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Large graphs arise in a number of contexts and understanding their structure and extracting information from

them is an important research area. Early algorithms for mining communities have focused on global graph

structure, and often run in time proportional to the size of the entire graph. As we explore networks with

millions of vertices and find communities of size in the hundreds, it becomes important to shift our attention

from macroscopic structure to microscopic structure in large networks. A growing body of work has been

adopting local expansion methods in order to identify communities from a few exemplary seed members.

In this article, we propose a novel approach for finding overlapping communities called Lemon (Local

Expansion via Minimum One Norm). Provided with a few known seeds, the algorithm finds the community

by performing a local spectral diffusion. The core idea of Lemon is to use short random walks to approximate

an invariant subspace near a seed set, which we refer to as local spectra. Local spectra can be viewed as the

low-dimensional embedding that captures the nodes’ closeness in the local network structure. We show that

Lemon’s performance in detecting communities is competitive with state-of-the-art methods. Moreover, the

running time scales with the size of the community rather than that of the entire graph. The algorithm is easy

to implement and is highly parallelizable. We further provide theoretical analysis of the local spectral prop-

erties, bounding the measure of tightness of extracted community using the eigenvalues of graph Laplacian.

We thoroughly evaluate our approach using both synthetic and real-world datasets across different do-

mains, and analyze the empirical variations when applying our method to inherently different networks in

practice. In addition, the heuristics on how the seed set quality and quantity would affect the performance

are provided.
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1 INTRODUCTION

Analyzing complex networks to uncover structure and extract information is an important re-
search area. In particular, a significant corpus of literature has studied the tasks of finding structure
in networks and identifying communities [9].

In early work, researchers assumed that communities were disjoint and had more internal con-
nections than external connections. Both assumptions have been discarded since in most real-
world networks a vertex belongs to more than one community. For instance, in social networks,
one might belong to a work community, a community of friends, and a community of individuals
that share the same hobby such as golf; in co-purchased networks, one item might belong to mul-
tiple categories. Also, since we are dealing with networks with hundreds of millions of vertices, an
individual in a community of size 1001 will certainly have more links outside the community than
inside. These key insights have motivated us to identify communities from a new perspective.

A large portion of the community detection literature has focused on the global structure of
networks. These globally based detection algorithms usually run in time proportional to the size
of the entire graph, which is a major drawback in computational cost. Nowadays, we explore
networks with millions of vertices or more to find communities of size one hundred or less. Thus,
algorithms whose runtime depends on the size of the entire graph might no longer serve as an ideal
solution. It is therefore important to rethink the problem from the perspective of local structure,
and develop new approaches that enable finding communities in time proportional to the size of
the community.

Quite recently, there has been a growing interest in finding communities by locally expanding
a small seed set [4, 14, 29, 31]. This type of algorithm usually starts with a few members that are
already known to be in the target community, and the goal is to uncover the remaining members
in the community as the exemplary members. These known members are usually referred to as
seeds in the literature, and the process of growing the seed set gradually into a larger set until the
target community is revealed is called seed set expansion (SSE). The setting of SSE can be widely
applied to real-world applications. For example, in web search, with a few known pages that share
similar information, we could generate a larger group of web pages that contains the relevant
contents with respect to a certain search query; in product networks, SSE enables the automatic
categorizing of products that are discovered to be in the same community as the labeled items.

The random walk technique has been extensively adopted as a subroutine for locally growing
the seed set in the literature [4, 11, 14, 24, 26, 29, 31]. The dynamics of random walks are effective in
finding a local community since they make non-uniform expansion decisions based on the struc-
ture revealed during the exploration of the neighborhood surrounding the seeds [4]. This implies
that random walk-based local expansion is able to trace the community members in a way that
resembles the natural process for forming the local community structure. Recently, through com-
paring various community detection algorithms, Abrahao et al. found that random walks produce
communities that are most structurally similar to real-world communities [1].

In this article, we propose a novel approach, Lemon (Local Expansion via Minimum One
Norm), for finding overlapping communities in large networks. We systematically demonstrate

1A statistical study on social networks done by Leskovec et al. [18] has shown that real-world communities with high

quality are quite small and usually consist of no more than 100 vertices.
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Table 1. Statistics for the Real Networks

Average Maximum Community
Domain Dataset Vertices Links membership membership size mean
Product Amazon 334,863 925,872 0.11 49 39
Collaboration DBLP 317,080 1,049,866 0.22 11 251
Social YouTube 1,134,890 2,987,624 0.05 41 79
Social Orkut 3,072,441 117,185,083 9.56 504 83

that Lemon can achieve both high efficiency and effectiveness that outperforms state-of-the-art
proposals by a large margin.

Comparing to traditional spectral clustering methods, Lemon has two significant advantages.
First, our local spectral method does not require the burdensome computation of a large number
of singular vectors. Instead we use short random walks to approximate an invariant subspace near
a seed set, which we refer to as local spectra. Local spectra can be viewed as the low-dimensional
embedding space that captures the nodes’ closeness in the local network structure. Second, tra-
ditional spectral methods usually partition the vertices into disjoint communities, whereas our
method is able to detect overlapping communities.

We aim to develop a comprehensive understanding of the local spectral approach for identifying
a community from a small seed set. Following the central idea of our approach, we seek to solve
fundamentally important questions such as what defines “good” communities and when do they
emerge as we expand the seed set (Section 4.5)? How can we find a small community in time
proportional to the size of the community rather than that of the entire graph (Section 4.4)? What
defines “good” seeds and how many seeds could uniquely define a community (Section 5)? And
given that networks are not all similar in nature, how is the local expansion approach suited for
uncovering communities in different types of networks (Section 6.4)?

We thoroughly evaluate our approach using both synthetic and real-world datasets across differ-
ent domains, and analyze the empirical variations when applying our method to inherently differ-
ent networks in practice. We believe that the insights we gained from researching these problems
will provide valuable guidance for future investigations of this topic. Code for reproducing our
research is publicly available at https://github. com/yixuanli/lemon.

2 RELATED WORK

A considerable amount of literature has been published on finding communities in large social
and information networks. We highlight a few ideas that have recently emerged in the literature
to clarify how our method differs.

Globally based community finding algorithms. A variety of community detection algorithms have
been developed in the past decade, with most of the algorithms falling into the category of global
community detection. One category of global algorithms attempts to find communities by optimiz-
ing an objective function. For example, GCE [17] identifies maximal cliques as seed communities.
It expands these cliques by greedily optimizing a local fitness function. OSLOM [16] also attempts
to optimize a fitness function, which expresses the statistical significance of clusters with respect
to random fluctuations (i.e., the random graph generated by the configuration model [22] during
community expansion). However, the communities identified by mathematical construction may
structurally diverge from real communities as pointed out in [1]. Another main stream of research
adopts the label propagation approach [25], which defines rules that simulate the spread of labels
of vertices in the network. The DEMON algorithm [8], for example, democratically lets each ver-
tex vote for the communities it sees surrounding it in its limited view of the global system using a
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label propagation algorithm, and then merges the local communities into a global collection. Other
approaches such as Link Community (LC) [2] partitions the graph by first building a hierarchical
link dendrogram according to link similarity scores and then cutting the dendrogram at some
threshold to yield link communities.

