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an asynchronous brain—computer interface (where the subject makes self- voluntary, self-paced decisions on when to stop performing a mental
paced decisions on when to switch from one mental task to the next) that {55k and when to start the next one [1], [11]. This makes the system

responds every 0.5 s. A local neural classifier tries to recognize three dif- verv flexible and natural to operate and vields rapid response times
ferent mental tasks; it may also respond “unknown” for uncertain samples ry p Yy p p

as the classifier has incorporated statistical rejection criteria. We report (€.9., 0.5 s in our case).
our experience with 15 subjects. We also briefly describe two brain-actu-  Typjcally, EEG-based BCls make binary decisions as they seek to
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Il. EXPERIMENTAL PROTOCOL the case for any of our subjects. In particular, we have calculated the

After a short evaluation, every user selects the three mental tasks P ortion of energy between the frontal and posterior locations

he/she finds easier out of the following choices: “relax;” imagination (F3 4 F4) — (P3+ P4)
of “left” and “right” hand (or arm) movements; “cube rotation;” “sub- F3+ F4+ P3+ P4

traction;” or “word association.” More specifically, the tasks consist

of getting relaxed, imagining repetitive self-paced movements of tH—@is exprgssiqn gives a real value betwgeh (all the_ energy Iie_s in
limb, visualizing a spinning cube, performing successive elementéRF posterior sites) and 1 (all the energy is located in the anterior elec-
subtractions by a fixed number (.64 — 3 = 61,61 — 3 = 58, etc.) trodes). This value is always negative (or close to zero) for all mental

and concatenating related words. “Relax” is done with eyes closed: figks chosen by the subjects. For instance, in the case of one subject
other tasks are performed with eyes open. who has extenswe_ly operated the virtual keyboard described in Sec-
In a given training session, a subject participates in several consh2? I”J the proportions ar“eo.(fs, —0.30, and-0.23 for the mental
utive training trials (normally four), each lasting approximately 5 mifaSks ‘rélax,” “cube,” and “left,” respectively. In addition, if we apply
and separated by breaks of 5-10 min. The subject is seated and Egghlne-lgarnlng_technlques for the selectloh of those relevan_t features
forms the selected task during 10-15 s. Then, one of two protocdi t best Qn‘ferentlate'the mental tasks, we f_lnd that the cIaSS|f_|er per-
is followed. In one, the subject voluntarily chooses when to stop pdf'Mance improves with only a small proportion of features, which are
forming the first task and decides the next to be undertaken. In this cdy grOUP‘?d ina cIu_ster (8]. This 5“9995t5 that subjects are not using
the subject verbally informs the operator which task he/she is read))‘:t,MG activity, which is broadband. This supports the fact that only EEG
perform next so that data can be labeled for the training and testingslﬁn""IS account for the control achieved.
the neural classifiers. In the other protocol, the operator indicates the
next mental task randomly. (The latter option is the acquisition protocol lll. EXPERIMENTAL RESULTS

we are following now.) With either protocol, the nature of the acquisi- | has a simple local neural classifier where every unit represents
tion is such that there is a time-shift between the moment the subjgciqtotype of one of the mental tasks to be recognized [1]. This local
actually starts performing a task and the moment the operator intfs,ori performs better than more sophisticated approaches such as
duces the label for the subsequent period. Thus, the acquired EEG%\? ort vector machines and temporal-processing neural networks

Is not time-locked to any k_md of eve_nt n acc_ordance with th? PrINCIPEDNN and Elman-like) [18]. This performance is achieved by simply
of asynchronous BCI. While operating a brain-actuated application, the . . .

