, together with the number of
recognizable tasks (3) and the 0.5-s response times, yields a theoretical
maximum transmission rate of approximately 2.0 b/s for our system.
However, as will be discussed in the following, this bit rate was rarely
achieved in practice for long periods.

The use of statistical rejection criteria also helps to deal with an im-
portant aspect of a BCI, namely “idle” states where the user is not in-
volved in any particular mental task. In an asynchronous protocol, idle
states appear during the operation of a brain-actuated device, while the
subject does not want the BCI to carry out any action. Although the
neural classifier is not explicitly trained to recognize those idle states,
the BCI can process them adequately by giving no response.
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II. EXPERIMENTAL PROTOCOL

After a short evaluation, every user selects the three mental tasks that
he/she finds easier out of the following choices: “relax;” imagination
of “left” and “right” hand (or arm) movements; “cube rotation;” “sub-
traction;” or “word association.” More specifically, the tasks consist
of getting relaxed, imagining repetitive self-paced movements of the
limb, visualizing a spinning cube, performing successive elementary
subtractions by a fixed number (e.g.,64� 3 = 61, 61� 3 = 58, etc.),
and concatenating related words. “Relax” is done with eyes closed; the
other tasks are performed with eyes open.1

In a given training session, a subject participates in several consec-
utive training trials (normally four), each lasting approximately 5 min,
and separated by breaks of 5–10 min. The subject is seated and per-
forms the selected task during 10–15 s. Then, one of two protocols
is followed. In one, the subject voluntarily chooses when to stop per-
forming the first task and decides the next to be undertaken. In this case,
the subject verbally informs the operator which task he/she is ready to
perform next so that data can be labeled for the training and testing of
the neural classifiers. In the other protocol, the operator indicates the
next mental task randomly. (The latter option is the acquisition protocol
we are following now.) With either protocol, the nature of the acquisi-
tion is such that there is a time-shift between the moment the subject
actually starts performing a task and the moment the operator intro-
duces the label for the subsequent period. Thus, the acquired EEG data
is not time-locked to any kind of event in accordance with the principle
of asynchronous BCI. While operating a brain-actuated application, the
subject does essentially the same as during the training trial, the only
difference being that now he/she switches to the next mental task as
soon as the desired action has been carried out.

During the training trials, users receive feedback through three but-
tons on the computer screen, each of a different color and associated
to one of the mental tasks to be recognized. A button lights up when
an arriving EEG sample is classified as belonging to the corresponding
mental task.

EEG potentials are recorded at the eight standard fronto-centro-pari-
etal locations:F3, F4, C3, Cz, C4, P3, Pz, andP4. The sampling
rate is 128 Hz. The raw EEG potentials are first transformed by means
of a surface Laplacian (SL) computed globally by means of a spherical
spline of order 2 [12], [13].2 Mouriñoet al.[15] compare different ways
to compute the SL with a few electrodes. We then use the Welch peri-
odogram algorithm to estimate the power spectrum of each SL-trans-
formed channel over the last second. We average three 0.5-s segments
with 50% overlap, which gives a frequency resolution of 2 Hz. The
values in the frequency band 8–30 Hz are normalized according to the
total energy in that band. Thus, an EEG sample has 96 features (8 chan-
nels times 12 components each). The periodogram, and, hence, an EEG
sample, is computed every 62.5 ms (i.e., 16 times per second).

An important question in any BCI system is to rule out the possibility
that subjects may use electrooculogram (EOG) and electromyogram
(EMG) activity as the control signals. Most EOG activity occurs in the
delta frequency range (0–4 Hz) [16] (cited in [17]), and so EOG activity
should be nearly absent from the band 8–30 Hz we use for analysis. It
is still possible that EOG and facial EMG activity is present in this
band, but, if so, these artifacts should be more prominent in anterior
electrodes than in posterior ones. In fact, we have found that this is not

1Note that the recognition of the task “relax” isnotbased on the detection of
eye movements. Also, as shown in [1], the learned prototypes for this task are
not simply based on alpha activity (8–12 Hz) which should increase when the
eyes are closed.

2Normally, the SL is estimated with a high number of electrodes. However,
[14] has shown that, for the operation of a BCI, SL waveforms with either a low
or a high number of electrodes give statistically similar classification results.

the case for any of our subjects. In particular, we have calculated the
proportion of energy between the frontal and posterior locations

(F3 + F4)� (P3 + P4)

F3 + F4 + P3 + P4
:

This expression gives a real value between�1 (all the energy lies in
the posterior sites) and 1 (all the energy is located in the anterior elec-
trodes). This value is always negative (or close to zero) for all mental
tasks chosen by the subjects. For instance, in the case of one subject
who has extensively operated the virtual keyboard described in Sec-
tion III, the proportions are�0.63,�0.30, and�0.23 for the mental
tasks “relax,” “cube,” and “left,” respectively. In addition, if we apply
machine-learning techniques for the selection of those relevant features
that best differentiate the mental tasks, we find that the classifier per-
formance improves with only a small proportion of features, which are
not grouped in a cluster [8]. This suggests that subjects are not using
EMG activity, which is broadband. This supports the fact that only EEG
signals account for the control achieved.

III. EXPERIMENTAL RESULTS

ABI has a simple local neural classifier where every unit represents
a prototype of one of the mental tasks to be recognized [1]. This local
network performs better than more sophisticated approaches such as
support vector machines and temporal-processing neural networks
(TDNN and Elman-like) [18]. This performance is achieved by simply
averaging the outputs of the network for eight consecutive EEG
samples (and still yielding a global response every 0.5 s). Once
trained, the response of the network for the arriving EEG sample is
the task with the highest posterior probability, provided that it is above
a given probability confidence threshold (otherwise the response is
classified as “unknown”). The posterior probability distribution is
based on the Mahalanobis distance from the EEG sample to the
different prototypes.