Random walk based detection algorithms. As noted in the preceding section, among the diver-
gent approaches, random walks tend to reveal communities that bear the closest resemblance to
the ground truth communities in nature [1]. In the following, we briefly review some methods that
have adopted the random walk technique in finding communities. Speaking of methods that focus
on the global structure, Pons et al. [24] proposed a hierarchical agglomerative algorithm, Walk-

Trap, that quantified the similarity between vertices using random walks and then partitioned the
network into non-overlapping communities. Meilǎ et al. [21] presented a clustering approach by
viewing the pairwise similarities as edge flows in a random walk and studied the eigenvectors and
values of the resulting transition matrix. A later successful algorithm, Infomap, proposed by Ros-
vall and Bergstrom [26] enables uncovering hierarchical structures in networks by compressing a
description of a random walker as a proxy for real flow on networks. Variants of this technique
such as biased random walk [32] has also been employed in community finding. In [6], Bresson
et al. proposed a resampling-based spectral algorithm for multiway graph partitioning.

Local expansion based approaches. To interpret the problem of community detection from a local
perspective, our work shares the same spirit as the local expansion algorithms in [4, 12, 14, 29].
Specifically, Andersen and Lang [4] adapted the theoretical results from [28] to expand a set into
a community with locally minimal conductance based on lazy random walks. However, the lazy
random walk endured a much slower mixing speed and it usually took more than 50,000 steps
to converge to a local structure compared with several steps of rapid mixing in a regular random
walk. Featuring on the seeding strategies, Whang et al. [29] established several sophisticated meth-
ods for choosing the seed set, and then used similar PageRank scheme as that in [3] to expand the
seeds until a community with optimal conductance is found. Nonetheless, the performance gained
by adopting these intricate seeding methods was not significantly better than that by using ran-
dom seeds. This implies that a better scheme of expanding the seeds is also needed aside from a
good seeding strategy. A recent work by Kloumann and Kleinberg [14] provided a systematic un-
derstanding of variants of PageRank-based SSE. They showed many insightful findings regarding
the heuristics on seed set. However, the drawback of lacking a proper stop criterion has limited
its functionality in practice. The heat kernel algorithm [12] advances PageRank by introducing a
different diffusion method.

Local spectra vs. global spectra. Spectral methods is one of the most widely used techniques
for exploratory data analysis, with applications including data clustering, image segmentation [5],
and community detection, and so on. Spectral clustering makes use of the first few singular vectors
of the Laplacian matrix associated with a graph, which are inherently global quantities and may
not be sensitive to very local information. For example, in the case when provided with domain
knowledge about a target region in the graph, one might be interested in finding clusters only

near the specified local region in a semi-supervised manner, which might not be otherwise well
captured by a method using global eigenvectors. Therefore, in the semi-supervised setting, our
pioneer work on local spectral clustering [10, 19]2 have substantial advantage over traditional
spectral techniques, with the capability of prioritizing and learning more about a local region
of the graph surrounding the seeds. Although the local spectral proposal in [20] incorporates the
local information as an additional constraint based on the global spectral methods, the optimization

2This manuscript is an extended version of a previous conference publication [19].
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Table 2. Symbols and Definitions

Symbol Definition and description
S Seed set
C Detected community
C∗ Ground truth community
GS Subgraph extracted from the neighborhood surrounding the

seed set S
N Size of the subgraph GS
AS Adjacency matrix of subgraph GS
ĀS Normalized adjacency matrix of subgraph GS
DS Diagonal degree matrix of subgraph GS
LS Laplacian matrix of subgraph GS
L̄S Normalized Laplacian matrix of subgraph GS
Vk,l l-dimensional local spectral subspace with k-step random walks.
Φ(V ) Conductance of the node setV
λ(H)

i The ith smallest eigenvalues of matrix H

y Probability indicator vector, where larger value indicates a
higher
probability being in the same community as the seeds

program involves the entire eigenspace, which is less advantageous than using the partial invariant
subspace constructed by the Krylov subspace in our approach.

3 PRELIMINARIES

3.1 Problem Statement

Given an unweighted graphG = (V,E) and a set of membersS in the target community C, where
|C| � |V | and |S| � |C|, we are interested in finding the remaining members in C. Generally
speaking, we focus on answering how to accurately find a small community from a seed set in time

functional to the size of the community?

3.2 Symbols and Definitions

Table 2 summarizes a list of the different symbols we will use throughout the article. In general, we
use italic letters, e.g., n, to denote scalars; lower boldface characters, e.g., y, to denote vectors; up-
percase boldface characters, e.g., A, to denote matrices; and script characters, e.g., C, to denote sets.

3.3 Datasets

3.3.1 Synthetic Datasets. The LFR benchmark graphs [15] have been widely adopted for the
purpose of evaluating the performance of community detection algorithms. LFR datasets are gen-
erated with built-in community structure that resembles the features found in most real-world
networks with power-law degree distribution. It provides researchers with rich flexibility to con-
trol the network topology by tuning different parameters, including the graph size n, the average
degree k̄ , the maximum degree kmax , the minimum and maximum community size |C|min and
|C|max , the mixing parameter mu, the overlapping membership om, and the number of vertices
with overlapping membership on. Among these parameters, the mixing parameter mu has the
most significant impact on the network topology, which controls the fraction of links for each ver-
tex that cross to a community with which the vertex is not associated. Usually, larger mu would
result in lower detection accuracy.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 2, Article 17. Publication date: January 2018.
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Table 3. Parameters for Generating the LFR Synthetic Datasets

Parameter Description Value
n Graph size 5,000
mu Mixing parameter {0.1, 0.3}
k̄ Average degree 10
kmax Maximum degree 50
|C|min Minimum community size 20
|C|max Maximum community size 100
τ1 Node degree distribution exp. 2
τ2 Community size distribution exp. 1
om Maximum number of communities that a node belongs to {2, 3, . . . , 8}
on Number of nodes belonging to multiple communities 2,500

Xie et al. [30] have thoroughly compared the performance of different state-of-the-art over-
lapping community detection algorithms on LFR benchmark datasets. To make the performance
evaluation of our algorithm consistent with that in [30], we adopt the same parameters in our
article. In total, we generate two sets of networks with mixing parametermu = 0.1 andmu = 0.3,
respectively. We vary the parameter om from 2 to 8 for eachmu and obtain a total of 14 networks.
Table 3 lists the value of the parameters we have used for generating the LFR datasets.

3.3.2 Real Datasets. For the purpose of testing on real networks, we include four datasets with
ground truth community membership from Stanford Network Analysis Project.3 These datasets
span various domains of network applications, including product networks (Amazon), collabora-
tion networks (DBLP), and online social networks (YouTube and Orkut).4 Each of the networks
can be viewed as an undirected, unweighted, connected graph. The statistical information of the
datasets is summarized in Table 1.

3.4 Evaluation Metric

For evaluation, we adopt F1 score to quantify the similarity between the algorithmic community
C∗ and the ground truth community C. The F1 score for each pair of (C,C∗) is defined by

F1 (C,C∗) = 2 · Precision(C,C∗) · Recall (C,C∗)
Precision(C,C∗) + Recall (C,C∗) , (1)

where the precision and recall are defined by

Precision(C,C∗) = |C ∩ C
∗|

|C∗ | , (2)

Recall (C,C∗) = |C ∩ C
∗|

|C| . (3)

Throughout the article, unless otherwise pointed out, the experimental results on synthetic data
for each instance are given by the statistical mean and standard deviation based on 24 test cases5,
and the experimental results on real datasets for each instance are based on 120 test cases. All the
ground truth communities for testing are chosen randomly.