; . . - . averaging the outputs of the network for eight consecutive EEG
subject does essentially the same as during the training trial, the OQ fples (and still yielding a global response every 0.5 s). Once
difference being that now he/she switches to the next mental tasktras P y 9adg P y U ’

soon as the desired action has been carried out. ained, th.e respo_nse of the n_etwork for.t_he arriv_ing EEG.s.ampIe is

During the training trials, users receive feedback through three bH?? .task with thg hlghest_posterlor probability, prov_lded thatitis abovg
tons on the computer screen, each of a different color and associdtedVen Probability confidence threshold (otherwise the response is
to one of the mental tasks to be recognized. A button lights up whelgssified as “unknown”). The posterior probability distribution is
an arriving EEG sample i classified as belonging to the correspondfgped on the Mahalanobis distance from the EEG sample to the
mental task. different prototypes.

EEG potentials are recorded at the eight standard fronto-centro-pariTypically, subjects reach the aforementioned level of performance at
etal locationsF'3, F'4, C'3, Cz, C4, P3, Pz, andP4. The sampling the end of a few days of moderate training (around 0.5 h daily). Some
rate is 128 Hz. The raw EEG potentials are first transformed by mea##hjects have achieved this level in a single day of intensive training.
of a surface Laplacian (SL) computed globally by means of a spheri€aihe of the latter subjects is a physically impaired person suffering from
spline of order 2[12], [13}.Mourifioet al.[15] compare differentways spinal muscular atrophy. In total, we have worked with around 15 dif-
to compute the SL with a few electrodes. We then use the Welch pdgrent subjects in a variety of conditions.
odogram algorithm to estimate the power spectrum of each SL-transWe have developed several demonstrators that illustrate the wide
formed channel over the last second. We average three 0.5-s segmeinige of systems that can be linked to ABI. Thus, the brain interface can
with 50% overlap, which gives a frequency resolution of 2 Hz. Thge used to select letters from a virtual keyboard on a computer screen
values in the frequency band 8-30 Hz are normalized according to #1® to write a message. Initially, the whole keyboard (26 English letters
total energy in that band. Thus, an EEG sample has 96 features (8 chafis the space to separate words, for a total of 27 symbols organized in
nels times 12 components each). The periodogram, and, hence, an BEfatrix of three rows by nine columns) is divided in three blocks, each
sample, is computed every 62.5 ms (i.e., 16 times per second).  ag50ciated to one of the mental tasks. The association between blocks

Animportant question in any BCI system is to rule out the possibility, y menta] tasks is indicated by the same colors as during the training
that subjects may use electrooculogram (EOG) and electromyograﬂldse_ Each block contains an equal number of symbols, namely nine

(EMG) aciivity as the control signals. Most EOG activity occurs in thgt this first level (three rows by three columns). Then, once the neural

delta frequency range (04 Hz) [16] (cited in [17]), and s0 EOG aCt'\”téllﬁssifier recognizes the block on which the subject is concentrating,

should be nearly absent from the band 8-30 Hz we use for analysmthls block is split in three smaller blocks, each having three symbols

is still ible that E nd facial EM ivity is present in thig .~ .
S st poss ble that OG_a d facia G activity is P ese_t ¢ aus time (one row). As one of these second-level blocks is selected
band, but, if so, these artifacts should be more prominent in anter|

ror . . : L
electrodes than in posterior ones. In fact, we have found that this is 1(1%'['3_ neurgl_ classifier recognlzgs the correspondlng mental task), it is
again split in three parts. At this third and final level, each block con-

tains one single symbol. Finally, to select the desired symbol, the user

INote that the recognition of the task “relax"ristbased on the detection of concentrates in its associated mental task as indicated by the color of
eye movements. Also, as shown in [1], the learned prototypes for this task #ie symbol. This symbol goes to the message and the whole process
not simply based on alpha activity (8-12 Hz) which should increase when gy 15 over again. Thus, the process of writing a single letter requires

eyes are closed. .
2Normally, the SL is estimated with a high number of electrodes. Howevépree decision steps.