Typically, subjects reach the aforementioned level of performance at
the end of a few days of moderate training (around 0.5 h daily). Some
subjects have achieved this level in a single day of intensive training.
One of the latter subjects is a physically impaired person suffering from
spinal muscular atrophy. In total, we have worked with around 15 dif-
ferent subjects in a variety of conditions.

We have developed several demonstrators that illustrate the wide
range of systems that can be linked to ABI. Thus, the brain interface can
be used to select letters from a virtual keyboard on a computer screen
and to write a message. Initially, the whole keyboard (26 English letters
plus the space to separate words, for a total of 27 symbols organized in
a matrix of three rows by nine columns) is divided in three blocks, each
associated to one of the mental tasks. The association between blocks
and mental tasks is indicated by the same colors as during the training
phase. Each block contains an equal number of symbols, namely nine
at this first level (three rows by three columns). Then, once the neural
classifier recognizes the block on which the subject is concentrating,
this block is split in three smaller blocks, each having three symbols
this time (one row). As one of these second-level blocks is selected
(the neural classifier recognizes the corresponding mental task), it is
again split in three parts. At this third and final level, each block con-
tains one single symbol. Finally, to select the desired symbol, the user
concentrates in its associated mental task as indicated by the color of
the symbol. This symbol goes to the message and the whole process
starts over again. Thus, the process of writing a single letter requires
three decision steps.

The actual selection of a block incorporates some additional relia-
bility measures (in addition to the statistical rejection criteria). In par-
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ticular, a part of the keyboard is selected only when the corresponding
mental task is recognized three times in a row. Also, in the case of an
eventual wrong selection, the user can undo it by concentrating imme-
diately on one of the mental tasks of his/her choice. Thus, the system
waits a short time after every selection (3.5 s) before going down to
next level. The mental task used to undo selection is that for which the
user exhibits the best performance. For our trained subjects, it takes
22.0 s on average to select a letter. This time includes recovering from
eventual errors [3]. Thus, the actual bit rate in this particular implemen-
tation is about 0.22 b/s, far less than the maximum theoretical bit rate
of 2.0 b/s. This discrepancy is due to the additional reliability measures
we have incorporated to increase the likelihood of correct functioning.
In preliminary work where those reliability measures were relaxed (re-
quiring that two consecutive responses were the same and eliminating
the waiting period, but adding an additional symbol for undoing the last
selection), one subject could write letters at an average speed of 7.0 s.
This translates to a bit rate of 0.69 b/s.

ABI also makes possible the continuous control of a mobile robot
(emulating a motorized wheelchair) generating nontrivial trajectories
among different rooms in a house-like environment. The key idea here
is that the user’s mental states are associated with high-level commands
(e.g., “turn right at the next occasion”) and that the robot executes these
commands autonomously using the readings of its on-board sensors.
Another critical feature is that a subject can issue high-level commands
at any moment. This is possible because the operation of the BCI is
asynchronous and, unlike synchronous approaches, does not require
waiting for external cues. The robot relies on a behavior-based con-
troller to implement the high-level commands to guarantees obstacle
avoidance and smooth turns. In this kind of controller, on-board sen-
sors are read constantly and determine the next action to take.

The mapping from the user’s mental states is not the only input to
determine the robot’s behavior. In order to achieve more flexible con-
trol of the robot, the mental states are just one of the inputs for a fi-
nite state automaton with 6 states (or behaviors). The transitions be-
tween behaviors are determined by the three mental states (#1, #2, #3)
of the user, supplemented by six perceptual states of the environment
determined from the robot’s sensory readings (left wall, right wall, wall
or obstacle in front, left obstacle, right obstacle, and free space.) The
robot’s interpretation of a particular mental state depends on the per-
ceptual state of the robot. Thus, in an open space, mental state #2 means
“left turn;” on the other hand, if a wall is detected on the left-hand side,
mental state #2 is interpreted as “follow left wall.” Similarly, depending
on the perceptual state of the robot, mental state #3 can mean “right
turn” or “follow right wall.” However, mental state #1 always means
“move forward.” The robot continues executing a particular behavior
until the next mental state is received. Using this system, two subjects
have succeeded in mentally driving the robot along nontrivial trajecto-
ries in an office environment visiting three or four rooms in the desired
order. Furthermore, experimental results [4] show that mental control
of the robot is only marginally worse than manual control for the same
trajectories.

IV. DISCUSSION ANDCONCLUSION

A key concern for BCI technology to move beyond demonstrations
is to keep the brain interface constantly tuned to its owner. This re-
quirement arises because, as subjects gain experience, they develop
new capabilities and change their EEG patterns. In addition, brain ac-
tivity changes naturally over time. In particular, this is the case from
one session (with which data the classifier is trained) to the next (where
the classifier is applied). The challenge is to adapt online the classi-

fier while the subject operates a brain-actuated device. In this respect,
local neural classifiers are better suited for online learning than other
methods due to their robustness against catastrophic interference and
their simple learning rules. Furthermore, online adaptation should be
ongoing even when the subject’s intention is not known instant by in-
stant. To address this issue, we could resort to reinforcement learning
techniques [19], especially if the subject is controlling robotic devices,
a task in which these machine-learning techniques have been demon-
strated to be particularly effective [20].
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