3http://snap.stanford.edu.
4For all the four real datasets, we adopt the top 5,000 communities that possess the highest quality according to [31].
5Each local expansion process from a seed set can be viewed as a test case.
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4 LOCAL EXPANSION VIA MINIMIZING ONE NORM

4.1 Background

Spectral clustering makes use of a small number of singular vectors proportional to the num-
ber of communities in the network. If a graph has thousands of small communities, it is im-
practical to calculate a number of singular vectors greater than the number of communities.
We are experimenting with a fundamentally new technique, which does not require the burden-
some computation of a large number of singular vectors. Before explaining our local spectral ap-
proach for finding overlapping communities, it is necessary to make clear what we mean by local

spectra.
In traditional spectral clustering methods, one finds the first few singular vectors of the Lapla-

cian matrix6 of a graph G with n vertices. Suppose the first d singular vectors are obtained, one
can form an n × d matrix V as a low-dimensional embedding space that captures nodes’ closeness.
Then one associates with each vertex a point in this embedding space whose coordinates are given
by the entries of the corresponding row in the matrix. Vertices are clustered using some method
such as k-means clustering algorithm. This method is not likely to work well if the communities
are small and heavily overlapping with each other.

We make two fundamental changes to this method. The first modification is to overcome the
drawback of computing the singular vectors. Intuitively, the vertices around the seed members
are more likely to be in the target community; thus, a random walk serves as a natural subroutine
to reveal these potential members. We start a random walk from several known members in the
target community and run for a few steps. The number of random walk steps should be long
enough to reach out to the vertices in the target community, but not long enough to spread out
to the entire graph. Instead of considering a single probability vector, we consider the span of a
few dimensions of vectors after the short random walks and use it as the approximate invariant
subspace (local spectra), denoted by V. The second is to enable detecting overlapping communities.
Now, suppose we wanted to find all the nodes in the same community as node i , it is equivalent
to find rows in V that are nearly identical to that correspond to node i . In other words, we want to
find rows in the invariant subspace that point in nearly the same direction as the seed node i . To
do so, we look for a sparse vector in the span of V such that i is in the support. This is equivalent
to solve the minimum 0-norm problem

min | |y| |0
s.t. y = Vx,

y ≥ 0,

yi ≥ 1,

where y can be viewed as the linear combination of basis vectors in V, weighted by the element in
an unknown vector x. To put another way, the first constraint means that there is an x such that
y = Vx. Furthermore, each element in y should be non-negative.

In general seeking sparse vectors in a given subspace is a hard problem. We will use 1-norm
vector | |y1 | | as a proxy for the minimum 0-norm vector, and solve the linear programming problem
instead

6In the literature, several different definitions of graph Laplacian exist. Readers can refer to [23] for more details, which

serves as a good introductory paper on spectral clustering.
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min | |y| |1
s.t. y = Vx,

y ≥ 0,

yi ≥ 1.

4.2 Algorithm Overview

In the following, we give a formal description of our local spectral approach Lemon for detecting
target communities from a small seed set. Given the input of a set of few vertices S that are
already known to be in the target ground truth community C, the goal of our algorithm is to find
community C∗ such that the F1 measure for scoring the similarity between C and C∗ is maximized.

Step 0. Subgraph sampling: In practice, the unknown members in the target community are more
likely to be around the seed members, and are usually a few steps away from the seeds. This
observation motivates us to reduce the complexity by taking only a portion of the graph into
consideration. Ideally, this partial graph should contain as many vertices in the target community
as possible, and maintains a small size of the same scale as that of the target community.7

To sample the graph, we expand the seed set using random walk. After a few steps of the random
walk, vertices with large probability are more likely to be in the target community while vertices
with small probability being reached would be treated as redundant ones. If the target community
exists for the seed set, then according to [4], this target community would serve as a bottleneck
for the probability to be spread out. It is worthwhile noting that other expansion methods such
as breadth-first-search (BFS) would entirely ignore the bottleneck defining the community and
rapidly mix with the entire graph before a significant fraction of vertices in the community have
been reached. In the following, we use GS = (VS,ES ) denote the subgraph extracted from the
neighborhood surrounding the seed set S.

Step 1. Generate the local spectra: Consider the subgraph graphGS extracted from the neighbor-
hood surrounding the seed set S. We define the normalized adjacency matrix ĀS of the graphGS
as

ĀS
def
= DS

−1/2 (AS + I)DS
−1/2, (4)

where AS and DS denote the adjacency matrix and the diagonal degree matrix ofGS , respectively.
Consider a random walk starting from exemplary vertices inS. Let p0 denote the initial probability
vector where the total probability is evenly distributed among the seed members. We describe how
to efficiently construct the local spectra by iteratively transforming the orthonormal basis starting
with a Krylov subspace defined below.

Definition 1. The order-l + 1 Krylov matrix generated by the matrix A ∈ Rn×n and vector p0 is
defined by the probability vectors in l successive random walks

Kl+1 (A, p0) =
[
p0,Ap0, . . . ,A

lp0

]
. (5)

The column vectors of the Krylov matrix can be orthogonalized, and form the basis vectors of the
Krylov subspace Kl+1. In other words, the Krylov subspace is defined by

Kl+1 (A, p0) = span
(
p0,Ap0, . . . ,A

lp0

)
. (6)

The main idea of Krylov subspace is to approximate the original eigenvector problem of size n
by one of dimension l + 1, typically much smaller than n. Krylov method finds the largest a few

7Assume the scale of the target community is known.
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Fig. 1. An example of local spectral subspace V3,3. The synthetic subgraphGs is generated with Erdős–Rényi

G (n,p) model with background noise p = 0.05. The clusters A and B (denoted by blue and pink, respectively)

are of size 100 with edge probability p = 0.9, with partially overlapped 20 nodes. The cluster C (denoted by

green) has size 320 with p = 0.2. The subspace is generated by Algorithm 1 starting from the seed with index

10 in group A.

eigenvectors of a large matrix in an iterative way [27], which avoids expensive matrix–matrix
operations. We may expect the basis vectors of Kl+1 (A, p0) to give good approximations of the
eigenvectors corresponding to the l + 1 largest eigenvalues of A, especially when the dominant
eigenvalues decay fast enough.

In Algorithm 1, we briefly summarize the procedure of calculating the local spectral subspace8

from a specified seed set S. We start by calculating the initial invariant subspace V0,l , which is
the orthonormal basis of Kl+1 (AS, p0). And the local spectral subspace can be then obtained by
iterating the process specified in Line 4–6 of Algorithm 1. Figure 1 shows an example local spectral
subspace V3,3, generated from a synthetic graph with Erdős–Rényi G (n,p) model. In the G (n,p)
model, a graph is constructed by connecting n nodes randomly. Each edge is included in the graph
with probability p independent from every other edge.