[14] has shown that, for the operation of a BCI, SL waveforms with either a low 1h€ actual selection of a block incorporates some additional relia-
or a high number of electrodes give statistically similar classification results.bility measures (in addition to the statistical rejection criteria). In par-
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ticular, a part of the keyboard is selected only when the correspondiigr while the subject operates a brain-actuated device. In this respect,
mental task is recognized three times in a row. Also, in the case of lacal neural classifiers are better suited for online learning than other
eventual wrong selection, the user can undo it by concentrating imnmeethods due to their robustness against catastrophic interference and
diately on one of the mental tasks of his/her choice. Thus, the systémsir simple learning rules. Furthermore, online adaptation should be
waits a short time after every selection (3.5 s) before going down édgoing even when the subject’s intention is not known instant by in-
next level. The mental task used to undo selection is that for which tient. To address this issue, we could resort to reinforcement learning
user exhibits the best performance. For our trained subjects, it takeshniques [19], especially if the subject is controlling robotic devices,
22.0 s on average to select a letter. This time includes recovering frantask in which these machine-learning techniques have been demon-

eventual errors [3]. Thus, the actual bit rate in this particular implemesgtrated to be particularly effective [20].

tation is about 0.22 b/s, far less than the maximum theoretical bit rate
of 2.0 b/s. This discrepancy is due to the additional reliability measures
we have incorporated to increase the likelihood of correct functioning.

In preliminary work where those reliability measures were relaxed (re-[1]
quiring that two consecutive responses were the same and eliminating
the waiting period, but adding an additional symbol for undoing the last
selection), one subject could write letters at an average speed of 7.0 $2]
This translates to a bit rate of 0.69 b/s.

ABI also makes possible the continuous control of a mobile robot
(emulating a motorized wheelchair) generating nontrivial trajectories [3]
among different rooms in a house-like environment. The key idea here
is that the user’s mental states are associated with high-level commano[s4]
(e.g., “turn right at the next occasion”) and that the robot executes these
commands autonomously using the readings of its on-board sensorgs]
Another critical feature is that a subject can issue high-level commands
at any moment. This is possible because the operation of the BCI is
asynchronous and, unlike synchronous approaches, does not require
waiting for external cues. The robot relies on a behavior-based con-
troller to implement the high-level commands to guarantees obstaclg7]
avoidance and smooth turns. In this kind of controller, on-board sen-
sors are read constantly and determine the next action to take.

The mapping from the user's mental states is not the only input to (8]
determine the robot’s behavior. In order to achieve more flexible con-
trol of the robot, the mental states are just one of the inputs for a fi- [9]
nite state automaton with 6 states (or behaviors). The transitions be-
tween behaviors are determined by the three mental states (#1, #2, #3
of the user, supplemented by six perceptual states of the environme
determined from the robot’s sensory readings (left wall, right wall, wall
or obstacle in front, left obstacle, right obstacle, and free space.) Thg]
robot’s interpretation of a particular mental state depends on the per-
ceptual state of the robot. Thus, in an open space, mental state #2 means
“left turn;” on the other hand, if a wall is detected on the left-hand side,[12
mental state #2 is interpreted as “follow left wall.” Similarly, depending
on the perceptual state of the robot, mental state #3 can mean “rights)
turn” or “follow right wall.” However, mental state #1 always means
“move forward.” The robot continues executing a particular behaviof14]
until the next mental state is received. Using this system, two subjects
have succeeded in mentally driving the robot along nontrivial trajecto-
ries in an office environment visiting three or four rooms in the desired15
order. Furthermore, experimental results [4] show that mental control
of the robot is only marginally worse than manual control for the same
trajectories.

[16]

IV. DISCUSSION ANDCONCLUSION [17]

A key concern for BCI technology to move beyond demonstrationg; g
is to keep the brain interface constantly tuned to its owner. This re-
quirement arises because, as subjects gain experience, they develop
new capabilities and change their EEG patterns. In addition, brain actdl
tivity changes naturally over time. In particular, this is the case from, 20
one session (with which data the classifier is trained) to the next (where
the classifier is applied). The challenge is to adapt online the classi-
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