Step 2. Seek for a sparse vector: With the local spectra Vk,l , we solve the following linear pro-
gramming problem,

min | |y| |1
s.t. y = Vk,l x,

y ≥ 0,

y(S) ≥ 1,

where the first constraint indicates that y ∈ Rn is in the span of Vk,l . Each element in y indicates
the probability for the corresponding vertex to be in the target community, which is non-negative.
In other words, the second constraint should be interpreted as element-wise non-negative. The
third constraint enforces that seeds are in the support of sparse vector y, where S is the set of

8In the experiments on real datasets, we fix the walk step k and dimension l to be 3 and 3, respectively. For LFR benchmark

datasets, we adopt all together six combinations for the (step, dimension) tuple: (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5) and

the highest F1 score among these combinations will be returned.
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Fig. 2. The average F1 score with varying dimensions l on Amazon dataset (left) and LFR graph (right),

respectively. The plots depict the statistical regression line with a 95% confidence interval.

ALGORITHM 1: LocalSpectral(GS,S)

Input: subgraph GS , subspace dimension l , and random walk step k
Output: local spectra Vk,l

1: Compute normalized adjacency matrix ĀS using (4)
2: Initialize p0

3: V0,l = orth(K l+1 (ĀS, p0))
4: for i = 1, . . . ,k do

5: Vi,l = orth(ĀSVi−1, l)
6: end for

7: Return local spectra Vk,l

indices for the seed nodes that we require to be in the community. The entries in the sparse vector
y corresponding to the seeds should be no less than 1.

After sorting the elements in y in non-ascending order and getting a vector ŷ, the vertices
corresponding to the top |C| elements in ŷ are returned as the detected community with respect
to the seed set S.

Step 3. Reseeding: Augment the initial seed set by merging vertices corresponding to the top
t ≤ |C| elements of ŷ. Denote the augmented seed set asS′. Then repeat step 1 and step 2 using the
augmented seed set S′. The detection accuracy can be improved through iterations via increasing
t by a constant number s each time. We define s to be the seed expansion step, which is used as
a tunable parameter for adjusting the convergence rate. Usually, the larger expansion step would
result in lower performance but a faster running speed with less iterations. In the experiments, we
fix the seed expansion step to be 6 for both synthetic and real datasets. The number of iterations
for the seed expansion is determined by the stop criteria (Section 4.5).

4.3 Parameter Sensitivity

The random walk step k , subspace dimension l , and seed expansion step s are the key parameters
in the local spectral clustering algorithm. We conduct parameter sensitivity study for these three
parameter on the four real datasets.

4.3.1 Subspace Dimension. To study the effect of subspace dimensionality l , we fix the ran-
dom walk step to be 3, and vary the number of dimension l from 1 to 15. Figure 2 (left panel)
shows that changing the dimension l does not cause significant fluctuation of the performance on
Amazon dataset. Choosing a large dimension l is undesirable because it would not only increase

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 2, Article 17. Publication date: January 2018.
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Fig. 3. The average F1 score with varying dimensionality l on Amazon dataset (left) and LFR graph (right),

respectively. The plots depict the statistical regression line with a 95% confidence interval.

Fig. 4. The average F1 score with varying seed expansion step s . The plots depict the statistical regression

line with a 95% confidence interval.

the computation cost in the step of generating local spectra, but also lead to performance drop as
indicated in Figure 2 (right panel). Therefore, choosing a small value is more desirable considering
both the computation cost and performance. Throughout the remaining article, we fix l = 3 for
the real datasets because the experiment suggests that setting l = 3 can statistically achieve both
high and stable performance.

4.3.2 Random Walk Step. To investigate how the step of random walk affects the algorithm
performance, we fix the dimension l to be 3, and vary the random walk step k from 1 to 15. Figure 3
(left panel) shows that the average F1 score plateaus as k increases, and the standard deviation
significantly increases when k exceeds 10. This suggests that longer random walk is undesirable
for stably uncovering the local community structure. Throughout the remaining article, we fix the
random walk step k = 3 for the real datasets. For LFR benchmark graphs, we adopt all together
six configurations for the (k , l ) tuple: (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5) and return the highest
F1 score among these configurations.

4.3.3 Seed Expansion Step. To study the effect of seed expansion step size s , we fix both the
dimension l and random walk step k to be 3, and vary the expansion step s from 2 to 16. Figure 4
shows the results on Amazon (left panel) and LFR (right panel) datasets, respectively. In general,
we find our approach is robust to the parameter s when s is kept to a small enough range (e.g.,
s ≤ 10). A large incremental step when reseeding is less desirable for stably uncovering the local
community structure. Throughout the article, we fix the expansion step s = 6 for all experiments.
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Table 4. Statistics of the Mean Values for the Sampling

Method on Real Datasets

Coverage Sample Subgraph
Dataset ratio rate |C|avg size
Amazon 1.00 0.0087 39 2,913
DBLP 0.98 0.0076 251 2,409
YouTube 0.66 0.0033 79 3,745
Orkut 0.64 0.0011 83 3,379

4.4 Complexity Reduction by Sampling Method

In this section, we introduce a sampling method that can effectively solve the memory consump-
tion issue dealing with large graphs.

In the experiments on real datasets, we conduct a random walk starting from the seed set until
the probability has been spread out to α · |C|avg vertices, where α is some constant and |C|avg

is the average community size in the graph.9 Note that the sample size α · |C|avg should be large
enough to cover as many vertices in the ground truth community as possible, but not too big which
otherwise would cover all the nodes in the graph. This newly obtained subgraph will be used as
GS for the remaining computation. The complexity of our algorithm now depends on the size of
the subgraph after sampling, which is O ( |C|avg

τ ) for some small constant τ .
Table 4 gives the statistics after applying sampling method to the real networks. For example,

in DBLP network, setting α to be around 10 would yield a subgraph containing on average 98%
vertices in the ground truth community. After sampling, we only need to deal with a subgraph of
size around 2, 400 instead of 317,080, bringing a significant reduction of both temporal and spatial
complexity.

4.5 Round Diffusion Vector via Sweeping Cut

If there are ground truth community sizes available, the above algorithm is guaranteed to stop
within few iterations since the seed set will no longer augment once its size exceeds that of the
ground truth community. The algorithm would then return the community found with the highest
F1 score during the iterations as the result. However, in real case, we do not know the exact size
of the communities, causing the ambiguity for most locally based detection algorithm to decide
when is the proper time to terminate expanding such that the discovered community is a “good”
community. It is thus important to solve the two issues: (1) how to automatically determine the
size of the community given a seed set S, and (2) when to stop growing the seed set during the
reseeding process.

4.5.1 Determine the Size of the Community. It has already been shown that random walks pro-
duce communities with conductance guarantees and ensure a small boundary defining a natural
community in locally based detection algorithms [4]. The intuition is that adding irrelevant vertices
to the target community would inevitably cause the conductance to increase, and finding a low-
conductance community could ensure the closeness among the members. A commonly adopted
method of rounding the diffusion values into labels is to perform a sweep-cut procedure on the
nodes ranked by the diffusion value, with an objective of minimizing the graph cut metric such as
conductance [3, 20, 29]. As we will see, the local conductance for a small group of vertices in the

9A fast implementation method for updating the probability vector of the random walks is featured in detail in [4], Section 4.
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graph contains valuable information and enables us to design effective stopping criteria for our
algorithm. We define conductance using the generalized Rayleigh quotient specified below:

Definition 2. Let x ∈ {0, 1}N denote the binary indicator vector for the subset Ṽ ⊆ Vs and
H ∈ RN×N is any symmetric matrix. The Rayleigh quotient with respect to H is expressed as the
quadratic form of

RH (x) =
xT Hx

xT x
. (7)

In particular, conductance of the set Ṽ measures the fraction of edges leaving Ṽ among all the

edges incident on Ṽ , and can be expressed using a generalized Rayleigh quotient

Φ(Ṽ ) = RLS,DS (x) =
xT LSx

xT DSx
=

xT (DS − AS )x

xT DSx
, (8)

where LS = DS − AS is the Laplacian matrix of graph GS .
Now suppose we have a rough estimation of the lower and upper bound for the size of commu-

nities in a graph, which we denote by |C|min and |C|max, respectively. We could modify the original
algorithm in the following way.

At step 2, after obtaining the sorted sparse vector ŷ, we are hoping to truncate the sorted vec-
tor at some point yд such that all the vertices corresponding to the elements no less than yд are
included in the algorithmic community. The crux lies in that we do not know which is the best
position to truncate the vector ŷ. To solve this issue, we denote Λi as the set of vertices correspond-
ing to the top i elements in ŷ. We then sweep over the sets from Λ |C |min to Λ |C |max and calculate
the corresponding conductance for each of the sets. In practice, the value of the conductance with
respect to varying size would usually change in a non-monotonic pattern that decreases first and
then increases later on. We then adopt the minimum conductance encountered on this curve as
the estimated size of the community with respect to the seed set S, which we denote by Φmin

S .

4.5.2 Stop the Reseeding Process. As we keep augmenting the seed set through reseeding at
step 3, a different seed set would result in a different sparse vector ŷ and thus lead to potentially dif-
ferent algorithmic communities. Practically, one of these seed sets during the augmenting process
would achieve the highest F1 score. And, it remains to address the issue of when to stop growing
the seed set so that it finds the community that resembles most of the ground truth community.
This issue can be solved in a similar fashion as that for determining community size. Specifically,
we keep track of the value of Φmin

S for different seed set during the expansion, and stop to grow

the seed set when Φmin
S reaches a local minimum and starts to increase for the first time.

4.5.3 Auto Detect Size vs. Ground Truth Size. The stop criteria used in Lemon combines methods
introduced in Sections 4.5.1 and 4.5.2. To verify the effectiveness, we compare the performance
using stop criteria introduced above, with that obtained using ground truth community size |C|
explicitly. Figure 5 shows the statistical result of F1 score on both synthetic and real datasets. On
both datasets, the F1 score with automatic size determination is only lowered by 10% on average
compared with the performance with knowing |C|. This implies that our method is applicable
for finding the algorithmic community |C∗ | that mostly resemble the ground truth community
|C| on both synthetic and real datasets in different domains. It also suggests that our method can
be applied in practice to uncover natural communities in the situation when no ground truth is
available.
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Fig. 5. Comparison of the average F1 score with ground truth and automatic size determination. The left

corresponds to the LFR datasets when mu = 0.3 and the right corresponds to the real datasets.

4.6 Bounding the Performance

In the following discussion, we bound the measure of “tightness” of the extracted community
with respect to the subgraphGS by relating spectral properties to Rayleigh quotients. We start by
providing several theorems and lemmas that will be used for deriving the bound of conductance.

Theorem 1 (Cheeger’s Ineqality). Let λ2 be the second smallest eigenvalue of the Laplacian

matrix for a graph GS . Then, ϕ (GS ) ≥ λ2

2 , where ϕ (GS ) = minṼ ⊆VS Φ(Ṽ ).

There are many proofs known for this theorem [7], and we henceforth omit the details here.

Lemma 1. The generalized Rayleigh quotient RLS,DS (x) is equivalent to the form of RL̄S (DS
1/2x),

where L̄S = I − DS
−1/2ASDS

−1/2 is the normalized Laplacian matrix of graph GS .

Proof. By the definition in Equation (7), we have

RL̄S (DS
1/2x) =

(DS
1/2x)

T
L̄S (DS

1/2x)

(DS
1/2x)

T
(DS

1/2x)

=
xT DS

1/2L̄SDS
1/2x

xT DSx

=
xT (DS − AS )x

xT DSx

= RLS,DS (x). �

Theorem 2 (Courant–Fischer Theorem). Let Xk denote a k dimensional subspace of RN and

x ⊥ Xk represents that x ⊥ y for all y ∈ Xk. For any symmetric matrix H ∈ RN×N with eigenvalues

λ(H)
1 ≤ λ(H)

2 ≤ · · · ≤ λ(H)
N

,

λ(H)
i = min

XN−i−1

(
max

x⊥XN−i−1,x�0
RH (x)

)
= max
Xi

(
min

x⊥Xi ,x�0
RH (x)

)
. (9)

We will not include the proof of the Courant–Fischer Theorem here. The interested reader can
find a proof in any major linear algebra textbook.
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We denote by DS
1/2x = z. With the Courant–Fischer Theorem, we can express the eigenvalues

of the normalized Laplacian matrix L̄S in the following:

λ(L̄S )
i = min

ZN−i−1

(
max

z⊥ZN−i−1,z�0
RL̄S (z)

)

= min
ZN−i−1

(
max

z⊥ZN−i−1,z�0

xT (DS − AS )x

xT DSx

)

= min
XN−i−1

(
max

x⊥XN−i−1,x�0

xT (DS − AS )x

xT DSx

)

= min
XN−i−1

(
max

x⊥XN−i−1,x�0

∑
i∼j

(xi − x j )
2

∑
i
x2

i di

)
≤ 2,

where i ∼ j indicates that i is adjacent to j. Similarly,

λ(L̄S )
i = max

Xi

(
min

x⊥Xi ,x�0

∑
i∼j

(xi − x j )
2

∑
i
x2

i di

)
≤ 2. (10)

Corollary 1. Given a graphGS with N nodes, the largest eigenvector of its normalized adjacency

matrix is no bigger than 2, i.e., λ(L̄S )
N
≤ 2.

For any symmetric matrix H ∈ RN×N with orthonormal eigenvectors q1, q2, . . . , qN, and cor-

responding eigenvalues λ(H)
1 ≤ λ(H)

2 ≤ · · · ≤ λ(H)
N

, we can always decompose the binary indicator
vector x into a linear combination of the eigenvectors, i.e., x =

∑
i
ai qi . This allows us to write

RH (x) =
xT Hx

xT x
=

( ∑
i
ai q

T
i

) ( ∑
i
aiλ

(H)
i qi

)
( ∑

i
ai q

T
i

) ( ∑
i
ai qi

) =

∑
i
a2

i λ
(H)
i∑

i
a2

i

=
∑

i

wiλ
(H)
i , (11)

where wi = a2
i /| |x| |2. Hence, the Rayleigh quotient can be viewed as a weighted average of the

eigenvalues. If the indicator vector x forms an acute angle with the invariant subspace associated
with the extreme eigenvalues, then most of the weight in the average must be on eigenvalues close

to λ(H)
N

. Similarly,RH (x) can be bounded from below by the smallest eigenvalues of H, in which case
the indicator vector x can be approximated by a linear combination of the eigenvectors associated
with the smallest eigenvalues.

Lemma 2. Let x ∈ {0, 1}N denote the binary indicator vector for the algorithmic community C∗ ⊆
Vs corresponding to the seed set S, the conductance of C∗ is bounded by

λ2/2 ≤ Φ(C∗) ≤ min{1, 2(1 −w1)}, (12)

where λ2 is the second smallest eigenvalue of Laplacian matrix of GS , and w1 is the weight of the

smallest eigenvalue of the normalized Laplacian matrix L̄S , as specified in Equation (11).

Proof. The left side inequality holds due to the fact that Φ(C∗) ≥ ϕ (GS ). Following the
Cheeger’s inequality that ϕ (GS ) ≥ λ2/2 in Theorem 1, we therefore have λ2/2 ≤ Φ(C∗). To prove
the right side, we first express the conductance Φ(C∗) using Rayleigh quotient,

Φ(C∗) = RLS,DS (x), (13)
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which can be further rewritten as RL̄S (DS
1/2x), according to Lemma 1. Using similar decomposi-

tion as that in Equation (11), we can express RL̄S (DS
1/2x) as the weighted average of the eigen-

values λ(L̄S )
1 ≤ λ(L̄S )

2 ≤ · · · ≤ λ(L̄S )
N

, i.e.,

RL̄S (DS
1/2x) =

∑
i

wiλ
(L̄S )
i

≤ w1λ
(L̄S )
1 + (1 −w1)λ(L̄S )

N

≤ 2(1 −w1). �

5 SEEDING

Since the initial seed set serves as a key component in our algorithm for uncovering the target
community C, it is thus crucial to consider how the quality of seed set affect the performance.
In practice, there is not much control over how the seeds are selected. However, the alternative
seeding methods can be strategically applied by domain experts in different scenarios based on
the availability of candidate seeds. In this section, we will focus on addressing two fundamentally
important issues regarding the seed set: (1) What defines “good” seeds? and (2) How many seeds
are needed in order to uniquely define a community?

5.1 Seeding Method

To give a well-rounded evaluation on this, we encompass in total five different seeding methods
here. In this experiment, we adopt |S| = 3 seeds for each of the seeding method listed below.

(1) High degree seeding: pick |S| vertices with degree ranked in the top one third among the
degree of all vertices in C.

(2) Low degree seeding: pick |S| vertices with degree ranked in the bottom one third among
the degree of all vertices in C.

(3) Triangle seeding: pick |S| vertices in C that form a triangle as the initial seed set.
(4) Random seeding: pick |S| vertices in C randomly.
(5) High inward-edge ratio seeding: the inward-edge ratio for a vertex v is defined by the

fraction of links connecting to another vertex inside the target community C among all
the links coming out from v . We pick |S| vertices with inward-edge ratio ranked in the
top one third among all vertices in C.

We show the effect of various seeding methods on LFR dataset (mu = 0.1) in Figure 6 and real
datasets in Figure 7, respectively. It is interesting to note that the high-degree seeding method
consistently achieves the higher F1 score than low-degree seeding, random seeding, and triangle
seeding methods. Triangle seeding leads to the worst performance with low F1 score and high
standard deviation. This implies that seeding from a compact core structure is less advantageous
than seeding sporadically among vertices. The intuitive explanation behind this phenomenon is
that it is more difficult for the probabilities to spread out when the random walk initiates from a
cohesive structure.

Another interesting observation is that high inward-edge ratio seeding method can consistently
lead to the best performance among different seeding methods on both synthetic and real datasets.
To explain this, when a seed mostly links to vertices within the same community, random walks
starting from this type of seeds would more likely transit probabilities into vertices within the
community rather than spreading out to vertices outside the community. A higher detection
accuracy can be thus achieved since the target community contains much of the probability after
short random walks.
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Fig. 6. The average F1 score on LFR datasets (mu = 0.1) with different seeding methods.

Fig. 7. The average F1 score on real datasets with different seeding methods.

Moreover, it is also striking to note the difference between the test results on synthetic datasets
and that on real datasets. Even though the high-degree seeding method can always bring higher
performance than that of random seeding on synthetic datasets, the behavior of these seeding
methods on real networks is quite different. In Figure 7, we see that low-degree seeds lead to
better result than that of high-degree seeds on DBLP and YouTube datasets. The degree of seeds
does not have a significant impact on the performance in Amazon and Orkut networks since
the performance of high-degree seeding and low-degree seeding almost tie with each other on
these datasets. In [14], the authors compared the detection accuracy of PageRank-based SSE
algorithm with high-degree seeding and random seeding on real networks, and concluded that
random seeding method always outperforms high-degree seeding in all domains of real networks.
However, we remark here that this observation does not apply to our algorithm as we find that
high-degree seeding works slightly better than random seeding on Orkut and YouTube datasets.
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Fig. 8. The average F1 score on LFR benchmark data with different seeding ratio. The left figure corresponds

to the datasets with mixing parameter mu = 0.1 and the right one corresponds tomu = 0.3.

For all the remaining analysis, we will be using random seeding due to its generality and
practicality.

5.2 Seed Set Size

It is also interesting to investigate how the size of the seed set affects the performance of our
algorithm.

We first experiment on the LFR benchmark datasets with varying seed set size. We choose seed
set of size proportional to the size of the target community C. Specifically, we test with five dif-
ferent seeding ratios r : 2%, 4%, 6%, 8%, and 10%, respectively, and round r · |C| to an integer if it
is a fraction. Figure 8 shows the F1 scores when mu = 0.1. The algorithm’s performance can be
improved in general as the seed set size increases. In the case when both mixing parameter and
overlapping membership are small, e.g., mu = 0.1,om = 2, increasing the seed set size does not
seem to affect the performance significantly, and seed set consisting of a small percentage of ver-
tices are sufficient to discover the target community with high accuracy. This implies that when
the structure of a small community is well-defined, our algorithm only needs 2 to 3 seeds to re-
veal the remaining members in a community of size roughly 100. In general, we use an 8% fraction
of the vertices in the target community for the whole LFR datasets.

We conduct similar experiment on the real datasets. The result on real networks is interesting
because increasing the seed set size has little effect on the performance. In particular, using only
three seeds can yield almost the same performance as using an 8% fraction of the vertices in the
target community as seeds on real datasets.

Our algorithm is therefore advantageous to many other SSE algorithms that require a higher
fraction of vertices to be known. For example, in [14], the authors perform a similar experiment
on DBLP network. The performance of their algorithm achieves the maximum recall of 0.3 when
seeding ratio is 10%, while Lemon can achieve an average F1 score of 0.66 with 3 vertices. This
makes our algorithm practical for real networks when it is impossible to collect a large number of
seeds.

5.3 Further Extension

As the results of using different seeding methods suggests, high-degree seeds can heuristically
lead to better result on synthetic data. Such heuristic implies that a vertex with higher degree may
exert higher impact on shaping the subspace we are looking for, and thus affect the performance
by leading to different sparse vectors where we obtain the “candidates” of the target community
from.
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Fig. 9. Comparison of the average F1 score on LFR datasets with and without normalizing the initial prob-

ability vector by each seed’s degree.

In practice, we usually have little control on the seed set. The chance we get a seed set of high-
degree members is rare. More often than not, the degree of seeds is randomly distributed. We are
therefore inspired to tailor our algorithm accordingly in order to emphasize the seeds with high
degree. The modification is rather straightforward: when calculating the initial probability vector
p0 to start a random walk from, instead of evenly distributing the amount of probability to each
seed, we initialize the probability vector according to the degree of each seed. Formally,

p0 (vi ) =

{
d (vi )/Vol(S) if vi ∈ S

0 otherwise
(14)

where d (vi ) denotes the degree of vertex vi . In other words, we enforce a bias towards the high-
degree vertices at the beginning of the random walk. Note that each time after the reseeding
process, the initial probability vector also needs to be recalculated in the same way.

Figure 9 depicts the experimental results on LFR benchmark graphs with and without degree
normalized initialization for the random walk, respectively. We can find that degree-normalization
of the initial probability vector results in better performance.

We then perform the same experiments on real networks, and find that degree-normalization
would on the contrary, lead to slightly worse performance (see Figure 10). The completely differ-
ent behavior of using degree normalization on real datasets is rather intriguing. To explain this
intuitively, we can refer to the observation in Section 5.1 that on real datasets, a high-degree seed
set is less advantageous than random seeds. By putting heavier weight on those high-degree ver-
tices, the degree-normalization would unnecessarily worsen the performance on real datasets. We
provide more discussions in explaining the effect of high-degree nodes in Section 6.4.

5.4 Enlarging the Initial Seed Set

In Section 5.2, we see that a larger seed set would lead to better results in general on synthetic
datasets. But in the situation when there are not many seeds available, can we still find a way
to improve the performance on synthetic datasets? This can be achieved via preprocessing the
seed set before running our algorithm. Specifically, for each pair of vertices (vi ,vj ) in the seed
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Fig. 10. Comparison of the average F1 score on real datasets with and without normalizing the initial prob-

ability vector by each seed’s degree.

set S, we search for the shortest path P connecting vi and vj , and add the vertices on the path
to the original seed set if the length of the shortest path |P | ≤ 3. The intuition behind this idea
is that any two seeds in the same community must be related for some reason, and they con-
nect with each other either via a direct link or via some other intermediate vertices. In the lat-
ter case, those intermediate vertices bridging the seeds are also likely to be in the target com-
munity because they serve as the relational “relay” in order for the seeds to be in the same
community.

Note that the procedure of enlarging the initial seed set S differentiates from the reseeding
process while running the algorithm. The can be viewed as a pre-processing step before we feed
the seed into the algorithm, which is used for the purpose of increasing the size of initial seed set.
The running time used for enlarging the initial seed set is almost negligible.

In Figure 11, we compare the performance on LFR benchmark data with and without enlarging
the initial seed set (with three randomly selected nodes from |C|). We can see that enlarging the
seed set can statistically improve the performance. This method can help solve the dilemma of
lacking enough available seeds, e.g., when the seed set consists of only 3 or 4 vertices.

6 COMPARISON WITH THE STATE-OF-THE-ART ALGORITHMS

In this section, we compare Lemon with several state-of-the-art approaches. For generality, we use
plain Lemon algorithm without degree normalization or seed set enlargement. For real datasets,
we use random seeding method with three initial seeds. For LFR benchmark graphs, we randomly
sample 8% vertices from the target community as seeds.

6.1 Local Spectra vs. PageRank

The local spectra clustering approach and PageRank algorithm both utilize short random walks to
detect the local community structure. PageRank is solely based on the single probability vector,
and the latent community members are selected through ranking the probability value among
vertices. The local spectral clustering advances PageRank-like algorithms by forming a subspace

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 2, Article 17. Publication date: January 2018.



Local Spectral Clustering for Overlapping Community Detection 17:21

Fig. 11. Comparison of the average F1 score with and without enlarging the initial seed set on LFR bench-

mark datasets.

Fig. 12. Comparison of the average F1 score with local spectral clustering and PageRank algorithms. Height

of the bars shows the mean over different communities.

based on the short random walk, and seeking for a sparse vector such that the seeds are in its
support.

By comparing the performance of these two approaches on the real datasets, we show that
seeking for the sparse vector is more effective than directly sorting the probability vector alone.
Figure 12 shows the comparison of average F1 score obtained by local spectral clustering and
PageRank, respectively.10 From the result, we see that the performance gain brought by the local
spectral method is significant, where it achieves more than five times higher accuracy on Amazon,
DBLP, and Orkut networks. We also take into account of a variety of state-of-the-art community
detection algorithms for performance comparison in Section 6.

10The statistical results of PageRank algorithm is sourced from [12].
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Fig. 13. Comparison of the average F1 score with state-of-the-art local detection algorithms on real net-

works.

To give a well-rounded performance comparison with state-of-the-art algorithms, we further
compared our results to three localized community detection algorithms and four global commu-
nity detection algorithms.

6.2 Comparison with Localized Algorithms

We compare with three locally based methods, Heat Kernel (HK) [12], PageRank (PR) [14], and
SSE [29].

(1) Heat Kernel [12]: The heat kernel11 (HK) is a type of graph diffusion for locally identifying
a community nearby a starting seed node. The algorithm can deterministically find the
community by computing the diffusion.

(2) PageRank [14]: The personalized PageRank (PR) scheme is computed using the power
method and jumpback probability α = 0.10 in [14].

(3) Seed Set Expansion [29]: The SSE method starts with searching for a good seed set, and
then use personalized PageRank to expand the seeds until a community with optimal
conductance is found.

Figure 13 illustrates the comparison of F1 scores on Amazon, DBLP, YouTube, and Orkut
datasets. We use “Lemon-auto” to denote the results obtained by applying the stop criteria in
Section 4.5. For each of the baseline method, we refer to the original results reported in this arti-
cle. Since the results on Orkut and YouTube datasets are missing in [29] and [14], we use empty
bars to indicate them.

Figure 13 shows that Lemon achieves an F1 score of 0.910 on the Amazon dataset, far outper-
forming the other algorithms. The average F1 scores increases the performance by three times
compared with the heat kernel algorithm [12] on Amazon, DBLP, and Orkut networks. To compare
with [29], we find that the average F1 score of our algorithm doubles their best performance
achieved by the “spread hubs” method on Amazon dataset and triples the performance on the
DBLP network. The performance comparison of Lemon and PageRank has been elaborated in

11https://www.cs.purdue.edu/homes/dgleich/codes/hkgrow.
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Fig. 14. Comparison of the running time with local random walk based detection algorithms on real

networks.

Section 6.1. Also, note that in [14], the authors did not have an explicit stop criterion and instead
having a pre-determined budget for the size of the target community. We compare with the F1
score at a budget of 100 for both Amazon and DBLP datasets. From the results on Amazon networks
in [14], we notice that even granted a budget of 400, which is far beyond the average community
size of 39 in Amazon network, only a recall of 0.45 can be achieved. And, we infer the F1 score
would be even lower than this value since the precision is dragged down by the large budget set.

It is also worth noting that we only use three randomly picked seeds for all the test cases on
each dataset. Our algorithm requires very fewer seeds than other algorithms such as [14].

We further compare the running time with localized random walk based algorithms, namely
Heat Kernel [12] and Personalized PageRank [14]. Figure 14 shows the running time of different
approaches (in log scale) on four real datasets in consideration.12 We notice Lemon-auto takes
slightly longer time compared to other two walk-based approaches, but not substantial. This is
due to the component of solving linear programming takes extra computation time.

The experiment has verified that our algorithm is able to achieve high accuracy on large net-
works constituting communities of average size roughly hundred. This implies that our approach
is well-suited for the task of detecting small communities in large networks.

6.3 Comparison with Global Algorithms

We also compare local spectral clustering with several state-of-the-art global based algorithms.

(1) OSLOM [16]:
OSLOM13 is based on the optimization of a fitness function expressing the statistical sig-
nificance of clusters with respect to random fluctuations (i.e., the random graph generated
by the configuration model [22] during community expansion). The worst case running
time of OSLOM is O (n2).

(2) DEMON [8]:
The DEMON14 algorithm adopts a local-first approach for finding communities. It demo-
cratically lets each vertex vote for the communities it sees surrounding it in its limited

12Results are referenced from a followup work [13] done by the first and third author. Algorithms are implemented in

MATLAB.
13http://www.oslom.org/software.htm.
14http://www.michelecoscia.com/?page_id=42.
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Table 5. Comparison of Accuracy with Global Algorithms on Real Datasets

Algorithm Implementation Amazon DBLP YouTube Orkut
LEMON Python 0.953 0.665 0.240 0.202
LEMON-auto Python 0.910 0.525 0.190 0.170
DEMON Python/C++ 0.164 0.196 0.031 –
OSLOM C++ 0.766 0.542 – –
LC Python/C++ 0.815 0.527 – –

Table 6. Comparison of Running Time with Global Algorithms

Algorithm Implementation Amazon DBLP YouTube Orkut
LEMON Python <15s <15s <15s <15s
LEMON-auto Python <15s <15s <15s <15s
DEMON Python/C++ 4,562s 727,675s 22,395s –
OSLOM C++ 885,867s 23,262s >10d –
LC Python/C++ 4,606s 49,045s >10d –

view of the global system using a label propagation algorithm, and then merges the local
communities into a global collection.

(3) LC [2]:
LC15 is a global partitioning algorithm that first builds a hierarchical link dendrogram
according to the link similarity and then cuts the dendrogram at some threshold to yield
link communities. The time complexity is O (nk2

max), where kmax is the maximum vertex
degree in the network.

Tables 5 and 6 summarize the average F1 score as well as the running time of each algorithm on
real datasets. Among the baselines, OSLOM and LC fail to terminate within 10 days on the YouTube
dataset. The OSLOM algorithm can achieve rather good performance but does not scale well. In
contrast, our algorithm can consistently return the result within few seconds irrespective of how
large the entire graph is. Besides, our algorithm has small memory consumption, and a machine
with 4GB RAM can afford to process networks as large as Orkut since the algorithm does not
have to store the whole graph in memory. Moreover, our locally based algorithm is parallelizable
because each SSE can be computed independently. Such property can bring a further performance
gain on running time with multi-threaded implementation [29].

In Figures 15 and 16, we compare the average F1 score with state-of-the-art algorithms on
LFR benchmark graphs. During the experimentation, we also incorporate the methods that can
effectively improve the performance on synthetic datasets that are addressed in Section 5.3. We
notice that our algorithm outperforms the baseline algorithms even when we use the random
seeding strategy. When the mixing parameter mu = 0.3, as is shown in Figures 15 and 16, Lemon
brings about 30%–40% relative improvement compared with the best results among the baselines.
And we can expect the performance gain to be even more significant if the seeds possess the qual-
ities discussed in Section 5.1.

Among the four baselines, we notice that LC and DEMON consistently perform poorly on both
groups of the synthetic datasets. We further look into the communities found by LC and DEMON,
respectively, and find that LC tends to partition the graphs into very small pieces while DEMON, on
the contrary, usually finds communities that are much larger than the ground truth communities.

15https://github.com/bagrow/linkcomm.
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Fig. 15. Comparison of the average F1 score on LFR datasets (mu = 0.1) with baseline algorithms.

Fig. 16. Comparison of the average F1 score on LFR datasets (mu = 0.3) with baseline algorithms.

This implies that both algorithms extract structures from networks that bear little resemblance to
the natural formation of the communities. However, we remark here that even LC fails to recognize
the communities well on the synthetic data, it perform better on real datasets as we see in Table 6.

6.4 Empirical Comparison Between Synthetic and Real Data

Networks are not all similar, and we cannot assume one algorithm works for finding communities
in a network will behave the same on the other networks. Therefore, it is important to develop the
understanding of how different types of networks affect the behavior of algorithms.

Our algorithm sustains a consistent performance on both LFR benchmark graphs and real net-
works though, we still want to summarize and call the attention to several subtle differences here.

First, Lemon is less sensitive to the parameter of random walk step k and subspace dimension l
on real networks than that on LFR benchmark graphs. In practice, fixing (k, l ) to be (3, 3) for real
networks can ensure a good performance.
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Second, Lemon is less sensitive to the seed set size on real networks than that on LFR benchmark.
In practice, a seed set size of 3 (independent of actual ground truth community size) can guarantee
a good performance on real networks. As for LFR, we adopt the seed set size to be proportional to
the community size (8%).

Third, Lemon is more sensitive to the high-degree seeds in graphs where the node distribution
is highly skewed (e.g., when the node degree can range from tens to thousands). In LFR graphs,
the degree of a vertex is at most 50. Whereas in some large real networks such as YouTube, the
degree of a vertex can range from 1 to >1,000, making the degree distribution much more skewed
than that seen in LFR graphs. And, we expect that vertices with unusually high degree in real
networks would have a stronger power in controlling the trend for the probabilities to spread out
during the random walk, and thus have a higher risk to enter some other neighboring commu-
nities. Such an effect can be counterbalanced by putting less initial probabilities on these “super
core.”

The above empirical analysis informs us that finding communities in real networks seems to be
less parameterized than that on synthetic datasets for our algorithm. This indicates that our algo-
rithm is better suited for uncovering those naturally well-formed communities than the artificially
constructed communities in practice.

7 CONCLUSION

The problem of identifying small community structure in large networks has been gaining im-
portance. In this article, we have presented a method for finding overlapping communities by
seeking a sparse vector in the span of local spectra where the seeds are in its support. To over-
come the drawbacks of traditional spectral clustering methods, we propose a novel method to
construct the local spectra based on the singular vector approximations drawn from short ran-
dom walks. Our algorithm enables finding a small community in time functional to the size
of the community, and it consistently returns the result within seconds even for a network
with millions of vertices. We demonstrate the effectiveness and efficiency of our method for
discovering communities on both synthetic and real-world datasets. As the experimental re-
sult shows, our algorithm achieves the highest detection accuracy among the state-of-the-art
proposals.

Many other fundamentally important research questions remain to be addressed. First, the com-
munity detection algorithm based on local spectral clustering could be potentially applied to the
membership detection problem, i.e., finding all the communities that an arbitrary vertex belongs
to. Second, during SSE, we adopt the first low-conductance community as the target community,
which usually yields a high resemblance to the ground truth community. It would also be inter-
esting to look further into some larger low-conductance communities and see if a hierarchical
structure exists. In this case, some large social groups consisting of several small communities are
likely to be discovered.
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